Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[deliverable/linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v2_4.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_2_4_d.h"
33 #include "oss/oss_2_4_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "iceland_sdma_pkt_open.h"
46
47 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/topaz_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin");
54
55 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
56 {
57 SDMA0_REGISTER_OFFSET,
58 SDMA1_REGISTER_OFFSET
59 };
60
61 static const u32 golden_settings_iceland_a11[] =
62 {
63 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
64 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
65 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
66 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
67 };
68
69 static const u32 iceland_mgcg_cgcg_init[] =
70 {
71 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
72 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
73 };
74
75 /*
76 * sDMA - System DMA
77 * Starting with CIK, the GPU has new asynchronous
78 * DMA engines. These engines are used for compute
79 * and gfx. There are two DMA engines (SDMA0, SDMA1)
80 * and each one supports 1 ring buffer used for gfx
81 * and 2 queues used for compute.
82 *
83 * The programming model is very similar to the CP
84 * (ring buffer, IBs, etc.), but sDMA has it's own
85 * packet format that is different from the PM4 format
86 * used by the CP. sDMA supports copying data, writing
87 * embedded data, solid fills, and a number of other
88 * things. It also has support for tiling/detiling of
89 * buffers.
90 */
91
92 static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev)
93 {
94 switch (adev->asic_type) {
95 case CHIP_TOPAZ:
96 amdgpu_program_register_sequence(adev,
97 iceland_mgcg_cgcg_init,
98 (const u32)ARRAY_SIZE(iceland_mgcg_cgcg_init));
99 amdgpu_program_register_sequence(adev,
100 golden_settings_iceland_a11,
101 (const u32)ARRAY_SIZE(golden_settings_iceland_a11));
102 break;
103 default:
104 break;
105 }
106 }
107
108 /**
109 * sdma_v2_4_init_microcode - load ucode images from disk
110 *
111 * @adev: amdgpu_device pointer
112 *
113 * Use the firmware interface to load the ucode images into
114 * the driver (not loaded into hw).
115 * Returns 0 on success, error on failure.
116 */
117 static int sdma_v2_4_init_microcode(struct amdgpu_device *adev)
118 {
119 const char *chip_name;
120 char fw_name[30];
121 int err, i;
122 struct amdgpu_firmware_info *info = NULL;
123 const struct common_firmware_header *header = NULL;
124 const struct sdma_firmware_header_v1_0 *hdr;
125
126 DRM_DEBUG("\n");
127
128 switch (adev->asic_type) {
129 case CHIP_TOPAZ:
130 chip_name = "topaz";
131 break;
132 default: BUG();
133 }
134
135 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
136 if (i == 0)
137 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
138 else
139 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
140 err = request_firmware(&adev->sdma[i].fw, fw_name, adev->dev);
141 if (err)
142 goto out;
143 err = amdgpu_ucode_validate(adev->sdma[i].fw);
144 if (err)
145 goto out;
146 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
147 adev->sdma[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
148 adev->sdma[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
149 if (adev->sdma[i].feature_version >= 20)
150 adev->sdma[i].burst_nop = true;
151
152 if (adev->firmware.smu_load) {
153 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
154 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
155 info->fw = adev->sdma[i].fw;
156 header = (const struct common_firmware_header *)info->fw->data;
157 adev->firmware.fw_size +=
158 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
159 }
160 }
161
162 out:
163 if (err) {
164 printk(KERN_ERR
165 "sdma_v2_4: Failed to load firmware \"%s\"\n",
166 fw_name);
167 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
168 release_firmware(adev->sdma[i].fw);
169 adev->sdma[i].fw = NULL;
170 }
171 }
172 return err;
173 }
174
175 /**
176 * sdma_v2_4_ring_get_rptr - get the current read pointer
177 *
178 * @ring: amdgpu ring pointer
179 *
180 * Get the current rptr from the hardware (VI+).
181 */
182 static uint32_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring)
183 {
184 u32 rptr;
185
186 /* XXX check if swapping is necessary on BE */
187 rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
188
189 return rptr;
190 }
191
192 /**
193 * sdma_v2_4_ring_get_wptr - get the current write pointer
194 *
195 * @ring: amdgpu ring pointer
196 *
197 * Get the current wptr from the hardware (VI+).
198 */
199 static uint32_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring)
200 {
201 struct amdgpu_device *adev = ring->adev;
202 int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
203 u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
204
205 return wptr;
206 }
207
208 /**
209 * sdma_v2_4_ring_set_wptr - commit the write pointer
210 *
211 * @ring: amdgpu ring pointer
212 *
213 * Write the wptr back to the hardware (VI+).
