82f1ae46e0acbc1fcdab8bbf0ca2deb94106583a
[deliverable/linux.git] / drivers / gpu / drm / gma500 / cdv_intel_display.c
1 /*
2 * Copyright © 2006-2011 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
19 */
20
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
23
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "power.h"
31 #include "cdv_device.h"
32
33 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
34 struct drm_crtc *crtc, int target,
35 int refclk, struct gma_clock_t *best_clock);
36
37
38 #define CDV_LIMIT_SINGLE_LVDS_96 0
39 #define CDV_LIMIT_SINGLE_LVDS_100 1
40 #define CDV_LIMIT_DAC_HDMI_27 2
41 #define CDV_LIMIT_DAC_HDMI_96 3
42 #define CDV_LIMIT_DP_27 4
43 #define CDV_LIMIT_DP_100 5
44
45 static const struct gma_limit_t cdv_intel_limits[] = {
46 { /* CDV_SINGLE_LVDS_96MHz */
47 .dot = {.min = 20000, .max = 115500},
48 .vco = {.min = 1800000, .max = 3600000},
49 .n = {.min = 2, .max = 6},
50 .m = {.min = 60, .max = 160},
51 .m1 = {.min = 0, .max = 0},
52 .m2 = {.min = 58, .max = 158},
53 .p = {.min = 28, .max = 140},
54 .p1 = {.min = 2, .max = 10},
55 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
56 .find_pll = gma_find_best_pll,
57 },
58 { /* CDV_SINGLE_LVDS_100MHz */
59 .dot = {.min = 20000, .max = 115500},
60 .vco = {.min = 1800000, .max = 3600000},
61 .n = {.min = 2, .max = 6},
62 .m = {.min = 60, .max = 160},
63 .m1 = {.min = 0, .max = 0},
64 .m2 = {.min = 58, .max = 158},
65 .p = {.min = 28, .max = 140},
66 .p1 = {.min = 2, .max = 10},
67 /* The single-channel range is 25-112Mhz, and dual-channel
68 * is 80-224Mhz. Prefer single channel as much as possible.
69 */
70 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
71 .find_pll = gma_find_best_pll,
72 },
73 { /* CDV_DAC_HDMI_27MHz */
74 .dot = {.min = 20000, .max = 400000},
75 .vco = {.min = 1809000, .max = 3564000},
76 .n = {.min = 1, .max = 1},
77 .m = {.min = 67, .max = 132},
78 .m1 = {.min = 0, .max = 0},
79 .m2 = {.min = 65, .max = 130},
80 .p = {.min = 5, .max = 90},
81 .p1 = {.min = 1, .max = 9},
82 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
83 .find_pll = gma_find_best_pll,
84 },
85 { /* CDV_DAC_HDMI_96MHz */
86 .dot = {.min = 20000, .max = 400000},
87 .vco = {.min = 1800000, .max = 3600000},
88 .n = {.min = 2, .max = 6},
89 .m = {.min = 60, .max = 160},
90 .m1 = {.min = 0, .max = 0},
91 .m2 = {.min = 58, .max = 158},
92 .p = {.min = 5, .max = 100},
93 .p1 = {.min = 1, .max = 10},
94 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
95 .find_pll = gma_find_best_pll,
96 },
97 { /* CDV_DP_27MHz */
98 .dot = {.min = 160000, .max = 272000},
99 .vco = {.min = 1809000, .max = 3564000},
100 .n = {.min = 1, .max = 1},
101 .m = {.min = 67, .max = 132},
102 .m1 = {.min = 0, .max = 0},
103 .m2 = {.min = 65, .max = 130},
104 .p = {.min = 5, .max = 90},
105 .p1 = {.min = 1, .max = 9},
106 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
107 .find_pll = cdv_intel_find_dp_pll,
108 },
109 { /* CDV_DP_100MHz */
110 .dot = {.min = 160000, .max = 272000},
111 .vco = {.min = 1800000, .max = 3600000},
112 .n = {.min = 2, .max = 6},
113 .m = {.min = 60, .max = 164},
114 .m1 = {.min = 0, .max = 0},
115 .m2 = {.min = 58, .max = 162},
116 .p = {.min = 5, .max = 100},
117 .p1 = {.min = 1, .max = 10},
118 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
119 .find_pll = cdv_intel_find_dp_pll,
120 }
121 };
122
123 #define _wait_for(COND, MS, W) ({ \
124 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
125 int ret__ = 0; \
126 while (!(COND)) { \
127 if (time_after(jiffies, timeout__)) { \
128 ret__ = -ETIMEDOUT; \
129 break; \
130 } \
131 if (W && !in_dbg_master()) \
132 msleep(W); \
133 } \
134 ret__; \
135 })
136
137 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
138
139
140 int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
141 {
142 int ret;
143
144 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
145 if (ret) {
146 DRM_ERROR("timeout waiting for SB to idle before read\n");
147 return ret;
148 }
149
150 REG_WRITE(SB_ADDR, reg);
151 REG_WRITE(SB_PCKT,
152 SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
153 SET_FIELD(SB_DEST_DPLL, SB_DEST) |
154 SET_FIELD(0xf, SB_BYTE_ENABLE));
155
156 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
157 if (ret) {
158 DRM_ERROR("timeout waiting for SB to idle after read\n");
159 return ret;
160 }
161
162 *val = REG_READ(SB_DATA);
163
164 return 0;
165 }
166
167 int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
168 {
169 int ret;
170 static bool dpio_debug = true;
171 u32 temp;
172
173 if (dpio_debug) {
174 if (cdv_sb_read(dev, reg, &temp) == 0)
175 DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
176 DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
177 }
178
179 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
180 if (ret) {
181 DRM_ERROR("timeout waiting for SB to idle before write\n");
182 return ret;
183 }
184
185 REG_WRITE(SB_ADDR, reg);
186 REG_WRITE(SB_DATA, val);
187 REG_WRITE(SB_PCKT,
188 SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
189 SET_FIELD(SB_DEST_DPLL, SB_DEST) |
190 SET_FIELD(0xf, SB_BYTE_ENABLE));
191
192 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
193 if (ret) {
194 DRM_ERROR("timeout waiting for SB to idle after write\n");
195 return ret;
196 }
197
198 if (dpio_debug) {
199 if (cdv_sb_read(dev, reg, &temp) == 0)
200 DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
201 }
202
203 return 0;
204 }
205
206 /* Reset the DPIO configuration register. The BIOS does this at every
207 * mode set.
