drm/amdgpu: use IB for fill_buffer instead of direct command
[deliverable/linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v3_0.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "tonga_sdma_pkt_open.h"
46
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58
59 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
60 {
61 SDMA0_REGISTER_OFFSET,
62 SDMA1_REGISTER_OFFSET
63 };
64
65 static const u32 golden_settings_tonga_a11[] =
66 {
67 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
68 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
69 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
70 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
71 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
72 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
73 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
74 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
75 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
76 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
77 };
78
79 static const u32 tonga_mgcg_cgcg_init[] =
80 {
81 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
82 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
83 };
84
85 static const u32 golden_settings_fiji_a10[] =
86 {
87 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
88 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
89 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
90 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
91 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
92 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
93 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
94 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
95 };
96
97 static const u32 fiji_mgcg_cgcg_init[] =
98 {
99 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
100 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
101 };
102
103 static const u32 cz_golden_settings_a11[] =
104 {
105 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
106 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
107 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
108 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
109 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
110 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
111 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
112 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
113 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
114 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
115 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
116 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
117 };
118
119 static const u32 cz_mgcg_cgcg_init[] =
120 {
121 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
122 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
123 };
124
125 /*
126 * sDMA - System DMA
127 * Starting with CIK, the GPU has new asynchronous
128 * DMA engines. These engines are used for compute
129 * and gfx. There are two DMA engines (SDMA0, SDMA1)
130 * and each one supports 1 ring buffer used for gfx
131 * and 2 queues used for compute.
132 *
133 * The programming model is very similar to the CP
134 * (ring buffer, IBs, etc.), but sDMA has it's own
135 * packet format that is different from the PM4 format
136 * used by the CP. sDMA supports copying data, writing
137 * embedded data, solid fills, and a number of other
138 * things. It also has support for tiling/detiling of
139 * buffers.
140 */
141
142 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
143 {
144 switch (adev->asic_type) {
145 case CHIP_FIJI:
146 amdgpu_program_register_sequence(adev,
147 fiji_mgcg_cgcg_init,
148 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
149 amdgpu_program_register_sequence(adev,
150 golden_settings_fiji_a10,
151 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
152 break;
153 case CHIP_TONGA:
154 amdgpu_program_register_sequence(adev,
155 tonga_mgcg_cgcg_init,
156 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
157 amdgpu_program_register_sequence(adev,
158 golden_settings_tonga_a11,
159 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
160 break;
161 case CHIP_CARRIZO:
162 amdgpu_program_register_sequence(adev,
163 cz_mgcg_cgcg_init,
164 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
165 amdgpu_program_register_sequence(adev,
166 cz_golden_settings_a11,
167 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
168 break;
169 default:
170 break;
171 }
172 }
173
174 /**
175 * sdma_v3_0_init_microcode - load ucode images from disk
176 *
177 * @adev: amdgpu_device pointer
178 *
179 * Use the firmware interface to load the ucode images into
180 * the driver (not loaded into hw).
181 * Returns 0 on success, error on failure.
182 */
183 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
184 {
185 const char *chip_name;
186 char fw_name[30];
187 int err, i;
188 struct amdgpu_firmware_info *info = NULL;
189 const struct common_firmware_header *header = NULL;
190 const struct sdma_firmware_header_v1_0 *hdr;
191
192 DRM_DEBUG("\n");
193
194 switch (adev->asic_type) {
195 case CHIP_TONGA:
196 chip_name = "tonga";
197 break;
198 case CHIP_FIJI:
199 chip_name = "fiji";
200 break;
201 case CHIP_CARRIZO:
202 chip_name = "carrizo";
203 break;
204 default: BUG();
205 }
206
207 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
208 if (i == 0)
209 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
210 else
211 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
212 err = request_firmware(&adev->sdma[i].fw, fw_name, adev->dev);
213 if (err)
214 goto out;
215 err = amdgpu_ucode_validate(adev->sdma[i].fw);
216 if (err)
217 goto out;
218 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
219 adev->sdma[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
220 adev->sdma[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
221
222 if (adev->firmware.smu_load) {
223 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
224 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
225 info->fw = adev->sdma[i].fw;
226 header = (const struct common_firmware_header *)info->fw->data;
227 adev->firmware.fw_size +=
228 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
229 }
230 }
231 out:
232 if (err) {
233 printk(KERN_ERR
234 "sdma_v3_0: Failed to load firmware \"%s\"\n",
235 fw_name);
236 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
237 release_firmware(adev->sdma[i].fw);
238 adev->sdma[i].fw = NULL;
239 }
240 }
241 return err;
242 }
243
244 /**
245 * sdma_v3_0_ring_get_rptr - get the current read pointer
246 *
247 * @ring: amdgpu ring pointer
248 *
249 * Get the current rptr from the hardware (VI+).