214 */
215 static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring)
216 {
217 struct amdgpu_device *adev = ring->adev;
218 int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
219
220 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
221 }
222
223 static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
224 {
225 struct amdgpu_sdma *sdma = amdgpu_get_sdma_instance(ring);
226 int i;
227
228 for (i = 0; i < count; i++)
229 if (sdma && sdma->burst_nop && (i == 0))
230 amdgpu_ring_write(ring, ring->nop |
231 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
232 else
233 amdgpu_ring_write(ring, ring->nop);
234 }
235
236 /**
237 * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine
238 *
239 * @ring: amdgpu ring pointer
240 * @ib: IB object to schedule
241 *
242 * Schedule an IB in the DMA ring (VI).
243 */
244 static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring,
245 struct amdgpu_ib *ib)
246 {
247 u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
248 u32 next_rptr = ring->wptr + 5;
249
250 while ((next_rptr & 7) != 2)
251 next_rptr++;
252
253 next_rptr += 6;
254
255 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
256 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
257 amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
258 amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
259 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
260 amdgpu_ring_write(ring, next_rptr);
261
262 /* IB packet must end on a 8 DW boundary */
263 sdma_v2_4_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
264
265 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
266 SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
267 /* base must be 32 byte aligned */
268 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
269 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
270 amdgpu_ring_write(ring, ib->length_dw);
271 amdgpu_ring_write(ring, 0);
272 amdgpu_ring_write(ring, 0);
273
274 }
275
276 /**
277 * sdma_v2_4_hdp_flush_ring_emit - emit an hdp flush on the DMA ring
278 *
279 * @ring: amdgpu ring pointer
280 *
281 * Emit an hdp flush packet on the requested DMA ring.
282 */
283 static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring)
284 {
285 u32 ref_and_mask = 0;
286
287 if (ring == &ring->adev->sdma[0].ring)
288 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
289 else
290 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
291
292 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
293 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
294 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
295 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
296 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
297 amdgpu_ring_write(ring, ref_and_mask); /* reference */
298 amdgpu_ring_write(ring, ref_and_mask); /* mask */
299 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
300 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
301 }
302
303 /**
304 * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring
305 *
306 * @ring: amdgpu ring pointer
307 * @fence: amdgpu fence object
308 *
309 * Add a DMA fence packet to the ring to write
310 * the fence seq number and DMA trap packet to generate
311 * an interrupt if needed (VI).
312 */
313 static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
314 unsigned flags)
315 {
316 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
317 /* write the fence */
318 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
319 amdgpu_ring_write(ring, lower_32_bits(addr));
320 amdgpu_ring_write(ring, upper_32_bits(addr));
321 amdgpu_ring_write(ring, lower_32_bits(seq));
322
323 /* optionally write high bits as well */
324 if (write64bit) {
325 addr += 4;
326 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
327 amdgpu_ring_write(ring, lower_32_bits(addr));
328 amdgpu_ring_write(ring, upper_32_bits(addr));
329 amdgpu_ring_write(ring, upper_32_bits(seq));
330 }
331
332 /* generate an interrupt */
333 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
334 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
335 }
336
337 /**
338 * sdma_v2_4_ring_emit_semaphore - emit a semaphore on the dma ring
339 *
340 * @ring: amdgpu_ring structure holding ring information
341 * @semaphore: amdgpu semaphore object
342 * @emit_wait: wait or signal semaphore
343 *
344 * Add a DMA semaphore packet to the ring wait on or signal
345 * other rings (VI).
346 */
347 static bool sdma_v2_4_ring_emit_semaphore(struct amdgpu_ring *ring,
348 struct amdgpu_semaphore *semaphore,
349 bool emit_wait)
350 {
351 u64 addr = semaphore->gpu_addr;
352 u32 sig = emit_wait ? 0 : 1;
353
354 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
355 SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
356 amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
357 amdgpu_ring_write(ring, upper_32_bits(addr));
358
359 return true;
360 }
361
362 /**
363 * sdma_v2_4_gfx_stop - stop the gfx async dma engines
364 *
365 * @adev: amdgpu_device pointer
366 *
367 * Stop the gfx async dma ring buffers (VI).
368 */
369 static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev)
370 {
371 struct amdgpu_ring *sdma0 = &adev->sdma[0].ring;
372 struct amdgpu_ring *sdma1 = &adev->sdma[1].ring;
373 u32 rb_cntl, ib_cntl;
374 int i;
375
376 if ((adev->mman.buffer_funcs_ring == sdma0) ||
377 (adev->mman.buffer_funcs_ring == sdma1))
378 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
379
380 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
381 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
382 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
383 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
384 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
385 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
386 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
387 }
388 sdma0->ready = false;
389 sdma1->ready = false;
390 }
391
392 /**
393 * sdma_v2_4_rlc_stop - stop the compute async dma engines
394 *
395 * @adev: amdgpu_device pointer
396 *
397 * Stop the compute async dma queues (VI).
398 */
399 static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev)
400 {
401 /* XXX todo */
402 }
403
404 /**
405 * sdma_v2_4_enable - stop the async dma engines
406 *
407 * @adev: amdgpu_device pointer
408 * @enable: enable/disable the DMA MEs.
409 *
410 * Halt or unhalt the async dma engines (VI).
