drm: add register and unregister functions for connectors
[deliverable/linux.git] / drivers / gpu / drm / gma500 / cdv_intel_dp.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include "psb_drv.h"
35 #include "psb_intel_drv.h"
36 #include "psb_intel_reg.h"
37 #include "gma_display.h"
38 #include <drm/drm_dp_helper.h>
39
40 #define _wait_for(COND, MS, W) ({ \
41 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
42 int ret__ = 0; \
43 while (! (COND)) { \
44 if (time_after(jiffies, timeout__)) { \
45 ret__ = -ETIMEDOUT; \
46 break; \
47 } \
48 if (W && !in_dbg_master()) msleep(W); \
49 } \
50 ret__; \
51 })
52
53 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
54
55 #define DP_LINK_STATUS_SIZE 6
56 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
57
58 #define DP_LINK_CONFIGURATION_SIZE 9
59
60 #define CDV_FAST_LINK_TRAIN 1
61
62 struct cdv_intel_dp {
63 uint32_t output_reg;
64 uint32_t DP;
65 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
66 bool has_audio;
67 int force_audio;
68 uint32_t color_range;
69 uint8_t link_bw;
70 uint8_t lane_count;
71 uint8_t dpcd[4];
72 struct gma_encoder *encoder;
73 struct i2c_adapter adapter;
74 struct i2c_algo_dp_aux_data algo;
75 uint8_t train_set[4];
76 uint8_t link_status[DP_LINK_STATUS_SIZE];
77 int panel_power_up_delay;
78 int panel_power_down_delay;
79 int panel_power_cycle_delay;
80 int backlight_on_delay;
81 int backlight_off_delay;
82 struct drm_display_mode *panel_fixed_mode; /* for eDP */
83 bool panel_on;
84 };
85
86 struct ddi_regoff {
87 uint32_t PreEmph1;
88 uint32_t PreEmph2;
89 uint32_t VSwing1;
90 uint32_t VSwing2;
91 uint32_t VSwing3;
92 uint32_t VSwing4;
93 uint32_t VSwing5;
94 };
95
96 static struct ddi_regoff ddi_DP_train_table[] = {
97 {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
98 .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
99 .VSwing5 = 0x8158,},
100 {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
101 .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
102 .VSwing5 = 0x8258,},
103 };
104
105 static uint32_t dp_vswing_premph_table[] = {
106 0x55338954, 0x4000,
107 0x554d8954, 0x2000,
108 0x55668954, 0,
109 0x559ac0d4, 0x6000,
110 };
111 /**
112 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
113 * @intel_dp: DP struct
114 *
115 * If a CPU or PCH DP output is attached to an eDP panel, this function
116 * will return true, and false otherwise.
117 */
118 static bool is_edp(struct gma_encoder *encoder)
119 {
120 return encoder->type == INTEL_OUTPUT_EDP;
121 }
122
123
124 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
125 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
126 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
127
128 static int
129 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
130 {
131 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
132 int max_lane_count = 4;
133
134 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
135 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
136 switch (max_lane_count) {
137 case 1: case 2: case 4:
138 break;
139 default:
140 max_lane_count = 4;
141 }
142 }
143 return max_lane_count;
144 }
145
146 static int
147 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
148 {
149 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
150 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
151
152 switch (max_link_bw) {
153 case DP_LINK_BW_1_62:
154 case DP_LINK_BW_2_7:
155 break;
156 default:
157 max_link_bw = DP_LINK_BW_1_62;
158 break;
159 }
160 return max_link_bw;
161 }
162
163 static int
164 cdv_intel_dp_link_clock(uint8_t link_bw)
165 {
166 if (link_bw == DP_LINK_BW_2_7)
167 return 270000;
168 else
169 return 162000;
170 }
171
172 static int
173 cdv_intel_dp_link_required(int pixel_clock, int bpp)
174 {
175 return (pixel_clock * bpp + 7) / 8;
176 }
177
178 static int
179 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
180 {
181 return (max_link_clock * max_lanes * 19) / 20;
182 }
183
184 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
185 {
186 struct drm_device *dev = intel_encoder->base.dev;
187 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
188 u32 pp;
189
190 if (intel_dp->panel_on) {
191 DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
192 return;
193 }
194 DRM_DEBUG_KMS("\n");
195
196 pp = REG_READ(PP_CONTROL);
197
198 pp |= EDP_FORCE_VDD;
199 REG_WRITE(PP_CONTROL, pp);
200 REG_READ(PP_CONTROL);
201 msleep(intel_dp->panel_power_up_delay);
202 }
203
204 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
205 {
206 struct drm_device *dev = intel_encoder->base.dev;
207 u32 pp;
208
209 DRM_DEBUG_KMS("\n");
210 pp = REG_READ(PP_CONTROL);
211
212 pp &= ~EDP_FORCE_VDD;
213 REG_WRITE(PP_CONTROL, pp);
214 REG_READ(PP_CONTROL);
215
216 }
217
218 /* Returns true if the panel was already on when called */
219 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
220 {
221 struct drm_device *dev = intel_encoder->base.dev;
222 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
223 u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
224
225 if (intel_dp->panel_on)
226 return true;
227
228 DRM_DEBUG_KMS("\n");
229 pp = REG_READ(PP_CONTROL);
230 pp &= ~PANEL_UNLOCK_MASK;
231
232 pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
233 REG_WRITE(PP_CONTROL, pp);
234 REG_READ(PP_CONTROL);
235
236 if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
237 DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
238 intel_dp->panel_on = false;
239 } else
240 intel_dp->panel_on = true;
241 msleep(intel_dp->panel_power_up_delay);
242
243 return false;
244 }
245
246 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
247 {
248 struct drm_device *dev = intel_encoder->base.dev;
249 u32 pp, idle_off_mask = PP_ON ;
250 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
251
252 DRM_DEBUG_KMS("\n");
253
254 pp = REG_READ(PP_CONTROL);
255
256 if ((pp & POWER_TARGET_ON) == 0)
257 return;
258
259 intel_dp->panel_on = false;
260 pp &= ~PANEL_UNLOCK_MASK;
261 /* ILK workaround: disable reset around power sequence */
262
263 pp &= ~POWER_TARGET_ON;
264 pp &= ~EDP_FORCE_VDD;
265 pp &= ~EDP_BLC_ENABLE;
266 REG_WRITE(PP_CONTROL, pp);
267 REG_READ(PP_CONTROL);
268 DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
269
270 if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
271 DRM_DEBUG_KMS("Error in turning off Panel\n");
272 }
273
274 msleep(intel_dp->panel_power_cycle_delay);
275 DRM_DEBUG_KMS("Over\n");
276 }
277
278 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
279 {
280 struct drm_device *dev = intel_encoder->base.dev;
281 u32 pp;
282
283 DRM_DEBUG_KMS("\n");
284 /*
285 * If we enable the backlight right away following a panel power
286 * on, we may see slight flicker as the panel syncs with the eDP
287 * link. So delay a bit to make sure the image is solid before
288 * allowing it to appear.