250 */
251 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
252 {
253 u32 rptr;
254
255 /* XXX check if swapping is necessary on BE */
256 rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
257
258 return rptr;
259 }
260
261 /**
262 * sdma_v3_0_ring_get_wptr - get the current write pointer
263 *
264 * @ring: amdgpu ring pointer
265 *
266 * Get the current wptr from the hardware (VI+).
267 */
268 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
269 {
270 struct amdgpu_device *adev = ring->adev;
271 u32 wptr;
272
273 if (ring->use_doorbell) {
274 /* XXX check if swapping is necessary on BE */
275 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
276 } else {
277 int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
278
279 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
280 }
281
282 return wptr;
283 }
284
285 /**
286 * sdma_v3_0_ring_set_wptr - commit the write pointer
287 *
288 * @ring: amdgpu ring pointer
289 *
290 * Write the wptr back to the hardware (VI+).
291 */
292 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
293 {
294 struct amdgpu_device *adev = ring->adev;
295
296 if (ring->use_doorbell) {
297 /* XXX check if swapping is necessary on BE */
298 adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
299 WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
300 } else {
301 int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
302
303 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
304 }
305 }
306
307 /**
308 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
309 *
310 * @ring: amdgpu ring pointer
311 * @ib: IB object to schedule
312 *
313 * Schedule an IB in the DMA ring (VI).
314 */
315 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
316 struct amdgpu_ib *ib)
317 {
318 u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
319 u32 next_rptr = ring->wptr + 5;
320
321 while ((next_rptr & 7) != 2)
322 next_rptr++;
323 next_rptr += 6;
324
325 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
326 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
327 amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
328 amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
329 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
330 amdgpu_ring_write(ring, next_rptr);
331
332 /* IB packet must end on a 8 DW boundary */
333 while ((ring->wptr & 7) != 2)
334 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_NOP));
335
336 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
337 SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
338 /* base must be 32 byte aligned */
339 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
340 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
341 amdgpu_ring_write(ring, ib->length_dw);
342 amdgpu_ring_write(ring, 0);
343 amdgpu_ring_write(ring, 0);
344
345 }
346
347 /**
348 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
349 *
350 * @ring: amdgpu ring pointer
351 *
352 * Emit an hdp flush packet on the requested DMA ring.
353 */
354 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
355 {
356 u32 ref_and_mask = 0;
357
358 if (ring == &ring->adev->sdma[0].ring)
359 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
360 else
361 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
362
363 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
364 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
365 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
366 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
367 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
368 amdgpu_ring_write(ring, ref_and_mask); /* reference */
369 amdgpu_ring_write(ring, ref_and_mask); /* mask */
370 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
371 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
372 }
373
374 /**
375 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
376 *
377 * @ring: amdgpu ring pointer
378 * @fence: amdgpu fence object
379 *
380 * Add a DMA fence packet to the ring to write
381 * the fence seq number and DMA trap packet to generate
382 * an interrupt if needed (VI).
383 */
384 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
385 unsigned flags)
386 {
387 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
388 /* write the fence */
389 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
390 amdgpu_ring_write(ring, lower_32_bits(addr));
391 amdgpu_ring_write(ring, upper_32_bits(addr));
392 amdgpu_ring_write(ring, lower_32_bits(seq));
393
394 /* optionally write high bits as well */
395 if (write64bit) {
396 addr += 4;
397 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
398 amdgpu_ring_write(ring, lower_32_bits(addr));
399 amdgpu_ring_write(ring, upper_32_bits(addr));
400 amdgpu_ring_write(ring, upper_32_bits(seq));
401 }
402
403 /* generate an interrupt */
404 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
405 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
406 }
407
408
409 /**
410 * sdma_v3_0_ring_emit_semaphore - emit a semaphore on the dma ring
411 *
412 * @ring: amdgpu_ring structure holding ring information
413 * @semaphore: amdgpu semaphore object
414 * @emit_wait: wait or signal semaphore
415 *
416 * Add a DMA semaphore packet to the ring wait on or signal
417 * other rings (VI).
418 */
419 static bool sdma_v3_0_ring_emit_semaphore(struct amdgpu_ring *ring,
420 struct amdgpu_semaphore *semaphore,
421 bool emit_wait)
422 {
423 u64 addr = semaphore->gpu_addr;
424 u32 sig = emit_wait ? 0 : 1;
425
426 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
427 SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
428 amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
429 amdgpu_ring_write(ring, upper_32_bits(addr));
430
431 return true;
432 }
433
434 /**
435 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
436 *
437 * @adev: amdgpu_device pointer
438 *
439 * Stop the gfx async dma ring buffers (VI).
440 */
441 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
442 {
443 struct amdgpu_ring *sdma0 = &adev->sdma[0].ring;
444 struct amdgpu_ring *sdma1 = &adev->sdma[1].ring;
445 u32 rb_cntl, ib_cntl;
446 int i;
447
448 if ((adev->mman.buffer_funcs_ring == sdma0) ||
449 (adev->mman.buffer_funcs_ring == sdma1))
450 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
451
452 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
453 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
454 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
455 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
456 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
457 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
458 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
459 }
460 sdma0->ready = false;
461 sdma1->ready = false;
462 }
463
464 /**
465 * sdma_v3_0_rlc_stop - stop the compute async dma engines
466 *
467 * @adev: amdgpu_device pointer
468 *
469 * Stop the compute async dma queues (VI).