411 */
412 static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable)
413 {
414 u32 f32_cntl;
415 int i;
416
417 if (enable == false) {
418 sdma_v2_4_gfx_stop(adev);
419 sdma_v2_4_rlc_stop(adev);
420 }
421
422 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
423 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
424 if (enable)
425 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
426 else
427 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
428 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
429 }
430 }
431
432 /**
433 * sdma_v2_4_gfx_resume - setup and start the async dma engines
434 *
435 * @adev: amdgpu_device pointer
436 *
437 * Set up the gfx DMA ring buffers and enable them (VI).
438 * Returns 0 for success, error for failure.
439 */
440 static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev)
441 {
442 struct amdgpu_ring *ring;
443 u32 rb_cntl, ib_cntl;
444 u32 rb_bufsz;
445 u32 wb_offset;
446 int i, j, r;
447
448 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
449 ring = &adev->sdma[i].ring;
450 wb_offset = (ring->rptr_offs * 4);
451
452 mutex_lock(&adev->srbm_mutex);
453 for (j = 0; j < 16; j++) {
454 vi_srbm_select(adev, 0, 0, 0, j);
455 /* SDMA GFX */
456 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
457 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
458 }
459 vi_srbm_select(adev, 0, 0, 0, 0);
460 mutex_unlock(&adev->srbm_mutex);
461
462 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
463
464 /* Set ring buffer size in dwords */
465 rb_bufsz = order_base_2(ring->ring_size / 4);
466 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
467 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
468 #ifdef __BIG_ENDIAN
469 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
470 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
471 RPTR_WRITEBACK_SWAP_ENABLE, 1);
472 #endif
473 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
474
475 /* Initialize the ring buffer's read and write pointers */
476 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
477 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
478
479 /* set the wb address whether it's enabled or not */
480 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
481 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
482 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
483 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
484
485 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
486
487 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
488 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
489
490 ring->wptr = 0;
491 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
492
493 /* enable DMA RB */
494 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
495 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
496
497 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
498 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
499 #ifdef __BIG_ENDIAN
500 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
501 #endif
502 /* enable DMA IBs */
503 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
504
505 ring->ready = true;
506
507 r = amdgpu_ring_test_ring(ring);
508 if (r) {
509 ring->ready = false;
510 return r;
511 }
512
513 if (adev->mman.buffer_funcs_ring == ring)
514 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
515 }
516
517 return 0;
518 }
519
520 /**
521 * sdma_v2_4_rlc_resume - setup and start the async dma engines
522 *
523 * @adev: amdgpu_device pointer
524 *
525 * Set up the compute DMA queues and enable them (VI).
526 * Returns 0 for success, error for failure.
527 */
528 static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev)
529 {
530 /* XXX todo */
531 return 0;
532 }
533
534 /**
535 * sdma_v2_4_load_microcode - load the sDMA ME ucode
536 *
537 * @adev: amdgpu_device pointer
538 *
539 * Loads the sDMA0/1 ucode.
540 * Returns 0 for success, -EINVAL if the ucode is not available.
541 */
542 static int sdma_v2_4_load_microcode(struct amdgpu_device *adev)
543 {
544 const struct sdma_firmware_header_v1_0 *hdr;
545 const __le32 *fw_data;
546 u32 fw_size;
547 int i, j;
548 bool smc_loads_fw = false; /* XXX fix me */
549
550 if (!adev->sdma[0].fw || !adev->sdma[1].fw)
551 return -EINVAL;
552
553 /* halt the MEs */
554 sdma_v2_4_enable(adev, false);
555
556 if (smc_loads_fw) {
557 /* XXX query SMC for fw load complete */
558 } else {
559 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
560 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
561 amdgpu_ucode_print_sdma_hdr(&hdr->header);
562 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
563 fw_data = (const __le32 *)
564 (adev->sdma[i].fw->data +
565 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
566 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
567 for (j = 0; j < fw_size; j++)
568 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
569 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma[i].fw_version);
570 }
571 }
572
573 return 0;
574 }
575
576 /**
577 * sdma_v2_4_start - setup and start the async dma engines
578 *
579 * @adev: amdgpu_device pointer
580 *
581 * Set up the DMA engines and enable them (VI).
582 * Returns 0 for success, error for failure.
583 */
584 static int sdma_v2_4_start(struct amdgpu_device *adev)
585 {
586 int r;
587
588 if (!adev->firmware.smu_load) {
589 r = sdma_v2_4_load_microcode(adev);
590 if (r)
591 return r;
592 } else {
593 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
594 AMDGPU_UCODE_ID_SDMA0);
595 if (r)
596 return -EINVAL;
597 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
598 AMDGPU_UCODE_ID_SDMA1);
599 if (r)
600 return -EINVAL;
601 }
602
603 /* unhalt the MEs */
604 sdma_v2_4_enable(adev, true);
605
606 /* start the gfx rings and rlc compute queues */
607 r = sdma_v2_4_gfx_resume(adev);
608 if (r)
609 return r;
610 r = sdma_v2_4_rlc_resume(adev);
611 if (r)
612 return r;
613
614 return 0;
615 }
616
617 /**
618 * sdma_v2_4_ring_test_ring - simple async dma engine test
619 *
620 * @ring: amdgpu_ring structure holding ring information
621 *
622 * Test the DMA engine by writing using it to write an
623 * value to memory. (VI).
