ae57b93bdadf70f99d28dc6d6e68877fdbf9fca1
[deliverable/linux.git] / drivers / gpu / drm / gma500 / cdv_intel_display.c
1 /*
2 * Copyright © 2006-2011 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
19 */
20
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
23
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "gma_display.h"
30 #include "power.h"
31 #include "cdv_device.h"
32
33 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
34 struct drm_crtc *crtc, int target,
35 int refclk, struct gma_clock_t *best_clock);
36
37
38 #define CDV_LIMIT_SINGLE_LVDS_96 0
39 #define CDV_LIMIT_SINGLE_LVDS_100 1
40 #define CDV_LIMIT_DAC_HDMI_27 2
41 #define CDV_LIMIT_DAC_HDMI_96 3
42 #define CDV_LIMIT_DP_27 4
43 #define CDV_LIMIT_DP_100 5
44
45 static const struct gma_limit_t cdv_intel_limits[] = {
46 { /* CDV_SINGLE_LVDS_96MHz */
47 .dot = {.min = 20000, .max = 115500},
48 .vco = {.min = 1800000, .max = 3600000},
49 .n = {.min = 2, .max = 6},
50 .m = {.min = 60, .max = 160},
51 .m1 = {.min = 0, .max = 0},
52 .m2 = {.min = 58, .max = 158},
53 .p = {.min = 28, .max = 140},
54 .p1 = {.min = 2, .max = 10},
55 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
56 .find_pll = gma_find_best_pll,
57 },
58 { /* CDV_SINGLE_LVDS_100MHz */
59 .dot = {.min = 20000, .max = 115500},
60 .vco = {.min = 1800000, .max = 3600000},
61 .n = {.min = 2, .max = 6},
62 .m = {.min = 60, .max = 160},
63 .m1 = {.min = 0, .max = 0},
64 .m2 = {.min = 58, .max = 158},
65 .p = {.min = 28, .max = 140},
66 .p1 = {.min = 2, .max = 10},
67 /* The single-channel range is 25-112Mhz, and dual-channel
68 * is 80-224Mhz. Prefer single channel as much as possible.
69 */
70 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
71 .find_pll = gma_find_best_pll,
72 },
73 { /* CDV_DAC_HDMI_27MHz */
74 .dot = {.min = 20000, .max = 400000},
75 .vco = {.min = 1809000, .max = 3564000},
76 .n = {.min = 1, .max = 1},
77 .m = {.min = 67, .max = 132},
78 .m1 = {.min = 0, .max = 0},
79 .m2 = {.min = 65, .max = 130},
80 .p = {.min = 5, .max = 90},
81 .p1 = {.min = 1, .max = 9},
82 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
83 .find_pll = gma_find_best_pll,
84 },
85 { /* CDV_DAC_HDMI_96MHz */
86 .dot = {.min = 20000, .max = 400000},
87 .vco = {.min = 1800000, .max = 3600000},
88 .n = {.min = 2, .max = 6},
89 .m = {.min = 60, .max = 160},
90 .m1 = {.min = 0, .max = 0},
91 .m2 = {.min = 58, .max = 158},
92 .p = {.min = 5, .max = 100},
93 .p1 = {.min = 1, .max = 10},
94 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
95 .find_pll = gma_find_best_pll,
96 },
97 { /* CDV_DP_27MHz */
98 .dot = {.min = 160000, .max = 272000},
99 .vco = {.min = 1809000, .max = 3564000},
100 .n = {.min = 1, .max = 1},
101 .m = {.min = 67, .max = 132},
102 .m1 = {.min = 0, .max = 0},
103 .m2 = {.min = 65, .max = 130},
104 .p = {.min = 5, .max = 90},
105 .p1 = {.min = 1, .max = 9},
106 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
107 .find_pll = cdv_intel_find_dp_pll,
108 },
109 { /* CDV_DP_100MHz */
110 .dot = {.min = 160000, .max = 272000},
111 .vco = {.min = 1800000, .max = 3600000},
112 .n = {.min = 2, .max = 6},
113 .m = {.min = 60, .max = 164},
114 .m1 = {.min = 0, .max = 0},
115 .m2 = {.min = 58, .max = 162},
116 .p = {.min = 5, .max = 100},
117 .p1 = {.min = 1, .max = 10},
118 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
119 .find_pll = cdv_intel_find_dp_pll,
120 }
121 };
122
123 #define _wait_for(COND, MS, W) ({ \
124 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
125 int ret__ = 0; \
126 while (!(COND)) { \
127 if (time_after(jiffies, timeout__)) { \
128 ret__ = -ETIMEDOUT; \
129 break; \
130 } \
131 if (W && !in_dbg_master()) \
132 msleep(W); \
133 } \
134 ret__; \
135 })
136
137 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
138
139
140 int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
141 {
142 int ret;
143
144 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
145 if (ret) {
146 DRM_ERROR("timeout waiting for SB to idle before read\n");
147 return ret;
148 }
149
150 REG_WRITE(SB_ADDR, reg);
151 REG_WRITE(SB_PCKT,
152 SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
153 SET_FIELD(SB_DEST_DPLL, SB_DEST) |
154 SET_FIELD(0xf, SB_BYTE_ENABLE));
155
156 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
157 if (ret) {
158 DRM_ERROR("timeout waiting for SB to idle after read\n");
159 return ret;
160 }
161
162 *val = REG_READ(SB_DATA);
163
164 return 0;
165 }
166
167 int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
168 {
169 int ret;
170 static bool dpio_debug = true;
171 u32 temp;
172
173 if (dpio_debug) {
174 if (cdv_sb_read(dev, reg, &temp) == 0)
175 DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
176 DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
177 }
178
179 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
180 if (ret) {
181 DRM_ERROR("timeout waiting for SB to idle before write\n");
182 return ret;
183 }
184
185 REG_WRITE(SB_ADDR, reg);
186 REG_WRITE(SB_DATA, val);
187 REG_WRITE(SB_PCKT,
188 SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
189 SET_FIELD(SB_DEST_DPLL, SB_DEST) |
190 SET_FIELD(0xf, SB_BYTE_ENABLE));
191
192 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
193 if (ret) {
194 DRM_ERROR("timeout waiting for SB to idle after write\n");
195 return ret;
196 }
197
198 if (dpio_debug) {
199 if (cdv_sb_read(dev, reg, &temp) == 0)
200 DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
201 }
202
203 return 0;
204 }
205
206 /* Reset the DPIO configuration register. The BIOS does this at every
207 * mode set.
