drm/edid: Expose mandatory stereo modes for HDMI sinks
[deliverable/linux.git] / drivers / gpu / drm / drm_edid.c
1 /*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_edid.h>
37
38 #define version_greater(edid, maj, min) \
39 (((edid)->version > (maj)) || \
40 ((edid)->version == (maj) && (edid)->revision > (min)))
41
42 #define EDID_EST_TIMINGS 16
43 #define EDID_STD_TIMINGS 8
44 #define EDID_DETAILED_TIMINGS 4
45
46 /*
47 * EDID blocks out in the wild have a variety of bugs, try to collect
48 * them here (note that userspace may work around broken monitors first,
49 * but fixes should make their way here so that the kernel "just works"
50 * on as many displays as possible).
51 */
52
53 /* First detailed mode wrong, use largest 60Hz mode */
54 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
55 /* Reported 135MHz pixel clock is too high, needs adjustment */
56 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
57 /* Prefer the largest mode at 75 Hz */
58 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
59 /* Detail timing is in cm not mm */
60 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
61 /* Detailed timing descriptors have bogus size values, so just take the
62 * maximum size and use that.
63 */
64 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
65 /* Monitor forgot to set the first detailed is preferred bit. */
66 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
67 /* use +hsync +vsync for detailed mode */
68 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
69 /* Force reduced-blanking timings for detailed modes */
70 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
71
72 struct detailed_mode_closure {
73 struct drm_connector *connector;
74 struct edid *edid;
75 bool preferred;
76 u32 quirks;
77 int modes;
78 };
79
80 #define LEVEL_DMT 0
81 #define LEVEL_GTF 1
82 #define LEVEL_GTF2 2
83 #define LEVEL_CVT 3
84
85 static struct edid_quirk {
86 char vendor[4];
87 int product_id;
88 u32 quirks;
89 } edid_quirk_list[] = {
90 /* Acer AL1706 */
91 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
92 /* Acer F51 */
93 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
94 /* Unknown Acer */
95 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
96
97 /* Belinea 10 15 55 */
98 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
99 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
100
101 /* Envision Peripherals, Inc. EN-7100e */
102 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
103 /* Envision EN2028 */
104 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
105
106 /* Funai Electronics PM36B */
107 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
108 EDID_QUIRK_DETAILED_IN_CM },
109
110 /* LG Philips LCD LP154W01-A5 */
111 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
112 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
113
114 /* Philips 107p5 CRT */
115 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
116
117 /* Proview AY765C */
118 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
119
120 /* Samsung SyncMaster 205BW. Note: irony */
121 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
122 /* Samsung SyncMaster 22[5-6]BW */
123 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
124 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
125
126 /* ViewSonic VA2026w */
127 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
128
129 /* Medion MD 30217 PG */
130 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
131 };
132
133 /*
134 * Autogenerated from the DMT spec.
135 * This table is copied from xfree86/modes/xf86EdidModes.c.
136 */
137 static const struct drm_display_mode drm_dmt_modes[] = {
138 /* 640x350@85Hz */
139 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
140 736, 832, 0, 350, 382, 385, 445, 0,
141 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
142 /* 640x400@85Hz */
143 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
144 736, 832, 0, 400, 401, 404, 445, 0,
145 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
146 /* 720x400@85Hz */
147 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
148 828, 936, 0, 400, 401, 404, 446, 0,
149 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
150 /* 640x480@60Hz */
151 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
152 752, 800, 0, 480, 489, 492, 525, 0,
153 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
154 /* 640x480@72Hz */
155 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
156 704, 832, 0, 480, 489, 492, 520, 0,
157 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
158 /* 640x480@75Hz */
159 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
160 720, 840, 0, 480, 481, 484, 500, 0,
161 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
162 /* 640x480@85Hz */
163 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
164 752, 832, 0, 480, 481, 484, 509, 0,
165 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
166 /* 800x600@56Hz */
167 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
168 896, 1024, 0, 600, 601, 603, 625, 0,
169 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
170 /* 800x600@60Hz */
171 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
172 968, 1056, 0, 600, 601, 605, 628, 0,
173 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
174 /* 800x600@72Hz */
175 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
176 976, 1040, 0, 600, 637, 643, 666, 0,
177 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
178 /* 800x600@75Hz */
179 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
180 896, 1056, 0, 600, 601, 604, 625, 0,
181 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
182 /* 800x600@85Hz */
183 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
184 896, 1048, 0, 600, 601, 604, 631, 0,
185 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
186 /* 800x600@120Hz RB */
187 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
188 880, 960, 0, 600, 603, 607, 636, 0,
189 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
190 /* 848x480@60Hz */
191 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
192 976, 1088, 0, 480, 486, 494, 517, 0,
193 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
194 /* 1024x768@43Hz, interlace */
195 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
196 1208, 1264, 0, 768, 768, 772, 817, 0,
197 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
198 DRM_MODE_FLAG_INTERLACE) },
199 /* 1024x768@60Hz */
200 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
201 1184, 1344, 0, 768, 771, 777, 806, 0,
202 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
203 /* 1024x768@70Hz */
204 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
205 1184, 1328, 0, 768, 771, 777, 806, 0,
206 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
207 /* 1024x768@75Hz */
208 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
209 1136, 1312, 0, 768, 769, 772, 800, 0,
210 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
211 /* 1024x768@85Hz */
212 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
213 1168, 1376, 0, 768, 769, 772, 808, 0,
214 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
215 /* 1024x768@120Hz RB */
216 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
217 1104, 1184, 0, 768, 771, 775, 813, 0,
218 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
219 /* 1152x864@75Hz */
220 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
221 1344, 1600, 0, 864, 865, 868, 900, 0,
222 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
223 /* 1280x768@60Hz RB */
224 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
225 1360, 1440, 0, 768, 771, 778, 790, 0,
226 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
227 /* 1280x768@60Hz */
228 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
229 1472, 1664, 0, 768, 771, 778, 798, 0,
230 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
231 /* 1280x768@75Hz */
232 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
233 1488, 1696, 0, 768, 771, 778, 805, 0,
234 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
235 /* 1280x768@85Hz */
236 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
237 1496, 1712, 0, 768, 771, 778, 809, 0,
238 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
239 /* 1280x768@120Hz RB */
240 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
241 1360, 1440, 0, 768, 771, 778, 813, 0,
242 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
243 /* 1280x800@60Hz RB */
244 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
245 1360, 1440, 0, 800, 803, 809, 823, 0,
246 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
247 /* 1280x800@60Hz */
248 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
249 1480, 1680, 0, 800, 803, 809, 831, 0,
250 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 /* 1280x800@75Hz */
252 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
253 1488, 1696, 0, 800, 803, 809, 838, 0,
254 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 /* 1280x800@85Hz */
256 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
257 1496, 1712, 0, 800, 803, 809, 843, 0,
258 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 /* 1280x800@120Hz RB */
260 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
261 1360, 1440, 0, 800, 803, 809, 847, 0,
262 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 /* 1280x960@60Hz */
264 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
265 1488, 1800, 0, 960, 961, 964, 1000, 0,
266 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
267 /* 1280x960@85Hz */
268 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
269 1504, 1728, 0, 960, 961, 964, 1011, 0,
270 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
271 /* 1280x960@120Hz RB */
272 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
273 1360, 1440, 0, 960, 963, 967, 1017, 0,
274 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 /* 1280x1024@60Hz */
276 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
277 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
278 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 /* 1280x1024@75Hz */
280 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
281 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
282 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 /* 1280x1024@85Hz */
284 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
285 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
286 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287 /* 1280x1024@120Hz RB */
288 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
289 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
290 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
291 /* 1360x768@60Hz */
292 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
293 1536, 1792, 0, 768, 771, 777, 795, 0,
294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 /* 1360x768@120Hz RB */
296 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
297 1440, 1520, 0, 768, 771, 776, 813, 0,
298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 /* 1400x1050@60Hz RB */
300 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
301 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
302 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
303 /* 1400x1050@60Hz */
304 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
305 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
306 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
307 /* 1400x1050@75Hz */
308 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
309 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
310 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
311 /* 1400x1050@85Hz */
312 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
313 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
314 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
315 /* 1400x1050@120Hz RB */
316 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
317 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
318 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
319 /* 1440x900@60Hz RB */
320 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
321 1520, 1600, 0, 900, 903, 909, 926, 0,
322 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
323 /* 1440x900@60Hz */
324 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
325 1672, 1904, 0, 900, 903, 909, 934, 0,
326 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
327 /* 1440x900@75Hz */
328 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
329 1688, 1936, 0, 900, 903, 909, 942, 0,
330 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
331 /* 1440x900@85Hz */
332 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
333 1696, 1952, 0, 900, 903, 909, 948, 0,
334 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
335 /* 1440x900@120Hz RB */
336 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
337 1520, 1600, 0, 900, 903, 909, 953, 0,
338 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
339 /* 1600x1200@60Hz */
340 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
341 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
342 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
343 /* 1600x1200@65Hz */
344 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
345 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
346 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
347 /* 1600x1200@70Hz */
348 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
349 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
350 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
351 /* 1600x1200@75Hz */
352 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
353 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
354 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
355 /* 1600x1200@85Hz */
356 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
357 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
358 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
359 /* 1600x1200@120Hz RB */
360 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
361 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
362 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
363 /* 1680x1050@60Hz RB */
364 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
365 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
366 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
367 /* 1680x1050@60Hz */
368 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
369 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
370 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
371 /* 1680x1050@75Hz */
372 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
373 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
374 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
375 /* 1680x1050@85Hz */
376 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
377 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
378 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
379 /* 1680x1050@120Hz RB */
380 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
381 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
382 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
383 /* 1792x1344@60Hz */
384 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
385 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
386 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
387 /* 1792x1344@75Hz */
388 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
389 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
390 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
391 /* 1792x1344@120Hz RB */
392 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
393 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
394 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
395 /* 1856x1392@60Hz */
396 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
397 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
398 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
399 /* 1856x1392@75Hz */
400 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
401 2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
402 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
403 /* 1856x1392@120Hz RB */
404 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
405 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
406 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
407 /* 1920x1200@60Hz RB */
408 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
409 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
410 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
411 /* 1920x1200@60Hz */
412 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
413 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
414 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
415 /* 1920x1200@75Hz */
416 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
417 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
418 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
419 /* 1920x1200@85Hz */
420 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
421 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
422 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
423 /* 1920x1200@120Hz RB */
424 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
425 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
426 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
427 /* 1920x1440@60Hz */
428 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
429 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
430 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
431 /* 1920x1440@75Hz */
432 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
433 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
434 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
435 /* 1920x1440@120Hz RB */
436 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
437 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
438 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
439 /* 2560x1600@60Hz RB */
440 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
441 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
442 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
443 /* 2560x1600@60Hz */
444 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
445 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
446 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
447 /* 2560x1600@75HZ */
448 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
449 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
450 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
451 /* 2560x1600@85HZ */
452 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
453 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
454 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
455 /* 2560x1600@120Hz RB */
456 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
457 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
458 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
459 };
460
461 static const struct drm_display_mode edid_est_modes[] = {
462 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
463 968, 1056, 0, 600, 601, 605, 628, 0,
464 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
465 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
466 896, 1024, 0, 600, 601, 603, 625, 0,
467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
468 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
469 720, 840, 0, 480, 481, 484, 500, 0,
470 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
471 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
472 704, 832, 0, 480, 489, 491, 520, 0,
473 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
474 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
475 768, 864, 0, 480, 483, 486, 525, 0,
476 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
477 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
478 752, 800, 0, 480, 490, 492, 525, 0,
479 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
480 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
481 846, 900, 0, 400, 421, 423, 449, 0,
482 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
483 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
484 846, 900, 0, 400, 412, 414, 449, 0,
485 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
486 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
487 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
488 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
489 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
490 1136, 1312, 0, 768, 769, 772, 800, 0,
491 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
492 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
493 1184, 1328, 0, 768, 771, 777, 806, 0,
494 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
495 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
496 1184, 1344, 0, 768, 771, 777, 806, 0,
497 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
498 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
499 1208, 1264, 0, 768, 768, 776, 817, 0,
500 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
501 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
502 928, 1152, 0, 624, 625, 628, 667, 0,
503 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
504 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
505 896, 1056, 0, 600, 601, 604, 625, 0,
506 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
507 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
508 976, 1040, 0, 600, 637, 643, 666, 0,
509 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
510 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
511 1344, 1600, 0, 864, 865, 868, 900, 0,
512 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
513 };
514
515 struct minimode {
516 short w;
517 short h;
518 short r;
519 short rb;
520 };
521
522 static const struct minimode est3_modes[] = {
523 /* byte 6 */
524 { 640, 350, 85, 0 },
525 { 640, 400, 85, 0 },
526 { 720, 400, 85, 0 },
527 { 640, 480, 85, 0 },
528 { 848, 480, 60, 0 },
529 { 800, 600, 85, 0 },
530 { 1024, 768, 85, 0 },
531 { 1152, 864, 75, 0 },
532 /* byte 7 */
533 { 1280, 768, 60, 1 },
534 { 1280, 768, 60, 0 },
535 { 1280, 768, 75, 0 },
536 { 1280, 768, 85, 0 },
537 { 1280, 960, 60, 0 },
538 { 1280, 960, 85, 0 },
539 { 1280, 1024, 60, 0 },
540 { 1280, 1024, 85, 0 },
541 /* byte 8 */
542 { 1360, 768, 60, 0 },
543 { 1440, 900, 60, 1 },
544 { 1440, 900, 60, 0 },
545 { 1440, 900, 75, 0 },
546 { 1440, 900, 85, 0 },
547 { 1400, 1050, 60, 1 },
548 { 1400, 1050, 60, 0 },
549 { 1400, 1050, 75, 0 },
550 /* byte 9 */
551 { 1400, 1050, 85, 0 },
552 { 1680, 1050, 60, 1 },
553 { 1680, 1050, 60, 0 },
554 { 1680, 1050, 75, 0 },
555 { 1680, 1050, 85, 0 },
556 { 1600, 1200, 60, 0 },
557 { 1600, 1200, 65, 0 },
558 { 1600, 1200, 70, 0 },
559 /* byte 10 */
560 { 1600, 1200, 75, 0 },
561 { 1600, 1200, 85, 0 },
562 { 1792, 1344, 60, 0 },
563 { 1792, 1344, 85, 0 },
564 { 1856, 1392, 60, 0 },
565 { 1856, 1392, 75, 0 },
566 { 1920, 1200, 60, 1 },
567 { 1920, 1200, 60, 0 },
568 /* byte 11 */
569 { 1920, 1200, 75, 0 },
570 { 1920, 1200, 85, 0 },
571 { 1920, 1440, 60, 0 },
572 { 1920, 1440, 75, 0 },
573 };
574
575 static const struct minimode extra_modes[] = {
576 { 1024, 576, 60, 0 },
577 { 1366, 768, 60, 0 },
578 { 1600, 900, 60, 0 },
579 { 1680, 945, 60, 0 },
580 { 1920, 1080, 60, 0 },
581 { 2048, 1152, 60, 0 },
582 { 2048, 1536, 60, 0 },
583 };
584
585 /*
586 * Probably taken from CEA-861 spec.
