Merge tag 'v3.14' into drm-intel-next-queued
[deliverable/linux.git] / drivers / gpu / drm / i2c / tda998x_drv.c
1 /*
2 * Copyright (C) 2012 Texas Instruments
3 * Author: Rob Clark <robdclark@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18
19
20 #include <linux/hdmi.h>
21 #include <linux/module.h>
22 #include <linux/irq.h>
23 #include <sound/asoundef.h>
24
25 #include <drm/drmP.h>
26 #include <drm/drm_crtc_helper.h>
27 #include <drm/drm_encoder_slave.h>
28 #include <drm/drm_edid.h>
29 #include <drm/i2c/tda998x.h>
30
31 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
32
33 struct tda998x_priv {
34 struct i2c_client *cec;
35 struct i2c_client *hdmi;
36 uint16_t rev;
37 uint8_t current_page;
38 int dpms;
39 bool is_hdmi_sink;
40 u8 vip_cntrl_0;
41 u8 vip_cntrl_1;
42 u8 vip_cntrl_2;
43 struct tda998x_encoder_params params;
44
45 wait_queue_head_t wq_edid;
46 volatile int wq_edid_wait;
47 struct drm_encoder *encoder;
48 };
49
50 #define to_tda998x_priv(x) ((struct tda998x_priv *)to_encoder_slave(x)->slave_priv)
51
52 /* The TDA9988 series of devices use a paged register scheme.. to simplify
53 * things we encode the page # in upper bits of the register #. To read/
54 * write a given register, we need to make sure CURPAGE register is set
55 * appropriately. Which implies reads/writes are not atomic. Fun!
56 */
57
58 #define REG(page, addr) (((page) << 8) | (addr))
59 #define REG2ADDR(reg) ((reg) & 0xff)
60 #define REG2PAGE(reg) (((reg) >> 8) & 0xff)
61
62 #define REG_CURPAGE 0xff /* write */
63
64
65 /* Page 00h: General Control */
66 #define REG_VERSION_LSB REG(0x00, 0x00) /* read */
67 #define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */
68 # define MAIN_CNTRL0_SR (1 << 0)
69 # define MAIN_CNTRL0_DECS (1 << 1)
70 # define MAIN_CNTRL0_DEHS (1 << 2)
71 # define MAIN_CNTRL0_CECS (1 << 3)
72 # define MAIN_CNTRL0_CEHS (1 << 4)
73 # define MAIN_CNTRL0_SCALER (1 << 7)
74 #define REG_VERSION_MSB REG(0x00, 0x02) /* read */
75 #define REG_SOFTRESET REG(0x00, 0x0a) /* write */
76 # define SOFTRESET_AUDIO (1 << 0)
77 # define SOFTRESET_I2C_MASTER (1 << 1)
78 #define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */
79 #define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */
80 #define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */
81 # define I2C_MASTER_DIS_MM (1 << 0)
82 # define I2C_MASTER_DIS_FILT (1 << 1)
83 # define I2C_MASTER_APP_STRT_LAT (1 << 2)
84 #define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */
85 # define FEAT_POWERDOWN_SPDIF (1 << 3)
86 #define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */
87 #define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */
88 #define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */
89 # define INT_FLAGS_2_EDID_BLK_RD (1 << 1)
90 #define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */
91 #define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */
92 #define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */
93 #define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */
94 #define REG_ENA_AP REG(0x00, 0x1e) /* read/write */
95 #define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */
96 # define VIP_CNTRL_0_MIRR_A (1 << 7)
97 # define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4)
98 # define VIP_CNTRL_0_MIRR_B (1 << 3)
99 # define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0)
100 #define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */
101 # define VIP_CNTRL_1_MIRR_C (1 << 7)
102 # define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4)
103 # define VIP_CNTRL_1_MIRR_D (1 << 3)
104 # define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0)
105 #define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */
106 # define VIP_CNTRL_2_MIRR_E (1 << 7)
107 # define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4)
108 # define VIP_CNTRL_2_MIRR_F (1 << 3)
109 # define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0)
110 #define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */
111 # define VIP_CNTRL_3_X_TGL (1 << 0)
112 # define VIP_CNTRL_3_H_TGL (1 << 1)
113 # define VIP_CNTRL_3_V_TGL (1 << 2)
114 # define VIP_CNTRL_3_EMB (1 << 3)
115 # define VIP_CNTRL_3_SYNC_DE (1 << 4)
116 # define VIP_CNTRL_3_SYNC_HS (1 << 5)
117 # define VIP_CNTRL_3_DE_INT (1 << 6)
118 # define VIP_CNTRL_3_EDGE (1 << 7)
119 #define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */
120 # define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0)
121 # define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2)
122 # define VIP_CNTRL_4_CCIR656 (1 << 4)
123 # define VIP_CNTRL_4_656_ALT (1 << 5)
124 # define VIP_CNTRL_4_TST_656 (1 << 6)
125 # define VIP_CNTRL_4_TST_PAT (1 << 7)
126 #define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */
127 # define VIP_CNTRL_5_CKCASE (1 << 0)
128 # define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1)
129 #define REG_MUX_AP REG(0x00, 0x26) /* read/write */
130 # define MUX_AP_SELECT_I2S 0x64
131 # define MUX_AP_SELECT_SPDIF 0x40
132 #define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */
133 #define REG_MAT_CONTRL REG(0x00, 0x80) /* write */
134 # define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0)
135 # define MAT_CONTRL_MAT_BP (1 << 2)
136 #define REG_VIDFORMAT REG(0x00, 0xa0) /* write */
137 #define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */
138 #define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */
139 #define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */
140 #define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */
141 #define REG_NPIX_MSB REG(0x00, 0xa5) /* write */
142 #define REG_NPIX_LSB REG(0x00, 0xa6) /* write */
143 #define REG_NLINE_MSB REG(0x00, 0xa7) /* write */
144 #define REG_NLINE_LSB REG(0x00, 0xa8) /* write */
145 #define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */
146 #define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */
147 #define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */
148 #define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */
149 #define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */
150 #define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */
151 #define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */
152 #define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */
153 #define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */
154 #define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */
155 #define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */
156 #define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */
157 #define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */
158 #define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */
159 #define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */
160 #define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */
161 #define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */
162 #define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */
163 #define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */
164 #define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */
165 #define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */
166 #define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */
167 #define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */
168 #define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */
169 #define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */
170 #define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */
171 #define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */
172 #define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */
173 #define REG_DE_START_MSB REG(0x00, 0xc5) /* write */
174 #define REG_DE_START_LSB REG(0x00, 0xc6) /* write */
175 #define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */
176 #define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */
177 #define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */
178 # define TBG_CNTRL_0_TOP_TGL (1 << 0)
179 # define TBG_CNTRL_0_TOP_SEL (1 << 1)
180 # define TBG_CNTRL_0_DE_EXT (1 << 2)
181 # define TBG_CNTRL_0_TOP_EXT (1 << 3)
182 # define TBG_CNTRL_0_FRAME_DIS (1 << 5)
183 # define TBG_CNTRL_0_SYNC_MTHD (1 << 6)
184 # define TBG_CNTRL_0_SYNC_ONCE (1 << 7)
185 #define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */
186 # define TBG_CNTRL_1_H_TGL (1 << 0)
187 # define TBG_CNTRL_1_V_TGL (1 << 1)
188 # define TBG_CNTRL_1_TGL_EN (1 << 2)
189 # define TBG_CNTRL_1_X_EXT (1 << 3)
190 # define TBG_CNTRL_1_H_EXT (1 << 4)
191 # define TBG_CNTRL_1_V_EXT (1 << 5)
192 # define TBG_CNTRL_1_DWIN_DIS (1 << 6)
193 #define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */
194 #define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */
195 # define HVF_CNTRL_0_SM (1 << 7)
196 # define HVF_CNTRL_0_RWB (1 << 6)
197 # define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2)
198 # define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0)
199 #define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */
200 # define HVF_CNTRL_1_FOR (1 << 0)
201 # define HVF_CNTRL_1_YUVBLK (1 << 1)
202 # define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2)
203 # define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4)
204 # define HVF_CNTRL_1_SEMI_PLANAR (1 << 6)
205 #define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */
206 #define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */
207 # define I2S_FORMAT(x) (((x) & 3) << 0)
208 #define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */
209 # define AIP_CLKSEL_AIP_SPDIF (0 << 3)
210 # define AIP_CLKSEL_AIP_I2S (1 << 3)
211 # define AIP_CLKSEL_FS_ACLK (0 << 0)
212 # define AIP_CLKSEL_FS_MCLK (1 << 0)
213 # define AIP_CLKSEL_FS_FS64SPDIF (2 << 0)
214
215 /* Page 02h: PLL settings */
216 #define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */
217 # define PLL_SERIAL_1_SRL_FDN (1 << 0)
218 # define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1)
219 # define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6)
220 #define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */
221 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
222 # define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4)
223 #define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */
224 # define PLL_SERIAL_3_SRL_CCIR (1 << 0)
225 # define PLL_SERIAL_3_SRL_DE (1 << 2)
226 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
227 #define REG_SERIALIZER REG(0x02, 0x03) /* read/write */
228 #define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */
229 #define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */
230 #define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */
231 #define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */
232 #define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */
233 #define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */
234 #define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */
235 #define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */
236 # define AUDIO_DIV_SERCLK_1 0
237 # define AUDIO_DIV_SERCLK_2 1
238 # define AUDIO_DIV_SERCLK_4 2
239 # define AUDIO_DIV_SERCLK_8 3
240 # define AUDIO_DIV_SERCLK_16 4
241 # define AUDIO_DIV_SERCLK_32 5
242 #define REG_SEL_CLK REG(0x02, 0x11) /* read/write */
243 # define SEL_CLK_SEL_CLK1 (1 << 0)
244 # define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1)
245 # define SEL_CLK_ENA_SC_CLK (1 << 3)
246 #define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */
247
248
249 /* Page 09h: EDID Control */
250 #define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */
251 /* next 127 successive registers are the EDID block */
252 #define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */
253 #define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */
254 #define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */
255 #define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */
256 #define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */
257
258
259 /* Page 10h: information frames and packets */
260 #define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */
261 #define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */
262 #define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */
263 #define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */
264 #define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */
265
266
