Merge tag 'staging-4.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[deliverable/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / ppatomctrl.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26
27 #include "ppatomctrl.h"
28 #include "atombios.h"
29 #include "cgs_common.h"
30 #include "pp_debug.h"
31 #include "ppevvmath.h"
32
33 #define MEM_ID_MASK 0xff000000
34 #define MEM_ID_SHIFT 24
35 #define CLOCK_RANGE_MASK 0x00ffffff
36 #define CLOCK_RANGE_SHIFT 0
37 #define LOW_NIBBLE_MASK 0xf
38 #define DATA_EQU_PREV 0
39 #define DATA_FROM_TABLE 4
40
41 union voltage_object_info {
42 struct _ATOM_VOLTAGE_OBJECT_INFO v1;
43 struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
44 struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
45 };
46
47 static int atomctrl_retrieve_ac_timing(
48 uint8_t index,
49 ATOM_INIT_REG_BLOCK *reg_block,
50 pp_atomctrl_mc_reg_table *table)
51 {
52 uint32_t i, j;
53 uint8_t tmem_id;
54 ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
55 ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
56
57 uint8_t num_ranges = 0;
58
59 while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
60 num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
61 tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
62
63 if (index == tmem_id) {
64 table->mc_reg_table_entry[num_ranges].mclk_max =
65 (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
66 CLOCK_RANGE_SHIFT);
67
68 for (i = 0, j = 1; i < table->last; i++) {
69 if ((table->mc_reg_address[i].uc_pre_reg_data &
70 LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
71 table->mc_reg_table_entry[num_ranges].mc_data[i] =
72 (uint32_t)*((uint32_t *)reg_data + j);
73 j++;
74 } else if ((table->mc_reg_address[i].uc_pre_reg_data &
75 LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
76 table->mc_reg_table_entry[num_ranges].mc_data[i] =
77 table->mc_reg_table_entry[num_ranges].mc_data[i-1];
78 }
79 }
80 num_ranges++;
81 }
82
83 reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
84 ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
85 }
86
87 PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
88 "Invalid VramInfo table.", return -1);
89 table->num_entries = num_ranges;
90
91 return 0;
92 }
93
94 /**
95 * Get memory clock AC timing registers index from VBIOS table
96 * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
97 * @param reg_block the address ATOM_INIT_REG_BLOCK
98 * @param table the address of MCRegTable
99 * @return 0
100 */
101 static int atomctrl_set_mc_reg_address_table(
102 ATOM_INIT_REG_BLOCK *reg_block,
103 pp_atomctrl_mc_reg_table *table)
104 {
105 uint8_t i = 0;
106 uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
107 / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
108 ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
109
110 num_entries--; /* subtract 1 data end mark entry */
111
112 PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
113 "Invalid VramInfo table.", return -1);
114
115 /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
116 while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
117 (i < num_entries)) {
118 table->mc_reg_address[i].s1 =
119 (uint16_t)(le16_to_cpu(format->usRegIndex));
120 table->mc_reg_address[i].uc_pre_reg_data =
121 format->ucPreRegDataLength;
122
123 i++;
124 format = (ATOM_INIT_REG_INDEX_FORMAT *)
125 ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
126 }
127
128 table->last = i;
129 return 0;
130 }
131
132
133 int atomctrl_initialize_mc_reg_table(
134 struct pp_hwmgr *hwmgr,
135 uint8_t module_index,
136 pp_atomctrl_mc_reg_table *table)
137 {
138 ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
139 ATOM_INIT_REG_BLOCK *reg_block;
140 int result = 0;
141 u8 frev, crev;
142 u16 size;
143
144 vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
145 cgs_atom_get_data_table(hwmgr->device,
146 GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
147
148 if (module_index >= vram_info->ucNumOfVRAMModule) {
149 printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
150 result = -1;
151 } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
152 printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
153 result = -1;
154 }
155
156 if (0 == result) {
157 reg_block = (ATOM_INIT_REG_BLOCK *)
158 ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
159 result = atomctrl_set_mc_reg_address_table(reg_block, table);
160 }
161
162 if (0 == result) {
163 result = atomctrl_retrieve_ac_timing(module_index,
164 reg_block, table);
165 }
166
167 return result;
168 }
169
170 /**
171 * Set DRAM timings based on engine clock and memory clock.
