Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device_queue_manager.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include <linux/sched.h>
30 #include "kfd_priv.h"
31 #include "kfd_device_queue_manager.h"
32 #include "kfd_mqd_manager.h"
33 #include "cik_regs.h"
34 #include "kfd_kernel_queue.h"
35
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39
40 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
41 unsigned int pasid, unsigned int vmid);
42
43 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
44 struct queue *q,
45 struct qcm_process_device *qpd);
46
47 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
49
50 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
51 struct queue *q,
52 struct qcm_process_device *qpd);
53
54 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55 unsigned int sdma_queue_id);
56
57 static inline
58 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
59 {
60 if (type == KFD_QUEUE_TYPE_SDMA)
61 return KFD_MQD_TYPE_SDMA;
62 return KFD_MQD_TYPE_CP;
63 }
64
65 unsigned int get_first_pipe(struct device_queue_manager *dqm)
66 {
67 BUG_ON(!dqm || !dqm->dev);
68 return dqm->dev->shared_resources.first_compute_pipe;
69 }
70
71 unsigned int get_pipes_num(struct device_queue_manager *dqm)
72 {
73 BUG_ON(!dqm || !dqm->dev);
74 return dqm->dev->shared_resources.compute_pipe_count;
75 }
76
77 static inline unsigned int get_pipes_num_cpsch(void)
78 {
79 return PIPE_PER_ME_CP_SCHEDULING;
80 }
81
82 void program_sh_mem_settings(struct device_queue_manager *dqm,
83 struct qcm_process_device *qpd)
84 {
85 return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
86 qpd->sh_mem_config,
87 qpd->sh_mem_ape1_base,
88 qpd->sh_mem_ape1_limit,
89 qpd->sh_mem_bases);
90 }
91
92 static int allocate_vmid(struct device_queue_manager *dqm,
93 struct qcm_process_device *qpd,
94 struct queue *q)
95 {
96 int bit, allocated_vmid;
97
98 if (dqm->vmid_bitmap == 0)
99 return -ENOMEM;
100
101 bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
102 clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
103
104 /* Kaveri kfd vmid's starts from vmid 8 */
105 allocated_vmid = bit + KFD_VMID_START_OFFSET;
106 pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
107 qpd->vmid = allocated_vmid;
108 q->properties.vmid = allocated_vmid;
109
110 set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
111 program_sh_mem_settings(dqm, qpd);
112
113 return 0;
114 }
115
116 static void deallocate_vmid(struct device_queue_manager *dqm,
117 struct qcm_process_device *qpd,
118 struct queue *q)
119 {
120 int bit = qpd->vmid - KFD_VMID_START_OFFSET;
121
122 /* Release the vmid mapping */
123 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
124
125 set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
126 qpd->vmid = 0;
127 q->properties.vmid = 0;
128 }
129
130 static int create_queue_nocpsch(struct device_queue_manager *dqm,
131 struct queue *q,
132 struct qcm_process_device *qpd,
133 int *allocated_vmid)
134 {
135 int retval;
136
137 BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
138
139 pr_debug("kfd: In func %s\n", __func__);
140 print_queue(q);
141
142 mutex_lock(&dqm->lock);
143
144 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
145 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
146 dqm->total_queue_count);
147 mutex_unlock(&dqm->lock);
148 return -EPERM;
149 }
150
151 if (list_empty(&qpd->queues_list)) {
152 retval = allocate_vmid(dqm, qpd, q);
153 if (retval != 0) {
154 mutex_unlock(&dqm->lock);
155 return retval;
156 }
157 }
158 *allocated_vmid = qpd->vmid;
159 q->properties.vmid = qpd->vmid;
160
161 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
162 retval = create_compute_queue_nocpsch(dqm, q, qpd);
163 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
164 retval = create_sdma_queue_nocpsch(dqm, q, qpd);
165
166 if (retval != 0) {
167 if (list_empty(&qpd->queues_list)) {
168 deallocate_vmid(dqm, qpd, q);
169 *allocated_vmid = 0;
170 }
171 mutex_unlock(&dqm->lock);
172 return retval;
173 }
174
175 list_add(&q->list, &qpd->queues_list);
176 if (q->properties.is_active)
177 dqm->queue_count++;
178
179 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
180 dqm->sdma_queue_count++;
181
182 /*
183 * Unconditionally increment this counter, regardless of the queue's
184 * type or whether the queue is active.
