drm/i915: kill struct i915_package_c8
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51 return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55 * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 struct dentry *ent,
59 const void *key)
60 {
61 struct drm_info_node *node;
62
63 node = kmalloc(sizeof(*node), GFP_KERNEL);
64 if (node == NULL) {
65 debugfs_remove(ent);
66 return -ENOMEM;
67 }
68
69 node->minor = minor;
70 node->dent = ent;
71 node->info_ent = (void *) key;
72
73 mutex_lock(&minor->debugfs_lock);
74 list_add(&node->list, &minor->debugfs_list);
75 mutex_unlock(&minor->debugfs_lock);
76
77 return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 struct drm_info_node *node = (struct drm_info_node *) m->private;
83 struct drm_device *dev = node->minor->dev;
84 const struct intel_device_info *info = INTEL_INFO(dev);
85
86 seq_printf(m, "gen: %d\n", info->gen);
87 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94 return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 if (obj->user_pin_count > 0)
100 return "P";
101 else if (i915_gem_obj_is_pinned(obj))
102 return "p";
103 else
104 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109 switch (obj->tiling_mode) {
110 default:
111 case I915_TILING_NONE: return " ";
112 case I915_TILING_X: return "X";
113 case I915_TILING_Y: return "Y";
114 }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119 return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125 struct i915_vma *vma;
126 int pin_count = 0;
127
128 seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129 &obj->base,
130 get_pin_flag(obj),
131 get_tiling_flag(obj),
132 get_global_flag(obj),
133 obj->base.size / 1024,
134 obj->base.read_domains,
135 obj->base.write_domain,
136 obj->last_read_seqno,
137 obj->last_write_seqno,
138 obj->last_fenced_seqno,
139 i915_cache_level_str(obj->cache_level),
140 obj->dirty ? " dirty" : "",
141 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142 if (obj->base.name)
143 seq_printf(m, " (name: %d)", obj->base.name);
144 list_for_each_entry(vma, &obj->vma_list, vma_link)
145 if (vma->pin_count > 0)
146 pin_count++;
147 seq_printf(m, " (pinned x %d)", pin_count);
148 if (obj->pin_display)
149 seq_printf(m, " (display)");
150 if (obj->fence_reg != I915_FENCE_REG_NONE)
151 seq_printf(m, " (fence: %d)", obj->fence_reg);
152 list_for_each_entry(vma, &obj->vma_list, vma_link) {
153 if (!i915_is_ggtt(vma->vm))
154 seq_puts(m, " (pp");
155 else
156 seq_puts(m, " (g");
157 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158 vma->node.start, vma->node.size);
159 }
160 if (obj->stolen)
161 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162 if (obj->pin_mappable || obj->fault_mappable) {
163 char s[3], *t = s;
164 if (obj->pin_mappable)
165 *t++ = 'p';
166 if (obj->fault_mappable)
167 *t++ = 'f';
168 *t = '\0';
169 seq_printf(m, " (%s mappable)", s);
170 }
171 if (obj->ring != NULL)
172 seq_printf(m, " (%s)", obj->ring->name);
173 }
174
175 static void describe_ctx(struct seq_file *m, struct i915_hw_context *ctx)
176 {
177 seq_putc(m, ctx->is_initialized ? 'I' : 'i');
178 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
179 seq_putc(m, ' ');
180 }
181
182 static int i915_gem_object_list_info(struct seq_file *m, void *data)
183 {
184 struct drm_info_node *node = (struct drm_info_node *) m->private;
185 uintptr_t list = (uintptr_t) node->info_ent->data;
186 struct list_head *head;
187 struct drm_device *dev = node->minor->dev;
188 struct drm_i915_private *dev_priv = dev->dev_private;
189 struct i915_address_space *vm = &dev_priv->gtt.base;
190 struct i915_vma *vma;
191 size_t total_obj_size, total_gtt_size;
192 int count, ret;
193
194 ret = mutex_lock_interruptible(&dev->struct_mutex);
195 if (ret)
196 return ret;
197
198 /* FIXME: the user of this interface might want more than just GGTT */
199 switch (list) {
200 case ACTIVE_LIST:
201 seq_puts(m, "Active:\n");
202 head = &vm->active_list;
203 break;
204 case INACTIVE_LIST:
205 seq_puts(m, "Inactive:\n");
206 head = &vm->inactive_list;
207 break;
208 default:
209 mutex_unlock(&dev->struct_mutex);
210 return -EINVAL;
211 }
212
213 total_obj_size = total_gtt_size = count = 0;
214 list_for_each_entry(vma, head, mm_list) {
215 seq_printf(m, " ");
216 describe_obj(m, vma->obj);
217 seq_printf(m, "\n");
218 total_obj_size += vma->obj->base.size;
219 total_gtt_size += vma->node.size;
220 count++;
221 }
222 mutex_unlock(&dev->struct_mutex);
223
224 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
225 count, total_obj_size, total_gtt_size);
226 return 0;
227 }
228
229 static int obj_rank_by_stolen(void *priv,
230 struct list_head *A, struct list_head *B)
231 {
232 struct drm_i915_gem_object *a =
233 container_of(A, struct drm_i915_gem_object, obj_exec_link);
234 struct drm_i915_gem_object *b =
235 container_of(B, struct drm_i915_gem_object, obj_exec_link);
236
237 return a->stolen->start - b->stolen->start;
238 }
239
240 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
241 {
242 struct drm_info_node *node = (struct drm_info_node *) m->private;
243 struct drm_device *dev = node->minor->dev;
244 struct drm_i915_private *dev_priv = dev->dev_private;
245 struct drm_i915_gem_object *obj;
246 size_t total_obj_size, total_gtt_size;
247 LIST_HEAD(stolen);
248 int count, ret;
249
250 ret = mutex_lock_interruptible(&dev->struct_mutex);
251 if (ret)
252 return ret;
253
254 total_obj_size = total_gtt_size = count = 0;
255 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
256 if (obj->stolen == NULL)
257 continue;
258
259 list_add(&obj->obj_exec_link, &stolen);
260
261 total_obj_size += obj->base.size;
262 total_gtt_size += i915_gem_obj_ggtt_size(obj);
263 count++;
264 }
265 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
266 if (obj->stolen == NULL)
267 continue;
268
269 list_add(&obj->obj_exec_link, &stolen);
270
271 total_obj_size += obj->base.size;
272 count++;
273 }
274 list_sort(NULL, &stolen, obj_rank_by_stolen);
275 seq_puts(m, "Stolen:\n");
276 while (!list_empty(&stolen)) {
277 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
278 seq_puts(m, " ");
279 describe_obj(m, obj);
280 seq_putc(m, '\n');
281 list_del_init(&obj->obj_exec_link);
282 }
283 mutex_unlock(&dev->struct_mutex);
284
285 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
286 count, total_obj_size, total_gtt_size);
287 return 0;
288 }
289
290 #define count_objects(list, member) do { \
291 list_for_each_entry(obj, list, member) { \
292 size += i915_gem_obj_ggtt_size(obj); \
293 ++count; \
294 if (obj->map_and_fenceable) { \
295 mappable_size += i915_gem_obj_ggtt_size(obj); \
296 ++mappable_count; \
297 } \
298 } \
299 } while (0)
300
301 struct file_stats {
302 int count;
303 size_t total, active, inactive, unbound;
304 };
305
306 static int per_file_stats(int id, void *ptr, void *data)
307 {
308 struct drm_i915_gem_object *obj = ptr;
309 struct file_stats *stats = data;
310
311 stats->count++;
312 stats->total += obj->base.size;
313
314 if (i915_gem_obj_ggtt_bound(obj)) {
315 if (!list_empty(&obj->ring_list))
316 stats->active += obj->base.size;
317 else
318 stats->inactive += obj->base.size;
319 } else {
320 if (!list_empty(&obj->global_list))
321 stats->unbound += obj->base.size;
322 }
323
324 return 0;
325 }
326
327 #define count_vmas(list, member) do { \
328 list_for_each_entry(vma, list, member) { \
329 size += i915_gem_obj_ggtt_size(vma->obj); \
330 ++count; \
331 if (vma->obj->map_and_fenceable) { \
332 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
333 ++mappable_count; \
334 } \
335 } \
336 } while (0)
337
338 static int i915_gem_object_info(struct seq_file *m, void* data)
339 {
340 struct drm_info_node *node = (struct drm_info_node *) m->private;
341 struct drm_device *dev = node->minor->dev;
342 struct drm_i915_private *dev_priv = dev->dev_private;
343 u32 count, mappable_count, purgeable_count;
344 size_t size, mappable_size, purgeable_size;
345 struct drm_i915_gem_object *obj;
346 struct i915_address_space *vm = &dev_priv->gtt.base;
347 struct drm_file *file;
348 struct i915_vma *vma;
349 int ret;
350
351 ret = mutex_lock_interruptible(&dev->struct_mutex);
352 if (ret)
353 return ret;
354
355 seq_printf(m, "%u objects, %zu bytes\n",
356 dev_priv->mm.object_count,
357 dev_priv->mm.object_memory);
358
359 size = count = mappable_size = mappable_count = 0;
360 count_objects(&dev_priv->mm.bound_list, global_list);
361 seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
362 count, mappable_count, size, mappable_size);
363
364 size = count = mappable_size = mappable_count = 0;
365 count_vmas(&vm->active_list, mm_list);
366 seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
367 count, mappable_count, size, mappable_size);
368
369 size = count = mappable_size = mappable_count = 0;
370 count_vmas(&vm->inactive_list, mm_list);
371 seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
372 count, mappable_count, size, mappable_size);
373
374 size = count = purgeable_size = purgeable_count = 0;
375 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
376 size += obj->base.size, ++count;
377 if (obj->madv == I915_MADV_DONTNEED)
378 purgeable_size += obj->base.size, ++purgeable_count;
379 }
380 seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
381
382 size = count = mappable_size = mappable_count = 0;
383 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
384 if (obj->fault_mappable) {
385 size += i915_gem_obj_ggtt_size(obj);
386 ++count;
387 }
388 if (obj->pin_mappable) {
389 mappable_size += i915_gem_obj_ggtt_size(obj);
390 ++mappable_count;
391 }
392 if (obj->madv == I915_MADV_DONTNEED) {
393 purgeable_size += obj->base.size;
394 ++purgeable_count;
395 }
396 }
397 seq_printf(m, "%u purgeable objects, %zu bytes\n",
398 purgeable_count, purgeable_size);
399 seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
400 mappable_count, mappable_size);
401 seq_printf(m, "%u fault mappable objects, %zu bytes\n",
402 count, size);
403
404 seq_printf(m, "%zu [%lu] gtt total\n",
405 dev_priv->gtt.base.total,
406 dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
407
408 seq_putc(m, '\n');
409 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
410 struct file_stats stats;
411 struct task_struct *task;
412
413 memset(&stats, 0, sizeof(stats));
414 idr_for_each(&file->object_idr, per_file_stats, &stats);
415 /*
416 * Although we have a valid reference on file->pid, that does
417 * not guarantee that the task_struct who called get_pid() is
418 * still alive (e.g. get_pid(current) => fork() => exit()).