624 * Returns 0 for success, error for failure.
625 */
626 static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring)
627 {
628 struct amdgpu_device *adev = ring->adev;
629 unsigned i;
630 unsigned index;
631 int r;
632 u32 tmp;
633 u64 gpu_addr;
634
635 r = amdgpu_wb_get(adev, &index);
636 if (r) {
637 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
638 return r;
639 }
640
641 gpu_addr = adev->wb.gpu_addr + (index * 4);
642 tmp = 0xCAFEDEAD;
643 adev->wb.wb[index] = cpu_to_le32(tmp);
644
645 r = amdgpu_ring_lock(ring, 5);
646 if (r) {
647 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
648 amdgpu_wb_free(adev, index);
649 return r;
650 }
651
652 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
653 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
654 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
655 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
656 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
657 amdgpu_ring_write(ring, 0xDEADBEEF);
658 amdgpu_ring_unlock_commit(ring);
659
660 for (i = 0; i < adev->usec_timeout; i++) {
661 tmp = le32_to_cpu(adev->wb.wb[index]);
662 if (tmp == 0xDEADBEEF)
663 break;
664 DRM_UDELAY(1);
665 }
666
667 if (i < adev->usec_timeout) {
668 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
669 } else {
670 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
671 ring->idx, tmp);
672 r = -EINVAL;
673 }
674 amdgpu_wb_free(adev, index);
675
676 return r;
677 }
678
679 /**
680 * sdma_v2_4_ring_test_ib - test an IB on the DMA engine
681 *
682 * @ring: amdgpu_ring structure holding ring information
683 *
684 * Test a simple IB in the DMA ring (VI).
685 * Returns 0 on success, error on failure.
686 */
687 static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring)
688 {
689 struct amdgpu_device *adev = ring->adev;
690 struct amdgpu_ib ib;
691 struct fence *f = NULL;
692 unsigned i;
693 unsigned index;
694 int r;
695 u32 tmp = 0;
696 u64 gpu_addr;
697
698 r = amdgpu_wb_get(adev, &index);
699 if (r) {
700 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
701 return r;
702 }
703
704 gpu_addr = adev->wb.gpu_addr + (index * 4);
705 tmp = 0xCAFEDEAD;
706 adev->wb.wb[index] = cpu_to_le32(tmp);
707 memset(&ib, 0, sizeof(ib));
708 r = amdgpu_ib_get(ring, NULL, 256, &ib);
709 if (r) {
710 DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
711 goto err0;
712 }
713
714 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
715 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
716 ib.ptr[1] = lower_32_bits(gpu_addr);
717 ib.ptr[2] = upper_32_bits(gpu_addr);
718 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
719 ib.ptr[4] = 0xDEADBEEF;
720 ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
721 ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
722 ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
723 ib.length_dw = 8;
724
725 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
726 AMDGPU_FENCE_OWNER_UNDEFINED,
727 &f);
728 if (r)
729 goto err1;
730
731 r = fence_wait(f, false);
732 if (r) {
733 DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
734 goto err1;
735 }
736 for (i = 0; i < adev->usec_timeout; i++) {
737 tmp = le32_to_cpu(adev->wb.wb[index]);
738 if (tmp == 0xDEADBEEF)
739 break;
740 DRM_UDELAY(1);
741 }
742 if (i < adev->usec_timeout) {
743 DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
744 ring->idx, i);
745 goto err1;
746 } else {
747 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
748 r = -EINVAL;
749 }
750
751 err1:
752 fence_put(f);
753 amdgpu_ib_free(adev, &ib);
754 err0:
755 amdgpu_wb_free(adev, index);
756 return r;
757 }
758
759 /**
760 * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART
761 *
762 * @ib: indirect buffer to fill with commands
763 * @pe: addr of the page entry
764 * @src: src addr to copy from
765 * @count: number of page entries to update
766 *
767 * Update PTEs by copying them from the GART using sDMA (CIK).
768 */
769 static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib,
770 uint64_t pe, uint64_t src,
771 unsigned count)
772 {
773 while (count) {
774 unsigned bytes = count * 8;
775 if (bytes > 0x1FFFF8)
776 bytes = 0x1FFFF8;
777
778 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
779 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
780 ib->ptr[ib->length_dw++] = bytes;
781 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
782 ib->ptr[ib->length_dw++] = lower_32_bits(src);
783 ib->ptr[ib->length_dw++] = upper_32_bits(src);
784 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
785 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
786
787 pe += bytes;
788 src += bytes;
789 count -= bytes / 8;
790 }
791 }
792
793 /**
794 * sdma_v2_4_vm_write_pte - update PTEs by writing them manually
795 *
796 * @ib: indirect buffer to fill with commands
797 * @pe: addr of the page entry
798 * @addr: dst addr to write into pe
799 * @count: number of page entries to update
800 * @incr: increase next addr by incr bytes
801 * @flags: access flags
802 *
803 * Update PTEs by writing them manually using sDMA (CIK).