185 */
186 dqm->total_queue_count++;
187 pr_debug("Total of %d queues are accountable so far\n",
188 dqm->total_queue_count);
189
190 mutex_unlock(&dqm->lock);
191 return 0;
192 }
193
194 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
195 {
196 bool set;
197 int pipe, bit, i;
198
199 set = false;
200
201 for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
202 pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
203 if (dqm->allocated_queues[pipe] != 0) {
204 bit = find_first_bit(
205 (unsigned long *)&dqm->allocated_queues[pipe],
206 QUEUES_PER_PIPE);
207
208 clear_bit(bit,
209 (unsigned long *)&dqm->allocated_queues[pipe]);
210 q->pipe = pipe;
211 q->queue = bit;
212 set = true;
213 break;
214 }
215 }
216
217 if (set == false)
218 return -EBUSY;
219
220 pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
221 __func__, q->pipe, q->queue);
222 /* horizontal hqd allocation */
223 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
224
225 return 0;
226 }
227
228 static inline void deallocate_hqd(struct device_queue_manager *dqm,
229 struct queue *q)
230 {
231 set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
232 }
233
234 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
235 struct queue *q,
236 struct qcm_process_device *qpd)
237 {
238 int retval;
239 struct mqd_manager *mqd;
240
241 BUG_ON(!dqm || !q || !qpd);
242
243 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
244 if (mqd == NULL)
245 return -ENOMEM;
246
247 retval = allocate_hqd(dqm, q);
248 if (retval != 0)
249 return retval;
250
251 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
252 &q->gart_mqd_addr, &q->properties);
253 if (retval != 0) {
254 deallocate_hqd(dqm, q);
255 return retval;
256 }
257
258 pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
259 q->pipe,
260 q->queue);
261
262 retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
263 q->queue, (uint32_t __user *) q->properties.write_ptr);
264 if (retval != 0) {
265 deallocate_hqd(dqm, q);
266 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
267 return retval;
268 }
269
270 return 0;
271 }
272
273 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
274 struct qcm_process_device *qpd,
275 struct queue *q)
276 {
277 int retval;
278 struct mqd_manager *mqd;
279
280 BUG_ON(!dqm || !q || !q->mqd || !qpd);
281
282 retval = 0;
283
284 pr_debug("kfd: In Func %s\n", __func__);
285
286 mutex_lock(&dqm->lock);
287
288 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
289 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
290 if (mqd == NULL) {
291 retval = -ENOMEM;
292 goto out;
293 }
294 deallocate_hqd(dqm, q);
295 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
296 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
297 if (mqd == NULL) {
298 retval = -ENOMEM;
299 goto out;
300 }
301 dqm->sdma_queue_count--;
302 deallocate_sdma_queue(dqm, q->sdma_id);
303 } else {
304 pr_debug("q->properties.type is invalid (%d)\n",
305 q->properties.type);
306 retval = -EINVAL;
307 goto out;
308 }
309
310 retval = mqd->destroy_mqd(mqd, q->mqd,
311 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
312 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
313 q->pipe, q->queue);
314
315 if (retval != 0)
316 goto out;
317
318 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
319
320 list_del(&q->list);
321 if (list_empty(&qpd->queues_list))
322 deallocate_vmid(dqm, qpd, q);
323 if (q->properties.is_active)
324 dqm->queue_count--;
325
326 /*
327 * Unconditionally decrement this counter, regardless of the queue's
328 * type
329 */
330 dqm->total_queue_count--;
331 pr_debug("Total of %d queues are accountable so far\n",
332 dqm->total_queue_count);
