amdkfd: Add interrupt handling module
[deliverable/linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_priv.h
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <kgd_kfd_interface.h>
35
36 #define KFD_SYSFS_FILE_MODE 0444
37
38 /*
39 * When working with cp scheduler we should assign the HIQ manually or via
40 * the radeon driver to a fixed hqd slot, here are the fixed HIQ hqd slot
41 * definitions for Kaveri. In Kaveri only the first ME queues participates
42 * in the cp scheduling taking that in mind we set the HIQ slot in the
43 * second ME.
44 */
45 #define KFD_CIK_HIQ_PIPE 4
46 #define KFD_CIK_HIQ_QUEUE 0
47
48 /* GPU ID hash width in bits */
49 #define KFD_GPU_ID_HASH_WIDTH 16
50
51 /* Macro for allocating structures */
52 #define kfd_alloc_struct(ptr_to_struct) \
53 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
54
55 /* Kernel module parameter to specify maximum number of supported processes */
56 extern int max_num_of_processes;
57
58 #define KFD_MAX_NUM_OF_PROCESSES_DEFAULT 32
59 #define KFD_MAX_NUM_OF_PROCESSES 512
60
61 /*
62 * Kernel module parameter to specify maximum number of supported queues
63 * per process
64 */
65 extern int max_num_of_queues_per_process;
66
67 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS_DEFAULT 128
68 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
69
70 #define KFD_KERNEL_QUEUE_SIZE 2048
71
72 /* Kernel module parameter to specify the scheduling policy */
73 extern int sched_policy;
74
75 /**
76 * enum kfd_sched_policy
77 *
78 * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp)
79 * scheduling. In this scheduling mode we're using the firmware code to
80 * schedule the user mode queues and kernel queues such as HIQ and DIQ.
81 * the HIQ queue is used as a special queue that dispatches the configuration
82 * to the cp and the user mode queues list that are currently running.
83 * the DIQ queue is a debugging queue that dispatches debugging commands to the
84 * firmware.
85 * in this scheduling mode user mode queues over subscription feature is
86 * enabled.
87 *
88 * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over
89 * subscription feature disabled.
90 *
91 * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly
92 * set the command processor registers and sets the queues "manually". This
93 * mode is used *ONLY* for debugging proposes.
94 *
95 */
96 enum kfd_sched_policy {
97 KFD_SCHED_POLICY_HWS = 0,
98 KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION,
99 KFD_SCHED_POLICY_NO_HWS
100 };
101
102 enum cache_policy {
103 cache_policy_coherent,
104 cache_policy_noncoherent
105 };
106
107 struct kfd_device_info {
108 unsigned int max_pasid_bits;
109 size_t ih_ring_entry_size;
110 uint16_t mqd_size_aligned;
111 };
112
113 struct kfd_dev {
114 struct kgd_dev *kgd;
115
116 const struct kfd_device_info *device_info;
117 struct pci_dev *pdev;
118
119 unsigned int id; /* topology stub index */
120
121 phys_addr_t doorbell_base; /* Start of actual doorbells used by
122 * KFD. It is aligned for mapping
123 * into user mode
124 */
125 size_t doorbell_id_offset; /* Doorbell offset (from KFD doorbell
126 * to HW doorbell, GFX reserved some
127 * at the start)
128 */
129 size_t doorbell_process_limit; /* Number of processes we have doorbell
130 * space for.
131 */
132 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
133 * page used by kernel queue
134 */
135
136 struct kgd2kfd_shared_resources shared_resources;
137
138 void *interrupt_ring;
139 size_t interrupt_ring_size;
140 atomic_t interrupt_ring_rptr;
141 atomic_t interrupt_ring_wptr;
142 struct work_struct interrupt_work;
143 spinlock_t interrupt_lock;
144
145 /* QCM Device instance */
146 struct device_queue_manager *dqm;
147
148 bool init_complete;
149 /*
150 * Interrupts of interest to KFD are copied
151 * from the HW ring into a SW ring.