804 */
805 static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib,
806 uint64_t pe,
807 uint64_t addr, unsigned count,
808 uint32_t incr, uint32_t flags)
809 {
810 uint64_t value;
811 unsigned ndw;
812
813 while (count) {
814 ndw = count * 2;
815 if (ndw > 0xFFFFE)
816 ndw = 0xFFFFE;
817
818 /* for non-physically contiguous pages (system) */
819 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
820 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
821 ib->ptr[ib->length_dw++] = pe;
822 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
823 ib->ptr[ib->length_dw++] = ndw;
824 for (; ndw > 0; ndw -= 2, --count, pe += 8) {
825 if (flags & AMDGPU_PTE_SYSTEM) {
826 value = amdgpu_vm_map_gart(ib->ring->adev, addr);
827 value &= 0xFFFFFFFFFFFFF000ULL;
828 } else if (flags & AMDGPU_PTE_VALID) {
829 value = addr;
830 } else {
831 value = 0;
832 }
833 addr += incr;
834 value |= flags;
835 ib->ptr[ib->length_dw++] = value;
836 ib->ptr[ib->length_dw++] = upper_32_bits(value);
837 }
838 }
839 }
840
841 /**
842 * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA
843 *
844 * @ib: indirect buffer to fill with commands
845 * @pe: addr of the page entry
846 * @addr: dst addr to write into pe
847 * @count: number of page entries to update
848 * @incr: increase next addr by incr bytes
849 * @flags: access flags
850 *
851 * Update the page tables using sDMA (CIK).
852 */
853 static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib,
854 uint64_t pe,
855 uint64_t addr, unsigned count,
856 uint32_t incr, uint32_t flags)
857 {
858 uint64_t value;
859 unsigned ndw;
860
861 while (count) {
862 ndw = count;
863 if (ndw > 0x7FFFF)
864 ndw = 0x7FFFF;
865
866 if (flags & AMDGPU_PTE_VALID)
867 value = addr;
868 else
869 value = 0;
870
871 /* for physically contiguous pages (vram) */
872 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
873 ib->ptr[ib->length_dw++] = pe; /* dst addr */
874 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
875 ib->ptr[ib->length_dw++] = flags; /* mask */
876 ib->ptr[ib->length_dw++] = 0;
877 ib->ptr[ib->length_dw++] = value; /* value */
878 ib->ptr[ib->length_dw++] = upper_32_bits(value);
879 ib->ptr[ib->length_dw++] = incr; /* increment size */
880 ib->ptr[ib->length_dw++] = 0;
881 ib->ptr[ib->length_dw++] = ndw; /* number of entries */
882
883 pe += ndw * 8;
884 addr += ndw * incr;
885 count -= ndw;
886 }
887 }
888
889 /**
890 * sdma_v2_4_vm_pad_ib - pad the IB to the required number of dw
891 *
892 * @ib: indirect buffer to fill with padding
893 *
894 */
895 static void sdma_v2_4_vm_pad_ib(struct amdgpu_ib *ib)
896 {
897 struct amdgpu_sdma *sdma = amdgpu_get_sdma_instance(ib->ring);
898 u32 pad_count;
899 int i;
900
901 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
902 for (i = 0; i < pad_count; i++)
903 if (sdma && sdma->burst_nop && (i == 0))
904 ib->ptr[ib->length_dw++] =
905 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
906 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
907 else
908 ib->ptr[ib->length_dw++] =
909 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
910 }
911
912 /**
913 * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA
914 *
915 * @ring: amdgpu_ring pointer
916 * @vm: amdgpu_vm pointer
917 *
918 * Update the page table base and flush the VM TLB
919 * using sDMA (VI).