333
334 out:
335 mutex_unlock(&dqm->lock);
336 return retval;
337 }
338
339 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
340 {
341 int retval;
342 struct mqd_manager *mqd;
343 bool prev_active = false;
344
345 BUG_ON(!dqm || !q || !q->mqd);
346
347 mutex_lock(&dqm->lock);
348 mqd = dqm->ops.get_mqd_manager(dqm,
349 get_mqd_type_from_queue_type(q->properties.type));
350 if (mqd == NULL) {
351 mutex_unlock(&dqm->lock);
352 return -ENOMEM;
353 }
354
355 if (q->properties.is_active == true)
356 prev_active = true;
357
358 /*
359 *
360 * check active state vs. the previous state
361 * and modify counter accordingly
362 */
363 retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
364 if ((q->properties.is_active == true) && (prev_active == false))
365 dqm->queue_count++;
366 else if ((q->properties.is_active == false) && (prev_active == true))
367 dqm->queue_count--;
368
369 if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
370 retval = execute_queues_cpsch(dqm, false);
371
372 mutex_unlock(&dqm->lock);
373 return retval;
374 }
375
376 static struct mqd_manager *get_mqd_manager_nocpsch(
377 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
378 {
379 struct mqd_manager *mqd;
380
381 BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
382
383 pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
384
385 mqd = dqm->mqds[type];
386 if (!mqd) {
387 mqd = mqd_manager_init(type, dqm->dev);
388 if (mqd == NULL)
389 pr_err("kfd: mqd manager is NULL");
390 dqm->mqds[type] = mqd;
391 }
392
393 return mqd;
394 }
395
396 static int register_process_nocpsch(struct device_queue_manager *dqm,
397 struct qcm_process_device *qpd)
398 {
399 struct device_process_node *n;
400 int retval;
401
402 BUG_ON(!dqm || !qpd);
403
404 pr_debug("kfd: In func %s\n", __func__);
405
406 n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
407 if (!n)
408 return -ENOMEM;
409
410 n->qpd = qpd;
411
412 mutex_lock(&dqm->lock);
413 list_add(&n->list, &dqm->queues);
414
415 retval = dqm->ops_asic_specific.register_process(dqm, qpd);
416
417 dqm->processes_count++;
418
419 mutex_unlock(&dqm->lock);
420
421 return retval;
422 }
423
424 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
425 struct qcm_process_device *qpd)
426 {
427 int retval;
428 struct device_process_node *cur, *next;
429
430 BUG_ON(!dqm || !qpd);
431
432 BUG_ON(!list_empty(&qpd->queues_list));
433
434 pr_debug("kfd: In func %s\n", __func__);
435
436 retval = 0;
437 mutex_lock(&dqm->lock);
438
439 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
440 if (qpd == cur->qpd) {
441 list_del(&cur->list);
442 kfree(cur);
443 dqm->processes_count--;
444 goto out;
445 }
446 }
447 /* qpd not found in dqm list */
448 retval = 1;
449 out:
450 mutex_unlock(&dqm->lock);
451 return retval;
452 }
453
454 static int
455 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
456 unsigned int vmid)
457 {
458 uint32_t pasid_mapping;
459
460 pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
461 ATC_VMID_PASID_MAPPING_VALID;
462 return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
463 vmid);
464 }
465
466 int init_pipelines(struct device_queue_manager *dqm,
467 unsigned int pipes_num, unsigned int first_pipe)
468 {
469 void *hpdptr;
470 struct mqd_manager *mqd;
471 unsigned int i, err, inx;
472 uint64_t pipe_hpd_addr;
473
474 BUG_ON(!dqm || !dqm->dev);
475
476 pr_debug("kfd: In func %s\n", __func__);
477
478 /*
479 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
480 * The driver never accesses this memory after zeroing it.
481 * It doesn't even have to be saved/restored on suspend/resume
482 * because it contains no data when there are no active queues.
