drm/modes: drop __drm_framebuffer_unregister.
[deliverable/linux.git] / drivers / gpu / drm / drm_drv.c
1 /*
2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3 *
4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5 * All Rights Reserved.
6 *
7 * Author Rickard E. (Rik) Faith <faith@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_core.h>
37 #include "drm_legacy.h"
38 #include "drm_internal.h"
39
40 /*
41 * drm_debug: Enable debug output.
42 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details.
43 */
44 unsigned int drm_debug = 0;
45 EXPORT_SYMBOL(drm_debug);
46
47 MODULE_AUTHOR(CORE_AUTHOR);
48 MODULE_DESCRIPTION(CORE_DESC);
49 MODULE_LICENSE("GPL and additional rights");
50 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
51 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n"
52 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n"
53 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n"
54 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n"
55 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n"
56 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)");
57 module_param_named(debug, drm_debug, int, 0600);
58
59 static DEFINE_SPINLOCK(drm_minor_lock);
60 static struct idr drm_minors_idr;
61
62 static struct dentry *drm_debugfs_root;
63
64 void drm_err(const char *format, ...)
65 {
66 struct va_format vaf;
67 va_list args;
68
69 va_start(args, format);
70
71 vaf.fmt = format;
72 vaf.va = &args;
73
74 printk(KERN_ERR "[" DRM_NAME ":%ps] *ERROR* %pV",
75 __builtin_return_address(0), &vaf);
76
77 va_end(args);
78 }
79 EXPORT_SYMBOL(drm_err);
80
81 void drm_ut_debug_printk(const char *function_name, const char *format, ...)
82 {
83 struct va_format vaf;
84 va_list args;
85
86 va_start(args, format);
87 vaf.fmt = format;
88 vaf.va = &args;
89
90 printk(KERN_DEBUG "[" DRM_NAME ":%s] %pV", function_name, &vaf);
91
92 va_end(args);
93 }
94 EXPORT_SYMBOL(drm_ut_debug_printk);
95
96 struct drm_master *drm_master_create(struct drm_minor *minor)
97 {
98 struct drm_master *master;
99
100 master = kzalloc(sizeof(*master), GFP_KERNEL);
101 if (!master)
102 return NULL;
103
104 kref_init(&master->refcount);
105 spin_lock_init(&master->lock.spinlock);
106 init_waitqueue_head(&master->lock.lock_queue);
107 idr_init(&master->magic_map);
108 master->minor = minor;
109
110 return master;
111 }
112
113 struct drm_master *drm_master_get(struct drm_master *master)
114 {
115 kref_get(&master->refcount);
116 return master;
117 }
118 EXPORT_SYMBOL(drm_master_get);
119
120 static void drm_master_destroy(struct kref *kref)
121 {
122 struct drm_master *master = container_of(kref, struct drm_master, refcount);
123 struct drm_device *dev = master->minor->dev;
124 struct drm_map_list *r_list, *list_temp;
125
126 mutex_lock(&dev->struct_mutex);
127 if (dev->driver->master_destroy)
128 dev->driver->master_destroy(dev, master);
129
130 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) {
131 if (r_list->master == master) {
132 drm_legacy_rmmap_locked(dev, r_list->map);
133 r_list = NULL;
134 }
135 }
136 mutex_unlock(&dev->struct_mutex);
137
138 idr_destroy(&master->magic_map);
139 kfree(master->unique);
140 kfree(master);
141 }
142
143 void drm_master_put(struct drm_master **master)
144 {
145 kref_put(&(*master)->refcount, drm_master_destroy);
146 *master = NULL;
147 }
148 EXPORT_SYMBOL(drm_master_put);
149
150 int drm_setmaster_ioctl(struct drm_device *dev, void *data,
151 struct drm_file *file_priv)
152 {
153 int ret = 0;
154
155 mutex_lock(&dev->master_mutex);
156 if (file_priv->is_master)
157 goto out_unlock;
158
159 if (file_priv->minor->master) {
160 ret = -EINVAL;
161 goto out_unlock;
162 }
163
164 if (!file_priv->master) {
165 ret = -EINVAL;
166 goto out_unlock;
167 }
168
169 if (!file_priv->allowed_master) {
170 ret = drm_new_set_master(dev, file_priv);
171 goto out_unlock;