267 /* Page 11h: audio settings and content info packets */
268 #define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */
269 # define AIP_CNTRL_0_RST_FIFO (1 << 0)
270 # define AIP_CNTRL_0_SWAP (1 << 1)
271 # define AIP_CNTRL_0_LAYOUT (1 << 2)
272 # define AIP_CNTRL_0_ACR_MAN (1 << 5)
273 # define AIP_CNTRL_0_RST_CTS (1 << 6)
274 #define REG_CA_I2S REG(0x11, 0x01) /* read/write */
275 # define CA_I2S_CA_I2S(x) (((x) & 31) << 0)
276 # define CA_I2S_HBR_CHSTAT (1 << 6)
277 #define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */
278 #define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */
279 #define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */
280 #define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */
281 #define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */
282 #define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */
283 #define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */
284 #define REG_CTS_N REG(0x11, 0x0c) /* read/write */
285 # define CTS_N_K(x) (((x) & 7) << 0)
286 # define CTS_N_M(x) (((x) & 3) << 4)
287 #define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */
288 # define ENC_CNTRL_RST_ENC (1 << 0)
289 # define ENC_CNTRL_RST_SEL (1 << 1)
290 # define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2)
291 #define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */
292 # define DIP_FLAGS_ACR (1 << 0)
293 # define DIP_FLAGS_GC (1 << 1)
294 #define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */
295 # define DIP_IF_FLAGS_IF1 (1 << 1)
296 # define DIP_IF_FLAGS_IF2 (1 << 2)
297 # define DIP_IF_FLAGS_IF3 (1 << 3)
298 # define DIP_IF_FLAGS_IF4 (1 << 4)
299 # define DIP_IF_FLAGS_IF5 (1 << 5)
300 #define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */
301
302
303 /* Page 12h: HDCP and OTP */
304 #define REG_TX3 REG(0x12, 0x9a) /* read/write */
305 #define REG_TX4 REG(0x12, 0x9b) /* read/write */
306 # define TX4_PD_RAM (1 << 1)
307 #define REG_TX33 REG(0x12, 0xb8) /* read/write */
308 # define TX33_HDMI (1 << 1)
309
310
311 /* Page 13h: Gamut related metadata packets */
312
313
314
315 /* CEC registers: (not paged)
316 */
317 #define REG_CEC_INTSTATUS 0xee /* read */
318 # define CEC_INTSTATUS_CEC (1 << 0)
319 # define CEC_INTSTATUS_HDMI (1 << 1)
320 #define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */
321 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
322 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6)
323 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
324 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0)
325 #define REG_CEC_RXSHPDINTENA 0xfc /* read/write */
326 #define REG_CEC_RXSHPDINT 0xfd /* read */
327 #define REG_CEC_RXSHPDLEV 0xfe /* read */
328 # define CEC_RXSHPDLEV_RXSENS (1 << 0)
329 # define CEC_RXSHPDLEV_HPD (1 << 1)
330
331 #define REG_CEC_ENAMODS 0xff /* read/write */
332 # define CEC_ENAMODS_DIS_FRO (1 << 6)
333 # define CEC_ENAMODS_DIS_CCLK (1 << 5)
334 # define CEC_ENAMODS_EN_RXSENS (1 << 2)
335 # define CEC_ENAMODS_EN_HDMI (1 << 1)
336 # define CEC_ENAMODS_EN_CEC (1 << 0)
337
338
339 /* Device versions: */
340 #define TDA9989N2 0x0101
341 #define TDA19989 0x0201
342 #define TDA19989N2 0x0202
343 #define TDA19988 0x0301
344
345 static void
346 cec_write(struct tda998x_priv *priv, uint16_t addr, uint8_t val)
347 {
348 struct i2c_client *client = priv->cec;
349 uint8_t buf[] = {addr, val};
350 int ret;
351
352 ret = i2c_master_send(client, buf, sizeof(buf));
353 if (ret < 0)
354 dev_err(&client->dev, "Error %d writing to cec:0x%x\n", ret, addr);
355 }
356
357 static uint8_t
358 cec_read(struct tda998x_priv *priv, uint8_t addr)
359 {
360 struct i2c_client *client = priv->cec;
361 uint8_t val;
362 int ret;
363
364 ret = i2c_master_send(client, &addr, sizeof(addr));
365 if (ret < 0)
366 goto fail;
367
368 ret = i2c_master_recv(client, &val, sizeof(val));
369 if (ret < 0)
370 goto fail;
371
372 return val;
373
374 fail:
375 dev_err(&client->dev, "Error %d reading from cec:0x%x\n", ret, addr);
376 return 0;
377 }
378
379 static int
380 set_page(struct tda998x_priv *priv, uint16_t reg)
381 {
382 if (REG2PAGE(reg) != priv->current_page) {
383 struct i2c_client *client = priv->hdmi;
384 uint8_t buf[] = {
385 REG_CURPAGE, REG2PAGE(reg)
386 };
387 int ret = i2c_master_send(client, buf, sizeof(buf));
388 if (ret < 0) {
389 dev_err(&client->dev, "setpage %04x err %d\n",
390 reg, ret);
391 return ret;
392 }
393
394 priv->current_page = REG2PAGE(reg);
395 }
396 return 0;
397 }
398
399 static int
400 reg_read_range(struct tda998x_priv *priv, uint16_t reg, char *buf, int cnt)
401 {
402 struct i2c_client *client = priv->hdmi;
403 uint8_t addr = REG2ADDR(reg);
404 int ret;
405
406 ret = set_page(priv, reg);
407 if (ret < 0)
408 return ret;
409
410 ret = i2c_master_send(client, &addr, sizeof(addr));
411 if (ret < 0)
412 goto fail;
413
414 ret = i2c_master_recv(client, buf, cnt);
415 if (ret < 0)
416 goto fail;
417
418 return ret;
419
420 fail:
421 dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
422 return ret;
423 }
424
425 static void
426 reg_write_range(struct tda998x_priv *priv, uint16_t reg, uint8_t *p, int cnt)
427 {
428 struct i2c_client *client = priv->hdmi;
429 uint8_t buf[cnt+1];
430 int ret;
431
432 buf[0] = REG2ADDR(reg);
433 memcpy(&buf[1], p, cnt);
434
435 ret = set_page(priv, reg);
436 if (ret < 0)
437 return;
438
439 ret = i2c_master_send(client, buf, cnt + 1);
440 if (ret < 0)
441 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
442 }
443
444 static int
445 reg_read(struct tda998x_priv *priv, uint16_t reg)
446 {
447 uint8_t val = 0;
448 int ret;
449
450 ret = reg_read_range(priv, reg, &val, sizeof(val));
451 if (ret < 0)
452 return ret;
453 return val;
454 }
455
456 static void
457 reg_write(struct tda998x_priv *priv, uint16_t reg, uint8_t val)
458 {
459 struct i2c_client *client = priv->hdmi;
460 uint8_t buf[] = {REG2ADDR(reg), val};
461 int ret;
462
463 ret = set_page(priv, reg);
464 if (ret < 0)
465 return;
466
467 ret = i2c_master_send(client, buf, sizeof(buf));
468 if (ret < 0)
469 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
470 }
471
472 static void
473 reg_write16(struct tda998x_priv *priv, uint16_t reg, uint16_t val)
474 {