483 */
484
485 err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
486 &dqm->pipeline_mem);
487
488 if (err) {
489 pr_err("kfd: error allocate vidmem num pipes: %d\n",
490 pipes_num);
491 return -ENOMEM;
492 }
493
494 hpdptr = dqm->pipeline_mem->cpu_ptr;
495 dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
496
497 memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
498
499 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
500 if (mqd == NULL) {
501 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
502 return -ENOMEM;
503 }
504
505 for (i = 0; i < pipes_num; i++) {
506 inx = i + first_pipe;
507 /*
508 * HPD buffer on GTT is allocated by amdkfd, no need to waste
509 * space in GTT for pipelines we don't initialize
510 */
511 pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
512 pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
513 /* = log2(bytes/4)-1 */
514 kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
515 CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
516 }
517
518 return 0;
519 }
520
521 static int init_scheduler(struct device_queue_manager *dqm)
522 {
523 int retval;
524
525 BUG_ON(!dqm);
526
527 pr_debug("kfd: In %s\n", __func__);
528
529 retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
530 return retval;
531 }
532
533 static int initialize_nocpsch(struct device_queue_manager *dqm)
534 {
535 int i;
536
537 BUG_ON(!dqm);
538
539 pr_debug("kfd: In func %s num of pipes: %d\n",
540 __func__, get_pipes_num(dqm));
541
542 mutex_init(&dqm->lock);
543 INIT_LIST_HEAD(&dqm->queues);
544 dqm->queue_count = dqm->next_pipe_to_allocate = 0;
545 dqm->sdma_queue_count = 0;
546 dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
547 sizeof(unsigned int), GFP_KERNEL);
548 if (!dqm->allocated_queues) {
549 mutex_destroy(&dqm->lock);
550 return -ENOMEM;
551 }
552
553 for (i = 0; i < get_pipes_num(dqm); i++)
554 dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
555
556 dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
557 dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
558
559 init_scheduler(dqm);
560 return 0;
561 }
562
563 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
564 {
565 int i;
566
567 BUG_ON(!dqm);
568
569 BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
570
571 kfree(dqm->allocated_queues);
572 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
573 kfree(dqm->mqds[i]);
574 mutex_destroy(&dqm->lock);
575 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
576 }
577
578 static int start_nocpsch(struct device_queue_manager *dqm)
579 {
580 return 0;
581 }
582
583 static int stop_nocpsch(struct device_queue_manager *dqm)
584 {
585 return 0;
586 }
587
588 static int allocate_sdma_queue(struct device_queue_manager *dqm,
589 unsigned int *sdma_queue_id)
590 {
591 int bit;
592
593 if (dqm->sdma_bitmap == 0)
594 return -ENOMEM;
595
596 bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
597 CIK_SDMA_QUEUES);
598
599 clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
600 *sdma_queue_id = bit;
601
602 return 0;
603 }
604
605 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
606 unsigned int sdma_queue_id)
607 {
608 if (sdma_queue_id >= CIK_SDMA_QUEUES)
609 return;
610 set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
611 }
612
613 static void init_sdma_vm(struct device_queue_manager *dqm, struct queue *q,
614 struct qcm_process_device *qpd)
615 {
616 uint32_t value = SDMA_ATC;
617
618 if (q->process->is_32bit_user_mode)
619 value |= SDMA_VA_PTR32 | get_sh_mem_bases_32(qpd_to_pdd(qpd));
620 else
621 value |= SDMA_VA_SHARED_BASE(get_sh_mem_bases_nybble_64(
622 qpd_to_pdd(qpd)));
623 q->properties.sdma_vm_addr = value;
624 }
625
626 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
627 struct queue *q,
628 struct qcm_process_device *qpd)
629 {
630 struct mqd_manager *mqd;
631 int retval;
632
633 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
634 if (!mqd)
635 return -ENOMEM;
636
637 retval = allocate_sdma_queue(dqm, &q->sdma_id);
638 if (retval != 0)
639 return retval;
640
641 q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
642 q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
643