172 }
173
174 file_priv->minor->master = drm_master_get(file_priv->master);
175 file_priv->is_master = 1;
176 if (dev->driver->master_set) {
177 ret = dev->driver->master_set(dev, file_priv, false);
178 if (unlikely(ret != 0)) {
179 file_priv->is_master = 0;
180 drm_master_put(&file_priv->minor->master);
181 }
182 }
183
184 out_unlock:
185 mutex_unlock(&dev->master_mutex);
186 return ret;
187 }
188
189 int drm_dropmaster_ioctl(struct drm_device *dev, void *data,
190 struct drm_file *file_priv)
191 {
192 int ret = -EINVAL;
193
194 mutex_lock(&dev->master_mutex);
195 if (!file_priv->is_master)
196 goto out_unlock;
197
198 if (!file_priv->minor->master)
199 goto out_unlock;
200
201 ret = 0;
202 if (dev->driver->master_drop)
203 dev->driver->master_drop(dev, file_priv, false);
204 drm_master_put(&file_priv->minor->master);
205 file_priv->is_master = 0;
206
207 out_unlock:
208 mutex_unlock(&dev->master_mutex);
209 return ret;
210 }
211
212 /*
213 * DRM Minors
214 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
215 * of them is represented by a drm_minor object. Depending on the capabilities
216 * of the device-driver, different interfaces are registered.
217 *
218 * Minors can be accessed via dev->$minor_name. This pointer is either
219 * NULL or a valid drm_minor pointer and stays valid as long as the device is
220 * valid. This means, DRM minors have the same life-time as the underlying
221 * device. However, this doesn't mean that the minor is active. Minors are
222 * registered and unregistered dynamically according to device-state.
223 */
224
225 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
226 unsigned int type)
227 {
228 switch (type) {
229 case DRM_MINOR_LEGACY:
230 return &dev->primary;
231 case DRM_MINOR_RENDER:
232 return &dev->render;
233 case DRM_MINOR_CONTROL:
234 return &dev->control;
235 default:
236 return NULL;
237 }
238 }
239
240 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
241 {
242 struct drm_minor *minor;
243 unsigned long flags;
244 int r;
245
246 minor = kzalloc(sizeof(*minor), GFP_KERNEL);
247 if (!minor)
248 return -ENOMEM;
249
250 minor->type = type;
251 minor->dev = dev;
252
253 idr_preload(GFP_KERNEL);
254 spin_lock_irqsave(&drm_minor_lock, flags);
255 r = idr_alloc(&drm_minors_idr,
256 NULL,
257 64 * type,
258 64 * (type + 1),
259 GFP_NOWAIT);
260 spin_unlock_irqrestore(&drm_minor_lock, flags);
261 idr_preload_end();
262
263 if (r < 0)
264 goto err_free;
265
266 minor->index = r;
267
268 minor->kdev = drm_sysfs_minor_alloc(minor);
269 if (IS_ERR(minor->kdev)) {
270 r = PTR_ERR(minor->kdev);
271 goto err_index;
272 }
273
274 *drm_minor_get_slot(dev, type) = minor;
275 return 0;
276
277 err_index:
278 spin_lock_irqsave(&drm_minor_lock, flags);
279 idr_remove(&drm_minors_idr, minor->index);
280 spin_unlock_irqrestore(&drm_minor_lock, flags);
281 err_free:
282 kfree(minor);
283 return r;
284 }
285
286 static void drm_minor_free(struct drm_device *dev, unsigned int type)
287 {
288 struct drm_minor **slot, *minor;
289 unsigned long flags;
290
291 slot = drm_minor_get_slot(dev, type);
292 minor = *slot;
293 if (!minor)
294 return;
295
296 put_device(minor->kdev);
297
298 spin_lock_irqsave(&drm_minor_lock, flags);
299 idr_remove(&drm_minors_idr, minor->index);
300 spin_unlock_irqrestore(&drm_minor_lock, flags);
301
302 kfree(minor);
303 *slot = NULL;
304 }
305
306 static int drm_minor_register(struct drm_device *dev, unsigned int type)
307 {
308 struct drm_minor *minor;
309 unsigned long flags;
310 int ret;
311
312 DRM_DEBUG("\n");
313
314 minor = *drm_minor_get_slot(dev, type);
315 if (!minor)
316 return 0;
317
318 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
319 if (ret) {
320 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
321 return ret;
322 }
323
324 ret = device_add(minor->kdev);
325 if (ret)
326 goto err_debugfs;
327
