Merge remote-tracking branch 'asoc/topic/rt5677' into asoc-next
[deliverable/linux.git] / drivers / gpu / drm / exynos / exynos_drm_dsi.c
1 /*
2 * Samsung SoC MIPI DSI Master driver.
3 *
4 * Copyright (c) 2014 Samsung Electronics Co., Ltd
5 *
6 * Contacts: Tomasz Figa <t.figa@samsung.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <asm/unaligned.h>
14
15 #include <drm/drmP.h>
16 #include <drm/drm_crtc_helper.h>
17 #include <drm/drm_mipi_dsi.h>
18 #include <drm/drm_panel.h>
19 #include <drm/drm_atomic_helper.h>
20
21 #include <linux/clk.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/irq.h>
24 #include <linux/of_device.h>
25 #include <linux/of_gpio.h>
26 #include <linux/of_graph.h>
27 #include <linux/phy/phy.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/component.h>
30
31 #include <video/mipi_display.h>
32 #include <video/videomode.h>
33
34 #include "exynos_drm_crtc.h"
35 #include "exynos_drm_drv.h"
36
37 /* returns true iff both arguments logically differs */
38 #define NEQV(a, b) (!(a) ^ !(b))
39
40 /* DSIM_STATUS */
41 #define DSIM_STOP_STATE_DAT(x) (((x) & 0xf) << 0)
42 #define DSIM_STOP_STATE_CLK (1 << 8)
43 #define DSIM_TX_READY_HS_CLK (1 << 10)
44 #define DSIM_PLL_STABLE (1 << 31)
45
46 /* DSIM_SWRST */
47 #define DSIM_FUNCRST (1 << 16)
48 #define DSIM_SWRST (1 << 0)
49
50 /* DSIM_TIMEOUT */
51 #define DSIM_LPDR_TIMEOUT(x) ((x) << 0)
52 #define DSIM_BTA_TIMEOUT(x) ((x) << 16)
53
54 /* DSIM_CLKCTRL */
55 #define DSIM_ESC_PRESCALER(x) (((x) & 0xffff) << 0)
56 #define DSIM_ESC_PRESCALER_MASK (0xffff << 0)
57 #define DSIM_LANE_ESC_CLK_EN_CLK (1 << 19)
58 #define DSIM_LANE_ESC_CLK_EN_DATA(x) (((x) & 0xf) << 20)
59 #define DSIM_LANE_ESC_CLK_EN_DATA_MASK (0xf << 20)
60 #define DSIM_BYTE_CLKEN (1 << 24)
61 #define DSIM_BYTE_CLK_SRC(x) (((x) & 0x3) << 25)
62 #define DSIM_BYTE_CLK_SRC_MASK (0x3 << 25)
63 #define DSIM_PLL_BYPASS (1 << 27)
64 #define DSIM_ESC_CLKEN (1 << 28)
65 #define DSIM_TX_REQUEST_HSCLK (1 << 31)
66
67 /* DSIM_CONFIG */
68 #define DSIM_LANE_EN_CLK (1 << 0)
69 #define DSIM_LANE_EN(x) (((x) & 0xf) << 1)
70 #define DSIM_NUM_OF_DATA_LANE(x) (((x) & 0x3) << 5)
71 #define DSIM_SUB_PIX_FORMAT(x) (((x) & 0x7) << 8)
72 #define DSIM_MAIN_PIX_FORMAT_MASK (0x7 << 12)
73 #define DSIM_MAIN_PIX_FORMAT_RGB888 (0x7 << 12)
74 #define DSIM_MAIN_PIX_FORMAT_RGB666 (0x6 << 12)
75 #define DSIM_MAIN_PIX_FORMAT_RGB666_P (0x5 << 12)
76 #define DSIM_MAIN_PIX_FORMAT_RGB565 (0x4 << 12)
77 #define DSIM_SUB_VC (((x) & 0x3) << 16)
78 #define DSIM_MAIN_VC (((x) & 0x3) << 18)
79 #define DSIM_HSA_MODE (1 << 20)
80 #define DSIM_HBP_MODE (1 << 21)
81 #define DSIM_HFP_MODE (1 << 22)
82 #define DSIM_HSE_MODE (1 << 23)
83 #define DSIM_AUTO_MODE (1 << 24)
84 #define DSIM_VIDEO_MODE (1 << 25)
85 #define DSIM_BURST_MODE (1 << 26)
86 #define DSIM_SYNC_INFORM (1 << 27)
87 #define DSIM_EOT_DISABLE (1 << 28)
88 #define DSIM_MFLUSH_VS (1 << 29)
89 /* This flag is valid only for exynos3250/3472/4415/5260/5430 */
90 #define DSIM_CLKLANE_STOP (1 << 30)
91
92 /* DSIM_ESCMODE */
93 #define DSIM_TX_TRIGGER_RST (1 << 4)
94 #define DSIM_TX_LPDT_LP (1 << 6)
95 #define DSIM_CMD_LPDT_LP (1 << 7)
96 #define DSIM_FORCE_BTA (1 << 16)
97 #define DSIM_FORCE_STOP_STATE (1 << 20)
98 #define DSIM_STOP_STATE_CNT(x) (((x) & 0x7ff) << 21)
99 #define DSIM_STOP_STATE_CNT_MASK (0x7ff << 21)
100
101 /* DSIM_MDRESOL */
102 #define DSIM_MAIN_STAND_BY (1 << 31)
103 #define DSIM_MAIN_VRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 16)
104 #define DSIM_MAIN_HRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 0)
105
106 /* DSIM_MVPORCH */
107 #define DSIM_CMD_ALLOW(x) ((x) << 28)
108 #define DSIM_STABLE_VFP(x) ((x) << 16)
109 #define DSIM_MAIN_VBP(x) ((x) << 0)
110 #define DSIM_CMD_ALLOW_MASK (0xf << 28)
111 #define DSIM_STABLE_VFP_MASK (0x7ff << 16)
112 #define DSIM_MAIN_VBP_MASK (0x7ff << 0)
113
114 /* DSIM_MHPORCH */
115 #define DSIM_MAIN_HFP(x) ((x) << 16)
116 #define DSIM_MAIN_HBP(x) ((x) << 0)
117 #define DSIM_MAIN_HFP_MASK ((0xffff) << 16)
118 #define DSIM_MAIN_HBP_MASK ((0xffff) << 0)
119
120 /* DSIM_MSYNC */
121 #define DSIM_MAIN_VSA(x) ((x) << 22)
122 #define DSIM_MAIN_HSA(x) ((x) << 0)
123 #define DSIM_MAIN_VSA_MASK ((0x3ff) << 22)
124 #define DSIM_MAIN_HSA_MASK ((0xffff) << 0)
125
126 /* DSIM_SDRESOL */
127 #define DSIM_SUB_STANDY(x) ((x) << 31)
128 #define DSIM_SUB_VRESOL(x) ((x) << 16)
129 #define DSIM_SUB_HRESOL(x) ((x) << 0)
130 #define DSIM_SUB_STANDY_MASK ((0x1) << 31)
131 #define DSIM_SUB_VRESOL_MASK ((0x7ff) << 16)
132 #define DSIM_SUB_HRESOL_MASK ((0x7ff) << 0)
133
134 /* DSIM_INTSRC */
135 #define DSIM_INT_PLL_STABLE (1 << 31)
136 #define DSIM_INT_SW_RST_RELEASE (1 << 30)
137 #define DSIM_INT_SFR_FIFO_EMPTY (1 << 29)
138 #define DSIM_INT_SFR_HDR_FIFO_EMPTY (1 << 28)
139 #define DSIM_INT_BTA (1 << 25)
140 #define DSIM_INT_FRAME_DONE (1 << 24)
141 #define DSIM_INT_RX_TIMEOUT (1 << 21)
142 #define DSIM_INT_BTA_TIMEOUT (1 << 20)
143 #define DSIM_INT_RX_DONE (1 << 18)
144 #define DSIM_INT_RX_TE (1 << 17)
145 #define DSIM_INT_RX_ACK (1 << 16)
146 #define DSIM_INT_RX_ECC_ERR (1 << 15)
147 #define DSIM_INT_RX_CRC_ERR (1 << 14)
148
149 /* DSIM_FIFOCTRL */
150 #define DSIM_RX_DATA_FULL (1 << 25)
151 #define DSIM_RX_DATA_EMPTY (1 << 24)
152 #define DSIM_SFR_HEADER_FULL (1 << 23)
153 #define DSIM_SFR_HEADER_EMPTY (1 << 22)
154 #define DSIM_SFR_PAYLOAD_FULL (1 << 21)
155 #define DSIM_SFR_PAYLOAD_EMPTY (1 << 20)
156 #define DSIM_I80_HEADER_FULL (1 << 19)
157 #define DSIM_I80_HEADER_EMPTY (1 << 18)
158 #define DSIM_I80_PAYLOAD_FULL (1 << 17)
159 #define DSIM_I80_PAYLOAD_EMPTY (1 << 16)
160 #define DSIM_SD_HEADER_FULL (1 << 15)
161 #define DSIM_SD_HEADER_EMPTY (1 << 14)
162 #define DSIM_SD_PAYLOAD_FULL (1 << 13)
163 #define DSIM_SD_PAYLOAD_EMPTY (1 << 12)
164 #define DSIM_MD_HEADER_FULL (1 << 11)
165 #define DSIM_MD_HEADER_EMPTY (1 << 10)
166 #define DSIM_MD_PAYLOAD_FULL (1 << 9)
167 #define DSIM_MD_PAYLOAD_EMPTY (1 << 8)
168 #define DSIM_RX_FIFO (1 << 4)
169 #define DSIM_SFR_FIFO (1 << 3)
170 #define DSIM_I80_FIFO (1 << 2)
171 #define DSIM_SD_FIFO (1 << 1)
172 #define DSIM_MD_FIFO (1 << 0)
173
174 /* DSIM_PHYACCHR */
175 #define DSIM_AFC_EN (1 << 14)
176 #define DSIM_AFC_CTL(x) (((x) & 0x7) << 5)
177
178 /* DSIM_PLLCTRL */
179 #define DSIM_FREQ_BAND(x) ((x) << 24)
180 #define DSIM_PLL_EN (1 << 23)
181 #define DSIM_PLL_P(x) ((x) << 13)
182 #define DSIM_PLL_M(x) ((x) << 4)
183 #define DSIM_PLL_S(x) ((x) << 1)
184
185 /* DSIM_PHYCTRL */
186 #define DSIM_PHYCTRL_ULPS_EXIT(x) (((x) & 0x1ff) << 0)
187 #define DSIM_PHYCTRL_B_DPHYCTL_VREG_LP (1 << 30)
188 #define DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP (1 << 14)
189
190 /* DSIM_PHYTIMING */
191 #define DSIM_PHYTIMING_LPX(x) ((x) << 8)
192 #define DSIM_PHYTIMING_HS_EXIT(x) ((x) << 0)
193
194 /* DSIM_PHYTIMING1 */
195 #define DSIM_PHYTIMING1_CLK_PREPARE(x) ((x) << 24)
196 #define DSIM_PHYTIMING1_CLK_ZERO(x) ((x) << 16)
197 #define DSIM_PHYTIMING1_CLK_POST(x) ((x) << 8)