475 struct i2c_client *client = priv->hdmi;
476 uint8_t buf[] = {REG2ADDR(reg), val >> 8, val};
477 int ret;
478
479 ret = set_page(priv, reg);
480 if (ret < 0)
481 return;
482
483 ret = i2c_master_send(client, buf, sizeof(buf));
484 if (ret < 0)
485 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
486 }
487
488 static void
489 reg_set(struct tda998x_priv *priv, uint16_t reg, uint8_t val)
490 {
491 int old_val;
492
493 old_val = reg_read(priv, reg);
494 if (old_val >= 0)
495 reg_write(priv, reg, old_val | val);
496 }
497
498 static void
499 reg_clear(struct tda998x_priv *priv, uint16_t reg, uint8_t val)
500 {
501 int old_val;
502
503 old_val = reg_read(priv, reg);
504 if (old_val >= 0)
505 reg_write(priv, reg, old_val & ~val);
506 }
507
508 static void
509 tda998x_reset(struct tda998x_priv *priv)
510 {
511 /* reset audio and i2c master: */
512 reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
513 msleep(50);
514 reg_write(priv, REG_SOFTRESET, 0);
515 msleep(50);
516
517 /* reset transmitter: */
518 reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
519 reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
520
521 /* PLL registers common configuration */
522 reg_write(priv, REG_PLL_SERIAL_1, 0x00);
523 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
524 reg_write(priv, REG_PLL_SERIAL_3, 0x00);
525 reg_write(priv, REG_SERIALIZER, 0x00);
526 reg_write(priv, REG_BUFFER_OUT, 0x00);
527 reg_write(priv, REG_PLL_SCG1, 0x00);
528 reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8);
529 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
530 reg_write(priv, REG_PLL_SCGN1, 0xfa);
531 reg_write(priv, REG_PLL_SCGN2, 0x00);
532 reg_write(priv, REG_PLL_SCGR1, 0x5b);
533 reg_write(priv, REG_PLL_SCGR2, 0x00);
534 reg_write(priv, REG_PLL_SCG2, 0x10);
535
536 /* Write the default value MUX register */
537 reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
538 }
539
540 /*
541 * only 2 interrupts may occur: screen plug/unplug and EDID read
542 */
543 static irqreturn_t tda998x_irq_thread(int irq, void *data)
544 {
545 struct tda998x_priv *priv = data;
546 u8 sta, cec, lvl, flag0, flag1, flag2;
547
548 if (!priv)
549 return IRQ_HANDLED;
550 sta = cec_read(priv, REG_CEC_INTSTATUS);
551 cec = cec_read(priv, REG_CEC_RXSHPDINT);
552 lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
553 flag0 = reg_read(priv, REG_INT_FLAGS_0);
554 flag1 = reg_read(priv, REG_INT_FLAGS_1);
555 flag2 = reg_read(priv, REG_INT_FLAGS_2);
556 DRM_DEBUG_DRIVER(
557 "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
558 sta, cec, lvl, flag0, flag1, flag2);
559 if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
560 priv->wq_edid_wait = 0;
561 wake_up(&priv->wq_edid);
562 } else if (cec != 0) { /* HPD change */
563 if (priv->encoder && priv->encoder->dev)
564 drm_helper_hpd_irq_event(priv->encoder->dev);
565 }
566 return IRQ_HANDLED;
567 }
568
569 static uint8_t tda998x_cksum(uint8_t *buf, size_t bytes)
570 {
571 uint8_t sum = 0;
572
573 while (bytes--)
574 sum += *buf++;
575 return (255 - sum) + 1;
576 }
577
578 #define HB(x) (x)
579 #define PB(x) (HB(2) + 1 + (x))
580
581 static void
582 tda998x_write_if(struct tda998x_priv *priv, uint8_t bit, uint16_t addr,
583 uint8_t *buf, size_t size)
584 {
585 buf[PB(0)] = tda998x_cksum(buf, size);
586
587 reg_clear(priv, REG_DIP_IF_FLAGS, bit);
588 reg_write_range(priv, addr, buf, size);
589 reg_set(priv, REG_DIP_IF_FLAGS, bit);
590 }
591
592 static void
593 tda998x_write_aif(struct tda998x_priv *priv, struct tda998x_encoder_params *p)
594 {
595 u8 buf[PB(HDMI_AUDIO_INFOFRAME_SIZE) + 1];
596
597 memset(buf, 0, sizeof(buf));
598 buf[HB(0)] = HDMI_INFOFRAME_TYPE_AUDIO;
599 buf[HB(1)] = 0x01;
600 buf[HB(2)] = HDMI_AUDIO_INFOFRAME_SIZE;
601 buf[PB(1)] = p->audio_frame[1] & 0x07; /* CC */
602 buf[PB(2)] = p->audio_frame[2] & 0x1c; /* SF */
603 buf[PB(4)] = p->audio_frame[4];
604 buf[PB(5)] = p->audio_frame[5] & 0xf8; /* DM_INH + LSV */
605
606 tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, buf,
607 sizeof(buf));
608 }
609
610 static void
611 tda998x_write_avi(struct tda998x_priv *priv, struct drm_display_mode *mode)
612 {
613 u8 buf[PB(HDMI_AVI_INFOFRAME_SIZE) + 1];
614
615 memset(buf, 0, sizeof(buf));
616 buf[HB(0)] = HDMI_INFOFRAME_TYPE_AVI;
617 buf[HB(1)] = 0x02;
618 buf[HB(2)] = HDMI_AVI_INFOFRAME_SIZE;
619 buf[PB(1)] = HDMI_SCAN_MODE_UNDERSCAN;
620 buf[PB(2)] = HDMI_ACTIVE_ASPECT_PICTURE;
621 buf[PB(3)] = HDMI_QUANTIZATION_RANGE_FULL << 2;
622 buf[PB(4)] = drm_match_cea_mode(mode);
623
624 tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, buf,
625 sizeof(buf));
626 }
627
628 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
629 {
630 if (on) {
631 reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
632 reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
633 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
634 } else {
635 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
636 }
637 }
638
639 static void
640 tda998x_configure_audio(struct tda998x_priv *priv,
641 struct drm_display_mode *mode, struct tda998x_encoder_params *p)
642 {
643 uint8_t buf[6], clksel_aip, clksel_fs, cts_n, adiv;
644 uint32_t n;
645
646 /* Enable audio ports */
647 reg_write(priv, REG_ENA_AP, p->audio_cfg);
648 reg_write(priv, REG_ENA_ACLK, p->audio_clk_cfg);
649
650 /* Set audio input source */
651 switch (p->audio_format) {
652 case AFMT_SPDIF:
653 reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF);
654 clksel_aip = AIP_CLKSEL_AIP_SPDIF;
655 clksel_fs = AIP_CLKSEL_FS_FS64SPDIF;
656 cts_n = CTS_N_M(3) | CTS_N_K(3);
657 break;
658
659 case AFMT_I2S:
660 reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S);
661 clksel_aip = AIP_CLKSEL_AIP_I2S;
662 clksel_fs = AIP_CLKSEL_FS_ACLK;
663 cts_n = CTS_N_M(3) | CTS_N_K(3);
664 break;
665
666 default:
667 BUG();
668 return;
669 }
670
671 reg_write(priv, REG_AIP_CLKSEL, clksel_aip);
672 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
673 AIP_CNTRL_0_ACR_MAN); /* auto CTS */
674 reg_write(priv, REG_CTS_N, cts_n);
675
676 /*
677 * Audio input somehow depends on HDMI line rate which is
678 * related to pixclk. Testing showed that modes with pixclk
679 * >100MHz need a larger divider while <40MHz need the default.
