drm/amdkfd: Don't BUG on freeing GART sub-allocation
[deliverable/linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include <linux/amd-iommu.h>
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers.h"
30
31 #define MQD_SIZE_ALIGNED 768
32
33 static const struct kfd_device_info kaveri_device_info = {
34 .asic_family = CHIP_KAVERI,
35 .max_pasid_bits = 16,
36 .ih_ring_entry_size = 4 * sizeof(uint32_t),
37 .mqd_size_aligned = MQD_SIZE_ALIGNED
38 };
39
40 static const struct kfd_device_info carrizo_device_info = {
41 .asic_family = CHIP_CARRIZO,
42 .max_pasid_bits = 16,
43 .ih_ring_entry_size = 4 * sizeof(uint32_t),
44 .num_of_watch_points = 4,
45 .mqd_size_aligned = MQD_SIZE_ALIGNED
46 };
47
48 struct kfd_deviceid {
49 unsigned short did;
50 const struct kfd_device_info *device_info;
51 };
52
53 /* Please keep this sorted by increasing device id. */
54 static const struct kfd_deviceid supported_devices[] = {
55 { 0x1304, &kaveri_device_info }, /* Kaveri */
56 { 0x1305, &kaveri_device_info }, /* Kaveri */
57 { 0x1306, &kaveri_device_info }, /* Kaveri */
58 { 0x1307, &kaveri_device_info }, /* Kaveri */
59 { 0x1309, &kaveri_device_info }, /* Kaveri */
60 { 0x130A, &kaveri_device_info }, /* Kaveri */
61 { 0x130B, &kaveri_device_info }, /* Kaveri */
62 { 0x130C, &kaveri_device_info }, /* Kaveri */
63 { 0x130D, &kaveri_device_info }, /* Kaveri */
64 { 0x130E, &kaveri_device_info }, /* Kaveri */
65 { 0x130F, &kaveri_device_info }, /* Kaveri */
66 { 0x1310, &kaveri_device_info }, /* Kaveri */
67 { 0x1311, &kaveri_device_info }, /* Kaveri */
68 { 0x1312, &kaveri_device_info }, /* Kaveri */
69 { 0x1313, &kaveri_device_info }, /* Kaveri */
70 { 0x1315, &kaveri_device_info }, /* Kaveri */
71 { 0x1316, &kaveri_device_info }, /* Kaveri */
72 { 0x1317, &kaveri_device_info }, /* Kaveri */
73 { 0x1318, &kaveri_device_info }, /* Kaveri */
74 { 0x131B, &kaveri_device_info }, /* Kaveri */
75 { 0x131C, &kaveri_device_info }, /* Kaveri */
76 { 0x131D, &kaveri_device_info } /* Kaveri */
77 };
78
79 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
80 unsigned int chunk_size);
81 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
82
83 static const struct kfd_device_info *lookup_device_info(unsigned short did)
84 {
85 size_t i;
86
87 for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
88 if (supported_devices[i].did == did) {
89 BUG_ON(supported_devices[i].device_info == NULL);
90 return supported_devices[i].device_info;
91 }
92 }
93
94 return NULL;
95 }
96
97 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, struct pci_dev *pdev)
98 {
99 struct kfd_dev *kfd;
100
101 const struct kfd_device_info *device_info =
102 lookup_device_info(pdev->device);
103
104 if (!device_info)
105 return NULL;
106
107 kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
108 if (!kfd)
109 return NULL;
110
111 kfd->kgd = kgd;
112 kfd->device_info = device_info;
113 kfd->pdev = pdev;
114 kfd->init_complete = false;
115
116 return kfd;
117 }
118
119 static bool device_iommu_pasid_init(struct kfd_dev *kfd)
120 {
121 const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP |
122 AMD_IOMMU_DEVICE_FLAG_PRI_SUP |
123 AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
124
125 struct amd_iommu_device_info iommu_info;
126 unsigned int pasid_limit;
127 int err;
128
129 err = amd_iommu_device_info(kfd->pdev, &iommu_info);
130 if (err < 0) {
131 dev_err(kfd_device,
132 "error getting iommu info. is the iommu enabled?\n");
133 return false;
134 }
135
136 if ((iommu_info.flags & required_iommu_flags) != required_iommu_flags) {
137 dev_err(kfd_device, "error required iommu flags ats(%i), pri(%i), pasid(%i)\n",
138 (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP) != 0,
139 (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) != 0,
140 (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) != 0);
141 return false;
142 }
143
144 pasid_limit = min_t(unsigned int,
145 (unsigned int)1 << kfd->device_info->max_pasid_bits,
146 iommu_info.max_pasids);
147 /*
148 * last pasid is used for kernel queues doorbells
149 * in the future the last pasid might be used for a kernel thread.