328 /* replace NULL with @minor so lookups will succeed from now on */
329 spin_lock_irqsave(&drm_minor_lock, flags);
330 idr_replace(&drm_minors_idr, minor, minor->index);
331 spin_unlock_irqrestore(&drm_minor_lock, flags);
332
333 DRM_DEBUG("new minor registered %d\n", minor->index);
334 return 0;
335
336 err_debugfs:
337 drm_debugfs_cleanup(minor);
338 return ret;
339 }
340
341 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
342 {
343 struct drm_minor *minor;
344 unsigned long flags;
345
346 minor = *drm_minor_get_slot(dev, type);
347 if (!minor || !device_is_registered(minor->kdev))
348 return;
349
350 /* replace @minor with NULL so lookups will fail from now on */
351 spin_lock_irqsave(&drm_minor_lock, flags);
352 idr_replace(&drm_minors_idr, NULL, minor->index);
353 spin_unlock_irqrestore(&drm_minor_lock, flags);
354
355 device_del(minor->kdev);
356 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
357 drm_debugfs_cleanup(minor);
358 }
359
360 /**
361 * drm_minor_acquire - Acquire a DRM minor
362 * @minor_id: Minor ID of the DRM-minor
363 *
364 * Looks up the given minor-ID and returns the respective DRM-minor object. The
365 * refence-count of the underlying device is increased so you must release this
366 * object with drm_minor_release().
367 *
368 * As long as you hold this minor, it is guaranteed that the object and the
369 * minor->dev pointer will stay valid! However, the device may get unplugged and
370 * unregistered while you hold the minor.
371 *
372 * Returns:
373 * Pointer to minor-object with increased device-refcount, or PTR_ERR on
374 * failure.
375 */
376 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
377 {
378 struct drm_minor *minor;
379 unsigned long flags;
380
381 spin_lock_irqsave(&drm_minor_lock, flags);
382 minor = idr_find(&drm_minors_idr, minor_id);
383 if (minor)
384 drm_dev_ref(minor->dev);
385 spin_unlock_irqrestore(&drm_minor_lock, flags);
386
387 if (!minor) {
388 return ERR_PTR(-ENODEV);
389 } else if (drm_device_is_unplugged(minor->dev)) {
390 drm_dev_unref(minor->dev);
391 return ERR_PTR(-ENODEV);
392 }
393
394 return minor;
395 }
396
397 /**
398 * drm_minor_release - Release DRM minor
399 * @minor: Pointer to DRM minor object
400 *
401 * Release a minor that was previously acquired via drm_minor_acquire().
402 */
403 void drm_minor_release(struct drm_minor *minor)
404 {
405 drm_dev_unref(minor->dev);
406 }
407
408 /**
409 * DOC: driver instance overview
410 *
411 * A device instance for a drm driver is represented by struct &drm_device. This
412 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe()
413 * callbacks implemented by the driver. The driver then needs to initialize all
414 * the various subsystems for the drm device like memory management, vblank
415 * handling, modesetting support and intial output configuration plus obviously
416 * initialize all the corresponding hardware bits. An important part of this is
417 * also calling drm_dev_set_unique() to set the userspace-visible unique name of
418 * this device instance. Finally when everything is up and running and ready for
419 * userspace the device instance can be published using drm_dev_register().
420 *
421 * There is also deprecated support for initalizing device instances using
422 * bus-specific helpers and the ->load() callback. But due to
423 * backwards-compatibility needs the device instance have to be published too
424 * early, which requires unpretty global locking to make safe and is therefore
425 * only support for existing drivers not yet converted to the new scheme.
426 *
427 * When cleaning up a device instance everything needs to be done in reverse:
428 * First unpublish the device instance with drm_dev_unregister(). Then clean up
429 * any other resources allocated at device initialization and drop the driver's
430 * reference to &drm_device using drm_dev_unref().