920 */
921 static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring,
922 unsigned vm_id, uint64_t pd_addr)
923 {
924 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
925 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
926 if (vm_id < 8) {
927 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
928 } else {
929 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
930 }
931 amdgpu_ring_write(ring, pd_addr >> 12);
932
933 /* flush TLB */
934 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
935 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
936 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
937 amdgpu_ring_write(ring, 1 << vm_id);
938
939 /* wait for flush */
940 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
941 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
942 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
943 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
944 amdgpu_ring_write(ring, 0);
945 amdgpu_ring_write(ring, 0); /* reference */
946 amdgpu_ring_write(ring, 0); /* mask */
947 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
948 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
949 }
950
951 static int sdma_v2_4_early_init(void *handle)
952 {
953 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
954
955 sdma_v2_4_set_ring_funcs(adev);
956 sdma_v2_4_set_buffer_funcs(adev);
957 sdma_v2_4_set_vm_pte_funcs(adev);
958 sdma_v2_4_set_irq_funcs(adev);
959
960 return 0;
961 }
962
963 static int sdma_v2_4_sw_init(void *handle)
964 {
965 struct amdgpu_ring *ring;
966 int r;
967 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
968
969 /* SDMA trap event */
970 r = amdgpu_irq_add_id(adev, 224, &adev->sdma_trap_irq);
971 if (r)
972 return r;
973
974 /* SDMA Privileged inst */
975 r = amdgpu_irq_add_id(adev, 241, &adev->sdma_illegal_inst_irq);
976 if (r)
977 return r;
978
979 /* SDMA Privileged inst */
980 r = amdgpu_irq_add_id(adev, 247, &adev->sdma_illegal_inst_irq);
981 if (r)
982 return r;
983
984 r = sdma_v2_4_init_microcode(adev);
985 if (r) {
986 DRM_ERROR("Failed to load sdma firmware!\n");
987 return r;
988 }
989
990 ring = &adev->sdma[0].ring;
991 ring->ring_obj = NULL;
992 ring->use_doorbell = false;
993
994 ring = &adev->sdma[1].ring;
995 ring->ring_obj = NULL;
996 ring->use_doorbell = false;
997
998 ring = &adev->sdma[0].ring;
999 sprintf(ring->name, "sdma0");
1000 r = amdgpu_ring_init(adev, ring, 256 * 1024,
1001 SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1002 &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP0,
1003 AMDGPU_RING_TYPE_SDMA);
1004 if (r)
1005 return r;
1006
1007 ring = &adev->sdma[1].ring;
1008 sprintf(ring->name, "sdma1");
1009 r = amdgpu_ring_init(adev, ring, 256 * 1024,
1010 SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1011 &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP1,
1012 AMDGPU_RING_TYPE_SDMA);
1013 if (r)
1014 return r;
1015
1016 return r;
1017 }
1018
1019 static int sdma_v2_4_sw_fini(void *handle)
1020 {
1021 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1022
1023 amdgpu_ring_fini(&adev->sdma[0].ring);
1024 amdgpu_ring_fini(&adev->sdma[1].ring);
1025
1026 return 0;
1027 }
1028
1029 static int sdma_v2_4_hw_init(void *handle)
1030 {
1031 int r;
1032 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1033
1034 sdma_v2_4_init_golden_registers(adev);
1035
1036 r = sdma_v2_4_start(adev);
1037 if (r)
1038 return r;
1039
1040 return r;
1041 }
1042
1043 static int sdma_v2_4_hw_fini(void *handle)
1044 {
1045 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1046
1047 sdma_v2_4_enable(adev, false);
1048
1049 return 0;
1050 }
1051
1052 static int sdma_v2_4_suspend(void *handle)
1053 {
1054 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1055
1056 return sdma_v2_4_hw_fini(adev);
1057 }
1058
1059 static int sdma_v2_4_resume(void *handle)
1060 {
1061 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1062
1063 return sdma_v2_4_hw_init(adev);
1064 }
1065
1066 static bool sdma_v2_4_is_idle(void *handle)
1067 {
1068 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1069 u32 tmp = RREG32(mmSRBM_STATUS2);
1070
1071 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1072 SRBM_STATUS2__SDMA1_BUSY_MASK))
1073 return false;
1074
1075 return true;
1076 }
1077
1078 static int sdma_v2_4_wait_for_idle(void *handle)
1079 {
1080 unsigned i;
1081 u32 tmp;
1082 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1083
1084 for (i = 0; i < adev->usec_timeout; i++) {
1085 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1086 SRBM_STATUS2__SDMA1_BUSY_MASK);
1087
1088 if (!tmp)
1089 return 0;
1090 udelay(1);
1091 }
1092 return -ETIMEDOUT;
1093 }
1094
1095 static void sdma_v2_4_print_status(void *handle)
1096 {
1097 int i, j;
1098 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1099
1100 dev_info(adev->dev, "VI SDMA registers\n");
1101 dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
1102 RREG32(mmSRBM_STATUS2));
1103 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
1104 dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
1105 i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
1106 dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
1107 i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
1108 dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
1109 i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
1110 dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
1111 i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
1112 dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
1113 i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
1114 dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
1115 i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
1116 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
1117 i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
1118 dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
1119 i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
