Merge tag 'imx-drm-next-2015-01-09' of git://git.pengutronix.de/git/pza/linux into...
[deliverable/linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device_queue_manager.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include "kfd_priv.h"
30 #include "kfd_device_queue_manager.h"
31 #include "kfd_mqd_manager.h"
32 #include "cik_regs.h"
33 #include "kfd_kernel_queue.h"
34 #include "../../radeon/cik_reg.h"
35
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39
40 static bool is_mem_initialized;
41
42 static int init_memory(struct device_queue_manager *dqm);
43 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
44 unsigned int pasid, unsigned int vmid);
45
46 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
47 struct queue *q,
48 struct qcm_process_device *qpd);
49
50 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
51 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
52
53 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
54 struct queue *q,
55 struct qcm_process_device *qpd);
56
57 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
58 unsigned int sdma_queue_id);
59
60 static inline
61 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
62 {
63 if (type == KFD_QUEUE_TYPE_SDMA)
64 return KFD_MQD_TYPE_CIK_SDMA;
65 return KFD_MQD_TYPE_CIK_CP;
66 }
67
68 static inline unsigned int get_pipes_num(struct device_queue_manager *dqm)
69 {
70 BUG_ON(!dqm || !dqm->dev);
71 return dqm->dev->shared_resources.compute_pipe_count;
72 }
73
74 static inline unsigned int get_first_pipe(struct device_queue_manager *dqm)
75 {
76 BUG_ON(!dqm);
77 return dqm->dev->shared_resources.first_compute_pipe;
78 }
79
80 static inline unsigned int get_pipes_num_cpsch(void)
81 {
82 return PIPE_PER_ME_CP_SCHEDULING;
83 }
84
85 static inline unsigned int
86 get_sh_mem_bases_nybble_64(struct kfd_process_device *pdd)
87 {
88 uint32_t nybble;
89
90 nybble = (pdd->lds_base >> 60) & 0x0E;
91
92 return nybble;
93 }
94
95 static inline unsigned int get_sh_mem_bases_32(struct kfd_process_device *pdd)
96 {
97 unsigned int shared_base;
98
99 shared_base = (pdd->lds_base >> 16) & 0xFF;
100
101 return shared_base;
102 }
103
104 static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble);
105 static void init_process_memory(struct device_queue_manager *dqm,
106 struct qcm_process_device *qpd)
107 {
108 struct kfd_process_device *pdd;
109 unsigned int temp;
110
111 BUG_ON(!dqm || !qpd);
112
113 pdd = qpd_to_pdd(qpd);
114
115 /* check if sh_mem_config register already configured */
116 if (qpd->sh_mem_config == 0) {
117 qpd->sh_mem_config =
118 ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED) |
119 DEFAULT_MTYPE(MTYPE_NONCACHED) |
120 APE1_MTYPE(MTYPE_NONCACHED);
121 qpd->sh_mem_ape1_limit = 0;
122 qpd->sh_mem_ape1_base = 0;
123 }
124
125 if (qpd->pqm->process->is_32bit_user_mode) {
126 temp = get_sh_mem_bases_32(pdd);
127 qpd->sh_mem_bases = SHARED_BASE(temp);
128 qpd->sh_mem_config |= PTR32;
129 } else {
130 temp = get_sh_mem_bases_nybble_64(pdd);
131 qpd->sh_mem_bases = compute_sh_mem_bases_64bit(temp);
132 }
133
134 pr_debug("kfd: is32bit process: %d sh_mem_bases nybble: 0x%X and register 0x%X\n",
135 qpd->pqm->process->is_32bit_user_mode, temp, qpd->sh_mem_bases);
136 }
137
138 static void program_sh_mem_settings(struct device_queue_manager *dqm,
139 struct qcm_process_device *qpd)
140 {
141 return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
142 qpd->sh_mem_config,
143 qpd->sh_mem_ape1_base,
144 qpd->sh_mem_ape1_limit,
145 qpd->sh_mem_bases);
146 }
147
148 static int allocate_vmid(struct device_queue_manager *dqm,
149 struct qcm_process_device *qpd,
150 struct queue *q)
151 {
152 int bit, allocated_vmid;
153
154 if (dqm->vmid_bitmap == 0)
155 return -ENOMEM;
156
157 bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