644 pr_debug("kfd: sdma id is: %d\n", q->sdma_id);
645 pr_debug(" sdma queue id: %d\n", q->properties.sdma_queue_id);
646 pr_debug(" sdma engine id: %d\n", q->properties.sdma_engine_id);
647
648 init_sdma_vm(dqm, q, qpd);
649 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
650 &q->gart_mqd_addr, &q->properties);
651 if (retval != 0) {
652 deallocate_sdma_queue(dqm, q->sdma_id);
653 return retval;
654 }
655
656 retval = mqd->load_mqd(mqd, q->mqd, 0,
657 0, NULL);
658 if (retval != 0) {
659 deallocate_sdma_queue(dqm, q->sdma_id);
660 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
661 return retval;
662 }
663
664 return 0;
665 }
666
667 /*
668 * Device Queue Manager implementation for cp scheduler
669 */
670
671 static int set_sched_resources(struct device_queue_manager *dqm)
672 {
673 struct scheduling_resources res;
674 unsigned int queue_num, queue_mask;
675
676 BUG_ON(!dqm);
677
678 pr_debug("kfd: In func %s\n", __func__);
679
680 queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
681 queue_mask = (1 << queue_num) - 1;
682 res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
683 res.vmid_mask <<= KFD_VMID_START_OFFSET;
684 res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
685 res.gws_mask = res.oac_mask = res.gds_heap_base =
686 res.gds_heap_size = 0;
687
688 pr_debug("kfd: scheduling resources:\n"
689 " vmid mask: 0x%8X\n"
690 " queue mask: 0x%8llX\n",
691 res.vmid_mask, res.queue_mask);
692
693 return pm_send_set_resources(&dqm->packets, &res);
694 }
695
696 static int initialize_cpsch(struct device_queue_manager *dqm)
697 {
698 int retval;
699
700 BUG_ON(!dqm);
701
702 pr_debug("kfd: In func %s num of pipes: %d\n",
703 __func__, get_pipes_num_cpsch());
704
705 mutex_init(&dqm->lock);
706 INIT_LIST_HEAD(&dqm->queues);
707 dqm->queue_count = dqm->processes_count = 0;
708 dqm->sdma_queue_count = 0;
709 dqm->active_runlist = false;
710 retval = dqm->ops_asic_specific.initialize(dqm);
711 if (retval != 0)
712 goto fail_init_pipelines;
713
714 return 0;
715
716 fail_init_pipelines:
717 mutex_destroy(&dqm->lock);
718 return retval;
719 }
720
721 static int start_cpsch(struct device_queue_manager *dqm)
722 {
723 struct device_process_node *node;
724 int retval;
725
726 BUG_ON(!dqm);
727
728 retval = 0;
729
730 retval = pm_init(&dqm->packets, dqm);
731 if (retval != 0)
732 goto fail_packet_manager_init;
733
734 retval = set_sched_resources(dqm);
735 if (retval != 0)
736 goto fail_set_sched_resources;
737
738 pr_debug("kfd: allocating fence memory\n");
739
740 /* allocate fence memory on the gart */
741 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
742 &dqm->fence_mem);
743
744 if (retval != 0)
745 goto fail_allocate_vidmem;
746
747 dqm->fence_addr = dqm->fence_mem->cpu_ptr;
748 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
749 list_for_each_entry(node, &dqm->queues, list)
750 if (node->qpd->pqm->process && dqm->dev)
751 kfd_bind_process_to_device(dqm->dev,
752 node->qpd->pqm->process);
753
754 execute_queues_cpsch(dqm, true);
755
756 return 0;
757 fail_allocate_vidmem:
758 fail_set_sched_resources:
759 pm_uninit(&dqm->packets);
760 fail_packet_manager_init:
761 return retval;
762 }
763
764 static int stop_cpsch(struct device_queue_manager *dqm)
765 {
766 struct device_process_node *node;
767 struct kfd_process_device *pdd;
768
769 BUG_ON(!dqm);
770
771 destroy_queues_cpsch(dqm, true);
772
773 list_for_each_entry(node, &dqm->queues, list) {
774 pdd = qpd_to_pdd(node->qpd);
775 pdd->bound = false;
776 }
777 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
778 pm_uninit(&dqm->packets);
779
780 return 0;
781 }
782
783 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
784 struct kernel_queue *kq,
785 struct qcm_process_device *qpd)
786 {
787 BUG_ON(!dqm || !kq || !qpd);
788
789 pr_debug("kfd: In func %s\n", __func__);
790
791 mutex_lock(&dqm->lock);
792 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
793 pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
794 dqm->total_queue_count);
795 mutex_unlock(&dqm->lock);
796 return -EPERM;
797 }
798
799 /*
800 * Unconditionally increment this counter, regardless of the queue's
801 * type or whether the queue is active.