587 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
588 */
589 static const struct drm_display_mode edid_cea_modes[] = {
590 /* 1 - 640x480@60Hz */
591 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
592 752, 800, 0, 480, 490, 492, 525, 0,
593 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
594 .vrefresh = 60, },
595 /* 2 - 720x480@60Hz */
596 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
597 798, 858, 0, 480, 489, 495, 525, 0,
598 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
599 .vrefresh = 60, },
600 /* 3 - 720x480@60Hz */
601 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
602 798, 858, 0, 480, 489, 495, 525, 0,
603 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
604 .vrefresh = 60, },
605 /* 4 - 1280x720@60Hz */
606 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
607 1430, 1650, 0, 720, 725, 730, 750, 0,
608 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
609 .vrefresh = 60, },
610 /* 5 - 1920x1080i@60Hz */
611 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
612 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
613 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
614 DRM_MODE_FLAG_INTERLACE),
615 .vrefresh = 60, },
616 /* 6 - 1440x480i@60Hz */
617 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
618 1602, 1716, 0, 480, 488, 494, 525, 0,
619 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
620 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
621 .vrefresh = 60, },
622 /* 7 - 1440x480i@60Hz */
623 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
624 1602, 1716, 0, 480, 488, 494, 525, 0,
625 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
626 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
627 .vrefresh = 60, },
628 /* 8 - 1440x240@60Hz */
629 { DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
630 1602, 1716, 0, 240, 244, 247, 262, 0,
631 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
632 DRM_MODE_FLAG_DBLCLK),
633 .vrefresh = 60, },
634 /* 9 - 1440x240@60Hz */
635 { DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
636 1602, 1716, 0, 240, 244, 247, 262, 0,
637 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
638 DRM_MODE_FLAG_DBLCLK),
639 .vrefresh = 60, },
640 /* 10 - 2880x480i@60Hz */
641 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
642 3204, 3432, 0, 480, 488, 494, 525, 0,
643 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
644 DRM_MODE_FLAG_INTERLACE),
645 .vrefresh = 60, },
646 /* 11 - 2880x480i@60Hz */
647 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
648 3204, 3432, 0, 480, 488, 494, 525, 0,
649 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
650 DRM_MODE_FLAG_INTERLACE),
651 .vrefresh = 60, },
652 /* 12 - 2880x240@60Hz */
653 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
654 3204, 3432, 0, 240, 244, 247, 262, 0,
655 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
656 .vrefresh = 60, },
657 /* 13 - 2880x240@60Hz */
658 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
659 3204, 3432, 0, 240, 244, 247, 262, 0,
660 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
661 .vrefresh = 60, },
662 /* 14 - 1440x480@60Hz */
663 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
664 1596, 1716, 0, 480, 489, 495, 525, 0,
665 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
666 .vrefresh = 60, },
667 /* 15 - 1440x480@60Hz */
668 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
669 1596, 1716, 0, 480, 489, 495, 525, 0,
670 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
671 .vrefresh = 60, },
672 /* 16 - 1920x1080@60Hz */
673 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
674 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
675 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
676 .vrefresh = 60, },
677 /* 17 - 720x576@50Hz */
678 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
679 796, 864, 0, 576, 581, 586, 625, 0,
680 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
681 .vrefresh = 50, },
682 /* 18 - 720x576@50Hz */
683 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
684 796, 864, 0, 576, 581, 586, 625, 0,
685 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
686 .vrefresh = 50, },
687 /* 19 - 1280x720@50Hz */
688 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
689 1760, 1980, 0, 720, 725, 730, 750, 0,
690 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
691 .vrefresh = 50, },
692 /* 20 - 1920x1080i@50Hz */
693 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
694 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
695 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
696 DRM_MODE_FLAG_INTERLACE),
697 .vrefresh = 50, },
698 /* 21 - 1440x576i@50Hz */
699 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
700 1590, 1728, 0, 576, 580, 586, 625, 0,
701 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
702 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
703 .vrefresh = 50, },
704 /* 22 - 1440x576i@50Hz */
705 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
706 1590, 1728, 0, 576, 580, 586, 625, 0,
707 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
708 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
709 .vrefresh = 50, },
710 /* 23 - 1440x288@50Hz */
711 { DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
712 1590, 1728, 0, 288, 290, 293, 312, 0,
713 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
714 DRM_MODE_FLAG_DBLCLK),
715 .vrefresh = 50, },
716 /* 24 - 1440x288@50Hz */
717 { DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
718 1590, 1728, 0, 288, 290, 293, 312, 0,
719 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
720 DRM_MODE_FLAG_DBLCLK),
721 .vrefresh = 50, },
722 /* 25 - 2880x576i@50Hz */
723 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
724 3180, 3456, 0, 576, 580, 586, 625, 0,
725 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
726 DRM_MODE_FLAG_INTERLACE),
727 .vrefresh = 50, },
728 /* 26 - 2880x576i@50Hz */
729 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
730 3180, 3456, 0, 576, 580, 586, 625, 0,
731 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
732 DRM_MODE_FLAG_INTERLACE),
733 .vrefresh = 50, },
734 /* 27 - 2880x288@50Hz */
735 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
736 3180, 3456, 0, 288, 290, 293, 312, 0,
737 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
738 .vrefresh = 50, },
739 /* 28 - 2880x288@50Hz */
740 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
741 3180, 3456, 0, 288, 290, 293, 312, 0,
742 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
743 .vrefresh = 50, },
744 /* 29 - 1440x576@50Hz */
745 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
746 1592, 1728, 0, 576, 581, 586, 625, 0,
747 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
748 .vrefresh = 50, },
749 /* 30 - 1440x576@50Hz */
750 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
751 1592, 1728, 0, 576, 581, 586, 625, 0,
752 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
753 .vrefresh = 50, },
754 /* 31 - 1920x1080@50Hz */
755 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
756 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
757 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
758 .vrefresh = 50, },
759 /* 32 - 1920x1080@24Hz */
760 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
761 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
762 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
763 .vrefresh = 24, },
764 /* 33 - 1920x1080@25Hz */
765 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
766 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
767 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
768 .vrefresh = 25, },
769 /* 34 - 1920x1080@30Hz */
770 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
771 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
772 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
773 .vrefresh = 30, },
774 /* 35 - 2880x480@60Hz */
775 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
776 3192, 3432, 0, 480, 489, 495, 525, 0,
777 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
778 .vrefresh = 60, },
779 /* 36 - 2880x480@60Hz */
780 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
781 3192, 3432, 0, 480, 489, 495, 525, 0,
782 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
783 .vrefresh = 60, },
784 /* 37 - 2880x576@50Hz */
785 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
786 3184, 3456, 0, 576, 581, 586, 625, 0,
787 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
788 .vrefresh = 50, },
789 /* 38 - 2880x576@50Hz */
790 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
791 3184, 3456, 0, 576, 581, 586, 625, 0,
792 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
793 .vrefresh = 50, },
794 /* 39 - 1920x1080i@50Hz */
795 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
796 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
797 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
798 DRM_MODE_FLAG_INTERLACE),
799 .vrefresh = 50, },
800 /* 40 - 1920x1080i@100Hz */
801 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
802 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
803 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
804 DRM_MODE_FLAG_INTERLACE),
805 .vrefresh = 100, },
806 /* 41 - 1280x720@100Hz */
807 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
808 1760, 1980, 0, 720, 725, 730, 750, 0,
809 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
810 .vrefresh = 100, },
811 /* 42 - 720x576@100Hz */
812 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
813 796, 864, 0, 576, 581, 586, 625, 0,
814 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
815 .vrefresh = 100, },
816 /* 43 - 720x576@100Hz */
817 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
818 796, 864, 0, 576, 581, 586, 625, 0,
819 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
820 .vrefresh = 100, },
821 /* 44 - 1440x576i@100Hz */
822 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
823 1590, 1728, 0, 576, 580, 586, 625, 0,
824 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
825 DRM_MODE_FLAG_DBLCLK),
826 .vrefresh = 100, },
827 /* 45 - 1440x576i@100Hz */
828 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
829 1590, 1728, 0, 576, 580, 586, 625, 0,
830 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
831 DRM_MODE_FLAG_DBLCLK),
832 .vrefresh = 100, },
833 /* 46 - 1920x1080i@120Hz */
834 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
835 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
836 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
837 DRM_MODE_FLAG_INTERLACE),
838 .vrefresh = 120, },
839 /* 47 - 1280x720@120Hz */
840 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
841 1430, 1650, 0, 720, 725, 730, 750, 0,
842 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
843 .vrefresh = 120, },
844 /* 48 - 720x480@120Hz */
845 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
846 798, 858, 0, 480, 489, 495, 525, 0,
847 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
848 .vrefresh = 120, },
849 /* 49 - 720x480@120Hz */
850 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
851 798, 858, 0, 480, 489, 495, 525, 0,
852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
853 .vrefresh = 120, },
854 /* 50 - 1440x480i@120Hz */
855 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
856 1602, 1716, 0, 480, 488, 494, 525, 0,
857 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
858 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
859 .vrefresh = 120, },
860 /* 51 - 1440x480i@120Hz */
861 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
862 1602, 1716, 0, 480, 488, 494, 525, 0,
863 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
864 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
865 .vrefresh = 120, },
866 /* 52 - 720x576@200Hz */
867 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
868 796, 864, 0, 576, 581, 586, 625, 0,
869 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
870 .vrefresh = 200, },
871 /* 53 - 720x576@200Hz */
872 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
873 796, 864, 0, 576, 581, 586, 625, 0,
874 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
875 .vrefresh = 200, },
876 /* 54 - 1440x576i@200Hz */
877 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
878 1590, 1728, 0, 576, 580, 586, 625, 0,
879 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
880 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
881 .vrefresh = 200, },
882 /* 55 - 1440x576i@200Hz */
883 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
884 1590, 1728, 0, 576, 580, 586, 625, 0,
885 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
886 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
887 .vrefresh = 200, },
888 /* 56 - 720x480@240Hz */
889 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
890 798, 858, 0, 480, 489, 495, 525, 0,
891 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
892 .vrefresh = 240, },
893 /* 57 - 720x480@240Hz */
894 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
895 798, 858, 0, 480, 489, 495, 525, 0,
896 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
897 .vrefresh = 240, },
898 /* 58 - 1440x480i@240 */
899 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
900 1602, 1716, 0, 480, 488, 494, 525, 0,
901 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
902 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
903 .vrefresh = 240, },
904 /* 59 - 1440x480i@240 */
905 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
906 1602, 1716, 0, 480, 488, 494, 525, 0,
907 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
908 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
909 .vrefresh = 240, },
910 /* 60 - 1280x720@24Hz */
911 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
912 3080, 3300, 0, 720, 725, 730, 750, 0,
913 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
914 .vrefresh = 24, },
915 /* 61 - 1280x720@25Hz */
916 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
917 3740, 3960, 0, 720, 725, 730, 750, 0,
918 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
919 .vrefresh = 25, },
920 /* 62 - 1280x720@30Hz */
921 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
922 3080, 3300, 0, 720, 725, 730, 750, 0,
923 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
924 .vrefresh = 30, },
925 /* 63 - 1920x1080@120Hz */
926 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
927 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
928 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
929 .vrefresh = 120, },
930 /* 64 - 1920x1080@100Hz */
931 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
932 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
933 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
934 .vrefresh = 100, },
935 };
936
937 /*
938 * HDMI 1.4 4k modes.