208 */
209 void cdv_sb_reset(struct drm_device *dev)
210 {
211
212 REG_WRITE(DPIO_CFG, 0);
213 REG_READ(DPIO_CFG);
214 REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
215 }
216
217 /* Unlike most Intel display engines, on Cedarview the DPLL registers
218 * are behind this sideband bus. They must be programmed while the
219 * DPLL reference clock is on in the DPLL control register, but before
220 * the DPLL is enabled in the DPLL control register.
221 */
222 static int
223 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
224 struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
225 {
226 struct psb_intel_crtc *psb_crtc = to_psb_intel_crtc(crtc);
227 int pipe = psb_crtc->pipe;
228 u32 m, n_vco, p;
229 int ret = 0;
230 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
231 int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
232 u32 ref_value;
233 u32 lane_reg, lane_value;
234
235 cdv_sb_reset(dev);
236
237 REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
238
239 udelay(100);
240
241 /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
242 ref_value = 0x68A701;
243
244 cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
245
246 /* We don't know what the other fields of these regs are, so
247 * leave them in place.
248 */
249 /*
250 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
251 * for the pipe A/B. Display spec 1.06 has wrong definition.
252 * Correct definition is like below:
253 *
254 * refclka mean use clock from same PLL
255 *
256 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
257 *
258 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
259 *
260 */
261 ret = cdv_sb_read(dev, ref_sfr, &ref_value);
262 if (ret)
263 return ret;
264 ref_value &= ~(REF_CLK_MASK);
265
266 /* use DPLL_A for pipeB on CRT/HDMI */
267 if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
268 DRM_DEBUG_KMS("use DPLLA for pipe B\n");
269 ref_value |= REF_CLK_DPLLA;
270 } else {
271 DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
272 ref_value |= REF_CLK_DPLL;
273 }
274 ret = cdv_sb_write(dev, ref_sfr, ref_value);
275 if (ret)
276 return ret;
277
278 ret = cdv_sb_read(dev, SB_M(pipe), &m);
279 if (ret)
280 return ret;
281 m &= ~SB_M_DIVIDER_MASK;
282 m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
283 ret = cdv_sb_write(dev, SB_M(pipe), m);
284 if (ret)
285 return ret;
286
287 ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
288 if (ret)
289 return ret;
290
291 /* Follow the BIOS to program the N_DIVIDER REG */
292 n_vco &= 0xFFFF;
293 n_vco |= 0x107;
294 n_vco &= ~(SB_N_VCO_SEL_MASK |
295 SB_N_DIVIDER_MASK |
296 SB_N_CB_TUNE_MASK);
297
298 n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
299
300 if (clock->vco < 2250000) {
301 n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
302 n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
303 } else if (clock->vco < 2750000) {
304 n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
305 n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
306 } else if (clock->vco < 3300000) {
307 n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
308 n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
309 } else {
310 n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
311 n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
312 }
313
314 ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
315 if (ret)
316 return ret;
317
318 ret = cdv_sb_read(dev, SB_P(pipe), &p);
319 if (ret)
320 return ret;
321 p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
322 p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
323 switch (clock->p2) {
324 case 5:
325 p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
326 break;
327 case 10:
328 p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
329 break;
330 case 14:
331 p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
332 break;
333 case 7:
334 p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
335 break;
336 default:
337 DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
338 return -EINVAL;
339 }
340 ret = cdv_sb_write(dev, SB_P(pipe), p);
341 if (ret)
342 return ret;
343
344 if (ddi_select) {
345 if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
346 lane_reg = PSB_LANE0;
347 cdv_sb_read(dev, lane_reg, &lane_value);
348 lane_value &= ~(LANE_PLL_MASK);
349 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
350 cdv_sb_write(dev, lane_reg, lane_value);
351
352 lane_reg = PSB_LANE1;
353 cdv_sb_read(dev, lane_reg, &lane_value);
354 lane_value &= ~(LANE_PLL_MASK);
355 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
356 cdv_sb_write(dev, lane_reg, lane_value);
357 } else {
358 lane_reg = PSB_LANE2;
359 cdv_sb_read(dev, lane_reg, &lane_value);
360 lane_value &= ~(LANE_PLL_MASK);
361 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
362 cdv_sb_write(dev, lane_reg, lane_value);
363
364 lane_reg = PSB_LANE3;
365 cdv_sb_read(dev, lane_reg, &lane_value);
366 lane_value &= ~(LANE_PLL_MASK);
367 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
368 cdv_sb_write(dev, lane_reg, lane_value);
369 }
370 }
371 return 0;
372 }
373
374 static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
375 int refclk)
376 {
377 const struct gma_limit_t *limit;
378 if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
379 /*
380 * Now only single-channel LVDS is supported on CDV. If it is
381 * incorrect, please add the dual-channel LVDS.