802 */
803 dqm->total_queue_count++;
804 pr_debug("Total of %d queues are accountable so far\n",
805 dqm->total_queue_count);
806
807 list_add(&kq->list, &qpd->priv_queue_list);
808 dqm->queue_count++;
809 qpd->is_debug = true;
810 execute_queues_cpsch(dqm, false);
811 mutex_unlock(&dqm->lock);
812
813 return 0;
814 }
815
816 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
817 struct kernel_queue *kq,
818 struct qcm_process_device *qpd)
819 {
820 BUG_ON(!dqm || !kq);
821
822 pr_debug("kfd: In %s\n", __func__);
823
824 mutex_lock(&dqm->lock);
825 destroy_queues_cpsch(dqm, false);
826 list_del(&kq->list);
827 dqm->queue_count--;
828 qpd->is_debug = false;
829 execute_queues_cpsch(dqm, false);
830 /*
831 * Unconditionally decrement this counter, regardless of the queue's
832 * type.
833 */
834 dqm->total_queue_count--;
835 pr_debug("Total of %d queues are accountable so far\n",
836 dqm->total_queue_count);
837 mutex_unlock(&dqm->lock);
838 }
839
840 static void select_sdma_engine_id(struct queue *q)
841 {
842 static int sdma_id;
843
844 q->sdma_id = sdma_id;
845 sdma_id = (sdma_id + 1) % 2;
846 }
847
848 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
849 struct qcm_process_device *qpd, int *allocate_vmid)
850 {
851 int retval;
852 struct mqd_manager *mqd;
853
854 BUG_ON(!dqm || !q || !qpd);
855
856 retval = 0;
857
858 if (allocate_vmid)
859 *allocate_vmid = 0;
860
861 mutex_lock(&dqm->lock);
862
863 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
864 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
865 dqm->total_queue_count);
866 retval = -EPERM;
867 goto out;
868 }
869
870 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
871 select_sdma_engine_id(q);
872
873 mqd = dqm->ops.get_mqd_manager(dqm,
874 get_mqd_type_from_queue_type(q->properties.type));
875
876 if (mqd == NULL) {
877 mutex_unlock(&dqm->lock);
878 return -ENOMEM;
879 }
880
881 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
882 &q->gart_mqd_addr, &q->properties);
883 if (retval != 0)
884 goto out;
885
886 list_add(&q->list, &qpd->queues_list);
887 if (q->properties.is_active) {
888 dqm->queue_count++;
889 retval = execute_queues_cpsch(dqm, false);
890 }
891
892 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
893 dqm->sdma_queue_count++;
894 /*
895 * Unconditionally increment this counter, regardless of the queue's
896 * type or whether the queue is active.