470 */
471 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
472 {
473 /* XXX todo */
474 }
475
476 /**
477 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
478 *
479 * @adev: amdgpu_device pointer
480 * @enable: enable/disable the DMA MEs context switch.
481 *
482 * Halt or unhalt the async dma engines context switch (VI).
483 */
484 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
485 {
486 u32 f32_cntl;
487 int i;
488
489 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
490 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
491 if (enable)
492 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
493 AUTO_CTXSW_ENABLE, 1);
494 else
495 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
496 AUTO_CTXSW_ENABLE, 0);
497 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
498 }
499 }
500
501 /**
502 * sdma_v3_0_enable - stop the async dma engines
503 *
504 * @adev: amdgpu_device pointer
505 * @enable: enable/disable the DMA MEs.
506 *
507 * Halt or unhalt the async dma engines (VI).
508 */
509 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
510 {
511 u32 f32_cntl;
512 int i;
513
514 if (enable == false) {
515 sdma_v3_0_gfx_stop(adev);
516 sdma_v3_0_rlc_stop(adev);
517 }
518
519 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
520 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
521 if (enable)
522 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
523 else
524 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
525 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
526 }
527 }
528
529 /**
530 * sdma_v3_0_gfx_resume - setup and start the async dma engines
531 *
532 * @adev: amdgpu_device pointer
533 *
534 * Set up the gfx DMA ring buffers and enable them (VI).
535 * Returns 0 for success, error for failure.
536 */
537 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
538 {
539 struct amdgpu_ring *ring;
540 u32 rb_cntl, ib_cntl;
541 u32 rb_bufsz;
542 u32 wb_offset;
543 u32 doorbell;
544 int i, j, r;
545
546 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
547 ring = &adev->sdma[i].ring;
548 wb_offset = (ring->rptr_offs * 4);
549
550 mutex_lock(&adev->srbm_mutex);
551 for (j = 0; j < 16; j++) {
552 vi_srbm_select(adev, 0, 0, 0, j);
553 /* SDMA GFX */
554 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
555 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
556 }
557 vi_srbm_select(adev, 0, 0, 0, 0);
558 mutex_unlock(&adev->srbm_mutex);
559
560 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
561
562 /* Set ring buffer size in dwords */
563 rb_bufsz = order_base_2(ring->ring_size / 4);
564 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
565 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
566 #ifdef __BIG_ENDIAN
567 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
568 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
569 RPTR_WRITEBACK_SWAP_ENABLE, 1);
570 #endif
571 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
572
573 /* Initialize the ring buffer's read and write pointers */
574 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
575 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
576
577 /* set the wb address whether it's enabled or not */
578 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
579 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
580 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
581 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
582
583 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
584
585 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
586 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
587
588 ring->wptr = 0;
589 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
590
591 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
592
593 if (ring->use_doorbell) {
594 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
595 OFFSET, ring->doorbell_index);
596 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
597 } else {
598 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
599 }
600 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
601
602 /* enable DMA RB */
603 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
604 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
605
606 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
607 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
608 #ifdef __BIG_ENDIAN
609 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
610 #endif
611 /* enable DMA IBs */
612 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
613
614 ring->ready = true;
615
616 r = amdgpu_ring_test_ring(ring);
617 if (r) {
618 ring->ready = false;
619 return r;
620 }
621
622 if (adev->mman.buffer_funcs_ring == ring)
623 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
624 }
625
626 return 0;
627 }
628
629 /**
630 * sdma_v3_0_rlc_resume - setup and start the async dma engines
631 *
632 * @adev: amdgpu_device pointer
633 *
634 * Set up the compute DMA queues and enable them (VI).
635 * Returns 0 for success, error for failure.
636 */
637 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
638 {
639 /* XXX todo */
640 return 0;
641 }
642
643 /**
644 * sdma_v3_0_load_microcode - load the sDMA ME ucode
645 *
646 * @adev: amdgpu_device pointer
647 *
648 * Loads the sDMA0/1 ucode.
649 * Returns 0 for success, -EINVAL if the ucode is not available.
650 */
651 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
652 {
653 const struct sdma_firmware_header_v1_0 *hdr;
654 const __le32 *fw_data;
655 u32 fw_size;
656 int i, j;
657
658 if (!adev->sdma[0].fw || !adev->sdma[1].fw)
659 return -EINVAL;
660
661 /* halt the MEs */
662 sdma_v3_0_enable(adev, false);
663
664 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
665 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
666 amdgpu_ucode_print_sdma_hdr(&hdr->header);
667 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
668 fw_data = (const __le32 *)
669 (adev->sdma[i].fw->data +
670 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
671 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
672 for (j = 0; j < fw_size; j++)
673 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
674 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma[i].fw_version);
675 }
676
677 return 0;
678 }
679
680 /**
681 * sdma_v3_0_start - setup and start the async dma engines
682 *
683 * @adev: amdgpu_device pointer
684 *
685 * Set up the DMA engines and enable them (VI).