289 */
290 msleep(300);
291 pp = REG_READ(PP_CONTROL);
292
293 pp |= EDP_BLC_ENABLE;
294 REG_WRITE(PP_CONTROL, pp);
295 gma_backlight_enable(dev);
296 }
297
298 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
299 {
300 struct drm_device *dev = intel_encoder->base.dev;
301 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
302 u32 pp;
303
304 DRM_DEBUG_KMS("\n");
305 gma_backlight_disable(dev);
306 msleep(10);
307 pp = REG_READ(PP_CONTROL);
308
309 pp &= ~EDP_BLC_ENABLE;
310 REG_WRITE(PP_CONTROL, pp);
311 msleep(intel_dp->backlight_off_delay);
312 }
313
314 static int
315 cdv_intel_dp_mode_valid(struct drm_connector *connector,
316 struct drm_display_mode *mode)
317 {
318 struct gma_encoder *encoder = gma_attached_encoder(connector);
319 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
320 int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
321 int max_lanes = cdv_intel_dp_max_lane_count(encoder);
322 struct drm_psb_private *dev_priv = connector->dev->dev_private;
323
324 if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
325 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
326 return MODE_PANEL;
327 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
328 return MODE_PANEL;
329 }
330
331 /* only refuse the mode on non eDP since we have seen some weird eDP panels
332 which are outside spec tolerances but somehow work by magic */
333 if (!is_edp(encoder) &&
334 (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
335 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
336 return MODE_CLOCK_HIGH;
337
338 if (is_edp(encoder)) {
339 if (cdv_intel_dp_link_required(mode->clock, 24)
340 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
341 return MODE_CLOCK_HIGH;
342
343 }
344 if (mode->clock < 10000)
345 return MODE_CLOCK_LOW;
346
347 return MODE_OK;
348 }
349
350 static uint32_t
351 pack_aux(uint8_t *src, int src_bytes)
352 {
353 int i;
354 uint32_t v = 0;
355
356 if (src_bytes > 4)
357 src_bytes = 4;
358 for (i = 0; i < src_bytes; i++)
359 v |= ((uint32_t) src[i]) << ((3-i) * 8);
360 return v;
361 }
362
363 static void
364 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
365 {
366 int i;
367 if (dst_bytes > 4)
368 dst_bytes = 4;
369 for (i = 0; i < dst_bytes; i++)
370 dst[i] = src >> ((3-i) * 8);
371 }
372
373 static int
374 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
375 uint8_t *send, int send_bytes,
376 uint8_t *recv, int recv_size)
377 {
378 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
379 uint32_t output_reg = intel_dp->output_reg;
380 struct drm_device *dev = encoder->base.dev;
381 uint32_t ch_ctl = output_reg + 0x10;
382 uint32_t ch_data = ch_ctl + 4;
383 int i;
384 int recv_bytes;
385 uint32_t status;
386 uint32_t aux_clock_divider;
387 int try, precharge;
388
389 /* The clock divider is based off the hrawclk,
390 * and would like to run at 2MHz. So, take the
391 * hrawclk value and divide by 2 and use that
392 * On CDV platform it uses 200MHz as hrawclk.
393 *
394 */
395 aux_clock_divider = 200 / 2;
396
397 precharge = 4;
398 if (is_edp(encoder))
399 precharge = 10;
400
401 if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
402 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
403 REG_READ(ch_ctl));
404 return -EBUSY;
405 }
406
407 /* Must try at least 3 times according to DP spec */
408 for (try = 0; try < 5; try++) {
409 /* Load the send data into the aux channel data registers */
410 for (i = 0; i < send_bytes; i += 4)
411 REG_WRITE(ch_data + i,
412 pack_aux(send + i, send_bytes - i));
413
414 /* Send the command and wait for it to complete */
415 REG_WRITE(ch_ctl,
416 DP_AUX_CH_CTL_SEND_BUSY |
417 DP_AUX_CH_CTL_TIME_OUT_400us |
418 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
419 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
420 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
421 DP_AUX_CH_CTL_DONE |
422 DP_AUX_CH_CTL_TIME_OUT_ERROR |
423 DP_AUX_CH_CTL_RECEIVE_ERROR);
424 for (;;) {
425 status = REG_READ(ch_ctl);
426 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
427 break;
428 udelay(100);
429 }
430
431 /* Clear done status and any errors */
432 REG_WRITE(ch_ctl,
433 status |
434 DP_AUX_CH_CTL_DONE |
435 DP_AUX_CH_CTL_TIME_OUT_ERROR |
436 DP_AUX_CH_CTL_RECEIVE_ERROR);
437 if (status & DP_AUX_CH_CTL_DONE)
438 break;
439 }
440
441 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
442 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
443 return -EBUSY;
444 }
445
446 /* Check for timeout or receive error.