198 #define DSIM_PHYTIMING1_CLK_TRAIL(x) ((x) << 0)
199
200 /* DSIM_PHYTIMING2 */
201 #define DSIM_PHYTIMING2_HS_PREPARE(x) ((x) << 16)
202 #define DSIM_PHYTIMING2_HS_ZERO(x) ((x) << 8)
203 #define DSIM_PHYTIMING2_HS_TRAIL(x) ((x) << 0)
204
205 #define DSI_MAX_BUS_WIDTH 4
206 #define DSI_NUM_VIRTUAL_CHANNELS 4
207 #define DSI_TX_FIFO_SIZE 2048
208 #define DSI_RX_FIFO_SIZE 256
209 #define DSI_XFER_TIMEOUT_MS 100
210 #define DSI_RX_FIFO_EMPTY 0x30800002
211
212 #define OLD_SCLK_MIPI_CLK_NAME "pll_clk"
213
214 static char *clk_names[5] = { "bus_clk", "sclk_mipi",
215 "phyclk_mipidphy0_bitclkdiv8", "phyclk_mipidphy0_rxclkesc0",
216 "sclk_rgb_vclk_to_dsim0" };
217
218 enum exynos_dsi_transfer_type {
219 EXYNOS_DSI_TX,
220 EXYNOS_DSI_RX,
221 };
222
223 struct exynos_dsi_transfer {
224 struct list_head list;
225 struct completion completed;
226 int result;
227 struct mipi_dsi_packet packet;
228 u16 flags;
229 u16 tx_done;
230
231 u8 *rx_payload;
232 u16 rx_len;
233 u16 rx_done;
234 };
235
236 #define DSIM_STATE_ENABLED BIT(0)
237 #define DSIM_STATE_INITIALIZED BIT(1)
238 #define DSIM_STATE_CMD_LPM BIT(2)
239 #define DSIM_STATE_VIDOUT_AVAILABLE BIT(3)
240
241 struct exynos_dsi_driver_data {
242 const unsigned int *reg_ofs;
243 unsigned int plltmr_reg;
244 unsigned int has_freqband:1;
245 unsigned int has_clklane_stop:1;
246 unsigned int num_clks;
247 unsigned int max_freq;
248 unsigned int wait_for_reset;
249 unsigned int num_bits_resol;
250 const unsigned int *reg_values;
251 };
252
253 struct exynos_dsi {
254 struct drm_encoder encoder;
255 struct mipi_dsi_host dsi_host;
256 struct drm_connector connector;
257 struct device_node *panel_node;
258 struct drm_panel *panel;
259 struct device *dev;
260
261 void __iomem *reg_base;
262 struct phy *phy;
263 struct clk **clks;
264 struct regulator_bulk_data supplies[2];
265 int irq;
266 int te_gpio;
267
268 u32 pll_clk_rate;
269 u32 burst_clk_rate;
270 u32 esc_clk_rate;
271 u32 lanes;
272 u32 mode_flags;
273 u32 format;
274 struct videomode vm;
275
276 int state;
277 struct drm_property *brightness;
278 struct completion completed;
279
280 spinlock_t transfer_lock; /* protects transfer_list */
281 struct list_head transfer_list;
282
283 struct exynos_dsi_driver_data *driver_data;
284 struct device_node *bridge_node;
285 };
286
287 #define host_to_dsi(host) container_of(host, struct exynos_dsi, dsi_host)
288 #define connector_to_dsi(c) container_of(c, struct exynos_dsi, connector)
289
290 static inline struct exynos_dsi *encoder_to_dsi(struct drm_encoder *e)
291 {
292 return container_of(e, struct exynos_dsi, encoder);
293 }
294
295 enum reg_idx {
296 DSIM_STATUS_REG, /* Status register */
297 DSIM_SWRST_REG, /* Software reset register */
298 DSIM_CLKCTRL_REG, /* Clock control register */
299 DSIM_TIMEOUT_REG, /* Time out register */
300 DSIM_CONFIG_REG, /* Configuration register */
301 DSIM_ESCMODE_REG, /* Escape mode register */
302 DSIM_MDRESOL_REG,
303 DSIM_MVPORCH_REG, /* Main display Vporch register */
304 DSIM_MHPORCH_REG, /* Main display Hporch register */
305 DSIM_MSYNC_REG, /* Main display sync area register */
306 DSIM_INTSRC_REG, /* Interrupt source register */
307 DSIM_INTMSK_REG, /* Interrupt mask register */
308 DSIM_PKTHDR_REG, /* Packet Header FIFO register */
309 DSIM_PAYLOAD_REG, /* Payload FIFO register */
310 DSIM_RXFIFO_REG, /* Read FIFO register */
311 DSIM_FIFOCTRL_REG, /* FIFO status and control register */
312 DSIM_PLLCTRL_REG, /* PLL control register */
313 DSIM_PHYCTRL_REG,
314 DSIM_PHYTIMING_REG,
315 DSIM_PHYTIMING1_REG,
316 DSIM_PHYTIMING2_REG,
317 NUM_REGS
318 };
319
320 static inline void exynos_dsi_write(struct exynos_dsi *dsi, enum reg_idx idx,
321 u32 val)
322 {
323
324 writel(val, dsi->reg_base + dsi->driver_data->reg_ofs[idx]);
325 }
326
327 static inline u32 exynos_dsi_read(struct exynos_dsi *dsi, enum reg_idx idx)
328 {
329 return readl(dsi->reg_base + dsi->driver_data->reg_ofs[idx]);
330 }
331
332 static const unsigned int exynos_reg_ofs[] = {
333 [DSIM_STATUS_REG] = 0x00,
334 [DSIM_SWRST_REG] = 0x04,
335 [DSIM_CLKCTRL_REG] = 0x08,
336 [DSIM_TIMEOUT_REG] = 0x0c,
337 [DSIM_CONFIG_REG] = 0x10,
338 [DSIM_ESCMODE_REG] = 0x14,
339 [DSIM_MDRESOL_REG] = 0x18,
340 [DSIM_MVPORCH_REG] = 0x1c,
341 [DSIM_MHPORCH_REG] = 0x20,
342 [DSIM_MSYNC_REG] = 0x24,
343 [DSIM_INTSRC_REG] = 0x2c,
344 [DSIM_INTMSK_REG] = 0x30,
345 [DSIM_PKTHDR_REG] = 0x34,
346 [DSIM_PAYLOAD_REG] = 0x38,
347 [DSIM_RXFIFO_REG] = 0x3c,
348 [DSIM_FIFOCTRL_REG] = 0x44,
349 [DSIM_PLLCTRL_REG] = 0x4c,
350 [DSIM_PHYCTRL_REG] = 0x5c,
351 [DSIM_PHYTIMING_REG] = 0x64,
352 [DSIM_PHYTIMING1_REG] = 0x68,
353 [DSIM_PHYTIMING2_REG] = 0x6c,
354 };
355
356 static const unsigned int exynos5433_reg_ofs[] = {
357 [DSIM_STATUS_REG] = 0x04,
358 [DSIM_SWRST_REG] = 0x0C,
359 [DSIM_CLKCTRL_REG] = 0x10,
360 [DSIM_TIMEOUT_REG] = 0x14,
361 [DSIM_CONFIG_REG] = 0x18,
362 [DSIM_ESCMODE_REG] = 0x1C,
363 [DSIM_MDRESOL_REG] = 0x20,
364 [DSIM_MVPORCH_REG] = 0x24,
365 [DSIM_MHPORCH_REG] = 0x28,
366 [DSIM_MSYNC_REG] = 0x2C,
367 [DSIM_INTSRC_REG] = 0x34,
368 [DSIM_INTMSK_REG] = 0x38,
369 [DSIM_PKTHDR_REG] = 0x3C,
370 [DSIM_PAYLOAD_REG] = 0x40,
371 [DSIM_RXFIFO_REG] = 0x44,
372 [DSIM_FIFOCTRL_REG] = 0x4C,
373 [DSIM_PLLCTRL_REG] = 0x94,
374 [DSIM_PHYCTRL_REG] = 0xA4,
375 [DSIM_PHYTIMING_REG] = 0xB4,
376 [DSIM_PHYTIMING1_REG] = 0xB8,
377 [DSIM_PHYTIMING2_REG] = 0xBC,
378 };
379
380 enum reg_value_idx {
381 RESET_TYPE,
382 PLL_TIMER,
383 STOP_STATE_CNT,
384 PHYCTRL_ULPS_EXIT,
385 PHYCTRL_VREG_LP,
386 PHYCTRL_SLEW_UP,
387 PHYTIMING_LPX,
388 PHYTIMING_HS_EXIT,
389 PHYTIMING_CLK_PREPARE,
390 PHYTIMING_CLK_ZERO,
391 PHYTIMING_CLK_POST,
392 PHYTIMING_CLK_TRAIL,
393 PHYTIMING_HS_PREPARE,
394 PHYTIMING_HS_ZERO,
395 PHYTIMING_HS_TRAIL
396 };
397
398 static const unsigned int reg_values[] = {
399 [RESET_TYPE] = DSIM_SWRST,
400 [PLL_TIMER] = 500,
401 [STOP_STATE_CNT] = 0xf,
402 [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x0af),
403 [PHYCTRL_VREG_LP] = 0,
404 [PHYCTRL_SLEW_UP] = 0,
405 [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06),
406 [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b),
407 [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07),
408 [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x27),
409 [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d),
410 [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08),
411 [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x09),
412 [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d),
413 [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b),
414 };
415
416 static const unsigned int exynos5422_reg_values[] = {
417 [RESET_TYPE] = DSIM_SWRST,
418 [PLL_TIMER] = 500,
419 [STOP_STATE_CNT] = 0xf,
420 [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0xaf),
421 [PHYCTRL_VREG_LP] = 0,
422 [PHYCTRL_SLEW_UP] = 0,
423 [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x08),
424 [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0d),