158 clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
159
160 /* Kaveri kfd vmid's starts from vmid 8 */
161 allocated_vmid = bit + KFD_VMID_START_OFFSET;
162 pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
163 qpd->vmid = allocated_vmid;
164 q->properties.vmid = allocated_vmid;
165
166 set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
167 program_sh_mem_settings(dqm, qpd);
168
169 return 0;
170 }
171
172 static void deallocate_vmid(struct device_queue_manager *dqm,
173 struct qcm_process_device *qpd,
174 struct queue *q)
175 {
176 int bit = qpd->vmid - KFD_VMID_START_OFFSET;
177
178 set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
179 qpd->vmid = 0;
180 q->properties.vmid = 0;
181 }
182
183 static int create_queue_nocpsch(struct device_queue_manager *dqm,
184 struct queue *q,
185 struct qcm_process_device *qpd,
186 int *allocated_vmid)
187 {
188 int retval;
189
190 BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
191
192 pr_debug("kfd: In func %s\n", __func__);
193 print_queue(q);
194
195 mutex_lock(&dqm->lock);
196
197 if (list_empty(&qpd->queues_list)) {
198 retval = allocate_vmid(dqm, qpd, q);
199 if (retval != 0) {
200 mutex_unlock(&dqm->lock);
201 return retval;
202 }
203 }
204 *allocated_vmid = qpd->vmid;
205 q->properties.vmid = qpd->vmid;
206
207 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
208 retval = create_compute_queue_nocpsch(dqm, q, qpd);
209 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
210 retval = create_sdma_queue_nocpsch(dqm, q, qpd);
211
212 if (retval != 0) {
213 if (list_empty(&qpd->queues_list)) {
214 deallocate_vmid(dqm, qpd, q);
215 *allocated_vmid = 0;
216 }
217 mutex_unlock(&dqm->lock);
218 return retval;
219 }
220
221 list_add(&q->list, &qpd->queues_list);
222 dqm->queue_count++;
223 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
224 dqm->sdma_queue_count++;
225 mutex_unlock(&dqm->lock);
226 return 0;
227 }
228
229 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
230 {
231 bool set;
232 int pipe, bit;
233
234 set = false;
235
236 for (pipe = dqm->next_pipe_to_allocate; pipe < get_pipes_num(dqm);
237 pipe = (pipe + 1) % get_pipes_num(dqm)) {
238 if (dqm->allocated_queues[pipe] != 0) {
239 bit = find_first_bit(
240 (unsigned long *)&dqm->allocated_queues[pipe],
241 QUEUES_PER_PIPE);
242
243 clear_bit(bit,
244 (unsigned long *)&dqm->allocated_queues[pipe]);
245 q->pipe = pipe;
246 q->queue = bit;
247 set = true;
248 break;
249 }
250 }
251
252 if (set == false)
253 return -EBUSY;
254
255 pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
256 __func__, q->pipe, q->queue);
257 /* horizontal hqd allocation */
258 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
259
260 return 0;
261 }
262
263 static inline void deallocate_hqd(struct device_queue_manager *dqm,
264 struct queue *q)
265 {
266 set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
267 }
268
269 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
270 struct queue *q,
271 struct qcm_process_device *qpd)
272 {
273 int retval;
274 struct mqd_manager *mqd;
275
276 BUG_ON(!dqm || !q || !qpd);
277
278 mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
279 if (mqd == NULL)
280 return -ENOMEM;
281
282 retval = allocate_hqd(dqm, q);
283 if (retval != 0)
284 return retval;
285
286 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
287 &q->gart_mqd_addr, &q->properties);
288 if (retval != 0) {
289 deallocate_hqd(dqm, q);
290 return retval;
291 }
292
293 return 0;
294 }
295
296 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
297 struct qcm_process_device *qpd,
298 struct queue *q)
299 {
300 int retval;
301 struct mqd_manager *mqd, *mqd_sdma;
302 BUG_ON(!dqm || !q || !q->mqd || !qpd);
303
304 retval = 0;
305
306 pr_debug("kfd: In Func %s\n", __func__);
307
308 mutex_lock(&dqm->lock);