939 */
940 static const struct drm_display_mode edid_4k_modes[] = {
941 /* 1 - 3840x2160@30Hz */
942 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
943 3840, 4016, 4104, 4400, 0,
944 2160, 2168, 2178, 2250, 0,
945 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
946 .vrefresh = 30, },
947 /* 2 - 3840x2160@25Hz */
948 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
949 3840, 4896, 4984, 5280, 0,
950 2160, 2168, 2178, 2250, 0,
951 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
952 .vrefresh = 25, },
953 /* 3 - 3840x2160@24Hz */
954 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
955 3840, 5116, 5204, 5500, 0,
956 2160, 2168, 2178, 2250, 0,
957 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
958 .vrefresh = 24, },
959 /* 4 - 4096x2160@24Hz (SMPTE) */
960 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
961 4096, 5116, 5204, 5500, 0,
962 2160, 2168, 2178, 2250, 0,
963 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
964 .vrefresh = 24, },
965 };
966
967 /*** DDC fetch and block validation ***/
968
969 static const u8 edid_header[] = {
970 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
971 };
972
973 /*
974 * Sanity check the header of the base EDID block. Return 8 if the header
975 * is perfect, down to 0 if it's totally wrong.
976 */
977 int drm_edid_header_is_valid(const u8 *raw_edid)
978 {
979 int i, score = 0;
980
981 for (i = 0; i < sizeof(edid_header); i++)
982 if (raw_edid[i] == edid_header[i])
983 score++;
984
985 return score;
986 }
987 EXPORT_SYMBOL(drm_edid_header_is_valid);
988
989 static int edid_fixup __read_mostly = 6;
990 module_param_named(edid_fixup, edid_fixup, int, 0400);
991 MODULE_PARM_DESC(edid_fixup,
992 "Minimum number of valid EDID header bytes (0-8, default 6)");
993
994 /*
995 * Sanity check the EDID block (base or extension). Return 0 if the block
996 * doesn't check out, or 1 if it's valid.
997 */
998 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
999 {
1000 int i;
1001 u8 csum = 0;
1002 struct edid *edid = (struct edid *)raw_edid;
1003
1004 if (WARN_ON(!raw_edid))
1005 return false;
1006
1007 if (edid_fixup > 8 || edid_fixup < 0)
1008 edid_fixup = 6;
1009
1010 if (block == 0) {
1011 int score = drm_edid_header_is_valid(raw_edid);
1012 if (score == 8) ;
1013 else if (score >= edid_fixup) {
1014 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1015 memcpy(raw_edid, edid_header, sizeof(edid_header));
1016 } else {
1017 goto bad;
1018 }
1019 }
1020
1021 for (i = 0; i < EDID_LENGTH; i++)
1022 csum += raw_edid[i];
1023 if (csum) {
1024 if (print_bad_edid) {
1025 DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1026 }
1027
1028 /* allow CEA to slide through, switches mangle this */
1029 if (raw_edid[0] != 0x02)
1030 goto bad;
1031 }
1032
1033 /* per-block-type checks */
1034 switch (raw_edid[0]) {
1035 case 0: /* base */
1036 if (edid->version != 1) {
1037 DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1038 goto bad;
1039 }
1040
1041 if (edid->revision > 4)
1042 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1043 break;
1044
1045 default:
1046 break;
1047 }
1048
1049 return true;
1050
1051 bad:
1052 if (print_bad_edid) {
1053 printk(KERN_ERR "Raw EDID:\n");
1054 print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1055 raw_edid, EDID_LENGTH, false);
1056 }
1057 return false;
1058 }
1059 EXPORT_SYMBOL(drm_edid_block_valid);
1060
1061 /**
1062 * drm_edid_is_valid - sanity check EDID data
1063 * @edid: EDID data
1064 *
1065 * Sanity-check an entire EDID record (including extensions)
1066 */
1067 bool drm_edid_is_valid(struct edid *edid)
1068 {
1069 int i;
1070 u8 *raw = (u8 *)edid;
1071
1072 if (!edid)
1073 return false;
1074
1075 for (i = 0; i <= edid->extensions; i++)
1076 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
1077 return false;
1078
1079 return true;
1080 }
1081 EXPORT_SYMBOL(drm_edid_is_valid);
1082
1083 #define DDC_SEGMENT_ADDR 0x30
1084 /**
1085 * Get EDID information via I2C.
1086 *
1087 * \param adapter : i2c device adaptor
1088 * \param buf : EDID data buffer to be filled
1089 * \param len : EDID data buffer length
1090 * \return 0 on success or -1 on failure.
1091 *
1092 * Try to fetch EDID information by calling i2c driver function.
1093 */
1094 static int
1095 drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
1096 int block, int len)
1097 {
1098 unsigned char start = block * EDID_LENGTH;
1099 unsigned char segment = block >> 1;
1100 unsigned char xfers = segment ? 3 : 2;
1101 int ret, retries = 5;
1102
1103 /* The core i2c driver will automatically retry the transfer if the
1104 * adapter reports EAGAIN. However, we find that bit-banging transfers
1105 * are susceptible to errors under a heavily loaded machine and
1106 * generate spurious NAKs and timeouts. Retrying the transfer
1107 * of the individual block a few times seems to overcome this.
1108 */
1109 do {
1110 struct i2c_msg msgs[] = {
1111 {
1112 .addr = DDC_SEGMENT_ADDR,
1113 .flags = 0,
1114 .len = 1,
1115 .buf = &segment,
1116 }, {
1117 .addr = DDC_ADDR,
1118 .flags = 0,
1119 .len = 1,
1120 .buf = &start,
1121 }, {
1122 .addr = DDC_ADDR,
1123 .flags = I2C_M_RD,
1124 .len = len,
1125 .buf = buf,
1126 }
1127 };
1128
1129 /*
1130 * Avoid sending the segment addr to not upset non-compliant ddc
1131 * monitors.
1132 */
1133 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1134
1135 if (ret == -ENXIO) {
1136 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1137 adapter->name);
1138 break;
1139 }
1140 } while (ret != xfers && --retries);
1141
1142 return ret == xfers ? 0 : -1;
1143 }
1144
1145 static bool drm_edid_is_zero(u8 *in_edid, int length)
1146 {
1147 if (memchr_inv(in_edid, 0, length))
1148 return false;
1149
1150 return true;
1151 }
1152
1153 static u8 *
1154 drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1155 {
1156 int i, j = 0, valid_extensions = 0;
1157 u8 *block, *new;
1158 bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1159
1160 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1161 return NULL;
1162
1163 /* base block fetch */
1164 for (i = 0; i < 4; i++) {
1165 if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1166 goto out;
1167 if (drm_edid_block_valid(block, 0, print_bad_edid))
1168 break;
1169 if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1170 connector->null_edid_counter++;
1171 goto carp;
1172 }
1173 }
1174 if (i == 4)
1175 goto carp;
1176
1177 /* if there's no extensions, we're done */
1178 if (block[0x7e] == 0)
1179 return block;
1180
1181 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1182 if (!new)
1183 goto out;
1184 block = new;
1185
1186 for (j = 1; j <= block[0x7e]; j++) {
1187 for (i = 0; i < 4; i++) {
1188 if (drm_do_probe_ddc_edid(adapter,
1189 block + (valid_extensions + 1) * EDID_LENGTH,
1190 j, EDID_LENGTH))
1191 goto out;
1192 if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1193 valid_extensions++;
1194 break;
1195 }
1196 }
1197
1198 if (i == 4 && print_bad_edid) {
1199 dev_warn(connector->dev->dev,
1200 "%s: Ignoring invalid EDID block %d.\n",
1201 drm_get_connector_name(connector), j);
1202
1203 connector->bad_edid_counter++;
1204 }
1205 }
1206
1207 if (valid_extensions != block[0x7e]) {
1208 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1209 block[0x7e] = valid_extensions;
1210 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1211 if (!new)
1212 goto out;
1213 block = new;
1214 }
1215
1216 return block;
1217
1218 carp:
1219 if (print_bad_edid) {
1220 dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1221 drm_get_connector_name(connector), j);
1222 }
1223 connector->bad_edid_counter++;
1224
1225 out:
1226 kfree(block);
1227 return NULL;
1228 }
1229
1230 /**
1231 * Probe DDC presence.
1232 *
1233 * \param adapter : i2c device adaptor
1234 * \return 1 on success
1235 */
1236 bool
1237 drm_probe_ddc(struct i2c_adapter *adapter)
1238 {
1239 unsigned char out;
1240
1241 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1242 }
1243 EXPORT_SYMBOL(drm_probe_ddc);
1244
1245 /**
1246 * drm_get_edid - get EDID data, if available
1247 * @connector: connector we're probing
1248 * @adapter: i2c adapter to use for DDC
1249 *
1250 * Poke the given i2c channel to grab EDID data if possible. If found,
1251 * attach it to the connector.
1252 *
1253 * Return edid data or NULL if we couldn't find any.
1254 */
1255 struct edid *drm_get_edid(struct drm_connector *connector,
1256 struct i2c_adapter *adapter)
1257 {
1258 struct edid *edid = NULL;
1259
1260 if (drm_probe_ddc(adapter))
1261 edid = (struct edid *)drm_do_get_edid(connector, adapter);
1262
1263 return edid;
1264 }
1265 EXPORT_SYMBOL(drm_get_edid);
1266
1267 /*** EDID parsing ***/
1268
1269 /**
1270 * edid_vendor - match a string against EDID's obfuscated vendor field
1271 * @edid: EDID to match
1272 * @vendor: vendor string
1273 *
1274 * Returns true if @vendor is in @edid, false otherwise
1275 */
1276 static bool edid_vendor(struct edid *edid, char *vendor)
1277 {
1278 char edid_vendor[3];
1279
1280 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1281 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1282 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1283 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1284
1285 return !strncmp(edid_vendor, vendor, 3);
1286 }
1287
1288 /**
1289 * edid_get_quirks - return quirk flags for a given EDID
1290 * @edid: EDID to process
1291 *
1292 * This tells subsequent routines what fixes they need to apply.
1293 */
1294 static u32 edid_get_quirks(struct edid *edid)
1295 {
1296 struct edid_quirk *quirk;
1297 int i;
1298
1299 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1300 quirk = &edid_quirk_list[i];
1301
1302 if (edid_vendor(edid, quirk->vendor) &&
1303 (EDID_PRODUCT_ID(edid) == quirk->product_id))
1304 return quirk->quirks;
1305 }
1306
1307 return 0;
1308 }
1309
1310 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1311 #define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh))
1312
1313 /**
1314 * edid_fixup_preferred - set preferred modes based on quirk list
1315 * @connector: has mode list to fix up
1316 * @quirks: quirks list
1317 *
1318 * Walk the mode list for @connector, clearing the preferred status
1319 * on existing modes and setting it anew for the right mode ala @quirks.