150 */
151 pasid_limit = min_t(unsigned int,
152 pasid_limit,
153 kfd->doorbell_process_limit - 1);
154
155 err = amd_iommu_init_device(kfd->pdev, pasid_limit);
156 if (err < 0) {
157 dev_err(kfd_device, "error initializing iommu device\n");
158 return false;
159 }
160
161 if (!kfd_set_pasid_limit(pasid_limit)) {
162 dev_err(kfd_device, "error setting pasid limit\n");
163 amd_iommu_free_device(kfd->pdev);
164 return false;
165 }
166
167 return true;
168 }
169
170 static void iommu_pasid_shutdown_callback(struct pci_dev *pdev, int pasid)
171 {
172 struct kfd_dev *dev = kfd_device_by_pci_dev(pdev);
173
174 if (dev)
175 kfd_unbind_process_from_device(dev, pasid);
176 }
177
178 bool kgd2kfd_device_init(struct kfd_dev *kfd,
179 const struct kgd2kfd_shared_resources *gpu_resources)
180 {
181 unsigned int size;
182
183 kfd->shared_resources = *gpu_resources;
184
185 /* calculate max size of mqds needed for queues */
186 size = max_num_of_processes *
187 max_num_of_queues_per_process *
188 kfd->device_info->mqd_size_aligned;
189
190 /*
191 * calculate max size of runlist packet.
192 * There can be only 2 packets at once
193 */
194 size += (max_num_of_processes * sizeof(struct pm4_map_process) +
195 max_num_of_processes * max_num_of_queues_per_process *
196 sizeof(struct pm4_map_queues) + sizeof(struct pm4_runlist)) * 2;
197
198 /* Add size of HIQ & DIQ */
199 size += KFD_KERNEL_QUEUE_SIZE * 2;
200
201 /* add another 512KB for all other allocations on gart (HPD, fences) */
202 size += 512 * 1024;
203
204 if (kfd2kgd->init_gtt_mem_allocation(kfd->kgd, size, &kfd->gtt_mem,
205 &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)) {
206 dev_err(kfd_device,
207 "Could not allocate %d bytes for device (%x:%x)\n",
208 size, kfd->pdev->vendor, kfd->pdev->device);
209 goto out;
210 }
211
212 dev_info(kfd_device,
213 "Allocated %d bytes on gart for device(%x:%x)\n",
214 size, kfd->pdev->vendor, kfd->pdev->device);
215
216 /* Initialize GTT sa with 512 byte chunk size */
217 if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
218 dev_err(kfd_device,
219 "Error initializing gtt sub-allocator\n");
220 goto kfd_gtt_sa_init_error;
221 }
222
223 kfd_doorbell_init(kfd);
224
225 if (kfd_topology_add_device(kfd) != 0) {
226 dev_err(kfd_device,
227 "Error adding device (%x:%x) to topology\n",
228 kfd->pdev->vendor, kfd->pdev->device);
229 goto kfd_topology_add_device_error;
230 }
231
232 if (kfd_interrupt_init(kfd)) {
233 dev_err(kfd_device,
234 "Error initializing interrupts for device (%x:%x)\n",
235 kfd->pdev->vendor, kfd->pdev->device);
236 goto kfd_interrupt_error;
237 }
238
239 if (!device_iommu_pasid_init(kfd)) {
240 dev_err(kfd_device,
241 "Error initializing iommuv2 for device (%x:%x)\n",
242 kfd->pdev->vendor, kfd->pdev->device);
243 goto device_iommu_pasid_error;
244 }
245 amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
246 iommu_pasid_shutdown_callback);
247
248 kfd->dqm = device_queue_manager_init(kfd);
249 if (!kfd->dqm) {
250 dev_err(kfd_device,
251 "Error initializing queue manager for device (%x:%x)\n",
252 kfd->pdev->vendor, kfd->pdev->device);
253 goto device_queue_manager_error;
254 }
255
256 if (kfd->dqm->start(kfd->dqm) != 0) {
257 dev_err(kfd_device,
258 "Error starting queuen manager for device (%x:%x)\n",
259 kfd->pdev->vendor, kfd->pdev->device);
260 goto dqm_start_error;
261 }
262
263 kfd->init_complete = true;
264 dev_info(kfd_device, "added device (%x:%x)\n", kfd->pdev->vendor,
265 kfd->pdev->device);
266
267 pr_debug("kfd: Starting kfd with the following scheduling policy %d\n",