425 [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09),
426 [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x30),
427 [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e),
428 [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x0a),
429 [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0c),
430 [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x11),
431 [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0d),
432 };
433
434 static const unsigned int exynos5433_reg_values[] = {
435 [RESET_TYPE] = DSIM_FUNCRST,
436 [PLL_TIMER] = 22200,
437 [STOP_STATE_CNT] = 0xa,
438 [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x190),
439 [PHYCTRL_VREG_LP] = DSIM_PHYCTRL_B_DPHYCTL_VREG_LP,
440 [PHYCTRL_SLEW_UP] = DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP,
441 [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x07),
442 [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0c),
443 [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09),
444 [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x2d),
445 [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e),
446 [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x09),
447 [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0b),
448 [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x10),
449 [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0c),
450 };
451
452 static const struct exynos_dsi_driver_data exynos3_dsi_driver_data = {
453 .reg_ofs = exynos_reg_ofs,
454 .plltmr_reg = 0x50,
455 .has_freqband = 1,
456 .has_clklane_stop = 1,
457 .num_clks = 2,
458 .max_freq = 1000,
459 .wait_for_reset = 1,
460 .num_bits_resol = 11,
461 .reg_values = reg_values,
462 };
463
464 static const struct exynos_dsi_driver_data exynos4_dsi_driver_data = {
465 .reg_ofs = exynos_reg_ofs,
466 .plltmr_reg = 0x50,
467 .has_freqband = 1,
468 .has_clklane_stop = 1,
469 .num_clks = 2,
470 .max_freq = 1000,
471 .wait_for_reset = 1,
472 .num_bits_resol = 11,
473 .reg_values = reg_values,
474 };
475
476 static const struct exynos_dsi_driver_data exynos4415_dsi_driver_data = {
477 .reg_ofs = exynos_reg_ofs,
478 .plltmr_reg = 0x58,
479 .has_clklane_stop = 1,
480 .num_clks = 2,
481 .max_freq = 1000,
482 .wait_for_reset = 1,
483 .num_bits_resol = 11,
484 .reg_values = reg_values,
485 };
486
487 static const struct exynos_dsi_driver_data exynos5_dsi_driver_data = {
488 .reg_ofs = exynos_reg_ofs,
489 .plltmr_reg = 0x58,
490 .num_clks = 2,
491 .max_freq = 1000,
492 .wait_for_reset = 1,
493 .num_bits_resol = 11,
494 .reg_values = reg_values,
495 };
496
497 static const struct exynos_dsi_driver_data exynos5433_dsi_driver_data = {
498 .reg_ofs = exynos5433_reg_ofs,
499 .plltmr_reg = 0xa0,
500 .has_clklane_stop = 1,
501 .num_clks = 5,
502 .max_freq = 1500,
503 .wait_for_reset = 0,
504 .num_bits_resol = 12,
505 .reg_values = exynos5433_reg_values,
506 };
507
508 static const struct exynos_dsi_driver_data exynos5422_dsi_driver_data = {
509 .reg_ofs = exynos5433_reg_ofs,
510 .plltmr_reg = 0xa0,
511 .has_clklane_stop = 1,
512 .num_clks = 2,
513 .max_freq = 1500,
514 .wait_for_reset = 1,
515 .num_bits_resol = 12,
516 .reg_values = exynos5422_reg_values,
517 };
518
519 static const struct of_device_id exynos_dsi_of_match[] = {
520 { .compatible = "samsung,exynos3250-mipi-dsi",
521 .data = &exynos3_dsi_driver_data },
522 { .compatible = "samsung,exynos4210-mipi-dsi",
523 .data = &exynos4_dsi_driver_data },
524 { .compatible = "samsung,exynos4415-mipi-dsi",
525 .data = &exynos4415_dsi_driver_data },
526 { .compatible = "samsung,exynos5410-mipi-dsi",
527 .data = &exynos5_dsi_driver_data },
528 { .compatible = "samsung,exynos5422-mipi-dsi",
529 .data = &exynos5422_dsi_driver_data },
530 { .compatible = "samsung,exynos5433-mipi-dsi",
531 .data = &exynos5433_dsi_driver_data },
532 { }
533 };
534
535 static inline struct exynos_dsi_driver_data *exynos_dsi_get_driver_data(
536 struct platform_device *pdev)
537 {
538 const struct of_device_id *of_id =
539 of_match_device(exynos_dsi_of_match, &pdev->dev);
540
541 return (struct exynos_dsi_driver_data *)of_id->data;
542 }
543
544 static void exynos_dsi_wait_for_reset(struct exynos_dsi *dsi)
545 {
546 if (wait_for_completion_timeout(&dsi->completed, msecs_to_jiffies(300)))
547 return;
548
549 dev_err(dsi->dev, "timeout waiting for reset\n");
550 }
551
552 static void exynos_dsi_reset(struct exynos_dsi *dsi)
553 {
554 u32 reset_val = dsi->driver_data->reg_values[RESET_TYPE];
555
556 reinit_completion(&dsi->completed);
557 exynos_dsi_write(dsi, DSIM_SWRST_REG, reset_val);
558 }
559
560 #ifndef MHZ
561 #define MHZ (1000*1000)
562 #endif
563
564 static unsigned long exynos_dsi_pll_find_pms(struct exynos_dsi *dsi,
565 unsigned long fin, unsigned long fout, u8 *p, u16 *m, u8 *s)
566 {
567 struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
568 unsigned long best_freq = 0;
569 u32 min_delta = 0xffffffff;
570 u8 p_min, p_max;
571 u8 _p, uninitialized_var(best_p);
572 u16 _m, uninitialized_var(best_m);
573 u8 _s, uninitialized_var(best_s);
574
575 p_min = DIV_ROUND_UP(fin, (12 * MHZ));
576 p_max = fin / (6 * MHZ);
577
578 for (_p = p_min; _p <= p_max; ++_p) {
579 for (_s = 0; _s <= 5; ++_s) {
580 u64 tmp;
581 u32 delta;
582
583 tmp = (u64)fout * (_p << _s);
584 do_div(tmp, fin);
585 _m = tmp;
586 if (_m < 41 || _m > 125)
587 continue;
588
589 tmp = (u64)_m * fin;
590 do_div(tmp, _p);
591 if (tmp < 500 * MHZ ||
592 tmp > driver_data->max_freq * MHZ)
593 continue;
594
595 tmp = (u64)_m * fin;
596 do_div(tmp, _p << _s);
597
598 delta = abs(fout - tmp);
599 if (delta < min_delta) {
600 best_p = _p;
601 best_m = _m;
602 best_s = _s;
603 min_delta = delta;
604 best_freq = tmp;
605 }
606 }
607 }
608
609 if (best_freq) {
610 *p = best_p;
611 *m = best_m;
612 *s = best_s;
613 }
614
615 return best_freq;
616 }
617
618 static unsigned long exynos_dsi_set_pll(struct exynos_dsi *dsi,
619 unsigned long freq)
620 {
621 struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
622 unsigned long fin, fout;
623 int timeout;
624 u8 p, s;
625 u16 m;
626 u32 reg;
627
628 fin = dsi->pll_clk_rate;
629 fout = exynos_dsi_pll_find_pms(dsi, fin, freq, &p, &m, &s);
630 if (!fout) {
631 dev_err(dsi->dev,
632 "failed to find PLL PMS for requested frequency\n");
633 return 0;
634 }
635 dev_dbg(dsi->dev, "PLL freq %lu, (p %d, m %d, s %d)\n", fout, p, m, s);
636
637 writel(driver_data->reg_values[PLL_TIMER],
638 dsi->reg_base + driver_data->plltmr_reg);
639
640 reg = DSIM_PLL_EN | DSIM_PLL_P(p) | DSIM_PLL_M(m) | DSIM_PLL_S(s);
641
642 if (driver_data->has_freqband) {
643 static const unsigned long freq_bands[] = {
644 100 * MHZ, 120 * MHZ, 160 * MHZ, 200 * MHZ,
645 270 * MHZ, 320 * MHZ, 390 * MHZ, 450 * MHZ,
646 510 * MHZ, 560 * MHZ, 640 * MHZ, 690 * MHZ,
647 770 * MHZ, 870 * MHZ, 950 * MHZ,
648 };
649 int band;
650
651 for (band = 0; band < ARRAY_SIZE(freq_bands); ++band)
652 if (fout < freq_bands[band])
653 break;
654
655 dev_dbg(dsi->dev, "band %d\n", band);
656