208 */
209 void cdv_sb_reset(struct drm_device *dev)
210 {
211
212 REG_WRITE(DPIO_CFG, 0);
213 REG_READ(DPIO_CFG);
214 REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
215 }
216
217 /* Unlike most Intel display engines, on Cedarview the DPLL registers
218 * are behind this sideband bus. They must be programmed while the
219 * DPLL reference clock is on in the DPLL control register, but before
220 * the DPLL is enabled in the DPLL control register.
221 */
222 static int
223 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
224 struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
225 {
226 struct psb_intel_crtc *psb_crtc = to_psb_intel_crtc(crtc);
227 int pipe = psb_crtc->pipe;
228 u32 m, n_vco, p;
229 int ret = 0;
230 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
231 int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
232 u32 ref_value;
233 u32 lane_reg, lane_value;
234
235 cdv_sb_reset(dev);
236
237 REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
238
239 udelay(100);
240
241 /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
242 ref_value = 0x68A701;
243
244 cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
245
246 /* We don't know what the other fields of these regs are, so
247 * leave them in place.
248 */
249 /*
250 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
251 * for the pipe A/B. Display spec 1.06 has wrong definition.
252 * Correct definition is like below:
253 *
254 * refclka mean use clock from same PLL
255 *
256 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
257 *
258 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
259 *
260 */
261 ret = cdv_sb_read(dev, ref_sfr, &ref_value);
262 if (ret)
263 return ret;
264 ref_value &= ~(REF_CLK_MASK);
265
266 /* use DPLL_A for pipeB on CRT/HDMI */
267 if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
268 DRM_DEBUG_KMS("use DPLLA for pipe B\n");
269 ref_value |= REF_CLK_DPLLA;
270 } else {
271 DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
272 ref_value |= REF_CLK_DPLL;
273 }
274 ret = cdv_sb_write(dev, ref_sfr, ref_value);
275 if (ret)
276 return ret;
277
278 ret = cdv_sb_read(dev, SB_M(pipe), &m);
279 if (ret)
280 return ret;
281 m &= ~SB_M_DIVIDER_MASK;
282 m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
283 ret = cdv_sb_write(dev, SB_M(pipe), m);
284 if (ret)
285 return ret;
286
287 ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
288 if (ret)
289 return ret;
290
291 /* Follow the BIOS to program the N_DIVIDER REG */
292 n_vco &= 0xFFFF;
293 n_vco |= 0x107;
294 n_vco &= ~(SB_N_VCO_SEL_MASK |
295 SB_N_DIVIDER_MASK |
296 SB_N_CB_TUNE_MASK);
297
298 n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
299
300 if (clock->vco < 2250000) {
301 n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
302 n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
303 } else if (clock->vco < 2750000) {
304 n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
305 n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
306 } else if (clock->vco < 3300000) {
307 n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
308 n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
309 } else {
310 n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
311 n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
312 }
313
314 ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
315 if (ret)
316 return ret;
317
318 ret = cdv_sb_read(dev, SB_P(pipe), &p);
319 if (ret)
320 return ret;
321 p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
322 p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
323 switch (clock->p2) {
324 case 5:
325 p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
326 break;
327 case 10:
328 p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
329 break;
330 case 14:
331 p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
332 break;
333 case 7:
334 p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
335 break;
336 default:
337 DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
338 return -EINVAL;
339 }
340 ret = cdv_sb_write(dev, SB_P(pipe), p);
341 if (ret)
342 return ret;
343
344 if (ddi_select) {
345 if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
346 lane_reg = PSB_LANE0;
347 cdv_sb_read(dev, lane_reg, &lane_value);
348 lane_value &= ~(LANE_PLL_MASK);
349 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
350 cdv_sb_write(dev, lane_reg, lane_value);
351
352 lane_reg = PSB_LANE1;
353 cdv_sb_read(dev, lane_reg, &lane_value);
354 lane_value &= ~(LANE_PLL_MASK);
355 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
356 cdv_sb_write(dev, lane_reg, lane_value);
357 } else {
358 lane_reg = PSB_LANE2;
359 cdv_sb_read(dev, lane_reg, &lane_value);
360 lane_value &= ~(LANE_PLL_MASK);
361 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
362 cdv_sb_write(dev, lane_reg, lane_value);
363
364 lane_reg = PSB_LANE3;
365 cdv_sb_read(dev, lane_reg, &lane_value);
366 lane_value &= ~(LANE_PLL_MASK);
367 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
368 cdv_sb_write(dev, lane_reg, lane_value);
369 }
370 }
371 return 0;
372 }
373
374 static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
375 int refclk)
376 {
377 const struct gma_limit_t *limit;
378 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
379 /*
380 * Now only single-channel LVDS is supported on CDV. If it is
381 * incorrect, please add the dual-channel LVDS.