431 *
432 * Note that the lifetime rules for &drm_device instance has still a lot of
433 * historical baggage. Hence use the reference counting provided by
434 * drm_dev_ref() and drm_dev_unref() only carefully.
435 *
436 * Also note that embedding of &drm_device is currently not (yet) supported (but
437 * it would be easy to add). Drivers can store driver-private data in the
438 * dev_priv field of &drm_device.
439 */
440
441 /**
442 * drm_put_dev - Unregister and release a DRM device
443 * @dev: DRM device
444 *
445 * Called at module unload time or when a PCI device is unplugged.
446 *
447 * Cleans up all DRM device, calling drm_lastclose().
448 *
449 * Note: Use of this function is deprecated. It will eventually go away
450 * completely. Please use drm_dev_unregister() and drm_dev_unref() explicitly
451 * instead to make sure that the device isn't userspace accessible any more
452 * while teardown is in progress, ensuring that userspace can't access an
453 * inconsistent state.
454 */
455 void drm_put_dev(struct drm_device *dev)
456 {
457 DRM_DEBUG("\n");
458
459 if (!dev) {
460 DRM_ERROR("cleanup called no dev\n");
461 return;
462 }
463
464 drm_dev_unregister(dev);
465 drm_dev_unref(dev);
466 }
467 EXPORT_SYMBOL(drm_put_dev);
468
469 void drm_unplug_dev(struct drm_device *dev)
470 {
471 /* for a USB device */
472 drm_minor_unregister(dev, DRM_MINOR_LEGACY);
473 drm_minor_unregister(dev, DRM_MINOR_RENDER);
474 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
475
476 mutex_lock(&drm_global_mutex);
477
478 drm_device_set_unplugged(dev);
479
480 if (dev->open_count == 0) {
481 drm_put_dev(dev);
482 }
483 mutex_unlock(&drm_global_mutex);
484 }
485 EXPORT_SYMBOL(drm_unplug_dev);
486
487 /*
488 * DRM internal mount
489 * We want to be able to allocate our own "struct address_space" to control
490 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
491 * stand-alone address_space objects, so we need an underlying inode. As there
492 * is no way to allocate an independent inode easily, we need a fake internal
493 * VFS mount-point.
494 *
495 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
496 * frees it again. You are allowed to use iget() and iput() to get references to
497 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
498 * drm_fs_inode_free() call (which does not have to be the last iput()).
499 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
500 * between multiple inode-users. You could, technically, call
501 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
502 * iput(), but this way you'd end up with a new vfsmount for each inode.
503 */
504
505 static int drm_fs_cnt;
506 static struct vfsmount *drm_fs_mnt;
507
508 static const struct dentry_operations drm_fs_dops = {
509 .d_dname = simple_dname,
510 };
511
512 static const struct super_operations drm_fs_sops = {
513 .statfs = simple_statfs,
514 };
515
516 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
517 const char *dev_name, void *data)
518 {
519 return mount_pseudo(fs_type,
520 "drm:",
521 &drm_fs_sops,
522 &drm_fs_dops,
523 0x010203ff);
524 }
525
526 static struct file_system_type drm_fs_type = {
527 .name = "drm",
528 .owner = THIS_MODULE,
529 .mount = drm_fs_mount,
530 .kill_sb = kill_anon_super,
531 };
532
533 static struct inode *drm_fs_inode_new(void)
534 {
535 struct inode *inode;
536 int r;
537
538 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
539 if (r < 0) {
540 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
541 return ERR_PTR(r);
542 }
543
544 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
545 if (IS_ERR(inode))
546 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
547
548 return inode;
549 }
550
551 static void drm_fs_inode_free(struct inode *inode)
552 {
553 if (inode) {
554 iput(inode);
555 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
556 }
557 }
558
559 /**
560 * drm_dev_alloc - Allocate new DRM device
561 * @driver: DRM driver to allocate device for
562 * @parent: Parent device object
563 *
564 * Allocate and initialize a new DRM device. No device registration is done.