657 reg |= DSIM_FREQ_BAND(band);
658 }
659
660 exynos_dsi_write(dsi, DSIM_PLLCTRL_REG, reg);
661
662 timeout = 1000;
663 do {
664 if (timeout-- == 0) {
665 dev_err(dsi->dev, "PLL failed to stabilize\n");
666 return 0;
667 }
668 reg = exynos_dsi_read(dsi, DSIM_STATUS_REG);
669 } while ((reg & DSIM_PLL_STABLE) == 0);
670
671 return fout;
672 }
673
674 static int exynos_dsi_enable_clock(struct exynos_dsi *dsi)
675 {
676 unsigned long hs_clk, byte_clk, esc_clk;
677 unsigned long esc_div;
678 u32 reg;
679
680 hs_clk = exynos_dsi_set_pll(dsi, dsi->burst_clk_rate);
681 if (!hs_clk) {
682 dev_err(dsi->dev, "failed to configure DSI PLL\n");
683 return -EFAULT;
684 }
685
686 byte_clk = hs_clk / 8;
687 esc_div = DIV_ROUND_UP(byte_clk, dsi->esc_clk_rate);
688 esc_clk = byte_clk / esc_div;
689
690 if (esc_clk > 20 * MHZ) {
691 ++esc_div;
692 esc_clk = byte_clk / esc_div;
693 }
694
695 dev_dbg(dsi->dev, "hs_clk = %lu, byte_clk = %lu, esc_clk = %lu\n",
696 hs_clk, byte_clk, esc_clk);
697
698 reg = exynos_dsi_read(dsi, DSIM_CLKCTRL_REG);
699 reg &= ~(DSIM_ESC_PRESCALER_MASK | DSIM_LANE_ESC_CLK_EN_CLK
700 | DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_PLL_BYPASS
701 | DSIM_BYTE_CLK_SRC_MASK);
702 reg |= DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN
703 | DSIM_ESC_PRESCALER(esc_div)
704 | DSIM_LANE_ESC_CLK_EN_CLK
705 | DSIM_LANE_ESC_CLK_EN_DATA(BIT(dsi->lanes) - 1)
706 | DSIM_BYTE_CLK_SRC(0)
707 | DSIM_TX_REQUEST_HSCLK;
708 exynos_dsi_write(dsi, DSIM_CLKCTRL_REG, reg);
709
710 return 0;
711 }
712
713 static void exynos_dsi_set_phy_ctrl(struct exynos_dsi *dsi)
714 {
715 struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
716 const unsigned int *reg_values = driver_data->reg_values;
717 u32 reg;
718
719 if (driver_data->has_freqband)
720 return;
721
722 /* B D-PHY: D-PHY Master & Slave Analog Block control */
723 reg = reg_values[PHYCTRL_ULPS_EXIT] | reg_values[PHYCTRL_VREG_LP] |
724 reg_values[PHYCTRL_SLEW_UP];
725 exynos_dsi_write(dsi, DSIM_PHYCTRL_REG, reg);
726
727 /*
728 * T LPX: Transmitted length of any Low-Power state period
729 * T HS-EXIT: Time that the transmitter drives LP-11 following a HS
730 * burst
731 */
732 reg = reg_values[PHYTIMING_LPX] | reg_values[PHYTIMING_HS_EXIT];
733 exynos_dsi_write(dsi, DSIM_PHYTIMING_REG, reg);
734
735 /*
736 * T CLK-PREPARE: Time that the transmitter drives the Clock Lane LP-00
737 * Line state immediately before the HS-0 Line state starting the
738 * HS transmission
739 * T CLK-ZERO: Time that the transmitter drives the HS-0 state prior to
740 * transmitting the Clock.
741 * T CLK_POST: Time that the transmitter continues to send HS clock
742 * after the last associated Data Lane has transitioned to LP Mode
743 * Interval is defined as the period from the end of T HS-TRAIL to
744 * the beginning of T CLK-TRAIL
745 * T CLK-TRAIL: Time that the transmitter drives the HS-0 state after
746 * the last payload clock bit of a HS transmission burst
747 */
748 reg = reg_values[PHYTIMING_CLK_PREPARE] |
749 reg_values[PHYTIMING_CLK_ZERO] |
750 reg_values[PHYTIMING_CLK_POST] |
751 reg_values[PHYTIMING_CLK_TRAIL];
752
753 exynos_dsi_write(dsi, DSIM_PHYTIMING1_REG, reg);
754
755 /*
756 * T HS-PREPARE: Time that the transmitter drives the Data Lane LP-00
757 * Line state immediately before the HS-0 Line state starting the
758 * HS transmission
759 * T HS-ZERO: Time that the transmitter drives the HS-0 state prior to
760 * transmitting the Sync sequence.
761 * T HS-TRAIL: Time that the transmitter drives the flipped differential
762 * state after last payload data bit of a HS transmission burst
763 */
764 reg = reg_values[PHYTIMING_HS_PREPARE] | reg_values[PHYTIMING_HS_ZERO] |
765 reg_values[PHYTIMING_HS_TRAIL];
766 exynos_dsi_write(dsi, DSIM_PHYTIMING2_REG, reg);
767 }
768
769 static void exynos_dsi_disable_clock(struct exynos_dsi *dsi)
770 {
771 u32 reg;
772
773 reg = exynos_dsi_read(dsi, DSIM_CLKCTRL_REG);
774 reg &= ~(DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK
775 | DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN);
776 exynos_dsi_write(dsi, DSIM_CLKCTRL_REG, reg);
777
778 reg = exynos_dsi_read(dsi, DSIM_PLLCTRL_REG);
779 reg &= ~DSIM_PLL_EN;
780 exynos_dsi_write(dsi, DSIM_PLLCTRL_REG, reg);
781 }
782
783 static void exynos_dsi_enable_lane(struct exynos_dsi *dsi, u32 lane)
784 {
785 u32 reg = exynos_dsi_read(dsi, DSIM_CONFIG_REG);
786 reg |= (DSIM_NUM_OF_DATA_LANE(dsi->lanes - 1) | DSIM_LANE_EN_CLK |
787 DSIM_LANE_EN(lane));
788 exynos_dsi_write(dsi, DSIM_CONFIG_REG, reg);
789 }
790
791 static int exynos_dsi_init_link(struct exynos_dsi *dsi)
792 {
793 struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
794 int timeout;
795 u32 reg;
796 u32 lanes_mask;
797
798 /* Initialize FIFO pointers */
799 reg = exynos_dsi_read(dsi, DSIM_FIFOCTRL_REG);
800 reg &= ~0x1f;
801 exynos_dsi_write(dsi, DSIM_FIFOCTRL_REG, reg);
802
803 usleep_range(9000, 11000);
804
805 reg |= 0x1f;
806 exynos_dsi_write(dsi, DSIM_FIFOCTRL_REG, reg);
807 usleep_range(9000, 11000);
808
809 /* DSI configuration */
810 reg = 0;
811
812 /*
813 * The first bit of mode_flags specifies display configuration.
814 * If this bit is set[= MIPI_DSI_MODE_VIDEO], dsi will support video
815 * mode, otherwise it will support command mode.
816 */
817 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
818 reg |= DSIM_VIDEO_MODE;
819
820 /*
821 * The user manual describes that following bits are ignored in
822 * command mode.
823 */
824 if (!(dsi->mode_flags & MIPI_DSI_MODE_VSYNC_FLUSH))
825 reg |= DSIM_MFLUSH_VS;
826 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
827 reg |= DSIM_SYNC_INFORM;
828 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
829 reg |= DSIM_BURST_MODE;
830 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_AUTO_VERT)
831 reg |= DSIM_AUTO_MODE;
832 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE)
833 reg |= DSIM_HSE_MODE;
834 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HFP))
835 reg |= DSIM_HFP_MODE;
836 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HBP))
837 reg |= DSIM_HBP_MODE;
838 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSA))
839 reg |= DSIM_HSA_MODE;
840 }
841
842 if (!(dsi->mode_flags & MIPI_DSI_MODE_EOT_PACKET))
843 reg |= DSIM_EOT_DISABLE;
844
845 switch (dsi->format) {
846 case MIPI_DSI_FMT_RGB888:
847 reg |= DSIM_MAIN_PIX_FORMAT_RGB888;
848 break;
849 case MIPI_DSI_FMT_RGB666:
850 reg |= DSIM_MAIN_PIX_FORMAT_RGB666;
851 break;
852 case MIPI_DSI_FMT_RGB666_PACKED:
853 reg |= DSIM_MAIN_PIX_FORMAT_RGB666_P;
854 break;
855 case MIPI_DSI_FMT_RGB565:
856 reg |= DSIM_MAIN_PIX_FORMAT_RGB565;
857 break;
858 default:
859 dev_err(dsi->dev, "invalid pixel format\n");
860 return -EINVAL;
861 }
862
863 /*
864 * Use non-continuous clock mode if the periparal wants and
865 * host controller supports
866 *
867 * In non-continous clock mode, host controller will turn off
868 * the HS clock between high-speed transmissions to reduce
869 * power consumption.
