Merge branch 'for-3.10' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / drivers / gpu / drm / gma500 / cdv_intel_dp.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include "psb_drv.h"
35 #include "psb_intel_drv.h"
36 #include "psb_intel_reg.h"
37 #include <drm/drm_dp_helper.h>
38
39 #define _wait_for(COND, MS, W) ({ \
40 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
41 int ret__ = 0; \
42 while (! (COND)) { \
43 if (time_after(jiffies, timeout__)) { \
44 ret__ = -ETIMEDOUT; \
45 break; \
46 } \
47 if (W && !in_dbg_master()) msleep(W); \
48 } \
49 ret__; \
50 })
51
52 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
53
54 #define DP_LINK_STATUS_SIZE 6
55 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
56
57 #define DP_LINK_CONFIGURATION_SIZE 9
58
59 #define CDV_FAST_LINK_TRAIN 1
60
61 struct cdv_intel_dp {
62 uint32_t output_reg;
63 uint32_t DP;
64 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
65 bool has_audio;
66 int force_audio;
67 uint32_t color_range;
68 uint8_t link_bw;
69 uint8_t lane_count;
70 uint8_t dpcd[4];
71 struct psb_intel_encoder *encoder;
72 struct i2c_adapter adapter;
73 struct i2c_algo_dp_aux_data algo;
74 uint8_t train_set[4];
75 uint8_t link_status[DP_LINK_STATUS_SIZE];
76 int panel_power_up_delay;
77 int panel_power_down_delay;
78 int panel_power_cycle_delay;
79 int backlight_on_delay;
80 int backlight_off_delay;
81 struct drm_display_mode *panel_fixed_mode; /* for eDP */
82 bool panel_on;
83 };
84
85 struct ddi_regoff {
86 uint32_t PreEmph1;
87 uint32_t PreEmph2;
88 uint32_t VSwing1;
89 uint32_t VSwing2;
90 uint32_t VSwing3;
91 uint32_t VSwing4;
92 uint32_t VSwing5;
93 };
94
95 static struct ddi_regoff ddi_DP_train_table[] = {
96 {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
97 .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
98 .VSwing5 = 0x8158,},
99 {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
100 .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
101 .VSwing5 = 0x8258,},
102 };
103
104 static uint32_t dp_vswing_premph_table[] = {
105 0x55338954, 0x4000,
106 0x554d8954, 0x2000,
107 0x55668954, 0,
108 0x559ac0d4, 0x6000,
109 };
110 /**
111 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
112 * @intel_dp: DP struct
113 *
114 * If a CPU or PCH DP output is attached to an eDP panel, this function
115 * will return true, and false otherwise.
116 */
117 static bool is_edp(struct psb_intel_encoder *encoder)
118 {
119 return encoder->type == INTEL_OUTPUT_EDP;
120 }
121
122
123 static void cdv_intel_dp_start_link_train(struct psb_intel_encoder *encoder);
124 static void cdv_intel_dp_complete_link_train(struct psb_intel_encoder *encoder);
125 static void cdv_intel_dp_link_down(struct psb_intel_encoder *encoder);
126
127 static int
128 cdv_intel_dp_max_lane_count(struct psb_intel_encoder *encoder)
129 {
130 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
131 int max_lane_count = 4;
132
133 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
134 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
135 switch (max_lane_count) {
136 case 1: case 2: case 4:
137 break;
138 default:
139 max_lane_count = 4;
140 }
141 }
142 return max_lane_count;
143 }
144
145 static int
146 cdv_intel_dp_max_link_bw(struct psb_intel_encoder *encoder)
147 {
148 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
149 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
150
151 switch (max_link_bw) {
152 case DP_LINK_BW_1_62:
153 case DP_LINK_BW_2_7:
154 break;
155 default:
156 max_link_bw = DP_LINK_BW_1_62;
157 break;
158 }
159 return max_link_bw;
160 }
161
162 static int
163 cdv_intel_dp_link_clock(uint8_t link_bw)
164 {
165 if (link_bw == DP_LINK_BW_2_7)
166 return 270000;
167 else
168 return 162000;
169 }
170
171 static int
172 cdv_intel_dp_link_required(int pixel_clock, int bpp)
173 {
174 return (pixel_clock * bpp + 7) / 8;
175 }
176
177 static int
178 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
179 {
180 return (max_link_clock * max_lanes * 19) / 20;
181 }
182
183 static void cdv_intel_edp_panel_vdd_on(struct psb_intel_encoder *intel_encoder)
184 {
185 struct drm_device *dev = intel_encoder->base.dev;
186 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
187 u32 pp;
188
189 if (intel_dp->panel_on) {
190 DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
191 return;
192 }
193 DRM_DEBUG_KMS("\n");
194
195 pp = REG_READ(PP_CONTROL);
196
197 pp |= EDP_FORCE_VDD;
198 REG_WRITE(PP_CONTROL, pp);
199 REG_READ(PP_CONTROL);
200 msleep(intel_dp->panel_power_up_delay);
201 }
202
203 static void cdv_intel_edp_panel_vdd_off(struct psb_intel_encoder *intel_encoder)
204 {
205 struct drm_device *dev = intel_encoder->base.dev;
206 u32 pp;
207
208 DRM_DEBUG_KMS("\n");
209 pp = REG_READ(PP_CONTROL);
210
211 pp &= ~EDP_FORCE_VDD;
212 REG_WRITE(PP_CONTROL, pp);
213 REG_READ(PP_CONTROL);
214
215 }
216
217 /* Returns true if the panel was already on when called */
218 static bool cdv_intel_edp_panel_on(struct psb_intel_encoder *intel_encoder)
219 {
220 struct drm_device *dev = intel_encoder->base.dev;
221 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
222 u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
223
224 if (intel_dp->panel_on)
225 return true;
226
227 DRM_DEBUG_KMS("\n");
228 pp = REG_READ(PP_CONTROL);
229 pp &= ~PANEL_UNLOCK_MASK;
230
231 pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
232 REG_WRITE(PP_CONTROL, pp);
233 REG_READ(PP_CONTROL);
234
235 if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
236 DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
237 intel_dp->panel_on = false;
238 } else
239 intel_dp->panel_on = true;
240 msleep(intel_dp->panel_power_up_delay);
241
242 return false;
243 }
244
245 static void cdv_intel_edp_panel_off (struct psb_intel_encoder *intel_encoder)
246 {
247 struct drm_device *dev = intel_encoder->base.dev;
248 u32 pp, idle_off_mask = PP_ON ;
249 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
250
251 DRM_DEBUG_KMS("\n");
252
253 pp = REG_READ(PP_CONTROL);
254
255 if ((pp & POWER_TARGET_ON) == 0)
256 return;
257
258 intel_dp->panel_on = false;
259 pp &= ~PANEL_UNLOCK_MASK;
260 /* ILK workaround: disable reset around power sequence */
261
262 pp &= ~POWER_TARGET_ON;
263 pp &= ~EDP_FORCE_VDD;
264 pp &= ~EDP_BLC_ENABLE;
265 REG_WRITE(PP_CONTROL, pp);
266 REG_READ(PP_CONTROL);
267 DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
268
269 if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
270 DRM_DEBUG_KMS("Error in turning off Panel\n");
271 }
272
273 msleep(intel_dp->panel_power_cycle_delay);
274 DRM_DEBUG_KMS("Over\n");
275 }
276
277 static void cdv_intel_edp_backlight_on (struct psb_intel_encoder *intel_encoder)
278 {
279 struct drm_device *dev = intel_encoder->base.dev;
280 u32 pp;
281
282 DRM_DEBUG_KMS("\n");
283 /*
284 * If we enable the backlight right away following a panel power
285 * on, we may see slight flicker as the panel syncs with the eDP
286 * link. So delay a bit to make sure the image is solid before
287 * allowing it to appear.