897 */
898 dqm->total_queue_count++;
899
900 pr_debug("Total of %d queues are accountable so far\n",
901 dqm->total_queue_count);
902
903 out:
904 mutex_unlock(&dqm->lock);
905 return retval;
906 }
907
908 static int fence_wait_timeout(unsigned int *fence_addr,
909 unsigned int fence_value,
910 unsigned long timeout)
911 {
912 BUG_ON(!fence_addr);
913 timeout += jiffies;
914
915 while (*fence_addr != fence_value) {
916 if (time_after(jiffies, timeout)) {
917 pr_err("kfd: qcm fence wait loop timeout expired\n");
918 return -ETIME;
919 }
920 schedule();
921 }
922
923 return 0;
924 }
925
926 static int destroy_sdma_queues(struct device_queue_manager *dqm,
927 unsigned int sdma_engine)
928 {
929 return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
930 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false,
931 sdma_engine);
932 }
933
934 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
935 {
936 int retval;
937
938 BUG_ON(!dqm);
939
940 retval = 0;
941
942 if (lock)
943 mutex_lock(&dqm->lock);
944 if (dqm->active_runlist == false)
945 goto out;
946
947 pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
948 dqm->sdma_queue_count);
949
950 if (dqm->sdma_queue_count > 0) {
951 destroy_sdma_queues(dqm, 0);
952 destroy_sdma_queues(dqm, 1);
953 }
954
955 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
956 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
957 if (retval != 0)
958 goto out;
959
960 *dqm->fence_addr = KFD_FENCE_INIT;
961 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
962 KFD_FENCE_COMPLETED);
963 /* should be timed out */
964 fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
965 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
966 pm_release_ib(&dqm->packets);
967 dqm->active_runlist = false;
968
969 out:
970 if (lock)
971 mutex_unlock(&dqm->lock);
972 return retval;
973 }
974
975 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
976 {
977 int retval;
978
979 BUG_ON(!dqm);
980
981 if (lock)
982 mutex_lock(&dqm->lock);
983
984 retval = destroy_queues_cpsch(dqm, false);
985 if (retval != 0) {
986 pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
987 goto out;
988 }
989
990 if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
991 retval = 0;
992 goto out;
993 }
994
995 if (dqm->active_runlist) {
996 retval = 0;
997 goto out;
998 }
999
1000 retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1001 if (retval != 0) {
1002 pr_err("kfd: failed to execute runlist");
1003 goto out;
1004 }
1005 dqm->active_runlist = true;
1006
1007 out:
1008 if (lock)
1009 mutex_unlock(&dqm->lock);
1010 return retval;
1011 }
1012
1013 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1014 struct qcm_process_device *qpd,
1015 struct queue *q)
1016 {
1017 int retval;
1018 struct mqd_manager *mqd;
1019
1020 BUG_ON(!dqm || !qpd || !q);
1021
1022 retval = 0;
1023
1024 /* remove queue from list to prevent rescheduling after preemption */
1025 mutex_lock(&dqm->lock);
1026 mqd = dqm->ops.get_mqd_manager(dqm,
1027 get_mqd_type_from_queue_type(q->properties.type));
1028 if (!mqd) {
1029 retval = -ENOMEM;
1030 goto failed;
1031 }
1032
1033 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1034 dqm->sdma_queue_count--;
1035
1036 list_del(&q->list);
1037 if (q->properties.is_active)
1038 dqm->queue_count--;
1039
1040 execute_queues_cpsch(dqm, false);
1041
1042 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1043
1044 /*
1045 * Unconditionally decrement this counter, regardless of the queue's
1046 * type
1047 */
1048 dqm->total_queue_count--;
1049 pr_debug("Total of %d queues are accountable so far\n",
1050 dqm->total_queue_count);
1051
1052 mutex_unlock(&dqm->lock);
1053
1054 return 0;
1055
1056 failed:
1057 mutex_unlock(&dqm->lock);
1058 return retval;
1059 }
1060
1061 /*
1062 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1063 * stay in user mode.
1064 */
1065 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1066 /* APE1 limit is inclusive and 64K aligned. */
1067 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1068
1069 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1070 struct qcm_process_device *qpd,
1071 enum cache_policy default_policy,
1072 enum cache_policy alternate_policy,
1073 void __user *alternate_aperture_base,
1074 uint64_t alternate_aperture_size)
1075 {
1076 bool retval;
1077
1078 pr_debug("kfd: In func %s\n", __func__);
1079
1080 mutex_lock(&dqm->lock);
1081
1082 if (alternate_aperture_size == 0) {
1083 /* base > limit disables APE1 */
1084 qpd->sh_mem_ape1_base = 1;
1085 qpd->sh_mem_ape1_limit = 0;
1086 } else {
1087 /*
1088 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1089 * SH_MEM_APE1_BASE[31:0], 0x0000 }
1090 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1091 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1092 * Verify that the base and size parameters can be
1093 * represented in this format and convert them.