172 */
173 int atomctrl_set_engine_dram_timings_rv770(
174 struct pp_hwmgr *hwmgr,
175 uint32_t engine_clock,
176 uint32_t memory_clock)
177 {
178 SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
179
180 /* They are both in 10KHz Units. */
181 engine_clock_parameters.ulTargetEngineClock =
182 (uint32_t) engine_clock & SET_CLOCK_FREQ_MASK;
183 engine_clock_parameters.ulTargetEngineClock |=
184 (COMPUTE_ENGINE_PLL_PARAM << 24);
185
186 /* in 10 khz units.*/
187 engine_clock_parameters.sReserved.ulClock =
188 (uint32_t) memory_clock & SET_CLOCK_FREQ_MASK;
189 return cgs_atom_exec_cmd_table(hwmgr->device,
190 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
191 &engine_clock_parameters);
192 }
193
194 /**
195 * Private Function to get the PowerPlay Table Address.
196 * WARNING: The tabled returned by this function is in
197 * dynamically allocated memory.
198 * The caller has to release if by calling kfree.
199 */
200 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
201 {
202 int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
203 u8 frev, crev;
204 u16 size;
205 union voltage_object_info *voltage_info;
206
207 voltage_info = (union voltage_object_info *)
208 cgs_atom_get_data_table(device, index,
209 &size, &frev, &crev);
210
211 if (voltage_info != NULL)
212 return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
213 else
214 return NULL;
215 }
216
217 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
218 const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
219 uint8_t voltage_type, uint8_t voltage_mode)
220 {
221 unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
222 unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
223 uint8_t *start = (uint8_t *)voltage_object_info_table;
224
225 while (offset < size) {
226 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
227 (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
228
229 if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
230 voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
231 return voltage_object;
232
233 offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
234 }
235
236 return NULL;
237 }
238
239 /** atomctrl_get_memory_pll_dividers_si().
240 *
241 * @param hwmgr input parameter: pointer to HwMgr
242 * @param clock_value input parameter: memory clock
243 * @param dividers output parameter: memory PLL dividers
244 * @param strobe_mode input parameter: 1 for strobe mode, 0 for performance mode
245 */
246 int atomctrl_get_memory_pll_dividers_si(
247 struct pp_hwmgr *hwmgr,
248 uint32_t clock_value,
249 pp_atomctrl_memory_clock_param *mpll_param,
250 bool strobe_mode)
251 {
252 COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
253 int result;
254
255 mpll_parameters.ulClock = (uint32_t) clock_value;
256 mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
257
258 result = cgs_atom_exec_cmd_table
259 (hwmgr->device,
260 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
261 &mpll_parameters);
262
263 if (0 == result) {
264 mpll_param->mpll_fb_divider.clk_frac =
265 mpll_parameters.ulFbDiv.usFbDivFrac;
266 mpll_param->mpll_fb_divider.cl_kf =
267 mpll_parameters.ulFbDiv.usFbDiv;
268 mpll_param->mpll_post_divider =
269 (uint32_t)mpll_parameters.ucPostDiv;
270 mpll_param->vco_mode =
271 (uint32_t)(mpll_parameters.ucPllCntlFlag &
272 MPLL_CNTL_FLAG_VCO_MODE_MASK);
273 mpll_param->yclk_sel =
274 (uint32_t)((mpll_parameters.ucPllCntlFlag &
275 MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
276 mpll_param->qdr =
277 (uint32_t)((mpll_parameters.ucPllCntlFlag &
278 MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
279 mpll_param->half_rate =
280 (uint32_t)((mpll_parameters.ucPllCntlFlag &
281 MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
282 mpll_param->dll_speed =
283 (uint32_t)(mpll_parameters.ucDllSpeed);
284 mpll_param->bw_ctrl =
285 (uint32_t)(mpll_parameters.ucBWCntl);
286 }
287
288 return result;
289 }
290
291 /** atomctrl_get_memory_pll_dividers_vi().