288 */
289 msleep(300);
290 pp = REG_READ(PP_CONTROL);
291
292 pp |= EDP_BLC_ENABLE;
293 REG_WRITE(PP_CONTROL, pp);
294 gma_backlight_enable(dev);
295 }
296
297 static void cdv_intel_edp_backlight_off (struct psb_intel_encoder *intel_encoder)
298 {
299 struct drm_device *dev = intel_encoder->base.dev;
300 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
301 u32 pp;
302
303 DRM_DEBUG_KMS("\n");
304 gma_backlight_disable(dev);
305 msleep(10);
306 pp = REG_READ(PP_CONTROL);
307
308 pp &= ~EDP_BLC_ENABLE;
309 REG_WRITE(PP_CONTROL, pp);
310 msleep(intel_dp->backlight_off_delay);
311 }
312
313 static int
314 cdv_intel_dp_mode_valid(struct drm_connector *connector,
315 struct drm_display_mode *mode)
316 {
317 struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
318 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
319 int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
320 int max_lanes = cdv_intel_dp_max_lane_count(encoder);
321 struct drm_psb_private *dev_priv = connector->dev->dev_private;
322
323 if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
324 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
325 return MODE_PANEL;
326 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
327 return MODE_PANEL;
328 }
329
330 /* only refuse the mode on non eDP since we have seen some weird eDP panels
331 which are outside spec tolerances but somehow work by magic */
332 if (!is_edp(encoder) &&
333 (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
334 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
335 return MODE_CLOCK_HIGH;
336
337 if (is_edp(encoder)) {
338 if (cdv_intel_dp_link_required(mode->clock, 24)
339 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
340 return MODE_CLOCK_HIGH;
341
342 }
343 if (mode->clock < 10000)
344 return MODE_CLOCK_LOW;
345
346 return MODE_OK;
347 }
348
349 static uint32_t
350 pack_aux(uint8_t *src, int src_bytes)
351 {
352 int i;
353 uint32_t v = 0;
354
355 if (src_bytes > 4)
356 src_bytes = 4;
357 for (i = 0; i < src_bytes; i++)
358 v |= ((uint32_t) src[i]) << ((3-i) * 8);
359 return v;
360 }
361
362 static void
363 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
364 {
365 int i;
366 if (dst_bytes > 4)
367 dst_bytes = 4;
368 for (i = 0; i < dst_bytes; i++)
369 dst[i] = src >> ((3-i) * 8);
370 }
371
372 static int
373 cdv_intel_dp_aux_ch(struct psb_intel_encoder *encoder,
374 uint8_t *send, int send_bytes,
375 uint8_t *recv, int recv_size)
376 {
377 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
378 uint32_t output_reg = intel_dp->output_reg;
379 struct drm_device *dev = encoder->base.dev;
380 uint32_t ch_ctl = output_reg + 0x10;
381 uint32_t ch_data = ch_ctl + 4;
382 int i;
383 int recv_bytes;
384 uint32_t status;
385 uint32_t aux_clock_divider;
386 int try, precharge;
387
388 /* The clock divider is based off the hrawclk,
389 * and would like to run at 2MHz. So, take the
390 * hrawclk value and divide by 2 and use that
391 * On CDV platform it uses 200MHz as hrawclk.
392 *
393 */
394 aux_clock_divider = 200 / 2;
395
396 precharge = 4;
397 if (is_edp(encoder))
398 precharge = 10;
399
400 if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
401 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
402 REG_READ(ch_ctl));
403 return -EBUSY;
404 }
405
406 /* Must try at least 3 times according to DP spec */
407 for (try = 0; try < 5; try++) {
408 /* Load the send data into the aux channel data registers */
409 for (i = 0; i < send_bytes; i += 4)
410 REG_WRITE(ch_data + i,
411 pack_aux(send + i, send_bytes - i));
412
413 /* Send the command and wait for it to complete */
414 REG_WRITE(ch_ctl,
415 DP_AUX_CH_CTL_SEND_BUSY |
416 DP_AUX_CH_CTL_TIME_OUT_400us |
417 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
418 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
419 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
420 DP_AUX_CH_CTL_DONE |
421 DP_AUX_CH_CTL_TIME_OUT_ERROR |
422 DP_AUX_CH_CTL_RECEIVE_ERROR);
423 for (;;) {
424 status = REG_READ(ch_ctl);
425 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
426 break;
427 udelay(100);
428 }
429
430 /* Clear done status and any errors */
431 REG_WRITE(ch_ctl,
432 status |
433 DP_AUX_CH_CTL_DONE |
434 DP_AUX_CH_CTL_TIME_OUT_ERROR |
435 DP_AUX_CH_CTL_RECEIVE_ERROR);
436 if (status & DP_AUX_CH_CTL_DONE)
437 break;
438 }
439
440 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
441 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
442 return -EBUSY;
443 }
444
445 /* Check for timeout or receive error.