152 */
153 bool interrupts_active;
154 };
155
156 /* KGD2KFD callbacks */
157 void kgd2kfd_exit(void);
158 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, struct pci_dev *pdev);
159 bool kgd2kfd_device_init(struct kfd_dev *kfd,
160 const struct kgd2kfd_shared_resources *gpu_resources);
161 void kgd2kfd_device_exit(struct kfd_dev *kfd);
162
163 extern const struct kfd2kgd_calls *kfd2kgd;
164
165 struct kfd_mem_obj {
166 void *bo;
167 uint64_t gpu_addr;
168 uint32_t *cpu_ptr;
169 };
170
171 enum kfd_mempool {
172 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
173 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
174 KFD_MEMPOOL_FRAMEBUFFER = 3,
175 };
176
177 /* Character device interface */
178 int kfd_chardev_init(void);
179 void kfd_chardev_exit(void);
180 struct device *kfd_chardev(void);
181
182 /**
183 * enum kfd_preempt_type_filter
184 *
185 * @KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE: Preempts single queue.
186 *
187 * @KFD_PRERMPT_TYPE_FILTER_ALL_QUEUES: Preempts all queues in the
188 * running queues list.
189 *
190 * @KFD_PRERMPT_TYPE_FILTER_BY_PASID: Preempts queues that belongs to
191 * specific process.
192 *
193 */
194 enum kfd_preempt_type_filter {
195 KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE,
196 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES,
197 KFD_PREEMPT_TYPE_FILTER_BY_PASID
198 };
199
200 enum kfd_preempt_type {
201 KFD_PREEMPT_TYPE_WAVEFRONT,
202 KFD_PREEMPT_TYPE_WAVEFRONT_RESET
203 };
204
205 /**
206 * enum kfd_queue_type
207 *
208 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
209 *
210 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
211 *
212 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
213 *
214 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
215 */
216 enum kfd_queue_type {
217 KFD_QUEUE_TYPE_COMPUTE,
218 KFD_QUEUE_TYPE_SDMA,
219 KFD_QUEUE_TYPE_HIQ,
220 KFD_QUEUE_TYPE_DIQ
221 };
222
223 enum kfd_queue_format {
224 KFD_QUEUE_FORMAT_PM4,
225 KFD_QUEUE_FORMAT_AQL
226 };
227
228 /**
229 * struct queue_properties
230 *
231 * @type: The queue type.
232 *
233 * @queue_id: Queue identifier.
234 *
235 * @queue_address: Queue ring buffer address.
236 *
237 * @queue_size: Queue ring buffer size.
238 *
239 * @priority: Defines the queue priority relative to other queues in the
240 * process.
241 * This is just an indication and HW scheduling may override the priority as
242 * necessary while keeping the relative prioritization.
243 * the priority granularity is from 0 to f which f is the highest priority.
244 * currently all queues are initialized with the highest priority.
245 *
246 * @queue_percent: This field is partially implemented and currently a zero in
247 * this field defines that the queue is non active.
248 *
249 * @read_ptr: User space address which points to the number of dwords the
250 * cp read from the ring buffer. This field updates automatically by the H/W.
251 *
252 * @write_ptr: Defines the number of dwords written to the ring buffer.
253 *
254 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
255 * the queue ring buffer. This field should be similar to write_ptr and the user
256 * should update this field after he updated the write_ptr.
257 *
258 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
259 *
260 * @is_interop: Defines if this is a interop queue. Interop queue means that the
261 * queue can access both graphics and compute resources.
262 *
263 * @is_active: Defines if the queue is active or not.
264 *
265 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
266 * of the queue.
267 *
268 * This structure represents the queue properties for each queue no matter if
269 * it's user mode or kernel mode queue.
270 *
271 */
272 struct queue_properties {
273 enum kfd_queue_type type;
274 enum kfd_queue_format format;
275 unsigned int queue_id;
276 uint64_t queue_address;
277 uint64_t queue_size;
278 uint32_t priority;
279 uint32_t queue_percent;
280 uint32_t *read_ptr;
281 uint32_t *write_ptr;
282 uint32_t *doorbell_ptr;
283 uint32_t doorbell_off;
284 bool is_interop;
285 bool is_active;
286 /* Not relevant for user mode queues in cp scheduling */
287 unsigned int vmid;
288 };
289
290 /**
291 * struct queue
292 *
293 * @list: Queue linked list.
294 *
295 * @mqd: The queue MQD.
296 *
297 * @mqd_mem_obj: The MQD local gpu memory object.
298 *
299 * @gart_mqd_addr: The MQD gart mc address.
300 *
301 * @properties: The queue properties.
302 *
303 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
304 * that the queue should be execute on.
305 *
306 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe id.
307 *
308 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
309 *
310 * @process: The kfd process that created this queue.
311 *
312 * @device: The kfd device that created this queue.