1320 */
1321 static void edid_fixup_preferred(struct drm_connector *connector,
1322 u32 quirks)
1323 {
1324 struct drm_display_mode *t, *cur_mode, *preferred_mode;
1325 int target_refresh = 0;
1326
1327 if (list_empty(&connector->probed_modes))
1328 return;
1329
1330 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1331 target_refresh = 60;
1332 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1333 target_refresh = 75;
1334
1335 preferred_mode = list_first_entry(&connector->probed_modes,
1336 struct drm_display_mode, head);
1337
1338 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1339 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1340
1341 if (cur_mode == preferred_mode)
1342 continue;
1343
1344 /* Largest mode is preferred */
1345 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1346 preferred_mode = cur_mode;
1347
1348 /* At a given size, try to get closest to target refresh */
1349 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1350 MODE_REFRESH_DIFF(cur_mode, target_refresh) <
1351 MODE_REFRESH_DIFF(preferred_mode, target_refresh)) {
1352 preferred_mode = cur_mode;
1353 }
1354 }
1355
1356 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1357 }
1358
1359 static bool
1360 mode_is_rb(const struct drm_display_mode *mode)
1361 {
1362 return (mode->htotal - mode->hdisplay == 160) &&
1363 (mode->hsync_end - mode->hdisplay == 80) &&
1364 (mode->hsync_end - mode->hsync_start == 32) &&
1365 (mode->vsync_start - mode->vdisplay == 3);
1366 }
1367
1368 /*
1369 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1370 * @dev: Device to duplicate against
1371 * @hsize: Mode width
1372 * @vsize: Mode height
1373 * @fresh: Mode refresh rate
1374 * @rb: Mode reduced-blanking-ness
1375 *
1376 * Walk the DMT mode list looking for a match for the given parameters.
1377 * Return a newly allocated copy of the mode, or NULL if not found.
1378 */
1379 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1380 int hsize, int vsize, int fresh,
1381 bool rb)
1382 {
1383 int i;
1384
1385 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1386 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1387 if (hsize != ptr->hdisplay)
1388 continue;
1389 if (vsize != ptr->vdisplay)
1390 continue;
1391 if (fresh != drm_mode_vrefresh(ptr))
1392 continue;
1393 if (rb != mode_is_rb(ptr))
1394 continue;
1395
1396 return drm_mode_duplicate(dev, ptr);
1397 }
1398
1399 return NULL;
1400 }
1401 EXPORT_SYMBOL(drm_mode_find_dmt);
1402
1403 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1404
1405 static void
1406 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1407 {
1408 int i, n = 0;
1409 u8 d = ext[0x02];
1410 u8 *det_base = ext + d;
1411
1412 n = (127 - d) / 18;
1413 for (i = 0; i < n; i++)
1414 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1415 }
1416
1417 static void
1418 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1419 {
1420 unsigned int i, n = min((int)ext[0x02], 6);
1421 u8 *det_base = ext + 5;
1422
1423 if (ext[0x01] != 1)
1424 return; /* unknown version */
1425
1426 for (i = 0; i < n; i++)
1427 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1428 }
1429
1430 static void
1431 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1432 {
1433 int i;
1434 struct edid *edid = (struct edid *)raw_edid;
1435
1436 if (edid == NULL)
1437 return;
1438
1439 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1440 cb(&(edid->detailed_timings[i]), closure);
1441
1442 for (i = 1; i <= raw_edid[0x7e]; i++) {
1443 u8 *ext = raw_edid + (i * EDID_LENGTH);
1444 switch (*ext) {
1445 case CEA_EXT:
1446 cea_for_each_detailed_block(ext, cb, closure);
1447 break;
1448 case VTB_EXT:
1449 vtb_for_each_detailed_block(ext, cb, closure);
1450 break;
1451 default:
1452 break;
1453 }
1454 }
1455 }
1456
1457 static void
1458 is_rb(struct detailed_timing *t, void *data)
1459 {
1460 u8 *r = (u8 *)t;
1461 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1462 if (r[15] & 0x10)
1463 *(bool *)data = true;
1464 }
1465
1466 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
1467 static bool
1468 drm_monitor_supports_rb(struct edid *edid)
1469 {
1470 if (edid->revision >= 4) {
1471 bool ret = false;
1472 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1473 return ret;
1474 }
1475
1476 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1477 }
1478
1479 static void
1480 find_gtf2(struct detailed_timing *t, void *data)
1481 {
1482 u8 *r = (u8 *)t;
1483 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1484 *(u8 **)data = r;
1485 }
1486
1487 /* Secondary GTF curve kicks in above some break frequency */
1488 static int
1489 drm_gtf2_hbreak(struct edid *edid)
1490 {
1491 u8 *r = NULL;
1492 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1493 return r ? (r[12] * 2) : 0;
1494 }
1495
1496 static int
1497 drm_gtf2_2c(struct edid *edid)
1498 {
1499 u8 *r = NULL;
1500 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1501 return r ? r[13] : 0;
1502 }
1503
1504 static int
1505 drm_gtf2_m(struct edid *edid)
1506 {
1507 u8 *r = NULL;
1508 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1509 return r ? (r[15] << 8) + r[14] : 0;
1510 }
1511
1512 static int
1513 drm_gtf2_k(struct edid *edid)
1514 {
1515 u8 *r = NULL;
1516 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1517 return r ? r[16] : 0;
1518 }
1519
1520 static int
1521 drm_gtf2_2j(struct edid *edid)
1522 {
1523 u8 *r = NULL;
1524 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1525 return r ? r[17] : 0;
1526 }
1527
1528 /**
1529 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1530 * @edid: EDID block to scan
1531 */
1532 static int standard_timing_level(struct edid *edid)
1533 {
1534 if (edid->revision >= 2) {
1535 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1536 return LEVEL_CVT;
1537 if (drm_gtf2_hbreak(edid))
1538 return LEVEL_GTF2;
1539 return LEVEL_GTF;
1540 }
1541 return LEVEL_DMT;
1542 }
1543
1544 /*
1545 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
1546 * monitors fill with ascii space (0x20) instead.
1547 */
1548 static int
1549 bad_std_timing(u8 a, u8 b)
1550 {
1551 return (a == 0x00 && b == 0x00) ||
1552 (a == 0x01 && b == 0x01) ||
1553 (a == 0x20 && b == 0x20);
1554 }
1555
1556 /**
1557 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1558 * @t: standard timing params
1559 * @timing_level: standard timing level
1560 *
1561 * Take the standard timing params (in this case width, aspect, and refresh)
1562 * and convert them into a real mode using CVT/GTF/DMT.
1563 */
1564 static struct drm_display_mode *
1565 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1566 struct std_timing *t, int revision)
1567 {
1568 struct drm_device *dev = connector->dev;
1569 struct drm_display_mode *m, *mode = NULL;
1570 int hsize, vsize;
1571 int vrefresh_rate;
1572 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1573 >> EDID_TIMING_ASPECT_SHIFT;
1574 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1575 >> EDID_TIMING_VFREQ_SHIFT;
1576 int timing_level = standard_timing_level(edid);
1577
1578 if (bad_std_timing(t->hsize, t->vfreq_aspect))
1579 return NULL;
1580
1581 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1582 hsize = t->hsize * 8 + 248;
1583 /* vrefresh_rate = vfreq + 60 */
1584 vrefresh_rate = vfreq + 60;
1585 /* the vdisplay is calculated based on the aspect ratio */
1586 if (aspect_ratio == 0) {
1587 if (revision < 3)
1588 vsize = hsize;
1589 else
1590 vsize = (hsize * 10) / 16;
1591 } else if (aspect_ratio == 1)
1592 vsize = (hsize * 3) / 4;
1593 else if (aspect_ratio == 2)
1594 vsize = (hsize * 4) / 5;
1595 else
1596 vsize = (hsize * 9) / 16;
1597
1598 /* HDTV hack, part 1 */
1599 if (vrefresh_rate == 60 &&
1600 ((hsize == 1360 && vsize == 765) ||
1601 (hsize == 1368 && vsize == 769))) {
1602 hsize = 1366;
1603 vsize = 768;
1604 }
1605
1606 /*
1607 * If this connector already has a mode for this size and refresh
1608 * rate (because it came from detailed or CVT info), use that
1609 * instead. This way we don't have to guess at interlace or
1610 * reduced blanking.
1611 */
1612 list_for_each_entry(m, &connector->probed_modes, head)
1613 if (m->hdisplay == hsize && m->vdisplay == vsize &&
1614 drm_mode_vrefresh(m) == vrefresh_rate)
1615 return NULL;
1616
1617 /* HDTV hack, part 2 */
1618 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1619 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1620 false);
1621 mode->hdisplay = 1366;
1622 mode->hsync_start = mode->hsync_start - 1;
1623 mode->hsync_end = mode->hsync_end - 1;
1624 return mode;
1625 }
1626
1627 /* check whether it can be found in default mode table */
1628 if (drm_monitor_supports_rb(edid)) {
1629 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1630 true);
1631 if (mode)
1632 return mode;
1633 }
1634 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1635 if (mode)
1636 return mode;
1637
1638 /* okay, generate it */
1639 switch (timing_level) {
1640 case LEVEL_DMT:
1641 break;
1642 case LEVEL_GTF:
1643 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1644 break;
1645 case LEVEL_GTF2:
1646 /*
1647 * This is potentially wrong if there's ever a monitor with
1648 * more than one ranges section, each claiming a different
1649 * secondary GTF curve. Please don't do that.
1650 */
1651 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1652 if (!mode)
1653 return NULL;
1654 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1655 drm_mode_destroy(dev, mode);
1656 mode = drm_gtf_mode_complex(dev, hsize, vsize,
1657 vrefresh_rate, 0, 0,
1658 drm_gtf2_m(edid),
1659 drm_gtf2_2c(edid),
1660 drm_gtf2_k(edid),
1661 drm_gtf2_2j(edid));
1662 }
1663 break;
1664 case LEVEL_CVT:
1665 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1666 false);
1667 break;
1668 }
1669 return mode;
1670 }
1671
1672 /*
1673 * EDID is delightfully ambiguous about how interlaced modes are to be
1674 * encoded. Our internal representation is of frame height, but some
1675 * HDTV detailed timings are encoded as field height.
1676 *
1677 * The format list here is from CEA, in frame size. Technically we
1678 * should be checking refresh rate too. Whatever.
1679 */
1680 static void
1681 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1682 struct detailed_pixel_timing *pt)
1683 {
1684 int i;
1685 static const struct {
1686 int w, h;
1687 } cea_interlaced[] = {
1688 { 1920, 1080 },
1689 { 720, 480 },
1690 { 1440, 480 },
1691 { 2880, 480 },
1692 { 720, 576 },
1693 { 1440, 576 },
1694 { 2880, 576 },
1695 };
1696
1697 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1698 return;
1699
1700 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1701 if ((mode->hdisplay == cea_interlaced[i].w) &&
1702 (mode->vdisplay == cea_interlaced[i].h / 2)) {
1703 mode->vdisplay *= 2;
1704 mode->vsync_start *= 2;
1705 mode->vsync_end *= 2;
1706 mode->vtotal *= 2;
1707 mode->vtotal |= 1;
1708 }
1709 }
1710
1711 mode->flags |= DRM_MODE_FLAG_INTERLACE;
1712 }
1713
1714 /**
1715 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1716 * @dev: DRM device (needed to create new mode)
1717 * @edid: EDID block
1718 * @timing: EDID detailed timing info
1719 * @quirks: quirks to apply
1720 *
1721 * An EDID detailed timing block contains enough info for us to create and
1722 * return a new struct drm_display_mode.