1120 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
1121 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
1122 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
1123 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
1124 dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
1125 i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
1126 dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
1127 i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
1128 mutex_lock(&adev->srbm_mutex);
1129 for (j = 0; j < 16; j++) {
1130 vi_srbm_select(adev, 0, 0, 0, j);
1131 dev_info(adev->dev, " VM %d:\n", j);
1132 dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
1133 i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
1134 dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
1135 i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
1136 }
1137 vi_srbm_select(adev, 0, 0, 0, 0);
1138 mutex_unlock(&adev->srbm_mutex);
1139 }
1140 }
1141
1142 static int sdma_v2_4_soft_reset(void *handle)
1143 {
1144 u32 srbm_soft_reset = 0;
1145 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1146 u32 tmp = RREG32(mmSRBM_STATUS2);
1147
1148 if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1149 /* sdma0 */
1150 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1151 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1152 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1153 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1154 }
1155 if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1156 /* sdma1 */
1157 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1158 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1159 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1160 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1161 }
1162
1163 if (srbm_soft_reset) {
1164 sdma_v2_4_print_status((void *)adev);
1165
1166 tmp = RREG32(mmSRBM_SOFT_RESET);
1167 tmp |= srbm_soft_reset;
1168 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1169 WREG32(mmSRBM_SOFT_RESET, tmp);
1170 tmp = RREG32(mmSRBM_SOFT_RESET);
1171
1172 udelay(50);
1173
1174 tmp &= ~srbm_soft_reset;
1175 WREG32(mmSRBM_SOFT_RESET, tmp);
1176 tmp = RREG32(mmSRBM_SOFT_RESET);
1177
1178 /* Wait a little for things to settle down */
1179 udelay(50);
1180
1181 sdma_v2_4_print_status((void *)adev);
1182 }
1183
1184 return 0;
1185 }
1186
1187 static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev,
1188 struct amdgpu_irq_src *src,
1189 unsigned type,
1190 enum amdgpu_interrupt_state state)
1191 {
1192 u32 sdma_cntl;
1193
1194 switch (type) {
1195 case AMDGPU_SDMA_IRQ_TRAP0:
1196 switch (state) {
1197 case AMDGPU_IRQ_STATE_DISABLE:
1198 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1199 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1200 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1201 break;
1202 case AMDGPU_IRQ_STATE_ENABLE:
1203 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1204 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1205 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1206 break;
1207 default:
1208 break;
1209 }
1210 break;
1211 case AMDGPU_SDMA_IRQ_TRAP1:
1212 switch (state) {
1213 case AMDGPU_IRQ_STATE_DISABLE:
1214 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1215 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1216 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1217 break;
1218 case AMDGPU_IRQ_STATE_ENABLE:
1219 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1220 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1221 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1222 break;
1223 default:
1224 break;
1225 }
1226 break;
1227 default:
1228 break;
1229 }
1230 return 0;
1231 }
1232
1233 static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev,
1234 struct amdgpu_irq_src *source,
1235 struct amdgpu_iv_entry *entry)
1236 {
1237 u8 instance_id, queue_id;
1238
1239 instance_id = (entry->ring_id & 0x3) >> 0;
1240 queue_id = (entry->ring_id & 0xc) >> 2;
1241 DRM_DEBUG("IH: SDMA trap\n");
1242 switch (instance_id) {
1243 case 0:
1244 switch (queue_id) {
1245 case 0:
1246 amdgpu_fence_process(&adev->sdma[0].ring);
1247 break;
1248 case 1:
1249 /* XXX compute */
1250 break;
1251 case 2:
1252 /* XXX compute */
1253 break;
1254 }
1255 break;
1256 case 1:
1257 switch (queue_id) {
1258 case 0:
1259 amdgpu_fence_process(&adev->sdma[1].ring);
1260 break;
1261 case 1:
1262 /* XXX compute */
1263 break;
1264 case 2:
1265 /* XXX compute */
1266 break;
1267 }
1268 break;
1269 }
1270 return 0;
1271 }
1272
1273 static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev,
1274 struct amdgpu_irq_src *source,
1275 struct amdgpu_iv_entry *entry)
1276 {
1277 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1278 schedule_work(&adev->reset_work);
1279 return 0;
1280 }
1281
1282 static int sdma_v2_4_set_clockgating_state(void *handle,
1283 enum amd_clockgating_state state)
1284 {
1285 /* XXX handled via the smc on VI */
1286 return 0;
1287 }
1288
1289 static int sdma_v2_4_set_powergating_state(void *handle,
1290 enum amd_powergating_state state)
1291 {
1292 return 0;
1293 }
1294
1295 const struct amd_ip_funcs sdma_v2_4_ip_funcs = {
1296 .early_init = sdma_v2_4_early_init,
1297 .late_init = NULL,
1298 .sw_init = sdma_v2_4_sw_init,
1299 .sw_fini = sdma_v2_4_sw_fini,
1300 .hw_init = sdma_v2_4_hw_init,
1301 .hw_fini = sdma_v2_4_hw_fini,
1302 .suspend = sdma_v2_4_suspend,
1303 .resume = sdma_v2_4_resume,
1304 .is_idle = sdma_v2_4_is_idle,
1305 .wait_for_idle = sdma_v2_4_wait_for_idle,
1306 .soft_reset = sdma_v2_4_soft_reset,
1307 .print_status = sdma_v2_4_print_status,
1308 .set_clockgating_state = sdma_v2_4_set_clockgating_state,
1309 .set_powergating_state = sdma_v2_4_set_powergating_state,
1310 };
1311
1312 /**
1313 * sdma_v2_4_ring_is_lockup - Check if the DMA engine is locked up
1314 *
1315 * @ring: amdgpu_ring structure holding ring information
1316 *
1317 * Check if the async DMA engine is locked up (VI).