870 */
871 if (driver_data->has_clklane_stop &&
872 dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) {
873 reg |= DSIM_CLKLANE_STOP;
874 }
875 exynos_dsi_write(dsi, DSIM_CONFIG_REG, reg);
876
877 lanes_mask = BIT(dsi->lanes) - 1;
878 exynos_dsi_enable_lane(dsi, lanes_mask);
879
880 /* Check clock and data lane state are stop state */
881 timeout = 100;
882 do {
883 if (timeout-- == 0) {
884 dev_err(dsi->dev, "waiting for bus lanes timed out\n");
885 return -EFAULT;
886 }
887
888 reg = exynos_dsi_read(dsi, DSIM_STATUS_REG);
889 if ((reg & DSIM_STOP_STATE_DAT(lanes_mask))
890 != DSIM_STOP_STATE_DAT(lanes_mask))
891 continue;
892 } while (!(reg & (DSIM_STOP_STATE_CLK | DSIM_TX_READY_HS_CLK)));
893
894 reg = exynos_dsi_read(dsi, DSIM_ESCMODE_REG);
895 reg &= ~DSIM_STOP_STATE_CNT_MASK;
896 reg |= DSIM_STOP_STATE_CNT(driver_data->reg_values[STOP_STATE_CNT]);
897 exynos_dsi_write(dsi, DSIM_ESCMODE_REG, reg);
898
899 reg = DSIM_BTA_TIMEOUT(0xff) | DSIM_LPDR_TIMEOUT(0xffff);
900 exynos_dsi_write(dsi, DSIM_TIMEOUT_REG, reg);
901
902 return 0;
903 }
904
905 static void exynos_dsi_set_display_mode(struct exynos_dsi *dsi)
906 {
907 struct videomode *vm = &dsi->vm;
908 unsigned int num_bits_resol = dsi->driver_data->num_bits_resol;
909 u32 reg;
910
911 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
912 reg = DSIM_CMD_ALLOW(0xf)
913 | DSIM_STABLE_VFP(vm->vfront_porch)
914 | DSIM_MAIN_VBP(vm->vback_porch);
915 exynos_dsi_write(dsi, DSIM_MVPORCH_REG, reg);
916
917 reg = DSIM_MAIN_HFP(vm->hfront_porch)
918 | DSIM_MAIN_HBP(vm->hback_porch);
919 exynos_dsi_write(dsi, DSIM_MHPORCH_REG, reg);
920
921 reg = DSIM_MAIN_VSA(vm->vsync_len)
922 | DSIM_MAIN_HSA(vm->hsync_len);
923 exynos_dsi_write(dsi, DSIM_MSYNC_REG, reg);
924 }
925 reg = DSIM_MAIN_HRESOL(vm->hactive, num_bits_resol) |
926 DSIM_MAIN_VRESOL(vm->vactive, num_bits_resol);
927
928 exynos_dsi_write(dsi, DSIM_MDRESOL_REG, reg);
929
930 dev_dbg(dsi->dev, "LCD size = %dx%d\n", vm->hactive, vm->vactive);
931 }
932
933 static void exynos_dsi_set_display_enable(struct exynos_dsi *dsi, bool enable)
934 {
935 u32 reg;
936
937 reg = exynos_dsi_read(dsi, DSIM_MDRESOL_REG);
938 if (enable)
939 reg |= DSIM_MAIN_STAND_BY;
940 else
941 reg &= ~DSIM_MAIN_STAND_BY;
942 exynos_dsi_write(dsi, DSIM_MDRESOL_REG, reg);
943 }
944
945 static int exynos_dsi_wait_for_hdr_fifo(struct exynos_dsi *dsi)
946 {
947 int timeout = 2000;
948
949 do {
950 u32 reg = exynos_dsi_read(dsi, DSIM_FIFOCTRL_REG);
951
952 if (!(reg & DSIM_SFR_HEADER_FULL))
953 return 0;
954
955 if (!cond_resched())
956 usleep_range(950, 1050);
957 } while (--timeout);
958
959 return -ETIMEDOUT;
960 }
961
962 static void exynos_dsi_set_cmd_lpm(struct exynos_dsi *dsi, bool lpm)
963 {
964 u32 v = exynos_dsi_read(dsi, DSIM_ESCMODE_REG);
965
966 if (lpm)
967 v |= DSIM_CMD_LPDT_LP;
968 else
969 v &= ~DSIM_CMD_LPDT_LP;
970
971 exynos_dsi_write(dsi, DSIM_ESCMODE_REG, v);
972 }
973
974 static void exynos_dsi_force_bta(struct exynos_dsi *dsi)
975 {
976 u32 v = exynos_dsi_read(dsi, DSIM_ESCMODE_REG);
977 v |= DSIM_FORCE_BTA;
978 exynos_dsi_write(dsi, DSIM_ESCMODE_REG, v);
979 }
980
981 static void exynos_dsi_send_to_fifo(struct exynos_dsi *dsi,
982 struct exynos_dsi_transfer *xfer)
983 {
984 struct device *dev = dsi->dev;
985 struct mipi_dsi_packet *pkt = &xfer->packet;
986 const u8 *payload = pkt->payload + xfer->tx_done;
987 u16 length = pkt->payload_length - xfer->tx_done;
988 bool first = !xfer->tx_done;
989 u32 reg;
990
991 dev_dbg(dev, "< xfer %p: tx len %u, done %u, rx len %u, done %u\n",
992 xfer, length, xfer->tx_done, xfer->rx_len, xfer->rx_done);
993
994 if (length > DSI_TX_FIFO_SIZE)
995 length = DSI_TX_FIFO_SIZE;
996
997 xfer->tx_done += length;
998
999 /* Send payload */
1000 while (length >= 4) {
1001 reg = get_unaligned_le32(payload);
1002 exynos_dsi_write(dsi, DSIM_PAYLOAD_REG, reg);
1003 payload += 4;
1004 length -= 4;
1005 }
1006
1007 reg = 0;
1008 switch (length) {
1009 case 3:
1010 reg |= payload[2] << 16;
1011 /* Fall through */
1012 case 2:
1013 reg |= payload[1] << 8;
1014 /* Fall through */
1015 case 1:
1016 reg |= payload[0];
1017 exynos_dsi_write(dsi, DSIM_PAYLOAD_REG, reg);
1018 break;
1019 }
1020
1021 /* Send packet header */
1022 if (!first)
1023 return;
1024
1025 reg = get_unaligned_le32(pkt->header);
1026 if (exynos_dsi_wait_for_hdr_fifo(dsi)) {
1027 dev_err(dev, "waiting for header FIFO timed out\n");
1028 return;
1029 }
1030
1031 if (NEQV(xfer->flags & MIPI_DSI_MSG_USE_LPM,
1032 dsi->state & DSIM_STATE_CMD_LPM)) {
1033 exynos_dsi_set_cmd_lpm(dsi, xfer->flags & MIPI_DSI_MSG_USE_LPM);
1034 dsi->state ^= DSIM_STATE_CMD_LPM;
1035 }
1036
1037 exynos_dsi_write(dsi, DSIM_PKTHDR_REG, reg);
1038
1039 if (xfer->flags & MIPI_DSI_MSG_REQ_ACK)
1040 exynos_dsi_force_bta(dsi);
1041 }
1042
1043 static void exynos_dsi_read_from_fifo(struct exynos_dsi *dsi,
1044 struct exynos_dsi_transfer *xfer)
1045 {
1046 u8 *payload = xfer->rx_payload + xfer->rx_done;
1047 bool first = !xfer->rx_done;
1048 struct device *dev = dsi->dev;
1049 u16 length;
1050 u32 reg;
1051
1052 if (first) {
1053 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG);
1054
1055 switch (reg & 0x3f) {
1056 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
1057 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
1058 if (xfer->rx_len >= 2) {
1059 payload[1] = reg >> 16;
1060 ++xfer->rx_done;
1061 }
1062 /* Fall through */
1063 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
1064 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
1065 payload[0] = reg >> 8;
1066 ++xfer->rx_done;
1067 xfer->rx_len = xfer->rx_done;
1068 xfer->result = 0;
1069 goto clear_fifo;
1070 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
1071 dev_err(dev, "DSI Error Report: 0x%04x\n",
1072 (reg >> 8) & 0xffff);
1073 xfer->result = 0;
1074 goto clear_fifo;
1075 }
1076
1077 length = (reg >> 8) & 0xffff;
1078 if (length > xfer->rx_len) {
1079 dev_err(dev,
1080 "response too long (%u > %u bytes), stripping\n",
1081 xfer->rx_len, length);
1082 length = xfer->rx_len;
1083 } else if (length < xfer->rx_len)
1084 xfer->rx_len = length;
1085 }
1086
1087 length = xfer->rx_len - xfer->rx_done;
1088 xfer->rx_done += length;
1089
1090 /* Receive payload */
1091 while (length >= 4) {
1092 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG);
1093 payload[0] = (reg >> 0) & 0xff;
1094 payload[1] = (reg >> 8) & 0xff;
1095 payload[2] = (reg >> 16) & 0xff;
1096 payload[3] = (reg >> 24) & 0xff;
1097 payload += 4;
1098 length -= 4;
1099 }
1100
1101 if (length) {
1102 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG);
1103 switch (length) {
1104 case 3:
1105 payload[2] = (reg >> 16) & 0xff;
1106 /* Fall through */
1107 case 2:
1108 payload[1] = (reg >> 8) & 0xff;
1109 /* Fall through */
1110 case 1:
1111 payload[0] = reg & 0xff;
1112 }
1113 }
1114
1115 if (xfer->rx_done == xfer->rx_len)
1116 xfer->result = 0;
1117
1118 clear_fifo:
1119 length = DSI_RX_FIFO_SIZE / 4;
1120 do {
1121 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG);
1122 if (reg == DSI_RX_FIFO_EMPTY)
1123 break;
1124 } while (--length);
1125 }
1126
1127 static void exynos_dsi_transfer_start(struct exynos_dsi *dsi)
1128 {
1129 unsigned long flags;
1130 struct exynos_dsi_transfer *xfer;
1131 bool start = false;
1132
1133 again:
1134 spin_lock_irqsave(&dsi->transfer_lock, flags);
1135
1136 if (list_empty(&dsi->transfer_list)) {
1137 spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1138 return;
1139 }
1140
1141 xfer = list_first_entry(&dsi->transfer_list,
1142 struct exynos_dsi_transfer, list);
1143