268 sched_policy);
269
270 goto out;
271
272 dqm_start_error:
273 device_queue_manager_uninit(kfd->dqm);
274 device_queue_manager_error:
275 amd_iommu_free_device(kfd->pdev);
276 device_iommu_pasid_error:
277 kfd_interrupt_exit(kfd);
278 kfd_interrupt_error:
279 kfd_topology_remove_device(kfd);
280 kfd_topology_add_device_error:
281 kfd_gtt_sa_fini(kfd);
282 kfd_gtt_sa_init_error:
283 kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
284 dev_err(kfd_device,
285 "device (%x:%x) NOT added due to errors\n",
286 kfd->pdev->vendor, kfd->pdev->device);
287 out:
288 return kfd->init_complete;
289 }
290
291 void kgd2kfd_device_exit(struct kfd_dev *kfd)
292 {
293 if (kfd->init_complete) {
294 device_queue_manager_uninit(kfd->dqm);
295 amd_iommu_free_device(kfd->pdev);
296 kfd_interrupt_exit(kfd);
297 kfd_topology_remove_device(kfd);
298 kfd_gtt_sa_fini(kfd);
299 kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
300 }
301
302 kfree(kfd);
303 }
304
305 void kgd2kfd_suspend(struct kfd_dev *kfd)
306 {
307 BUG_ON(kfd == NULL);
308
309 if (kfd->init_complete) {
310 kfd->dqm->stop(kfd->dqm);
311 amd_iommu_set_invalidate_ctx_cb(kfd->pdev, NULL);
312 amd_iommu_free_device(kfd->pdev);
313 }
314 }
315
316 int kgd2kfd_resume(struct kfd_dev *kfd)
317 {
318 unsigned int pasid_limit;
319 int err;
320
321 BUG_ON(kfd == NULL);
322
323 pasid_limit = kfd_get_pasid_limit();
324
325 if (kfd->init_complete) {
326 err = amd_iommu_init_device(kfd->pdev, pasid_limit);
327 if (err < 0)
328 return -ENXIO;
329 amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
330 iommu_pasid_shutdown_callback);
331 kfd->dqm->start(kfd->dqm);
332 }
333
334 return 0;
335 }
336
337 /* This is called directly from KGD at ISR. */
338 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
339 {
340 if (kfd->init_complete) {
341 spin_lock(&kfd->interrupt_lock);
342
343 if (kfd->interrupts_active
344 && enqueue_ih_ring_entry(kfd, ih_ring_entry))
345 schedule_work(&kfd->interrupt_work);
346
347 spin_unlock(&kfd->interrupt_lock);
348 }
349 }
350
351 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
352 unsigned int chunk_size)
353 {
354 unsigned int num_of_bits;
355
356 BUG_ON(!kfd);
357 BUG_ON(!kfd->gtt_mem);
358 BUG_ON(buf_size < chunk_size);
359 BUG_ON(buf_size == 0);
360 BUG_ON(chunk_size == 0);
361
362 kfd->gtt_sa_chunk_size = chunk_size;
363 kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
364
365 num_of_bits = kfd->gtt_sa_num_of_chunks / BITS_PER_BYTE;
366 BUG_ON(num_of_bits == 0);
367
368 kfd->gtt_sa_bitmap = kzalloc(num_of_bits, GFP_KERNEL);
369
370 if (!kfd->gtt_sa_bitmap)
371 return -ENOMEM;
372
373 pr_debug("kfd: gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
374 kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
375
376 mutex_init(&kfd->gtt_sa_lock);
377
378 return 0;
379
380 }
381
382 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
383 {
384 mutex_destroy(&kfd->gtt_sa_lock);
385 kfree(kfd->gtt_sa_bitmap);
386 }
387
388 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
389 unsigned int bit_num,
390 unsigned int chunk_size)
391 {
392 return start_addr + bit_num * chunk_size;
393 }
394
395 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
396 unsigned int bit_num,
397 unsigned int chunk_size)
398 {
399 return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
400 }
401
402 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
403 struct kfd_mem_obj **mem_obj)
404 {
405 unsigned int found, start_search, cur_size;
406
407 BUG_ON(!kfd);
408