447 * Timeouts occur when the sink is not connected
448 */
449 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
450 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
451 return -EIO;
452 }
453
454 /* Timeouts occur when the device isn't connected, so they're
455 * "normal" -- don't fill the kernel log with these */
456 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
457 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
458 return -ETIMEDOUT;
459 }
460
461 /* Unload any bytes sent back from the other side */
462 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
463 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
464 if (recv_bytes > recv_size)
465 recv_bytes = recv_size;
466
467 for (i = 0; i < recv_bytes; i += 4)
468 unpack_aux(REG_READ(ch_data + i),
469 recv + i, recv_bytes - i);
470
471 return recv_bytes;
472 }
473
474 /* Write data to the aux channel in native mode */
475 static int
476 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
477 uint16_t address, uint8_t *send, int send_bytes)
478 {
479 int ret;
480 uint8_t msg[20];
481 int msg_bytes;
482 uint8_t ack;
483
484 if (send_bytes > 16)
485 return -1;
486 msg[0] = DP_AUX_NATIVE_WRITE << 4;
487 msg[1] = address >> 8;
488 msg[2] = address & 0xff;
489 msg[3] = send_bytes - 1;
490 memcpy(&msg[4], send, send_bytes);
491 msg_bytes = send_bytes + 4;
492 for (;;) {
493 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
494 if (ret < 0)
495 return ret;
496 ack >>= 4;
497 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
498 break;
499 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
500 udelay(100);
501 else
502 return -EIO;
503 }
504 return send_bytes;
505 }
506
507 /* Write a single byte to the aux channel in native mode */
508 static int
509 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
510 uint16_t address, uint8_t byte)
511 {
512 return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
513 }
514
515 /* read bytes from a native aux channel */
516 static int
517 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
518 uint16_t address, uint8_t *recv, int recv_bytes)
519 {
520 uint8_t msg[4];
521 int msg_bytes;
522 uint8_t reply[20];
523 int reply_bytes;
524 uint8_t ack;
525 int ret;
526
527 msg[0] = DP_AUX_NATIVE_READ << 4;
528 msg[1] = address >> 8;
529 msg[2] = address & 0xff;
530 msg[3] = recv_bytes - 1;
531
532 msg_bytes = 4;
533 reply_bytes = recv_bytes + 1;
534
535 for (;;) {
536 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
537 reply, reply_bytes);
538 if (ret == 0)
539 return -EPROTO;
540 if (ret < 0)
541 return ret;
542 ack = reply[0] >> 4;
543 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
544 memcpy(recv, reply + 1, ret - 1);
545 return ret - 1;
546 }
547 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
548 udelay(100);
549 else
550 return -EIO;
551 }
552 }
553
554 static int
555 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
556 uint8_t write_byte, uint8_t *read_byte)
557 {
558 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
559 struct cdv_intel_dp *intel_dp = container_of(adapter,
560 struct cdv_intel_dp,
561 adapter);
562 struct gma_encoder *encoder = intel_dp->encoder;
563 uint16_t address = algo_data->address;
564 uint8_t msg[5];
565 uint8_t reply[2];
566 unsigned retry;
567 int msg_bytes;
568 int reply_bytes;
569 int ret;
570
571 /* Set up the command byte */
572 if (mode & MODE_I2C_READ)
573 msg[0] = DP_AUX_I2C_READ << 4;
574 else
575 msg[0] = DP_AUX_I2C_WRITE << 4;
576
577 if (!(mode & MODE_I2C_STOP))
578 msg[0] |= DP_AUX_I2C_MOT << 4;
579
580 msg[1] = address >> 8;
581 msg[2] = address;
582
583 switch (mode) {
584 case MODE_I2C_WRITE:
585 msg[3] = 0;
586 msg[4] = write_byte;
587 msg_bytes = 5;
588 reply_bytes = 1;
589 break;
590 case MODE_I2C_READ:
591 msg[3] = 0;
592 msg_bytes = 4;
593 reply_bytes = 2;
594 break;
595 default:
596 msg_bytes = 3;
597 reply_bytes = 1;
598 break;
599 }
600
601 for (retry = 0; retry < 5; retry++) {
602 ret = cdv_intel_dp_aux_ch(encoder,
603 msg, msg_bytes,
604 reply, reply_bytes);
605 if (ret < 0) {
606 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
607 return ret;
608 }
609
610 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
611 case DP_AUX_NATIVE_REPLY_ACK:
612 /* I2C-over-AUX Reply field is only valid
613 * when paired with AUX ACK.
614 */
615 break;
616 case DP_AUX_NATIVE_REPLY_NACK:
617 DRM_DEBUG_KMS("aux_ch native nack\n");
618 return -EREMOTEIO;
619 case DP_AUX_NATIVE_REPLY_DEFER:
620 udelay(100);
621 continue;
622 default:
623 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
624 reply[0]);
625 return -EREMOTEIO;
626 }
627
628 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
629 case DP_AUX_I2C_REPLY_ACK:
630 if (mode == MODE_I2C_READ) {
631 *read_byte = reply[1];
632 }
633 return reply_bytes - 1;
634 case DP_AUX_I2C_REPLY_NACK:
635 DRM_DEBUG_KMS("aux_i2c nack\n");
636 return -EREMOTEIO;
637 case DP_AUX_I2C_REPLY_DEFER:
638 DRM_DEBUG_KMS("aux_i2c defer\n");
639 udelay(100);
640 break;
641 default:
642 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
643 return -EREMOTEIO;
644 }
645 }
646
647 DRM_ERROR("too many retries, giving up\n");
648 return -EREMOTEIO;
649 }
650
651 static int
652 cdv_intel_dp_i2c_init(struct gma_connector *connector,
653 struct gma_encoder *encoder, const char *name)
654 {
655 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
656 int ret;
657
658 DRM_DEBUG_KMS("i2c_init %s\n", name);
659
660 intel_dp->algo.running = false;
661 intel_dp->algo.address = 0;
662 intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
663
664 memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
665 intel_dp->adapter.owner = THIS_MODULE;
666 intel_dp->adapter.class = I2C_CLASS_DDC;
667 strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
668 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
669 intel_dp->adapter.algo_data = &intel_dp->algo;
670 intel_dp->adapter.dev.parent = connector->base.kdev;
671
672 if (is_edp(encoder))
673 cdv_intel_edp_panel_vdd_on(encoder);
674 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
675 if (is_edp(encoder))
676 cdv_intel_edp_panel_vdd_off(encoder);
677
678 return ret;
679 }
680
681 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
682 struct drm_display_mode *adjusted_mode)
683 {
684 adjusted_mode->hdisplay = fixed_mode->hdisplay;
685 adjusted_mode->hsync_start = fixed_mode->hsync_start;
686 adjusted_mode->hsync_end = fixed_mode->hsync_end;
687 adjusted_mode->htotal = fixed_mode->htotal;
688
689 adjusted_mode->vdisplay = fixed_mode->vdisplay;
690 adjusted_mode->vsync_start = fixed_mode->vsync_start;
691 adjusted_mode->vsync_end = fixed_mode->vsync_end;
692 adjusted_mode->vtotal = fixed_mode->vtotal;
693
694 adjusted_mode->clock = fixed_mode->clock;
695
696 drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
697 }
698
699 static bool
700 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
701 struct drm_display_mode *adjusted_mode)
702 {
703 struct drm_psb_private *dev_priv = encoder->dev->dev_private;
704 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
705 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
706 int lane_count, clock;
707 int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
708 int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
709 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
710 int refclock = mode->clock;
711 int bpp = 24;
712
713 if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
714 cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
715 refclock = intel_dp->panel_fixed_mode->clock;
716 bpp = dev_priv->edp.bpp;
717 }
718
719 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
720 for (clock = max_clock; clock >= 0; clock--) {
721 int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
722
723 if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
724 intel_dp->link_bw = bws[clock];
725 intel_dp->lane_count = lane_count;
726 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
727 DRM_DEBUG_KMS("Display port link bw %02x lane "
728 "count %d clock %d\n",
729 intel_dp->link_bw, intel_dp->lane_count,
730 adjusted_mode->clock);