686 * Returns 0 for success, error for failure.
687 */
688 static int sdma_v3_0_start(struct amdgpu_device *adev)
689 {
690 int r;
691
692 if (!adev->firmware.smu_load) {
693 r = sdma_v3_0_load_microcode(adev);
694 if (r)
695 return r;
696 } else {
697 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
698 AMDGPU_UCODE_ID_SDMA0);
699 if (r)
700 return -EINVAL;
701 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
702 AMDGPU_UCODE_ID_SDMA1);
703 if (r)
704 return -EINVAL;
705 }
706
707 /* unhalt the MEs */
708 sdma_v3_0_enable(adev, true);
709 /* enable sdma ring preemption */
710 sdma_v3_0_ctx_switch_enable(adev, true);
711
712 /* start the gfx rings and rlc compute queues */
713 r = sdma_v3_0_gfx_resume(adev);
714 if (r)
715 return r;
716 r = sdma_v3_0_rlc_resume(adev);
717 if (r)
718 return r;
719
720 return 0;
721 }
722
723 /**
724 * sdma_v3_0_ring_test_ring - simple async dma engine test
725 *
726 * @ring: amdgpu_ring structure holding ring information
727 *
728 * Test the DMA engine by writing using it to write an
729 * value to memory. (VI).
730 * Returns 0 for success, error for failure.
731 */
732 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
733 {
734 struct amdgpu_device *adev = ring->adev;
735 unsigned i;
736 unsigned index;
737 int r;
738 u32 tmp;
739 u64 gpu_addr;
740
741 r = amdgpu_wb_get(adev, &index);
742 if (r) {
743 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
744 return r;
745 }
746
747 gpu_addr = adev->wb.gpu_addr + (index * 4);
748 tmp = 0xCAFEDEAD;
749 adev->wb.wb[index] = cpu_to_le32(tmp);
750
751 r = amdgpu_ring_lock(ring, 5);
752 if (r) {
753 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
754 amdgpu_wb_free(adev, index);
755 return r;
756 }
757
758 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
759 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
760 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
761 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
762 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
763 amdgpu_ring_write(ring, 0xDEADBEEF);
764 amdgpu_ring_unlock_commit(ring);
765
766 for (i = 0; i < adev->usec_timeout; i++) {
767 tmp = le32_to_cpu(adev->wb.wb[index]);
768 if (tmp == 0xDEADBEEF)
769 break;
770 DRM_UDELAY(1);
771 }
772
773 if (i < adev->usec_timeout) {
774 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
775 } else {
776 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
777 ring->idx, tmp);
778 r = -EINVAL;
779 }
780 amdgpu_wb_free(adev, index);
781
782 return r;
783 }
784
785 /**
786 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
787 *
788 * @ring: amdgpu_ring structure holding ring information
789 *
790 * Test a simple IB in the DMA ring (VI).
791 * Returns 0 on success, error on failure.
792 */
793 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
794 {
795 struct amdgpu_device *adev = ring->adev;
796 struct amdgpu_ib ib;
797 struct fence *f = NULL;
798 unsigned i;
799 unsigned index;
800 int r;
801 u32 tmp = 0;
802 u64 gpu_addr;
803
804 r = amdgpu_wb_get(adev, &index);
805 if (r) {
806 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
807 return r;
808 }
809
810 gpu_addr = adev->wb.gpu_addr + (index * 4);
811 tmp = 0xCAFEDEAD;
812 adev->wb.wb[index] = cpu_to_le32(tmp);
813 memset(&ib, 0, sizeof(ib));
814 r = amdgpu_ib_get(ring, NULL, 256, &ib);
815 if (r) {
816 DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
817 goto err0;
818 }
819
820 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
821 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
822 ib.ptr[1] = lower_32_bits(gpu_addr);
823 ib.ptr[2] = upper_32_bits(gpu_addr);
824 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
825 ib.ptr[4] = 0xDEADBEEF;
826 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
827 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
828 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
829 ib.length_dw = 8;
830
831 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
832 AMDGPU_FENCE_OWNER_UNDEFINED,
833 &f);
834 if (r)
835 goto err1;
836
837 r = fence_wait(f, false);
838 if (r) {
839 DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
840 goto err1;
841 }
842 for (i = 0; i < adev->usec_timeout; i++) {
843 tmp = le32_to_cpu(adev->wb.wb[index]);
844 if (tmp == 0xDEADBEEF)
845 break;
846 DRM_UDELAY(1);
847 }
848 if (i < adev->usec_timeout) {
849 DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
850 ring->idx, i);
851 goto err1;
852 } else {
853 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
854 r = -EINVAL;
855 }
856 err1:
857 fence_put(f);
858 amdgpu_ib_free(adev, &ib);
859 err0:
860 amdgpu_wb_free(adev, index);
861 return r;
862 }
863
864 /**
865 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
866 *
867 * @ib: indirect buffer to fill with commands
868 * @pe: addr of the page entry
869 * @src: src addr to copy from
870 * @count: number of page entries to update
871 *
872 * Update PTEs by copying them from the GART using sDMA (CIK).