382 */
383 if (refclk == 96000)
384 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
385 else
386 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
387 } else if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
388 psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
389 if (refclk == 27000)
390 limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
391 else
392 limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
393 } else {
394 if (refclk == 27000)
395 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
396 else
397 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
398 }
399 return limit;
400 }
401
402 /* m1 is reserved as 0 in CDV, n is a ring counter */
403 static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
404 {
405 clock->m = clock->m2 + 2;
406 clock->p = clock->p1 * clock->p2;
407 clock->vco = (refclk * clock->m) / clock->n;
408 clock->dot = clock->vco / clock->p;
409 }
410
411 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
412 struct drm_crtc *crtc, int target,
413 int refclk,
414 struct gma_clock_t *best_clock)
415 {
416 struct gma_clock_t clock;
417 if (refclk == 27000) {
418 if (target < 200000) {
419 clock.p1 = 2;
420 clock.p2 = 10;
421 clock.n = 1;
422 clock.m1 = 0;
423 clock.m2 = 118;
424 } else {
425 clock.p1 = 1;
426 clock.p2 = 10;
427 clock.n = 1;
428 clock.m1 = 0;
429 clock.m2 = 98;
430 }
431 } else if (refclk == 100000) {
432 if (target < 200000) {
433 clock.p1 = 2;
434 clock.p2 = 10;
435 clock.n = 5;
436 clock.m1 = 0;
437 clock.m2 = 160;
438 } else {
439 clock.p1 = 1;
440 clock.p2 = 10;
441 clock.n = 5;
442 clock.m1 = 0;
443 clock.m2 = 133;
444 }
445 } else
446 return false;
447 clock.m = clock.m2 + 2;
448 clock.p = clock.p1 * clock.p2;
449 clock.vco = (refclk * clock.m) / clock.n;
450 clock.dot = clock.vco / clock.p;
451 memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
452 return true;
453 }
454
455 static int cdv_intel_pipe_set_base(struct drm_crtc *crtc,
456 int x, int y, struct drm_framebuffer *old_fb)
457 {
458 struct drm_device *dev = crtc->dev;
459 struct drm_psb_private *dev_priv = dev->dev_private;
460 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
461 struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
462 int pipe = psb_intel_crtc->pipe;
463 const struct psb_offset *map = &dev_priv->regmap[pipe];
464 unsigned long start, offset;
465 u32 dspcntr;
466 int ret = 0;
467
468 if (!gma_power_begin(dev, true))
469 return 0;
470
471 /* no fb bound */
472 if (!crtc->fb) {
473 dev_err(dev->dev, "No FB bound\n");
474 goto psb_intel_pipe_cleaner;
475 }
476
477
478 /* We are displaying this buffer, make sure it is actually loaded
479 into the GTT */
480 ret = psb_gtt_pin(psbfb->gtt);
481 if (ret < 0)
482 goto psb_intel_pipe_set_base_exit;
483 start = psbfb->gtt->offset;
484 offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
485
486 REG_WRITE(map->stride, crtc->fb->pitches[0]);
487
488 dspcntr = REG_READ(map->cntr);
489 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
490
491 switch (crtc->fb->bits_per_pixel) {
492 case 8:
493 dspcntr |= DISPPLANE_8BPP;
494 break;
495 case 16:
496 if (crtc->fb->depth == 15)
497 dspcntr |= DISPPLANE_15_16BPP;
498 else
499 dspcntr |= DISPPLANE_16BPP;
500 break;
501 case 24:
502 case 32:
503 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
504 break;
505 default:
506 dev_err(dev->dev, "Unknown color depth\n");
507 ret = -EINVAL;
508 goto psb_intel_pipe_set_base_exit;
509 }
510 REG_WRITE(map->cntr, dspcntr);
511
512 dev_dbg(dev->dev,
513 "Writing base %08lX %08lX %d %d\n", start, offset, x, y);
514
515 REG_WRITE(map->base, offset);
516 REG_READ(map->base);
517 REG_WRITE(map->surf, start);
518 REG_READ(map->surf);
519
520 psb_intel_pipe_cleaner:
521 /* If there was a previous display we can now unpin it */
522 if (old_fb)
523 psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
524
525 psb_intel_pipe_set_base_exit:
526 gma_power_end(dev);
527 return ret;
528 }
529
530 #define FIFO_PIPEA (1 << 0)
531 #define FIFO_PIPEB (1 << 1)
532
533 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
534 {
535 struct drm_crtc *crtc;
536 struct drm_psb_private *dev_priv = dev->dev_private;
537 struct psb_intel_crtc *psb_intel_crtc = NULL;
538
539 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
540 psb_intel_crtc = to_psb_intel_crtc(crtc);
541
542 if (crtc->fb == NULL || !psb_intel_crtc->active)
543 return false;
544 return true;
545 }
546
547 static bool cdv_intel_single_pipe_active (struct drm_device *dev)
548 {
549 uint32_t pipe_enabled = 0;
550
551 if (cdv_intel_pipe_enabled(dev, 0))
552 pipe_enabled |= FIFO_PIPEA;
553
554 if (cdv_intel_pipe_enabled(dev, 1))
555 pipe_enabled |= FIFO_PIPEB;
556
557
558 DRM_DEBUG_KMS("pipe enabled %x\n", pipe_enabled);
559
560 if (pipe_enabled == FIFO_PIPEA || pipe_enabled == FIFO_PIPEB)
561 return true;
562 else
563 return false;
564 }
565
566 static bool is_pipeb_lvds(struct drm_device *dev, struct drm_crtc *crtc)
567 {
568 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
569 struct drm_mode_config *mode_config = &dev->mode_config;
570 struct drm_connector *connector;
571
572 if (psb_intel_crtc->pipe != 1)
573 return false;
574
575 list_for_each_entry(connector, &mode_config->connector_list, head) {
576 struct psb_intel_encoder *psb_intel_encoder =
577 psb_intel_attached_encoder(connector);
578
579 if (!connector->encoder
580 || connector->encoder->crtc != crtc)
581 continue;
582
583 if (psb_intel_encoder->type == INTEL_OUTPUT_LVDS)
584 return true;
585 }
586
587 return false;
588 }
589
590 static void cdv_intel_disable_self_refresh (struct drm_device *dev)
591 {
592 if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
593
594 /* Disable self-refresh before adjust WM */
595 REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
596 REG_READ(FW_BLC_SELF);
597
598 cdv_intel_wait_for_vblank(dev);
599
600 /* Cedarview workaround to write ovelay plane, which force to leave
601 * MAX_FIFO state.