382 */
383 if (refclk == 96000)
384 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
385 else
386 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
387 } else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
388 gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
389 if (refclk == 27000)
390 limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
391 else
392 limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
393 } else {
394 if (refclk == 27000)
395 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
396 else
397 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
398 }
399 return limit;
400 }
401
402 /* m1 is reserved as 0 in CDV, n is a ring counter */
403 static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
404 {
405 clock->m = clock->m2 + 2;
406 clock->p = clock->p1 * clock->p2;
407 clock->vco = (refclk * clock->m) / clock->n;
408 clock->dot = clock->vco / clock->p;
409 }
410
411 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
412 struct drm_crtc *crtc, int target,
413 int refclk,
414 struct gma_clock_t *best_clock)
415 {
416 struct gma_clock_t clock;
417 if (refclk == 27000) {
418 if (target < 200000) {
419 clock.p1 = 2;
420 clock.p2 = 10;
421 clock.n = 1;
422 clock.m1 = 0;
423 clock.m2 = 118;
424 } else {
425 clock.p1 = 1;
426 clock.p2 = 10;
427 clock.n = 1;
428 clock.m1 = 0;
429 clock.m2 = 98;
430 }
431 } else if (refclk == 100000) {
432 if (target < 200000) {
433 clock.p1 = 2;
434 clock.p2 = 10;
435 clock.n = 5;
436 clock.m1 = 0;
437 clock.m2 = 160;
438 } else {
439 clock.p1 = 1;
440 clock.p2 = 10;
441 clock.n = 5;
442 clock.m1 = 0;
443 clock.m2 = 133;
444 }
445 } else
446 return false;
447 clock.m = clock.m2 + 2;
448 clock.p = clock.p1 * clock.p2;
449 clock.vco = (refclk * clock.m) / clock.n;
450 clock.dot = clock.vco / clock.p;
451 memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
452 return true;
453 }
454
455 static int cdv_intel_pipe_set_base(struct drm_crtc *crtc,
456 int x, int y, struct drm_framebuffer *old_fb)
457 {
458 struct drm_device *dev = crtc->dev;
459 struct drm_psb_private *dev_priv = dev->dev_private;
460 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
461 struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
462 int pipe = psb_intel_crtc->pipe;
463 const struct psb_offset *map = &dev_priv->regmap[pipe];
464 unsigned long start, offset;
465 u32 dspcntr;
466 int ret = 0;
467
468 if (!gma_power_begin(dev, true))
469 return 0;
470
471 /* no fb bound */
472 if (!crtc->fb) {
473 dev_err(dev->dev, "No FB bound\n");
474 goto psb_intel_pipe_cleaner;
475 }
476
477
478 /* We are displaying this buffer, make sure it is actually loaded
479 into the GTT */
480 ret = psb_gtt_pin(psbfb->gtt);
481 if (ret < 0)
482 goto psb_intel_pipe_set_base_exit;
483 start = psbfb->gtt->offset;
484 offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
485
486 REG_WRITE(map->stride, crtc->fb->pitches[0]);
487
488 dspcntr = REG_READ(map->cntr);
489 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
490
491 switch (crtc->fb->bits_per_pixel) {
492 case 8:
493 dspcntr |= DISPPLANE_8BPP;
494 break;
495 case 16:
496 if (crtc->fb->depth == 15)
497 dspcntr |= DISPPLANE_15_16BPP;
498 else
499 dspcntr |= DISPPLANE_16BPP;
500 break;
501 case 24:
502 case 32:
503 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
504 break;
505 default:
506 dev_err(dev->dev, "Unknown color depth\n");
507 ret = -EINVAL;
508 goto psb_intel_pipe_set_base_exit;
509 }
510 REG_WRITE(map->cntr, dspcntr);
511
512 dev_dbg(dev->dev,
513 "Writing base %08lX %08lX %d %d\n", start, offset, x, y);
514
515 REG_WRITE(map->base, offset);
516 REG_READ(map->base);
517 REG_WRITE(map->surf, start);
518 REG_READ(map->surf);
519
520 psb_intel_pipe_cleaner:
521 /* If there was a previous display we can now unpin it */
522 if (old_fb)
523 psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
524
525 psb_intel_pipe_set_base_exit:
526 gma_power_end(dev);
527 return ret;
528 }
529
530 #define FIFO_PIPEA (1 << 0)
531 #define FIFO_PIPEB (1 << 1)
532
533 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
534 {
535 struct drm_crtc *crtc;
536 struct drm_psb_private *dev_priv = dev->dev_private;
537 struct psb_intel_crtc *psb_intel_crtc = NULL;
538
539 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
540 psb_intel_crtc = to_psb_intel_crtc(crtc);
541
542 if (crtc->fb == NULL || !psb_intel_crtc->active)
543 return false;
544 return true;
545 }
546
547 static bool cdv_intel_single_pipe_active (struct drm_device *dev)
548 {
549 uint32_t pipe_enabled = 0;
550
551 if (cdv_intel_pipe_enabled(dev, 0))
552 pipe_enabled |= FIFO_PIPEA;
553
554 if (cdv_intel_pipe_enabled(dev, 1))
555 pipe_enabled |= FIFO_PIPEB;
556
557
558 DRM_DEBUG_KMS("pipe enabled %x\n", pipe_enabled);
559
560 if (pipe_enabled == FIFO_PIPEA || pipe_enabled == FIFO_PIPEB)
561 return true;
562 else
563 return false;
564 }
565
566 static bool is_pipeb_lvds(struct drm_device *dev, struct drm_crtc *crtc)
567 {
568 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
569 struct drm_mode_config *mode_config = &dev->mode_config;
570 struct drm_connector *connector;
571
572 if (psb_intel_crtc->pipe != 1)
573 return false;
574
575 list_for_each_entry(connector, &mode_config->connector_list, head) {
576 struct psb_intel_encoder *psb_intel_encoder =
577 psb_intel_attached_encoder(connector);
578
579 if (!connector->encoder
580 || connector->encoder->crtc != crtc)
581 continue;
582
583 if (psb_intel_encoder->type == INTEL_OUTPUT_LVDS)
584 return true;
585 }
586
587 return false;
588 }
589
590 static void cdv_intel_disable_self_refresh (struct drm_device *dev)
591 {
592 if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
593
594 /* Disable self-refresh before adjust WM */
595 REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
596 REG_READ(FW_BLC_SELF);
597
598 gma_wait_for_vblank(dev);
599
600 /* Cedarview workaround to write ovelay plane, which force to leave
601 * MAX_FIFO state.