309 mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
310 if (mqd == NULL) {
311 retval = -ENOMEM;
312 goto out;
313 }
314
315 mqd_sdma = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_SDMA);
316 if (mqd_sdma == NULL) {
317 mutex_unlock(&dqm->lock);
318 return -ENOMEM;
319 }
320
321 retval = mqd->destroy_mqd(mqd, q->mqd,
322 KFD_PREEMPT_TYPE_WAVEFRONT,
323 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
324 q->pipe, q->queue);
325
326 if (retval != 0)
327 goto out;
328
329 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
330 deallocate_hqd(dqm, q);
331 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
332 dqm->sdma_queue_count--;
333 deallocate_sdma_queue(dqm, q->sdma_id);
334 }
335
336 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
337
338 list_del(&q->list);
339 if (list_empty(&qpd->queues_list))
340 deallocate_vmid(dqm, qpd, q);
341 dqm->queue_count--;
342 out:
343 mutex_unlock(&dqm->lock);
344 return retval;
345 }
346
347 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
348 {
349 int retval;
350 struct mqd_manager *mqd;
351
352 BUG_ON(!dqm || !q || !q->mqd);
353
354 mutex_lock(&dqm->lock);
355 mqd = dqm->get_mqd_manager(dqm, q->properties.type);
356 if (mqd == NULL) {
357 mutex_unlock(&dqm->lock);
358 return -ENOMEM;
359 }
360
361 retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
362 if (q->properties.is_active == true)
363 dqm->queue_count++;
364 else
365 dqm->queue_count--;
366
367 if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
368 retval = execute_queues_cpsch(dqm, false);
369
370 mutex_unlock(&dqm->lock);
371 return retval;
372 }
373
374 static struct mqd_manager *get_mqd_manager_nocpsch(
375 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
376 {
377 struct mqd_manager *mqd;
378
379 BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
380
381 pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
382
383 mqd = dqm->mqds[type];
384 if (!mqd) {
385 mqd = mqd_manager_init(type, dqm->dev);
386 if (mqd == NULL)
387 pr_err("kfd: mqd manager is NULL");
388 dqm->mqds[type] = mqd;
389 }
390
391 return mqd;
392 }
393
394 static int register_process_nocpsch(struct device_queue_manager *dqm,
395 struct qcm_process_device *qpd)
396 {
397 struct device_process_node *n;
398
399 BUG_ON(!dqm || !qpd);
400
401 pr_debug("kfd: In func %s\n", __func__);
402
403 n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
404 if (!n)
405 return -ENOMEM;
406
407 n->qpd = qpd;
408
409 mutex_lock(&dqm->lock);
410 list_add(&n->list, &dqm->queues);
411
412 init_process_memory(dqm, qpd);
413 dqm->processes_count++;
414
415 mutex_unlock(&dqm->lock);
416
417 return 0;
418 }
419
420 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
421 struct qcm_process_device *qpd)
422 {
423 int retval;
424 struct device_process_node *cur, *next;
425
426 BUG_ON(!dqm || !qpd);
427
428 BUG_ON(!list_empty(&qpd->queues_list));
429
430 pr_debug("kfd: In func %s\n", __func__);
431
432 retval = 0;
433 mutex_lock(&dqm->lock);
434
435 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
436 if (qpd == cur->qpd) {
437 list_del(&cur->list);
438 kfree(cur);
439 dqm->processes_count--;
440 goto out;
441 }
442 }
443 /* qpd not found in dqm list */
444 retval = 1;
445 out:
446 mutex_unlock(&dqm->lock);
447 return retval;
448 }
449
450 static int
451 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
452 unsigned int vmid)
453 {
454 uint32_t pasid_mapping;
455
456 pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
457 ATC_VMID_PASID_MAPPING_VALID;
458 return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
459 vmid);
460 }
461
462 static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble)
463 {
464 /* In 64-bit mode, we can only control the top 3 bits of the LDS,
465 * scratch and GPUVM apertures.