873 */
874 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
875 uint64_t pe, uint64_t src,
876 unsigned count)
877 {
878 while (count) {
879 unsigned bytes = count * 8;
880 if (bytes > 0x1FFFF8)
881 bytes = 0x1FFFF8;
882
883 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
884 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
885 ib->ptr[ib->length_dw++] = bytes;
886 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
887 ib->ptr[ib->length_dw++] = lower_32_bits(src);
888 ib->ptr[ib->length_dw++] = upper_32_bits(src);
889 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
890 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
891
892 pe += bytes;
893 src += bytes;
894 count -= bytes / 8;
895 }
896 }
897
898 /**
899 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
900 *
901 * @ib: indirect buffer to fill with commands
902 * @pe: addr of the page entry
903 * @addr: dst addr to write into pe
904 * @count: number of page entries to update
905 * @incr: increase next addr by incr bytes
906 * @flags: access flags
907 *
908 * Update PTEs by writing them manually using sDMA (CIK).
909 */
910 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
911 uint64_t pe,
912 uint64_t addr, unsigned count,
913 uint32_t incr, uint32_t flags)
914 {
915 uint64_t value;
916 unsigned ndw;
917
918 while (count) {
919 ndw = count * 2;
920 if (ndw > 0xFFFFE)
921 ndw = 0xFFFFE;
922
923 /* for non-physically contiguous pages (system) */
924 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
925 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
926 ib->ptr[ib->length_dw++] = pe;
927 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
928 ib->ptr[ib->length_dw++] = ndw;
929 for (; ndw > 0; ndw -= 2, --count, pe += 8) {
930 if (flags & AMDGPU_PTE_SYSTEM) {
931 value = amdgpu_vm_map_gart(ib->ring->adev, addr);
932 value &= 0xFFFFFFFFFFFFF000ULL;
933 } else if (flags & AMDGPU_PTE_VALID) {
934 value = addr;
935 } else {
936 value = 0;
937 }
938 addr += incr;
939 value |= flags;
940 ib->ptr[ib->length_dw++] = value;
941 ib->ptr[ib->length_dw++] = upper_32_bits(value);
942 }
943 }
944 }
945
946 /**
947 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
948 *
949 * @ib: indirect buffer to fill with commands
950 * @pe: addr of the page entry
951 * @addr: dst addr to write into pe
952 * @count: number of page entries to update
953 * @incr: increase next addr by incr bytes
954 * @flags: access flags
955 *
956 * Update the page tables using sDMA (CIK).
957 */
958 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
959 uint64_t pe,
960 uint64_t addr, unsigned count,
961 uint32_t incr, uint32_t flags)
962 {
963 uint64_t value;
964 unsigned ndw;
965
966 while (count) {
967 ndw = count;
968 if (ndw > 0x7FFFF)
969 ndw = 0x7FFFF;
970
971 if (flags & AMDGPU_PTE_VALID)
972 value = addr;
973 else
974 value = 0;
975
976 /* for physically contiguous pages (vram) */
977 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
978 ib->ptr[ib->length_dw++] = pe; /* dst addr */
979 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
980 ib->ptr[ib->length_dw++] = flags; /* mask */
981 ib->ptr[ib->length_dw++] = 0;
982 ib->ptr[ib->length_dw++] = value; /* value */
983 ib->ptr[ib->length_dw++] = upper_32_bits(value);
984 ib->ptr[ib->length_dw++] = incr; /* increment size */
985 ib->ptr[ib->length_dw++] = 0;
986 ib->ptr[ib->length_dw++] = ndw; /* number of entries */
987
988 pe += ndw * 8;
989 addr += ndw * incr;
990 count -= ndw;
991 }
992 }
993
994 /**
995 * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
996 *
997 * @ib: indirect buffer to fill with padding
998 *
999 */
1000 static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
1001 {
1002 while (ib->length_dw & 0x7)
1003 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1004 }
1005
1006 /**
1007 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1008 *
1009 * @ring: amdgpu_ring pointer
1010 * @vm: amdgpu_vm pointer
1011 *
1012 * Update the page table base and flush the VM TLB
1013 * using sDMA (VI).