446 * Timeouts occur when the sink is not connected
447 */
448 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
449 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
450 return -EIO;
451 }
452
453 /* Timeouts occur when the device isn't connected, so they're
454 * "normal" -- don't fill the kernel log with these */
455 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
456 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
457 return -ETIMEDOUT;
458 }
459
460 /* Unload any bytes sent back from the other side */
461 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
462 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
463 if (recv_bytes > recv_size)
464 recv_bytes = recv_size;
465
466 for (i = 0; i < recv_bytes; i += 4)
467 unpack_aux(REG_READ(ch_data + i),
468 recv + i, recv_bytes - i);
469
470 return recv_bytes;
471 }
472
473 /* Write data to the aux channel in native mode */
474 static int
475 cdv_intel_dp_aux_native_write(struct psb_intel_encoder *encoder,
476 uint16_t address, uint8_t *send, int send_bytes)
477 {
478 int ret;
479 uint8_t msg[20];
480 int msg_bytes;
481 uint8_t ack;
482
483 if (send_bytes > 16)
484 return -1;
485 msg[0] = AUX_NATIVE_WRITE << 4;
486 msg[1] = address >> 8;
487 msg[2] = address & 0xff;
488 msg[3] = send_bytes - 1;
489 memcpy(&msg[4], send, send_bytes);
490 msg_bytes = send_bytes + 4;
491 for (;;) {
492 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
493 if (ret < 0)
494 return ret;
495 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
496 break;
497 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
498 udelay(100);
499 else
500 return -EIO;
501 }
502 return send_bytes;
503 }
504
505 /* Write a single byte to the aux channel in native mode */
506 static int
507 cdv_intel_dp_aux_native_write_1(struct psb_intel_encoder *encoder,
508 uint16_t address, uint8_t byte)
509 {
510 return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
511 }
512
513 /* read bytes from a native aux channel */
514 static int
515 cdv_intel_dp_aux_native_read(struct psb_intel_encoder *encoder,
516 uint16_t address, uint8_t *recv, int recv_bytes)
517 {
518 uint8_t msg[4];
519 int msg_bytes;
520 uint8_t reply[20];
521 int reply_bytes;
522 uint8_t ack;
523 int ret;
524
525 msg[0] = AUX_NATIVE_READ << 4;
526 msg[1] = address >> 8;
527 msg[2] = address & 0xff;
528 msg[3] = recv_bytes - 1;
529
530 msg_bytes = 4;
531 reply_bytes = recv_bytes + 1;
532
533 for (;;) {
534 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
535 reply, reply_bytes);
536 if (ret == 0)
537 return -EPROTO;
538 if (ret < 0)
539 return ret;
540 ack = reply[0];
541 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
542 memcpy(recv, reply + 1, ret - 1);
543 return ret - 1;
544 }
545 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
546 udelay(100);
547 else
548 return -EIO;
549 }
550 }
551
552 static int
553 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
554 uint8_t write_byte, uint8_t *read_byte)
555 {
556 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
557 struct cdv_intel_dp *intel_dp = container_of(adapter,
558 struct cdv_intel_dp,
559 adapter);
560 struct psb_intel_encoder *encoder = intel_dp->encoder;
561 uint16_t address = algo_data->address;
562 uint8_t msg[5];
563 uint8_t reply[2];
564 unsigned retry;
565 int msg_bytes;
566 int reply_bytes;
567 int ret;
568
569 /* Set up the command byte */
570 if (mode & MODE_I2C_READ)
571 msg[0] = AUX_I2C_READ << 4;
572 else
573 msg[0] = AUX_I2C_WRITE << 4;
574
575 if (!(mode & MODE_I2C_STOP))
576 msg[0] |= AUX_I2C_MOT << 4;
577
578 msg[1] = address >> 8;
579 msg[2] = address;
580
581 switch (mode) {
582 case MODE_I2C_WRITE:
583 msg[3] = 0;
584 msg[4] = write_byte;
585 msg_bytes = 5;
586 reply_bytes = 1;
587 break;
588 case MODE_I2C_READ:
589 msg[3] = 0;
590 msg_bytes = 4;
591 reply_bytes = 2;
592 break;
593 default:
594 msg_bytes = 3;
595 reply_bytes = 1;
596 break;
597 }
598
599 for (retry = 0; retry < 5; retry++) {
600 ret = cdv_intel_dp_aux_ch(encoder,
601 msg, msg_bytes,
602 reply, reply_bytes);
603 if (ret < 0) {
604 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
605 return ret;
606 }
607
608 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
609 case AUX_NATIVE_REPLY_ACK:
610 /* I2C-over-AUX Reply field is only valid
611 * when paired with AUX ACK.
612 */
613 break;
614 case AUX_NATIVE_REPLY_NACK:
615 DRM_DEBUG_KMS("aux_ch native nack\n");
616 return -EREMOTEIO;
617 case AUX_NATIVE_REPLY_DEFER:
618 udelay(100);
619 continue;
620 default:
621 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
622 reply[0]);
623 return -EREMOTEIO;
624 }
625
626 switch (reply[0] & AUX_I2C_REPLY_MASK) {
627 case AUX_I2C_REPLY_ACK:
628 if (mode == MODE_I2C_READ) {
629 *read_byte = reply[1];
630 }
631 return reply_bytes - 1;
632 case AUX_I2C_REPLY_NACK:
633 DRM_DEBUG_KMS("aux_i2c nack\n");
634 return -EREMOTEIO;
635 case AUX_I2C_REPLY_DEFER:
636 DRM_DEBUG_KMS("aux_i2c defer\n");
637 udelay(100);
638 break;
639 default:
640 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
641 return -EREMOTEIO;
642 }
643 }
644
645 DRM_ERROR("too many retries, giving up\n");
646 return -EREMOTEIO;
647 }
648
649 static int
650 cdv_intel_dp_i2c_init(struct psb_intel_connector *connector, struct psb_intel_encoder *encoder, const char *name)
651 {
652 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
653 int ret;
654
655 DRM_DEBUG_KMS("i2c_init %s\n", name);
656
657 intel_dp->algo.running = false;
658 intel_dp->algo.address = 0;
659 intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
660
661 memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
662 intel_dp->adapter.owner = THIS_MODULE;
663 intel_dp->adapter.class = I2C_CLASS_DDC;
664 strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
665 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
666 intel_dp->adapter.algo_data = &intel_dp->algo;
667 intel_dp->adapter.dev.parent = &connector->base.kdev;
668
669 if (is_edp(encoder))
670 cdv_intel_edp_panel_vdd_on(encoder);
671 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
672 if (is_edp(encoder))
673 cdv_intel_edp_panel_vdd_off(encoder);
674
675 return ret;
676 }
677
678 void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
679 struct drm_display_mode *adjusted_mode)
680 {
681 adjusted_mode->hdisplay = fixed_mode->hdisplay;
682 adjusted_mode->hsync_start = fixed_mode->hsync_start;
683 adjusted_mode->hsync_end = fixed_mode->hsync_end;
684 adjusted_mode->htotal = fixed_mode->htotal;
685
686 adjusted_mode->vdisplay = fixed_mode->vdisplay;
687 adjusted_mode->vsync_start = fixed_mode->vsync_start;
688 adjusted_mode->vsync_end = fixed_mode->vsync_end;
689 adjusted_mode->vtotal = fixed_mode->vtotal;
690
691 adjusted_mode->clock = fixed_mode->clock;
692
693 drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
694 }
695
696 static bool
697 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
698 struct drm_display_mode *adjusted_mode)
699 {
700 struct drm_psb_private *dev_priv = encoder->dev->dev_private;
701 struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
702 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
703 int lane_count, clock;
704 int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
705 int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
706 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
707 int refclock = mode->clock;
708 int bpp = 24;
709
710 if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
711 cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
712 refclock = intel_dp->panel_fixed_mode->clock;
713 bpp = dev_priv->edp.bpp;
714 }
715
716 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
717 for (clock = max_clock; clock >= 0; clock--) {
718 int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
719
720 if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
721 intel_dp->link_bw = bws[clock];
722 intel_dp->lane_count = lane_count;
723 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
724 DRM_DEBUG_KMS("Display port link bw %02x lane "
725 "count %d clock %d\n",
726 intel_dp->link_bw, intel_dp->lane_count,
727 adjusted_mode->clock);
728 return true;
729 }
730 }
731 }