680 * There is no detailed info in the datasheet, so we just
681 * assume 100MHz requires larger divider.
682 */
683 adiv = AUDIO_DIV_SERCLK_8;
684 if (mode->clock > 100000)
685 adiv++; /* AUDIO_DIV_SERCLK_16 */
686
687 /* S/PDIF asks for a larger divider */
688 if (p->audio_format == AFMT_SPDIF)
689 adiv++; /* AUDIO_DIV_SERCLK_16 or _32 */
690
691 reg_write(priv, REG_AUDIO_DIV, adiv);
692
693 /*
694 * This is the approximate value of N, which happens to be
695 * the recommended values for non-coherent clocks.
696 */
697 n = 128 * p->audio_sample_rate / 1000;
698
699 /* Write the CTS and N values */
700 buf[0] = 0x44;
701 buf[1] = 0x42;
702 buf[2] = 0x01;
703 buf[3] = n;
704 buf[4] = n >> 8;
705 buf[5] = n >> 16;
706 reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
707
708 /* Set CTS clock reference */
709 reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs);
710
711 /* Reset CTS generator */
712 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
713 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
714
715 /* Write the channel status */
716 buf[0] = IEC958_AES0_CON_NOT_COPYRIGHT;
717 buf[1] = 0x00;
718 buf[2] = IEC958_AES3_CON_FS_NOTID;
719 buf[3] = IEC958_AES4_CON_ORIGFS_NOTID |
720 IEC958_AES4_CON_MAX_WORDLEN_24;
721 reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
722
723 tda998x_audio_mute(priv, true);
724 msleep(20);
725 tda998x_audio_mute(priv, false);
726
727 /* Write the audio information packet */
728 tda998x_write_aif(priv, p);
729 }
730
731 /* DRM encoder functions */
732
733 static void
734 tda998x_encoder_set_config(struct drm_encoder *encoder, void *params)
735 {
736 struct tda998x_priv *priv = to_tda998x_priv(encoder);
737 struct tda998x_encoder_params *p = params;
738
739 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
740 (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
741 VIP_CNTRL_0_SWAP_B(p->swap_b) |
742 (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
743 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
744 (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
745 VIP_CNTRL_1_SWAP_D(p->swap_d) |
746 (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
747 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
748 (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
749 VIP_CNTRL_2_SWAP_F(p->swap_f) |
750 (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
751
752 priv->params = *p;
753 }
754
755 static void
756 tda998x_encoder_dpms(struct drm_encoder *encoder, int mode)
757 {
758 struct tda998x_priv *priv = to_tda998x_priv(encoder);
759
760 /* we only care about on or off: */
761 if (mode != DRM_MODE_DPMS_ON)
762 mode = DRM_MODE_DPMS_OFF;
763
764 if (mode == priv->dpms)
765 return;
766
767 switch (mode) {
768 case DRM_MODE_DPMS_ON:
769 /* enable video ports, audio will be enabled later */
770 reg_write(priv, REG_ENA_VP_0, 0xff);
771 reg_write(priv, REG_ENA_VP_1, 0xff);
772 reg_write(priv, REG_ENA_VP_2, 0xff);
773 /* set muxing after enabling ports: */
774 reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
775 reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
776 reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
777 break;
778 case DRM_MODE_DPMS_OFF:
779 /* disable video ports */
780 reg_write(priv, REG_ENA_VP_0, 0x00);
781 reg_write(priv, REG_ENA_VP_1, 0x00);
782 reg_write(priv, REG_ENA_VP_2, 0x00);
783 break;
784 }
785
786 priv->dpms = mode;
787 }
788
789 static void
790 tda998x_encoder_save(struct drm_encoder *encoder)
791 {
792 DBG("");
793 }
794
795 static void
796 tda998x_encoder_restore(struct drm_encoder *encoder)
797 {
798 DBG("");
799 }
800
801 static bool
802 tda998x_encoder_mode_fixup(struct drm_encoder *encoder,
803 const struct drm_display_mode *mode,
804 struct drm_display_mode *adjusted_mode)
805 {
806 return true;
807 }
808
809 static int
810 tda998x_encoder_mode_valid(struct drm_encoder *encoder,
811 struct drm_display_mode *mode)
812 {
813 return MODE_OK;
814 }
815
816 static void
817 tda998x_encoder_mode_set(struct drm_encoder *encoder,
818 struct drm_display_mode *mode,
819 struct drm_display_mode *adjusted_mode)
820 {
821 struct tda998x_priv *priv = to_tda998x_priv(encoder);
822 uint16_t ref_pix, ref_line, n_pix, n_line;
823 uint16_t hs_pix_s, hs_pix_e;
824 uint16_t vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
825 uint16_t vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
826 uint16_t vwin1_line_s, vwin1_line_e;
827 uint16_t vwin2_line_s, vwin2_line_e;
828 uint16_t de_pix_s, de_pix_e;
829 uint8_t reg, div, rep;
830
831 /*
832 * Internally TDA998x is using ITU-R BT.656 style sync but
833 * we get VESA style sync. TDA998x is using a reference pixel
834 * relative to ITU to sync to the input frame and for output
835 * sync generation. Currently, we are using reference detection
836 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
837 * which is position of rising VS with coincident rising HS.