1318 * Returns true if the engine appears to be locked up, false if not.
1319 */
1320 static bool sdma_v2_4_ring_is_lockup(struct amdgpu_ring *ring)
1321 {
1322
1323 if (sdma_v2_4_is_idle(ring->adev)) {
1324 amdgpu_ring_lockup_update(ring);
1325 return false;
1326 }
1327 return amdgpu_ring_test_lockup(ring);
1328 }
1329
1330 static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = {
1331 .get_rptr = sdma_v2_4_ring_get_rptr,
1332 .get_wptr = sdma_v2_4_ring_get_wptr,
1333 .set_wptr = sdma_v2_4_ring_set_wptr,
1334 .parse_cs = NULL,
1335 .emit_ib = sdma_v2_4_ring_emit_ib,
1336 .emit_fence = sdma_v2_4_ring_emit_fence,
1337 .emit_semaphore = sdma_v2_4_ring_emit_semaphore,
1338 .emit_vm_flush = sdma_v2_4_ring_emit_vm_flush,
1339 .emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush,
1340 .test_ring = sdma_v2_4_ring_test_ring,
1341 .test_ib = sdma_v2_4_ring_test_ib,
1342 .is_lockup = sdma_v2_4_ring_is_lockup,
1343 .insert_nop = sdma_v2_4_ring_insert_nop,
1344 };
1345
1346 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev)
1347 {
1348 adev->sdma[0].ring.funcs = &sdma_v2_4_ring_funcs;
1349 adev->sdma[1].ring.funcs = &sdma_v2_4_ring_funcs;
1350 }
1351
1352 static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = {
1353 .set = sdma_v2_4_set_trap_irq_state,
1354 .process = sdma_v2_4_process_trap_irq,
1355 };
1356
1357 static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = {
1358 .process = sdma_v2_4_process_illegal_inst_irq,
1359 };
1360
1361 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev)
1362 {
1363 adev->sdma_trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1364 adev->sdma_trap_irq.funcs = &sdma_v2_4_trap_irq_funcs;
1365 adev->sdma_illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs;
1366 }
1367
1368 /**
1369 * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine
1370 *
1371 * @ring: amdgpu_ring structure holding ring information
1372 * @src_offset: src GPU address
1373 * @dst_offset: dst GPU address
1374 * @byte_count: number of bytes to xfer
1375 *
1376 * Copy GPU buffers using the DMA engine (VI).
1377 * Used by the amdgpu ttm implementation to move pages if
1378 * registered as the asic copy callback.
1379 */
1380 static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib,
1381 uint64_t src_offset,
1382 uint64_t dst_offset,
1383 uint32_t byte_count)
1384 {
1385 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1386 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1387 ib->ptr[ib->length_dw++] = byte_count;
1388 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1389 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1390 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1391 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1392 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1393 }
1394
1395 /**
1396 * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine
1397 *
1398 * @ring: amdgpu_ring structure holding ring information
1399 * @src_data: value to write to buffer
1400 * @dst_offset: dst GPU address
1401 * @byte_count: number of bytes to xfer
1402 *
1403 * Fill GPU buffers using the DMA engine (VI).
1404 */
1405 static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib,
1406 uint32_t src_data,
1407 uint64_t dst_offset,
1408 uint32_t byte_count)
1409 {
1410 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1411 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1412 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1413 ib->ptr[ib->length_dw++] = src_data;
1414 ib->ptr[ib->length_dw++] = byte_count;
1415 }
1416
1417 static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = {
1418 .copy_max_bytes = 0x1fffff,
1419 .copy_num_dw = 7,
1420 .emit_copy_buffer = sdma_v2_4_emit_copy_buffer,
1421
1422 .fill_max_bytes = 0x1fffff,
1423 .fill_num_dw = 7,
1424 .emit_fill_buffer = sdma_v2_4_emit_fill_buffer,
1425 };
1426
1427 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev)
1428 {
1429 if (adev->mman.buffer_funcs == NULL) {
1430 adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs;
1431 adev->mman.buffer_funcs_ring = &adev->sdma[0].ring;
1432 }
1433 }
1434
1435 static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = {
1436 .copy_pte = sdma_v2_4_vm_copy_pte,
1437 .write_pte = sdma_v2_4_vm_write_pte,
1438 .set_pte_pde = sdma_v2_4_vm_set_pte_pde,
1439 .pad_ib = sdma_v2_4_vm_pad_ib,
1440 };
1441
1442 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev)
1443 {
1444 if (adev->vm_manager.vm_pte_funcs == NULL) {
1445 adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs;
1446 adev->vm_manager.vm_pte_funcs_ring = &adev->sdma[0].ring;
1447 adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true;
1448 }
1449 }
This page took 0.063513 seconds and 5 git commands to generate.