292 *
293 * @param hwmgr input parameter: pointer to HwMgr
294 * @param clock_value input parameter: memory clock
295 * @param dividers output parameter: memory PLL dividers
296 */
297 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
298 uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
299 {
300 COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
301 int result;
302
303 mpll_parameters.ulClock.ulClock = (uint32_t)clock_value;
304
305 result = cgs_atom_exec_cmd_table(hwmgr->device,
306 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
307 &mpll_parameters);
308
309 if (!result)
310 mpll_param->mpll_post_divider =
311 (uint32_t)mpll_parameters.ulClock.ucPostDiv;
312
313 return result;
314 }
315
316 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
317 uint32_t clock_value,
318 pp_atomctrl_clock_dividers_kong *dividers)
319 {
320 COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
321 int result;
322
323 pll_parameters.ulClock = clock_value;
324
325 result = cgs_atom_exec_cmd_table
326 (hwmgr->device,
327 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
328 &pll_parameters);
329
330 if (0 == result) {
331 dividers->pll_post_divider = pll_parameters.ucPostDiv;
332 dividers->real_clock = pll_parameters.ulClock;
333 }
334
335 return result;
336 }
337
338 int atomctrl_get_engine_pll_dividers_vi(
339 struct pp_hwmgr *hwmgr,
340 uint32_t clock_value,
341 pp_atomctrl_clock_dividers_vi *dividers)
342 {
343 COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
344 int result;
345
346 pll_patameters.ulClock.ulClock = clock_value;
347 pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
348
349 result = cgs_atom_exec_cmd_table
350 (hwmgr->device,
351 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
352 &pll_patameters);
353
354 if (0 == result) {
355 dividers->pll_post_divider =
356 pll_patameters.ulClock.ucPostDiv;
357 dividers->real_clock =
358 pll_patameters.ulClock.ulClock;
359
360 dividers->ul_fb_div.ul_fb_div_frac =
361 pll_patameters.ulFbDiv.usFbDivFrac;
362 dividers->ul_fb_div.ul_fb_div =
363 pll_patameters.ulFbDiv.usFbDiv;
364
365 dividers->uc_pll_ref_div =
366 pll_patameters.ucPllRefDiv;
367 dividers->uc_pll_post_div =
368 pll_patameters.ucPllPostDiv;
369 dividers->uc_pll_cntl_flag =
370 pll_patameters.ucPllCntlFlag;
371 }
372
373 return result;
374 }
375
376 int atomctrl_get_dfs_pll_dividers_vi(
377 struct pp_hwmgr *hwmgr,
378 uint32_t clock_value,
379 pp_atomctrl_clock_dividers_vi *dividers)
380 {
381 COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
382 int result;
383
384 pll_patameters.ulClock.ulClock = clock_value;
385 pll_patameters.ulClock.ucPostDiv =
386 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
387
388 result = cgs_atom_exec_cmd_table
389 (hwmgr->device,
390 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
391 &pll_patameters);
392
393 if (0 == result) {
394 dividers->pll_post_divider =
395 pll_patameters.ulClock.ucPostDiv;
396 dividers->real_clock =
397 pll_patameters.ulClock.ulClock;
398
399 dividers->ul_fb_div.ul_fb_div_frac =
400 pll_patameters.ulFbDiv.usFbDivFrac;
401 dividers->ul_fb_div.ul_fb_div =
402 pll_patameters.ulFbDiv.usFbDiv;
403
404 dividers->uc_pll_ref_div =
405 pll_patameters.ucPllRefDiv;
406 dividers->uc_pll_post_div =
407 pll_patameters.ucPllPostDiv;
408 dividers->uc_pll_cntl_flag =
409 pll_patameters.ucPllCntlFlag;
410 }
411
412 return result;
413 }
414
415 /**
416 * Get the reference clock in 10KHz
417 */
418 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
419 {
420 ATOM_FIRMWARE_INFO *fw_info;
421 u8 frev, crev;
422 u16 size;
423 uint32_t clock;
424
425 fw_info = (ATOM_FIRMWARE_INFO *)
426 cgs_atom_get_data_table(hwmgr->device,
427 GetIndexIntoMasterTable(DATA, FirmwareInfo),
428 &size, &frev, &crev);
429
430 if (fw_info == NULL)
431 clock = 2700;
432 else
433 clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
434
435 return clock;
436 }
437
438 /**
439 * Returns true if the given voltage type is controlled by GPIO pins.