419 * Therefore, we need to protect this ->comm access using RCU.
420 */
421 rcu_read_lock();
422 task = pid_task(file->pid, PIDTYPE_PID);
423 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu unbound)\n",
424 task ? task->comm : "<unknown>",
425 stats.count,
426 stats.total,
427 stats.active,
428 stats.inactive,
429 stats.unbound);
430 rcu_read_unlock();
431 }
432
433 mutex_unlock(&dev->struct_mutex);
434
435 return 0;
436 }
437
438 static int i915_gem_gtt_info(struct seq_file *m, void *data)
439 {
440 struct drm_info_node *node = (struct drm_info_node *) m->private;
441 struct drm_device *dev = node->minor->dev;
442 uintptr_t list = (uintptr_t) node->info_ent->data;
443 struct drm_i915_private *dev_priv = dev->dev_private;
444 struct drm_i915_gem_object *obj;
445 size_t total_obj_size, total_gtt_size;
446 int count, ret;
447
448 ret = mutex_lock_interruptible(&dev->struct_mutex);
449 if (ret)
450 return ret;
451
452 total_obj_size = total_gtt_size = count = 0;
453 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
454 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
455 continue;
456
457 seq_puts(m, " ");
458 describe_obj(m, obj);
459 seq_putc(m, '\n');
460 total_obj_size += obj->base.size;
461 total_gtt_size += i915_gem_obj_ggtt_size(obj);
462 count++;
463 }
464
465 mutex_unlock(&dev->struct_mutex);
466
467 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
468 count, total_obj_size, total_gtt_size);
469
470 return 0;
471 }
472
473 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
474 {
475 struct drm_info_node *node = (struct drm_info_node *) m->private;
476 struct drm_device *dev = node->minor->dev;
477 unsigned long flags;
478 struct intel_crtc *crtc;
479
480 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
481 const char pipe = pipe_name(crtc->pipe);
482 const char plane = plane_name(crtc->plane);
483 struct intel_unpin_work *work;
484
485 spin_lock_irqsave(&dev->event_lock, flags);
486 work = crtc->unpin_work;
487 if (work == NULL) {
488 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
489 pipe, plane);
490 } else {
491 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
492 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
493 pipe, plane);
494 } else {
495 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
496 pipe, plane);
497 }
498 if (work->enable_stall_check)
499 seq_puts(m, "Stall check enabled, ");
500 else
501 seq_puts(m, "Stall check waiting for page flip ioctl, ");
502 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
503
504 if (work->old_fb_obj) {
505 struct drm_i915_gem_object *obj = work->old_fb_obj;
506 if (obj)
507 seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
508 i915_gem_obj_ggtt_offset(obj));
509 }
510 if (work->pending_flip_obj) {
511 struct drm_i915_gem_object *obj = work->pending_flip_obj;
512 if (obj)
513 seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
514 i915_gem_obj_ggtt_offset(obj));
515 }
516 }
517 spin_unlock_irqrestore(&dev->event_lock, flags);
518 }
519
520 return 0;
521 }
522
523 static int i915_gem_request_info(struct seq_file *m, void *data)
524 {
525 struct drm_info_node *node = (struct drm_info_node *) m->private;
526 struct drm_device *dev = node->minor->dev;
527 drm_i915_private_t *dev_priv = dev->dev_private;
528 struct intel_ring_buffer *ring;
529 struct drm_i915_gem_request *gem_request;
530 int ret, count, i;
531
532 ret = mutex_lock_interruptible(&dev->struct_mutex);
533 if (ret)
534 return ret;
535
536 count = 0;
537 for_each_ring(ring, dev_priv, i) {
538 if (list_empty(&ring->request_list))
539 continue;
540
541 seq_printf(m, "%s requests:\n", ring->name);
542 list_for_each_entry(gem_request,
543 &ring->request_list,
544 list) {
545 seq_printf(m, " %d @ %d\n",
546 gem_request->seqno,
547 (int) (jiffies - gem_request->emitted_jiffies));
548 }
549 count++;
550 }
551 mutex_unlock(&dev->struct_mutex);
552
553 if (count == 0)
554 seq_puts(m, "No requests\n");
555
556 return 0;
557 }
558
559 static void i915_ring_seqno_info(struct seq_file *m,
560 struct intel_ring_buffer *ring)
561 {
562 if (ring->get_seqno) {
563 seq_printf(m, "Current sequence (%s): %u\n",
564 ring->name, ring->get_seqno(ring, false));
565 }
566 }
567
568 static int i915_gem_seqno_info(struct seq_file *m, void *data)
569 {
570 struct drm_info_node *node = (struct drm_info_node *) m->private;
571 struct drm_device *dev = node->minor->dev;
572 drm_i915_private_t *dev_priv = dev->dev_private;
573 struct intel_ring_buffer *ring;
574 int ret, i;
575
576 ret = mutex_lock_interruptible(&dev->struct_mutex);
577 if (ret)
578 return ret;
579 intel_runtime_pm_get(dev_priv);
580
581 for_each_ring(ring, dev_priv, i)
582 i915_ring_seqno_info(m, ring);
583
584 intel_runtime_pm_put(dev_priv);
585 mutex_unlock(&dev->struct_mutex);
586
587 return 0;
588 }
589
590
591 static int i915_interrupt_info(struct seq_file *m, void *data)
592 {
593 struct drm_info_node *node = (struct drm_info_node *) m->private;
594 struct drm_device *dev = node->minor->dev;
595 drm_i915_private_t *dev_priv = dev->dev_private;
596 struct intel_ring_buffer *ring;
597 int ret, i, pipe;
598
599 ret = mutex_lock_interruptible(&dev->struct_mutex);
600 if (ret)
601 return ret;
602 intel_runtime_pm_get(dev_priv);
603
604 if (INTEL_INFO(dev)->gen >= 8) {
605 seq_printf(m, "Master Interrupt Control:\t%08x\n",
606 I915_READ(GEN8_MASTER_IRQ));
607
608 for (i = 0; i < 4; i++) {
609 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
610 i, I915_READ(GEN8_GT_IMR(i)));
611 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
612 i, I915_READ(GEN8_GT_IIR(i)));
613 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
614 i, I915_READ(GEN8_GT_IER(i)));
615 }
616
617 for_each_pipe(pipe) {
618 seq_printf(m, "Pipe %c IMR:\t%08x\n",
619 pipe_name(pipe),
620 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
621 seq_printf(m, "Pipe %c IIR:\t%08x\n",
622 pipe_name(pipe),
623 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
624 seq_printf(m, "Pipe %c IER:\t%08x\n",
625 pipe_name(pipe),
626 I915_READ(GEN8_DE_PIPE_IER(pipe)));
627 }
628
629 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
630 I915_READ(GEN8_DE_PORT_IMR));
631 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
632 I915_READ(GEN8_DE_PORT_IIR));
633 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
634 I915_READ(GEN8_DE_PORT_IER));
635
636 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
637 I915_READ(GEN8_DE_MISC_IMR));
638 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
639 I915_READ(GEN8_DE_MISC_IIR));
640 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
641 I915_READ(GEN8_DE_MISC_IER));
642
643 seq_printf(m, "PCU interrupt mask:\t%08x\n",
644 I915_READ(GEN8_PCU_IMR));
645 seq_printf(m, "PCU interrupt identity:\t%08x\n",
646 I915_READ(GEN8_PCU_IIR));
647 seq_printf(m, "PCU interrupt enable:\t%08x\n",
648 I915_READ(GEN8_PCU_IER));
649 } else if (IS_VALLEYVIEW(dev)) {
650 seq_printf(m, "Display IER:\t%08x\n",
651 I915_READ(VLV_IER));
652 seq_printf(m, "Display IIR:\t%08x\n",
653 I915_READ(VLV_IIR));
654 seq_printf(m, "Display IIR_RW:\t%08x\n",
655 I915_READ(VLV_IIR_RW));
656 seq_printf(m, "Display IMR:\t%08x\n",
657 I915_READ(VLV_IMR));
658 for_each_pipe(pipe)
659 seq_printf(m, "Pipe %c stat:\t%08x\n",
660 pipe_name(pipe),
661 I915_READ(PIPESTAT(pipe)));
662
663 seq_printf(m, "Master IER:\t%08x\n",
664 I915_READ(VLV_MASTER_IER));
665
666 seq_printf(m, "Render IER:\t%08x\n",
667 I915_READ(GTIER));
668 seq_printf(m, "Render IIR:\t%08x\n",
669 I915_READ(GTIIR));
670 seq_printf(m, "Render IMR:\t%08x\n",
671 I915_READ(GTIMR));
672
673 seq_printf(m, "PM IER:\t\t%08x\n",
674 I915_READ(GEN6_PMIER));
675 seq_printf(m, "PM IIR:\t\t%08x\n",
676 I915_READ(GEN6_PMIIR));
677 seq_printf(m, "PM IMR:\t\t%08x\n",
678 I915_READ(GEN6_PMIMR));
679
680 seq_printf(m, "Port hotplug:\t%08x\n",
681 I915_READ(PORT_HOTPLUG_EN));
682 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
683 I915_READ(VLV_DPFLIPSTAT));
684 seq_printf(m, "DPINVGTT:\t%08x\n",
685 I915_READ(DPINVGTT));
686
687 } else if (!HAS_PCH_SPLIT(dev)) {
688 seq_printf(m, "Interrupt enable: %08x\n",
689 I915_READ(IER));
690 seq_printf(m, "Interrupt identity: %08x\n",
691 I915_READ(IIR));
692 seq_printf(m, "Interrupt mask: %08x\n",
693 I915_READ(IMR));
694 for_each_pipe(pipe)
695 seq_printf(m, "Pipe %c stat: %08x\n",
696 pipe_name(pipe),
697 I915_READ(PIPESTAT(pipe)));
698 } else {
699 seq_printf(m, "North Display Interrupt enable: %08x\n",
700 I915_READ(DEIER));
701 seq_printf(m, "North Display Interrupt identity: %08x\n",
702 I915_READ(DEIIR));
703 seq_printf(m, "North Display Interrupt mask: %08x\n",
704 I915_READ(DEIMR));
705 seq_printf(m, "South Display Interrupt enable: %08x\n",
706 I915_READ(SDEIER));
707 seq_printf(m, "South Display Interrupt identity: %08x\n",
708 I915_READ(SDEIIR));
709 seq_printf(m, "South Display Interrupt mask: %08x\n",
710 I915_READ(SDEIMR));