466 * The hardware fills in the remaining 59 bits according to the
467 * following pattern:
468 * LDS: X0000000'00000000 - X0000001'00000000 (4GB)
469 * Scratch: X0000001'00000000 - X0000002'00000000 (4GB)
470 * GPUVM: Y0010000'00000000 - Y0020000'00000000 (1TB)
471 *
472 * (where X/Y is the configurable nybble with the low-bit 0)
473 *
474 * LDS and scratch will have the same top nybble programmed in the
475 * top 3 bits of SH_MEM_BASES.PRIVATE_BASE.
476 * GPUVM can have a different top nybble programmed in the
477 * top 3 bits of SH_MEM_BASES.SHARED_BASE.
478 * We don't bother to support different top nybbles
479 * for LDS/Scratch and GPUVM.
480 */
481
482 BUG_ON((top_address_nybble & 1) || top_address_nybble > 0xE ||
483 top_address_nybble == 0);
484
485 return PRIVATE_BASE(top_address_nybble << 12) |
486 SHARED_BASE(top_address_nybble << 12);
487 }
488
489 static int init_memory(struct device_queue_manager *dqm)
490 {
491 int i, retval;
492
493 for (i = 8; i < 16; i++)
494 set_pasid_vmid_mapping(dqm, 0, i);
495
496 retval = kfd2kgd->init_memory(dqm->dev->kgd);
497 if (retval == 0)
498 is_mem_initialized = true;
499 return retval;
500 }
501
502
503 static int init_pipelines(struct device_queue_manager *dqm,
504 unsigned int pipes_num, unsigned int first_pipe)
505 {
506 void *hpdptr;
507 struct mqd_manager *mqd;
508 unsigned int i, err, inx;
509 uint64_t pipe_hpd_addr;
510
511 BUG_ON(!dqm || !dqm->dev);
512
513 pr_debug("kfd: In func %s\n", __func__);
514
515 /*
516 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
517 * The driver never accesses this memory after zeroing it.
518 * It doesn't even have to be saved/restored on suspend/resume
519 * because it contains no data when there are no active queues.
520 */
521
522 err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
523 &dqm->pipeline_mem);
524
525 if (err) {
526 pr_err("kfd: error allocate vidmem num pipes: %d\n",
527 pipes_num);
528 return -ENOMEM;
529 }
530
531 hpdptr = dqm->pipeline_mem->cpu_ptr;
532 dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
533
534 memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
535
536 mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
537 if (mqd == NULL) {
538 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
539 return -ENOMEM;
540 }
541
542 for (i = 0; i < pipes_num; i++) {
543 inx = i + first_pipe;
544 pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
545 pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
546 /* = log2(bytes/4)-1 */
547 kfd2kgd->init_pipeline(dqm->dev->kgd, i,
548 CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
549 }
550
551 return 0;
552 }
553
554 static int init_scheduler(struct device_queue_manager *dqm)
555 {
556 int retval;
557
558 BUG_ON(!dqm);
559
560 pr_debug("kfd: In %s\n", __func__);
561
562 retval = init_pipelines(dqm, get_pipes_num(dqm), KFD_DQM_FIRST_PIPE);
563 if (retval != 0)
564 return retval;
565
566 retval = init_memory(dqm);
567
568 return retval;
569 }
570
571 static int initialize_nocpsch(struct device_queue_manager *dqm)
572 {
573 int i;
574
575 BUG_ON(!dqm);
576
577 pr_debug("kfd: In func %s num of pipes: %d\n",
578 __func__, get_pipes_num(dqm));
579
580 mutex_init(&dqm->lock);
581 INIT_LIST_HEAD(&dqm->queues);
582 dqm->queue_count = dqm->next_pipe_to_allocate = 0;
583 dqm->sdma_queue_count = 0;
584 dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
585 sizeof(unsigned int), GFP_KERNEL);
586 if (!dqm->allocated_queues) {
587 mutex_destroy(&dqm->lock);
588 return -ENOMEM;
589 }
590
591 for (i = 0; i < get_pipes_num(dqm); i++)
592 dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
593
594 dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
595 dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
596
597 init_scheduler(dqm);
598 return 0;
599 }
600
601 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
602 {
603 int i;
604
605 BUG_ON(!dqm);
606
607 BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