731 return true;
732 }
733 }
734 }
735 if (is_edp(intel_encoder)) {
736 /* okay we failed just pick the highest */
737 intel_dp->lane_count = max_lane_count;
738 intel_dp->link_bw = bws[max_clock];
739 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
740 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
741 "count %d clock %d\n",
742 intel_dp->link_bw, intel_dp->lane_count,
743 adjusted_mode->clock);
744
745 return true;
746 }
747 return false;
748 }
749
750 struct cdv_intel_dp_m_n {
751 uint32_t tu;
752 uint32_t gmch_m;
753 uint32_t gmch_n;
754 uint32_t link_m;
755 uint32_t link_n;
756 };
757
758 static void
759 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
760 {
761 /*
762 while (*num > 0xffffff || *den > 0xffffff) {
763 *num >>= 1;
764 *den >>= 1;
765 }*/
766 uint64_t value, m;
767 m = *num;
768 value = m * (0x800000);
769 m = do_div(value, *den);
770 *num = value;
771 *den = 0x800000;
772 }
773
774 static void
775 cdv_intel_dp_compute_m_n(int bpp,
776 int nlanes,
777 int pixel_clock,
778 int link_clock,
779 struct cdv_intel_dp_m_n *m_n)
780 {
781 m_n->tu = 64;
782 m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
783 m_n->gmch_n = link_clock * nlanes;
784 cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
785 m_n->link_m = pixel_clock;
786 m_n->link_n = link_clock;
787 cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
788 }
789
790 void
791 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
792 struct drm_display_mode *adjusted_mode)
793 {
794 struct drm_device *dev = crtc->dev;
795 struct drm_psb_private *dev_priv = dev->dev_private;
796 struct drm_mode_config *mode_config = &dev->mode_config;
797 struct drm_encoder *encoder;
798 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
799 int lane_count = 4, bpp = 24;
800 struct cdv_intel_dp_m_n m_n;
801 int pipe = gma_crtc->pipe;
802
803 /*
804 * Find the lane count in the intel_encoder private
805 */
806 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
807 struct gma_encoder *intel_encoder;
808 struct cdv_intel_dp *intel_dp;
809
810 if (encoder->crtc != crtc)
811 continue;
812
813 intel_encoder = to_gma_encoder(encoder);
814 intel_dp = intel_encoder->dev_priv;
815 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
816 lane_count = intel_dp->lane_count;
817 break;
818 } else if (is_edp(intel_encoder)) {
819 lane_count = intel_dp->lane_count;
820 bpp = dev_priv->edp.bpp;
821 break;
822 }
823 }
824
825 /*
826 * Compute the GMCH and Link ratios. The '3' here is
827 * the number of bytes_per_pixel post-LUT, which we always
828 * set up for 8-bits of R/G/B, or 3 bytes total.
829 */
830 cdv_intel_dp_compute_m_n(bpp, lane_count,
831 mode->clock, adjusted_mode->clock, &m_n);
832
833 {
834 REG_WRITE(PIPE_GMCH_DATA_M(pipe),
835 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
836 m_n.gmch_m);
837 REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
838 REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
839 REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
840 }
841 }
842
843 static void
844 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
845 struct drm_display_mode *adjusted_mode)
846 {
847 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
848 struct drm_crtc *crtc = encoder->crtc;
849 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
850 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
851 struct drm_device *dev = encoder->dev;
852
853 intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
854 intel_dp->DP |= intel_dp->color_range;
855
856 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
857 intel_dp->DP |= DP_SYNC_HS_HIGH;
858 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
859 intel_dp->DP |= DP_SYNC_VS_HIGH;
860
861 intel_dp->DP |= DP_LINK_TRAIN_OFF;
862
863 switch (intel_dp->lane_count) {
864 case 1:
865 intel_dp->DP |= DP_PORT_WIDTH_1;
866 break;
867 case 2:
868 intel_dp->DP |= DP_PORT_WIDTH_2;
869 break;
870 case 4:
871 intel_dp->DP |= DP_PORT_WIDTH_4;
872 break;
873 }
874 if (intel_dp->has_audio)
875 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
876
877 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
878 intel_dp->link_configuration[0] = intel_dp->link_bw;
879 intel_dp->link_configuration[1] = intel_dp->lane_count;
880
881 /*
882 * Check for DPCD version > 1.1 and enhanced framing support
883 */
884 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
885 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
886 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
887 intel_dp->DP |= DP_ENHANCED_FRAMING;
888 }
889
890 /* CPT DP's pipe select is decided in TRANS_DP_CTL */
891 if (gma_crtc->pipe == 1)
892 intel_dp->DP |= DP_PIPEB_SELECT;
893
894 REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
895 DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
896 if (is_edp(intel_encoder)) {
897 uint32_t pfit_control;
898 cdv_intel_edp_panel_on(intel_encoder);
899
900 if (mode->hdisplay != adjusted_mode->hdisplay ||
901 mode->vdisplay != adjusted_mode->vdisplay)
902 pfit_control = PFIT_ENABLE;
903 else
904 pfit_control = 0;
905
906 pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
907
908 REG_WRITE(PFIT_CONTROL, pfit_control);
909 }
910 }
911
912
913 /* If the sink supports it, try to set the power state appropriately */
914 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
915 {
916 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
917 int ret, i;
918
919 /* Should have a valid DPCD by this point */
920 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
921 return;
922
923 if (mode != DRM_MODE_DPMS_ON) {
924 ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
925 DP_SET_POWER_D3);
926 if (ret != 1)
927 DRM_DEBUG_DRIVER("failed to write sink power state\n");
928 } else {
929 /*
930 * When turning on, we need to retry for 1ms to give the sink
931 * time to wake up.
932 */
933 for (i = 0; i < 3; i++) {
934 ret = cdv_intel_dp_aux_native_write_1(encoder,
935 DP_SET_POWER,
936 DP_SET_POWER_D0);
937 if (ret == 1)
938 break;
939 udelay(1000);
940 }
941 }
942 }
943
944 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
945 {
946 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
947 int edp = is_edp(intel_encoder);
948
949 if (edp) {
950 cdv_intel_edp_backlight_off(intel_encoder);
951 cdv_intel_edp_panel_off(intel_encoder);
952 cdv_intel_edp_panel_vdd_on(intel_encoder);
953 }
954 /* Wake up the sink first */
955 cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
956 cdv_intel_dp_link_down(intel_encoder);
957 if (edp)
958 cdv_intel_edp_panel_vdd_off(intel_encoder);
959 }
960
961 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
962 {
963 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
964 int edp = is_edp(intel_encoder);
965
966 if (edp)
967 cdv_intel_edp_panel_on(intel_encoder);
968 cdv_intel_dp_start_link_train(intel_encoder);
969 cdv_intel_dp_complete_link_train(intel_encoder);
970 if (edp)
971 cdv_intel_edp_backlight_on(intel_encoder);
972 }
973
974 static void
975 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
976 {
977 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
978 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
979 struct drm_device *dev = encoder->dev;
980 uint32_t dp_reg = REG_READ(intel_dp->output_reg);
981 int edp = is_edp(intel_encoder);
982
983 if (mode != DRM_MODE_DPMS_ON) {
984 if (edp) {
985 cdv_intel_edp_backlight_off(intel_encoder);
986 cdv_intel_edp_panel_vdd_on(intel_encoder);
987 }
988 cdv_intel_dp_sink_dpms(intel_encoder, mode);
989 cdv_intel_dp_link_down(intel_encoder);
990 if (edp) {
991 cdv_intel_edp_panel_vdd_off(intel_encoder);
992 cdv_intel_edp_panel_off(intel_encoder);
993 }
994 } else {
995 if (edp)
996 cdv_intel_edp_panel_on(intel_encoder);
997 cdv_intel_dp_sink_dpms(intel_encoder, mode);
998 if (!(dp_reg & DP_PORT_EN)) {
999 cdv_intel_dp_start_link_train(intel_encoder);
1000 cdv_intel_dp_complete_link_train(intel_encoder);
1001 }
1002 if (edp)
1003 cdv_intel_edp_backlight_on(intel_encoder);
1004 }
1005 }
1006
1007 /*
1008 * Native read with retry for link status and receiver capability reads for
1009 * cases where the sink may still be asleep.