565 * Call drm_dev_register() to advertice the device to user space and register it
566 * with other core subsystems. This should be done last in the device
567 * initialization sequence to make sure userspace can't access an inconsistent
568 * state.
569 *
570 * The initial ref-count of the object is 1. Use drm_dev_ref() and
571 * drm_dev_unref() to take and drop further ref-counts.
572 *
573 * Note that for purely virtual devices @parent can be NULL.
574 *
575 * RETURNS:
576 * Pointer to new DRM device, or NULL if out of memory.
577 */
578 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
579 struct device *parent)
580 {
581 struct drm_device *dev;
582 int ret;
583
584 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
585 if (!dev)
586 return NULL;
587
588 kref_init(&dev->ref);
589 dev->dev = parent;
590 dev->driver = driver;
591
592 INIT_LIST_HEAD(&dev->filelist);
593 INIT_LIST_HEAD(&dev->ctxlist);
594 INIT_LIST_HEAD(&dev->vmalist);
595 INIT_LIST_HEAD(&dev->maplist);
596 INIT_LIST_HEAD(&dev->vblank_event_list);
597
598 spin_lock_init(&dev->buf_lock);
599 spin_lock_init(&dev->event_lock);
600 mutex_init(&dev->struct_mutex);
601 mutex_init(&dev->ctxlist_mutex);
602 mutex_init(&dev->master_mutex);
603
604 dev->anon_inode = drm_fs_inode_new();
605 if (IS_ERR(dev->anon_inode)) {
606 ret = PTR_ERR(dev->anon_inode);
607 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
608 goto err_free;
609 }
610
611 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
612 ret = drm_minor_alloc(dev, DRM_MINOR_CONTROL);
613 if (ret)
614 goto err_minors;
615
616 WARN_ON(driver->suspend || driver->resume);
617 }
618
619 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
620 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
621 if (ret)
622 goto err_minors;
623 }
624
625 ret = drm_minor_alloc(dev, DRM_MINOR_LEGACY);
626 if (ret)
627 goto err_minors;
628
629 if (drm_ht_create(&dev->map_hash, 12))
630 goto err_minors;
631
632 drm_legacy_ctxbitmap_init(dev);
633
634 if (drm_core_check_feature(dev, DRIVER_GEM)) {
635 ret = drm_gem_init(dev);
636 if (ret) {
637 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
638 goto err_ctxbitmap;
639 }
640 }
641
642 if (parent) {
643 ret = drm_dev_set_unique(dev, dev_name(parent));
644 if (ret)
645 goto err_setunique;
646 }
647
648 return dev;
649
650 err_setunique:
651 if (drm_core_check_feature(dev, DRIVER_GEM))
652 drm_gem_destroy(dev);
653 err_ctxbitmap:
654 drm_legacy_ctxbitmap_cleanup(dev);
655 drm_ht_remove(&dev->map_hash);
656 err_minors:
657 drm_minor_free(dev, DRM_MINOR_LEGACY);
658 drm_minor_free(dev, DRM_MINOR_RENDER);
659 drm_minor_free(dev, DRM_MINOR_CONTROL);
660 drm_fs_inode_free(dev->anon_inode);
661 err_free:
662 mutex_destroy(&dev->master_mutex);
663 kfree(dev);
664 return NULL;
665 }
666 EXPORT_SYMBOL(drm_dev_alloc);
667
668 static void drm_dev_release(struct kref *ref)
669 {
670 struct drm_device *dev = container_of(ref, struct drm_device, ref);
671
672 if (drm_core_check_feature(dev, DRIVER_GEM))
673 drm_gem_destroy(dev);
674
675 drm_legacy_ctxbitmap_cleanup(dev);
676 drm_ht_remove(&dev->map_hash);
677 drm_fs_inode_free(dev->anon_inode);
678
679 drm_minor_free(dev, DRM_MINOR_LEGACY);
680 drm_minor_free(dev, DRM_MINOR_RENDER);
681 drm_minor_free(dev, DRM_MINOR_CONTROL);
682
683 mutex_destroy(&dev->master_mutex);
684 kfree(dev->unique);
685 kfree(dev);
686 }
687
688 /**
689 * drm_dev_ref - Take reference of a DRM device
690 * @dev: device to take reference of or NULL
691 *
692 * This increases the ref-count of @dev by one. You *must* already own a
693 * reference when calling this. Use drm_dev_unref() to drop this reference
694 * again.