732 if (is_edp(intel_encoder)) {
733 /* okay we failed just pick the highest */
734 intel_dp->lane_count = max_lane_count;
735 intel_dp->link_bw = bws[max_clock];
736 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
737 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
738 "count %d clock %d\n",
739 intel_dp->link_bw, intel_dp->lane_count,
740 adjusted_mode->clock);
741
742 return true;
743 }
744 return false;
745 }
746
747 struct cdv_intel_dp_m_n {
748 uint32_t tu;
749 uint32_t gmch_m;
750 uint32_t gmch_n;
751 uint32_t link_m;
752 uint32_t link_n;
753 };
754
755 static void
756 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
757 {
758 /*
759 while (*num > 0xffffff || *den > 0xffffff) {
760 *num >>= 1;
761 *den >>= 1;
762 }*/
763 uint64_t value, m;
764 m = *num;
765 value = m * (0x800000);
766 m = do_div(value, *den);
767 *num = value;
768 *den = 0x800000;
769 }
770
771 static void
772 cdv_intel_dp_compute_m_n(int bpp,
773 int nlanes,
774 int pixel_clock,
775 int link_clock,
776 struct cdv_intel_dp_m_n *m_n)
777 {
778 m_n->tu = 64;
779 m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
780 m_n->gmch_n = link_clock * nlanes;
781 cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
782 m_n->link_m = pixel_clock;
783 m_n->link_n = link_clock;
784 cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
785 }
786
787 void
788 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
789 struct drm_display_mode *adjusted_mode)
790 {
791 struct drm_device *dev = crtc->dev;
792 struct drm_psb_private *dev_priv = dev->dev_private;
793 struct drm_mode_config *mode_config = &dev->mode_config;
794 struct drm_encoder *encoder;
795 struct psb_intel_crtc *intel_crtc = to_psb_intel_crtc(crtc);
796 int lane_count = 4, bpp = 24;
797 struct cdv_intel_dp_m_n m_n;
798 int pipe = intel_crtc->pipe;
799
800 /*
801 * Find the lane count in the intel_encoder private
802 */
803 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
804 struct psb_intel_encoder *intel_encoder;
805 struct cdv_intel_dp *intel_dp;
806
807 if (encoder->crtc != crtc)
808 continue;
809
810 intel_encoder = to_psb_intel_encoder(encoder);
811 intel_dp = intel_encoder->dev_priv;
812 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
813 lane_count = intel_dp->lane_count;
814 break;
815 } else if (is_edp(intel_encoder)) {
816 lane_count = intel_dp->lane_count;
817 bpp = dev_priv->edp.bpp;
818 break;
819 }
820 }
821
822 /*
823 * Compute the GMCH and Link ratios. The '3' here is
824 * the number of bytes_per_pixel post-LUT, which we always
825 * set up for 8-bits of R/G/B, or 3 bytes total.
826 */
827 cdv_intel_dp_compute_m_n(bpp, lane_count,
828 mode->clock, adjusted_mode->clock, &m_n);
829
830 {
831 REG_WRITE(PIPE_GMCH_DATA_M(pipe),
832 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
833 m_n.gmch_m);
834 REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
835 REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
836 REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
837 }
838 }
839
840 static void
841 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
842 struct drm_display_mode *adjusted_mode)
843 {
844 struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
845 struct drm_crtc *crtc = encoder->crtc;
846 struct psb_intel_crtc *intel_crtc = to_psb_intel_crtc(crtc);
847 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
848 struct drm_device *dev = encoder->dev;
849
850 intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
851 intel_dp->DP |= intel_dp->color_range;
852
853 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
854 intel_dp->DP |= DP_SYNC_HS_HIGH;
855 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
856 intel_dp->DP |= DP_SYNC_VS_HIGH;
857
858 intel_dp->DP |= DP_LINK_TRAIN_OFF;
859
860 switch (intel_dp->lane_count) {
861 case 1:
862 intel_dp->DP |= DP_PORT_WIDTH_1;
863 break;
864 case 2:
865 intel_dp->DP |= DP_PORT_WIDTH_2;
866 break;
867 case 4:
868 intel_dp->DP |= DP_PORT_WIDTH_4;
869 break;
870 }
871 if (intel_dp->has_audio)
872 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
873
874 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
875 intel_dp->link_configuration[0] = intel_dp->link_bw;
876 intel_dp->link_configuration[1] = intel_dp->lane_count;
877
878 /*
879 * Check for DPCD version > 1.1 and enhanced framing support
880 */
881 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
882 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
883 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
884 intel_dp->DP |= DP_ENHANCED_FRAMING;
885 }
886
887 /* CPT DP's pipe select is decided in TRANS_DP_CTL */
888 if (intel_crtc->pipe == 1)
889 intel_dp->DP |= DP_PIPEB_SELECT;
890
891 REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
892 DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
893 if (is_edp(intel_encoder)) {
894 uint32_t pfit_control;
895 cdv_intel_edp_panel_on(intel_encoder);
896
897 if (mode->hdisplay != adjusted_mode->hdisplay ||
898 mode->vdisplay != adjusted_mode->vdisplay)
899 pfit_control = PFIT_ENABLE;
900 else
901 pfit_control = 0;
902
903 pfit_control |= intel_crtc->pipe << PFIT_PIPE_SHIFT;
904
905 REG_WRITE(PFIT_CONTROL, pfit_control);
906 }
907 }
908
909
910 /* If the sink supports it, try to set the power state appropriately */
911 static void cdv_intel_dp_sink_dpms(struct psb_intel_encoder *encoder, int mode)
912 {
913 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
914 int ret, i;
915
916 /* Should have a valid DPCD by this point */
917 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
918 return;
919
920 if (mode != DRM_MODE_DPMS_ON) {
921 ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
922 DP_SET_POWER_D3);
923 if (ret != 1)
924 DRM_DEBUG_DRIVER("failed to write sink power state\n");
925 } else {
926 /*
927 * When turning on, we need to retry for 1ms to give the sink
928 * time to wake up.
929 */
930 for (i = 0; i < 3; i++) {
931 ret = cdv_intel_dp_aux_native_write_1(encoder,
932 DP_SET_POWER,
933 DP_SET_POWER_D0);
934 if (ret == 1)
935 break;
936 udelay(1000);
937 }
938 }
939 }
940
941 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
942 {
943 struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
944 int edp = is_edp(intel_encoder);
945
946 if (edp) {
947 cdv_intel_edp_backlight_off(intel_encoder);
948 cdv_intel_edp_panel_off(intel_encoder);
949 cdv_intel_edp_panel_vdd_on(intel_encoder);
950 }
951 /* Wake up the sink first */
952 cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
953 cdv_intel_dp_link_down(intel_encoder);
954 if (edp)
955 cdv_intel_edp_panel_vdd_off(intel_encoder);
956 }
957
958 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
959 {
960 struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
961 int edp = is_edp(intel_encoder);
962
963 if (edp)
964 cdv_intel_edp_panel_on(intel_encoder);
965 cdv_intel_dp_start_link_train(intel_encoder);
966 cdv_intel_dp_complete_link_train(intel_encoder);
967 if (edp)
968 cdv_intel_edp_backlight_on(intel_encoder);
969 }
970
971 static void
972 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
973 {
974 struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
975 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
976 struct drm_device *dev = encoder->dev;
977 uint32_t dp_reg = REG_READ(intel_dp->output_reg);
978 int edp = is_edp(intel_encoder);
979
980 if (mode != DRM_MODE_DPMS_ON) {
981 if (edp) {
982 cdv_intel_edp_backlight_off(intel_encoder);
983 cdv_intel_edp_panel_vdd_on(intel_encoder);
984 }
985 cdv_intel_dp_sink_dpms(intel_encoder, mode);
986 cdv_intel_dp_link_down(intel_encoder);
987 if (edp) {
988 cdv_intel_edp_panel_vdd_off(intel_encoder);
989 cdv_intel_edp_panel_off(intel_encoder);
990 }
991 } else {
992 if (edp)
993 cdv_intel_edp_panel_on(intel_encoder);
994 cdv_intel_dp_sink_dpms(intel_encoder, mode);
995 if (!(dp_reg & DP_PORT_EN)) {
996 cdv_intel_dp_start_link_train(intel_encoder);
997 cdv_intel_dp_complete_link_train(intel_encoder);
998 }
999 if (edp)
1000 cdv_intel_edp_backlight_on(intel_encoder);
1001 }
1002 }
1003
1004 /*
1005 * Native read with retry for link status and receiver capability reads for
1006 * cases where the sink may still be asleep.