1010 */
1011 static bool
1012 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1013 uint8_t *recv, int recv_bytes)
1014 {
1015 int ret, i;
1016
1017 /*
1018 * Sinks are *supposed* to come up within 1ms from an off state,
1019 * but we're also supposed to retry 3 times per the spec.
1020 */
1021 for (i = 0; i < 3; i++) {
1022 ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1023 recv_bytes);
1024 if (ret == recv_bytes)
1025 return true;
1026 udelay(1000);
1027 }
1028
1029 return false;
1030 }
1031
1032 /*
1033 * Fetch AUX CH registers 0x202 - 0x207 which contain
1034 * link status information
1035 */
1036 static bool
1037 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1038 {
1039 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1040 return cdv_intel_dp_aux_native_read_retry(encoder,
1041 DP_LANE0_1_STATUS,
1042 intel_dp->link_status,
1043 DP_LINK_STATUS_SIZE);
1044 }
1045
1046 static uint8_t
1047 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1048 int r)
1049 {
1050 return link_status[r - DP_LANE0_1_STATUS];
1051 }
1052
1053 static uint8_t
1054 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1055 int lane)
1056 {
1057 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1058 int s = ((lane & 1) ?
1059 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1060 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1061 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1062
1063 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1064 }
1065
1066 static uint8_t
1067 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1068 int lane)
1069 {
1070 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1071 int s = ((lane & 1) ?
1072 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1073 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1074 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1075
1076 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1077 }
1078
1079
1080 #if 0
1081 static char *voltage_names[] = {
1082 "0.4V", "0.6V", "0.8V", "1.2V"
1083 };
1084 static char *pre_emph_names[] = {
1085 "0dB", "3.5dB", "6dB", "9.5dB"
1086 };
1087 static char *link_train_names[] = {
1088 "pattern 1", "pattern 2", "idle", "off"
1089 };
1090 #endif
1091
1092 #define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200
1093 /*
1094 static uint8_t
1095 cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1096 {
1097 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1098 case DP_TRAIN_VOLTAGE_SWING_400:
1099 return DP_TRAIN_PRE_EMPHASIS_6;
1100 case DP_TRAIN_VOLTAGE_SWING_600:
1101 return DP_TRAIN_PRE_EMPHASIS_6;
1102 case DP_TRAIN_VOLTAGE_SWING_800:
1103 return DP_TRAIN_PRE_EMPHASIS_3_5;
1104 case DP_TRAIN_VOLTAGE_SWING_1200:
1105 default:
1106 return DP_TRAIN_PRE_EMPHASIS_0;
1107 }
1108 }
1109 */
1110 static void
1111 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1112 {
1113 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1114 uint8_t v = 0;
1115 uint8_t p = 0;
1116 int lane;
1117
1118 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1119 uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1120 uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1121
1122 if (this_v > v)
1123 v = this_v;
1124 if (this_p > p)
1125 p = this_p;
1126 }
1127
1128 if (v >= CDV_DP_VOLTAGE_MAX)
1129 v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1130
1131 if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1132 p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1133
1134 for (lane = 0; lane < 4; lane++)
1135 intel_dp->train_set[lane] = v | p;
1136 }
1137
1138
1139 static uint8_t
1140 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1141 int lane)
1142 {
1143 int i = DP_LANE0_1_STATUS + (lane >> 1);
1144 int s = (lane & 1) * 4;
1145 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1146
1147 return (l >> s) & 0xf;
1148 }
1149
1150 /* Check for clock recovery is done on all channels */
1151 static bool
1152 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1153 {
1154 int lane;
1155 uint8_t lane_status;
1156
1157 for (lane = 0; lane < lane_count; lane++) {
1158 lane_status = cdv_intel_get_lane_status(link_status, lane);
1159 if ((lane_status & DP_LANE_CR_DONE) == 0)
1160 return false;
1161 }
1162 return true;
1163 }
1164
1165 /* Check to see if channel eq is done on all channels */
1166 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1167 DP_LANE_CHANNEL_EQ_DONE|\
1168 DP_LANE_SYMBOL_LOCKED)
1169 static bool
1170 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1171 {
1172 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1173 uint8_t lane_align;
1174 uint8_t lane_status;
1175 int lane;
1176
1177 lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1178 DP_LANE_ALIGN_STATUS_UPDATED);
1179 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1180 return false;
1181 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1182 lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1183 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1184 return false;
1185 }
1186 return true;
1187 }
1188
1189 static bool
1190 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1191 uint32_t dp_reg_value,
1192 uint8_t dp_train_pat)
1193 {
1194
1195 struct drm_device *dev = encoder->base.dev;
1196 int ret;
1197 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1198
1199 REG_WRITE(intel_dp->output_reg, dp_reg_value);
1200 REG_READ(intel_dp->output_reg);
1201
1202 ret = cdv_intel_dp_aux_native_write_1(encoder,
1203 DP_TRAINING_PATTERN_SET,
1204 dp_train_pat);
1205
1206 if (ret != 1) {
1207 DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1208 dp_train_pat);
1209 return false;
1210 }
1211
1212 return true;
1213 }
1214
1215
1216 static bool
1217 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1218 uint8_t dp_train_pat)
1219 {
1220
1221 int ret;
1222 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1223
1224 ret = cdv_intel_dp_aux_native_write(encoder,
1225 DP_TRAINING_LANE0_SET,
1226 intel_dp->train_set,
1227 intel_dp->lane_count);
1228
1229 if (ret != intel_dp->lane_count) {
1230 DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1231 intel_dp->train_set[0], intel_dp->lane_count);
1232 return false;
1233 }
1234 return true;
1235 }
1236
1237 static void
1238 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1239 {
1240 struct drm_device *dev = encoder->base.dev;
1241 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1242 struct ddi_regoff *ddi_reg;
1243 int vswing, premph, index;
1244
1245 if (intel_dp->output_reg == DP_B)
1246 ddi_reg = &ddi_DP_train_table[0];
1247 else
1248 ddi_reg = &ddi_DP_train_table[1];
1249
1250 vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1251 premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1252 DP_TRAIN_PRE_EMPHASIS_SHIFT;
1253
1254 if (vswing + premph > 3)
1255 return;
1256 #ifdef CDV_FAST_LINK_TRAIN
1257 return;
1258 #endif
1259 DRM_DEBUG_KMS("Test2\n");
1260 //return ;
1261 cdv_sb_reset(dev);
1262 /* ;Swing voltage programming
1263 ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1264 cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1265
1266 /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1267 cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1268
1269 /* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1270 * The VSwing_PreEmph table is also considered based on the vswing/premp
1271 */
1272 index = (vswing + premph) * 2;
1273 if (premph == 1 && vswing == 1) {