711 seq_printf(m, "Graphics Interrupt enable: %08x\n",
712 I915_READ(GTIER));
713 seq_printf(m, "Graphics Interrupt identity: %08x\n",
714 I915_READ(GTIIR));
715 seq_printf(m, "Graphics Interrupt mask: %08x\n",
716 I915_READ(GTIMR));
717 }
718 for_each_ring(ring, dev_priv, i) {
719 if (INTEL_INFO(dev)->gen >= 6) {
720 seq_printf(m,
721 "Graphics Interrupt mask (%s): %08x\n",
722 ring->name, I915_READ_IMR(ring));
723 }
724 i915_ring_seqno_info(m, ring);
725 }
726 intel_runtime_pm_put(dev_priv);
727 mutex_unlock(&dev->struct_mutex);
728
729 return 0;
730 }
731
732 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
733 {
734 struct drm_info_node *node = (struct drm_info_node *) m->private;
735 struct drm_device *dev = node->minor->dev;
736 drm_i915_private_t *dev_priv = dev->dev_private;
737 int i, ret;
738
739 ret = mutex_lock_interruptible(&dev->struct_mutex);
740 if (ret)
741 return ret;
742
743 seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
744 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
745 for (i = 0; i < dev_priv->num_fence_regs; i++) {
746 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
747
748 seq_printf(m, "Fence %d, pin count = %d, object = ",
749 i, dev_priv->fence_regs[i].pin_count);
750 if (obj == NULL)
751 seq_puts(m, "unused");
752 else
753 describe_obj(m, obj);
754 seq_putc(m, '\n');
755 }
756
757 mutex_unlock(&dev->struct_mutex);
758 return 0;
759 }
760
761 static int i915_hws_info(struct seq_file *m, void *data)
762 {
763 struct drm_info_node *node = (struct drm_info_node *) m->private;
764 struct drm_device *dev = node->minor->dev;
765 drm_i915_private_t *dev_priv = dev->dev_private;
766 struct intel_ring_buffer *ring;
767 const u32 *hws;
768 int i;
769
770 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
771 hws = ring->status_page.page_addr;
772 if (hws == NULL)
773 return 0;
774
775 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
776 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
777 i * 4,
778 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
779 }
780 return 0;
781 }
782
783 static ssize_t
784 i915_error_state_write(struct file *filp,
785 const char __user *ubuf,
786 size_t cnt,
787 loff_t *ppos)
788 {
789 struct i915_error_state_file_priv *error_priv = filp->private_data;
790 struct drm_device *dev = error_priv->dev;
791 int ret;
792
793 DRM_DEBUG_DRIVER("Resetting error state\n");
794
795 ret = mutex_lock_interruptible(&dev->struct_mutex);
796 if (ret)
797 return ret;
798
799 i915_destroy_error_state(dev);
800 mutex_unlock(&dev->struct_mutex);
801
802 return cnt;
803 }
804
805 static int i915_error_state_open(struct inode *inode, struct file *file)
806 {
807 struct drm_device *dev = inode->i_private;
808 struct i915_error_state_file_priv *error_priv;
809
810 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
811 if (!error_priv)
812 return -ENOMEM;
813
814 error_priv->dev = dev;
815
816 i915_error_state_get(dev, error_priv);
817
818 file->private_data = error_priv;
819
820 return 0;
821 }
822
823 static int i915_error_state_release(struct inode *inode, struct file *file)
824 {
825 struct i915_error_state_file_priv *error_priv = file->private_data;
826
827 i915_error_state_put(error_priv);
828 kfree(error_priv);
829
830 return 0;
831 }
832
833 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
834 size_t count, loff_t *pos)
835 {
836 struct i915_error_state_file_priv *error_priv = file->private_data;
837 struct drm_i915_error_state_buf error_str;
838 loff_t tmp_pos = 0;
839 ssize_t ret_count = 0;
840 int ret;
841
842 ret = i915_error_state_buf_init(&error_str, count, *pos);
843 if (ret)
844 return ret;
845
846 ret = i915_error_state_to_str(&error_str, error_priv);
847 if (ret)
848 goto out;
849
850 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
851 error_str.buf,
852 error_str.bytes);
853
854 if (ret_count < 0)
855 ret = ret_count;
856 else
857 *pos = error_str.start + ret_count;
858 out:
859 i915_error_state_buf_release(&error_str);
860 return ret ?: ret_count;
861 }
862
863 static const struct file_operations i915_error_state_fops = {
864 .owner = THIS_MODULE,
865 .open = i915_error_state_open,
866 .read = i915_error_state_read,
867 .write = i915_error_state_write,
868 .llseek = default_llseek,
869 .release = i915_error_state_release,
870 };
871
872 static int
873 i915_next_seqno_get(void *data, u64 *val)
874 {
875 struct drm_device *dev = data;
876 drm_i915_private_t *dev_priv = dev->dev_private;
877 int ret;
878
879 ret = mutex_lock_interruptible(&dev->struct_mutex);
880 if (ret)
881 return ret;
882
883 *val = dev_priv->next_seqno;
884 mutex_unlock(&dev->struct_mutex);
885
886 return 0;
887 }
888
889 static int
890 i915_next_seqno_set(void *data, u64 val)
891 {
892 struct drm_device *dev = data;
893 int ret;
894
895 ret = mutex_lock_interruptible(&dev->struct_mutex);
896 if (ret)
897 return ret;
898
899 ret = i915_gem_set_seqno(dev, val);
900 mutex_unlock(&dev->struct_mutex);
901
902 return ret;
903 }
904
905 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
906 i915_next_seqno_get, i915_next_seqno_set,
907 "0x%llx\n");
908
909 static int i915_rstdby_delays(struct seq_file *m, void *unused)
910 {
911 struct drm_info_node *node = (struct drm_info_node *) m->private;
912 struct drm_device *dev = node->minor->dev;
913 drm_i915_private_t *dev_priv = dev->dev_private;
914 u16 crstanddelay;
915 int ret;
916
917 ret = mutex_lock_interruptible(&dev->struct_mutex);
918 if (ret)
919 return ret;
920 intel_runtime_pm_get(dev_priv);
921
922 crstanddelay = I915_READ16(CRSTANDVID);
923
924 intel_runtime_pm_put(dev_priv);
925 mutex_unlock(&dev->struct_mutex);
926
927 seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
928
929 return 0;
930 }
931
932 static int i915_cur_delayinfo(struct seq_file *m, void *unused)
933 {
934 struct drm_info_node *node = (struct drm_info_node *) m->private;
935 struct drm_device *dev = node->minor->dev;
936 drm_i915_private_t *dev_priv = dev->dev_private;
937 int ret = 0;
938
939 intel_runtime_pm_get(dev_priv);
940
941 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
942
943 if (IS_GEN5(dev)) {
944 u16 rgvswctl = I915_READ16(MEMSWCTL);
945 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
946
947 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
948 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
949 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
950 MEMSTAT_VID_SHIFT);
951 seq_printf(m, "Current P-state: %d\n",
952 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
953 } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
954 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
955 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
956 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
957 u32 rpstat, cagf, reqf;
958 u32 rpupei, rpcurup, rpprevup;
959 u32 rpdownei, rpcurdown, rpprevdown;
960 int max_freq;
961
962 /* RPSTAT1 is in the GT power well */
963 ret = mutex_lock_interruptible(&dev->struct_mutex);
964 if (ret)
965 goto out;
966
967 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
968
969 reqf = I915_READ(GEN6_RPNSWREQ);
970 reqf &= ~GEN6_TURBO_DISABLE;
971 if (IS_HASWELL(dev))
972 reqf >>= 24;
973 else
974 reqf >>= 25;
975 reqf *= GT_FREQUENCY_MULTIPLIER;
976
977 rpstat = I915_READ(GEN6_RPSTAT1);
978 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
979 rpcurup = I915_READ(GEN6_RP_CUR_UP);
980 rpprevup = I915_READ(GEN6_RP_PREV_UP);
981 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
982 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
983 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
984 if (IS_HASWELL(dev))
985 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
986 else
987 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
988 cagf *= GT_FREQUENCY_MULTIPLIER;
989
990 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
991 mutex_unlock(&dev->struct_mutex);
992
993 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
994 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
995 seq_printf(m, "Render p-state ratio: %d\n",
996 (gt_perf_status & 0xff00) >> 8);
997 seq_printf(m, "Render p-state VID: %d\n",
998 gt_perf_status & 0xff);
999 seq_printf(m, "Render p-state limit: %d\n",
1000 rp_state_limits & 0xff);
1001 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1002 seq_printf(m, "CAGF: %dMHz\n", cagf);
1003 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1004 GEN6_CURICONT_MASK);
1005 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1006 GEN6_CURBSYTAVG_MASK);
1007 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1008 GEN6_CURBSYTAVG_MASK);
1009 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1010 GEN6_CURIAVG_MASK);
1011 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1012 GEN6_CURBSYTAVG_MASK);
1013 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1014 GEN6_CURBSYTAVG_MASK);
1015