1007 */
1008 static bool
1009 cdv_intel_dp_aux_native_read_retry(struct psb_intel_encoder *encoder, uint16_t address,
1010 uint8_t *recv, int recv_bytes)
1011 {
1012 int ret, i;
1013
1014 /*
1015 * Sinks are *supposed* to come up within 1ms from an off state,
1016 * but we're also supposed to retry 3 times per the spec.
1017 */
1018 for (i = 0; i < 3; i++) {
1019 ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1020 recv_bytes);
1021 if (ret == recv_bytes)
1022 return true;
1023 udelay(1000);
1024 }
1025
1026 return false;
1027 }
1028
1029 /*
1030 * Fetch AUX CH registers 0x202 - 0x207 which contain
1031 * link status information
1032 */
1033 static bool
1034 cdv_intel_dp_get_link_status(struct psb_intel_encoder *encoder)
1035 {
1036 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1037 return cdv_intel_dp_aux_native_read_retry(encoder,
1038 DP_LANE0_1_STATUS,
1039 intel_dp->link_status,
1040 DP_LINK_STATUS_SIZE);
1041 }
1042
1043 static uint8_t
1044 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1045 int r)
1046 {
1047 return link_status[r - DP_LANE0_1_STATUS];
1048 }
1049
1050 static uint8_t
1051 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1052 int lane)
1053 {
1054 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1055 int s = ((lane & 1) ?
1056 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1057 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1058 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1059
1060 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1061 }
1062
1063 static uint8_t
1064 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1065 int lane)
1066 {
1067 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1068 int s = ((lane & 1) ?
1069 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1070 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1071 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1072
1073 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1074 }
1075
1076
1077 #if 0
1078 static char *voltage_names[] = {
1079 "0.4V", "0.6V", "0.8V", "1.2V"
1080 };
1081 static char *pre_emph_names[] = {
1082 "0dB", "3.5dB", "6dB", "9.5dB"
1083 };
1084 static char *link_train_names[] = {
1085 "pattern 1", "pattern 2", "idle", "off"
1086 };
1087 #endif
1088
1089 #define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200
1090 /*
1091 static uint8_t
1092 cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1093 {
1094 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1095 case DP_TRAIN_VOLTAGE_SWING_400:
1096 return DP_TRAIN_PRE_EMPHASIS_6;
1097 case DP_TRAIN_VOLTAGE_SWING_600:
1098 return DP_TRAIN_PRE_EMPHASIS_6;
1099 case DP_TRAIN_VOLTAGE_SWING_800:
1100 return DP_TRAIN_PRE_EMPHASIS_3_5;
1101 case DP_TRAIN_VOLTAGE_SWING_1200:
1102 default:
1103 return DP_TRAIN_PRE_EMPHASIS_0;
1104 }
1105 }
1106 */
1107 static void
1108 cdv_intel_get_adjust_train(struct psb_intel_encoder *encoder)
1109 {
1110 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1111 uint8_t v = 0;
1112 uint8_t p = 0;
1113 int lane;
1114
1115 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1116 uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1117 uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1118
1119 if (this_v > v)
1120 v = this_v;
1121 if (this_p > p)
1122 p = this_p;
1123 }
1124
1125 if (v >= CDV_DP_VOLTAGE_MAX)
1126 v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1127
1128 if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1129 p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1130
1131 for (lane = 0; lane < 4; lane++)
1132 intel_dp->train_set[lane] = v | p;
1133 }
1134
1135
1136 static uint8_t
1137 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1138 int lane)
1139 {
1140 int i = DP_LANE0_1_STATUS + (lane >> 1);
1141 int s = (lane & 1) * 4;
1142 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1143
1144 return (l >> s) & 0xf;
1145 }
1146
1147 /* Check for clock recovery is done on all channels */
1148 static bool
1149 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1150 {
1151 int lane;
1152 uint8_t lane_status;
1153
1154 for (lane = 0; lane < lane_count; lane++) {
1155 lane_status = cdv_intel_get_lane_status(link_status, lane);
1156 if ((lane_status & DP_LANE_CR_DONE) == 0)
1157 return false;
1158 }
1159 return true;
1160 }
1161
1162 /* Check to see if channel eq is done on all channels */
1163 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1164 DP_LANE_CHANNEL_EQ_DONE|\
1165 DP_LANE_SYMBOL_LOCKED)
1166 static bool
1167 cdv_intel_channel_eq_ok(struct psb_intel_encoder *encoder)
1168 {
1169 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1170 uint8_t lane_align;
1171 uint8_t lane_status;
1172 int lane;
1173
1174 lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1175 DP_LANE_ALIGN_STATUS_UPDATED);
1176 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1177 return false;
1178 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1179 lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1180 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1181 return false;
1182 }
1183 return true;
1184 }
1185
1186 static bool
1187 cdv_intel_dp_set_link_train(struct psb_intel_encoder *encoder,
1188 uint32_t dp_reg_value,
1189 uint8_t dp_train_pat)
1190 {
1191
1192 struct drm_device *dev = encoder->base.dev;
1193 int ret;
1194 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1195
1196 REG_WRITE(intel_dp->output_reg, dp_reg_value);
1197 REG_READ(intel_dp->output_reg);
1198
1199 ret = cdv_intel_dp_aux_native_write_1(encoder,
1200 DP_TRAINING_PATTERN_SET,
1201 dp_train_pat);
1202
1203 if (ret != 1) {
1204 DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1205 dp_train_pat);
1206 return false;
1207 }
1208
1209 return true;
1210 }
1211
1212
1213 static bool
1214 cdv_intel_dplink_set_level(struct psb_intel_encoder *encoder,
1215 uint8_t dp_train_pat)
1216 {
1217
1218 int ret;
1219 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1220
1221 ret = cdv_intel_dp_aux_native_write(encoder,
1222 DP_TRAINING_LANE0_SET,
1223 intel_dp->train_set,
1224 intel_dp->lane_count);
1225
1226 if (ret != intel_dp->lane_count) {
1227 DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1228 intel_dp->train_set[0], intel_dp->lane_count);
1229 return false;
1230 }
1231 return true;
1232 }
1233
1234 static void
1235 cdv_intel_dp_set_vswing_premph(struct psb_intel_encoder *encoder, uint8_t signal_level)
1236 {
1237 struct drm_device *dev = encoder->base.dev;
1238 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1239 struct ddi_regoff *ddi_reg;
1240 int vswing, premph, index;
1241
1242 if (intel_dp->output_reg == DP_B)
1243 ddi_reg = &ddi_DP_train_table[0];
1244 else
1245 ddi_reg = &ddi_DP_train_table[1];
1246
1247 vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1248 premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1249 DP_TRAIN_PRE_EMPHASIS_SHIFT;
1250
1251 if (vswing + premph > 3)
1252 return;
1253 #ifdef CDV_FAST_LINK_TRAIN
1254 return;
1255 #endif
1256 DRM_DEBUG_KMS("Test2\n");
1257 //return ;
1258 cdv_sb_reset(dev);
1259 /* ;Swing voltage programming
1260 ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1261 cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1262
1263 /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1264 cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1265
1266 /* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1267 * The VSwing_PreEmph table is also considered based on the vswing/premp
1268 */
1269 index = (vswing + premph) * 2;
1270 if (premph == 1 && vswing == 1) {