1274 cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1275 } else
1276 cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1277
1278 /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1279 if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_1200)
1280 cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1281 else
1282 cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1283
1284 /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1285 /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1286
1287 /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1288 cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1289
1290 /* ;Pre emphasis programming
1291 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1292 */
1293 cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1294
1295 /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1296 index = 2 * premph + 1;
1297 cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1298 return;
1299 }
1300
1301
1302 /* Enable corresponding port and start training pattern 1 */
1303 static void
1304 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1305 {
1306 struct drm_device *dev = encoder->base.dev;
1307 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1308 int i;
1309 uint8_t voltage;
1310 bool clock_recovery = false;
1311 int tries;
1312 u32 reg;
1313 uint32_t DP = intel_dp->DP;
1314
1315 DP |= DP_PORT_EN;
1316 DP &= ~DP_LINK_TRAIN_MASK;
1317
1318 reg = DP;
1319 reg |= DP_LINK_TRAIN_PAT_1;
1320 /* Enable output, wait for it to become active */
1321 REG_WRITE(intel_dp->output_reg, reg);
1322 REG_READ(intel_dp->output_reg);
1323 gma_wait_for_vblank(dev);
1324
1325 DRM_DEBUG_KMS("Link config\n");
1326 /* Write the link configuration data */
1327 cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1328 intel_dp->link_configuration,
1329 2);
1330
1331 memset(intel_dp->train_set, 0, 4);
1332 voltage = 0;
1333 tries = 0;
1334 clock_recovery = false;
1335
1336 DRM_DEBUG_KMS("Start train\n");
1337 reg = DP | DP_LINK_TRAIN_PAT_1;
1338
1339
1340 for (;;) {
1341 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1342 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1343 intel_dp->train_set[0],
1344 intel_dp->link_configuration[0],
1345 intel_dp->link_configuration[1]);
1346
1347 if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1348 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1349 }
1350 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1351 /* Set training pattern 1 */
1352
1353 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1354
1355 udelay(200);
1356 if (!cdv_intel_dp_get_link_status(encoder))
1357 break;
1358
1359 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1360 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1361 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1362
1363 if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1364 DRM_DEBUG_KMS("PT1 train is done\n");
1365 clock_recovery = true;
1366 break;
1367 }
1368
1369 /* Check to see if we've tried the max voltage */
1370 for (i = 0; i < intel_dp->lane_count; i++)
1371 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1372 break;
1373 if (i == intel_dp->lane_count)
1374 break;
1375
1376 /* Check to see if we've tried the same voltage 5 times */
1377 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1378 ++tries;
1379 if (tries == 5)
1380 break;
1381 } else
1382 tries = 0;
1383 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1384
1385 /* Compute new intel_dp->train_set as requested by target */
1386 cdv_intel_get_adjust_train(encoder);
1387
1388 }
1389
1390 if (!clock_recovery) {
1391 DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1392 }
1393
1394 intel_dp->DP = DP;
1395 }
1396
1397 static void
1398 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1399 {
1400 struct drm_device *dev = encoder->base.dev;
1401 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1402 bool channel_eq = false;
1403 int tries, cr_tries;
1404 u32 reg;
1405 uint32_t DP = intel_dp->DP;
1406
1407 /* channel equalization */
1408 tries = 0;
1409 cr_tries = 0;
1410 channel_eq = false;
1411
1412 DRM_DEBUG_KMS("\n");
1413 reg = DP | DP_LINK_TRAIN_PAT_2;
1414
1415 for (;;) {
1416
1417 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1418 intel_dp->train_set[0],
1419 intel_dp->link_configuration[0],
1420 intel_dp->link_configuration[1]);
1421 /* channel eq pattern */
1422
1423 if (!cdv_intel_dp_set_link_train(encoder, reg,
1424 DP_TRAINING_PATTERN_2)) {
1425 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1426 }
1427 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1428
1429 if (cr_tries > 5) {
1430 DRM_ERROR("failed to train DP, aborting\n");
1431 cdv_intel_dp_link_down(encoder);
1432 break;
1433 }
1434
1435 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1436
1437 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1438
1439 udelay(1000);
1440 if (!cdv_intel_dp_get_link_status(encoder))
1441 break;
1442
1443 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1444 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1445 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1446
1447 /* Make sure clock is still ok */
1448 if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1449 cdv_intel_dp_start_link_train(encoder);
1450 cr_tries++;
1451 continue;
1452 }
1453
1454 if (cdv_intel_channel_eq_ok(encoder)) {
1455 DRM_DEBUG_KMS("PT2 train is done\n");
1456 channel_eq = true;
1457 break;
1458 }
1459
1460 /* Try 5 times, then try clock recovery if that fails */
1461 if (tries > 5) {
1462 cdv_intel_dp_link_down(encoder);
1463 cdv_intel_dp_start_link_train(encoder);
1464 tries = 0;
1465 cr_tries++;
1466 continue;
1467 }
1468
1469 /* Compute new intel_dp->train_set as requested by target */
1470 cdv_intel_get_adjust_train(encoder);
1471 ++tries;
1472
1473 }
1474
1475 reg = DP | DP_LINK_TRAIN_OFF;
1476
1477 REG_WRITE(intel_dp->output_reg, reg);
1478 REG_READ(intel_dp->output_reg);
1479 cdv_intel_dp_aux_native_write_1(encoder,
1480 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1481 }
1482
1483 static void
1484 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1485 {
1486 struct drm_device *dev = encoder->base.dev;
1487 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1488 uint32_t DP = intel_dp->DP;
1489
1490 if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1491 return;
1492
1493 DRM_DEBUG_KMS("\n");
1494
1495
1496 {
1497 DP &= ~DP_LINK_TRAIN_MASK;
1498 REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1499 }
1500 REG_READ(intel_dp->output_reg);
1501
1502 msleep(17);
1503
1504 REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1505 REG_READ(intel_dp->output_reg);
1506 }
1507
1508 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1509 {
1510 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1511 enum drm_connector_status status;
1512
1513 status = connector_status_disconnected;
1514 if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1515 sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1516 {
1517 if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1518 status = connector_status_connected;
1519 }
1520 if (status == connector_status_connected)
1521 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1522 intel_dp->dpcd[0], intel_dp->dpcd[1],
1523 intel_dp->dpcd[2], intel_dp->dpcd[3]);
1524 return status;
1525 }
1526
1527 /**
1528 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1529 *
1530 * \return true if DP port is connected.