608
609 kfree(dqm->allocated_queues);
610 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
611 kfree(dqm->mqds[i]);
612 mutex_destroy(&dqm->lock);
613 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
614 }
615
616 static int start_nocpsch(struct device_queue_manager *dqm)
617 {
618 return 0;
619 }
620
621 static int stop_nocpsch(struct device_queue_manager *dqm)
622 {
623 return 0;
624 }
625
626 static int allocate_sdma_queue(struct device_queue_manager *dqm,
627 unsigned int *sdma_queue_id)
628 {
629 int bit;
630
631 if (dqm->sdma_bitmap == 0)
632 return -ENOMEM;
633
634 bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
635 CIK_SDMA_QUEUES);
636
637 clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
638 *sdma_queue_id = bit;
639
640 return 0;
641 }
642
643 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
644 unsigned int sdma_queue_id)
645 {
646 if (sdma_queue_id < 0 || sdma_queue_id >= CIK_SDMA_QUEUES)
647 return;
648 set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
649 }
650
651 static void init_sdma_vm(struct device_queue_manager *dqm, struct queue *q,
652 struct qcm_process_device *qpd)
653 {
654 uint32_t value = SDMA_ATC;
655
656 if (q->process->is_32bit_user_mode)
657 value |= SDMA_VA_PTR32 | get_sh_mem_bases_32(qpd_to_pdd(qpd));
658 else
659 value |= SDMA_VA_SHARED_BASE(get_sh_mem_bases_nybble_64(
660 qpd_to_pdd(qpd)));
661 q->properties.sdma_vm_addr = value;
662 }
663
664 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
665 struct queue *q,
666 struct qcm_process_device *qpd)
667 {
668 struct mqd_manager *mqd;
669 int retval;
670
671 mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_SDMA);
672 if (!mqd)
673 return -ENOMEM;
674
675 retval = allocate_sdma_queue(dqm, &q->sdma_id);
676 if (retval != 0)
677 return retval;
678
679 q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
680 q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
681
682 pr_debug("kfd: sdma id is: %d\n", q->sdma_id);
683 pr_debug(" sdma queue id: %d\n", q->properties.sdma_queue_id);
684 pr_debug(" sdma engine id: %d\n", q->properties.sdma_engine_id);
685
686 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
687 &q->gart_mqd_addr, &q->properties);
688 if (retval != 0) {
689 deallocate_sdma_queue(dqm, q->sdma_id);
690 return retval;
691 }
692
693 init_sdma_vm(dqm, q, qpd);
694 return 0;
695 }
696
697 /*
698 * Device Queue Manager implementation for cp scheduler
699 */
700
701 static int set_sched_resources(struct device_queue_manager *dqm)
702 {
703 struct scheduling_resources res;
704 unsigned int queue_num, queue_mask;
705
706 BUG_ON(!dqm);
707
708 pr_debug("kfd: In func %s\n", __func__);
709
710 queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
711 queue_mask = (1 << queue_num) - 1;
712 res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
713 res.vmid_mask <<= KFD_VMID_START_OFFSET;
714 res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
715 res.gws_mask = res.oac_mask = res.gds_heap_base =
716 res.gds_heap_size = 0;
717
718 pr_debug("kfd: scheduling resources:\n"
719 " vmid mask: 0x%8X\n"
720 " queue mask: 0x%8llX\n",
721 res.vmid_mask, res.queue_mask);
722
723 return pm_send_set_resources(&dqm->packets, &res);
724 }
725
726 static int initialize_cpsch(struct device_queue_manager *dqm)
727 {
728 int retval;
729
730 BUG_ON(!dqm);
731
732 pr_debug("kfd: In func %s num of pipes: %d\n",
733 __func__, get_pipes_num_cpsch());
734
735 mutex_init(&dqm->lock);
736 INIT_LIST_HEAD(&dqm->queues);
737 dqm->queue_count = dqm->processes_count = 0;
738 dqm->sdma_queue_count = 0;
739 dqm->active_runlist = false;
740 retval = init_pipelines(dqm, get_pipes_num(dqm), 0);
741 if (retval != 0)
742 goto fail_init_pipelines;
743
744 return 0;
745
746 fail_init_pipelines:
747 mutex_destroy(&dqm->lock);
748 return retval;
749 }
750
751 static int start_cpsch(struct device_queue_manager *dqm)
752 {
753 struct device_process_node *node;
754 int retval;