602 */
603 REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
604 REG_READ(OV_OVADD);
605
606 gma_wait_for_vblank(dev);
607 }
608
609 }
610
611 static void cdv_intel_update_watermark (struct drm_device *dev, struct drm_crtc *crtc)
612 {
613
614 if (cdv_intel_single_pipe_active(dev)) {
615 u32 fw;
616
617 fw = REG_READ(DSPFW1);
618 fw &= ~DSP_FIFO_SR_WM_MASK;
619 fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
620 fw &= ~CURSOR_B_FIFO_WM_MASK;
621 fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
622 REG_WRITE(DSPFW1, fw);
623
624 fw = REG_READ(DSPFW2);
625 fw &= ~CURSOR_A_FIFO_WM_MASK;
626 fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
627 fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
628 fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
629 REG_WRITE(DSPFW2, fw);
630
631 REG_WRITE(DSPFW3, 0x36000000);
632
633 /* ignore FW4 */
634
635 if (is_pipeb_lvds(dev, crtc)) {
636 REG_WRITE(DSPFW5, 0x00040330);
637 } else {
638 fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
639 (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
640 (3 << CURSOR_B_FIFO_WM1_SHIFT) |
641 (4 << CURSOR_FIFO_SR_WM1_SHIFT);
642 REG_WRITE(DSPFW5, fw);
643 }
644
645 REG_WRITE(DSPFW6, 0x10);
646
647 gma_wait_for_vblank(dev);
648
649 /* enable self-refresh for single pipe active */
650 REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
651 REG_READ(FW_BLC_SELF);
652 gma_wait_for_vblank(dev);
653
654 } else {
655
656 /* HW team suggested values... */
657 REG_WRITE(DSPFW1, 0x3f880808);
658 REG_WRITE(DSPFW2, 0x0b020202);
659 REG_WRITE(DSPFW3, 0x24000000);
660 REG_WRITE(DSPFW4, 0x08030202);
661 REG_WRITE(DSPFW5, 0x01010101);
662 REG_WRITE(DSPFW6, 0x1d0);
663
664 gma_wait_for_vblank(dev);
665
666 cdv_intel_disable_self_refresh(dev);
667
668 }
669 }
670
671 /** Loads the palette/gamma unit for the CRTC with the prepared values */
672 static void cdv_intel_crtc_load_lut(struct drm_crtc *crtc)
673 {
674 struct drm_device *dev = crtc->dev;
675 struct drm_psb_private *dev_priv = dev->dev_private;
676 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
677 int palreg = PALETTE_A;
678 int i;
679
680 /* The clocks have to be on to load the palette. */
681 if (!crtc->enabled)
682 return;
683
684 switch (psb_intel_crtc->pipe) {
685 case 0:
686 break;
687 case 1:
688 palreg = PALETTE_B;
689 break;
690 case 2:
691 palreg = PALETTE_C;
692 break;
693 default:
694 dev_err(dev->dev, "Illegal Pipe Number.\n");
695 return;
696 }
697
698 if (gma_power_begin(dev, false)) {
699 for (i = 0; i < 256; i++) {
700 REG_WRITE(palreg + 4 * i,
701 ((psb_intel_crtc->lut_r[i] +
702 psb_intel_crtc->lut_adj[i]) << 16) |
703 ((psb_intel_crtc->lut_g[i] +
704 psb_intel_crtc->lut_adj[i]) << 8) |
705 (psb_intel_crtc->lut_b[i] +
706 psb_intel_crtc->lut_adj[i]));
707 }
708 gma_power_end(dev);
709 } else {
710 for (i = 0; i < 256; i++) {
711 dev_priv->regs.pipe[0].palette[i] =
712 ((psb_intel_crtc->lut_r[i] +
713 psb_intel_crtc->lut_adj[i]) << 16) |
714 ((psb_intel_crtc->lut_g[i] +
715 psb_intel_crtc->lut_adj[i]) << 8) |
716 (psb_intel_crtc->lut_b[i] +
717 psb_intel_crtc->lut_adj[i]);
718 }
719
720 }
721 }
722
723 /**
724 * Sets the power management mode of the pipe and plane.
725 *
726 * This code should probably grow support for turning the cursor off and back
727 * on appropriately at the same time as we're turning the pipe off/on.
728 */
729 static void cdv_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
730 {
731 struct drm_device *dev = crtc->dev;
732 struct drm_psb_private *dev_priv = dev->dev_private;
733 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
734 int pipe = psb_intel_crtc->pipe;
735 const struct psb_offset *map = &dev_priv->regmap[pipe];
736 u32 temp;
737
738 /* XXX: When our outputs are all unaware of DPMS modes other than off
739 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
740 */
741 cdv_intel_disable_self_refresh(dev);
742
743 switch (mode) {
744 case DRM_MODE_DPMS_ON:
745 case DRM_MODE_DPMS_STANDBY:
746 case DRM_MODE_DPMS_SUSPEND:
747 if (psb_intel_crtc->active)
748 break;
749
750 psb_intel_crtc->active = true;
751
752 /* Enable the DPLL */
753 temp = REG_READ(map->dpll);
754 if ((temp & DPLL_VCO_ENABLE) == 0) {
755 REG_WRITE(map->dpll, temp);
756 REG_READ(map->dpll);
757 /* Wait for the clocks to stabilize. */
758 udelay(150);
759 REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
760 REG_READ(map->dpll);
761 /* Wait for the clocks to stabilize. */
762 udelay(150);
763 REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
764 REG_READ(map->dpll);
765 /* Wait for the clocks to stabilize. */
766 udelay(150);
767 }
768
769 /* Jim Bish - switch plan and pipe per scott */
770 /* Enable the plane */
771 temp = REG_READ(map->cntr);
772 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
773 REG_WRITE(map->cntr,
774 temp | DISPLAY_PLANE_ENABLE);
775 /* Flush the plane changes */
776 REG_WRITE(map->base, REG_READ(map->base));
777 }
778
779 udelay(150);
780
781 /* Enable the pipe */
782 temp = REG_READ(map->conf);
783 if ((temp & PIPEACONF_ENABLE) == 0)
784 REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
785
786 temp = REG_READ(map->status);
787 temp &= ~(0xFFFF);
788 temp |= PIPE_FIFO_UNDERRUN;
789 REG_WRITE(map->status, temp);
790 REG_READ(map->status);
791
792 cdv_intel_crtc_load_lut(crtc);
793
794 /* Give the overlay scaler a chance to enable
795 * if it's on this pipe */
796 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
797 break;
798 case DRM_MODE_DPMS_OFF:
799 if (!psb_intel_crtc->active)
800 break;
801
802 psb_intel_crtc->active = false;
803
804 /* Give the overlay scaler a chance to disable
805 * if it's on this pipe */
806 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
807
808 /* Disable the VGA plane that we never use */
809 REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
810
811 /* Jim Bish - changed pipe/plane here as well. */
812
813 drm_vblank_off(dev, pipe);
814 /* Wait for vblank for the disable to take effect */
815 gma_wait_for_vblank(dev);
816
817 /* Next, disable display pipes */
818 temp = REG_READ(map->conf);
819 if ((temp & PIPEACONF_ENABLE) != 0) {
820 REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