1531 * \return false if DP port is disconnected.
1532 */
1533 static enum drm_connector_status
1534 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1535 {
1536 struct gma_encoder *encoder = gma_attached_encoder(connector);
1537 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1538 enum drm_connector_status status;
1539 struct edid *edid = NULL;
1540 int edp = is_edp(encoder);
1541
1542 intel_dp->has_audio = false;
1543
1544 if (edp)
1545 cdv_intel_edp_panel_vdd_on(encoder);
1546 status = cdv_dp_detect(encoder);
1547 if (status != connector_status_connected) {
1548 if (edp)
1549 cdv_intel_edp_panel_vdd_off(encoder);
1550 return status;
1551 }
1552
1553 if (intel_dp->force_audio) {
1554 intel_dp->has_audio = intel_dp->force_audio > 0;
1555 } else {
1556 edid = drm_get_edid(connector, &intel_dp->adapter);
1557 if (edid) {
1558 intel_dp->has_audio = drm_detect_monitor_audio(edid);
1559 kfree(edid);
1560 }
1561 }
1562 if (edp)
1563 cdv_intel_edp_panel_vdd_off(encoder);
1564
1565 return connector_status_connected;
1566 }
1567
1568 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1569 {
1570 struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1571 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1572 struct edid *edid = NULL;
1573 int ret = 0;
1574 int edp = is_edp(intel_encoder);
1575
1576
1577 edid = drm_get_edid(connector, &intel_dp->adapter);
1578 if (edid) {
1579 drm_mode_connector_update_edid_property(connector, edid);
1580 ret = drm_add_edid_modes(connector, edid);
1581 kfree(edid);
1582 }
1583
1584 if (is_edp(intel_encoder)) {
1585 struct drm_device *dev = connector->dev;
1586 struct drm_psb_private *dev_priv = dev->dev_private;
1587
1588 cdv_intel_edp_panel_vdd_off(intel_encoder);
1589 if (ret) {
1590 if (edp && !intel_dp->panel_fixed_mode) {
1591 struct drm_display_mode *newmode;
1592 list_for_each_entry(newmode, &connector->probed_modes,
1593 head) {
1594 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1595 intel_dp->panel_fixed_mode =
1596 drm_mode_duplicate(dev, newmode);
1597 break;
1598 }
1599 }
1600 }
1601
1602 return ret;
1603 }
1604 if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1605 intel_dp->panel_fixed_mode =
1606 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1607 if (intel_dp->panel_fixed_mode) {
1608 intel_dp->panel_fixed_mode->type |=
1609 DRM_MODE_TYPE_PREFERRED;
1610 }
1611 }
1612 if (intel_dp->panel_fixed_mode != NULL) {
1613 struct drm_display_mode *mode;
1614 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1615 drm_mode_probed_add(connector, mode);
1616 return 1;
1617 }
1618 }
1619
1620 return ret;
1621 }
1622
1623 static bool
1624 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1625 {
1626 struct gma_encoder *encoder = gma_attached_encoder(connector);
1627 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1628 struct edid *edid;
1629 bool has_audio = false;
1630 int edp = is_edp(encoder);
1631
1632 if (edp)
1633 cdv_intel_edp_panel_vdd_on(encoder);
1634
1635 edid = drm_get_edid(connector, &intel_dp->adapter);
1636 if (edid) {
1637 has_audio = drm_detect_monitor_audio(edid);
1638 kfree(edid);
1639 }
1640 if (edp)
1641 cdv_intel_edp_panel_vdd_off(encoder);
1642
1643 return has_audio;
1644 }
1645
1646 static int
1647 cdv_intel_dp_set_property(struct drm_connector *connector,
1648 struct drm_property *property,
1649 uint64_t val)
1650 {
1651 struct drm_psb_private *dev_priv = connector->dev->dev_private;
1652 struct gma_encoder *encoder = gma_attached_encoder(connector);
1653 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1654 int ret;
1655
1656 ret = drm_object_property_set_value(&connector->base, property, val);
1657 if (ret)
1658 return ret;
1659
1660 if (property == dev_priv->force_audio_property) {
1661 int i = val;
1662 bool has_audio;
1663
1664 if (i == intel_dp->force_audio)
1665 return 0;
1666
1667 intel_dp->force_audio = i;
1668
1669 if (i == 0)
1670 has_audio = cdv_intel_dp_detect_audio(connector);
1671 else
1672 has_audio = i > 0;
1673
1674 if (has_audio == intel_dp->has_audio)
1675 return 0;
1676
1677 intel_dp->has_audio = has_audio;
1678 goto done;
1679 }
1680
1681 if (property == dev_priv->broadcast_rgb_property) {
1682 if (val == !!intel_dp->color_range)
1683 return 0;
1684
1685 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1686 goto done;
1687 }
1688
1689 return -EINVAL;
1690
1691 done:
1692 if (encoder->base.crtc) {
1693 struct drm_crtc *crtc = encoder->base.crtc;
1694 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1695 crtc->x, crtc->y,
1696 crtc->primary->fb);
1697 }
1698
1699 return 0;
1700 }
1701
1702 static void
1703 cdv_intel_dp_destroy(struct drm_connector *connector)
1704 {
1705 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1706 struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1707
1708 if (is_edp(gma_encoder)) {
1709 /* cdv_intel_panel_destroy_backlight(connector->dev); */
1710 if (intel_dp->panel_fixed_mode) {
1711 kfree(intel_dp->panel_fixed_mode);
1712 intel_dp->panel_fixed_mode = NULL;
1713 }
1714 }
1715 i2c_del_adapter(&intel_dp->adapter);
1716 drm_connector_unregister(connector);
1717 drm_connector_cleanup(connector);
1718 kfree(connector);
1719 }
1720
1721 static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
1722 {
1723 drm_encoder_cleanup(encoder);
1724 }
1725
1726 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1727 .dpms = cdv_intel_dp_dpms,
1728 .mode_fixup = cdv_intel_dp_mode_fixup,
1729 .prepare = cdv_intel_dp_prepare,
1730 .mode_set = cdv_intel_dp_mode_set,
1731 .commit = cdv_intel_dp_commit,
1732 };
1733
1734 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1735 .dpms = drm_helper_connector_dpms,
1736 .detect = cdv_intel_dp_detect,
1737 .fill_modes = drm_helper_probe_single_connector_modes,
1738 .set_property = cdv_intel_dp_set_property,
1739 .destroy = cdv_intel_dp_destroy,
1740 };
1741
1742 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1743 .get_modes = cdv_intel_dp_get_modes,
1744 .mode_valid = cdv_intel_dp_mode_valid,
1745 .best_encoder = gma_best_encoder,
1746 };
1747
1748 static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
1749 .destroy = cdv_intel_dp_encoder_destroy,
1750 };
1751
1752
1753 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1754 {