1014 */
1015 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1016 unsigned vm_id, uint64_t pd_addr)
1017 {
1018 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1019 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1020 if (vm_id < 8) {
1021 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1022 } else {
1023 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1024 }
1025 amdgpu_ring_write(ring, pd_addr >> 12);
1026
1027 /* flush TLB */
1028 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1029 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1030 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1031 amdgpu_ring_write(ring, 1 << vm_id);
1032
1033 /* wait for flush */
1034 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1035 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1036 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1037 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1038 amdgpu_ring_write(ring, 0);
1039 amdgpu_ring_write(ring, 0); /* reference */
1040 amdgpu_ring_write(ring, 0); /* mask */
1041 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1042 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1043 }
1044
1045 static int sdma_v3_0_early_init(void *handle)
1046 {
1047 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1048
1049 sdma_v3_0_set_ring_funcs(adev);
1050 sdma_v3_0_set_buffer_funcs(adev);
1051 sdma_v3_0_set_vm_pte_funcs(adev);
1052 sdma_v3_0_set_irq_funcs(adev);
1053
1054 return 0;
1055 }
1056
1057 static int sdma_v3_0_sw_init(void *handle)
1058 {
1059 struct amdgpu_ring *ring;
1060 int r;
1061 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1062
1063 /* SDMA trap event */
1064 r = amdgpu_irq_add_id(adev, 224, &adev->sdma_trap_irq);
1065 if (r)
1066 return r;
1067
1068 /* SDMA Privileged inst */
1069 r = amdgpu_irq_add_id(adev, 241, &adev->sdma_illegal_inst_irq);
1070 if (r)
1071 return r;
1072
1073 /* SDMA Privileged inst */
1074 r = amdgpu_irq_add_id(adev, 247, &adev->sdma_illegal_inst_irq);
1075 if (r)
1076 return r;
1077
1078 r = sdma_v3_0_init_microcode(adev);
1079 if (r) {
1080 DRM_ERROR("Failed to load sdma firmware!\n");
1081 return r;
1082 }
1083
1084 ring = &adev->sdma[0].ring;
1085 ring->ring_obj = NULL;
1086 ring->use_doorbell = true;
1087 ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE0;
1088
1089 ring = &adev->sdma[1].ring;
1090 ring->ring_obj = NULL;
1091 ring->use_doorbell = true;
1092 ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE1;
1093
1094 ring = &adev->sdma[0].ring;
1095 sprintf(ring->name, "sdma0");
1096 r = amdgpu_ring_init(adev, ring, 256 * 1024,
1097 SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1098 &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP0,
1099 AMDGPU_RING_TYPE_SDMA);
1100 if (r)
1101 return r;
1102
1103 ring = &adev->sdma[1].ring;
1104 sprintf(ring->name, "sdma1");
1105 r = amdgpu_ring_init(adev, ring, 256 * 1024,
1106 SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1107 &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP1,
1108 AMDGPU_RING_TYPE_SDMA);
1109 if (r)
1110 return r;
1111
1112 return r;
1113 }
1114
1115 static int sdma_v3_0_sw_fini(void *handle)
1116 {
1117 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1118
1119 amdgpu_ring_fini(&adev->sdma[0].ring);
1120 amdgpu_ring_fini(&adev->sdma[1].ring);
1121
1122 return 0;
1123 }
1124
1125 static int sdma_v3_0_hw_init(void *handle)
1126 {
1127 int r;
1128 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1129
1130 sdma_v3_0_init_golden_registers(adev);
1131
1132 r = sdma_v3_0_start(adev);
1133 if (r)
1134 return r;
1135
1136 return r;
1137 }
1138
1139 static int sdma_v3_0_hw_fini(void *handle)
1140 {
1141 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1142
1143 sdma_v3_0_ctx_switch_enable(adev, false);
1144 sdma_v3_0_enable(adev, false);
1145
1146 return 0;
1147 }
1148
1149 static int sdma_v3_0_suspend(void *handle)
1150 {
1151 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1152
1153 return sdma_v3_0_hw_fini(adev);
1154 }
1155
1156 static int sdma_v3_0_resume(void *handle)
1157 {
1158 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1159
1160 return sdma_v3_0_hw_init(adev);
1161 }
1162
1163 static bool sdma_v3_0_is_idle(void *handle)
1164 {
1165 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1166 u32 tmp = RREG32(mmSRBM_STATUS2);
1167
1168 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1169 SRBM_STATUS2__SDMA1_BUSY_MASK))
1170 return false;
1171
1172 return true;
1173 }
1174
1175 static int sdma_v3_0_wait_for_idle(void *handle)
1176 {
1177 unsigned i;
1178 u32 tmp;
1179 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1180
1181 for (i = 0; i < adev->usec_timeout; i++) {
1182 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1183 SRBM_STATUS2__SDMA1_BUSY_MASK);
1184
1185 if (!tmp)
1186 return 0;
1187 udelay(1);
1188 }
1189 return -ETIMEDOUT;
1190 }
1191
1192 static void sdma_v3_0_print_status(void *handle)
1193 {
1194 int i, j;
1195 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1196
1197 dev_info(adev->dev, "VI SDMA registers\n");
1198 dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
1199 RREG32(mmSRBM_STATUS2));
1200 for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
1201 dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
1202 i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
1203 dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
1204 i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
1205 dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
1206 i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
1207 dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
1208 i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
1209 dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
1210 i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
1211 dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
1212 i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
1213 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
1214 i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
1215 dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