409 if (size == 0)
410 return -EINVAL;
411
412 if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
413 return -ENOMEM;
414
415 *mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
416 if ((*mem_obj) == NULL)
417 return -ENOMEM;
418
419 pr_debug("kfd: allocated mem_obj = %p for size = %d\n", *mem_obj, size);
420
421 start_search = 0;
422
423 mutex_lock(&kfd->gtt_sa_lock);
424
425 kfd_gtt_restart_search:
426 /* Find the first chunk that is free */
427 found = find_next_zero_bit(kfd->gtt_sa_bitmap,
428 kfd->gtt_sa_num_of_chunks,
429 start_search);
430
431 pr_debug("kfd: found = %d\n", found);
432
433 /* If there wasn't any free chunk, bail out */
434 if (found == kfd->gtt_sa_num_of_chunks)
435 goto kfd_gtt_no_free_chunk;
436
437 /* Update fields of mem_obj */
438 (*mem_obj)->range_start = found;
439 (*mem_obj)->range_end = found;
440 (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
441 kfd->gtt_start_gpu_addr,
442 found,
443 kfd->gtt_sa_chunk_size);
444 (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
445 kfd->gtt_start_cpu_ptr,
446 found,
447 kfd->gtt_sa_chunk_size);
448
449 pr_debug("kfd: gpu_addr = %p, cpu_addr = %p\n",
450 (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
451
452 /* If we need only one chunk, mark it as allocated and get out */
453 if (size <= kfd->gtt_sa_chunk_size) {
454 pr_debug("kfd: single bit\n");
455 set_bit(found, kfd->gtt_sa_bitmap);
456 goto kfd_gtt_out;
457 }
458
459 /* Otherwise, try to see if we have enough contiguous chunks */
460 cur_size = size - kfd->gtt_sa_chunk_size;
461 do {
462 (*mem_obj)->range_end =
463 find_next_zero_bit(kfd->gtt_sa_bitmap,
464 kfd->gtt_sa_num_of_chunks, ++found);
465 /*
466 * If next free chunk is not contiguous than we need to
467 * restart our search from the last free chunk we found (which
468 * wasn't contiguous to the previous ones
469 */
470 if ((*mem_obj)->range_end != found) {
471 start_search = found;
472 goto kfd_gtt_restart_search;
473 }
474
475 /*
476 * If we reached end of buffer, bail out with error
477 */
478 if (found == kfd->gtt_sa_num_of_chunks)
479 goto kfd_gtt_no_free_chunk;
480
481 /* Check if we don't need another chunk */
482 if (cur_size <= kfd->gtt_sa_chunk_size)
483 cur_size = 0;
484 else
485 cur_size -= kfd->gtt_sa_chunk_size;
486
487 } while (cur_size > 0);
488
489 pr_debug("kfd: range_start = %d, range_end = %d\n",
490 (*mem_obj)->range_start, (*mem_obj)->range_end);
491
492 /* Mark the chunks as allocated */
493 for (found = (*mem_obj)->range_start;
494 found <= (*mem_obj)->range_end;
495 found++)
496 set_bit(found, kfd->gtt_sa_bitmap);
497
498 kfd_gtt_out:
499 mutex_unlock(&kfd->gtt_sa_lock);
500 return 0;
501
502 kfd_gtt_no_free_chunk:
503 pr_debug("kfd: allocation failed with mem_obj = %p\n", mem_obj);
504 mutex_unlock(&kfd->gtt_sa_lock);
505 kfree(mem_obj);
506 return -ENOMEM;
507 }
508
509 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
510 {
511 unsigned int bit;
512
513 BUG_ON(!kfd);
514
515 /* Act like kfree when trying to free a NULL object */
516 if (!mem_obj)
517 return 0;
518
519 pr_debug("kfd: free mem_obj = %p, range_start = %d, range_end = %d\n",
520 mem_obj, mem_obj->range_start, mem_obj->range_end);
521
522 mutex_lock(&kfd->gtt_sa_lock);
523
524 /* Mark the chunks as free */
525 for (bit = mem_obj->range_start;
526 bit <= mem_obj->range_end;
527 bit++)
528 clear_bit(bit, kfd->gtt_sa_bitmap);
529
530 mutex_unlock(&kfd->gtt_sa_lock);
531
532 kfree(mem_obj);
533 return 0;
534 }
This page took 0.066405 seconds and 5 git commands to generate.