1016 max_freq = (rp_state_cap & 0xff0000) >> 16;
1017 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1018 max_freq * GT_FREQUENCY_MULTIPLIER);
1019
1020 max_freq = (rp_state_cap & 0xff00) >> 8;
1021 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1022 max_freq * GT_FREQUENCY_MULTIPLIER);
1023
1024 max_freq = rp_state_cap & 0xff;
1025 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1026 max_freq * GT_FREQUENCY_MULTIPLIER);
1027
1028 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1029 dev_priv->rps.hw_max * GT_FREQUENCY_MULTIPLIER);
1030 } else if (IS_VALLEYVIEW(dev)) {
1031 u32 freq_sts, val;
1032
1033 mutex_lock(&dev_priv->rps.hw_lock);
1034 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1035 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1036 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1037
1038 val = valleyview_rps_max_freq(dev_priv);
1039 seq_printf(m, "max GPU freq: %d MHz\n",
1040 vlv_gpu_freq(dev_priv, val));
1041
1042 val = valleyview_rps_min_freq(dev_priv);
1043 seq_printf(m, "min GPU freq: %d MHz\n",
1044 vlv_gpu_freq(dev_priv, val));
1045
1046 seq_printf(m, "current GPU freq: %d MHz\n",
1047 vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1048 mutex_unlock(&dev_priv->rps.hw_lock);
1049 } else {
1050 seq_puts(m, "no P-state info available\n");
1051 }
1052
1053 out:
1054 intel_runtime_pm_put(dev_priv);
1055 return ret;
1056 }
1057
1058 static int i915_delayfreq_table(struct seq_file *m, void *unused)
1059 {
1060 struct drm_info_node *node = (struct drm_info_node *) m->private;
1061 struct drm_device *dev = node->minor->dev;
1062 drm_i915_private_t *dev_priv = dev->dev_private;
1063 u32 delayfreq;
1064 int ret, i;
1065
1066 ret = mutex_lock_interruptible(&dev->struct_mutex);
1067 if (ret)
1068 return ret;
1069 intel_runtime_pm_get(dev_priv);
1070
1071 for (i = 0; i < 16; i++) {
1072 delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
1073 seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
1074 (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
1075 }
1076
1077 intel_runtime_pm_put(dev_priv);
1078
1079 mutex_unlock(&dev->struct_mutex);
1080
1081 return 0;
1082 }
1083
1084 static inline int MAP_TO_MV(int map)
1085 {
1086 return 1250 - (map * 25);
1087 }
1088
1089 static int i915_inttoext_table(struct seq_file *m, void *unused)
1090 {
1091 struct drm_info_node *node = (struct drm_info_node *) m->private;
1092 struct drm_device *dev = node->minor->dev;
1093 drm_i915_private_t *dev_priv = dev->dev_private;
1094 u32 inttoext;
1095 int ret, i;
1096
1097 ret = mutex_lock_interruptible(&dev->struct_mutex);
1098 if (ret)
1099 return ret;
1100 intel_runtime_pm_get(dev_priv);
1101
1102 for (i = 1; i <= 32; i++) {
1103 inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
1104 seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
1105 }
1106
1107 intel_runtime_pm_put(dev_priv);
1108 mutex_unlock(&dev->struct_mutex);
1109
1110 return 0;
1111 }
1112
1113 static int ironlake_drpc_info(struct seq_file *m)
1114 {
1115 struct drm_info_node *node = (struct drm_info_node *) m->private;
1116 struct drm_device *dev = node->minor->dev;
1117 drm_i915_private_t *dev_priv = dev->dev_private;
1118 u32 rgvmodectl, rstdbyctl;
1119 u16 crstandvid;
1120 int ret;
1121
1122 ret = mutex_lock_interruptible(&dev->struct_mutex);
1123 if (ret)
1124 return ret;
1125 intel_runtime_pm_get(dev_priv);
1126
1127 rgvmodectl = I915_READ(MEMMODECTL);
1128 rstdbyctl = I915_READ(RSTDBYCTL);
1129 crstandvid = I915_READ16(CRSTANDVID);
1130
1131 intel_runtime_pm_put(dev_priv);
1132 mutex_unlock(&dev->struct_mutex);
1133
1134 seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1135 "yes" : "no");
1136 seq_printf(m, "Boost freq: %d\n",
1137 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1138 MEMMODE_BOOST_FREQ_SHIFT);
1139 seq_printf(m, "HW control enabled: %s\n",
1140 rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1141 seq_printf(m, "SW control enabled: %s\n",
1142 rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1143 seq_printf(m, "Gated voltage change: %s\n",
1144 rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1145 seq_printf(m, "Starting frequency: P%d\n",
1146 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1147 seq_printf(m, "Max P-state: P%d\n",
1148 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1149 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1150 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1151 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1152 seq_printf(m, "Render standby enabled: %s\n",
1153 (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1154 seq_puts(m, "Current RS state: ");
1155 switch (rstdbyctl & RSX_STATUS_MASK) {
1156 case RSX_STATUS_ON:
1157 seq_puts(m, "on\n");
1158 break;
1159 case RSX_STATUS_RC1:
1160 seq_puts(m, "RC1\n");
1161 break;
1162 case RSX_STATUS_RC1E:
1163 seq_puts(m, "RC1E\n");
1164 break;
1165 case RSX_STATUS_RS1:
1166 seq_puts(m, "RS1\n");
1167 break;
1168 case RSX_STATUS_RS2:
1169 seq_puts(m, "RS2 (RC6)\n");
1170 break;
1171 case RSX_STATUS_RS3:
1172 seq_puts(m, "RC3 (RC6+)\n");
1173 break;
1174 default:
1175 seq_puts(m, "unknown\n");
1176 break;
1177 }
1178
1179 return 0;
1180 }
1181
1182 static int vlv_drpc_info(struct seq_file *m)
1183 {
1184
1185 struct drm_info_node *node = (struct drm_info_node *) m->private;
1186 struct drm_device *dev = node->minor->dev;
1187 struct drm_i915_private *dev_priv = dev->dev_private;
1188 u32 rpmodectl1, rcctl1;
1189 unsigned fw_rendercount = 0, fw_mediacount = 0;
1190
1191 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1192 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1193
1194 seq_printf(m, "Video Turbo Mode: %s\n",
1195 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1196 seq_printf(m, "Turbo enabled: %s\n",
1197 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1198 seq_printf(m, "HW control enabled: %s\n",
1199 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1200 seq_printf(m, "SW control enabled: %s\n",
1201 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1202 GEN6_RP_MEDIA_SW_MODE));
1203 seq_printf(m, "RC6 Enabled: %s\n",
1204 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1205 GEN6_RC_CTL_EI_MODE(1))));
1206 seq_printf(m, "Render Power Well: %s\n",
1207 (I915_READ(VLV_GTLC_PW_STATUS) &
1208 VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1209 seq_printf(m, "Media Power Well: %s\n",
1210 (I915_READ(VLV_GTLC_PW_STATUS) &
1211 VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1212
1213 spin_lock_irq(&dev_priv->uncore.lock);
1214 fw_rendercount = dev_priv->uncore.fw_rendercount;
1215 fw_mediacount = dev_priv->uncore.fw_mediacount;
1216 spin_unlock_irq(&dev_priv->uncore.lock);
1217
1218 seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1219 seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1220
1221
1222 return 0;
1223 }
1224
1225
1226 static int gen6_drpc_info(struct seq_file *m)
1227 {
1228
1229 struct drm_info_node *node = (struct drm_info_node *) m->private;
1230 struct drm_device *dev = node->minor->dev;
1231 struct drm_i915_private *dev_priv = dev->dev_private;
1232 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1233 unsigned forcewake_count;
1234 int count = 0, ret;
1235
1236 ret = mutex_lock_interruptible(&dev->struct_mutex);
1237 if (ret)
1238 return ret;
1239 intel_runtime_pm_get(dev_priv);
1240
1241 spin_lock_irq(&dev_priv->uncore.lock);
1242 forcewake_count = dev_priv->uncore.forcewake_count;
1243 spin_unlock_irq(&dev_priv->uncore.lock);
1244
1245 if (forcewake_count) {
1246 seq_puts(m, "RC information inaccurate because somebody "
1247 "holds a forcewake reference \n");
1248 } else {
1249 /* NB: we cannot use forcewake, else we read the wrong values */
1250 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1251 udelay(10);
1252 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1253 }
1254
1255 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1256 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1257
1258 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1259 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1260 mutex_unlock(&dev->struct_mutex);
1261 mutex_lock(&dev_priv->rps.hw_lock);
1262 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1263 mutex_unlock(&dev_priv->rps.hw_lock);
1264
1265 intel_runtime_pm_put(dev_priv);
1266
1267 seq_printf(m, "Video Turbo Mode: %s\n",
1268 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1269 seq_printf(m, "HW control enabled: %s\n",
1270 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1271 seq_printf(m, "SW control enabled: %s\n",
1272 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1273 GEN6_RP_MEDIA_SW_MODE));
1274 seq_printf(m, "RC1e Enabled: %s\n",
1275 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1276 seq_printf(m, "RC6 Enabled: %s\n",
1277 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1278 seq_printf(m, "Deep RC6 Enabled: %s\n",