1216 i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
1217 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
1218 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
1219 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
1220 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
1221 dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
1222 i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
1223 dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
1224 i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
1225 dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
1226 i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
1227 mutex_lock(&adev->srbm_mutex);
1228 for (j = 0; j < 16; j++) {
1229 vi_srbm_select(adev, 0, 0, 0, j);
1230 dev_info(adev->dev, " VM %d:\n", j);
1231 dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
1232 i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
1233 dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
1234 i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
1235 }
1236 vi_srbm_select(adev, 0, 0, 0, 0);
1237 mutex_unlock(&adev->srbm_mutex);
1238 }
1239 }
1240
1241 static int sdma_v3_0_soft_reset(void *handle)
1242 {
1243 u32 srbm_soft_reset = 0;
1244 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1245 u32 tmp = RREG32(mmSRBM_STATUS2);
1246
1247 if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1248 /* sdma0 */
1249 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1250 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1251 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1252 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1253 }
1254 if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1255 /* sdma1 */
1256 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1257 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1258 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1259 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1260 }
1261
1262 if (srbm_soft_reset) {
1263 sdma_v3_0_print_status((void *)adev);
1264
1265 tmp = RREG32(mmSRBM_SOFT_RESET);
1266 tmp |= srbm_soft_reset;
1267 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1268 WREG32(mmSRBM_SOFT_RESET, tmp);
1269 tmp = RREG32(mmSRBM_SOFT_RESET);
1270
1271 udelay(50);
1272
1273 tmp &= ~srbm_soft_reset;
1274 WREG32(mmSRBM_SOFT_RESET, tmp);
1275 tmp = RREG32(mmSRBM_SOFT_RESET);
1276
1277 /* Wait a little for things to settle down */
1278 udelay(50);
1279
1280 sdma_v3_0_print_status((void *)adev);
1281 }
1282
1283 return 0;
1284 }
1285
1286 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1287 struct amdgpu_irq_src *source,
1288 unsigned type,
1289 enum amdgpu_interrupt_state state)
1290 {
1291 u32 sdma_cntl;
1292
1293 switch (type) {
1294 case AMDGPU_SDMA_IRQ_TRAP0:
1295 switch (state) {
1296 case AMDGPU_IRQ_STATE_DISABLE:
1297 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1298 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1299 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1300 break;
1301 case AMDGPU_IRQ_STATE_ENABLE:
1302 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1303 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1304 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1305 break;
1306 default:
1307 break;
1308 }
1309 break;
1310 case AMDGPU_SDMA_IRQ_TRAP1:
1311 switch (state) {
1312 case AMDGPU_IRQ_STATE_DISABLE:
1313 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1314 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1315 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1316 break;
1317 case AMDGPU_IRQ_STATE_ENABLE:
1318 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1319 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1320 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1321 break;
1322 default:
1323 break;
1324 }
1325 break;
1326 default:
1327 break;
1328 }
1329 return 0;
1330 }
1331
1332 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1333 struct amdgpu_irq_src *source,
1334 struct amdgpu_iv_entry *entry)
1335 {
1336 u8 instance_id, queue_id;
1337
1338 instance_id = (entry->ring_id & 0x3) >> 0;
1339 queue_id = (entry->ring_id & 0xc) >> 2;
1340 DRM_DEBUG("IH: SDMA trap\n");
1341 switch (instance_id) {
1342 case 0:
1343 switch (queue_id) {
1344 case 0:
1345 amdgpu_fence_process(&adev->sdma[0].ring);
1346 break;
1347 case 1:
1348 /* XXX compute */
1349 break;
1350 case 2:
1351 /* XXX compute */
1352 break;
1353 }
1354 break;
1355 case 1:
1356 switch (queue_id) {
1357 case 0:
1358 amdgpu_fence_process(&adev->sdma[1].ring);
1359 break;
1360 case 1:
1361 /* XXX compute */
1362 break;
1363 case 2:
1364 /* XXX compute */
1365 break;
1366 }
1367 break;
1368 }
1369 return 0;
1370 }
1371
1372 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1373 struct amdgpu_irq_src *source,
1374 struct amdgpu_iv_entry *entry)
1375 {
1376 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1377 schedule_work(&adev->reset_work);
1378 return 0;
1379 }
1380
1381 static int sdma_v3_0_set_clockgating_state(void *handle,
1382 enum amd_clockgating_state state)
1383 {
1384 return 0;
1385 }
1386
1387 static int sdma_v3_0_set_powergating_state(void *handle,
1388 enum amd_powergating_state state)
1389 {
1390 return 0;
1391 }
1392
1393 const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1394 .early_init = sdma_v3_0_early_init,
1395 .late_init = NULL,
1396 .sw_init = sdma_v3_0_sw_init,
1397 .sw_fini = sdma_v3_0_sw_fini,
1398 .hw_init = sdma_v3_0_hw_init,
1399 .hw_fini = sdma_v3_0_hw_fini,
1400 .suspend = sdma_v3_0_suspend,
1401 .resume = sdma_v3_0_resume,
1402 .is_idle = sdma_v3_0_is_idle,
1403 .wait_for_idle = sdma_v3_0_wait_for_idle,
1404 .soft_reset = sdma_v3_0_soft_reset,
1405 .print_status = sdma_v3_0_print_status,
1406 .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1407 .set_powergating_state = sdma_v3_0_set_powergating_state,
1408 };
1409
1410 /**
1411 * sdma_v3_0_ring_is_lockup - Check if the DMA engine is locked up
1412 *
1413 * @ring: amdgpu_ring structure holding ring information
1414 *
1415 * Check if the async DMA engine is locked up (VI).