1755 cdv_intel_attach_force_audio_property(connector);
1756 cdv_intel_attach_broadcast_rgb_property(connector);
1757 }
1758
1759 /* check the VBT to see whether the eDP is on DP-D port */
1760 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1761 {
1762 struct drm_psb_private *dev_priv = dev->dev_private;
1763 struct child_device_config *p_child;
1764 int i;
1765
1766 if (!dev_priv->child_dev_num)
1767 return false;
1768
1769 for (i = 0; i < dev_priv->child_dev_num; i++) {
1770 p_child = dev_priv->child_dev + i;
1771
1772 if (p_child->dvo_port == PORT_IDPC &&
1773 p_child->device_type == DEVICE_TYPE_eDP)
1774 return true;
1775 }
1776 return false;
1777 }
1778
1779 /* Cedarview display clock gating
1780
1781 We need this disable dot get correct behaviour while enabling
1782 DP/eDP. TODO - investigate if we can turn it back to normality
1783 after enabling */
1784 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1785 {
1786 u32 reg_value;
1787 reg_value = REG_READ(DSPCLK_GATE_D);
1788
1789 reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1790 DPUNIT_PIPEA_GATE_DISABLE |
1791 DPCUNIT_CLOCK_GATE_DISABLE |
1792 DPLSUNIT_CLOCK_GATE_DISABLE |
1793 DPOUNIT_CLOCK_GATE_DISABLE |
1794 DPIOUNIT_CLOCK_GATE_DISABLE);
1795
1796 REG_WRITE(DSPCLK_GATE_D, reg_value);
1797
1798 udelay(500);
1799 }
1800
1801 void
1802 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1803 {
1804 struct gma_encoder *gma_encoder;
1805 struct gma_connector *gma_connector;
1806 struct drm_connector *connector;
1807 struct drm_encoder *encoder;
1808 struct cdv_intel_dp *intel_dp;
1809 const char *name = NULL;
1810 int type = DRM_MODE_CONNECTOR_DisplayPort;
1811
1812 gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1813 if (!gma_encoder)
1814 return;
1815 gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1816 if (!gma_connector)
1817 goto err_connector;
1818 intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1819 if (!intel_dp)
1820 goto err_priv;
1821
1822 if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1823 type = DRM_MODE_CONNECTOR_eDP;
1824
1825 connector = &gma_connector->base;
1826 encoder = &gma_encoder->base;
1827
1828 drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1829 drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS);
1830
1831 gma_connector_attach_encoder(gma_connector, gma_encoder);
1832
1833 if (type == DRM_MODE_CONNECTOR_DisplayPort)
1834 gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1835 else
1836 gma_encoder->type = INTEL_OUTPUT_EDP;
1837
1838
1839 gma_encoder->dev_priv=intel_dp;
1840 intel_dp->encoder = gma_encoder;
1841 intel_dp->output_reg = output_reg;
1842
1843 drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1844 drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1845
1846 connector->polled = DRM_CONNECTOR_POLL_HPD;
1847 connector->interlace_allowed = false;
1848 connector->doublescan_allowed = false;
1849
1850 drm_connector_register(connector);
1851
1852 /* Set up the DDC bus. */
1853 switch (output_reg) {
1854 case DP_B:
1855 name = "DPDDC-B";
1856 gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
1857 break;
1858 case DP_C:
1859 name = "DPDDC-C";
1860 gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
1861 break;
1862 }
1863
1864 cdv_disable_intel_clock_gating(dev);
1865
1866 cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
1867 /* FIXME:fail check */
1868 cdv_intel_dp_add_properties(connector);
1869
1870 if (is_edp(gma_encoder)) {
1871 int ret;
1872 struct edp_power_seq cur;
1873 u32 pp_on, pp_off, pp_div;
1874 u32 pwm_ctrl;
1875
1876 pp_on = REG_READ(PP_CONTROL);
1877 pp_on &= ~PANEL_UNLOCK_MASK;
1878 pp_on |= PANEL_UNLOCK_REGS;
1879
1880 REG_WRITE(PP_CONTROL, pp_on);
1881
1882 pwm_ctrl = REG_READ(BLC_PWM_CTL2);
1883 pwm_ctrl |= PWM_PIPE_B;
1884 REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
1885
1886 pp_on = REG_READ(PP_ON_DELAYS);
1887 pp_off = REG_READ(PP_OFF_DELAYS);
1888 pp_div = REG_READ(PP_DIVISOR);
1889
1890 /* Pull timing values out of registers */
1891 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
1892 PANEL_POWER_UP_DELAY_SHIFT;
1893
1894 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
1895 PANEL_LIGHT_ON_DELAY_SHIFT;
1896
1897 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
1898 PANEL_LIGHT_OFF_DELAY_SHIFT;
1899
1900 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
1901 PANEL_POWER_DOWN_DELAY_SHIFT;
1902
1903 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
1904 PANEL_POWER_CYCLE_DELAY_SHIFT);
1905
1906 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
1907 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
1908
1909
1910 intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
1911 intel_dp->backlight_on_delay = cur.t8 / 10;
1912 intel_dp->backlight_off_delay = cur.t9 / 10;
1913 intel_dp->panel_power_down_delay = cur.t10 / 10;
1914 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
1915
1916 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
1917 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
1918 intel_dp->panel_power_cycle_delay);
1919
1920 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
1921 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
1922
1923
1924 cdv_intel_edp_panel_vdd_on(gma_encoder);
1925 ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
1926 intel_dp->dpcd,
1927 sizeof(intel_dp->dpcd));
1928 cdv_intel_edp_panel_vdd_off(gma_encoder);
1929 if (ret == 0) {
1930 /* if this fails, presume the device is a ghost */
1931 DRM_INFO("failed to retrieve link info, disabling eDP\n");
1932 cdv_intel_dp_encoder_destroy(encoder);
1933 cdv_intel_dp_destroy(connector);
1934 goto err_priv;
1935 } else {
1936 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1937 intel_dp->dpcd[0], intel_dp->dpcd[1],
1938 intel_dp->dpcd[2], intel_dp->dpcd[3]);
1939
1940 }
1941 /* The CDV reference driver moves pnale backlight setup into the displays that
1942 have a backlight: this is a good idea and one we should probably adopt, however
1943 we need to migrate all the drivers before we can do that */
1944 /*cdv_intel_panel_setup_backlight(dev); */
1945 }
1946 return;
1947
1948 err_priv:
1949 kfree(gma_connector);
1950 err_connector:
1951 kfree(gma_encoder);
1952 }
This page took 0.13983 seconds and 5 git commands to generate.