602 */
603 REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
604 REG_READ(OV_OVADD);
605
606 cdv_intel_wait_for_vblank(dev);
607 }
608
609 }
610
611 static void cdv_intel_update_watermark (struct drm_device *dev, struct drm_crtc *crtc)
612 {
613
614 if (cdv_intel_single_pipe_active(dev)) {
615 u32 fw;
616
617 fw = REG_READ(DSPFW1);
618 fw &= ~DSP_FIFO_SR_WM_MASK;
619 fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
620 fw &= ~CURSOR_B_FIFO_WM_MASK;
621 fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
622 REG_WRITE(DSPFW1, fw);
623
624 fw = REG_READ(DSPFW2);
625 fw &= ~CURSOR_A_FIFO_WM_MASK;
626 fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
627 fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
628 fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
629 REG_WRITE(DSPFW2, fw);
630
631 REG_WRITE(DSPFW3, 0x36000000);
632
633 /* ignore FW4 */
634
635 if (is_pipeb_lvds(dev, crtc)) {
636 REG_WRITE(DSPFW5, 0x00040330);
637 } else {
638 fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
639 (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
640 (3 << CURSOR_B_FIFO_WM1_SHIFT) |
641 (4 << CURSOR_FIFO_SR_WM1_SHIFT);
642 REG_WRITE(DSPFW5, fw);
643 }
644
645 REG_WRITE(DSPFW6, 0x10);
646
647 cdv_intel_wait_for_vblank(dev);
648
649 /* enable self-refresh for single pipe active */
650 REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
651 REG_READ(FW_BLC_SELF);
652 cdv_intel_wait_for_vblank(dev);
653
654 } else {
655
656 /* HW team suggested values... */
657 REG_WRITE(DSPFW1, 0x3f880808);
658 REG_WRITE(DSPFW2, 0x0b020202);
659 REG_WRITE(DSPFW3, 0x24000000);
660 REG_WRITE(DSPFW4, 0x08030202);
661 REG_WRITE(DSPFW5, 0x01010101);
662 REG_WRITE(DSPFW6, 0x1d0);
663
664 cdv_intel_wait_for_vblank(dev);
665
666 cdv_intel_disable_self_refresh(dev);
667
668 }
669 }
670
671 /** Loads the palette/gamma unit for the CRTC with the prepared values */
672 static void cdv_intel_crtc_load_lut(struct drm_crtc *crtc)
673 {
674 struct drm_device *dev = crtc->dev;
675 struct drm_psb_private *dev_priv = dev->dev_private;
676 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
677 int palreg = PALETTE_A;
678 int i;
679
680 /* The clocks have to be on to load the palette. */
681 if (!crtc->enabled)
682 return;
683
684 switch (psb_intel_crtc->pipe) {
685 case 0:
686 break;
687 case 1:
688 palreg = PALETTE_B;
689 break;
690 case 2:
691 palreg = PALETTE_C;
692 break;
693 default:
694 dev_err(dev->dev, "Illegal Pipe Number.\n");
695 return;
696 }
697
698 if (gma_power_begin(dev, false)) {
699 for (i = 0; i < 256; i++) {
700 REG_WRITE(palreg + 4 * i,
701 ((psb_intel_crtc->lut_r[i] +
702 psb_intel_crtc->lut_adj[i]) << 16) |
703 ((psb_intel_crtc->lut_g[i] +
704 psb_intel_crtc->lut_adj[i]) << 8) |
705 (psb_intel_crtc->lut_b[i] +
706 psb_intel_crtc->lut_adj[i]));
707 }
708 gma_power_end(dev);
709 } else {
710 for (i = 0; i < 256; i++) {
711 dev_priv->regs.pipe[0].palette[i] =
712 ((psb_intel_crtc->lut_r[i] +
713 psb_intel_crtc->lut_adj[i]) << 16) |
714 ((psb_intel_crtc->lut_g[i] +
715 psb_intel_crtc->lut_adj[i]) << 8) |
716 (psb_intel_crtc->lut_b[i] +
717 psb_intel_crtc->lut_adj[i]);
718 }
719
720 }
721 }
722
723 /**
724 * Sets the power management mode of the pipe and plane.
725 *
726 * This code should probably grow support for turning the cursor off and back
727 * on appropriately at the same time as we're turning the pipe off/on.
728 */
729 static void cdv_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
730 {
731 struct drm_device *dev = crtc->dev;
732 struct drm_psb_private *dev_priv = dev->dev_private;
733 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
734 int pipe = psb_intel_crtc->pipe;
735 const struct psb_offset *map = &dev_priv->regmap[pipe];
736 u32 temp;
737
738 /* XXX: When our outputs are all unaware of DPMS modes other than off
739 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
740 */
741 cdv_intel_disable_self_refresh(dev);
742
743 switch (mode) {
744 case DRM_MODE_DPMS_ON:
745 case DRM_MODE_DPMS_STANDBY:
746 case DRM_MODE_DPMS_SUSPEND:
747 if (psb_intel_crtc->active)
748 break;
749
750 psb_intel_crtc->active = true;
751
752 /* Enable the DPLL */
753 temp = REG_READ(map->dpll);
754 if ((temp & DPLL_VCO_ENABLE) == 0) {
755 REG_WRITE(map->dpll, temp);
756 REG_READ(map->dpll);
757 /* Wait for the clocks to stabilize. */
758 udelay(150);
759 REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
760 REG_READ(map->dpll);
761 /* Wait for the clocks to stabilize. */
762 udelay(150);
763 REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
764 REG_READ(map->dpll);
765 /* Wait for the clocks to stabilize. */
766 udelay(150);
767 }
768
769 /* Jim Bish - switch plan and pipe per scott */
770 /* Enable the plane */
771 temp = REG_READ(map->cntr);
772 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
773 REG_WRITE(map->cntr,
774 temp | DISPLAY_PLANE_ENABLE);
775 /* Flush the plane changes */
776 REG_WRITE(map->base, REG_READ(map->base));
777 }
778
779 udelay(150);
780
781 /* Enable the pipe */
782 temp = REG_READ(map->conf);
783 if ((temp & PIPEACONF_ENABLE) == 0)
784 REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
785
786 temp = REG_READ(map->status);
787 temp &= ~(0xFFFF);
788 temp |= PIPE_FIFO_UNDERRUN;
789 REG_WRITE(map->status, temp);
790 REG_READ(map->status);
791
792 cdv_intel_crtc_load_lut(crtc);
793
794 /* Give the overlay scaler a chance to enable
795 * if it's on this pipe */
796 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
797 break;
798 case DRM_MODE_DPMS_OFF:
799 if (!psb_intel_crtc->active)
800 break;
801
802 psb_intel_crtc->active = false;
803
804 /* Give the overlay scaler a chance to disable
805 * if it's on this pipe */
806 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
807
808 /* Disable the VGA plane that we never use */
809 REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
810
811 /* Jim Bish - changed pipe/plane here as well. */
812
813 drm_vblank_off(dev, pipe);
814 /* Wait for vblank for the disable to take effect */
815 cdv_intel_wait_for_vblank(dev);
816
817 /* Next, disable display pipes */
818 temp = REG_READ(map->conf);
819 if ((temp & PIPEACONF_ENABLE) != 0) {
820 REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
821 REG_READ(map->conf);
822 }
823
824 /* Wait for vblank for the disable to take effect. */
825 cdv_intel_wait_for_vblank(dev);
826
827 udelay(150);
828
829 /* Disable display plane */
830 temp = REG_READ(map->cntr);
831 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
832 REG_WRITE(map->cntr,
833 temp & ~DISPLAY_PLANE_ENABLE);
834 /* Flush the plane changes */
835 REG_WRITE(map->base, REG_READ(map->base));
836 REG_READ(map->base);
837 }
838