1416 * Returns true if the engine appears to be locked up, false if not.
1417 */
1418 static bool sdma_v3_0_ring_is_lockup(struct amdgpu_ring *ring)
1419 {
1420
1421 if (sdma_v3_0_is_idle(ring->adev)) {
1422 amdgpu_ring_lockup_update(ring);
1423 return false;
1424 }
1425 return amdgpu_ring_test_lockup(ring);
1426 }
1427
1428 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1429 .get_rptr = sdma_v3_0_ring_get_rptr,
1430 .get_wptr = sdma_v3_0_ring_get_wptr,
1431 .set_wptr = sdma_v3_0_ring_set_wptr,
1432 .parse_cs = NULL,
1433 .emit_ib = sdma_v3_0_ring_emit_ib,
1434 .emit_fence = sdma_v3_0_ring_emit_fence,
1435 .emit_semaphore = sdma_v3_0_ring_emit_semaphore,
1436 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1437 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1438 .test_ring = sdma_v3_0_ring_test_ring,
1439 .test_ib = sdma_v3_0_ring_test_ib,
1440 .is_lockup = sdma_v3_0_ring_is_lockup,
1441 };
1442
1443 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1444 {
1445 adev->sdma[0].ring.funcs = &sdma_v3_0_ring_funcs;
1446 adev->sdma[1].ring.funcs = &sdma_v3_0_ring_funcs;
1447 }
1448
1449 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1450 .set = sdma_v3_0_set_trap_irq_state,
1451 .process = sdma_v3_0_process_trap_irq,
1452 };
1453
1454 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1455 .process = sdma_v3_0_process_illegal_inst_irq,
1456 };
1457
1458 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1459 {
1460 adev->sdma_trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1461 adev->sdma_trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1462 adev->sdma_illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1463 }
1464
1465 /**
1466 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1467 *
1468 * @ring: amdgpu_ring structure holding ring information
1469 * @src_offset: src GPU address
1470 * @dst_offset: dst GPU address
1471 * @byte_count: number of bytes to xfer
1472 *
1473 * Copy GPU buffers using the DMA engine (VI).
1474 * Used by the amdgpu ttm implementation to move pages if
1475 * registered as the asic copy callback.
1476 */
1477 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1478 uint64_t src_offset,
1479 uint64_t dst_offset,
1480 uint32_t byte_count)
1481 {
1482 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1483 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1484 ib->ptr[ib->length_dw++] = byte_count;
1485 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1486 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1487 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1488 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1489 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1490 }
1491
1492 /**
1493 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1494 *
1495 * @ring: amdgpu_ring structure holding ring information
1496 * @src_data: value to write to buffer
1497 * @dst_offset: dst GPU address
1498 * @byte_count: number of bytes to xfer
1499 *
1500 * Fill GPU buffers using the DMA engine (VI).
1501 */
1502 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1503 uint32_t src_data,
1504 uint64_t dst_offset,
1505 uint32_t byte_count)
1506 {
1507 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1508 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1509 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1510 ib->ptr[ib->length_dw++] = src_data;
1511 ib->ptr[ib->length_dw++] = byte_count;
1512 }
1513
1514 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1515 .copy_max_bytes = 0x1fffff,
1516 .copy_num_dw = 7,
1517 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1518
1519 .fill_max_bytes = 0x1fffff,
1520 .fill_num_dw = 5,
1521 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1522 };
1523
1524 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1525 {
1526 if (adev->mman.buffer_funcs == NULL) {
1527 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1528 adev->mman.buffer_funcs_ring = &adev->sdma[0].ring;
1529 }
1530 }
1531
1532 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1533 .copy_pte = sdma_v3_0_vm_copy_pte,
1534 .write_pte = sdma_v3_0_vm_write_pte,
1535 .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1536 .pad_ib = sdma_v3_0_vm_pad_ib,
1537 };
1538
1539 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1540 {
1541 if (adev->vm_manager.vm_pte_funcs == NULL) {
1542 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1543 adev->vm_manager.vm_pte_funcs_ring = &adev->sdma[0].ring;
1544 adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true;
1545 }
1546 }
This page took 0.092029 seconds and 5 git commands to generate.