1094 * Additionally restrict APE1 to user-mode addresses.
1095 */
1096
1097 uint64_t base = (uintptr_t)alternate_aperture_base;
1098 uint64_t limit = base + alternate_aperture_size - 1;
1099
1100 if (limit <= base)
1101 goto out;
1102
1103 if ((base & APE1_FIXED_BITS_MASK) != 0)
1104 goto out;
1105
1106 if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
1107 goto out;
1108
1109 qpd->sh_mem_ape1_base = base >> 16;
1110 qpd->sh_mem_ape1_limit = limit >> 16;
1111 }
1112
1113 retval = dqm->ops_asic_specific.set_cache_memory_policy(
1114 dqm,
1115 qpd,
1116 default_policy,
1117 alternate_policy,
1118 alternate_aperture_base,
1119 alternate_aperture_size);
1120
1121 if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1122 program_sh_mem_settings(dqm, qpd);
1123
1124 pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1125 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1126 qpd->sh_mem_ape1_limit);
1127
1128 mutex_unlock(&dqm->lock);
1129 return retval;
1130
1131 out:
1132 mutex_unlock(&dqm->lock);
1133 return false;
1134 }
1135
1136 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1137 {
1138 struct device_queue_manager *dqm;
1139
1140 BUG_ON(!dev);
1141
1142 pr_debug("kfd: loading device queue manager\n");
1143
1144 dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1145 if (!dqm)
1146 return NULL;
1147
1148 dqm->dev = dev;
1149 switch (sched_policy) {
1150 case KFD_SCHED_POLICY_HWS:
1151 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1152 /* initialize dqm for cp scheduling */
1153 dqm->ops.create_queue = create_queue_cpsch;
1154 dqm->ops.initialize = initialize_cpsch;
1155 dqm->ops.start = start_cpsch;
1156 dqm->ops.stop = stop_cpsch;
1157 dqm->ops.destroy_queue = destroy_queue_cpsch;
1158 dqm->ops.update_queue = update_queue;
1159 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1160 dqm->ops.register_process = register_process_nocpsch;
1161 dqm->ops.unregister_process = unregister_process_nocpsch;
1162 dqm->ops.uninitialize = uninitialize_nocpsch;
1163 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1164 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1165 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1166 break;
1167 case KFD_SCHED_POLICY_NO_HWS:
1168 /* initialize dqm for no cp scheduling */
1169 dqm->ops.start = start_nocpsch;
1170 dqm->ops.stop = stop_nocpsch;
1171 dqm->ops.create_queue = create_queue_nocpsch;
1172 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1173 dqm->ops.update_queue = update_queue;
1174 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1175 dqm->ops.register_process = register_process_nocpsch;
1176 dqm->ops.unregister_process = unregister_process_nocpsch;
1177 dqm->ops.initialize = initialize_nocpsch;
1178 dqm->ops.uninitialize = uninitialize_nocpsch;
1179 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1180 break;
1181 default:
1182 BUG();
1183 break;
1184 }
1185
1186 switch (dev->device_info->asic_family) {
1187 case CHIP_CARRIZO:
1188 device_queue_manager_init_vi(&dqm->ops_asic_specific);
1189 break;
1190
1191 case CHIP_KAVERI:
1192 device_queue_manager_init_cik(&dqm->ops_asic_specific);
1193 break;
1194 }
1195
1196 if (dqm->ops.initialize(dqm) != 0) {
1197 kfree(dqm);
1198 return NULL;
1199 }
1200
1201 return dqm;
1202 }
1203
1204 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1205 {
1206 BUG_ON(!dqm);
1207
1208 dqm->ops.uninitialize(dqm);
1209 kfree(dqm);
1210 }
This page took 0.055874 seconds and 5 git commands to generate.