1723 */
1724 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1725 struct edid *edid,
1726 struct detailed_timing *timing,
1727 u32 quirks)
1728 {
1729 struct drm_display_mode *mode;
1730 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1731 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1732 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1733 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1734 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1735 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1736 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1737 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1738 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1739
1740 /* ignore tiny modes */
1741 if (hactive < 64 || vactive < 64)
1742 return NULL;
1743
1744 if (pt->misc & DRM_EDID_PT_STEREO) {
1745 DRM_DEBUG_KMS("stereo mode not supported\n");
1746 return NULL;
1747 }
1748 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1749 DRM_DEBUG_KMS("composite sync not supported\n");
1750 }
1751
1752 /* it is incorrect if hsync/vsync width is zero */
1753 if (!hsync_pulse_width || !vsync_pulse_width) {
1754 DRM_DEBUG_KMS("Incorrect Detailed timing. "
1755 "Wrong Hsync/Vsync pulse width\n");
1756 return NULL;
1757 }
1758
1759 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1760 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1761 if (!mode)
1762 return NULL;
1763
1764 goto set_size;
1765 }
1766
1767 mode = drm_mode_create(dev);
1768 if (!mode)
1769 return NULL;
1770
1771 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1772 timing->pixel_clock = cpu_to_le16(1088);
1773
1774 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1775
1776 mode->hdisplay = hactive;
1777 mode->hsync_start = mode->hdisplay + hsync_offset;
1778 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1779 mode->htotal = mode->hdisplay + hblank;
1780
1781 mode->vdisplay = vactive;
1782 mode->vsync_start = mode->vdisplay + vsync_offset;
1783 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1784 mode->vtotal = mode->vdisplay + vblank;
1785
1786 /* Some EDIDs have bogus h/vtotal values */
1787 if (mode->hsync_end > mode->htotal)
1788 mode->htotal = mode->hsync_end + 1;
1789 if (mode->vsync_end > mode->vtotal)
1790 mode->vtotal = mode->vsync_end + 1;
1791
1792 drm_mode_do_interlace_quirk(mode, pt);
1793
1794 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1795 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1796 }
1797
1798 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1799 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1800 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1801 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1802
1803 set_size:
1804 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1805 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1806
1807 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1808 mode->width_mm *= 10;
1809 mode->height_mm *= 10;
1810 }
1811
1812 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1813 mode->width_mm = edid->width_cm * 10;
1814 mode->height_mm = edid->height_cm * 10;
1815 }
1816
1817 mode->type = DRM_MODE_TYPE_DRIVER;
1818 mode->vrefresh = drm_mode_vrefresh(mode);
1819 drm_mode_set_name(mode);
1820
1821 return mode;
1822 }
1823
1824 static bool
1825 mode_in_hsync_range(const struct drm_display_mode *mode,
1826 struct edid *edid, u8 *t)
1827 {
1828 int hsync, hmin, hmax;
1829
1830 hmin = t[7];
1831 if (edid->revision >= 4)
1832 hmin += ((t[4] & 0x04) ? 255 : 0);
1833 hmax = t[8];
1834 if (edid->revision >= 4)
1835 hmax += ((t[4] & 0x08) ? 255 : 0);
1836 hsync = drm_mode_hsync(mode);
1837
1838 return (hsync <= hmax && hsync >= hmin);
1839 }
1840
1841 static bool
1842 mode_in_vsync_range(const struct drm_display_mode *mode,
1843 struct edid *edid, u8 *t)
1844 {
1845 int vsync, vmin, vmax;
1846
1847 vmin = t[5];
1848 if (edid->revision >= 4)
1849 vmin += ((t[4] & 0x01) ? 255 : 0);
1850 vmax = t[6];
1851 if (edid->revision >= 4)
1852 vmax += ((t[4] & 0x02) ? 255 : 0);
1853 vsync = drm_mode_vrefresh(mode);
1854
1855 return (vsync <= vmax && vsync >= vmin);
1856 }
1857
1858 static u32
1859 range_pixel_clock(struct edid *edid, u8 *t)
1860 {
1861 /* unspecified */
1862 if (t[9] == 0 || t[9] == 255)
1863 return 0;
1864
1865 /* 1.4 with CVT support gives us real precision, yay */
1866 if (edid->revision >= 4 && t[10] == 0x04)
1867 return (t[9] * 10000) - ((t[12] >> 2) * 250);
1868
1869 /* 1.3 is pathetic, so fuzz up a bit */
1870 return t[9] * 10000 + 5001;
1871 }
1872
1873 static bool
1874 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1875 struct detailed_timing *timing)
1876 {
1877 u32 max_clock;
1878 u8 *t = (u8 *)timing;
1879
1880 if (!mode_in_hsync_range(mode, edid, t))
1881 return false;
1882
1883 if (!mode_in_vsync_range(mode, edid, t))
1884 return false;
1885
1886 if ((max_clock = range_pixel_clock(edid, t)))
1887 if (mode->clock > max_clock)
1888 return false;
1889
1890 /* 1.4 max horizontal check */
1891 if (edid->revision >= 4 && t[10] == 0x04)
1892 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1893 return false;
1894
1895 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1896 return false;
1897
1898 return true;
1899 }
1900
1901 static bool valid_inferred_mode(const struct drm_connector *connector,
1902 const struct drm_display_mode *mode)
1903 {
1904 struct drm_display_mode *m;
1905 bool ok = false;
1906
1907 list_for_each_entry(m, &connector->probed_modes, head) {
1908 if (mode->hdisplay == m->hdisplay &&
1909 mode->vdisplay == m->vdisplay &&
1910 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1911 return false; /* duplicated */
1912 if (mode->hdisplay <= m->hdisplay &&
1913 mode->vdisplay <= m->vdisplay)
1914 ok = true;
1915 }
1916 return ok;
1917 }
1918
1919 static int
1920 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1921 struct detailed_timing *timing)
1922 {
1923 int i, modes = 0;
1924 struct drm_display_mode *newmode;
1925 struct drm_device *dev = connector->dev;
1926
1927 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1928 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1929 valid_inferred_mode(connector, drm_dmt_modes + i)) {
1930 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1931 if (newmode) {
1932 drm_mode_probed_add(connector, newmode);
1933 modes++;
1934 }
1935 }
1936 }
1937
1938 return modes;
1939 }
1940
1941 /* fix up 1366x768 mode from 1368x768;
1942 * GFT/CVT can't express 1366 width which isn't dividable by 8
1943 */
1944 static void fixup_mode_1366x768(struct drm_display_mode *mode)
1945 {
1946 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1947 mode->hdisplay = 1366;
1948 mode->hsync_start--;
1949 mode->hsync_end--;
1950 drm_mode_set_name(mode);
1951 }
1952 }
1953
1954 static int
1955 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1956 struct detailed_timing *timing)
1957 {
1958 int i, modes = 0;
1959 struct drm_display_mode *newmode;
1960 struct drm_device *dev = connector->dev;
1961
1962 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1963 const struct minimode *m = &extra_modes[i];
1964 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
1965 if (!newmode)
1966 return modes;
1967
1968 fixup_mode_1366x768(newmode);
1969 if (!mode_in_range(newmode, edid, timing) ||
1970 !valid_inferred_mode(connector, newmode)) {
1971 drm_mode_destroy(dev, newmode);
1972 continue;
1973 }
1974
1975 drm_mode_probed_add(connector, newmode);
1976 modes++;
1977 }
1978
1979 return modes;
1980 }
1981
1982 static int
1983 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1984 struct detailed_timing *timing)
1985 {
1986 int i, modes = 0;
1987 struct drm_display_mode *newmode;
1988 struct drm_device *dev = connector->dev;
1989 bool rb = drm_monitor_supports_rb(edid);
1990
1991 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1992 const struct minimode *m = &extra_modes[i];
1993 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
1994 if (!newmode)
1995 return modes;
1996
1997 fixup_mode_1366x768(newmode);
1998 if (!mode_in_range(newmode, edid, timing) ||
1999 !valid_inferred_mode(connector, newmode)) {
2000 drm_mode_destroy(dev, newmode);
2001 continue;
2002 }
2003
2004 drm_mode_probed_add(connector, newmode);
2005 modes++;
2006 }
2007
2008 return modes;
2009 }
2010
2011 static void
2012 do_inferred_modes(struct detailed_timing *timing, void *c)
2013 {
2014 struct detailed_mode_closure *closure = c;
2015 struct detailed_non_pixel *data = &timing->data.other_data;
2016 struct detailed_data_monitor_range *range = &data->data.range;
2017
2018 if (data->type != EDID_DETAIL_MONITOR_RANGE)
2019 return;
2020
2021 closure->modes += drm_dmt_modes_for_range(closure->connector,
2022 closure->edid,
2023 timing);
2024
2025 if (!version_greater(closure->edid, 1, 1))
2026 return; /* GTF not defined yet */
2027
2028 switch (range->flags) {
2029 case 0x02: /* secondary gtf, XXX could do more */
2030 case 0x00: /* default gtf */
2031 closure->modes += drm_gtf_modes_for_range(closure->connector,
2032 closure->edid,
2033 timing);
2034 break;
2035 case 0x04: /* cvt, only in 1.4+ */
2036 if (!version_greater(closure->edid, 1, 3))
2037 break;
2038
2039 closure->modes += drm_cvt_modes_for_range(closure->connector,
2040 closure->edid,
2041 timing);
2042 break;
2043 case 0x01: /* just the ranges, no formula */
2044 default:
2045 break;
2046 }
2047 }
2048
2049 static int
2050 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2051 {
2052 struct detailed_mode_closure closure = {
2053 connector, edid, 0, 0, 0
2054 };
2055
2056 if (version_greater(edid, 1, 0))
2057 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2058 &closure);
2059
2060 return closure.modes;
2061 }
2062
2063 static int
2064 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2065 {
2066 int i, j, m, modes = 0;
2067 struct drm_display_mode *mode;
2068 u8 *est = ((u8 *)timing) + 5;
2069
2070 for (i = 0; i < 6; i++) {
2071 for (j = 7; j > 0; j--) {
2072 m = (i * 8) + (7 - j);
2073 if (m >= ARRAY_SIZE(est3_modes))
2074 break;
2075 if (est[i] & (1 << j)) {
2076 mode = drm_mode_find_dmt(connector->dev,
2077 est3_modes[m].w,
2078 est3_modes[m].h,
2079 est3_modes[m].r,
2080 est3_modes[m].rb);
2081 if (mode) {
2082 drm_mode_probed_add(connector, mode);
2083 modes++;
2084 }
2085 }
2086 }
2087 }
2088
2089 return modes;
2090 }
2091
2092 static void
2093 do_established_modes(struct detailed_timing *timing, void *c)
2094 {
2095 struct detailed_mode_closure *closure = c;
2096 struct detailed_non_pixel *data = &timing->data.other_data;
2097
2098 if (data->type == EDID_DETAIL_EST_TIMINGS)
2099 closure->modes += drm_est3_modes(closure->connector, timing);
2100 }
2101
2102 /**
2103 * add_established_modes - get est. modes from EDID and add them
2104 * @edid: EDID block to scan
2105 *
2106 * Each EDID block contains a bitmap of the supported "established modes" list
2107 * (defined above). Tease them out and add them to the global modes list.
2108 */
2109 static int
2110 add_established_modes(struct drm_connector *connector, struct edid *edid)
2111 {
2112 struct drm_device *dev = connector->dev;
2113 unsigned long est_bits = edid->established_timings.t1 |
2114 (edid->established_timings.t2 << 8) |
2115 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
2116 int i, modes = 0;
2117 struct detailed_mode_closure closure = {
2118 connector, edid, 0, 0, 0
2119 };
2120
2121 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2122 if (est_bits & (1<<i)) {
2123 struct drm_display_mode *newmode;
2124 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2125 if (newmode) {
2126 drm_mode_probed_add(connector, newmode);
2127 modes++;
2128 }
2129 }
2130 }
2131
2132 if (version_greater(edid, 1, 0))
2133 drm_for_each_detailed_block((u8 *)edid,
2134 do_established_modes, &closure);
2135
2136 return modes + closure.modes;
2137 }
2138
2139 static void
2140 do_standard_modes(struct detailed_timing *timing, void *c)
2141 {
2142 struct detailed_mode_closure *closure = c;
2143 struct detailed_non_pixel *data = &timing->data.other_data;
2144 struct drm_connector *connector = closure->connector;
2145 struct edid *edid = closure->edid;
2146
2147 if (data->type == EDID_DETAIL_STD_MODES) {
2148 int i;
2149 for (i = 0; i < 6; i++) {
2150 struct std_timing *std;
2151 struct drm_display_mode *newmode;
2152
2153 std = &data->data.timings[i];
2154 newmode = drm_mode_std(connector, edid, std,
2155 edid->revision);
2156 if (newmode) {
2157 drm_mode_probed_add(connector, newmode);
2158 closure->modes++;
2159 }
2160 }
2161 }
2162 }
2163
2164 /**
2165 * add_standard_modes - get std. modes from EDID and add them
2166 * @edid: EDID block to scan
2167 *
2168 * Standard modes can be calculated using the appropriate standard (DMT,
2169 * GTF or CVT. Grab them from @edid and add them to the list.