821 REG_READ(map->conf);
822 }
823
824 /* Wait for vblank for the disable to take effect. */
825 gma_wait_for_vblank(dev);
826
827 udelay(150);
828
829 /* Disable display plane */
830 temp = REG_READ(map->cntr);
831 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
832 REG_WRITE(map->cntr,
833 temp & ~DISPLAY_PLANE_ENABLE);
834 /* Flush the plane changes */
835 REG_WRITE(map->base, REG_READ(map->base));
836 REG_READ(map->base);
837 }
838
839 temp = REG_READ(map->dpll);
840 if ((temp & DPLL_VCO_ENABLE) != 0) {
841 REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
842 REG_READ(map->dpll);
843 }
844
845 /* Wait for the clocks to turn off. */
846 udelay(150);
847 break;
848 }
849 cdv_intel_update_watermark(dev, crtc);
850 /*Set FIFO Watermarks*/
851 REG_WRITE(DSPARB, 0x3F3E);
852 }
853
854 /**
855 * Return the pipe currently connected to the panel fitter,
856 * or -1 if the panel fitter is not present or not in use
857 */
858 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
859 {
860 u32 pfit_control;
861
862 pfit_control = REG_READ(PFIT_CONTROL);
863
864 /* See if the panel fitter is in use */
865 if ((pfit_control & PFIT_ENABLE) == 0)
866 return -1;
867 return (pfit_control >> 29) & 0x3;
868 }
869
870 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
871 struct drm_display_mode *mode,
872 struct drm_display_mode *adjusted_mode,
873 int x, int y,
874 struct drm_framebuffer *old_fb)
875 {
876 struct drm_device *dev = crtc->dev;
877 struct drm_psb_private *dev_priv = dev->dev_private;
878 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
879 int pipe = psb_intel_crtc->pipe;
880 const struct psb_offset *map = &dev_priv->regmap[pipe];
881 int refclk;
882 struct gma_clock_t clock;
883 u32 dpll = 0, dspcntr, pipeconf;
884 bool ok;
885 bool is_crt = false, is_lvds = false, is_tv = false;
886 bool is_hdmi = false, is_dp = false;
887 struct drm_mode_config *mode_config = &dev->mode_config;
888 struct drm_connector *connector;
889 const struct gma_limit_t *limit;
890 u32 ddi_select = 0;
891 bool is_edp = false;
892
893 list_for_each_entry(connector, &mode_config->connector_list, head) {
894 struct psb_intel_encoder *psb_intel_encoder =
895 psb_intel_attached_encoder(connector);
896
897 if (!connector->encoder
898 || connector->encoder->crtc != crtc)
899 continue;
900
901 ddi_select = psb_intel_encoder->ddi_select;
902 switch (psb_intel_encoder->type) {
903 case INTEL_OUTPUT_LVDS:
904 is_lvds = true;
905 break;
906 case INTEL_OUTPUT_TVOUT:
907 is_tv = true;
908 break;
909 case INTEL_OUTPUT_ANALOG:
910 is_crt = true;
911 break;
912 case INTEL_OUTPUT_HDMI:
913 is_hdmi = true;
914 break;
915 case INTEL_OUTPUT_DISPLAYPORT:
916 is_dp = true;
917 break;
918 case INTEL_OUTPUT_EDP:
919 is_edp = true;
920 break;
921 default:
922 DRM_ERROR("invalid output type.\n");
923 return 0;
924 }
925 }
926
927 if (dev_priv->dplla_96mhz)
928 /* low-end sku, 96/100 mhz */
929 refclk = 96000;
930 else
931 /* high-end sku, 27/100 mhz */
932 refclk = 27000;
933 if (is_dp || is_edp) {
934 /*
935 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
936 * unnecessary to consider it for DP/eDP.
937 * On the high-end SKU, it will use the 27/100M reference clk
938 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
939 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
940 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
941 */
942 if (pipe == 0)
943 refclk = 27000;
944 else
945 refclk = 100000;
946 }
947
948 if (is_lvds && dev_priv->lvds_use_ssc) {
949 refclk = dev_priv->lvds_ssc_freq * 1000;
950 DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
951 }
952
953 drm_mode_debug_printmodeline(adjusted_mode);
954
955 limit = psb_intel_crtc->clock_funcs->limit(crtc, refclk);
956
957 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
958 &clock);
959 if (!ok) {
960 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
961 adjusted_mode->clock, clock.dot);
962 return 0;
963 }
964
965 dpll = DPLL_VGA_MODE_DIS;
966 if (is_tv) {
967 /* XXX: just matching BIOS for now */
968 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
969 dpll |= 3;
970 }
971 /* dpll |= PLL_REF_INPUT_DREFCLK; */
972
973 if (is_dp || is_edp) {
974 cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
975 } else {
976 REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
977 REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
978 REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
979 REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
980 }
981
982 dpll |= DPLL_SYNCLOCK_ENABLE;
983 /* if (is_lvds)
984 dpll |= DPLLB_MODE_LVDS;
985 else
986 dpll |= DPLLB_MODE_DAC_SERIAL; */
987 /* dpll |= (2 << 11); */
988
989 /* setup pipeconf */
990 pipeconf = REG_READ(map->conf);
991
992 pipeconf &= ~(PIPE_BPC_MASK);
993 if (is_edp) {
994 switch (dev_priv->edp.bpp) {
995 case 24:
996 pipeconf |= PIPE_8BPC;
997 break;
998 case 18:
999 pipeconf |= PIPE_6BPC;
1000 break;
1001 case 30:
1002 pipeconf |= PIPE_10BPC;
1003 break;
1004 default:
1005 pipeconf |= PIPE_8BPC;
1006 break;
1007 }
1008 } else if (is_lvds) {
1009 /* the BPC will be 6 if it is 18-bit LVDS panel */
1010 if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
1011 pipeconf |= PIPE_8BPC;
1012 else
1013 pipeconf |= PIPE_6BPC;
1014 } else
1015 pipeconf |= PIPE_8BPC;
1016
1017 /* Set up the display plane register */
1018 dspcntr = DISPPLANE_GAMMA_ENABLE;
1019
1020 if (pipe == 0)
1021 dspcntr |= DISPPLANE_SEL_PIPE_A;
1022 else
1023 dspcntr |= DISPPLANE_SEL_PIPE_B;
1024
1025 dspcntr |= DISPLAY_PLANE_ENABLE;
1026 pipeconf |= PIPEACONF_ENABLE;
1027
1028 REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
1029 REG_READ(map->dpll);
1030
1031 cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
1032
1033 udelay(150);
1034
1035
1036 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
1037 * This is an exception to the general rule that mode_set doesn't turn
1038 * things on.
1039 */
1040 if (is_lvds) {
1041 u32 lvds = REG_READ(LVDS);
1042
1043 lvds |=
1044 LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
1045 LVDS_PIPEB_SELECT;
1046 /* Set the B0-B3 data pairs corresponding to
1047 * whether we're going to
1048 * set the DPLLs for dual-channel mode or not.