839 temp = REG_READ(map->dpll);
840 if ((temp & DPLL_VCO_ENABLE) != 0) {
841 REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
842 REG_READ(map->dpll);
843 }
844
845 /* Wait for the clocks to turn off. */
846 udelay(150);
847 break;
848 }
849 cdv_intel_update_watermark(dev, crtc);
850 /*Set FIFO Watermarks*/
851 REG_WRITE(DSPARB, 0x3F3E);
852 }
853
854 static void cdv_intel_crtc_prepare(struct drm_crtc *crtc)
855 {
856 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
857 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
858 }
859
860 static void cdv_intel_crtc_commit(struct drm_crtc *crtc)
861 {
862 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
863 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
864 }
865
866 static bool cdv_intel_crtc_mode_fixup(struct drm_crtc *crtc,
867 const struct drm_display_mode *mode,
868 struct drm_display_mode *adjusted_mode)
869 {
870 return true;
871 }
872
873
874 /**
875 * Return the pipe currently connected to the panel fitter,
876 * or -1 if the panel fitter is not present or not in use
877 */
878 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
879 {
880 u32 pfit_control;
881
882 pfit_control = REG_READ(PFIT_CONTROL);
883
884 /* See if the panel fitter is in use */
885 if ((pfit_control & PFIT_ENABLE) == 0)
886 return -1;
887 return (pfit_control >> 29) & 0x3;
888 }
889
890 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
891 struct drm_display_mode *mode,
892 struct drm_display_mode *adjusted_mode,
893 int x, int y,
894 struct drm_framebuffer *old_fb)
895 {
896 struct drm_device *dev = crtc->dev;
897 struct drm_psb_private *dev_priv = dev->dev_private;
898 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
899 int pipe = psb_intel_crtc->pipe;
900 const struct psb_offset *map = &dev_priv->regmap[pipe];
901 int refclk;
902 struct gma_clock_t clock;
903 u32 dpll = 0, dspcntr, pipeconf;
904 bool ok;
905 bool is_crt = false, is_lvds = false, is_tv = false;
906 bool is_hdmi = false, is_dp = false;
907 struct drm_mode_config *mode_config = &dev->mode_config;
908 struct drm_connector *connector;
909 const struct gma_limit_t *limit;
910 u32 ddi_select = 0;
911 bool is_edp = false;
912
913 list_for_each_entry(connector, &mode_config->connector_list, head) {
914 struct psb_intel_encoder *psb_intel_encoder =
915 psb_intel_attached_encoder(connector);
916
917 if (!connector->encoder
918 || connector->encoder->crtc != crtc)
919 continue;
920
921 ddi_select = psb_intel_encoder->ddi_select;
922 switch (psb_intel_encoder->type) {
923 case INTEL_OUTPUT_LVDS:
924 is_lvds = true;
925 break;
926 case INTEL_OUTPUT_TVOUT:
927 is_tv = true;
928 break;
929 case INTEL_OUTPUT_ANALOG:
930 is_crt = true;
931 break;
932 case INTEL_OUTPUT_HDMI:
933 is_hdmi = true;
934 break;
935 case INTEL_OUTPUT_DISPLAYPORT:
936 is_dp = true;
937 break;
938 case INTEL_OUTPUT_EDP:
939 is_edp = true;
940 break;
941 default:
942 DRM_ERROR("invalid output type.\n");
943 return 0;
944 }
945 }
946
947 if (dev_priv->dplla_96mhz)
948 /* low-end sku, 96/100 mhz */
949 refclk = 96000;
950 else
951 /* high-end sku, 27/100 mhz */
952 refclk = 27000;
953 if (is_dp || is_edp) {
954 /*
955 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
956 * unnecessary to consider it for DP/eDP.
957 * On the high-end SKU, it will use the 27/100M reference clk
958 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
959 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
960 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
961 */
962 if (pipe == 0)
963 refclk = 27000;
964 else
965 refclk = 100000;
966 }
967
968 if (is_lvds && dev_priv->lvds_use_ssc) {
969 refclk = dev_priv->lvds_ssc_freq * 1000;
970 DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
971 }
972
973 drm_mode_debug_printmodeline(adjusted_mode);
974
975 limit = psb_intel_crtc->clock_funcs->limit(crtc, refclk);
976
977 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
978 &clock);
979 if (!ok) {
980 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
981 adjusted_mode->clock, clock.dot);
982 return 0;
983 }
984
985 dpll = DPLL_VGA_MODE_DIS;
986 if (is_tv) {
987 /* XXX: just matching BIOS for now */
988 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
989 dpll |= 3;
990 }
991 /* dpll |= PLL_REF_INPUT_DREFCLK; */
992
993 if (is_dp || is_edp) {
994 cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
995 } else {
996 REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
997 REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
998 REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
999 REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
1000 }
1001
1002 dpll |= DPLL_SYNCLOCK_ENABLE;
1003 /* if (is_lvds)
1004 dpll |= DPLLB_MODE_LVDS;
1005 else
1006 dpll |= DPLLB_MODE_DAC_SERIAL; */
1007 /* dpll |= (2 << 11); */
1008
1009 /* setup pipeconf */
1010 pipeconf = REG_READ(map->conf);
1011
1012 pipeconf &= ~(PIPE_BPC_MASK);
1013 if (is_edp) {
1014 switch (dev_priv->edp.bpp) {
1015 case 24:
1016 pipeconf |= PIPE_8BPC;
1017 break;
1018 case 18:
1019 pipeconf |= PIPE_6BPC;
1020 break;
1021 case 30:
1022 pipeconf |= PIPE_10BPC;
1023 break;
1024 default:
1025 pipeconf |= PIPE_8BPC;
1026 break;
1027 }
1028 } else if (is_lvds) {
1029 /* the BPC will be 6 if it is 18-bit LVDS panel */
1030 if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
1031 pipeconf |= PIPE_8BPC;
1032 else
1033 pipeconf |= PIPE_6BPC;
1034 } else
1035 pipeconf |= PIPE_8BPC;
1036
1037 /* Set up the display plane register */
1038 dspcntr = DISPPLANE_GAMMA_ENABLE;
1039
1040 if (pipe == 0)
1041 dspcntr |= DISPPLANE_SEL_PIPE_A;
1042 else
1043 dspcntr |= DISPPLANE_SEL_PIPE_B;
1044
1045 dspcntr |= DISPLAY_PLANE_ENABLE;
1046 pipeconf |= PIPEACONF_ENABLE;
1047
1048 REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
1049 REG_READ(map->dpll);
1050
1051 cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
1052
1053 udelay(150);
1054
1055
1056 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
1057 * This is an exception to the general rule that mode_set doesn't turn
1058 * things on.
1059 */
1060 if (is_lvds) {
1061 u32 lvds = REG_READ(LVDS);
1062
1063 lvds |=
1064 LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
1065 LVDS_PIPEB_SELECT;
1066 /* Set the B0-B3 data pairs corresponding to
1067 * whether we're going to
1068 * set the DPLLs for dual-channel mode or not.
1069 */
1070 if (clock.p2 == 7)
1071 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
1072 else
1073 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
1074
1075 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1076 * appropriately here, but we need to look more
1077 * thoroughly into how panels behave in the two modes.