1271 cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1272 } else
1273 cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1274
1275 /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1276 if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_1200)
1277 cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1278 else
1279 cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1280
1281 /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1282 /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1283
1284 /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1285 cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1286
1287 /* ;Pre emphasis programming
1288 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1289 */
1290 cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1291
1292 /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1293 index = 2 * premph + 1;
1294 cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1295 return;
1296 }
1297
1298
1299 /* Enable corresponding port and start training pattern 1 */
1300 static void
1301 cdv_intel_dp_start_link_train(struct psb_intel_encoder *encoder)
1302 {
1303 struct drm_device *dev = encoder->base.dev;
1304 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1305 int i;
1306 uint8_t voltage;
1307 bool clock_recovery = false;
1308 int tries;
1309 u32 reg;
1310 uint32_t DP = intel_dp->DP;
1311
1312 DP |= DP_PORT_EN;
1313 DP &= ~DP_LINK_TRAIN_MASK;
1314
1315 reg = DP;
1316 reg |= DP_LINK_TRAIN_PAT_1;
1317 /* Enable output, wait for it to become active */
1318 REG_WRITE(intel_dp->output_reg, reg);
1319 REG_READ(intel_dp->output_reg);
1320 psb_intel_wait_for_vblank(dev);
1321
1322 DRM_DEBUG_KMS("Link config\n");
1323 /* Write the link configuration data */
1324 cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1325 intel_dp->link_configuration,
1326 2);
1327
1328 memset(intel_dp->train_set, 0, 4);
1329 voltage = 0;
1330 tries = 0;
1331 clock_recovery = false;
1332
1333 DRM_DEBUG_KMS("Start train\n");
1334 reg = DP | DP_LINK_TRAIN_PAT_1;
1335
1336
1337 for (;;) {
1338 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1339 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1340 intel_dp->train_set[0],
1341 intel_dp->link_configuration[0],
1342 intel_dp->link_configuration[1]);
1343
1344 if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1345 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1346 }
1347 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1348 /* Set training pattern 1 */
1349
1350 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1351
1352 udelay(200);
1353 if (!cdv_intel_dp_get_link_status(encoder))
1354 break;
1355
1356 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1357 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1358 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1359
1360 if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1361 DRM_DEBUG_KMS("PT1 train is done\n");
1362 clock_recovery = true;
1363 break;
1364 }
1365
1366 /* Check to see if we've tried the max voltage */
1367 for (i = 0; i < intel_dp->lane_count; i++)
1368 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1369 break;
1370 if (i == intel_dp->lane_count)
1371 break;
1372
1373 /* Check to see if we've tried the same voltage 5 times */
1374 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1375 ++tries;
1376 if (tries == 5)
1377 break;
1378 } else
1379 tries = 0;
1380 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1381
1382 /* Compute new intel_dp->train_set as requested by target */
1383 cdv_intel_get_adjust_train(encoder);
1384
1385 }
1386
1387 if (!clock_recovery) {
1388 DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1389 }
1390
1391 intel_dp->DP = DP;
1392 }
1393
1394 static void
1395 cdv_intel_dp_complete_link_train(struct psb_intel_encoder *encoder)
1396 {
1397 struct drm_device *dev = encoder->base.dev;
1398 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1399 bool channel_eq = false;
1400 int tries, cr_tries;
1401 u32 reg;
1402 uint32_t DP = intel_dp->DP;
1403
1404 /* channel equalization */
1405 tries = 0;
1406 cr_tries = 0;
1407 channel_eq = false;
1408
1409 DRM_DEBUG_KMS("\n");
1410 reg = DP | DP_LINK_TRAIN_PAT_2;
1411
1412 for (;;) {
1413
1414 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1415 intel_dp->train_set[0],
1416 intel_dp->link_configuration[0],
1417 intel_dp->link_configuration[1]);
1418 /* channel eq pattern */
1419
1420 if (!cdv_intel_dp_set_link_train(encoder, reg,
1421 DP_TRAINING_PATTERN_2)) {
1422 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1423 }
1424 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1425
1426 if (cr_tries > 5) {
1427 DRM_ERROR("failed to train DP, aborting\n");
1428 cdv_intel_dp_link_down(encoder);
1429 break;
1430 }
1431
1432 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1433
1434 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1435
1436 udelay(1000);
1437 if (!cdv_intel_dp_get_link_status(encoder))
1438 break;
1439
1440 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1441 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1442 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1443
1444 /* Make sure clock is still ok */
1445 if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1446 cdv_intel_dp_start_link_train(encoder);
1447 cr_tries++;
1448 continue;
1449 }
1450
1451 if (cdv_intel_channel_eq_ok(encoder)) {
1452 DRM_DEBUG_KMS("PT2 train is done\n");
1453 channel_eq = true;
1454 break;
1455 }
1456
1457 /* Try 5 times, then try clock recovery if that fails */
1458 if (tries > 5) {
1459 cdv_intel_dp_link_down(encoder);
1460 cdv_intel_dp_start_link_train(encoder);
1461 tries = 0;
1462 cr_tries++;
1463 continue;
1464 }
1465
1466 /* Compute new intel_dp->train_set as requested by target */
1467 cdv_intel_get_adjust_train(encoder);
1468 ++tries;
1469
1470 }
1471
1472 reg = DP | DP_LINK_TRAIN_OFF;
1473
1474 REG_WRITE(intel_dp->output_reg, reg);
1475 REG_READ(intel_dp->output_reg);
1476 cdv_intel_dp_aux_native_write_1(encoder,
1477 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1478 }
1479
1480 static void
1481 cdv_intel_dp_link_down(struct psb_intel_encoder *encoder)
1482 {
1483 struct drm_device *dev = encoder->base.dev;
1484 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1485 uint32_t DP = intel_dp->DP;
1486
1487 if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1488 return;
1489
1490 DRM_DEBUG_KMS("\n");
1491
1492
1493 {
1494 DP &= ~DP_LINK_TRAIN_MASK;
1495 REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1496 }
1497 REG_READ(intel_dp->output_reg);
1498
1499 msleep(17);
1500
1501 REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1502 REG_READ(intel_dp->output_reg);
1503 }
1504
1505 static enum drm_connector_status
1506 cdv_dp_detect(struct psb_intel_encoder *encoder)
1507 {
1508 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1509 enum drm_connector_status status;
1510
1511 status = connector_status_disconnected;
1512 if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1513 sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1514 {
1515 if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1516 status = connector_status_connected;
1517 }
1518 if (status == connector_status_connected)
1519 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1520 intel_dp->dpcd[0], intel_dp->dpcd[1],
1521 intel_dp->dpcd[2], intel_dp->dpcd[3]);
1522 return status;
1523 }
1524
1525 /**
1526 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1527 *
1528 * \return true if DP port is connected.