755
756 BUG_ON(!dqm);
757
758 retval = 0;
759
760 retval = pm_init(&dqm->packets, dqm);
761 if (retval != 0)
762 goto fail_packet_manager_init;
763
764 retval = set_sched_resources(dqm);
765 if (retval != 0)
766 goto fail_set_sched_resources;
767
768 pr_debug("kfd: allocating fence memory\n");
769
770 /* allocate fence memory on the gart */
771 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
772 &dqm->fence_mem);
773
774 if (retval != 0)
775 goto fail_allocate_vidmem;
776
777 dqm->fence_addr = dqm->fence_mem->cpu_ptr;
778 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
779 list_for_each_entry(node, &dqm->queues, list)
780 if (node->qpd->pqm->process && dqm->dev)
781 kfd_bind_process_to_device(dqm->dev,
782 node->qpd->pqm->process);
783
784 execute_queues_cpsch(dqm, true);
785
786 return 0;
787 fail_allocate_vidmem:
788 fail_set_sched_resources:
789 pm_uninit(&dqm->packets);
790 fail_packet_manager_init:
791 return retval;
792 }
793
794 static int stop_cpsch(struct device_queue_manager *dqm)
795 {
796 struct device_process_node *node;
797 struct kfd_process_device *pdd;
798
799 BUG_ON(!dqm);
800
801 destroy_queues_cpsch(dqm, true);
802
803 list_for_each_entry(node, &dqm->queues, list) {
804 pdd = qpd_to_pdd(node->qpd);
805 pdd->bound = false;
806 }
807 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
808 pm_uninit(&dqm->packets);
809
810 return 0;
811 }
812
813 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
814 struct kernel_queue *kq,
815 struct qcm_process_device *qpd)
816 {
817 BUG_ON(!dqm || !kq || !qpd);
818
819 pr_debug("kfd: In func %s\n", __func__);
820
821 mutex_lock(&dqm->lock);
822 list_add(&kq->list, &qpd->priv_queue_list);
823 dqm->queue_count++;
824 qpd->is_debug = true;
825 execute_queues_cpsch(dqm, false);
826 mutex_unlock(&dqm->lock);
827
828 return 0;
829 }
830
831 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
832 struct kernel_queue *kq,
833 struct qcm_process_device *qpd)
834 {
835 BUG_ON(!dqm || !kq);
836
837 pr_debug("kfd: In %s\n", __func__);
838
839 mutex_lock(&dqm->lock);
840 destroy_queues_cpsch(dqm, false);
841 list_del(&kq->list);
842 dqm->queue_count--;
843 qpd->is_debug = false;
844 execute_queues_cpsch(dqm, false);
845 mutex_unlock(&dqm->lock);
846 }
847
848 static void select_sdma_engine_id(struct queue *q)
849 {
850 static int sdma_id;
851
852 q->sdma_id = sdma_id;
853 sdma_id = (sdma_id + 1) % 2;
854 }
855
856 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
857 struct qcm_process_device *qpd, int *allocate_vmid)
858 {
859 int retval;
860 struct mqd_manager *mqd;
861
862 BUG_ON(!dqm || !q || !qpd);
863
864 retval = 0;
865
866 if (allocate_vmid)
867 *allocate_vmid = 0;
868
869 mutex_lock(&dqm->lock);
870
871 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
872 select_sdma_engine_id(q);
873
874 mqd = dqm->get_mqd_manager(dqm,
875 get_mqd_type_from_queue_type(q->properties.type));
876
877 if (mqd == NULL) {
878 mutex_unlock(&dqm->lock);
879 return -ENOMEM;
880 }
881
882 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
883 &q->gart_mqd_addr, &q->properties);
884 if (retval != 0)
885 goto out;
886
887 list_add(&q->list, &qpd->queues_list);
888 if (q->properties.is_active) {
889 dqm->queue_count++;
890 retval = execute_queues_cpsch(dqm, false);
891 }
892
893 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
894 dqm->sdma_queue_count++;
895
896 out:
897 mutex_unlock(&dqm->lock);
898 return retval;
899 }
900
901 static int fence_wait_timeout(unsigned int *fence_addr,
902 unsigned int fence_value,
903 unsigned long timeout)
904 {
905 BUG_ON(!fence_addr);
906 timeout += jiffies;
907
908 while (*fence_addr != fence_value) {
909 if (time_after(jiffies, timeout)) {
910 pr_err("kfd: qcm fence wait loop timeout expired\n");
911 return -ETIME;
912 }
913 cpu_relax();
914 }
915
916 return 0;
917 }
918
919 static int destroy_sdma_queues(struct device_queue_manager *dqm,
920 unsigned int sdma_engine)
921 {