695 *
696 * This function never fails. However, this function does not provide *any*
697 * guarantee whether the device is alive or running. It only provides a
698 * reference to the object and the memory associated with it.
699 */
700 void drm_dev_ref(struct drm_device *dev)
701 {
702 if (dev)
703 kref_get(&dev->ref);
704 }
705 EXPORT_SYMBOL(drm_dev_ref);
706
707 /**
708 * drm_dev_unref - Drop reference of a DRM device
709 * @dev: device to drop reference of or NULL
710 *
711 * This decreases the ref-count of @dev by one. The device is destroyed if the
712 * ref-count drops to zero.
713 */
714 void drm_dev_unref(struct drm_device *dev)
715 {
716 if (dev)
717 kref_put(&dev->ref, drm_dev_release);
718 }
719 EXPORT_SYMBOL(drm_dev_unref);
720
721 /**
722 * drm_dev_register - Register DRM device
723 * @dev: Device to register
724 * @flags: Flags passed to the driver's .load() function
725 *
726 * Register the DRM device @dev with the system, advertise device to user-space
727 * and start normal device operation. @dev must be allocated via drm_dev_alloc()
728 * previously. Right after drm_dev_register() the driver should call
729 * drm_connector_register_all() to register all connectors in sysfs. This is
730 * a separate call for backward compatibility with drivers still using
731 * the deprecated ->load() callback, where connectors are registered from within
732 * the ->load() callback.
733 *
734 * Never call this twice on any device!
735 *
736 * NOTE: To ensure backward compatibility with existing drivers method this
737 * function calls the ->load() method after registering the device nodes,
738 * creating race conditions. Usage of the ->load() methods is therefore
739 * deprecated, drivers must perform all initialization before calling
740 * drm_dev_register().
741 *
742 * RETURNS:
743 * 0 on success, negative error code on failure.
744 */
745 int drm_dev_register(struct drm_device *dev, unsigned long flags)
746 {
747 int ret;
748
749 mutex_lock(&drm_global_mutex);
750
751 ret = drm_minor_register(dev, DRM_MINOR_CONTROL);
752 if (ret)
753 goto err_minors;
754
755 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
756 if (ret)
757 goto err_minors;
758
759 ret = drm_minor_register(dev, DRM_MINOR_LEGACY);
760 if (ret)
761 goto err_minors;
762
763 if (dev->driver->load) {
764 ret = dev->driver->load(dev, flags);
765 if (ret)
766 goto err_minors;
767 }
768
769 ret = 0;
770 goto out_unlock;
771
772 err_minors:
773 drm_minor_unregister(dev, DRM_MINOR_LEGACY);
774 drm_minor_unregister(dev, DRM_MINOR_RENDER);
775 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
776 out_unlock:
777 mutex_unlock(&drm_global_mutex);
778 return ret;
779 }
780 EXPORT_SYMBOL(drm_dev_register);
781
782 /**
783 * drm_dev_unregister - Unregister DRM device
784 * @dev: Device to unregister
785 *
786 * Unregister the DRM device from the system. This does the reverse of
787 * drm_dev_register() but does not deallocate the device. The caller must call
788 * drm_dev_unref() to drop their final reference.
789 *
790 * This should be called first in the device teardown code to make sure
791 * userspace can't access the device instance any more.
792 */
793 void drm_dev_unregister(struct drm_device *dev)
794 {
795 struct drm_map_list *r_list, *list_temp;
796
797 drm_lastclose(dev);
798
799 if (dev->driver->unload)
800 dev->driver->unload(dev);
801
802 if (dev->agp)
803 drm_pci_agp_destroy(dev);
804
805 drm_vblank_cleanup(dev);
806
807 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head)
808 drm_legacy_rmmap(dev, r_list->map);
809
810 drm_minor_unregister(dev, DRM_MINOR_LEGACY);
811 drm_minor_unregister(dev, DRM_MINOR_RENDER);
812 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
813 }
814 EXPORT_SYMBOL(drm_dev_unregister);
815
816 /**
817 * drm_dev_set_unique - Set the unique name of a DRM device
818 * @dev: device of which to set the unique name
819 * @name: unique name
820 *
821 * Sets the unique name of a DRM device using the specified string. Drivers
822 * can use this at driver probe time if the unique name of the devices they
823 * drive is static.