440 * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
441 * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
442 * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
443 */
444 bool atomctrl_is_voltage_controled_by_gpio_v3(
445 struct pp_hwmgr *hwmgr,
446 uint8_t voltage_type,
447 uint8_t voltage_mode)
448 {
449 ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
450 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
451 bool ret;
452
453 PP_ASSERT_WITH_CODE((NULL != voltage_info),
454 "Could not find Voltage Table in BIOS.", return false;);
455
456 ret = (NULL != atomctrl_lookup_voltage_type_v3
457 (voltage_info, voltage_type, voltage_mode)) ? true : false;
458
459 return ret;
460 }
461
462 int atomctrl_get_voltage_table_v3(
463 struct pp_hwmgr *hwmgr,
464 uint8_t voltage_type,
465 uint8_t voltage_mode,
466 pp_atomctrl_voltage_table *voltage_table)
467 {
468 ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
469 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
470 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
471 unsigned int i;
472
473 PP_ASSERT_WITH_CODE((NULL != voltage_info),
474 "Could not find Voltage Table in BIOS.", return -1;);
475
476 voltage_object = atomctrl_lookup_voltage_type_v3
477 (voltage_info, voltage_type, voltage_mode);
478
479 if (voltage_object == NULL)
480 return -1;
481
482 PP_ASSERT_WITH_CODE(
483 (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
484 PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
485 "Too many voltage entries!",
486 return -1;
487 );
488
489 for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
490 voltage_table->entries[i].value =
491 voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue;
492 voltage_table->entries[i].smio_low =
493 voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId;
494 }
495
496 voltage_table->mask_low =
497 voltage_object->asGpioVoltageObj.ulGpioMaskVal;
498 voltage_table->count =
499 voltage_object->asGpioVoltageObj.ucGpioEntryNum;
500 voltage_table->phase_delay =
501 voltage_object->asGpioVoltageObj.ucPhaseDelay;
502
503 return 0;
504 }
505
506 static bool atomctrl_lookup_gpio_pin(
507 ATOM_GPIO_PIN_LUT * gpio_lookup_table,
508 const uint32_t pinId,
509 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
510 {
511 unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
512 unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
513 uint8_t *start = (uint8_t *)gpio_lookup_table;
514
515 while (offset < size) {
516 const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
517 (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
518
519 if (pinId == pin_assignment->ucGPIO_ID) {
520 gpio_pin_assignment->uc_gpio_pin_bit_shift =
521 pin_assignment->ucGpioPinBitShift;
522 gpio_pin_assignment->us_gpio_pin_aindex =
523 le16_to_cpu(pin_assignment->usGpioPin_AIndex);
524 return false;
525 }
526
527 offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
528 }
529
530 return true;
531 }
532
533 /**
534 * Private Function to get the PowerPlay Table Address.
535 * WARNING: The tabled returned by this function is in
536 * dynamically allocated memory.
537 * The caller has to release if by calling kfree.
538 */
539 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
540 {
541 u8 frev, crev;
542 u16 size;
543 void *table_address;
544
545 table_address = (ATOM_GPIO_PIN_LUT *)
546 cgs_atom_get_data_table(device,
547 GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
548 &size, &frev, &crev);
549
550 PP_ASSERT_WITH_CODE((NULL != table_address),
551 "Error retrieving BIOS Table Address!", return NULL;);
552
553 return (ATOM_GPIO_PIN_LUT *)table_address;
554 }
555
556 /**
557 * Returns 1 if the given pin id find in lookup table.
558 */
559 bool atomctrl_get_pp_assign_pin(
560 struct pp_hwmgr *hwmgr,
561 const uint32_t pinId,
562 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
563 {
564 bool bRet = 0;
565 ATOM_GPIO_PIN_LUT *gpio_lookup_table =
566 get_gpio_lookup_table(hwmgr->device);
567
568 PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
569 "Could not find GPIO lookup Table in BIOS.", return -1);
570
571 bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
572 gpio_pin_assignment);
573
574 return bRet;
575 }
576
577 int atomctrl_calculate_voltage_evv_on_sclk(
578 struct pp_hwmgr *hwmgr,
579 uint8_t voltage_type,
580 uint32_t sclk,
581 uint16_t virtual_voltage_Id,
582 uint16_t *voltage,
583 uint16_t dpm_level,
584 bool debug)
585 {
586 ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
587
588 EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
589 EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
590 EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
591 EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
592 EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
593 EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
594 EFUSE_INPUT_PARAMETER sInput_FuseValues;
595 READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
596
597 uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
598 fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
599 fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
600 fInt fLkg_FT, repeat;
601 fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
602 fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