2170 */
2171 static int
2172 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2173 {
2174 int i, modes = 0;
2175 struct detailed_mode_closure closure = {
2176 connector, edid, 0, 0, 0
2177 };
2178
2179 for (i = 0; i < EDID_STD_TIMINGS; i++) {
2180 struct drm_display_mode *newmode;
2181
2182 newmode = drm_mode_std(connector, edid,
2183 &edid->standard_timings[i],
2184 edid->revision);
2185 if (newmode) {
2186 drm_mode_probed_add(connector, newmode);
2187 modes++;
2188 }
2189 }
2190
2191 if (version_greater(edid, 1, 0))
2192 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2193 &closure);
2194
2195 /* XXX should also look for standard codes in VTB blocks */
2196
2197 return modes + closure.modes;
2198 }
2199
2200 static int drm_cvt_modes(struct drm_connector *connector,
2201 struct detailed_timing *timing)
2202 {
2203 int i, j, modes = 0;
2204 struct drm_display_mode *newmode;
2205 struct drm_device *dev = connector->dev;
2206 struct cvt_timing *cvt;
2207 const int rates[] = { 60, 85, 75, 60, 50 };
2208 const u8 empty[3] = { 0, 0, 0 };
2209
2210 for (i = 0; i < 4; i++) {
2211 int uninitialized_var(width), height;
2212 cvt = &(timing->data.other_data.data.cvt[i]);
2213
2214 if (!memcmp(cvt->code, empty, 3))
2215 continue;
2216
2217 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2218 switch (cvt->code[1] & 0x0c) {
2219 case 0x00:
2220 width = height * 4 / 3;
2221 break;
2222 case 0x04:
2223 width = height * 16 / 9;
2224 break;
2225 case 0x08:
2226 width = height * 16 / 10;
2227 break;
2228 case 0x0c:
2229 width = height * 15 / 9;
2230 break;
2231 }
2232
2233 for (j = 1; j < 5; j++) {
2234 if (cvt->code[2] & (1 << j)) {
2235 newmode = drm_cvt_mode(dev, width, height,
2236 rates[j], j == 0,
2237 false, false);
2238 if (newmode) {
2239 drm_mode_probed_add(connector, newmode);
2240 modes++;
2241 }
2242 }
2243 }
2244 }
2245
2246 return modes;
2247 }
2248
2249 static void
2250 do_cvt_mode(struct detailed_timing *timing, void *c)
2251 {
2252 struct detailed_mode_closure *closure = c;
2253 struct detailed_non_pixel *data = &timing->data.other_data;
2254
2255 if (data->type == EDID_DETAIL_CVT_3BYTE)
2256 closure->modes += drm_cvt_modes(closure->connector, timing);
2257 }
2258
2259 static int
2260 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2261 {
2262 struct detailed_mode_closure closure = {
2263 connector, edid, 0, 0, 0
2264 };
2265
2266 if (version_greater(edid, 1, 2))
2267 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2268
2269 /* XXX should also look for CVT codes in VTB blocks */
2270
2271 return closure.modes;
2272 }
2273
2274 static void
2275 do_detailed_mode(struct detailed_timing *timing, void *c)
2276 {
2277 struct detailed_mode_closure *closure = c;
2278 struct drm_display_mode *newmode;
2279
2280 if (timing->pixel_clock) {
2281 newmode = drm_mode_detailed(closure->connector->dev,
2282 closure->edid, timing,
2283 closure->quirks);
2284 if (!newmode)
2285 return;
2286
2287 if (closure->preferred)
2288 newmode->type |= DRM_MODE_TYPE_PREFERRED;
2289
2290 drm_mode_probed_add(closure->connector, newmode);
2291 closure->modes++;
2292 closure->preferred = 0;
2293 }
2294 }
2295
2296 /*
2297 * add_detailed_modes - Add modes from detailed timings
2298 * @connector: attached connector
2299 * @edid: EDID block to scan
2300 * @quirks: quirks to apply
2301 */
2302 static int
2303 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2304 u32 quirks)
2305 {
2306 struct detailed_mode_closure closure = {
2307 connector,
2308 edid,
2309 1,
2310 quirks,
2311 0
2312 };
2313
2314 if (closure.preferred && !version_greater(edid, 1, 3))
2315 closure.preferred =
2316 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2317
2318 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2319
2320 return closure.modes;
2321 }
2322
2323 #define AUDIO_BLOCK 0x01
2324 #define VIDEO_BLOCK 0x02
2325 #define VENDOR_BLOCK 0x03
2326 #define SPEAKER_BLOCK 0x04
2327 #define VIDEO_CAPABILITY_BLOCK 0x07
2328 #define EDID_BASIC_AUDIO (1 << 6)
2329 #define EDID_CEA_YCRCB444 (1 << 5)
2330 #define EDID_CEA_YCRCB422 (1 << 4)
2331 #define EDID_CEA_VCDB_QS (1 << 6)
2332
2333 /*
2334 * Search EDID for CEA extension block.
2335 */
2336 static u8 *drm_find_cea_extension(struct edid *edid)
2337 {
2338 u8 *edid_ext = NULL;
2339 int i;
2340
2341 /* No EDID or EDID extensions */
2342 if (edid == NULL || edid->extensions == 0)
2343 return NULL;
2344
2345 /* Find CEA extension */
2346 for (i = 0; i < edid->extensions; i++) {
2347 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2348 if (edid_ext[0] == CEA_EXT)
2349 break;
2350 }
2351
2352 if (i == edid->extensions)
2353 return NULL;
2354
2355 return edid_ext;
2356 }
2357
2358 /*
2359 * Calculate the alternate clock for the CEA mode
2360 * (60Hz vs. 59.94Hz etc.)
2361 */
2362 static unsigned int
2363 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2364 {
2365 unsigned int clock = cea_mode->clock;
2366
2367 if (cea_mode->vrefresh % 6 != 0)
2368 return clock;
2369
2370 /*
2371 * edid_cea_modes contains the 59.94Hz
2372 * variant for 240 and 480 line modes,
2373 * and the 60Hz variant otherwise.
2374 */
2375 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2376 clock = clock * 1001 / 1000;
2377 else
2378 clock = DIV_ROUND_UP(clock * 1000, 1001);
2379
2380 return clock;
2381 }
2382
2383 /**
2384 * drm_match_cea_mode - look for a CEA mode matching given mode
2385 * @to_match: display mode
2386 *
2387 * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2388 * mode.
2389 */
2390 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2391 {
2392 u8 mode;
2393
2394 if (!to_match->clock)
2395 return 0;
2396
2397 for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2398 const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2399 unsigned int clock1, clock2;
2400
2401 /* Check both 60Hz and 59.94Hz */
2402 clock1 = cea_mode->clock;
2403 clock2 = cea_mode_alternate_clock(cea_mode);
2404
2405 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2406 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2407 drm_mode_equal_no_clocks(to_match, cea_mode))
2408 return mode + 1;
2409 }
2410 return 0;
2411 }
2412 EXPORT_SYMBOL(drm_match_cea_mode);
2413
2414 /*
2415 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2416 * specific block).
2417 *
2418 * It's almost like cea_mode_alternate_clock(), we just need to add an
2419 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2420 * one.
2421 */
2422 static unsigned int
2423 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2424 {
2425 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2426 return hdmi_mode->clock;
2427
2428 return cea_mode_alternate_clock(hdmi_mode);
2429 }
2430
2431 /*
2432 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2433 * @to_match: display mode
2434 *
2435 * An HDMI mode is one defined in the HDMI vendor specific block.
2436 *
2437 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2438 */
2439 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2440 {
2441 u8 mode;
2442
2443 if (!to_match->clock)
2444 return 0;
2445
2446 for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2447 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
2448 unsigned int clock1, clock2;
2449
2450 /* Make sure to also match alternate clocks */
2451 clock1 = hdmi_mode->clock;
2452 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2453
2454 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2455 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2456 drm_mode_equal_no_clocks(to_match, hdmi_mode))
2457 return mode + 1;
2458 }
2459 return 0;
2460 }
2461
2462 static int
2463 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2464 {
2465 struct drm_device *dev = connector->dev;
2466 struct drm_display_mode *mode, *tmp;
2467 LIST_HEAD(list);
2468 int modes = 0;
2469
2470 /* Don't add CEA modes if the CEA extension block is missing */
2471 if (!drm_find_cea_extension(edid))
2472 return 0;
2473
2474 /*
2475 * Go through all probed modes and create a new mode
2476 * with the alternate clock for certain CEA modes.
2477 */
2478 list_for_each_entry(mode, &connector->probed_modes, head) {
2479 const struct drm_display_mode *cea_mode = NULL;
2480 struct drm_display_mode *newmode;
2481 u8 mode_idx = drm_match_cea_mode(mode) - 1;
2482 unsigned int clock1, clock2;
2483
2484 if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2485 cea_mode = &edid_cea_modes[mode_idx];
2486 clock2 = cea_mode_alternate_clock(cea_mode);
2487 } else {
2488 mode_idx = drm_match_hdmi_mode(mode) - 1;
2489 if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2490 cea_mode = &edid_4k_modes[mode_idx];
2491 clock2 = hdmi_mode_alternate_clock(cea_mode);
2492 }
2493 }
2494
2495 if (!cea_mode)
2496 continue;
2497
2498 clock1 = cea_mode->clock;
2499
2500 if (clock1 == clock2)
2501 continue;
2502
2503 if (mode->clock != clock1 && mode->clock != clock2)
2504 continue;
2505
2506 newmode = drm_mode_duplicate(dev, cea_mode);
2507 if (!newmode)
2508 continue;
2509
2510 /*
2511 * The current mode could be either variant. Make
2512 * sure to pick the "other" clock for the new mode.
2513 */
2514 if (mode->clock != clock1)
2515 newmode->clock = clock1;
2516 else
2517 newmode->clock = clock2;
2518
2519 list_add_tail(&newmode->head, &list);
2520 }
2521
2522 list_for_each_entry_safe(mode, tmp, &list, head) {
2523 list_del(&mode->head);
2524 drm_mode_probed_add(connector, mode);
2525 modes++;
2526 }
2527
2528 return modes;
2529 }
2530
2531 static int
2532 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2533 {
2534 struct drm_device *dev = connector->dev;
2535 const u8 *mode;
2536 u8 cea_mode;
2537 int modes = 0;
2538
2539 for (mode = db; mode < db + len; mode++) {
2540 cea_mode = (*mode & 127) - 1; /* CEA modes are numbered 1..127 */
2541 if (cea_mode < ARRAY_SIZE(edid_cea_modes)) {
2542 struct drm_display_mode *newmode;
2543 newmode = drm_mode_duplicate(dev,
2544 &edid_cea_modes[cea_mode]);
2545 if (newmode) {
2546 newmode->vrefresh = 0;
2547 drm_mode_probed_add(connector, newmode);
2548 modes++;
2549 }
2550 }
2551 }
2552
2553 return modes;
2554 }
2555
2556 struct stereo_mandatory_mode {
2557 int width, height, vrefresh;
2558 unsigned int flags;
2559 };
2560
2561 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2562 { 1920, 1080, 24,
2563 DRM_MODE_FLAG_3D_TOP_AND_BOTTOM | DRM_MODE_FLAG_3D_FRAME_PACKING },
2564 { 1920, 1080, 50,
2565 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2566 { 1920, 1080, 60,
2567 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2568 { 1280, 720, 50,
2569 DRM_MODE_FLAG_3D_TOP_AND_BOTTOM | DRM_MODE_FLAG_3D_FRAME_PACKING },
2570 { 1280, 720, 60,
2571 DRM_MODE_FLAG_3D_TOP_AND_BOTTOM | DRM_MODE_FLAG_3D_FRAME_PACKING }
2572 };
2573
2574 static bool
2575 stereo_match_mandatory(const struct drm_display_mode *mode,
2576 const struct stereo_mandatory_mode *stereo_mode)
2577 {
2578 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2579
2580 return mode->hdisplay == stereo_mode->width &&
2581 mode->vdisplay == stereo_mode->height &&
2582 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2583 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2584 }
2585
2586 static const struct stereo_mandatory_mode *
2587 hdmi_find_stereo_mandatory_mode(const struct drm_display_mode *mode)
2588 {
2589 int i;
2590
2591 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++)
2592 if (stereo_match_mandatory(mode, &stereo_mandatory_modes[i]))
2593 return &stereo_mandatory_modes[i];
2594
2595 return NULL;
2596 }
2597
2598 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2599 {
2600 struct drm_device *dev = connector->dev;
2601 const struct drm_display_mode *mode;
2602 struct list_head stereo_modes;
2603 int modes = 0;
2604
2605 INIT_LIST_HEAD(&stereo_modes);
2606
2607 list_for_each_entry(mode, &connector->probed_modes, head) {
2608 const struct stereo_mandatory_mode *mandatory;
2609 u32 stereo_layouts, layout;
2610
2611 mandatory = hdmi_find_stereo_mandatory_mode(mode);
2612 if (!mandatory)
2613 continue;
2614
2615 stereo_layouts = mandatory->flags & DRM_MODE_FLAG_3D_MASK;
2616 do {
2617 struct drm_display_mode *new_mode;
2618
2619 layout = 1 << (ffs(stereo_layouts) - 1);
2620 stereo_layouts &= ~layout;
2621
2622 new_mode = drm_mode_duplicate(dev, mode);
2623 if (!new_mode)
2624 continue;
2625
2626 new_mode->flags |= layout;
2627 list_add_tail(&new_mode->head, &stereo_modes);
2628 modes++;
2629 } while (stereo_layouts);
2630 }
2631
2632 list_splice_tail(&stereo_modes, &connector->probed_modes);
2633
2634 return modes;
2635 }
2636
2637 /*
2638 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2639 * @connector: connector corresponding to the HDMI sink
2640 * @db: start of the CEA vendor specific block
2641 * @len: length of the CEA block payload, ie. one can access up to db[len]
2642 *
2643 * Parses the HDMI VSDB looking for modes to add to @connector. This function
2644 * also adds the stereo 3d modes when applicable.