1078 */
1079
1080 REG_WRITE(LVDS, lvds);
1081 REG_READ(LVDS);
1082 }
1083
1084 dpll |= DPLL_VCO_ENABLE;
1085
1086 /* Disable the panel fitter if it was on our pipe */
1087 if (cdv_intel_panel_fitter_pipe(dev) == pipe)
1088 REG_WRITE(PFIT_CONTROL, 0);
1089
1090 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
1091 drm_mode_debug_printmodeline(mode);
1092
1093 REG_WRITE(map->dpll,
1094 (REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
1095 REG_READ(map->dpll);
1096 /* Wait for the clocks to stabilize. */
1097 udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */
1098
1099 if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
1100 dev_err(dev->dev, "Failed to get DPLL lock\n");
1101 return -EBUSY;
1102 }
1103
1104 {
1105 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1106 REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
1107 }
1108
1109 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
1110 ((adjusted_mode->crtc_htotal - 1) << 16));
1111 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
1112 ((adjusted_mode->crtc_hblank_end - 1) << 16));
1113 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
1114 ((adjusted_mode->crtc_hsync_end - 1) << 16));
1115 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
1116 ((adjusted_mode->crtc_vtotal - 1) << 16));
1117 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
1118 ((adjusted_mode->crtc_vblank_end - 1) << 16));
1119 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
1120 ((adjusted_mode->crtc_vsync_end - 1) << 16));
1121 /* pipesrc and dspsize control the size that is scaled from,
1122 * which should always be the user's requested size.
1123 */
1124 REG_WRITE(map->size,
1125 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
1126 REG_WRITE(map->pos, 0);
1127 REG_WRITE(map->src,
1128 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
1129 REG_WRITE(map->conf, pipeconf);
1130 REG_READ(map->conf);
1131
1132 cdv_intel_wait_for_vblank(dev);
1133
1134 REG_WRITE(map->cntr, dspcntr);
1135
1136 /* Flush the plane changes */
1137 {
1138 struct drm_crtc_helper_funcs *crtc_funcs =
1139 crtc->helper_private;
1140 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
1141 }
1142
1143 cdv_intel_wait_for_vblank(dev);
1144
1145 return 0;
1146 }
1147
1148
1149 /**
1150 * Save HW states of giving crtc
1151 */
1152 static void cdv_intel_crtc_save(struct drm_crtc *crtc)
1153 {
1154 struct drm_device *dev = crtc->dev;
1155 struct drm_psb_private *dev_priv = dev->dev_private;
1156 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1157 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1158 const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
1159 uint32_t paletteReg;
1160 int i;
1161
1162 if (!crtc_state) {
1163 dev_dbg(dev->dev, "No CRTC state found\n");
1164 return;
1165 }
1166
1167 crtc_state->saveDSPCNTR = REG_READ(map->cntr);
1168 crtc_state->savePIPECONF = REG_READ(map->conf);
1169 crtc_state->savePIPESRC = REG_READ(map->src);
1170 crtc_state->saveFP0 = REG_READ(map->fp0);
1171 crtc_state->saveFP1 = REG_READ(map->fp1);
1172 crtc_state->saveDPLL = REG_READ(map->dpll);
1173 crtc_state->saveHTOTAL = REG_READ(map->htotal);
1174 crtc_state->saveHBLANK = REG_READ(map->hblank);
1175 crtc_state->saveHSYNC = REG_READ(map->hsync);
1176 crtc_state->saveVTOTAL = REG_READ(map->vtotal);
1177 crtc_state->saveVBLANK = REG_READ(map->vblank);
1178 crtc_state->saveVSYNC = REG_READ(map->vsync);
1179 crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
1180
1181 /*NOTE: DSPSIZE DSPPOS only for psb*/
1182 crtc_state->saveDSPSIZE = REG_READ(map->size);
1183 crtc_state->saveDSPPOS = REG_READ(map->pos);
1184
1185 crtc_state->saveDSPBASE = REG_READ(map->base);
1186
1187 DRM_DEBUG("(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1188 crtc_state->saveDSPCNTR,
1189 crtc_state->savePIPECONF,
1190 crtc_state->savePIPESRC,
1191 crtc_state->saveFP0,
1192 crtc_state->saveFP1,
1193 crtc_state->saveDPLL,
1194 crtc_state->saveHTOTAL,
1195 crtc_state->saveHBLANK,
1196 crtc_state->saveHSYNC,
1197 crtc_state->saveVTOTAL,
1198 crtc_state->saveVBLANK,
1199 crtc_state->saveVSYNC,
1200 crtc_state->saveDSPSTRIDE,
1201 crtc_state->saveDSPSIZE,
1202 crtc_state->saveDSPPOS,
1203 crtc_state->saveDSPBASE
1204 );
1205
1206 paletteReg = map->palette;
1207 for (i = 0; i < 256; ++i)
1208 crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
1209 }
1210
1211 /**
1212 * Restore HW states of giving crtc
1213 */
1214 static void cdv_intel_crtc_restore(struct drm_crtc *crtc)
1215 {
1216 struct drm_device *dev = crtc->dev;
1217 struct drm_psb_private *dev_priv = dev->dev_private;
1218 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1219 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1220 const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
1221 uint32_t paletteReg;
1222 int i;
1223
1224 if (!crtc_state) {
1225 dev_dbg(dev->dev, "No crtc state\n");
1226 return;
1227 }
1228
1229 DRM_DEBUG(
1230 "current:(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1231 REG_READ(map->cntr),
1232 REG_READ(map->conf),
1233 REG_READ(map->src),
1234 REG_READ(map->fp0),
1235 REG_READ(map->fp1),
1236 REG_READ(map->dpll),
1237 REG_READ(map->htotal),
1238 REG_READ(map->hblank),
1239 REG_READ(map->hsync),
1240 REG_READ(map->vtotal),
1241 REG_READ(map->vblank),
1242 REG_READ(map->vsync),
1243 REG_READ(map->stride),
1244 REG_READ(map->size),
1245 REG_READ(map->pos),
1246 REG_READ(map->base)
1247 );
1248
1249 DRM_DEBUG(
1250 "saved: (%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1251 crtc_state->saveDSPCNTR,
1252 crtc_state->savePIPECONF,
1253 crtc_state->savePIPESRC,
1254 crtc_state->saveFP0,
1255 crtc_state->saveFP1,
1256 crtc_state->saveDPLL,
1257 crtc_state->saveHTOTAL,
1258 crtc_state->saveHBLANK,
1259 crtc_state->saveHSYNC,
1260 crtc_state->saveVTOTAL,
1261 crtc_state->saveVBLANK,
1262 crtc_state->saveVSYNC,
1263 crtc_state->saveDSPSTRIDE,
1264 crtc_state->saveDSPSIZE,