603 fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
604 fInt fSclk_margin, fSclk, fEVV_V;
605 fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
606 uint32_t ul_FT_Lkg_V0NORM;
607 fInt fLn_MaxDivMin, fMin, fAverage, fRange;
608 fInt fRoots[2];
609 fInt fStepSize = GetScaledFraction(625, 100000);
610
611 int result;
612
613 getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
614 cgs_atom_get_data_table(hwmgr->device,
615 GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
616 NULL, NULL, NULL);
617
618 if (!getASICProfilingInfo)
619 return -1;
620
621 if(getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
622 (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
623 getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
624 return -1;
625
626 /*-----------------------------------------------------------
627 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
628 *-----------------------------------------------------------
629 */
630 fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
631
632 switch (dpm_level) {
633 case 1:
634 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm1);
635 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM1, 1000);
636 break;
637 case 2:
638 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm2);
639 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM2, 1000);
640 break;
641 case 3:
642 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm3);
643 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM3, 1000);
644 break;
645 case 4:
646 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm4);
647 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM4, 1000);
648 break;
649 case 5:
650 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm5);
651 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM5, 1000);
652 break;
653 case 6:
654 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm6);
655 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM6, 1000);
656 break;
657 case 7:
658 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm7);
659 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM7, 1000);
660 break;
661 default:
662 printk(KERN_ERR "DPM Level not supported\n");
663 fPowerDPMx = Convert_ULONG_ToFraction(1);
664 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM0, 1000);
665 }
666
667 /*-------------------------
668 * DECODING FUSE VALUES
669 * ------------------------
670 */
671 /*Decode RO_Fused*/
672 sRO_fuse = getASICProfilingInfo->sRoFuse;
673
674 sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
675 sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
676 sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
677
678 sOutput_FuseValues.sEfuse = sInput_FuseValues;
679
680 result = cgs_atom_exec_cmd_table(hwmgr->device,
681 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
682 &sOutput_FuseValues);
683
684 if (result)
685 return result;
686
687 /* Finally, the actual fuse value */
688 ul_RO_fused = sOutput_FuseValues.ulEfuseValue;
689 fMin = GetScaledFraction(sRO_fuse.ulEfuseMin, 1);
690 fRange = GetScaledFraction(sRO_fuse.ulEfuseEncodeRange, 1);
691 fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
692
693 sCACm_fuse = getASICProfilingInfo->sCACm;
694
695 sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
696 sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
697 sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
698
699 sOutput_FuseValues.sEfuse = sInput_FuseValues;
700
701 result = cgs_atom_exec_cmd_table(hwmgr->device,
702 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
703 &sOutput_FuseValues);
704
705 if (result)
706 return result;
707
708 ul_CACm_fused = sOutput_FuseValues.ulEfuseValue;
709 fMin = GetScaledFraction(sCACm_fuse.ulEfuseMin, 1000);
710 fRange = GetScaledFraction(sCACm_fuse.ulEfuseEncodeRange, 1000);
711
712 fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
713
714 sCACb_fuse = getASICProfilingInfo->sCACb;
715
716 sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
717 sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
718 sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
719 sOutput_FuseValues.sEfuse = sInput_FuseValues;
720
721 result = cgs_atom_exec_cmd_table(hwmgr->device,
722 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
723 &sOutput_FuseValues);
724
725 if (result)
726 return result;
727
728 ul_CACb_fused = sOutput_FuseValues.ulEfuseValue;
729 fMin = GetScaledFraction(sCACb_fuse.ulEfuseMin, 1000);
730 fRange = GetScaledFraction(sCACb_fuse.ulEfuseEncodeRange, 1000);
731
732 fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
733
734 sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
735
736 sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
737 sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
738 sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
739
740 sOutput_FuseValues.sEfuse = sInput_FuseValues;
741
742 result = cgs_atom_exec_cmd_table(hwmgr->device,
743 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
744 &sOutput_FuseValues);
745
746 if (result)
747 return result;
748
749 ul_Kt_Beta_fused = sOutput_FuseValues.ulEfuseValue;
750 fAverage = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeAverage, 1000);
751 fRange = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeRange, 1000);
752