1049 */
1050 if (clock.p2 == 7)
1051 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
1052 else
1053 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
1054
1055 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1056 * appropriately here, but we need to look more
1057 * thoroughly into how panels behave in the two modes.
1058 */
1059
1060 REG_WRITE(LVDS, lvds);
1061 REG_READ(LVDS);
1062 }
1063
1064 dpll |= DPLL_VCO_ENABLE;
1065
1066 /* Disable the panel fitter if it was on our pipe */
1067 if (cdv_intel_panel_fitter_pipe(dev) == pipe)
1068 REG_WRITE(PFIT_CONTROL, 0);
1069
1070 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
1071 drm_mode_debug_printmodeline(mode);
1072
1073 REG_WRITE(map->dpll,
1074 (REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
1075 REG_READ(map->dpll);
1076 /* Wait for the clocks to stabilize. */
1077 udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */
1078
1079 if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
1080 dev_err(dev->dev, "Failed to get DPLL lock\n");
1081 return -EBUSY;
1082 }
1083
1084 {
1085 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1086 REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
1087 }
1088
1089 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
1090 ((adjusted_mode->crtc_htotal - 1) << 16));
1091 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
1092 ((adjusted_mode->crtc_hblank_end - 1) << 16));
1093 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
1094 ((adjusted_mode->crtc_hsync_end - 1) << 16));
1095 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
1096 ((adjusted_mode->crtc_vtotal - 1) << 16));
1097 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
1098 ((adjusted_mode->crtc_vblank_end - 1) << 16));
1099 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
1100 ((adjusted_mode->crtc_vsync_end - 1) << 16));
1101 /* pipesrc and dspsize control the size that is scaled from,
1102 * which should always be the user's requested size.
1103 */
1104 REG_WRITE(map->size,
1105 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
1106 REG_WRITE(map->pos, 0);
1107 REG_WRITE(map->src,
1108 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
1109 REG_WRITE(map->conf, pipeconf);
1110 REG_READ(map->conf);
1111
1112 gma_wait_for_vblank(dev);
1113
1114 REG_WRITE(map->cntr, dspcntr);
1115
1116 /* Flush the plane changes */
1117 {
1118 struct drm_crtc_helper_funcs *crtc_funcs =
1119 crtc->helper_private;
1120 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
1121 }
1122
1123 gma_wait_for_vblank(dev);
1124
1125 return 0;
1126 }
1127
1128
1129 /**
1130 * Save HW states of giving crtc
1131 */
1132 static void cdv_intel_crtc_save(struct drm_crtc *crtc)
1133 {
1134 struct drm_device *dev = crtc->dev;
1135 struct drm_psb_private *dev_priv = dev->dev_private;
1136 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1137 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1138 const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
1139 uint32_t paletteReg;
1140 int i;
1141
1142 if (!crtc_state) {
1143 dev_dbg(dev->dev, "No CRTC state found\n");
1144 return;
1145 }
1146
1147 crtc_state->saveDSPCNTR = REG_READ(map->cntr);
1148 crtc_state->savePIPECONF = REG_READ(map->conf);
1149 crtc_state->savePIPESRC = REG_READ(map->src);
1150 crtc_state->saveFP0 = REG_READ(map->fp0);
1151 crtc_state->saveFP1 = REG_READ(map->fp1);
1152 crtc_state->saveDPLL = REG_READ(map->dpll);
1153 crtc_state->saveHTOTAL = REG_READ(map->htotal);
1154 crtc_state->saveHBLANK = REG_READ(map->hblank);
1155 crtc_state->saveHSYNC = REG_READ(map->hsync);
1156 crtc_state->saveVTOTAL = REG_READ(map->vtotal);
1157 crtc_state->saveVBLANK = REG_READ(map->vblank);
1158 crtc_state->saveVSYNC = REG_READ(map->vsync);
1159 crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
1160
1161 /*NOTE: DSPSIZE DSPPOS only for psb*/
1162 crtc_state->saveDSPSIZE = REG_READ(map->size);
1163 crtc_state->saveDSPPOS = REG_READ(map->pos);
1164
1165 crtc_state->saveDSPBASE = REG_READ(map->base);
1166
1167 DRM_DEBUG("(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1168 crtc_state->saveDSPCNTR,
1169 crtc_state->savePIPECONF,
1170 crtc_state->savePIPESRC,
1171 crtc_state->saveFP0,
1172 crtc_state->saveFP1,
1173 crtc_state->saveDPLL,
1174 crtc_state->saveHTOTAL,
1175 crtc_state->saveHBLANK,
1176 crtc_state->saveHSYNC,
1177 crtc_state->saveVTOTAL,
1178 crtc_state->saveVBLANK,
1179 crtc_state->saveVSYNC,
1180 crtc_state->saveDSPSTRIDE,
1181 crtc_state->saveDSPSIZE,
1182 crtc_state->saveDSPPOS,
1183 crtc_state->saveDSPBASE
1184 );
1185
1186 paletteReg = map->palette;
1187 for (i = 0; i < 256; ++i)
1188 crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
1189 }
1190
1191 /**
1192 * Restore HW states of giving crtc
1193 */
1194 static void cdv_intel_crtc_restore(struct drm_crtc *crtc)
1195 {
1196 struct drm_device *dev = crtc->dev;
1197 struct drm_psb_private *dev_priv = dev->dev_private;
1198 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1199 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1200 const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
1201 uint32_t paletteReg;
1202 int i;
1203
1204 if (!crtc_state) {
1205 dev_dbg(dev->dev, "No crtc state\n");
1206 return;
1207 }
1208
1209 DRM_DEBUG(
1210 "current:(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1211 REG_READ(map->cntr),
1212 REG_READ(map->conf),
1213 REG_READ(map->src),
1214 REG_READ(map->fp0),
1215 REG_READ(map->fp1),
1216 REG_READ(map->dpll),
1217 REG_READ(map->htotal),
1218 REG_READ(map->hblank),
1219 REG_READ(map->hsync),
1220 REG_READ(map->vtotal),
1221 REG_READ(map->vblank),
1222 REG_READ(map->vsync),
1223 REG_READ(map->stride),
1224 REG_READ(map->size),
1225 REG_READ(map->pos),
1226 REG_READ(map->base)
1227 );
1228
1229 DRM_DEBUG(
1230 "saved: (%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1231 crtc_state->saveDSPCNTR,