1265 crtc_state->saveDSPPOS,
1266 crtc_state->saveDSPBASE
1267 );
1268
1269
1270 if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
1271 REG_WRITE(map->dpll,
1272 crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
1273 REG_READ(map->dpll);
1274 DRM_DEBUG("write dpll: %x\n",
1275 REG_READ(map->dpll));
1276 udelay(150);
1277 }
1278
1279 REG_WRITE(map->fp0, crtc_state->saveFP0);
1280 REG_READ(map->fp0);
1281
1282 REG_WRITE(map->fp1, crtc_state->saveFP1);
1283 REG_READ(map->fp1);
1284
1285 REG_WRITE(map->dpll, crtc_state->saveDPLL);
1286 REG_READ(map->dpll);
1287 udelay(150);
1288
1289 REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
1290 REG_WRITE(map->hblank, crtc_state->saveHBLANK);
1291 REG_WRITE(map->hsync, crtc_state->saveHSYNC);
1292 REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
1293 REG_WRITE(map->vblank, crtc_state->saveVBLANK);
1294 REG_WRITE(map->vsync, crtc_state->saveVSYNC);
1295 REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
1296
1297 REG_WRITE(map->size, crtc_state->saveDSPSIZE);
1298 REG_WRITE(map->pos, crtc_state->saveDSPPOS);
1299
1300 REG_WRITE(map->src, crtc_state->savePIPESRC);
1301 REG_WRITE(map->base, crtc_state->saveDSPBASE);
1302 REG_WRITE(map->conf, crtc_state->savePIPECONF);
1303
1304 cdv_intel_wait_for_vblank(dev);
1305
1306 REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
1307 REG_WRITE(map->base, crtc_state->saveDSPBASE);
1308
1309 cdv_intel_wait_for_vblank(dev);
1310
1311 paletteReg = map->palette;
1312 for (i = 0; i < 256; ++i)
1313 REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
1314 }
1315
1316 static int cdv_intel_crtc_cursor_set(struct drm_crtc *crtc,
1317 struct drm_file *file_priv,
1318 uint32_t handle,
1319 uint32_t width, uint32_t height)
1320 {
1321 struct drm_device *dev = crtc->dev;
1322 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1323 int pipe = psb_intel_crtc->pipe;
1324 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1325 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1326 uint32_t temp;
1327 size_t addr = 0;
1328 struct gtt_range *gt;
1329 struct drm_gem_object *obj;
1330 int ret = 0;
1331
1332 /* if we want to turn of the cursor ignore width and height */
1333 if (!handle) {
1334 /* turn off the cursor */
1335 temp = CURSOR_MODE_DISABLE;
1336
1337 if (gma_power_begin(dev, false)) {
1338 REG_WRITE(control, temp);
1339 REG_WRITE(base, 0);
1340 gma_power_end(dev);
1341 }
1342
1343 /* unpin the old GEM object */
1344 if (psb_intel_crtc->cursor_obj) {
1345 gt = container_of(psb_intel_crtc->cursor_obj,
1346 struct gtt_range, gem);
1347 psb_gtt_unpin(gt);
1348 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1349 psb_intel_crtc->cursor_obj = NULL;
1350 }
1351
1352 return 0;
1353 }
1354
1355 /* Currently we only support 64x64 cursors */
1356 if (width != 64 || height != 64) {
1357 dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
1358 return -EINVAL;
1359 }
1360
1361 obj = drm_gem_object_lookup(dev, file_priv, handle);
1362 if (!obj)
1363 return -ENOENT;
1364
1365 if (obj->size < width * height * 4) {
1366 dev_dbg(dev->dev, "buffer is to small\n");
1367 ret = -ENOMEM;
1368 goto unref_cursor;
1369 }
1370
1371 gt = container_of(obj, struct gtt_range, gem);
1372
1373 /* Pin the memory into the GTT */
1374 ret = psb_gtt_pin(gt);
1375 if (ret) {
1376 dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
1377 goto unref_cursor;
1378 }
1379
1380 addr = gt->offset; /* Or resource.start ??? */
1381
1382 psb_intel_crtc->cursor_addr = addr;
1383
1384 temp = 0;
1385 /* set the pipe for the cursor */
1386 temp |= (pipe << 28);
1387 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1388
1389 if (gma_power_begin(dev, false)) {
1390 REG_WRITE(control, temp);
1391 REG_WRITE(base, addr);
1392 gma_power_end(dev);
1393 }
1394
1395 /* unpin the old GEM object */
1396 if (psb_intel_crtc->cursor_obj) {
1397 gt = container_of(psb_intel_crtc->cursor_obj,
1398 struct gtt_range, gem);
1399 psb_gtt_unpin(gt);
1400 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1401 }
1402
1403 psb_intel_crtc->cursor_obj = obj;
1404 return ret;
1405
1406 unref_cursor:
1407 drm_gem_object_unreference(obj);
1408 return ret;
1409 }
1410
1411 static int cdv_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1412 {
1413 struct drm_device *dev = crtc->dev;
1414 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1415 int pipe = psb_intel_crtc->pipe;
1416 uint32_t temp = 0;
1417 uint32_t adder;
1418
1419
1420 if (x < 0) {
1421 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1422 x = -x;
1423 }
1424 if (y < 0) {
1425 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1426 y = -y;
1427 }
1428
1429 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1430 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1431
1432 adder = psb_intel_crtc->cursor_addr;
1433
1434 if (gma_power_begin(dev, false)) {
1435 REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1436 REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1437 gma_power_end(dev);
1438 }
1439 return 0;
1440 }
1441
1442 static void cdv_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1443 u16 *green, u16 *blue, uint32_t start, uint32_t size)
1444 {
1445 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1446 int i;
1447 int end = (start + size > 256) ? 256 : start + size;
1448
1449 for (i = start; i < end; i++) {
1450 psb_intel_crtc->lut_r[i] = red[i] >> 8;
1451 psb_intel_crtc->lut_g[i] = green[i] >> 8;
1452 psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1453 }
1454
1455 cdv_intel_crtc_load_lut(crtc);
1456 }
1457
1458 static int cdv_crtc_set_config(struct drm_mode_set *set)
1459 {
1460 int ret = 0;
1461 struct drm_device *dev = set->crtc->dev;
1462 struct drm_psb_private *dev_priv = dev->dev_private;
1463
1464 if (!dev_priv->rpm_enabled)
1465 return drm_crtc_helper_set_config(set);
1466
1467 pm_runtime_forbid(&dev->pdev->dev);
1468
1469 ret = drm_crtc_helper_set_config(set);