753 fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
754 fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
755
756 sKv_m_fuse = getASICProfilingInfo->sKv_m;
757
758 sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
759 sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
760 sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
761
762 sOutput_FuseValues.sEfuse = sInput_FuseValues;
763
764 result = cgs_atom_exec_cmd_table(hwmgr->device,
765 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
766 &sOutput_FuseValues);
767 if (result)
768 return result;
769
770 ul_Kv_m_fused = sOutput_FuseValues.ulEfuseValue;
771 fAverage = GetScaledFraction(sKv_m_fuse.ulEfuseEncodeAverage, 1000);
772 fRange = GetScaledFraction((sKv_m_fuse.ulEfuseEncodeRange & 0x7fffffff), 1000);
773 fRange = fMultiply(fRange, ConvertToFraction(-1));
774
775 fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
776 fAverage, fRange, sKv_m_fuse.ucEfuseLength);
777
778 sKv_b_fuse = getASICProfilingInfo->sKv_b;
779
780 sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
781 sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
782 sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
783 sOutput_FuseValues.sEfuse = sInput_FuseValues;
784
785 result = cgs_atom_exec_cmd_table(hwmgr->device,
786 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
787 &sOutput_FuseValues);
788
789 if (result)
790 return result;
791
792 ul_Kv_b_fused = sOutput_FuseValues.ulEfuseValue;
793 fAverage = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeAverage, 1000);
794 fRange = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeRange, 1000);
795
796 fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
797 fAverage, fRange, sKv_b_fuse.ucEfuseLength);
798
799 /* Decoding the Leakage - No special struct container */
800 /*
801 * usLkgEuseIndex=56
802 * ucLkgEfuseBitLSB=6
803 * ucLkgEfuseLength=10
804 * ulLkgEncodeLn_MaxDivMin=69077
805 * ulLkgEncodeMax=1000000
806 * ulLkgEncodeMin=1000
807 * ulEfuseLogisticAlpha=13
808 */
809
810 sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
811 sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
812 sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
813
814 sOutput_FuseValues.sEfuse = sInput_FuseValues;
815
816 result = cgs_atom_exec_cmd_table(hwmgr->device,
817 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
818 &sOutput_FuseValues);
819
820 if (result)
821 return result;
822
823 ul_FT_Lkg_V0NORM = sOutput_FuseValues.ulEfuseValue;
824 fLn_MaxDivMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin, 10000);
825 fMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeMin, 10000);
826
827 fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
828 fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
829 fLkg_FT = fFT_Lkg_V0NORM;
830
831 /*-------------------------------------------
832 * PART 2 - Grabbing all required values
833 *-------------------------------------------
834 */
835 fSM_A0 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A0, 1000000),
836 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
837 fSM_A1 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A1, 1000000),
838 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
839 fSM_A2 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A2, 100000),
840 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
841 fSM_A3 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A3, 1000000),
842 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
843 fSM_A4 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A4, 1000000),
844 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
845 fSM_A5 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A5, 1000),
846 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
847 fSM_A6 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A6, 1000),
848 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
849 fSM_A7 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A7, 1000),
850 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
851
852 fMargin_RO_a = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_a);
853 fMargin_RO_b = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_b);
854 fMargin_RO_c = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_c);
855
856 fMargin_fixed = ConvertToFraction(getASICProfilingInfo->ulMargin_fixed);
857
858 fMargin_FMAX_mean = GetScaledFraction(
859 getASICProfilingInfo->ulMargin_Fmax_mean, 10000);
860 fMargin_Plat_mean = GetScaledFraction(
861 getASICProfilingInfo->ulMargin_plat_mean, 10000);
862 fMargin_FMAX_sigma = GetScaledFraction(
863 getASICProfilingInfo->ulMargin_Fmax_sigma, 10000);
864 fMargin_Plat_sigma = GetScaledFraction(
865 getASICProfilingInfo->ulMargin_plat_sigma, 10000);
866
867 fMargin_DC_sigma = GetScaledFraction(
868 getASICProfilingInfo->ulMargin_DC_sigma, 100);
869 fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
870
871 fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
872 fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
873 fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
874 fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
875 fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
876
877 fSclk = GetScaledFraction(sclk, 100);
878
879 fV_max = fDivide(GetScaledFraction(
880 getASICProfilingInfo->ulMaxVddc, 1000), ConvertToFraction(4));