922 return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
923 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false,
924 sdma_engine);
925 }
926
927 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
928 {
929 int retval;
930
931 BUG_ON(!dqm);
932
933 retval = 0;
934
935 if (lock)
936 mutex_lock(&dqm->lock);
937 if (dqm->active_runlist == false)
938 goto out;
939
940 pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
941 dqm->sdma_queue_count);
942
943 if (dqm->sdma_queue_count > 0) {
944 destroy_sdma_queues(dqm, 0);
945 destroy_sdma_queues(dqm, 1);
946 }
947
948 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
949 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
950 if (retval != 0)
951 goto out;
952
953 *dqm->fence_addr = KFD_FENCE_INIT;
954 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
955 KFD_FENCE_COMPLETED);
956 /* should be timed out */
957 fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
958 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
959 pm_release_ib(&dqm->packets);
960 dqm->active_runlist = false;
961
962 out:
963 if (lock)
964 mutex_unlock(&dqm->lock);
965 return retval;
966 }
967
968 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
969 {
970 int retval;
971
972 BUG_ON(!dqm);
973
974 if (lock)
975 mutex_lock(&dqm->lock);
976
977 retval = destroy_queues_cpsch(dqm, false);
978 if (retval != 0) {
979 pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
980 goto out;
981 }
982
983 if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
984 retval = 0;
985 goto out;
986 }
987
988 if (dqm->active_runlist) {
989 retval = 0;
990 goto out;
991 }
992
993 retval = pm_send_runlist(&dqm->packets, &dqm->queues);
994 if (retval != 0) {
995 pr_err("kfd: failed to execute runlist");
996 goto out;
997 }
998 dqm->active_runlist = true;
999
1000 out:
1001 if (lock)
1002 mutex_unlock(&dqm->lock);
1003 return retval;
1004 }
1005
1006 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1007 struct qcm_process_device *qpd,
1008 struct queue *q)
1009 {
1010 int retval;
1011 struct mqd_manager *mqd;
1012
1013 BUG_ON(!dqm || !qpd || !q);
1014
1015 retval = 0;
1016
1017 /* remove queue from list to prevent rescheduling after preemption */
1018 mutex_lock(&dqm->lock);
1019 mqd = dqm->get_mqd_manager(dqm,
1020 get_mqd_type_from_queue_type(q->properties.type));
1021 if (!mqd) {
1022 retval = -ENOMEM;
1023 goto failed;
1024 }
1025
1026 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1027 dqm->sdma_queue_count--;
1028
1029 list_del(&q->list);
1030 dqm->queue_count--;
1031
1032 execute_queues_cpsch(dqm, false);
1033
1034 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1035
1036 mutex_unlock(&dqm->lock);
1037
1038 return 0;
1039
1040 failed:
1041 mutex_unlock(&dqm->lock);
1042 return retval;
1043 }
1044
1045 /*
1046 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1047 * stay in user mode.
1048 */
1049 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1050 /* APE1 limit is inclusive and 64K aligned. */
1051 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1052
1053 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1054 struct qcm_process_device *qpd,
1055 enum cache_policy default_policy,
1056 enum cache_policy alternate_policy,
1057 void __user *alternate_aperture_base,
1058 uint64_t alternate_aperture_size)
1059 {
1060 uint32_t default_mtype;
1061 uint32_t ape1_mtype;
1062
1063 pr_debug("kfd: In func %s\n", __func__);
1064
1065 mutex_lock(&dqm->lock);
1066
1067 if (alternate_aperture_size == 0) {
1068 /* base > limit disables APE1 */
1069 qpd->sh_mem_ape1_base = 1;
1070 qpd->sh_mem_ape1_limit = 0;
1071 } else {
1072 /*
1073 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1074 * SH_MEM_APE1_BASE[31:0], 0x0000 }
1075 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1076 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1077 * Verify that the base and size parameters can be
1078 * represented in this format and convert them.