1232 crtc_state->savePIPECONF,
1233 crtc_state->savePIPESRC,
1234 crtc_state->saveFP0,
1235 crtc_state->saveFP1,
1236 crtc_state->saveDPLL,
1237 crtc_state->saveHTOTAL,
1238 crtc_state->saveHBLANK,
1239 crtc_state->saveHSYNC,
1240 crtc_state->saveVTOTAL,
1241 crtc_state->saveVBLANK,
1242 crtc_state->saveVSYNC,
1243 crtc_state->saveDSPSTRIDE,
1244 crtc_state->saveDSPSIZE,
1245 crtc_state->saveDSPPOS,
1246 crtc_state->saveDSPBASE
1247 );
1248
1249
1250 if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
1251 REG_WRITE(map->dpll,
1252 crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
1253 REG_READ(map->dpll);
1254 DRM_DEBUG("write dpll: %x\n",
1255 REG_READ(map->dpll));
1256 udelay(150);
1257 }
1258
1259 REG_WRITE(map->fp0, crtc_state->saveFP0);
1260 REG_READ(map->fp0);
1261
1262 REG_WRITE(map->fp1, crtc_state->saveFP1);
1263 REG_READ(map->fp1);
1264
1265 REG_WRITE(map->dpll, crtc_state->saveDPLL);
1266 REG_READ(map->dpll);
1267 udelay(150);
1268
1269 REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
1270 REG_WRITE(map->hblank, crtc_state->saveHBLANK);
1271 REG_WRITE(map->hsync, crtc_state->saveHSYNC);
1272 REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
1273 REG_WRITE(map->vblank, crtc_state->saveVBLANK);
1274 REG_WRITE(map->vsync, crtc_state->saveVSYNC);
1275 REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
1276
1277 REG_WRITE(map->size, crtc_state->saveDSPSIZE);
1278 REG_WRITE(map->pos, crtc_state->saveDSPPOS);
1279
1280 REG_WRITE(map->src, crtc_state->savePIPESRC);
1281 REG_WRITE(map->base, crtc_state->saveDSPBASE);
1282 REG_WRITE(map->conf, crtc_state->savePIPECONF);
1283
1284 gma_wait_for_vblank(dev);
1285
1286 REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
1287 REG_WRITE(map->base, crtc_state->saveDSPBASE);
1288
1289 gma_wait_for_vblank(dev);
1290
1291 paletteReg = map->palette;
1292 for (i = 0; i < 256; ++i)
1293 REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
1294 }
1295
1296 static int cdv_intel_crtc_cursor_set(struct drm_crtc *crtc,
1297 struct drm_file *file_priv,
1298 uint32_t handle,
1299 uint32_t width, uint32_t height)
1300 {
1301 struct drm_device *dev = crtc->dev;
1302 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1303 int pipe = psb_intel_crtc->pipe;
1304 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1305 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1306 uint32_t temp;
1307 size_t addr = 0;
1308 struct gtt_range *gt;
1309 struct drm_gem_object *obj;
1310 int ret = 0;
1311
1312 /* if we want to turn of the cursor ignore width and height */
1313 if (!handle) {
1314 /* turn off the cursor */
1315 temp = CURSOR_MODE_DISABLE;
1316
1317 if (gma_power_begin(dev, false)) {
1318 REG_WRITE(control, temp);
1319 REG_WRITE(base, 0);
1320 gma_power_end(dev);
1321 }
1322
1323 /* unpin the old GEM object */
1324 if (psb_intel_crtc->cursor_obj) {
1325 gt = container_of(psb_intel_crtc->cursor_obj,
1326 struct gtt_range, gem);
1327 psb_gtt_unpin(gt);
1328 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1329 psb_intel_crtc->cursor_obj = NULL;
1330 }
1331
1332 return 0;
1333 }
1334
1335 /* Currently we only support 64x64 cursors */
1336 if (width != 64 || height != 64) {
1337 dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
1338 return -EINVAL;
1339 }
1340
1341 obj = drm_gem_object_lookup(dev, file_priv, handle);
1342 if (!obj)
1343 return -ENOENT;
1344
1345 if (obj->size < width * height * 4) {
1346 dev_dbg(dev->dev, "buffer is to small\n");
1347 ret = -ENOMEM;
1348 goto unref_cursor;
1349 }
1350
1351 gt = container_of(obj, struct gtt_range, gem);
1352
1353 /* Pin the memory into the GTT */
1354 ret = psb_gtt_pin(gt);
1355 if (ret) {
1356 dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
1357 goto unref_cursor;
1358 }
1359
1360 addr = gt->offset; /* Or resource.start ??? */
1361
1362 psb_intel_crtc->cursor_addr = addr;
1363
1364 temp = 0;
1365 /* set the pipe for the cursor */
1366 temp |= (pipe << 28);
1367 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1368
1369 if (gma_power_begin(dev, false)) {
1370 REG_WRITE(control, temp);
1371 REG_WRITE(base, addr);
1372 gma_power_end(dev);
1373 }
1374
1375 /* unpin the old GEM object */
1376 if (psb_intel_crtc->cursor_obj) {
1377 gt = container_of(psb_intel_crtc->cursor_obj,
1378 struct gtt_range, gem);
1379 psb_gtt_unpin(gt);
1380 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1381 }
1382
1383 psb_intel_crtc->cursor_obj = obj;
1384 return ret;
1385
1386 unref_cursor:
1387 drm_gem_object_unreference(obj);
1388 return ret;
1389 }
1390
1391 static int cdv_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1392 {
1393 struct drm_device *dev = crtc->dev;
1394 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1395 int pipe = psb_intel_crtc->pipe;
1396 uint32_t temp = 0;
1397 uint32_t adder;
1398
1399
1400 if (x < 0) {
1401 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1402 x = -x;
1403 }
1404 if (y < 0) {
1405 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1406 y = -y;
1407 }
1408
1409 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1410 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1411
1412 adder = psb_intel_crtc->cursor_addr;
1413
1414 if (gma_power_begin(dev, false)) {
1415 REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1416 REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1417 gma_power_end(dev);
1418 }
1419 return 0;
1420 }
1421
1422 static void cdv_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1423 u16 *green, u16 *blue, uint32_t start, uint32_t size)
1424 {
1425 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1426 int i;
1427 int end = (start + size > 256) ? 256 : start + size;
1428
1429 for (i = start; i < end; i++) {
1430 psb_intel_crtc->lut_r[i] = red[i] >> 8;