881 fT_prod = GetScaledFraction(getASICProfilingInfo->ulBoardCoreTemp, 10);
882 fLKG_Factor = GetScaledFraction(getASICProfilingInfo->ulEvvLkgFactor, 100);
883 fT_FT = GetScaledFraction(getASICProfilingInfo->ulLeakageTemp, 10);
884 fV_FT = fDivide(GetScaledFraction(
885 getASICProfilingInfo->ulLeakageVoltage, 1000), ConvertToFraction(4));
886 fV_min = fDivide(GetScaledFraction(
887 getASICProfilingInfo->ulMinVddc, 1000), ConvertToFraction(4));
888
889 /*-----------------------
890 * PART 3
891 *-----------------------
892 */
893
894 fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4,fSclk), fSM_A5));
895 fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
896 fC_Term = fAdd(fMargin_RO_c,
897 fAdd(fMultiply(fSM_A0,fLkg_FT),
898 fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT,fSclk)),
899 fAdd(fMultiply(fSM_A3, fSclk),
900 fSubtract(fSM_A7,fRO_fused)))));
901
902 fVDDC_base = fSubtract(fRO_fused,
903 fSubtract(fMargin_RO_c,
904 fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
905 fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0,fSclk), fSM_A2));
906
907 repeat = fSubtract(fVDDC_base,
908 fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
909
910 fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
911 fGetSquare(repeat)),
912 fAdd(fMultiply(fMargin_RO_b, repeat),
913 fMargin_RO_c));
914
915 fDC_SCLK = fSubtract(fRO_fused,
916 fSubtract(fRO_DC_margin,
917 fSubtract(fSM_A3,
918 fMultiply(fSM_A2, repeat))));
919 fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0,repeat), fSM_A1));
920
921 fSigma_DC = fSubtract(fSclk, fDC_SCLK);
922
923 fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
924 fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
925 fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
926 fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
927
928 fSquared_Sigma_DC = fGetSquare(fSigma_DC);
929 fSquared_Sigma_CR = fGetSquare(fSigma_CR);
930 fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
931
932 fSclk_margin = fAdd(fMicro_FMAX,
933 fAdd(fMicro_CR,
934 fAdd(fMargin_fixed,
935 fSqrt(fAdd(fSquared_Sigma_FMAX,
936 fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
937 /*
938 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
939 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
940 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
941 */
942
943 fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
944 fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
945 fC_Term = fAdd(fRO_DC_margin,
946 fAdd(fMultiply(fSM_A0, fLkg_FT),
947 fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
948 fAdd(fSclk, fSclk_margin)),
949 fAdd(fMultiply(fSM_A3,
950 fAdd(fSclk, fSclk_margin)),
951 fSubtract(fSM_A7, fRO_fused)))));
952
953 SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
954
955 if (GreaterThan(fRoots[0], fRoots[1]))
956 fEVV_V = fRoots[1];
957 else
958 fEVV_V = fRoots[0];
959
960 if (GreaterThan(fV_min, fEVV_V))
961 fEVV_V = fV_min;
962 else if (GreaterThan(fEVV_V, fV_max))
963 fEVV_V = fSubtract(fV_max, fStepSize);
964
965 fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
966
967 /*-----------------
968 * PART 4
969 *-----------------
970 */
971
972 fV_x = fV_min;
973
974 while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
975 fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
976 fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
977 fGetSquare(fV_x)), fDerateTDP);
978
979 fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
980 fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
981 fT_prod), fKv_b_fused), fV_x)), fV_x)));
982 fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
983 fKt_Beta_fused, fT_prod)));
984 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
985 fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
986 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
987 fKt_Beta_fused, fT_FT)));
988
989 fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
990
991 fTDP_Current = fDivide(fTDP_Power, fV_x);
992
993 fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
994 ConvertToFraction(10)));
995
996 fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
997
998 if (GreaterThan(fV_max, fV_NL) &&
999 (GreaterThan(fV_NL,fEVV_V) ||
1000 Equal(fV_NL, fEVV_V))) {
1001 fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1002
1003 *voltage = (uint16_t)fV_NL.partial.real;
1004 break;
1005 } else
1006 fV_x = fAdd(fV_x, fStepSize);
1007 }
1008
1009 return result;
1010 }
1011
1012 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1013 * @param hwmgr input: pointer to hwManager
1014 * @param voltage_type input: type of EVV voltage VDDC or VDDGFX
1015 * @param sclk input: in 10Khz unit. DPM state SCLK frequency
1016 * which is define in PPTable SCLK/VDDC dependence
1017 * table associated with this virtual_voltage_Id
1018 * @param virtual_voltage_Id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1019 * @param voltage output: real voltage level in unit of mv
1020 */
1021 int atomctrl_get_voltage_evv_on_sclk(
1022 struct pp_hwmgr *hwmgr,
1023 uint8_t voltage_type,
1024 uint32_t sclk, uint16_t virtual_voltage_Id,
1025 uint16_t *voltage)
1026 {
1027 int result;
1028 GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1029
1030 get_voltage_info_param_space.ucVoltageType =