2645 */
2646 static int
2647 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
2648 {
2649 struct drm_device *dev = connector->dev;
2650 int modes = 0, offset = 0, i;
2651 u8 vic_len;
2652
2653 if (len < 8)
2654 goto out;
2655
2656 /* no HDMI_Video_Present */
2657 if (!(db[8] & (1 << 5)))
2658 goto out;
2659
2660 /* Latency_Fields_Present */
2661 if (db[8] & (1 << 7))
2662 offset += 2;
2663
2664 /* I_Latency_Fields_Present */
2665 if (db[8] & (1 << 6))
2666 offset += 2;
2667
2668 /* the declared length is not long enough for the 2 first bytes
2669 * of additional video format capabilities */
2670 if (len < (8 + offset + 2))
2671 goto out;
2672
2673 /* 3D_Present */
2674 offset++;
2675 if (db[8 + offset] & (1 << 7))
2676 modes += add_hdmi_mandatory_stereo_modes(connector);
2677
2678 offset++;
2679 vic_len = db[8 + offset] >> 5;
2680
2681 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2682 struct drm_display_mode *newmode;
2683 u8 vic;
2684
2685 vic = db[9 + offset + i];
2686
2687 vic--; /* VICs start at 1 */
2688 if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2689 DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2690 continue;
2691 }
2692
2693 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2694 if (!newmode)
2695 continue;
2696
2697 drm_mode_probed_add(connector, newmode);
2698 modes++;
2699 }
2700
2701 out:
2702 return modes;
2703 }
2704
2705 static int
2706 cea_db_payload_len(const u8 *db)
2707 {
2708 return db[0] & 0x1f;
2709 }
2710
2711 static int
2712 cea_db_tag(const u8 *db)
2713 {
2714 return db[0] >> 5;
2715 }
2716
2717 static int
2718 cea_revision(const u8 *cea)
2719 {
2720 return cea[1];
2721 }
2722
2723 static int
2724 cea_db_offsets(const u8 *cea, int *start, int *end)
2725 {
2726 /* Data block offset in CEA extension block */
2727 *start = 4;
2728 *end = cea[2];
2729 if (*end == 0)
2730 *end = 127;
2731 if (*end < 4 || *end > 127)
2732 return -ERANGE;
2733 return 0;
2734 }
2735
2736 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2737 {
2738 int hdmi_id;
2739
2740 if (cea_db_tag(db) != VENDOR_BLOCK)
2741 return false;
2742
2743 if (cea_db_payload_len(db) < 5)
2744 return false;
2745
2746 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2747
2748 return hdmi_id == HDMI_IEEE_OUI;
2749 }
2750
2751 #define for_each_cea_db(cea, i, start, end) \
2752 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2753
2754 static int
2755 add_cea_modes(struct drm_connector *connector, struct edid *edid)
2756 {
2757 const u8 *cea = drm_find_cea_extension(edid);
2758 const u8 *db, *hdmi = NULL;
2759 u8 dbl, hdmi_len;
2760 int modes = 0;
2761
2762 if (cea && cea_revision(cea) >= 3) {
2763 int i, start, end;
2764
2765 if (cea_db_offsets(cea, &start, &end))
2766 return 0;
2767
2768 for_each_cea_db(cea, i, start, end) {
2769 db = &cea[i];
2770 dbl = cea_db_payload_len(db);
2771
2772 if (cea_db_tag(db) == VIDEO_BLOCK)
2773 modes += do_cea_modes(connector, db + 1, dbl);
2774 else if (cea_db_is_hdmi_vsdb(db)) {
2775 hdmi = db;
2776 hdmi_len = dbl;
2777 }
2778 }
2779 }
2780
2781 /*
2782 * We parse the HDMI VSDB after having added the cea modes as we will
2783 * be patching their flags when the sink supports stereo 3D.
2784 */
2785 if (hdmi)
2786 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len);
2787
2788 return modes;
2789 }
2790
2791 static void
2792 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2793 {
2794 u8 len = cea_db_payload_len(db);
2795
2796 if (len >= 6) {
2797 connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */
2798 connector->dvi_dual = db[6] & 1;
2799 }
2800 if (len >= 7)
2801 connector->max_tmds_clock = db[7] * 5;
2802 if (len >= 8) {
2803 connector->latency_present[0] = db[8] >> 7;
2804 connector->latency_present[1] = (db[8] >> 6) & 1;
2805 }
2806 if (len >= 9)
2807 connector->video_latency[0] = db[9];
2808 if (len >= 10)
2809 connector->audio_latency[0] = db[10];
2810 if (len >= 11)
2811 connector->video_latency[1] = db[11];
2812 if (len >= 12)
2813 connector->audio_latency[1] = db[12];
2814
2815 DRM_DEBUG_KMS("HDMI: DVI dual %d, "
2816 "max TMDS clock %d, "
2817 "latency present %d %d, "
2818 "video latency %d %d, "
2819 "audio latency %d %d\n",
2820 connector->dvi_dual,
2821 connector->max_tmds_clock,
2822 (int) connector->latency_present[0],
2823 (int) connector->latency_present[1],
2824 connector->video_latency[0],
2825 connector->video_latency[1],
2826 connector->audio_latency[0],
2827 connector->audio_latency[1]);
2828 }
2829
2830 static void
2831 monitor_name(struct detailed_timing *t, void *data)
2832 {
2833 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
2834 *(u8 **)data = t->data.other_data.data.str.str;
2835 }
2836
2837 /**
2838 * drm_edid_to_eld - build ELD from EDID
2839 * @connector: connector corresponding to the HDMI/DP sink
2840 * @edid: EDID to parse
2841 *
2842 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
2843 * Some ELD fields are left to the graphics driver caller:
2844 * - Conn_Type
2845 * - HDCP
2846 * - Port_ID
2847 */
2848 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
2849 {
2850 uint8_t *eld = connector->eld;
2851 u8 *cea;
2852 u8 *name;
2853 u8 *db;
2854 int sad_count = 0;
2855 int mnl;
2856 int dbl;
2857
2858 memset(eld, 0, sizeof(connector->eld));
2859
2860 cea = drm_find_cea_extension(edid);
2861 if (!cea) {
2862 DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
2863 return;
2864 }
2865
2866 name = NULL;
2867 drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
2868 for (mnl = 0; name && mnl < 13; mnl++) {
2869 if (name[mnl] == 0x0a)
2870 break;
2871 eld[20 + mnl] = name[mnl];
2872 }
2873 eld[4] = (cea[1] << 5) | mnl;
2874 DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
2875
2876 eld[0] = 2 << 3; /* ELD version: 2 */
2877
2878 eld[16] = edid->mfg_id[0];
2879 eld[17] = edid->mfg_id[1];
2880 eld[18] = edid->prod_code[0];
2881 eld[19] = edid->prod_code[1];
2882
2883 if (cea_revision(cea) >= 3) {
2884 int i, start, end;
2885
2886 if (cea_db_offsets(cea, &start, &end)) {
2887 start = 0;
2888 end = 0;
2889 }
2890
2891 for_each_cea_db(cea, i, start, end) {
2892 db = &cea[i];
2893 dbl = cea_db_payload_len(db);
2894
2895 switch (cea_db_tag(db)) {
2896 case AUDIO_BLOCK:
2897 /* Audio Data Block, contains SADs */
2898 sad_count = dbl / 3;
2899 if (dbl >= 1)
2900 memcpy(eld + 20 + mnl, &db[1], dbl);
2901 break;
2902 case SPEAKER_BLOCK:
2903 /* Speaker Allocation Data Block */
2904 if (dbl >= 1)
2905 eld[7] = db[1];
2906 break;
2907 case VENDOR_BLOCK:
2908 /* HDMI Vendor-Specific Data Block */
2909 if (cea_db_is_hdmi_vsdb(db))
2910 parse_hdmi_vsdb(connector, db);
2911 break;
2912 default:
2913 break;
2914 }
2915 }
2916 }
2917 eld[5] |= sad_count << 4;
2918 eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
2919
2920 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
2921 }
2922 EXPORT_SYMBOL(drm_edid_to_eld);
2923
2924 /**
2925 * drm_edid_to_sad - extracts SADs from EDID
2926 * @edid: EDID to parse
2927 * @sads: pointer that will be set to the extracted SADs
2928 *
2929 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
2930 * Note: returned pointer needs to be kfreed
2931 *
2932 * Return number of found SADs or negative number on error.
2933 */
2934 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
2935 {
2936 int count = 0;
2937 int i, start, end, dbl;
2938 u8 *cea;
2939
2940 cea = drm_find_cea_extension(edid);
2941 if (!cea) {
2942 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
2943 return -ENOENT;
2944 }
2945
2946 if (cea_revision(cea) < 3) {
2947 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
2948 return -ENOTSUPP;
2949 }
2950
2951 if (cea_db_offsets(cea, &start, &end)) {
2952 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
2953 return -EPROTO;
2954 }
2955
2956 for_each_cea_db(cea, i, start, end) {
2957 u8 *db = &cea[i];
2958
2959 if (cea_db_tag(db) == AUDIO_BLOCK) {
2960 int j;
2961 dbl = cea_db_payload_len(db);
2962
2963 count = dbl / 3; /* SAD is 3B */
2964 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
2965 if (!*sads)
2966 return -ENOMEM;
2967 for (j = 0; j < count; j++) {
2968 u8 *sad = &db[1 + j * 3];
2969
2970 (*sads)[j].format = (sad[0] & 0x78) >> 3;
2971 (*sads)[j].channels = sad[0] & 0x7;
2972 (*sads)[j].freq = sad[1] & 0x7F;
2973 (*sads)[j].byte2 = sad[2];
2974 }
2975 break;
2976 }
2977 }
2978
2979 return count;
2980 }
2981 EXPORT_SYMBOL(drm_edid_to_sad);
2982
2983 /**
2984 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
2985 * @edid: EDID to parse
2986 * @sadb: pointer to the speaker block
2987 *
2988 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
2989 * Note: returned pointer needs to be kfreed
2990 *
2991 * Return number of found Speaker Allocation Blocks or negative number on error.