838 *
839 * Now there is some issues to take care of:
840 * - HDMI data islands require sync-before-active
841 * - TDA998x register values must be > 0 to be enabled
842 * - REFLINE needs an additional offset of +1
843 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
844 *
845 * So we add +1 to all horizontal and vertical register values,
846 * plus an additional +3 for REFPIX as we are using RGB input only.
847 */
848 n_pix = mode->htotal;
849 n_line = mode->vtotal;
850
851 hs_pix_e = mode->hsync_end - mode->hdisplay;
852 hs_pix_s = mode->hsync_start - mode->hdisplay;
853 de_pix_e = mode->htotal;
854 de_pix_s = mode->htotal - mode->hdisplay;
855 ref_pix = 3 + hs_pix_s;
856
857 /*
858 * Attached LCD controllers may generate broken sync. Allow
859 * those to adjust the position of the rising VS edge by adding
860 * HSKEW to ref_pix.
861 */
862 if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
863 ref_pix += adjusted_mode->hskew;
864
865 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
866 ref_line = 1 + mode->vsync_start - mode->vdisplay;
867 vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
868 vwin1_line_e = vwin1_line_s + mode->vdisplay;
869 vs1_pix_s = vs1_pix_e = hs_pix_s;
870 vs1_line_s = mode->vsync_start - mode->vdisplay;
871 vs1_line_e = vs1_line_s +
872 mode->vsync_end - mode->vsync_start;
873 vwin2_line_s = vwin2_line_e = 0;
874 vs2_pix_s = vs2_pix_e = 0;
875 vs2_line_s = vs2_line_e = 0;
876 } else {
877 ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2;
878 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
879 vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
880 vs1_pix_s = vs1_pix_e = hs_pix_s;
881 vs1_line_s = (mode->vsync_start - mode->vdisplay)/2;
882 vs1_line_e = vs1_line_s +
883 (mode->vsync_end - mode->vsync_start)/2;
884 vwin2_line_s = vwin1_line_s + mode->vtotal/2;
885 vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
886 vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2;
887 vs2_line_s = vs1_line_s + mode->vtotal/2 ;
888 vs2_line_e = vs2_line_s +
889 (mode->vsync_end - mode->vsync_start)/2;
890 }
891
892 div = 148500 / mode->clock;
893 if (div != 0) {
894 div--;
895 if (div > 3)
896 div = 3;
897 }
898
899 /* mute the audio FIFO: */
900 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
901
902 /* set HDMI HDCP mode off: */
903 reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
904 reg_clear(priv, REG_TX33, TX33_HDMI);
905 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
906
907 /* no pre-filter or interpolator: */
908 reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
909 HVF_CNTRL_0_INTPOL(0));
910 reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
911 reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
912 VIP_CNTRL_4_BLC(0));
913
914 reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
915 reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
916 PLL_SERIAL_3_SRL_DE);
917 reg_write(priv, REG_SERIALIZER, 0);
918 reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
919
920 /* TODO enable pixel repeat for pixel rates less than 25Msamp/s */
921 rep = 0;
922 reg_write(priv, REG_RPT_CNTRL, 0);
923 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) |
924 SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
925
926 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
927 PLL_SERIAL_2_SRL_PR(rep));
928
929 /* set color matrix bypass flag: */
930 reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
931 MAT_CONTRL_MAT_SC(1));
932
933 /* set BIAS tmds value: */
934 reg_write(priv, REG_ANA_GENERAL, 0x09);
935
936 /*
937 * Sync on rising HSYNC/VSYNC
938 */
939 reg = VIP_CNTRL_3_SYNC_HS;
940
941 /*
942 * TDA19988 requires high-active sync at input stage,
943 * so invert low-active sync provided by master encoder here
944 */
945 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
946 reg |= VIP_CNTRL_3_H_TGL;
947 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
948 reg |= VIP_CNTRL_3_V_TGL;
949 reg_write(priv, REG_VIP_CNTRL_3, reg);
950
951 reg_write(priv, REG_VIDFORMAT, 0x00);
952 reg_write16(priv, REG_REFPIX_MSB, ref_pix);
953 reg_write16(priv, REG_REFLINE_MSB, ref_line);
954 reg_write16(priv, REG_NPIX_MSB, n_pix);
955 reg_write16(priv, REG_NLINE_MSB, n_line);
956 reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
957 reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
958 reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
959 reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
960 reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
961 reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
962 reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
963 reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
964 reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
965 reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
966 reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
967 reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
968 reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
969 reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
970 reg_write16(priv, REG_DE_START_MSB, de_pix_s);
971 reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
972
973 if (priv->rev == TDA19988) {
974 /* let incoming pixels fill the active space (if any) */
975 reg_write(priv, REG_ENABLE_SPACE, 0x00);
976 }
977
978 /*
979 * Always generate sync polarity relative to input sync and
980 * revert input stage toggled sync at output stage
981 */
982 reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
983 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
984 reg |= TBG_CNTRL_1_H_TGL;
985 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
986 reg |= TBG_CNTRL_1_V_TGL;
987 reg_write(priv, REG_TBG_CNTRL_1, reg);
988
989 /* must be last register set: */
990 reg_write(priv, REG_TBG_CNTRL_0, 0);