1144 spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1145
1146 if (xfer->packet.payload_length &&
1147 xfer->tx_done == xfer->packet.payload_length)
1148 /* waiting for RX */
1149 return;
1150
1151 exynos_dsi_send_to_fifo(dsi, xfer);
1152
1153 if (xfer->packet.payload_length || xfer->rx_len)
1154 return;
1155
1156 xfer->result = 0;
1157 complete(&xfer->completed);
1158
1159 spin_lock_irqsave(&dsi->transfer_lock, flags);
1160
1161 list_del_init(&xfer->list);
1162 start = !list_empty(&dsi->transfer_list);
1163
1164 spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1165
1166 if (start)
1167 goto again;
1168 }
1169
1170 static bool exynos_dsi_transfer_finish(struct exynos_dsi *dsi)
1171 {
1172 struct exynos_dsi_transfer *xfer;
1173 unsigned long flags;
1174 bool start = true;
1175
1176 spin_lock_irqsave(&dsi->transfer_lock, flags);
1177
1178 if (list_empty(&dsi->transfer_list)) {
1179 spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1180 return false;
1181 }
1182
1183 xfer = list_first_entry(&dsi->transfer_list,
1184 struct exynos_dsi_transfer, list);
1185
1186 spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1187
1188 dev_dbg(dsi->dev,
1189 "> xfer %p, tx_len %zu, tx_done %u, rx_len %u, rx_done %u\n",
1190 xfer, xfer->packet.payload_length, xfer->tx_done, xfer->rx_len,
1191 xfer->rx_done);
1192
1193 if (xfer->tx_done != xfer->packet.payload_length)
1194 return true;
1195
1196 if (xfer->rx_done != xfer->rx_len)
1197 exynos_dsi_read_from_fifo(dsi, xfer);
1198
1199 if (xfer->rx_done != xfer->rx_len)
1200 return true;
1201
1202 spin_lock_irqsave(&dsi->transfer_lock, flags);
1203
1204 list_del_init(&xfer->list);
1205 start = !list_empty(&dsi->transfer_list);
1206
1207 spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1208
1209 if (!xfer->rx_len)
1210 xfer->result = 0;
1211 complete(&xfer->completed);
1212
1213 return start;
1214 }
1215
1216 static void exynos_dsi_remove_transfer(struct exynos_dsi *dsi,
1217 struct exynos_dsi_transfer *xfer)
1218 {
1219 unsigned long flags;
1220 bool start;
1221
1222 spin_lock_irqsave(&dsi->transfer_lock, flags);
1223
1224 if (!list_empty(&dsi->transfer_list) &&
1225 xfer == list_first_entry(&dsi->transfer_list,
1226 struct exynos_dsi_transfer, list)) {
1227 list_del_init(&xfer->list);
1228 start = !list_empty(&dsi->transfer_list);
1229 spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1230 if (start)
1231 exynos_dsi_transfer_start(dsi);
1232 return;
1233 }
1234
1235 list_del_init(&xfer->list);
1236
1237 spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1238 }
1239
1240 static int exynos_dsi_transfer(struct exynos_dsi *dsi,
1241 struct exynos_dsi_transfer *xfer)
1242 {
1243 unsigned long flags;
1244 bool stopped;
1245
1246 xfer->tx_done = 0;
1247 xfer->rx_done = 0;
1248 xfer->result = -ETIMEDOUT;
1249 init_completion(&xfer->completed);
1250
1251 spin_lock_irqsave(&dsi->transfer_lock, flags);
1252
1253 stopped = list_empty(&dsi->transfer_list);
1254 list_add_tail(&xfer->list, &dsi->transfer_list);
1255
1256 spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1257
1258 if (stopped)
1259 exynos_dsi_transfer_start(dsi);
1260
1261 wait_for_completion_timeout(&xfer->completed,
1262 msecs_to_jiffies(DSI_XFER_TIMEOUT_MS));
1263 if (xfer->result == -ETIMEDOUT) {
1264 struct mipi_dsi_packet *pkt = &xfer->packet;
1265 exynos_dsi_remove_transfer(dsi, xfer);
1266 dev_err(dsi->dev, "xfer timed out: %*ph %*ph\n", 4, pkt->header,
1267 (int)pkt->payload_length, pkt->payload);
1268 return -ETIMEDOUT;
1269 }
1270
1271 /* Also covers hardware timeout condition */
1272 return xfer->result;
1273 }
1274
1275 static irqreturn_t exynos_dsi_irq(int irq, void *dev_id)
1276 {
1277 struct exynos_dsi *dsi = dev_id;
1278 u32 status;
1279
1280 status = exynos_dsi_read(dsi, DSIM_INTSRC_REG);
1281 if (!status) {
1282 static unsigned long int j;
1283 if (printk_timed_ratelimit(&j, 500))
1284 dev_warn(dsi->dev, "spurious interrupt\n");
1285 return IRQ_HANDLED;
1286 }
1287 exynos_dsi_write(dsi, DSIM_INTSRC_REG, status);
1288
1289 if (status & DSIM_INT_SW_RST_RELEASE) {
1290 u32 mask = ~(DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY |
1291 DSIM_INT_SFR_HDR_FIFO_EMPTY | DSIM_INT_FRAME_DONE |
1292 DSIM_INT_RX_ECC_ERR | DSIM_INT_SW_RST_RELEASE);
1293 exynos_dsi_write(dsi, DSIM_INTMSK_REG, mask);
1294 complete(&dsi->completed);
1295 return IRQ_HANDLED;
1296 }
1297
1298 if (!(status & (DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY |
1299 DSIM_INT_FRAME_DONE | DSIM_INT_PLL_STABLE)))
1300 return IRQ_HANDLED;
1301
1302 if (exynos_dsi_transfer_finish(dsi))
1303 exynos_dsi_transfer_start(dsi);
1304
1305 return IRQ_HANDLED;
1306 }
1307
1308 static irqreturn_t exynos_dsi_te_irq_handler(int irq, void *dev_id)
1309 {
1310 struct exynos_dsi *dsi = (struct exynos_dsi *)dev_id;
1311 struct drm_encoder *encoder = &dsi->encoder;
1312
1313 if (dsi->state & DSIM_STATE_VIDOUT_AVAILABLE)
1314 exynos_drm_crtc_te_handler(encoder->crtc);
1315
1316 return IRQ_HANDLED;
1317 }
1318
1319 static void exynos_dsi_enable_irq(struct exynos_dsi *dsi)
1320 {
1321 enable_irq(dsi->irq);
1322
1323 if (gpio_is_valid(dsi->te_gpio))
1324 enable_irq(gpio_to_irq(dsi->te_gpio));
1325 }
1326
1327 static void exynos_dsi_disable_irq(struct exynos_dsi *dsi)
1328 {
1329 if (gpio_is_valid(dsi->te_gpio))
1330 disable_irq(gpio_to_irq(dsi->te_gpio));
1331
1332 disable_irq(dsi->irq);
1333 }
1334
1335 static int exynos_dsi_init(struct exynos_dsi *dsi)
1336 {
1337 struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
1338
1339 exynos_dsi_reset(dsi);
1340 exynos_dsi_enable_irq(dsi);
1341
1342 if (driver_data->reg_values[RESET_TYPE] == DSIM_FUNCRST)
1343 exynos_dsi_enable_lane(dsi, BIT(dsi->lanes) - 1);
1344
1345 exynos_dsi_enable_clock(dsi);
1346 if (driver_data->wait_for_reset)
1347 exynos_dsi_wait_for_reset(dsi);
1348 exynos_dsi_set_phy_ctrl(dsi);
1349 exynos_dsi_init_link(dsi);
1350
1351 return 0;
1352 }
1353
1354 static int exynos_dsi_register_te_irq(struct exynos_dsi *dsi)
1355 {
1356 int ret;
1357 int te_gpio_irq;
1358
1359 dsi->te_gpio = of_get_named_gpio(dsi->panel_node, "te-gpios", 0);
1360 if (!gpio_is_valid(dsi->te_gpio)) {
1361 dev_err(dsi->dev, "no te-gpios specified\n");
1362 ret = dsi->te_gpio;
1363 goto out;
1364 }
1365
1366 ret = gpio_request(dsi->te_gpio, "te_gpio");
1367 if (ret) {
1368 dev_err(dsi->dev, "gpio request failed with %d\n", ret);
1369 goto out;
1370 }
1371
1372 te_gpio_irq = gpio_to_irq(dsi->te_gpio);
1373 irq_set_status_flags(te_gpio_irq, IRQ_NOAUTOEN);
1374
1375 ret = request_threaded_irq(te_gpio_irq, exynos_dsi_te_irq_handler, NULL,
1376 IRQF_TRIGGER_RISING, "TE", dsi);
1377 if (ret) {
1378 dev_err(dsi->dev, "request interrupt failed with %d\n", ret);
1379 gpio_free(dsi->te_gpio);
1380 goto out;
1381 }
1382
1383 out:
1384 return ret;
1385 }
1386
1387 static void exynos_dsi_unregister_te_irq(struct exynos_dsi *dsi)
1388 {
1389 if (gpio_is_valid(dsi->te_gpio)) {
1390 free_irq(gpio_to_irq(dsi->te_gpio), dsi);
1391 gpio_free(dsi->te_gpio);
1392 dsi->te_gpio = -ENOENT;
1393 }
1394 }
1395
1396 static int exynos_dsi_host_attach(struct mipi_dsi_host *host,
1397 struct mipi_dsi_device *device)
1398 {
1399 struct exynos_dsi *dsi = host_to_dsi(host);
1400
1401 dsi->lanes = device->lanes;
1402 dsi->format = device->format;
1403 dsi->mode_flags = device->mode_flags;
1404 dsi->panel_node = device->dev.of_node;
1405
1406 /*
1407 * This is a temporary solution and should be made by more generic way.
1408 *
1409 * If attached panel device is for command mode one, dsi should register
1410 * TE interrupt handler.