2992 */
2993 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
2994 {
2995 int count = 0;
2996 int i, start, end, dbl;
2997 const u8 *cea;
2998
2999 cea = drm_find_cea_extension(edid);
3000 if (!cea) {
3001 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3002 return -ENOENT;
3003 }
3004
3005 if (cea_revision(cea) < 3) {
3006 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3007 return -ENOTSUPP;
3008 }
3009
3010 if (cea_db_offsets(cea, &start, &end)) {
3011 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3012 return -EPROTO;
3013 }
3014
3015 for_each_cea_db(cea, i, start, end) {
3016 const u8 *db = &cea[i];
3017
3018 if (cea_db_tag(db) == SPEAKER_BLOCK) {
3019 dbl = cea_db_payload_len(db);
3020
3021 /* Speaker Allocation Data Block */
3022 if (dbl == 3) {
3023 *sadb = kmalloc(dbl, GFP_KERNEL);
3024 memcpy(*sadb, &db[1], dbl);
3025 count = dbl;
3026 break;
3027 }
3028 }
3029 }
3030
3031 return count;
3032 }
3033 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3034
3035 /**
3036 * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
3037 * @connector: connector associated with the HDMI/DP sink
3038 * @mode: the display mode
3039 */
3040 int drm_av_sync_delay(struct drm_connector *connector,
3041 struct drm_display_mode *mode)
3042 {
3043 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3044 int a, v;
3045
3046 if (!connector->latency_present[0])
3047 return 0;
3048 if (!connector->latency_present[1])
3049 i = 0;
3050
3051 a = connector->audio_latency[i];
3052 v = connector->video_latency[i];
3053
3054 /*
3055 * HDMI/DP sink doesn't support audio or video?
3056 */
3057 if (a == 255 || v == 255)
3058 return 0;
3059
3060 /*
3061 * Convert raw EDID values to millisecond.
3062 * Treat unknown latency as 0ms.
3063 */
3064 if (a)
3065 a = min(2 * (a - 1), 500);
3066 if (v)
3067 v = min(2 * (v - 1), 500);
3068
3069 return max(v - a, 0);
3070 }
3071 EXPORT_SYMBOL(drm_av_sync_delay);
3072
3073 /**
3074 * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3075 * @encoder: the encoder just changed display mode
3076 * @mode: the adjusted display mode
3077 *
3078 * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3079 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3080 */
3081 struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
3082 struct drm_display_mode *mode)
3083 {
3084 struct drm_connector *connector;
3085 struct drm_device *dev = encoder->dev;
3086
3087 list_for_each_entry(connector, &dev->mode_config.connector_list, head)
3088 if (connector->encoder == encoder && connector->eld[0])
3089 return connector;
3090
3091 return NULL;
3092 }
3093 EXPORT_SYMBOL(drm_select_eld);
3094
3095 /**
3096 * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
3097 * @edid: monitor EDID information
3098 *
3099 * Parse the CEA extension according to CEA-861-B.
3100 * Return true if HDMI, false if not or unknown.
3101 */
3102 bool drm_detect_hdmi_monitor(struct edid *edid)
3103 {
3104 u8 *edid_ext;
3105 int i;
3106 int start_offset, end_offset;
3107
3108 edid_ext = drm_find_cea_extension(edid);
3109 if (!edid_ext)
3110 return false;
3111
3112 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3113 return false;
3114
3115 /*
3116 * Because HDMI identifier is in Vendor Specific Block,
3117 * search it from all data blocks of CEA extension.
3118 */
3119 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3120 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3121 return true;
3122 }
3123
3124 return false;
3125 }
3126 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3127
3128 /**
3129 * drm_detect_monitor_audio - check monitor audio capability
3130 *
3131 * Monitor should have CEA extension block.
3132 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3133 * audio' only. If there is any audio extension block and supported
3134 * audio format, assume at least 'basic audio' support, even if 'basic
3135 * audio' is not defined in EDID.
3136 *
3137 */
3138 bool drm_detect_monitor_audio(struct edid *edid)
3139 {
3140 u8 *edid_ext;
3141 int i, j;
3142 bool has_audio = false;
3143 int start_offset, end_offset;
3144
3145 edid_ext = drm_find_cea_extension(edid);
3146 if (!edid_ext)
3147 goto end;
3148
3149 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3150
3151 if (has_audio) {
3152 DRM_DEBUG_KMS("Monitor has basic audio support\n");
3153 goto end;
3154 }
3155
3156 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3157 goto end;
3158
3159 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3160 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3161 has_audio = true;
3162 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3163 DRM_DEBUG_KMS("CEA audio format %d\n",
3164 (edid_ext[i + j] >> 3) & 0xf);
3165 goto end;
3166 }
3167 }
3168 end:
3169 return has_audio;
3170 }
3171 EXPORT_SYMBOL(drm_detect_monitor_audio);
3172
3173 /**
3174 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3175 *
3176 * Check whether the monitor reports the RGB quantization range selection
3177 * as supported. The AVI infoframe can then be used to inform the monitor
3178 * which quantization range (full or limited) is used.
3179 */
3180 bool drm_rgb_quant_range_selectable(struct edid *edid)
3181 {
3182 u8 *edid_ext;
3183 int i, start, end;
3184
3185 edid_ext = drm_find_cea_extension(edid);
3186 if (!edid_ext)
3187 return false;
3188
3189 if (cea_db_offsets(edid_ext, &start, &end))
3190 return false;
3191
3192 for_each_cea_db(edid_ext, i, start, end) {
3193 if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3194 cea_db_payload_len(&edid_ext[i]) == 2) {
3195 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3196 return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3197 }
3198 }
3199
3200 return false;
3201 }
3202 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3203
3204 /**
3205 * drm_add_display_info - pull display info out if present
3206 * @edid: EDID data
3207 * @info: display info (attached to connector)
3208 *
3209 * Grab any available display info and stuff it into the drm_display_info
3210 * structure that's part of the connector. Useful for tracking bpp and
3211 * color spaces.
3212 */
3213 static void drm_add_display_info(struct edid *edid,
3214 struct drm_display_info *info)
3215 {
3216 u8 *edid_ext;
3217
3218 info->width_mm = edid->width_cm * 10;
3219 info->height_mm = edid->height_cm * 10;
3220
3221 /* driver figures it out in this case */
3222 info->bpc = 0;
3223 info->color_formats = 0;
3224
3225 if (edid->revision < 3)
3226 return;
3227
3228 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3229 return;
3230
3231 /* Get data from CEA blocks if present */
3232 edid_ext = drm_find_cea_extension(edid);
3233 if (edid_ext) {
3234 info->cea_rev = edid_ext[1];
3235
3236 /* The existence of a CEA block should imply RGB support */
3237 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3238 if (edid_ext[3] & EDID_CEA_YCRCB444)
3239 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3240 if (edid_ext[3] & EDID_CEA_YCRCB422)
3241 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3242 }
3243
3244 /* Only defined for 1.4 with digital displays */
3245 if (edid->revision < 4)
3246 return;
3247
3248 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3249 case DRM_EDID_DIGITAL_DEPTH_6:
3250 info->bpc = 6;
3251 break;
3252 case DRM_EDID_DIGITAL_DEPTH_8:
3253 info->bpc = 8;
3254 break;
3255 case DRM_EDID_DIGITAL_DEPTH_10:
3256 info->bpc = 10;
3257 break;
3258 case DRM_EDID_DIGITAL_DEPTH_12:
3259 info->bpc = 12;
3260 break;
3261 case DRM_EDID_DIGITAL_DEPTH_14:
3262 info->bpc = 14;
3263 break;
3264 case DRM_EDID_DIGITAL_DEPTH_16:
3265 info->bpc = 16;
3266 break;
3267 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3268 default:
3269 info->bpc = 0;
3270 break;
3271 }
3272
3273 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3274 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3275 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3276 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3277 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3278 }
3279
3280 /**
3281 * drm_add_edid_modes - add modes from EDID data, if available
3282 * @connector: connector we're probing
3283 * @edid: edid data
3284 *
3285 * Add the specified modes to the connector's mode list.
3286 *
3287 * Return number of modes added or 0 if we couldn't find any.
3288 */
3289 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3290 {
3291 int num_modes = 0;
3292 u32 quirks;
3293
3294 if (edid == NULL) {
3295 return 0;
3296 }
3297 if (!drm_edid_is_valid(edid)) {
3298 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3299 drm_get_connector_name(connector));
3300 return 0;
3301 }
3302
3303 quirks = edid_get_quirks(edid);
3304
3305 /*
3306 * EDID spec says modes should be preferred in this order:
3307 * - preferred detailed mode
3308 * - other detailed modes from base block
3309 * - detailed modes from extension blocks
3310 * - CVT 3-byte code modes
3311 * - standard timing codes
3312 * - established timing codes
3313 * - modes inferred from GTF or CVT range information
3314 *
3315 * We get this pretty much right.
3316 *
3317 * XXX order for additional mode types in extension blocks?
3318 */
3319 num_modes += add_detailed_modes(connector, edid, quirks);
3320 num_modes += add_cvt_modes(connector, edid);
3321 num_modes += add_standard_modes(connector, edid);
3322 num_modes += add_established_modes(connector, edid);
3323 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3324 num_modes += add_inferred_modes(connector, edid);
3325 num_modes += add_cea_modes(connector, edid);
3326 num_modes += add_alternate_cea_modes(connector, edid);
3327
3328 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3329 edid_fixup_preferred(connector, quirks);
3330
3331 drm_add_display_info(edid, &connector->display_info);
3332
3333 return num_modes;
3334 }
3335 EXPORT_SYMBOL(drm_add_edid_modes);
3336
3337 /**
3338 * drm_add_modes_noedid - add modes for the connectors without EDID
3339 * @connector: connector we're probing
3340 * @hdisplay: the horizontal display limit
3341 * @vdisplay: the vertical display limit
3342 *
3343 * Add the specified modes to the connector's mode list. Only when the
3344 * hdisplay/vdisplay is not beyond the given limit, it will be added.
3345 *
3346 * Return number of modes added or 0 if we couldn't find any.
3347 */
3348 int drm_add_modes_noedid(struct drm_connector *connector,
3349 int hdisplay, int vdisplay)
3350 {
3351 int i, count, num_modes = 0;
3352 struct drm_display_mode *mode;
3353 struct drm_device *dev = connector->dev;
3354
3355 count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
3356 if (hdisplay < 0)
3357 hdisplay = 0;
3358 if (vdisplay < 0)
3359 vdisplay = 0;
3360
3361 for (i = 0; i < count; i++) {
3362 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3363 if (hdisplay && vdisplay) {
3364 /*
3365 * Only when two are valid, they will be used to check
3366 * whether the mode should be added to the mode list of
3367 * the connector.
3368 */
3369 if (ptr->hdisplay > hdisplay ||
3370 ptr->vdisplay > vdisplay)
3371 continue;
3372 }
3373 if (drm_mode_vrefresh(ptr) > 61)
3374 continue;
3375 mode = drm_mode_duplicate(dev, ptr);
3376 if (mode) {
3377 drm_mode_probed_add(connector, mode);
3378 num_modes++;
3379 }
3380 }
3381 return num_modes;
3382 }
3383 EXPORT_SYMBOL(drm_add_modes_noedid);
3384
3385 /**
3386 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3387 * data from a DRM display mode
3388 * @frame: HDMI AVI infoframe
3389 * @mode: DRM display mode
3390 *
3391 * Returns 0 on success or a negative error code on failure.
3392 */
3393 int
3394 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3395 const struct drm_display_mode *mode)
3396 {
3397 int err;
3398
3399 if (!frame || !mode)
3400 return -EINVAL;
3401
3402 err = hdmi_avi_infoframe_init(frame);
3403 if (err < 0)
3404 return err;
3405
3406 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3407 frame->pixel_repeat = 1;
3408
3409 frame->video_code = drm_match_cea_mode(mode);
3410
3411 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3412 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3413
3414 return 0;
3415 }
3416 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3417
3418 /**
3419 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
3420 * data from a DRM display mode
3421 * @frame: HDMI vendor infoframe
3422 * @mode: DRM display mode
3423 *
3424 * Note that there's is a need to send HDMI vendor infoframes only when using a
3425 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
3426 * function will return -EINVAL, error that can be safely ignored.
3427 *
3428 * Returns 0 on success or a negative error code on failure.
3429 */
3430 int
3431 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
3432 const struct drm_display_mode *mode)
3433 {
3434 int err;
3435 u8 vic;
3436
3437 if (!frame || !mode)
3438 return -EINVAL;
3439
3440 vic = drm_match_hdmi_mode(mode);
3441 if (!vic)
3442 return -EINVAL;
3443
3444 err = hdmi_vendor_infoframe_init(frame);
3445 if (err < 0)
3446 return err;
3447
3448 frame->vic = vic;
3449
3450 return 0;
3451 }
3452 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
This page took 0.110877 seconds and 5 git commands to generate.