991
992 /* Only setup the info frames if the sink is HDMI */
993 if (priv->is_hdmi_sink) {
994 /* We need to turn HDMI HDCP stuff on to get audio through */
995 reg &= ~TBG_CNTRL_1_DWIN_DIS;
996 reg_write(priv, REG_TBG_CNTRL_1, reg);
997 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
998 reg_set(priv, REG_TX33, TX33_HDMI);
999
1000 tda998x_write_avi(priv, adjusted_mode);
1001
1002 if (priv->params.audio_cfg)
1003 tda998x_configure_audio(priv, adjusted_mode,
1004 &priv->params);
1005 }
1006 }
1007
1008 static enum drm_connector_status
1009 tda998x_encoder_detect(struct drm_encoder *encoder,
1010 struct drm_connector *connector)
1011 {
1012 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1013 uint8_t val = cec_read(priv, REG_CEC_RXSHPDLEV);
1014
1015 return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1016 connector_status_disconnected;
1017 }
1018
1019 static int
1020 read_edid_block(struct drm_encoder *encoder, uint8_t *buf, int blk)
1021 {
1022 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1023 uint8_t offset, segptr;
1024 int ret, i;
1025
1026 offset = (blk & 1) ? 128 : 0;
1027 segptr = blk / 2;
1028
1029 reg_write(priv, REG_DDC_ADDR, 0xa0);
1030 reg_write(priv, REG_DDC_OFFS, offset);
1031 reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1032 reg_write(priv, REG_DDC_SEGM, segptr);
1033
1034 /* enable reading EDID: */
1035 priv->wq_edid_wait = 1;
1036 reg_write(priv, REG_EDID_CTRL, 0x1);
1037
1038 /* flag must be cleared by sw: */
1039 reg_write(priv, REG_EDID_CTRL, 0x0);
1040
1041 /* wait for block read to complete: */
1042 if (priv->hdmi->irq) {
1043 i = wait_event_timeout(priv->wq_edid,
1044 !priv->wq_edid_wait,
1045 msecs_to_jiffies(100));
1046 if (i < 0) {
1047 dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1048 return i;
1049 }
1050 } else {
1051 for (i = 10; i > 0; i--) {
1052 msleep(10);
1053 ret = reg_read(priv, REG_INT_FLAGS_2);
1054 if (ret < 0)
1055 return ret;
1056 if (ret & INT_FLAGS_2_EDID_BLK_RD)
1057 break;
1058 }
1059 }
1060
1061 if (i == 0) {
1062 dev_err(&priv->hdmi->dev, "read edid timeout\n");
1063 return -ETIMEDOUT;
1064 }
1065
1066 ret = reg_read_range(priv, REG_EDID_DATA_0, buf, EDID_LENGTH);
1067 if (ret != EDID_LENGTH) {
1068 dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1069 blk, ret);
1070 return ret;
1071 }
1072
1073 return 0;
1074 }
1075
1076 static uint8_t *
1077 do_get_edid(struct drm_encoder *encoder)
1078 {
1079 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1080 int j, valid_extensions = 0;
1081 uint8_t *block, *new;
1082 bool print_bad_edid = drm_debug & DRM_UT_KMS;
1083
1084 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1085 return NULL;
1086
1087 if (priv->rev == TDA19988)
1088 reg_clear(priv, REG_TX4, TX4_PD_RAM);
1089
1090 /* base block fetch */
1091 if (read_edid_block(encoder, block, 0))
1092 goto fail;
1093
1094 if (!drm_edid_block_valid(block, 0, print_bad_edid))
1095 goto fail;
1096
1097 /* if there's no extensions, we're done */
1098 if (block[0x7e] == 0)
1099 goto done;
1100
1101 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1102 if (!new)
1103 goto fail;
1104 block = new;
1105
1106 for (j = 1; j <= block[0x7e]; j++) {
1107 uint8_t *ext_block = block + (valid_extensions + 1) * EDID_LENGTH;
1108 if (read_edid_block(encoder, ext_block, j))
1109 goto fail;
1110
1111 if (!drm_edid_block_valid(ext_block, j, print_bad_edid))
1112 goto fail;
1113
1114 valid_extensions++;
1115 }
1116
1117 if (valid_extensions != block[0x7e]) {
1118 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1119 block[0x7e] = valid_extensions;
1120 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1121 if (!new)
1122 goto fail;
1123 block = new;
1124 }
1125
1126 done:
1127 if (priv->rev == TDA19988)
1128 reg_set(priv, REG_TX4, TX4_PD_RAM);
1129
1130 return block;
1131
1132 fail:
1133 if (priv->rev == TDA19988)
1134 reg_set(priv, REG_TX4, TX4_PD_RAM);
1135 dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1136 kfree(block);
1137 return NULL;
1138 }
1139
1140 static int
1141 tda998x_encoder_get_modes(struct drm_encoder *encoder,
1142 struct drm_connector *connector)
1143 {
1144 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1145 struct edid *edid = (struct edid *)do_get_edid(encoder);
1146 int n = 0;
1147
1148 if (edid) {
1149 drm_mode_connector_update_edid_property(connector, edid);
1150 n = drm_add_edid_modes(connector, edid);
1151 priv->is_hdmi_sink = drm_detect_hdmi_monitor(edid);
1152 kfree(edid);
1153 }
1154
1155 return n;
1156 }
1157
1158 static int
1159 tda998x_encoder_create_resources(struct drm_encoder *encoder,
1160 struct drm_connector *connector)
1161 {
1162 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1163
1164 if (priv->hdmi->irq)
1165 connector->polled = DRM_CONNECTOR_POLL_HPD;
1166 else
1167 connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1168 DRM_CONNECTOR_POLL_DISCONNECT;
1169 return 0;
1170 }
1171
1172 static int
1173 tda998x_encoder_set_property(struct drm_encoder *encoder,
1174 struct drm_connector *connector,
1175 struct drm_property *property,
1176 uint64_t val)
1177 {
1178 DBG("");
1179 return 0;
1180 }
1181
1182 static void
1183 tda998x_encoder_destroy(struct drm_encoder *encoder)
1184 {
1185 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1186 drm_i2c_encoder_destroy(encoder);
1187
1188 /* disable all IRQs and free the IRQ handler */
1189 cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1190 reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1191 if (priv->hdmi->irq)
1192 free_irq(priv->hdmi->irq, priv);
1193
1194 if (priv->cec)
1195 i2c_unregister_device(priv->cec);
1196 kfree(priv);
1197 }
1198
1199 static struct drm_encoder_slave_funcs tda998x_encoder_funcs = {
1200 .set_config = tda998x_encoder_set_config,
1201 .destroy = tda998x_encoder_destroy,
1202 .dpms = tda998x_encoder_dpms,