1079 * Additionally restrict APE1 to user-mode addresses.
1080 */
1081
1082 uint64_t base = (uintptr_t)alternate_aperture_base;
1083 uint64_t limit = base + alternate_aperture_size - 1;
1084
1085 if (limit <= base)
1086 goto out;
1087
1088 if ((base & APE1_FIXED_BITS_MASK) != 0)
1089 goto out;
1090
1091 if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
1092 goto out;
1093
1094 qpd->sh_mem_ape1_base = base >> 16;
1095 qpd->sh_mem_ape1_limit = limit >> 16;
1096 }
1097
1098 default_mtype = (default_policy == cache_policy_coherent) ?
1099 MTYPE_NONCACHED :
1100 MTYPE_CACHED;
1101
1102 ape1_mtype = (alternate_policy == cache_policy_coherent) ?
1103 MTYPE_NONCACHED :
1104 MTYPE_CACHED;
1105
1106 qpd->sh_mem_config = (qpd->sh_mem_config & PTR32)
1107 | ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED)
1108 | DEFAULT_MTYPE(default_mtype)
1109 | APE1_MTYPE(ape1_mtype);
1110
1111 if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1112 program_sh_mem_settings(dqm, qpd);
1113
1114 pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1115 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1116 qpd->sh_mem_ape1_limit);
1117
1118 mutex_unlock(&dqm->lock);
1119 return true;
1120
1121 out:
1122 mutex_unlock(&dqm->lock);
1123 return false;
1124 }
1125
1126 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1127 {
1128 struct device_queue_manager *dqm;
1129
1130 BUG_ON(!dev);
1131
1132 dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1133 if (!dqm)
1134 return NULL;
1135
1136 dqm->dev = dev;
1137 switch (sched_policy) {
1138 case KFD_SCHED_POLICY_HWS:
1139 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1140 /* initialize dqm for cp scheduling */
1141 dqm->create_queue = create_queue_cpsch;
1142 dqm->initialize = initialize_cpsch;
1143 dqm->start = start_cpsch;
1144 dqm->stop = stop_cpsch;
1145 dqm->destroy_queue = destroy_queue_cpsch;
1146 dqm->update_queue = update_queue;
1147 dqm->get_mqd_manager = get_mqd_manager_nocpsch;
1148 dqm->register_process = register_process_nocpsch;
1149 dqm->unregister_process = unregister_process_nocpsch;
1150 dqm->uninitialize = uninitialize_nocpsch;
1151 dqm->create_kernel_queue = create_kernel_queue_cpsch;
1152 dqm->destroy_kernel_queue = destroy_kernel_queue_cpsch;
1153 dqm->set_cache_memory_policy = set_cache_memory_policy;
1154 break;
1155 case KFD_SCHED_POLICY_NO_HWS:
1156 /* initialize dqm for no cp scheduling */
1157 dqm->start = start_nocpsch;
1158 dqm->stop = stop_nocpsch;
1159 dqm->create_queue = create_queue_nocpsch;
1160 dqm->destroy_queue = destroy_queue_nocpsch;
1161 dqm->update_queue = update_queue;
1162 dqm->get_mqd_manager = get_mqd_manager_nocpsch;
1163 dqm->register_process = register_process_nocpsch;
1164 dqm->unregister_process = unregister_process_nocpsch;
1165 dqm->initialize = initialize_nocpsch;
1166 dqm->uninitialize = uninitialize_nocpsch;
1167 dqm->set_cache_memory_policy = set_cache_memory_policy;
1168 break;
1169 default:
1170 BUG();
1171 break;
1172 }
1173
1174 if (dqm->initialize(dqm) != 0) {
1175 kfree(dqm);
1176 return NULL;
1177 }
1178
1179 return dqm;
1180 }
1181
1182 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1183 {
1184 BUG_ON(!dqm);
1185
1186 dqm->uninitialize(dqm);
1187 kfree(dqm);
1188 }
1189
This page took 0.075156 seconds and 5 git commands to generate.