313 *
314 * This structure represents user mode compute queues.
315 * It contains all the necessary data to handle such queues.
316 *
317 */
318
319 struct queue {
320 struct list_head list;
321 void *mqd;
322 struct kfd_mem_obj *mqd_mem_obj;
323 uint64_t gart_mqd_addr;
324 struct queue_properties properties;
325
326 uint32_t mec;
327 uint32_t pipe;
328 uint32_t queue;
329
330 struct kfd_process *process;
331 struct kfd_dev *device;
332 };
333
334 /*
335 * Please read the kfd_mqd_manager.h description.
336 */
337 enum KFD_MQD_TYPE {
338 KFD_MQD_TYPE_CIK_COMPUTE = 0, /* for no cp scheduling */
339 KFD_MQD_TYPE_CIK_HIQ, /* for hiq */
340 KFD_MQD_TYPE_CIK_CP, /* for cp queues and diq */
341 KFD_MQD_TYPE_CIK_SDMA, /* for sdma queues */
342 KFD_MQD_TYPE_MAX
343 };
344
345 struct scheduling_resources {
346 unsigned int vmid_mask;
347 enum kfd_queue_type type;
348 uint64_t queue_mask;
349 uint64_t gws_mask;
350 uint32_t oac_mask;
351 uint32_t gds_heap_base;
352 uint32_t gds_heap_size;
353 };
354
355 struct process_queue_manager {
356 /* data */
357 struct kfd_process *process;
358 unsigned int num_concurrent_processes;
359 struct list_head queues;
360 unsigned long *queue_slot_bitmap;
361 };
362
363 struct qcm_process_device {
364 /* The Device Queue Manager that owns this data */
365 struct device_queue_manager *dqm;
366 struct process_queue_manager *pqm;
367 /* Device Queue Manager lock */
368 struct mutex *lock;
369 /* Queues list */
370 struct list_head queues_list;
371 struct list_head priv_queue_list;
372
373 unsigned int queue_count;
374 unsigned int vmid;
375 bool is_debug;
376 /*
377 * All the memory management data should be here too
378 */
379 uint64_t gds_context_area;
380 uint32_t sh_mem_config;
381 uint32_t sh_mem_bases;
382 uint32_t sh_mem_ape1_base;
383 uint32_t sh_mem_ape1_limit;
384 uint32_t page_table_base;
385 uint32_t gds_size;
386 uint32_t num_gws;
387 uint32_t num_oac;
388 };
389
390 /* Data that is per-process-per device. */
391 struct kfd_process_device {
392 /*
393 * List of all per-device data for a process.
394 * Starts from kfd_process.per_device_data.
395 */
396 struct list_head per_device_list;
397
398 /* The device that owns this data. */
399 struct kfd_dev *dev;
400
401
402 /* per-process-per device QCM data structure */
403 struct qcm_process_device qpd;
404
405 /*Apertures*/
406 uint64_t lds_base;
407 uint64_t lds_limit;
408 uint64_t gpuvm_base;
409 uint64_t gpuvm_limit;
410 uint64_t scratch_base;
411 uint64_t scratch_limit;
412
413 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
414 bool bound;
415 };
416
417 /* Process data */
418 struct kfd_process {
419 /*
420 * kfd_process are stored in an mm_struct*->kfd_process*
421 * hash table (kfd_processes in kfd_process.c)
422 */
423 struct hlist_node kfd_processes;
424
425 struct mm_struct *mm;
426
427 struct mutex mutex;
428
429 /*
430 * In any process, the thread that started main() is the lead
431 * thread and outlives the rest.
432 * It is here because amd_iommu_bind_pasid wants a task_struct.
433 */
434 struct task_struct *lead_thread;
435
436 /* We want to receive a notification when the mm_struct is destroyed */
437 struct mmu_notifier mmu_notifier;
438
439 /* Use for delayed freeing of kfd_process structure */
440 struct rcu_head rcu;
441
442 unsigned int pasid;
443
444 /*
445 * List of kfd_process_device structures,
446 * one for each device the process is using.