1203 .save = tda998x_encoder_save,
1204 .restore = tda998x_encoder_restore,
1205 .mode_fixup = tda998x_encoder_mode_fixup,
1206 .mode_valid = tda998x_encoder_mode_valid,
1207 .mode_set = tda998x_encoder_mode_set,
1208 .detect = tda998x_encoder_detect,
1209 .get_modes = tda998x_encoder_get_modes,
1210 .create_resources = tda998x_encoder_create_resources,
1211 .set_property = tda998x_encoder_set_property,
1212 };
1213
1214 /* I2C driver functions */
1215
1216 static int
1217 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
1218 {
1219 return 0;
1220 }
1221
1222 static int
1223 tda998x_remove(struct i2c_client *client)
1224 {
1225 return 0;
1226 }
1227
1228 static int
1229 tda998x_encoder_init(struct i2c_client *client,
1230 struct drm_device *dev,
1231 struct drm_encoder_slave *encoder_slave)
1232 {
1233 struct tda998x_priv *priv;
1234 struct device_node *np = client->dev.of_node;
1235 u32 video;
1236 int rev_lo, rev_hi, ret;
1237
1238 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1239 if (!priv)
1240 return -ENOMEM;
1241
1242 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1243 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1244 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1245
1246 priv->current_page = 0xff;
1247 priv->hdmi = client;
1248 priv->cec = i2c_new_dummy(client->adapter, 0x34);
1249 if (!priv->cec) {
1250 kfree(priv);
1251 return -ENODEV;
1252 }
1253
1254 priv->encoder = &encoder_slave->base;
1255 priv->dpms = DRM_MODE_DPMS_OFF;
1256
1257 encoder_slave->slave_priv = priv;
1258 encoder_slave->slave_funcs = &tda998x_encoder_funcs;
1259
1260 /* wake up the device: */
1261 cec_write(priv, REG_CEC_ENAMODS,
1262 CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1263
1264 tda998x_reset(priv);
1265
1266 /* read version: */
1267 rev_lo = reg_read(priv, REG_VERSION_LSB);
1268 rev_hi = reg_read(priv, REG_VERSION_MSB);
1269 if (rev_lo < 0 || rev_hi < 0) {
1270 ret = rev_lo < 0 ? rev_lo : rev_hi;
1271 goto fail;
1272 }
1273
1274 priv->rev = rev_lo | rev_hi << 8;
1275
1276 /* mask off feature bits: */
1277 priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1278
1279 switch (priv->rev) {
1280 case TDA9989N2:
1281 dev_info(&client->dev, "found TDA9989 n2");
1282 break;
1283 case TDA19989:
1284 dev_info(&client->dev, "found TDA19989");
1285 break;
1286 case TDA19989N2:
1287 dev_info(&client->dev, "found TDA19989 n2");
1288 break;
1289 case TDA19988:
1290 dev_info(&client->dev, "found TDA19988");
1291 break;
1292 default:
1293 dev_err(&client->dev, "found unsupported device: %04x\n",
1294 priv->rev);
1295 goto fail;
1296 }
1297
1298 /* after reset, enable DDC: */
1299 reg_write(priv, REG_DDC_DISABLE, 0x00);
1300
1301 /* set clock on DDC channel: */
1302 reg_write(priv, REG_TX3, 39);
1303
1304 /* if necessary, disable multi-master: */
1305 if (priv->rev == TDA19989)
1306 reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1307
1308 cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1309 CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1310
1311 /* initialize the optional IRQ */
1312 if (client->irq) {
1313 int irqf_trigger;
1314
1315 /* init read EDID waitqueue */
1316 init_waitqueue_head(&priv->wq_edid);
1317
1318 /* clear pending interrupts */
1319 reg_read(priv, REG_INT_FLAGS_0);
1320 reg_read(priv, REG_INT_FLAGS_1);
1321 reg_read(priv, REG_INT_FLAGS_2);
1322
1323 irqf_trigger =
1324 irqd_get_trigger_type(irq_get_irq_data(client->irq));
1325 ret = request_threaded_irq(client->irq, NULL,
1326 tda998x_irq_thread,
1327 irqf_trigger | IRQF_ONESHOT,
1328 "tda998x", priv);
1329 if (ret) {
1330 dev_err(&client->dev,
1331 "failed to request IRQ#%u: %d\n",
1332 client->irq, ret);
1333 goto fail;
1334 }
1335
1336 /* enable HPD irq */
1337 cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1338 }
1339
1340 /* enable EDID read irq: */
1341 reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1342
1343 if (!np)
1344 return 0; /* non-DT */
1345
1346 /* get the optional video properties */
1347 ret = of_property_read_u32(np, "video-ports", &video);
1348 if (ret == 0) {
1349 priv->vip_cntrl_0 = video >> 16;
1350 priv->vip_cntrl_1 = video >> 8;
1351 priv->vip_cntrl_2 = video;
1352 }
1353
1354 return 0;
1355
1356 fail:
1357 /* if encoder_init fails, the encoder slave is never registered,
1358 * so cleanup here:
1359 */
1360 if (priv->cec)
1361 i2c_unregister_device(priv->cec);
1362 kfree(priv);
1363 encoder_slave->slave_priv = NULL;
1364 encoder_slave->slave_funcs = NULL;
1365 return -ENXIO;
1366 }
1367
1368 #ifdef CONFIG_OF
1369 static const struct of_device_id tda998x_dt_ids[] = {
1370 { .compatible = "nxp,tda998x", },
1371 { }
1372 };
1373 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
1374 #endif
1375
1376 static struct i2c_device_id tda998x_ids[] = {
1377 { "tda998x", 0 },
1378 { }
1379 };
1380 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
1381
1382 static struct drm_i2c_encoder_driver tda998x_driver = {
1383 .i2c_driver = {
1384 .probe = tda998x_probe,
1385 .remove = tda998x_remove,
1386 .driver = {
1387 .name = "tda998x",
1388 .of_match_table = of_match_ptr(tda998x_dt_ids),
1389 },
1390 .id_table = tda998x_ids,
1391 },
1392 .encoder_init = tda998x_encoder_init,
1393 };
1394
1395 /* Module initialization */
1396
1397 static int __init
1398 tda998x_init(void)
1399 {
1400 DBG("");
1401 return drm_i2c_encoder_register(THIS_MODULE, &tda998x_driver);
1402 }
1403
1404 static void __exit
1405 tda998x_exit(void)
1406 {
1407 DBG("");
1408 drm_i2c_encoder_unregister(&tda998x_driver);
1409 }
1410
1411 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
1412 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
1413 MODULE_LICENSE("GPL");
1414
1415 module_init(tda998x_init);
1416 module_exit(tda998x_exit);
This page took 0.110497 seconds and 5 git commands to generate.