1279 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1280 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1281 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1282 seq_puts(m, "Current RC state: ");
1283 switch (gt_core_status & GEN6_RCn_MASK) {
1284 case GEN6_RC0:
1285 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1286 seq_puts(m, "Core Power Down\n");
1287 else
1288 seq_puts(m, "on\n");
1289 break;
1290 case GEN6_RC3:
1291 seq_puts(m, "RC3\n");
1292 break;
1293 case GEN6_RC6:
1294 seq_puts(m, "RC6\n");
1295 break;
1296 case GEN6_RC7:
1297 seq_puts(m, "RC7\n");
1298 break;
1299 default:
1300 seq_puts(m, "Unknown\n");
1301 break;
1302 }
1303
1304 seq_printf(m, "Core Power Down: %s\n",
1305 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1306
1307 /* Not exactly sure what this is */
1308 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1309 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1310 seq_printf(m, "RC6 residency since boot: %u\n",
1311 I915_READ(GEN6_GT_GFX_RC6));
1312 seq_printf(m, "RC6+ residency since boot: %u\n",
1313 I915_READ(GEN6_GT_GFX_RC6p));
1314 seq_printf(m, "RC6++ residency since boot: %u\n",
1315 I915_READ(GEN6_GT_GFX_RC6pp));
1316
1317 seq_printf(m, "RC6 voltage: %dmV\n",
1318 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1319 seq_printf(m, "RC6+ voltage: %dmV\n",
1320 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1321 seq_printf(m, "RC6++ voltage: %dmV\n",
1322 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1323 return 0;
1324 }
1325
1326 static int i915_drpc_info(struct seq_file *m, void *unused)
1327 {
1328 struct drm_info_node *node = (struct drm_info_node *) m->private;
1329 struct drm_device *dev = node->minor->dev;
1330
1331 if (IS_VALLEYVIEW(dev))
1332 return vlv_drpc_info(m);
1333 else if (IS_GEN6(dev) || IS_GEN7(dev))
1334 return gen6_drpc_info(m);
1335 else
1336 return ironlake_drpc_info(m);
1337 }
1338
1339 static int i915_fbc_status(struct seq_file *m, void *unused)
1340 {
1341 struct drm_info_node *node = (struct drm_info_node *) m->private;
1342 struct drm_device *dev = node->minor->dev;
1343 drm_i915_private_t *dev_priv = dev->dev_private;
1344
1345 if (!HAS_FBC(dev)) {
1346 seq_puts(m, "FBC unsupported on this chipset\n");
1347 return 0;
1348 }
1349
1350 intel_runtime_pm_get(dev_priv);
1351
1352 if (intel_fbc_enabled(dev)) {
1353 seq_puts(m, "FBC enabled\n");
1354 } else {
1355 seq_puts(m, "FBC disabled: ");
1356 switch (dev_priv->fbc.no_fbc_reason) {
1357 case FBC_OK:
1358 seq_puts(m, "FBC actived, but currently disabled in hardware");
1359 break;
1360 case FBC_UNSUPPORTED:
1361 seq_puts(m, "unsupported by this chipset");
1362 break;
1363 case FBC_NO_OUTPUT:
1364 seq_puts(m, "no outputs");
1365 break;
1366 case FBC_STOLEN_TOO_SMALL:
1367 seq_puts(m, "not enough stolen memory");
1368 break;
1369 case FBC_UNSUPPORTED_MODE:
1370 seq_puts(m, "mode not supported");
1371 break;
1372 case FBC_MODE_TOO_LARGE:
1373 seq_puts(m, "mode too large");
1374 break;
1375 case FBC_BAD_PLANE:
1376 seq_puts(m, "FBC unsupported on plane");
1377 break;
1378 case FBC_NOT_TILED:
1379 seq_puts(m, "scanout buffer not tiled");
1380 break;
1381 case FBC_MULTIPLE_PIPES:
1382 seq_puts(m, "multiple pipes are enabled");
1383 break;
1384 case FBC_MODULE_PARAM:
1385 seq_puts(m, "disabled per module param (default off)");
1386 break;
1387 case FBC_CHIP_DEFAULT:
1388 seq_puts(m, "disabled per chip default");
1389 break;
1390 default:
1391 seq_puts(m, "unknown reason");
1392 }
1393 seq_putc(m, '\n');
1394 }
1395
1396 intel_runtime_pm_put(dev_priv);
1397
1398 return 0;
1399 }
1400
1401 static int i915_ips_status(struct seq_file *m, void *unused)
1402 {
1403 struct drm_info_node *node = (struct drm_info_node *) m->private;
1404 struct drm_device *dev = node->minor->dev;
1405 struct drm_i915_private *dev_priv = dev->dev_private;
1406
1407 if (!HAS_IPS(dev)) {
1408 seq_puts(m, "not supported\n");
1409 return 0;
1410 }
1411
1412 intel_runtime_pm_get(dev_priv);
1413
1414 if (IS_BROADWELL(dev) || I915_READ(IPS_CTL) & IPS_ENABLE)
1415 seq_puts(m, "enabled\n");
1416 else
1417 seq_puts(m, "disabled\n");
1418
1419 intel_runtime_pm_put(dev_priv);
1420
1421 return 0;
1422 }
1423
1424 static int i915_sr_status(struct seq_file *m, void *unused)
1425 {
1426 struct drm_info_node *node = (struct drm_info_node *) m->private;
1427 struct drm_device *dev = node->minor->dev;
1428 drm_i915_private_t *dev_priv = dev->dev_private;
1429 bool sr_enabled = false;
1430
1431 intel_runtime_pm_get(dev_priv);
1432
1433 if (HAS_PCH_SPLIT(dev))
1434 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1435 else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1436 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1437 else if (IS_I915GM(dev))
1438 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1439 else if (IS_PINEVIEW(dev))
1440 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1441
1442 intel_runtime_pm_put(dev_priv);
1443
1444 seq_printf(m, "self-refresh: %s\n",
1445 sr_enabled ? "enabled" : "disabled");
1446
1447 return 0;
1448 }
1449
1450 static int i915_emon_status(struct seq_file *m, void *unused)
1451 {
1452 struct drm_info_node *node = (struct drm_info_node *) m->private;
1453 struct drm_device *dev = node->minor->dev;
1454 drm_i915_private_t *dev_priv = dev->dev_private;
1455 unsigned long temp, chipset, gfx;
1456 int ret;
1457
1458 if (!IS_GEN5(dev))
1459 return -ENODEV;
1460
1461 ret = mutex_lock_interruptible(&dev->struct_mutex);
1462 if (ret)
1463 return ret;
1464
1465 temp = i915_mch_val(dev_priv);
1466 chipset = i915_chipset_val(dev_priv);
1467 gfx = i915_gfx_val(dev_priv);
1468 mutex_unlock(&dev->struct_mutex);
1469
1470 seq_printf(m, "GMCH temp: %ld\n", temp);
1471 seq_printf(m, "Chipset power: %ld\n", chipset);
1472 seq_printf(m, "GFX power: %ld\n", gfx);
1473 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1474
1475 return 0;
1476 }
1477
1478 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1479 {
1480 struct drm_info_node *node = (struct drm_info_node *) m->private;
1481 struct drm_device *dev = node->minor->dev;
1482 drm_i915_private_t *dev_priv = dev->dev_private;
1483 int ret = 0;
1484 int gpu_freq, ia_freq;
1485
1486 if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1487 seq_puts(m, "unsupported on this chipset\n");
1488 return 0;
1489 }
1490
1491 intel_runtime_pm_get(dev_priv);
1492
1493 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1494
1495 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1496 if (ret)
1497 goto out;
1498
1499 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1500
1501 for (gpu_freq = dev_priv->rps.min_delay;
1502 gpu_freq <= dev_priv->rps.max_delay;
1503 gpu_freq++) {
1504 ia_freq = gpu_freq;
1505 sandybridge_pcode_read(dev_priv,
1506 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1507 &ia_freq);
1508 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1509 gpu_freq * GT_FREQUENCY_MULTIPLIER,
1510 ((ia_freq >> 0) & 0xff) * 100,
1511 ((ia_freq >> 8) & 0xff) * 100);
1512 }
1513
1514 mutex_unlock(&dev_priv->rps.hw_lock);
1515
1516 out:
1517 intel_runtime_pm_put(dev_priv);
1518 return ret;
1519 }
1520
1521 static int i915_gfxec(struct seq_file *m, void *unused)
1522 {
1523 struct drm_info_node *node = (struct drm_info_node *) m->private;
1524 struct drm_device *dev = node->minor->dev;
1525 drm_i915_private_t *dev_priv = dev->dev_private;
1526 int ret;
1527
1528 ret = mutex_lock_interruptible(&dev->struct_mutex);
1529 if (ret)
1530 return ret;
1531 intel_runtime_pm_get(dev_priv);
1532
1533 seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1534 intel_runtime_pm_put(dev_priv);
1535
1536 mutex_unlock(&dev->struct_mutex);
1537
1538 return 0;
1539 }
1540
1541 static int i915_opregion(struct seq_file *m, void *unused)
1542 {
1543 struct drm_info_node *node = (struct drm_info_node *) m->private;
1544 struct drm_device *dev = node->minor->dev;
1545 drm_i915_private_t *dev_priv = dev->dev_private;
1546 struct intel_opregion *opregion = &dev_priv->opregion;
1547 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1548 int ret;
1549
1550 if (data == NULL)
1551 return -ENOMEM;
1552
1553 ret = mutex_lock_interruptible(&dev->struct_mutex);
1554 if (ret)
1555 goto out;
1556
1557 if (opregion->header) {
1558 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1559 seq_write(m, data, OPREGION_SIZE);
1560 }
1561
1562 mutex_unlock(&dev->struct_mutex);
1563
1564 out:
1565 kfree(data);
1566 return 0;
1567 }
1568
1569 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1570 {
1571 struct drm_info_node *node = (struct drm_info_node *) m->private;
1572 struct drm_device *dev = node->minor->dev;
1573 struct intel_fbdev *ifbdev = NULL;
1574 struct intel_framebuffer *fb;
1575
1576 #ifdef CONFIG_DRM_I915_FBDEV
1577 struct drm_i915_private *dev_priv = dev->dev_private;