447 */
448 struct list_head per_device_data;
449
450 struct process_queue_manager pqm;
451
452 /* The process's queues. */
453 size_t queue_array_size;
454
455 /* Size is queue_array_size, up to MAX_PROCESS_QUEUES. */
456 struct kfd_queue **queues;
457
458 unsigned long allocated_queue_bitmap[DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, BITS_PER_LONG)];
459
460 /*Is the user space process 32 bit?*/
461 bool is_32bit_user_mode;
462 };
463
464 void kfd_process_create_wq(void);
465 void kfd_process_destroy_wq(void);
466 struct kfd_process *kfd_create_process(const struct task_struct *);
467 struct kfd_process *kfd_get_process(const struct task_struct *);
468
469 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
470 struct kfd_process *p);
471 void kfd_unbind_process_from_device(struct kfd_dev *dev, unsigned int pasid);
472 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
473 struct kfd_process *p,
474 int create_pdd);
475
476 /* PASIDs */
477 int kfd_pasid_init(void);
478 void kfd_pasid_exit(void);
479 bool kfd_set_pasid_limit(unsigned int new_limit);
480 unsigned int kfd_get_pasid_limit(void);
481 unsigned int kfd_pasid_alloc(void);
482 void kfd_pasid_free(unsigned int pasid);
483
484 /* Doorbells */
485 void kfd_doorbell_init(struct kfd_dev *kfd);
486 int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma);
487 u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
488 unsigned int *doorbell_off);
489 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
490 u32 read_kernel_doorbell(u32 __iomem *db);
491 void write_kernel_doorbell(u32 __iomem *db, u32 value);
492 unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd,
493 struct kfd_process *process,
494 unsigned int queue_id);
495
496 extern struct device *kfd_device;
497
498 /* Topology */
499 int kfd_topology_init(void);
500 void kfd_topology_shutdown(void);
501 int kfd_topology_add_device(struct kfd_dev *gpu);
502 int kfd_topology_remove_device(struct kfd_dev *gpu);
503 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
504 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
505 struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx);
506
507 /* Interrupts */
508 int kfd_interrupt_init(struct kfd_dev *dev);
509 void kfd_interrupt_exit(struct kfd_dev *dev);
510 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry);
511 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry);
512
513 /* Power Management */
514 void kgd2kfd_suspend(struct kfd_dev *kfd);
515 int kgd2kfd_resume(struct kfd_dev *kfd);
516
517 /* amdkfd Apertures */
518 int kfd_init_apertures(struct kfd_process *process);
519
520 /* Queue Context Management */
521 inline uint32_t lower_32(uint64_t x);
522 inline uint32_t upper_32(uint64_t x);
523
524 int init_queue(struct queue **q, struct queue_properties properties);
525 void uninit_queue(struct queue *q);
526 void print_queue_properties(struct queue_properties *q);
527 void print_queue(struct queue *q);
528
529 struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type,
530 struct kfd_dev *dev);
531 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
532 void device_queue_manager_uninit(struct device_queue_manager *dqm);
533 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
534 enum kfd_queue_type type);
535 void kernel_queue_uninit(struct kernel_queue *kq);
536
537 /* Process Queue Manager */
538 struct process_queue_node {
539 struct queue *q;
540 struct kernel_queue *kq;
541 struct list_head process_queue_list;
542 };
543
544 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
545 void pqm_uninit(struct process_queue_manager *pqm);
546 int pqm_create_queue(struct process_queue_manager *pqm,
547 struct kfd_dev *dev,
548 struct file *f,
549 struct queue_properties *properties,
550 unsigned int flags,
551 enum kfd_queue_type type,
552 unsigned int *qid);
553 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
554 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
555 struct queue_properties *p);
556
557 /* Packet Manager */
558
559 #define KFD_HIQ_TIMEOUT (500)
560
561 #define KFD_FENCE_COMPLETED (100)
562 #define KFD_FENCE_INIT (10)
563 #define KFD_UNMAP_LATENCY (150)
564
565 struct packet_manager {
566 struct device_queue_manager *dqm;
567 struct kernel_queue *priv_queue;
568 struct mutex lock;
569 bool allocated;
570 struct kfd_mem_obj *ib_buffer_obj;
571 };
572
573 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
574 void pm_uninit(struct packet_manager *pm);
575 int pm_send_set_resources(struct packet_manager *pm,
576 struct scheduling_resources *res);
577 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
578 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
579 uint32_t fence_value);
580
581 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
582 enum kfd_preempt_type_filter mode,
583 uint32_t filter_param, bool reset,
584 unsigned int sdma_engine);
585
586 void pm_release_ib(struct packet_manager *pm);
587
588 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
589 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
590 struct kfd_process *process);
591
592 #endif
This page took 0.064809 seconds and 5 git commands to generate.