1411 */
1412 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1413 int ret = exynos_dsi_register_te_irq(dsi);
1414
1415 if (ret)
1416 return ret;
1417 }
1418
1419 if (dsi->connector.dev)
1420 drm_helper_hpd_irq_event(dsi->connector.dev);
1421
1422 return 0;
1423 }
1424
1425 static int exynos_dsi_host_detach(struct mipi_dsi_host *host,
1426 struct mipi_dsi_device *device)
1427 {
1428 struct exynos_dsi *dsi = host_to_dsi(host);
1429
1430 exynos_dsi_unregister_te_irq(dsi);
1431
1432 dsi->panel_node = NULL;
1433
1434 if (dsi->connector.dev)
1435 drm_helper_hpd_irq_event(dsi->connector.dev);
1436
1437 return 0;
1438 }
1439
1440 static ssize_t exynos_dsi_host_transfer(struct mipi_dsi_host *host,
1441 const struct mipi_dsi_msg *msg)
1442 {
1443 struct exynos_dsi *dsi = host_to_dsi(host);
1444 struct exynos_dsi_transfer xfer;
1445 int ret;
1446
1447 if (!(dsi->state & DSIM_STATE_ENABLED))
1448 return -EINVAL;
1449
1450 if (!(dsi->state & DSIM_STATE_INITIALIZED)) {
1451 ret = exynos_dsi_init(dsi);
1452 if (ret)
1453 return ret;
1454 dsi->state |= DSIM_STATE_INITIALIZED;
1455 }
1456
1457 ret = mipi_dsi_create_packet(&xfer.packet, msg);
1458 if (ret < 0)
1459 return ret;
1460
1461 xfer.rx_len = msg->rx_len;
1462 xfer.rx_payload = msg->rx_buf;
1463 xfer.flags = msg->flags;
1464
1465 ret = exynos_dsi_transfer(dsi, &xfer);
1466 return (ret < 0) ? ret : xfer.rx_done;
1467 }
1468
1469 static const struct mipi_dsi_host_ops exynos_dsi_ops = {
1470 .attach = exynos_dsi_host_attach,
1471 .detach = exynos_dsi_host_detach,
1472 .transfer = exynos_dsi_host_transfer,
1473 };
1474
1475 static void exynos_dsi_enable(struct drm_encoder *encoder)
1476 {
1477 struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1478 int ret;
1479
1480 if (dsi->state & DSIM_STATE_ENABLED)
1481 return;
1482
1483 pm_runtime_get_sync(dsi->dev);
1484
1485 dsi->state |= DSIM_STATE_ENABLED;
1486
1487 ret = drm_panel_prepare(dsi->panel);
1488 if (ret < 0) {
1489 dsi->state &= ~DSIM_STATE_ENABLED;
1490 pm_runtime_put_sync(dsi->dev);
1491 return;
1492 }
1493
1494 exynos_dsi_set_display_mode(dsi);
1495 exynos_dsi_set_display_enable(dsi, true);
1496
1497 ret = drm_panel_enable(dsi->panel);
1498 if (ret < 0) {
1499 dsi->state &= ~DSIM_STATE_ENABLED;
1500 exynos_dsi_set_display_enable(dsi, false);
1501 drm_panel_unprepare(dsi->panel);
1502 pm_runtime_put_sync(dsi->dev);
1503 return;
1504 }
1505
1506 dsi->state |= DSIM_STATE_VIDOUT_AVAILABLE;
1507 }
1508
1509 static void exynos_dsi_disable(struct drm_encoder *encoder)
1510 {
1511 struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1512
1513 if (!(dsi->state & DSIM_STATE_ENABLED))
1514 return;
1515
1516 dsi->state &= ~DSIM_STATE_VIDOUT_AVAILABLE;
1517
1518 drm_panel_disable(dsi->panel);
1519 exynos_dsi_set_display_enable(dsi, false);
1520 drm_panel_unprepare(dsi->panel);
1521
1522 dsi->state &= ~DSIM_STATE_ENABLED;
1523
1524 pm_runtime_put_sync(dsi->dev);
1525 }
1526
1527 static enum drm_connector_status
1528 exynos_dsi_detect(struct drm_connector *connector, bool force)
1529 {
1530 struct exynos_dsi *dsi = connector_to_dsi(connector);
1531
1532 if (!dsi->panel) {
1533 dsi->panel = of_drm_find_panel(dsi->panel_node);
1534 if (dsi->panel)
1535 drm_panel_attach(dsi->panel, &dsi->connector);
1536 } else if (!dsi->panel_node) {
1537 struct drm_encoder *encoder;
1538
1539 encoder = platform_get_drvdata(to_platform_device(dsi->dev));
1540 exynos_dsi_disable(encoder);
1541 drm_panel_detach(dsi->panel);
1542 dsi->panel = NULL;
1543 }
1544
1545 if (dsi->panel)
1546 return connector_status_connected;
1547
1548 return connector_status_disconnected;
1549 }
1550
1551 static void exynos_dsi_connector_destroy(struct drm_connector *connector)
1552 {
1553 drm_connector_unregister(connector);
1554 drm_connector_cleanup(connector);
1555 connector->dev = NULL;
1556 }
1557
1558 static const struct drm_connector_funcs exynos_dsi_connector_funcs = {
1559 .dpms = drm_atomic_helper_connector_dpms,
1560 .detect = exynos_dsi_detect,
1561 .fill_modes = drm_helper_probe_single_connector_modes,
1562 .destroy = exynos_dsi_connector_destroy,
1563 .reset = drm_atomic_helper_connector_reset,
1564 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1565 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1566 };
1567
1568 static int exynos_dsi_get_modes(struct drm_connector *connector)
1569 {
1570 struct exynos_dsi *dsi = connector_to_dsi(connector);
1571
1572 if (dsi->panel)
1573 return dsi->panel->funcs->get_modes(dsi->panel);
1574
1575 return 0;
1576 }
1577
1578 static struct drm_encoder *
1579 exynos_dsi_best_encoder(struct drm_connector *connector)
1580 {
1581 struct exynos_dsi *dsi = connector_to_dsi(connector);
1582
1583 return &dsi->encoder;
1584 }
1585
1586 static const struct drm_connector_helper_funcs exynos_dsi_connector_helper_funcs = {
1587 .get_modes = exynos_dsi_get_modes,
1588 .best_encoder = exynos_dsi_best_encoder,
1589 };
1590
1591 static int exynos_dsi_create_connector(struct drm_encoder *encoder)
1592 {
1593 struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1594 struct drm_connector *connector = &dsi->connector;
1595 int ret;
1596
1597 connector->polled = DRM_CONNECTOR_POLL_HPD;
1598
1599 ret = drm_connector_init(encoder->dev, connector,
1600 &exynos_dsi_connector_funcs,
1601 DRM_MODE_CONNECTOR_DSI);
1602 if (ret) {
1603 DRM_ERROR("Failed to initialize connector with drm\n");
1604 return ret;
1605 }
1606
1607 drm_connector_helper_add(connector, &exynos_dsi_connector_helper_funcs);
1608 drm_connector_register(connector);
1609 drm_mode_connector_attach_encoder(connector, encoder);
1610
1611 return 0;
1612 }
1613
1614 static void exynos_dsi_mode_set(struct drm_encoder *encoder,
1615 struct drm_display_mode *mode,
1616 struct drm_display_mode *adjusted_mode)
1617 {
1618 struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1619 struct videomode *vm = &dsi->vm;
1620 struct drm_display_mode *m = adjusted_mode;
1621
1622 vm->hactive = m->hdisplay;
1623 vm->vactive = m->vdisplay;
1624 vm->vfront_porch = m->vsync_start - m->vdisplay;
1625 vm->vback_porch = m->vtotal - m->vsync_end;
1626 vm->vsync_len = m->vsync_end - m->vsync_start;
1627 vm->hfront_porch = m->hsync_start - m->hdisplay;
1628 vm->hback_porch = m->htotal - m->hsync_end;
1629 vm->hsync_len = m->hsync_end - m->hsync_start;
1630 }
1631
1632 static const struct drm_encoder_helper_funcs exynos_dsi_encoder_helper_funcs = {
1633 .mode_set = exynos_dsi_mode_set,
1634 .enable = exynos_dsi_enable,
1635 .disable = exynos_dsi_disable,
1636 };
1637
1638 static const struct drm_encoder_funcs exynos_dsi_encoder_funcs = {
1639 .destroy = drm_encoder_cleanup,
1640 };
1641
1642 MODULE_DEVICE_TABLE(of, exynos_dsi_of_match);
1643
1644 /* of_* functions will be removed after merge of of_graph patches */
1645 static struct device_node *
1646 of_get_child_by_name_reg(struct device_node *parent, const char *name, u32 reg)
1647 {
1648 struct device_node *np;
1649
1650 for_each_child_of_node(parent, np) {
1651 u32 r;
1652
1653 if (!np->name || of_node_cmp(np->name, name))
1654 continue;
1655
1656 if (of_property_read_u32(np, "reg", &r) < 0)
1657 r = 0;
1658
1659 if (reg == r)
1660 break;
1661 }
1662
1663 return np;
1664 }
1665
1666 static struct device_node *of_graph_get_port_by_reg(struct device_node *parent,
1667 u32 reg)
1668 {
1669 struct device_node *ports, *port;
1670
1671 ports = of_get_child_by_name(parent, "ports");
1672 if (ports)
1673 parent = ports;
1674
1675 port = of_get_child_by_name_reg(parent, "port", reg);
1676
1677 of_node_put(ports);
1678
1679 return port;
1680 }
1681
1682 static struct device_node *
1683 of_graph_get_endpoint_by_reg(struct device_node *port, u32 reg)
1684 {
1685 return of_get_child_by_name_reg(port, "endpoint", reg);
1686 }
1687
1688 static int exynos_dsi_of_read_u32(const struct device_node *np,
1689 const char *propname, u32 *out_value)
1690 {
1691 int ret = of_property_read_u32(np, propname, out_value);
1692
1693 if (ret < 0)
1694 pr_err("%s: failed to get '%s' property\n", np->full_name,
1695 propname);
1696
1697 return ret;
1698 }
1699
1700 enum {
1701 DSI_PORT_IN,
1702 DSI_PORT_OUT
1703 };
1704