1470
1471 pm_runtime_allow(&dev->pdev->dev);
1472
1473 return ret;
1474 }
1475
1476 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
1477
1478 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
1479
1480 static void i8xx_clock(int refclk, struct gma_clock_t *clock)
1481 {
1482 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
1483 clock->p = clock->p1 * clock->p2;
1484 clock->vco = refclk * clock->m / (clock->n + 2);
1485 clock->dot = clock->vco / clock->p;
1486 }
1487
1488 /* Returns the clock of the currently programmed mode of the given pipe. */
1489 static int cdv_intel_crtc_clock_get(struct drm_device *dev,
1490 struct drm_crtc *crtc)
1491 {
1492 struct drm_psb_private *dev_priv = dev->dev_private;
1493 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1494 int pipe = psb_intel_crtc->pipe;
1495 const struct psb_offset *map = &dev_priv->regmap[pipe];
1496 u32 dpll;
1497 u32 fp;
1498 struct gma_clock_t clock;
1499 bool is_lvds;
1500 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1501
1502 if (gma_power_begin(dev, false)) {
1503 dpll = REG_READ(map->dpll);
1504 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1505 fp = REG_READ(map->fp0);
1506 else
1507 fp = REG_READ(map->fp1);
1508 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1509 gma_power_end(dev);
1510 } else {
1511 dpll = p->dpll;
1512 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1513 fp = p->fp0;
1514 else
1515 fp = p->fp1;
1516
1517 is_lvds = (pipe == 1) &&
1518 (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
1519 }
1520
1521 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1522 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1523 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1524
1525 if (is_lvds) {
1526 clock.p1 =
1527 ffs((dpll &
1528 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1529 DPLL_FPA01_P1_POST_DIV_SHIFT);
1530 if (clock.p1 == 0) {
1531 clock.p1 = 4;
1532 dev_err(dev->dev, "PLL %d\n", dpll);
1533 }
1534 clock.p2 = 14;
1535
1536 if ((dpll & PLL_REF_INPUT_MASK) ==
1537 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1538 /* XXX: might not be 66MHz */
1539 i8xx_clock(66000, &clock);
1540 } else
1541 i8xx_clock(48000, &clock);
1542 } else {
1543 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1544 clock.p1 = 2;
1545 else {
1546 clock.p1 =
1547 ((dpll &
1548 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1549 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1550 }
1551 if (dpll & PLL_P2_DIVIDE_BY_4)
1552 clock.p2 = 4;
1553 else
1554 clock.p2 = 2;
1555
1556 i8xx_clock(48000, &clock);
1557 }
1558
1559 /* XXX: It would be nice to validate the clocks, but we can't reuse
1560 * i830PllIsValid() because it relies on the xf86_config connector
1561 * configuration being accurate, which it isn't necessarily.
1562 */
1563
1564 return clock.dot;
1565 }
1566
1567 /** Returns the currently programmed mode of the given pipe. */
1568 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
1569 struct drm_crtc *crtc)
1570 {
1571 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1572 int pipe = psb_intel_crtc->pipe;
1573 struct drm_psb_private *dev_priv = dev->dev_private;
1574 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1575 const struct psb_offset *map = &dev_priv->regmap[pipe];
1576 struct drm_display_mode *mode;
1577 int htot;
1578 int hsync;
1579 int vtot;
1580 int vsync;
1581
1582 if (gma_power_begin(dev, false)) {
1583 htot = REG_READ(map->htotal);
1584 hsync = REG_READ(map->hsync);
1585 vtot = REG_READ(map->vtotal);
1586 vsync = REG_READ(map->vsync);
1587 gma_power_end(dev);
1588 } else {
1589 htot = p->htotal;
1590 hsync = p->hsync;
1591 vtot = p->vtotal;
1592 vsync = p->vsync;
1593 }
1594
1595 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1596 if (!mode)
1597 return NULL;
1598
1599 mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
1600 mode->hdisplay = (htot & 0xffff) + 1;
1601 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1602 mode->hsync_start = (hsync & 0xffff) + 1;
1603 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1604 mode->vdisplay = (vtot & 0xffff) + 1;
1605 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1606 mode->vsync_start = (vsync & 0xffff) + 1;
1607 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1608
1609 drm_mode_set_name(mode);
1610 drm_mode_set_crtcinfo(mode, 0);
1611
1612 return mode;
1613 }
1614
1615 static void cdv_intel_crtc_destroy(struct drm_crtc *crtc)
1616 {
1617 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1618
1619 kfree(psb_intel_crtc->crtc_state);
1620 drm_crtc_cleanup(crtc);
1621 kfree(psb_intel_crtc);
1622 }
1623
1624 static void cdv_intel_crtc_disable(struct drm_crtc *crtc)
1625 {
1626 struct gtt_range *gt;
1627 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1628
1629 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1630
1631 if (crtc->fb) {
1632 gt = to_psb_fb(crtc->fb)->gtt;
1633 psb_gtt_unpin(gt);
1634 }
1635 }
1636
1637 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
1638 .dpms = cdv_intel_crtc_dpms,
1639 .mode_fixup = cdv_intel_crtc_mode_fixup,
1640 .mode_set = cdv_intel_crtc_mode_set,
1641 .mode_set_base = cdv_intel_pipe_set_base,
1642 .prepare = cdv_intel_crtc_prepare,
1643 .commit = cdv_intel_crtc_commit,
1644 .disable = cdv_intel_crtc_disable,
1645 };
1646
1647 const struct drm_crtc_funcs cdv_intel_crtc_funcs = {
1648 .save = cdv_intel_crtc_save,
1649 .restore = cdv_intel_crtc_restore,
1650 .cursor_set = cdv_intel_crtc_cursor_set,
1651 .cursor_move = cdv_intel_crtc_cursor_move,
1652 .gamma_set = cdv_intel_crtc_gamma_set,
1653 .set_config = cdv_crtc_set_config,
1654 .destroy = cdv_intel_crtc_destroy,
1655 };
1656
1657 const struct gma_clock_funcs cdv_clock_funcs = {
1658 .clock = cdv_intel_clock,
1659 .limit = cdv_intel_limit,
1660 .pll_is_valid = gma_pll_is_valid,
1661 };
This page took 0.107993 seconds and 4 git commands to generate.