1529 * \return false if DP port is disconnected.
1530 */
1531 static enum drm_connector_status
1532 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1533 {
1534 struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
1535 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1536 enum drm_connector_status status;
1537 struct edid *edid = NULL;
1538 int edp = is_edp(encoder);
1539
1540 intel_dp->has_audio = false;
1541
1542 if (edp)
1543 cdv_intel_edp_panel_vdd_on(encoder);
1544 status = cdv_dp_detect(encoder);
1545 if (status != connector_status_connected) {
1546 if (edp)
1547 cdv_intel_edp_panel_vdd_off(encoder);
1548 return status;
1549 }
1550
1551 if (intel_dp->force_audio) {
1552 intel_dp->has_audio = intel_dp->force_audio > 0;
1553 } else {
1554 edid = drm_get_edid(connector, &intel_dp->adapter);
1555 if (edid) {
1556 intel_dp->has_audio = drm_detect_monitor_audio(edid);
1557 kfree(edid);
1558 }
1559 }
1560 if (edp)
1561 cdv_intel_edp_panel_vdd_off(encoder);
1562
1563 return connector_status_connected;
1564 }
1565
1566 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1567 {
1568 struct psb_intel_encoder *intel_encoder = psb_intel_attached_encoder(connector);
1569 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1570 struct edid *edid = NULL;
1571 int ret = 0;
1572 int edp = is_edp(intel_encoder);
1573
1574
1575 edid = drm_get_edid(connector, &intel_dp->adapter);
1576 if (edid) {
1577 drm_mode_connector_update_edid_property(connector, edid);
1578 ret = drm_add_edid_modes(connector, edid);
1579 kfree(edid);
1580 }
1581
1582 if (is_edp(intel_encoder)) {
1583 struct drm_device *dev = connector->dev;
1584 struct drm_psb_private *dev_priv = dev->dev_private;
1585
1586 cdv_intel_edp_panel_vdd_off(intel_encoder);
1587 if (ret) {
1588 if (edp && !intel_dp->panel_fixed_mode) {
1589 struct drm_display_mode *newmode;
1590 list_for_each_entry(newmode, &connector->probed_modes,
1591 head) {
1592 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1593 intel_dp->panel_fixed_mode =
1594 drm_mode_duplicate(dev, newmode);
1595 break;
1596 }
1597 }
1598 }
1599
1600 return ret;
1601 }
1602 if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1603 intel_dp->panel_fixed_mode =
1604 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1605 if (intel_dp->panel_fixed_mode) {
1606 intel_dp->panel_fixed_mode->type |=
1607 DRM_MODE_TYPE_PREFERRED;
1608 }
1609 }
1610 if (intel_dp->panel_fixed_mode != NULL) {
1611 struct drm_display_mode *mode;
1612 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1613 drm_mode_probed_add(connector, mode);
1614 return 1;
1615 }
1616 }
1617
1618 return ret;
1619 }
1620
1621 static bool
1622 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1623 {
1624 struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
1625 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1626 struct edid *edid;
1627 bool has_audio = false;
1628 int edp = is_edp(encoder);
1629
1630 if (edp)
1631 cdv_intel_edp_panel_vdd_on(encoder);
1632
1633 edid = drm_get_edid(connector, &intel_dp->adapter);
1634 if (edid) {
1635 has_audio = drm_detect_monitor_audio(edid);
1636 kfree(edid);
1637 }
1638 if (edp)
1639 cdv_intel_edp_panel_vdd_off(encoder);
1640
1641 return has_audio;
1642 }
1643
1644 static int
1645 cdv_intel_dp_set_property(struct drm_connector *connector,
1646 struct drm_property *property,
1647 uint64_t val)
1648 {
1649 struct drm_psb_private *dev_priv = connector->dev->dev_private;
1650 struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
1651 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1652 int ret;
1653
1654 ret = drm_object_property_set_value(&connector->base, property, val);
1655 if (ret)
1656 return ret;
1657
1658 if (property == dev_priv->force_audio_property) {
1659 int i = val;
1660 bool has_audio;
1661
1662 if (i == intel_dp->force_audio)
1663 return 0;
1664
1665 intel_dp->force_audio = i;
1666
1667 if (i == 0)
1668 has_audio = cdv_intel_dp_detect_audio(connector);
1669 else
1670 has_audio = i > 0;
1671
1672 if (has_audio == intel_dp->has_audio)
1673 return 0;
1674
1675 intel_dp->has_audio = has_audio;
1676 goto done;
1677 }
1678
1679 if (property == dev_priv->broadcast_rgb_property) {
1680 if (val == !!intel_dp->color_range)
1681 return 0;
1682
1683 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1684 goto done;
1685 }
1686
1687 return -EINVAL;
1688
1689 done:
1690 if (encoder->base.crtc) {
1691 struct drm_crtc *crtc = encoder->base.crtc;
1692 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1693 crtc->x, crtc->y,
1694 crtc->fb);
1695 }
1696
1697 return 0;
1698 }
1699
1700 static void
1701 cdv_intel_dp_destroy(struct drm_connector *connector)
1702 {
1703 struct psb_intel_encoder *psb_intel_encoder =
1704 psb_intel_attached_encoder(connector);
1705 struct cdv_intel_dp *intel_dp = psb_intel_encoder->dev_priv;
1706
1707 if (is_edp(psb_intel_encoder)) {
1708 /* cdv_intel_panel_destroy_backlight(connector->dev); */
1709 if (intel_dp->panel_fixed_mode) {
1710 kfree(intel_dp->panel_fixed_mode);
1711 intel_dp->panel_fixed_mode = NULL;
1712 }
1713 }
1714 i2c_del_adapter(&intel_dp->adapter);
1715 drm_sysfs_connector_remove(connector);
1716 drm_connector_cleanup(connector);
1717 kfree(connector);
1718 }
1719
1720 static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
1721 {
1722 drm_encoder_cleanup(encoder);
1723 }
1724
1725 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1726 .dpms = cdv_intel_dp_dpms,
1727 .mode_fixup = cdv_intel_dp_mode_fixup,
1728 .prepare = cdv_intel_dp_prepare,
1729 .mode_set = cdv_intel_dp_mode_set,
1730 .commit = cdv_intel_dp_commit,
1731 };
1732
1733 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1734 .dpms = drm_helper_connector_dpms,
1735 .detect = cdv_intel_dp_detect,
1736 .fill_modes = drm_helper_probe_single_connector_modes,
1737 .set_property = cdv_intel_dp_set_property,
1738 .destroy = cdv_intel_dp_destroy,
1739 };
1740
1741 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1742 .get_modes = cdv_intel_dp_get_modes,
1743 .mode_valid = cdv_intel_dp_mode_valid,
1744 .best_encoder = psb_intel_best_encoder,
1745 };
1746
1747 static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
1748 .destroy = cdv_intel_dp_encoder_destroy,
1749 };
1750
1751
1752 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1753 {
1754 cdv_intel_attach_force_audio_property(connector);
1755 cdv_intel_attach_broadcast_rgb_property(connector);