1705 static int exynos_dsi_parse_dt(struct exynos_dsi *dsi)
1706 {
1707 struct device *dev = dsi->dev;
1708 struct device_node *node = dev->of_node;
1709 struct device_node *port, *ep;
1710 int ret;
1711
1712 ret = exynos_dsi_of_read_u32(node, "samsung,pll-clock-frequency",
1713 &dsi->pll_clk_rate);
1714 if (ret < 0)
1715 return ret;
1716
1717 port = of_graph_get_port_by_reg(node, DSI_PORT_OUT);
1718 if (!port) {
1719 dev_err(dev, "no output port specified\n");
1720 return -EINVAL;
1721 }
1722
1723 ep = of_graph_get_endpoint_by_reg(port, 0);
1724 of_node_put(port);
1725 if (!ep) {
1726 dev_err(dev, "no endpoint specified in output port\n");
1727 return -EINVAL;
1728 }
1729
1730 ret = exynos_dsi_of_read_u32(ep, "samsung,burst-clock-frequency",
1731 &dsi->burst_clk_rate);
1732 if (ret < 0)
1733 goto end;
1734
1735 ret = exynos_dsi_of_read_u32(ep, "samsung,esc-clock-frequency",
1736 &dsi->esc_clk_rate);
1737 if (ret < 0)
1738 goto end;
1739
1740 of_node_put(ep);
1741
1742 ep = of_graph_get_next_endpoint(node, NULL);
1743 if (!ep) {
1744 ret = -EINVAL;
1745 goto end;
1746 }
1747
1748 dsi->bridge_node = of_graph_get_remote_port_parent(ep);
1749 if (!dsi->bridge_node) {
1750 ret = -EINVAL;
1751 goto end;
1752 }
1753 end:
1754 of_node_put(ep);
1755
1756 return ret;
1757 }
1758
1759 static int exynos_dsi_bind(struct device *dev, struct device *master,
1760 void *data)
1761 {
1762 struct drm_encoder *encoder = dev_get_drvdata(dev);
1763 struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1764 struct drm_device *drm_dev = data;
1765 struct drm_bridge *bridge;
1766 int ret;
1767
1768 ret = exynos_drm_crtc_get_pipe_from_type(drm_dev,
1769 EXYNOS_DISPLAY_TYPE_LCD);
1770 if (ret < 0)
1771 return ret;
1772
1773 encoder->possible_crtcs = 1 << ret;
1774
1775 DRM_DEBUG_KMS("possible_crtcs = 0x%x\n", encoder->possible_crtcs);
1776
1777 drm_encoder_init(drm_dev, encoder, &exynos_dsi_encoder_funcs,
1778 DRM_MODE_ENCODER_TMDS, NULL);
1779
1780 drm_encoder_helper_add(encoder, &exynos_dsi_encoder_helper_funcs);
1781
1782 ret = exynos_dsi_create_connector(encoder);
1783 if (ret) {
1784 DRM_ERROR("failed to create connector ret = %d\n", ret);
1785 drm_encoder_cleanup(encoder);
1786 return ret;
1787 }
1788
1789 bridge = of_drm_find_bridge(dsi->bridge_node);
1790 if (bridge) {
1791 encoder->bridge = bridge;
1792 drm_bridge_attach(drm_dev, bridge);
1793 }
1794
1795 return mipi_dsi_host_register(&dsi->dsi_host);
1796 }
1797
1798 static void exynos_dsi_unbind(struct device *dev, struct device *master,
1799 void *data)
1800 {
1801 struct drm_encoder *encoder = dev_get_drvdata(dev);
1802 struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1803
1804 exynos_dsi_disable(encoder);
1805
1806 mipi_dsi_host_unregister(&dsi->dsi_host);
1807 }
1808
1809 static const struct component_ops exynos_dsi_component_ops = {
1810 .bind = exynos_dsi_bind,
1811 .unbind = exynos_dsi_unbind,
1812 };
1813
1814 static int exynos_dsi_probe(struct platform_device *pdev)
1815 {
1816 struct device *dev = &pdev->dev;
1817 struct resource *res;
1818 struct exynos_dsi *dsi;
1819 int ret, i;
1820
1821 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1822 if (!dsi)
1823 return -ENOMEM;
1824
1825 /* To be checked as invalid one */
1826 dsi->te_gpio = -ENOENT;
1827
1828 init_completion(&dsi->completed);
1829 spin_lock_init(&dsi->transfer_lock);
1830 INIT_LIST_HEAD(&dsi->transfer_list);
1831
1832 dsi->dsi_host.ops = &exynos_dsi_ops;
1833 dsi->dsi_host.dev = dev;
1834
1835 dsi->dev = dev;
1836 dsi->driver_data = exynos_dsi_get_driver_data(pdev);
1837
1838 ret = exynos_dsi_parse_dt(dsi);
1839 if (ret)
1840 return ret;
1841
1842 dsi->supplies[0].supply = "vddcore";
1843 dsi->supplies[1].supply = "vddio";
1844 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dsi->supplies),
1845 dsi->supplies);
1846 if (ret) {
1847 dev_info(dev, "failed to get regulators: %d\n", ret);
1848 return -EPROBE_DEFER;
1849 }
1850
1851 dsi->clks = devm_kzalloc(dev,
1852 sizeof(*dsi->clks) * dsi->driver_data->num_clks,
1853 GFP_KERNEL);
1854 if (!dsi->clks)
1855 return -ENOMEM;
1856
1857 for (i = 0; i < dsi->driver_data->num_clks; i++) {
1858 dsi->clks[i] = devm_clk_get(dev, clk_names[i]);
1859 if (IS_ERR(dsi->clks[i])) {
1860 if (strcmp(clk_names[i], "sclk_mipi") == 0) {
1861 strcpy(clk_names[i], OLD_SCLK_MIPI_CLK_NAME);
1862 i--;
1863 continue;
1864 }
1865
1866 dev_info(dev, "failed to get the clock: %s\n",
1867 clk_names[i]);
1868 return PTR_ERR(dsi->clks[i]);
1869 }
1870 }
1871
1872 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1873 dsi->reg_base = devm_ioremap_resource(dev, res);
1874 if (IS_ERR(dsi->reg_base)) {
1875 dev_err(dev, "failed to remap io region\n");
1876 return PTR_ERR(dsi->reg_base);
1877 }
1878
1879 dsi->phy = devm_phy_get(dev, "dsim");
1880 if (IS_ERR(dsi->phy)) {
1881 dev_info(dev, "failed to get dsim phy\n");
1882 return PTR_ERR(dsi->phy);
1883 }
1884
1885 dsi->irq = platform_get_irq(pdev, 0);
1886 if (dsi->irq < 0) {
1887 dev_err(dev, "failed to request dsi irq resource\n");
1888 return dsi->irq;
1889 }
1890
1891 irq_set_status_flags(dsi->irq, IRQ_NOAUTOEN);
1892 ret = devm_request_threaded_irq(dev, dsi->irq, NULL,
1893 exynos_dsi_irq, IRQF_ONESHOT,
1894 dev_name(dev), dsi);
1895 if (ret) {
1896 dev_err(dev, "failed to request dsi irq\n");
1897 return ret;
1898 }
1899
1900 platform_set_drvdata(pdev, &dsi->encoder);
1901
1902 pm_runtime_enable(dev);
1903
1904 return component_add(dev, &exynos_dsi_component_ops);
1905 }
1906
1907 static int exynos_dsi_remove(struct platform_device *pdev)
1908 {
1909 pm_runtime_disable(&pdev->dev);
1910
1911 component_del(&pdev->dev, &exynos_dsi_component_ops);
1912
1913 return 0;
1914 }
1915
1916 static int __maybe_unused exynos_dsi_suspend(struct device *dev)
1917 {
1918 struct drm_encoder *encoder = dev_get_drvdata(dev);
1919 struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1920 struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
1921 int ret, i;
1922
1923 usleep_range(10000, 20000);
1924
1925 if (dsi->state & DSIM_STATE_INITIALIZED) {
1926 dsi->state &= ~DSIM_STATE_INITIALIZED;
1927
1928 exynos_dsi_disable_clock(dsi);
1929
1930 exynos_dsi_disable_irq(dsi);
1931 }
1932
1933 dsi->state &= ~DSIM_STATE_CMD_LPM;
1934
1935 phy_power_off(dsi->phy);
1936
1937 for (i = driver_data->num_clks - 1; i > -1; i--)
1938 clk_disable_unprepare(dsi->clks[i]);
1939
1940 ret = regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
1941 if (ret < 0)
1942 dev_err(dsi->dev, "cannot disable regulators %d\n", ret);
1943
1944 return 0;
1945 }
1946
1947 static int __maybe_unused exynos_dsi_resume(struct device *dev)
1948 {
1949 struct drm_encoder *encoder = dev_get_drvdata(dev);
1950 struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1951 struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
1952 int ret, i;
1953
1954 ret = regulator_bulk_enable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
1955 if (ret < 0) {
1956 dev_err(dsi->dev, "cannot enable regulators %d\n", ret);
1957 return ret;
1958 }
1959
1960 for (i = 0; i < driver_data->num_clks; i++) {
1961 ret = clk_prepare_enable(dsi->clks[i]);
1962 if (ret < 0)
1963 goto err_clk;
1964 }
1965
1966 ret = phy_power_on(dsi->phy);
1967 if (ret < 0) {
1968 dev_err(dsi->dev, "cannot enable phy %d\n", ret);
1969 goto err_clk;
1970 }
1971
1972 return 0;
1973
1974 err_clk:
1975 while (--i > -1)
1976 clk_disable_unprepare(dsi->clks[i]);
1977 regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
1978
1979 return ret;
1980 }
1981
1982 static const struct dev_pm_ops exynos_dsi_pm_ops = {
1983 SET_RUNTIME_PM_OPS(exynos_dsi_suspend, exynos_dsi_resume, NULL)
1984 };
1985
1986 struct platform_driver dsi_driver = {
1987 .probe = exynos_dsi_probe,
1988 .remove = exynos_dsi_remove,
1989 .driver = {
1990 .name = "exynos-dsi",
1991 .owner = THIS_MODULE,
1992 .pm = &exynos_dsi_pm_ops,
1993 .of_match_table = exynos_dsi_of_match,
1994 },
1995 };
1996
1997 MODULE_AUTHOR("Tomasz Figa <t.figa@samsung.com>");
1998 MODULE_AUTHOR("Andrzej Hajda <a.hajda@samsung.com>");
1999 MODULE_DESCRIPTION("Samsung SoC MIPI DSI Master");
2000 MODULE_LICENSE("GPL v2");
This page took 0.199831 seconds and 5 git commands to generate.