1578 int ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1579 if (ret)
1580 return ret;
1581
1582 ifbdev = dev_priv->fbdev;
1583 fb = to_intel_framebuffer(ifbdev->helper.fb);
1584
1585 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1586 fb->base.width,
1587 fb->base.height,
1588 fb->base.depth,
1589 fb->base.bits_per_pixel,
1590 atomic_read(&fb->base.refcount.refcount));
1591 describe_obj(m, fb->obj);
1592 seq_putc(m, '\n');
1593 mutex_unlock(&dev->mode_config.mutex);
1594 #endif
1595
1596 mutex_lock(&dev->mode_config.fb_lock);
1597 list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1598 if (ifbdev && &fb->base == ifbdev->helper.fb)
1599 continue;
1600
1601 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1602 fb->base.width,
1603 fb->base.height,
1604 fb->base.depth,
1605 fb->base.bits_per_pixel,
1606 atomic_read(&fb->base.refcount.refcount));
1607 describe_obj(m, fb->obj);
1608 seq_putc(m, '\n');
1609 }
1610 mutex_unlock(&dev->mode_config.fb_lock);
1611
1612 return 0;
1613 }
1614
1615 static int i915_context_status(struct seq_file *m, void *unused)
1616 {
1617 struct drm_info_node *node = (struct drm_info_node *) m->private;
1618 struct drm_device *dev = node->minor->dev;
1619 drm_i915_private_t *dev_priv = dev->dev_private;
1620 struct intel_ring_buffer *ring;
1621 struct i915_hw_context *ctx;
1622 int ret, i;
1623
1624 ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1625 if (ret)
1626 return ret;
1627
1628 if (dev_priv->ips.pwrctx) {
1629 seq_puts(m, "power context ");
1630 describe_obj(m, dev_priv->ips.pwrctx);
1631 seq_putc(m, '\n');
1632 }
1633
1634 if (dev_priv->ips.renderctx) {
1635 seq_puts(m, "render context ");
1636 describe_obj(m, dev_priv->ips.renderctx);
1637 seq_putc(m, '\n');
1638 }
1639
1640 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1641 seq_puts(m, "HW context ");
1642 describe_ctx(m, ctx);
1643 for_each_ring(ring, dev_priv, i)
1644 if (ring->default_context == ctx)
1645 seq_printf(m, "(default context %s) ", ring->name);
1646
1647 describe_obj(m, ctx->obj);
1648 seq_putc(m, '\n');
1649 }
1650
1651 mutex_unlock(&dev->mode_config.mutex);
1652
1653 return 0;
1654 }
1655
1656 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1657 {
1658 struct drm_info_node *node = (struct drm_info_node *) m->private;
1659 struct drm_device *dev = node->minor->dev;
1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661 unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1662
1663 spin_lock_irq(&dev_priv->uncore.lock);
1664 if (IS_VALLEYVIEW(dev)) {
1665 fw_rendercount = dev_priv->uncore.fw_rendercount;
1666 fw_mediacount = dev_priv->uncore.fw_mediacount;
1667 } else
1668 forcewake_count = dev_priv->uncore.forcewake_count;
1669 spin_unlock_irq(&dev_priv->uncore.lock);
1670
1671 if (IS_VALLEYVIEW(dev)) {
1672 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1673 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1674 } else
1675 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1676
1677 return 0;
1678 }
1679
1680 static const char *swizzle_string(unsigned swizzle)
1681 {
1682 switch (swizzle) {
1683 case I915_BIT_6_SWIZZLE_NONE:
1684 return "none";
1685 case I915_BIT_6_SWIZZLE_9:
1686 return "bit9";
1687 case I915_BIT_6_SWIZZLE_9_10:
1688 return "bit9/bit10";
1689 case I915_BIT_6_SWIZZLE_9_11:
1690 return "bit9/bit11";
1691 case I915_BIT_6_SWIZZLE_9_10_11:
1692 return "bit9/bit10/bit11";
1693 case I915_BIT_6_SWIZZLE_9_17:
1694 return "bit9/bit17";
1695 case I915_BIT_6_SWIZZLE_9_10_17:
1696 return "bit9/bit10/bit17";
1697 case I915_BIT_6_SWIZZLE_UNKNOWN:
1698 return "unknown";
1699 }
1700
1701 return "bug";
1702 }
1703
1704 static int i915_swizzle_info(struct seq_file *m, void *data)
1705 {
1706 struct drm_info_node *node = (struct drm_info_node *) m->private;
1707 struct drm_device *dev = node->minor->dev;
1708 struct drm_i915_private *dev_priv = dev->dev_private;
1709 int ret;
1710
1711 ret = mutex_lock_interruptible(&dev->struct_mutex);
1712 if (ret)
1713 return ret;
1714 intel_runtime_pm_get(dev_priv);
1715
1716 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1717 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1718 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1719 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1720
1721 if (IS_GEN3(dev) || IS_GEN4(dev)) {
1722 seq_printf(m, "DDC = 0x%08x\n",
1723 I915_READ(DCC));
1724 seq_printf(m, "C0DRB3 = 0x%04x\n",
1725 I915_READ16(C0DRB3));
1726 seq_printf(m, "C1DRB3 = 0x%04x\n",
1727 I915_READ16(C1DRB3));
1728 } else if (INTEL_INFO(dev)->gen >= 6) {
1729 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1730 I915_READ(MAD_DIMM_C0));
1731 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1732 I915_READ(MAD_DIMM_C1));
1733 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1734 I915_READ(MAD_DIMM_C2));
1735 seq_printf(m, "TILECTL = 0x%08x\n",
1736 I915_READ(TILECTL));
1737 if (IS_GEN8(dev))
1738 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1739 I915_READ(GAMTARBMODE));
1740 else
1741 seq_printf(m, "ARB_MODE = 0x%08x\n",
1742 I915_READ(ARB_MODE));
1743 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1744 I915_READ(DISP_ARB_CTL));
1745 }
1746 intel_runtime_pm_put(dev_priv);
1747 mutex_unlock(&dev->struct_mutex);
1748
1749 return 0;
1750 }
1751
1752 static int per_file_ctx(int id, void *ptr, void *data)
1753 {
1754 struct i915_hw_context *ctx = ptr;
1755 struct seq_file *m = data;
1756 struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
1757
1758 ppgtt->debug_dump(ppgtt, m);
1759
1760 return 0;
1761 }
1762
1763 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1764 {
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 struct intel_ring_buffer *ring;
1767 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1768 int unused, i;
1769
1770 if (!ppgtt)
1771 return;
1772
1773 seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
1774 seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
1775 for_each_ring(ring, dev_priv, unused) {
1776 seq_printf(m, "%s\n", ring->name);
1777 for (i = 0; i < 4; i++) {
1778 u32 offset = 0x270 + i * 8;
1779 u64 pdp = I915_READ(ring->mmio_base + offset + 4);
1780 pdp <<= 32;
1781 pdp |= I915_READ(ring->mmio_base + offset);
1782 for (i = 0; i < 4; i++)
1783 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
1784 }
1785 }
1786 }
1787
1788 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1789 {
1790 struct drm_i915_private *dev_priv = dev->dev_private;
1791 struct intel_ring_buffer *ring;
1792 struct drm_file *file;
1793 int i;
1794
1795 if (INTEL_INFO(dev)->gen == 6)
1796 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1797
1798 for_each_ring(ring, dev_priv, i) {
1799 seq_printf(m, "%s\n", ring->name);
1800 if (INTEL_INFO(dev)->gen == 7)
1801 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1802 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1803 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1804 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1805 }
1806 if (dev_priv->mm.aliasing_ppgtt) {
1807 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1808
1809 seq_puts(m, "aliasing PPGTT:\n");
1810 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1811
1812 ppgtt->debug_dump(ppgtt, m);
1813 } else
1814 return;
1815
1816 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
1817 struct drm_i915_file_private *file_priv = file->driver_priv;
1818 struct i915_hw_ppgtt *pvt_ppgtt;
1819
1820 pvt_ppgtt = ctx_to_ppgtt(file_priv->private_default_ctx);
1821 seq_printf(m, "proc: %s\n",
1822 get_pid_task(file->pid, PIDTYPE_PID)->comm);
1823 seq_puts(m, " default context:\n");
1824 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
1825 }
1826 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1827 }
1828
1829 static int i915_ppgtt_info(struct seq_file *m, void *data)
1830 {
1831 struct drm_info_node *node = (struct drm_info_node *) m->private;
1832 struct drm_device *dev = node->minor->dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
1834
1835 int ret = mutex_lock_interruptible(&dev->struct_mutex);
1836 if (ret)
1837 return ret;
1838 intel_runtime_pm_get(dev_priv);
1839
1840 if (INTEL_INFO(dev)->gen >= 8)
1841 gen8_ppgtt_info(m, dev);
1842 else if (INTEL_INFO(dev)->gen >= 6)
1843 gen6_ppgtt_info(m, dev);
1844
1845 intel_runtime_pm_put(dev_priv);
1846 mutex_unlock(&dev->struct_mutex);
1847
1848 return 0;
1849 }
1850
1851 static int i915_dpio_info(struct seq_file *m, void *data)
1852 {
1853 struct drm_info_node *node = (struct drm_info_node *) m->private;
1854 struct drm_device *dev = node->minor->dev;
1855 struct drm_i915_private *dev_priv = dev->dev_private;
1856 int ret;
1857
1858
1859 if (!IS_VALLEYVIEW(dev)) {
1860 seq_puts(m, "unsupported\n");
1861 return 0;
1862 }
1863
1864 ret = mutex_lock_interruptible(&dev_priv->dpio_lock);
1865 if (ret)
1866 return ret;
1867
1868 seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
1869