1031 voltage_type;
1032 get_voltage_info_param_space.ucVoltageMode =
1033 ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1034 get_voltage_info_param_space.usVoltageLevel =
1035 virtual_voltage_Id;
1036 get_voltage_info_param_space.ulSCLKFreq =
1037 sclk;
1038
1039 result = cgs_atom_exec_cmd_table(hwmgr->device,
1040 GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1041 &get_voltage_info_param_space);
1042
1043 if (0 != result)
1044 return result;
1045
1046 *voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1047 (&get_voltage_info_param_space))->usVoltageLevel;
1048
1049 return result;
1050 }
1051
1052 /**
1053 * Get the mpll reference clock in 10KHz
1054 */
1055 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1056 {
1057 ATOM_COMMON_TABLE_HEADER *fw_info;
1058 uint32_t clock;
1059 u8 frev, crev;
1060 u16 size;
1061
1062 fw_info = (ATOM_COMMON_TABLE_HEADER *)
1063 cgs_atom_get_data_table(hwmgr->device,
1064 GetIndexIntoMasterTable(DATA, FirmwareInfo),
1065 &size, &frev, &crev);
1066
1067 if (fw_info == NULL)
1068 clock = 2700;
1069 else {
1070 if ((fw_info->ucTableFormatRevision == 2) &&
1071 (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1072 ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1073 (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1074 clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1075 } else {
1076 ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1077 (ATOM_FIRMWARE_INFO *)fw_info;
1078 clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1079 }
1080 }
1081
1082 return clock;
1083 }
1084
1085 /**
1086 * Get the asic internal spread spectrum table
1087 */
1088 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1089 {
1090 ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1091 u8 frev, crev;
1092 u16 size;
1093
1094 table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1095 cgs_atom_get_data_table(device,
1096 GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1097 &size, &frev, &crev);
1098
1099 return table;
1100 }
1101
1102 /**
1103 * Get the asic internal spread spectrum assignment
1104 */
1105 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1106 const uint8_t clockSource,
1107 const uint32_t clockSpeed,
1108 pp_atomctrl_internal_ss_info *ssEntry)
1109 {
1110 ATOM_ASIC_INTERNAL_SS_INFO *table;
1111 ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1112 int entry_found = 0;
1113
1114 memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1115
1116 table = asic_internal_ss_get_ss_table(hwmgr->device);
1117
1118 if (NULL == table)
1119 return -1;
1120
1121 ssInfo = &table->asSpreadSpectrum[0];
1122
1123 while (((uint8_t *)ssInfo - (uint8_t *)table) <
1124 le16_to_cpu(table->sHeader.usStructureSize)) {
1125 if ((clockSource == ssInfo->ucClockIndication) &&
1126 ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1127 entry_found = 1;
1128 break;
1129 }
1130
1131 ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1132 sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1133 }
1134
1135 if (entry_found) {
1136 ssEntry->speed_spectrum_percentage =
1137 ssInfo->usSpreadSpectrumPercentage;
1138 ssEntry->speed_spectrum_rate = ssInfo->usSpreadRateInKhz;
1139
1140 if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1141 (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1142 (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1143 ssEntry->speed_spectrum_rate /= 100;
1144 }
1145
1146 switch (ssInfo->ucSpreadSpectrumMode) {
1147 case 0:
1148 ssEntry->speed_spectrum_mode =
1149 pp_atomctrl_spread_spectrum_mode_down;
1150 break;
1151 case 1:
1152 ssEntry->speed_spectrum_mode =
1153 pp_atomctrl_spread_spectrum_mode_center;
1154 break;
1155 default:
1156 ssEntry->speed_spectrum_mode =
1157 pp_atomctrl_spread_spectrum_mode_down;
1158 break;
1159 }
1160 }
1161
1162 return entry_found ? 0 : 1;
1163 }
1164
1165 /**
1166 * Get the memory clock spread spectrum info
1167 */
1168 int atomctrl_get_memory_clock_spread_spectrum(
1169 struct pp_hwmgr *hwmgr,
1170 const uint32_t memory_clock,
1171 pp_atomctrl_internal_ss_info *ssInfo)
1172 {
1173 return asic_internal_ss_get_ss_asignment(hwmgr,
1174 ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1175 }
1176 /**
1177 * Get the engine clock spread spectrum info
1178 */
1179 int atomctrl_get_engine_clock_spread_spectrum(
1180 struct pp_hwmgr *hwmgr,
1181 const uint32_t engine_clock,
1182 pp_atomctrl_internal_ss_info *ssInfo)
1183 {
1184 return asic_internal_ss_get_ss_asignment(hwmgr,
1185 ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1186 }
1187
1188 int atomctrl_read_efuse(void *device, uint16_t start_index,
1189 uint16_t end_index, uint32_t mask, uint32_t *efuse)
1190 {
1191 int result;
1192 READ_EFUSE_VALUE_PARAMETER efuse_param;
1193
1194 efuse_param.sEfuse.usEfuseIndex = (start_index / 32) * 4;
1195 efuse_param.sEfuse.ucBitShift = (uint8_t)
1196 (start_index - ((start_index / 32) * 32));
1197 efuse_param.sEfuse.ucBitLength = (uint8_t)
1198 ((end_index - start_index) + 1);
1199
1200 result = cgs_atom_exec_cmd_table(device,
1201 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1202 &efuse_param);
1203 if (!result)
1204 *efuse = efuse_param.ulEfuseValue & mask;
1205
1206 return result;
1207 }
This page took 0.055827 seconds and 5 git commands to generate.