1756 }
1757
1758 /* check the VBT to see whether the eDP is on DP-D port */
1759 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1760 {
1761 struct drm_psb_private *dev_priv = dev->dev_private;
1762 struct child_device_config *p_child;
1763 int i;
1764
1765 if (!dev_priv->child_dev_num)
1766 return false;
1767
1768 for (i = 0; i < dev_priv->child_dev_num; i++) {
1769 p_child = dev_priv->child_dev + i;
1770
1771 if (p_child->dvo_port == PORT_IDPC &&
1772 p_child->device_type == DEVICE_TYPE_eDP)
1773 return true;
1774 }
1775 return false;
1776 }
1777
1778 /* Cedarview display clock gating
1779
1780 We need this disable dot get correct behaviour while enabling
1781 DP/eDP. TODO - investigate if we can turn it back to normality
1782 after enabling */
1783 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1784 {
1785 u32 reg_value;
1786 reg_value = REG_READ(DSPCLK_GATE_D);
1787
1788 reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1789 DPUNIT_PIPEA_GATE_DISABLE |
1790 DPCUNIT_CLOCK_GATE_DISABLE |
1791 DPLSUNIT_CLOCK_GATE_DISABLE |
1792 DPOUNIT_CLOCK_GATE_DISABLE |
1793 DPIOUNIT_CLOCK_GATE_DISABLE);
1794
1795 REG_WRITE(DSPCLK_GATE_D, reg_value);
1796
1797 udelay(500);
1798 }
1799
1800 void
1801 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1802 {
1803 struct psb_intel_encoder *psb_intel_encoder;
1804 struct psb_intel_connector *psb_intel_connector;
1805 struct drm_connector *connector;
1806 struct drm_encoder *encoder;
1807 struct cdv_intel_dp *intel_dp;
1808 const char *name = NULL;
1809 int type = DRM_MODE_CONNECTOR_DisplayPort;
1810
1811 psb_intel_encoder = kzalloc(sizeof(struct psb_intel_encoder), GFP_KERNEL);
1812 if (!psb_intel_encoder)
1813 return;
1814 psb_intel_connector = kzalloc(sizeof(struct psb_intel_connector), GFP_KERNEL);
1815 if (!psb_intel_connector)
1816 goto err_connector;
1817 intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1818 if (!intel_dp)
1819 goto err_priv;
1820
1821 if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1822 type = DRM_MODE_CONNECTOR_eDP;
1823
1824 connector = &psb_intel_connector->base;
1825 encoder = &psb_intel_encoder->base;
1826
1827 drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1828 drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS);
1829
1830 psb_intel_connector_attach_encoder(psb_intel_connector, psb_intel_encoder);
1831
1832 if (type == DRM_MODE_CONNECTOR_DisplayPort)
1833 psb_intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1834 else
1835 psb_intel_encoder->type = INTEL_OUTPUT_EDP;
1836
1837
1838 psb_intel_encoder->dev_priv=intel_dp;
1839 intel_dp->encoder = psb_intel_encoder;
1840 intel_dp->output_reg = output_reg;
1841
1842 drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1843 drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1844
1845 connector->polled = DRM_CONNECTOR_POLL_HPD;
1846 connector->interlace_allowed = false;
1847 connector->doublescan_allowed = false;
1848
1849 drm_sysfs_connector_add(connector);
1850
1851 /* Set up the DDC bus. */
1852 switch (output_reg) {
1853 case DP_B:
1854 name = "DPDDC-B";
1855 psb_intel_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
1856 break;
1857 case DP_C:
1858 name = "DPDDC-C";
1859 psb_intel_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
1860 break;
1861 }
1862
1863 cdv_disable_intel_clock_gating(dev);
1864
1865 cdv_intel_dp_i2c_init(psb_intel_connector, psb_intel_encoder, name);
1866 /* FIXME:fail check */
1867 cdv_intel_dp_add_properties(connector);
1868
1869 if (is_edp(psb_intel_encoder)) {
1870 int ret;
1871 struct edp_power_seq cur;
1872 u32 pp_on, pp_off, pp_div;
1873 u32 pwm_ctrl;
1874
1875 pp_on = REG_READ(PP_CONTROL);
1876 pp_on &= ~PANEL_UNLOCK_MASK;
1877 pp_on |= PANEL_UNLOCK_REGS;
1878
1879 REG_WRITE(PP_CONTROL, pp_on);
1880
1881 pwm_ctrl = REG_READ(BLC_PWM_CTL2);
1882 pwm_ctrl |= PWM_PIPE_B;
1883 REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
1884
1885 pp_on = REG_READ(PP_ON_DELAYS);
1886 pp_off = REG_READ(PP_OFF_DELAYS);
1887 pp_div = REG_READ(PP_DIVISOR);
1888
1889 /* Pull timing values out of registers */
1890 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
1891 PANEL_POWER_UP_DELAY_SHIFT;
1892
1893 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
1894 PANEL_LIGHT_ON_DELAY_SHIFT;
1895
1896 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
1897 PANEL_LIGHT_OFF_DELAY_SHIFT;
1898
1899 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
1900 PANEL_POWER_DOWN_DELAY_SHIFT;
1901
1902 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
1903 PANEL_POWER_CYCLE_DELAY_SHIFT);
1904
1905 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
1906 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
1907
1908
1909 intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
1910 intel_dp->backlight_on_delay = cur.t8 / 10;
1911 intel_dp->backlight_off_delay = cur.t9 / 10;
1912 intel_dp->panel_power_down_delay = cur.t10 / 10;
1913 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
1914
1915 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
1916 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
1917 intel_dp->panel_power_cycle_delay);
1918
1919 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
1920 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
1921
1922
1923 cdv_intel_edp_panel_vdd_on(psb_intel_encoder);
1924 ret = cdv_intel_dp_aux_native_read(psb_intel_encoder, DP_DPCD_REV,
1925 intel_dp->dpcd,
1926 sizeof(intel_dp->dpcd));
1927 cdv_intel_edp_panel_vdd_off(psb_intel_encoder);
1928 if (ret == 0) {
1929 /* if this fails, presume the device is a ghost */
1930 DRM_INFO("failed to retrieve link info, disabling eDP\n");
1931 cdv_intel_dp_encoder_destroy(encoder);
1932 cdv_intel_dp_destroy(connector);
1933 goto err_priv;
1934 } else {
1935 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1936 intel_dp->dpcd[0], intel_dp->dpcd[1],
1937 intel_dp->dpcd[2], intel_dp->dpcd[3]);
1938
1939 }
1940 /* The CDV reference driver moves pnale backlight setup into the displays that
1941 have a backlight: this is a good idea and one we should probably adopt, however
1942 we need to migrate all the drivers before we can do that */
1943 /*cdv_intel_panel_setup_backlight(dev); */
1944 }
1945 return;
1946
1947 err_priv:
1948 kfree(psb_intel_connector);
1949 err_connector:
1950 kfree(psb_intel_encoder);
1951 }
This page took 0.075104 seconds and 5 git commands to generate.