1870 seq_printf(m, "DPIO PLL DW3 CH0 : 0x%08x\n",
1871 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW3(0)));
1872 seq_printf(m, "DPIO PLL DW3 CH1: 0x%08x\n",
1873 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW3(1)));
1874
1875 seq_printf(m, "DPIO PLL DW5 CH0: 0x%08x\n",
1876 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW5(0)));
1877 seq_printf(m, "DPIO PLL DW5 CH1: 0x%08x\n",
1878 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW5(1)));
1879
1880 seq_printf(m, "DPIO PLL DW7 CH0: 0x%08x\n",
1881 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW7(0)));
1882 seq_printf(m, "DPIO PLL DW7 CH1: 0x%08x\n",
1883 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW7(1)));
1884
1885 seq_printf(m, "DPIO PLL DW10 CH0: 0x%08x\n",
1886 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW10(0)));
1887 seq_printf(m, "DPIO PLL DW10 CH1: 0x%08x\n",
1888 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW10(1)));
1889
1890 seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
1891 vlv_dpio_read(dev_priv, PIPE_A, VLV_CMN_DW0));
1892
1893 mutex_unlock(&dev_priv->dpio_lock);
1894
1895 return 0;
1896 }
1897
1898 static int i915_llc(struct seq_file *m, void *data)
1899 {
1900 struct drm_info_node *node = (struct drm_info_node *) m->private;
1901 struct drm_device *dev = node->minor->dev;
1902 struct drm_i915_private *dev_priv = dev->dev_private;
1903
1904 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
1905 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
1906 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
1907
1908 return 0;
1909 }
1910
1911 static int i915_edp_psr_status(struct seq_file *m, void *data)
1912 {
1913 struct drm_info_node *node = m->private;
1914 struct drm_device *dev = node->minor->dev;
1915 struct drm_i915_private *dev_priv = dev->dev_private;
1916 u32 psrperf = 0;
1917 bool enabled = false;
1918
1919 intel_runtime_pm_get(dev_priv);
1920
1921 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
1922 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
1923
1924 enabled = HAS_PSR(dev) &&
1925 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1926 seq_printf(m, "Enabled: %s\n", yesno(enabled));
1927
1928 if (HAS_PSR(dev))
1929 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
1930 EDP_PSR_PERF_CNT_MASK;
1931 seq_printf(m, "Performance_Counter: %u\n", psrperf);
1932
1933 intel_runtime_pm_put(dev_priv);
1934 return 0;
1935 }
1936
1937 static int i915_sink_crc(struct seq_file *m, void *data)
1938 {
1939 struct drm_info_node *node = m->private;
1940 struct drm_device *dev = node->minor->dev;
1941 struct intel_encoder *encoder;
1942 struct intel_connector *connector;
1943 struct intel_dp *intel_dp = NULL;
1944 int ret;
1945 u8 crc[6];
1946
1947 drm_modeset_lock_all(dev);
1948 list_for_each_entry(connector, &dev->mode_config.connector_list,
1949 base.head) {
1950
1951 if (connector->base.dpms != DRM_MODE_DPMS_ON)
1952 continue;
1953
1954 if (!connector->base.encoder)
1955 continue;
1956
1957 encoder = to_intel_encoder(connector->base.encoder);
1958 if (encoder->type != INTEL_OUTPUT_EDP)
1959 continue;
1960
1961 intel_dp = enc_to_intel_dp(&encoder->base);
1962
1963 ret = intel_dp_sink_crc(intel_dp, crc);
1964 if (ret)
1965 goto out;
1966
1967 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
1968 crc[0], crc[1], crc[2],
1969 crc[3], crc[4], crc[5]);
1970 goto out;
1971 }
1972 ret = -ENODEV;
1973 out:
1974 drm_modeset_unlock_all(dev);
1975 return ret;
1976 }
1977
1978 static int i915_energy_uJ(struct seq_file *m, void *data)
1979 {
1980 struct drm_info_node *node = m->private;
1981 struct drm_device *dev = node->minor->dev;
1982 struct drm_i915_private *dev_priv = dev->dev_private;
1983 u64 power;
1984 u32 units;
1985
1986 if (INTEL_INFO(dev)->gen < 6)
1987 return -ENODEV;
1988
1989 intel_runtime_pm_get(dev_priv);
1990
1991 rdmsrl(MSR_RAPL_POWER_UNIT, power);
1992 power = (power & 0x1f00) >> 8;
1993 units = 1000000 / (1 << power); /* convert to uJ */
1994 power = I915_READ(MCH_SECP_NRG_STTS);
1995 power *= units;
1996
1997 intel_runtime_pm_put(dev_priv);
1998
1999 seq_printf(m, "%llu", (long long unsigned)power);
2000
2001 return 0;
2002 }
2003
2004 static int i915_pc8_status(struct seq_file *m, void *unused)
2005 {
2006 struct drm_info_node *node = (struct drm_info_node *) m->private;
2007 struct drm_device *dev = node->minor->dev;
2008 struct drm_i915_private *dev_priv = dev->dev_private;
2009
2010 if (!IS_HASWELL(dev)) {
2011 seq_puts(m, "not supported\n");
2012 return 0;
2013 }
2014
2015 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2016 seq_printf(m, "IRQs disabled: %s\n",
2017 yesno(dev_priv->pm.irqs_disabled));
2018
2019 return 0;
2020 }
2021
2022 static const char *power_domain_str(enum intel_display_power_domain domain)
2023 {
2024 switch (domain) {
2025 case POWER_DOMAIN_PIPE_A:
2026 return "PIPE_A";
2027 case POWER_DOMAIN_PIPE_B:
2028 return "PIPE_B";
2029 case POWER_DOMAIN_PIPE_C:
2030 return "PIPE_C";
2031 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2032 return "PIPE_A_PANEL_FITTER";
2033 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2034 return "PIPE_B_PANEL_FITTER";
2035 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2036 return "PIPE_C_PANEL_FITTER";
2037 case POWER_DOMAIN_TRANSCODER_A:
2038 return "TRANSCODER_A";
2039 case POWER_DOMAIN_TRANSCODER_B:
2040 return "TRANSCODER_B";
2041 case POWER_DOMAIN_TRANSCODER_C:
2042 return "TRANSCODER_C";
2043 case POWER_DOMAIN_TRANSCODER_EDP:
2044 return "TRANSCODER_EDP";
2045 case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2046 return "PORT_DDI_A_2_LANES";
2047 case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2048 return "PORT_DDI_A_4_LANES";
2049 case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2050 return "PORT_DDI_B_2_LANES";
2051 case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2052 return "PORT_DDI_B_4_LANES";
2053 case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2054 return "PORT_DDI_C_2_LANES";
2055 case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2056 return "PORT_DDI_C_4_LANES";
2057 case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2058 return "PORT_DDI_D_2_LANES";
2059 case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2060 return "PORT_DDI_D_4_LANES";
2061 case POWER_DOMAIN_PORT_DSI:
2062 return "PORT_DSI";
2063 case POWER_DOMAIN_PORT_CRT:
2064 return "PORT_CRT";
2065 case POWER_DOMAIN_PORT_OTHER:
2066 return "PORT_OTHER";
2067 case POWER_DOMAIN_VGA:
2068 return "VGA";
2069 case POWER_DOMAIN_AUDIO:
2070 return "AUDIO";
2071 case POWER_DOMAIN_INIT:
2072 return "INIT";
2073 default:
2074 WARN_ON(1);
2075 return "?";
2076 }
2077 }
2078
2079 static int i915_power_domain_info(struct seq_file *m, void *unused)
2080 {
2081 struct drm_info_node *node = (struct drm_info_node *) m->private;
2082 struct drm_device *dev = node->minor->dev;
2083 struct drm_i915_private *dev_priv = dev->dev_private;
2084 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2085 int i;
2086
2087 mutex_lock(&power_domains->lock);
2088
2089 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2090 for (i = 0; i < power_domains->power_well_count; i++) {
2091 struct i915_power_well *power_well;
2092 enum intel_display_power_domain power_domain;
2093
2094 power_well = &power_domains->power_wells[i];
2095 seq_printf(m, "%-25s %d\n", power_well->name,
2096 power_well->count);
2097
2098 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2099 power_domain++) {
2100 if (!(BIT(power_domain) & power_well->domains))
2101 continue;
2102
2103 seq_printf(m, " %-23s %d\n",
2104 power_domain_str(power_domain),
2105 power_domains->domain_use_count[power_domain]);
2106 }
2107 }
2108
2109 mutex_unlock(&power_domains->lock);
2110
2111 return 0;
2112 }
2113
2114 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2115 struct drm_display_mode *mode)
2116 {
2117 int i;
2118
2119 for (i = 0; i < tabs; i++)
2120 seq_putc(m, '\t');
2121
2122 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2123 mode->base.id, mode->name,
2124 mode->vrefresh, mode->clock,
2125 mode->hdisplay, mode->hsync_start,
2126 mode->hsync_end, mode->htotal,
2127 mode->vdisplay, mode->vsync_start,
2128 mode->vsync_end, mode->vtotal,
2129 mode->type, mode->flags);
2130 }
2131
2132 static void intel_encoder_info(struct seq_file *m,
2133 struct intel_crtc *intel_crtc,
2134 struct intel_encoder *intel_encoder)
2135 {
2136 struct drm_info_node *node = (struct drm_info_node *) m->private;
2137 struct drm_device *dev = node->minor->dev;
2138 struct drm_crtc *crtc = &intel_crtc->base;
2139 struct intel_connector *intel_connector;
2140 struct drm_encoder *encoder;
2141
2142 encoder = &intel_encoder->base;
2143 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2144 encoder->base.id, drm_get_encoder_name(encoder));
2145 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2146 struct drm_connector *connector = &intel_connector->base;