1431 psb_intel_crtc->lut_g[i] = green[i] >> 8;
1432 psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1433 }
1434
1435 cdv_intel_crtc_load_lut(crtc);
1436 }
1437
1438 static int cdv_crtc_set_config(struct drm_mode_set *set)
1439 {
1440 int ret = 0;
1441 struct drm_device *dev = set->crtc->dev;
1442 struct drm_psb_private *dev_priv = dev->dev_private;
1443
1444 if (!dev_priv->rpm_enabled)
1445 return drm_crtc_helper_set_config(set);
1446
1447 pm_runtime_forbid(&dev->pdev->dev);
1448
1449 ret = drm_crtc_helper_set_config(set);
1450
1451 pm_runtime_allow(&dev->pdev->dev);
1452
1453 return ret;
1454 }
1455
1456 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
1457
1458 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
1459
1460 static void i8xx_clock(int refclk, struct gma_clock_t *clock)
1461 {
1462 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
1463 clock->p = clock->p1 * clock->p2;
1464 clock->vco = refclk * clock->m / (clock->n + 2);
1465 clock->dot = clock->vco / clock->p;
1466 }
1467
1468 /* Returns the clock of the currently programmed mode of the given pipe. */
1469 static int cdv_intel_crtc_clock_get(struct drm_device *dev,
1470 struct drm_crtc *crtc)
1471 {
1472 struct drm_psb_private *dev_priv = dev->dev_private;
1473 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1474 int pipe = psb_intel_crtc->pipe;
1475 const struct psb_offset *map = &dev_priv->regmap[pipe];
1476 u32 dpll;
1477 u32 fp;
1478 struct gma_clock_t clock;
1479 bool is_lvds;
1480 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1481
1482 if (gma_power_begin(dev, false)) {
1483 dpll = REG_READ(map->dpll);
1484 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1485 fp = REG_READ(map->fp0);
1486 else
1487 fp = REG_READ(map->fp1);
1488 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1489 gma_power_end(dev);
1490 } else {
1491 dpll = p->dpll;
1492 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1493 fp = p->fp0;
1494 else
1495 fp = p->fp1;
1496
1497 is_lvds = (pipe == 1) &&
1498 (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
1499 }
1500
1501 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1502 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1503 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1504
1505 if (is_lvds) {
1506 clock.p1 =
1507 ffs((dpll &
1508 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1509 DPLL_FPA01_P1_POST_DIV_SHIFT);
1510 if (clock.p1 == 0) {
1511 clock.p1 = 4;
1512 dev_err(dev->dev, "PLL %d\n", dpll);
1513 }
1514 clock.p2 = 14;
1515
1516 if ((dpll & PLL_REF_INPUT_MASK) ==
1517 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1518 /* XXX: might not be 66MHz */
1519 i8xx_clock(66000, &clock);
1520 } else
1521 i8xx_clock(48000, &clock);
1522 } else {
1523 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1524 clock.p1 = 2;
1525 else {
1526 clock.p1 =
1527 ((dpll &
1528 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1529 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1530 }
1531 if (dpll & PLL_P2_DIVIDE_BY_4)
1532 clock.p2 = 4;
1533 else
1534 clock.p2 = 2;
1535
1536 i8xx_clock(48000, &clock);
1537 }
1538
1539 /* XXX: It would be nice to validate the clocks, but we can't reuse
1540 * i830PllIsValid() because it relies on the xf86_config connector
1541 * configuration being accurate, which it isn't necessarily.
1542 */
1543
1544 return clock.dot;
1545 }
1546
1547 /** Returns the currently programmed mode of the given pipe. */
1548 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
1549 struct drm_crtc *crtc)
1550 {
1551 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1552 int pipe = psb_intel_crtc->pipe;
1553 struct drm_psb_private *dev_priv = dev->dev_private;
1554 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1555 const struct psb_offset *map = &dev_priv->regmap[pipe];
1556 struct drm_display_mode *mode;
1557 int htot;
1558 int hsync;
1559 int vtot;
1560 int vsync;
1561
1562 if (gma_power_begin(dev, false)) {
1563 htot = REG_READ(map->htotal);
1564 hsync = REG_READ(map->hsync);
1565 vtot = REG_READ(map->vtotal);
1566 vsync = REG_READ(map->vsync);
1567 gma_power_end(dev);
1568 } else {
1569 htot = p->htotal;
1570 hsync = p->hsync;
1571 vtot = p->vtotal;
1572 vsync = p->vsync;
1573 }
1574
1575 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1576 if (!mode)
1577 return NULL;
1578
1579 mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
1580 mode->hdisplay = (htot & 0xffff) + 1;
1581 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1582 mode->hsync_start = (hsync & 0xffff) + 1;
1583 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1584 mode->vdisplay = (vtot & 0xffff) + 1;
1585 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1586 mode->vsync_start = (vsync & 0xffff) + 1;
1587 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1588
1589 drm_mode_set_name(mode);
1590 drm_mode_set_crtcinfo(mode, 0);
1591
1592 return mode;
1593 }
1594
1595 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
1596 .dpms = cdv_intel_crtc_dpms,
1597 .mode_fixup = gma_crtc_mode_fixup,
1598 .mode_set = cdv_intel_crtc_mode_set,
1599 .mode_set_base = cdv_intel_pipe_set_base,
1600 .prepare = gma_crtc_prepare,
1601 .commit = gma_crtc_commit,
1602 .disable = gma_crtc_disable,
1603 };
1604
1605 const struct drm_crtc_funcs cdv_intel_crtc_funcs = {
1606 .save = cdv_intel_crtc_save,
1607 .restore = cdv_intel_crtc_restore,
1608 .cursor_set = cdv_intel_crtc_cursor_set,
1609 .cursor_move = cdv_intel_crtc_cursor_move,
1610 .gamma_set = cdv_intel_crtc_gamma_set,
1611 .set_config = cdv_crtc_set_config,
1612 .destroy = gma_crtc_destroy,
1613 };
1614
1615 const struct gma_clock_funcs cdv_clock_funcs = {
1616 .clock = cdv_intel_clock,
1617 .limit = cdv_intel_limit,
1618 .pll_is_valid = gma_pll_is_valid,
1619 };
This page took 0.135534 seconds and 4 git commands to generate.