824 *
825 * Return: 0 on success or a negative error code on failure.
826 */
827 int drm_dev_set_unique(struct drm_device *dev, const char *name)
828 {
829 kfree(dev->unique);
830 dev->unique = kstrdup(name, GFP_KERNEL);
831
832 return dev->unique ? 0 : -ENOMEM;
833 }
834 EXPORT_SYMBOL(drm_dev_set_unique);
835
836 /*
837 * DRM Core
838 * The DRM core module initializes all global DRM objects and makes them
839 * available to drivers. Once setup, drivers can probe their respective
840 * devices.
841 * Currently, core management includes:
842 * - The "DRM-Global" key/value database
843 * - Global ID management for connectors
844 * - DRM major number allocation
845 * - DRM minor management
846 * - DRM sysfs class
847 * - DRM debugfs root
848 *
849 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
850 * interface registered on a DRM device, you can request minor numbers from DRM
851 * core. DRM core takes care of major-number management and char-dev
852 * registration. A stub ->open() callback forwards any open() requests to the
853 * registered minor.
854 */
855
856 static int drm_stub_open(struct inode *inode, struct file *filp)
857 {
858 const struct file_operations *new_fops;
859 struct drm_minor *minor;
860 int err;
861
862 DRM_DEBUG("\n");
863
864 mutex_lock(&drm_global_mutex);
865 minor = drm_minor_acquire(iminor(inode));
866 if (IS_ERR(minor)) {
867 err = PTR_ERR(minor);
868 goto out_unlock;
869 }
870
871 new_fops = fops_get(minor->dev->driver->fops);
872 if (!new_fops) {
873 err = -ENODEV;
874 goto out_release;
875 }
876
877 replace_fops(filp, new_fops);
878 if (filp->f_op->open)
879 err = filp->f_op->open(inode, filp);
880 else
881 err = 0;
882
883 out_release:
884 drm_minor_release(minor);
885 out_unlock:
886 mutex_unlock(&drm_global_mutex);
887 return err;
888 }
889
890 static const struct file_operations drm_stub_fops = {
891 .owner = THIS_MODULE,
892 .open = drm_stub_open,
893 .llseek = noop_llseek,
894 };
895
896 static int __init drm_core_init(void)
897 {
898 int ret = -ENOMEM;
899
900 drm_global_init();
901 drm_connector_ida_init();
902 idr_init(&drm_minors_idr);
903
904 if (register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops))
905 goto err_p1;
906
907 ret = drm_sysfs_init();
908 if (ret < 0) {
909 printk(KERN_ERR "DRM: Error creating drm class.\n");
910 goto err_p2;
911 }
912
913 drm_debugfs_root = debugfs_create_dir("dri", NULL);
914 if (!drm_debugfs_root) {
915 DRM_ERROR("Cannot create /sys/kernel/debug/dri\n");
916 ret = -1;
917 goto err_p3;
918 }
919
920 DRM_INFO("Initialized %s %d.%d.%d %s\n",
921 CORE_NAME, CORE_MAJOR, CORE_MINOR, CORE_PATCHLEVEL, CORE_DATE);
922 return 0;
923 err_p3:
924 drm_sysfs_destroy();
925 err_p2:
926 unregister_chrdev(DRM_MAJOR, "drm");
927
928 idr_destroy(&drm_minors_idr);
929 err_p1:
930 return ret;
931 }
932
933 static void __exit drm_core_exit(void)
934 {
935 debugfs_remove(drm_debugfs_root);
936 drm_sysfs_destroy();
937
938 unregister_chrdev(DRM_MAJOR, "drm");
939
940 drm_connector_ida_destroy();
941 idr_destroy(&drm_minors_idr);
942 }
943
944 module_init(drm_core_init);
945 module_exit(drm_core_exit);
This page took 0.049941 seconds and 5 git commands to generate.