2147 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2148 connector->base.id,
2149 drm_get_connector_name(connector),
2150 drm_get_connector_status_name(connector->status));
2151 if (connector->status == connector_status_connected) {
2152 struct drm_display_mode *mode = &crtc->mode;
2153 seq_printf(m, ", mode:\n");
2154 intel_seq_print_mode(m, 2, mode);
2155 } else {
2156 seq_putc(m, '\n');
2157 }
2158 }
2159 }
2160
2161 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2162 {
2163 struct drm_info_node *node = (struct drm_info_node *) m->private;
2164 struct drm_device *dev = node->minor->dev;
2165 struct drm_crtc *crtc = &intel_crtc->base;
2166 struct intel_encoder *intel_encoder;
2167
2168 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2169 crtc->fb->base.id, crtc->x, crtc->y,
2170 crtc->fb->width, crtc->fb->height);
2171 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2172 intel_encoder_info(m, intel_crtc, intel_encoder);
2173 }
2174
2175 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2176 {
2177 struct drm_display_mode *mode = panel->fixed_mode;
2178
2179 seq_printf(m, "\tfixed mode:\n");
2180 intel_seq_print_mode(m, 2, mode);
2181 }
2182
2183 static void intel_dp_info(struct seq_file *m,
2184 struct intel_connector *intel_connector)
2185 {
2186 struct intel_encoder *intel_encoder = intel_connector->encoder;
2187 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2188
2189 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2190 seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2191 "no");
2192 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2193 intel_panel_info(m, &intel_connector->panel);
2194 }
2195
2196 static void intel_hdmi_info(struct seq_file *m,
2197 struct intel_connector *intel_connector)
2198 {
2199 struct intel_encoder *intel_encoder = intel_connector->encoder;
2200 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2201
2202 seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2203 "no");
2204 }
2205
2206 static void intel_lvds_info(struct seq_file *m,
2207 struct intel_connector *intel_connector)
2208 {
2209 intel_panel_info(m, &intel_connector->panel);
2210 }
2211
2212 static void intel_connector_info(struct seq_file *m,
2213 struct drm_connector *connector)
2214 {
2215 struct intel_connector *intel_connector = to_intel_connector(connector);
2216 struct intel_encoder *intel_encoder = intel_connector->encoder;
2217 struct drm_display_mode *mode;
2218
2219 seq_printf(m, "connector %d: type %s, status: %s\n",
2220 connector->base.id, drm_get_connector_name(connector),
2221 drm_get_connector_status_name(connector->status));
2222 if (connector->status == connector_status_connected) {
2223 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2224 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2225 connector->display_info.width_mm,
2226 connector->display_info.height_mm);
2227 seq_printf(m, "\tsubpixel order: %s\n",
2228 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2229 seq_printf(m, "\tCEA rev: %d\n",
2230 connector->display_info.cea_rev);
2231 }
2232 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2233 intel_encoder->type == INTEL_OUTPUT_EDP)
2234 intel_dp_info(m, intel_connector);
2235 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2236 intel_hdmi_info(m, intel_connector);
2237 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2238 intel_lvds_info(m, intel_connector);
2239
2240 seq_printf(m, "\tmodes:\n");
2241 list_for_each_entry(mode, &connector->modes, head)
2242 intel_seq_print_mode(m, 2, mode);
2243 }
2244
2245 static bool cursor_active(struct drm_device *dev, int pipe)
2246 {
2247 struct drm_i915_private *dev_priv = dev->dev_private;
2248 u32 state;
2249
2250 if (IS_845G(dev) || IS_I865G(dev))
2251 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2252 else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
2253 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2254 else
2255 state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
2256
2257 return state;
2258 }
2259
2260 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2261 {
2262 struct drm_i915_private *dev_priv = dev->dev_private;
2263 u32 pos;
2264
2265 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
2266 pos = I915_READ(CURPOS_IVB(pipe));
2267 else
2268 pos = I915_READ(CURPOS(pipe));
2269
2270 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2271 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2272 *x = -*x;
2273
2274 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2275 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2276 *y = -*y;
2277
2278 return cursor_active(dev, pipe);
2279 }
2280
2281 static int i915_display_info(struct seq_file *m, void *unused)
2282 {
2283 struct drm_info_node *node = (struct drm_info_node *) m->private;
2284 struct drm_device *dev = node->minor->dev;
2285 struct intel_crtc *crtc;
2286 struct drm_connector *connector;
2287
2288 drm_modeset_lock_all(dev);
2289 seq_printf(m, "CRTC info\n");
2290 seq_printf(m, "---------\n");
2291 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
2292 bool active;
2293 int x, y;
2294
2295 seq_printf(m, "CRTC %d: pipe: %c, active: %s\n",
2296 crtc->base.base.id, pipe_name(crtc->pipe),
2297 yesno(crtc->active));
2298 if (crtc->active)
2299 intel_crtc_info(m, crtc);
2300
2301 active = cursor_position(dev, crtc->pipe, &x, &y);
2302 seq_printf(m, "\tcursor visible? %s, position (%d, %d), addr 0x%08x, active? %s\n",
2303 yesno(crtc->cursor_visible),
2304 x, y, crtc->cursor_addr,
2305 yesno(active));
2306 }
2307
2308 seq_printf(m, "\n");
2309 seq_printf(m, "Connector info\n");
2310 seq_printf(m, "--------------\n");
2311 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2312 intel_connector_info(m, connector);
2313 }
2314 drm_modeset_unlock_all(dev);
2315
2316 return 0;
2317 }
2318
2319 struct pipe_crc_info {
2320 const char *name;
2321 struct drm_device *dev;
2322 enum pipe pipe;
2323 };
2324
2325 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2326 {
2327 struct pipe_crc_info *info = inode->i_private;
2328 struct drm_i915_private *dev_priv = info->dev->dev_private;
2329 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2330
2331 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2332 return -ENODEV;
2333
2334 spin_lock_irq(&pipe_crc->lock);
2335
2336 if (pipe_crc->opened) {
2337 spin_unlock_irq(&pipe_crc->lock);
2338 return -EBUSY; /* already open */
2339 }
2340
2341 pipe_crc->opened = true;
2342 filep->private_data = inode->i_private;
2343
2344 spin_unlock_irq(&pipe_crc->lock);
2345
2346 return 0;
2347 }
2348
2349 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2350 {
2351 struct pipe_crc_info *info = inode->i_private;
2352 struct drm_i915_private *dev_priv = info->dev->dev_private;
2353 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2354
2355 spin_lock_irq(&pipe_crc->lock);
2356 pipe_crc->opened = false;
2357 spin_unlock_irq(&pipe_crc->lock);
2358
2359 return 0;
2360 }
2361
2362 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2363 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
2364 /* account for \'0' */
2365 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
2366
2367 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2368 {
2369 assert_spin_locked(&pipe_crc->lock);
2370 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2371 INTEL_PIPE_CRC_ENTRIES_NR);
2372 }
2373
2374 static ssize_t
2375 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2376 loff_t *pos)
2377 {
2378 struct pipe_crc_info *info = filep->private_data;
2379 struct drm_device *dev = info->dev;
2380 struct drm_i915_private *dev_priv = dev->dev_private;
2381 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2382 char buf[PIPE_CRC_BUFFER_LEN];
2383 int head, tail, n_entries, n;
2384 ssize_t bytes_read;
2385
2386 /*
2387 * Don't allow user space to provide buffers not big enough to hold
2388 * a line of data.
2389 */
2390 if (count < PIPE_CRC_LINE_LEN)
2391 return -EINVAL;
2392
2393 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2394 return 0;
2395
2396 /* nothing to read */
2397 spin_lock_irq(&pipe_crc->lock);
2398 while (pipe_crc_data_count(pipe_crc) == 0) {
2399 int ret;
2400
2401 if (filep->f_flags & O_NONBLOCK) {
2402 spin_unlock_irq(&pipe_crc->lock);
2403 return -EAGAIN;
2404 }
2405
2406 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2407 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2408 if (ret) {
2409 spin_unlock_irq(&pipe_crc->lock);
2410 return ret;
2411 }
2412 }
2413
2414 /* We now have one or more entries to read */
2415 head = pipe_crc->head;
2416 tail = pipe_crc->tail;
2417 n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2418 count / PIPE_CRC_LINE_LEN);
2419 spin_unlock_irq(&pipe_crc->lock);
2420
2421 bytes_read = 0;
2422 n = 0;
2423 do {
2424 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2425 int ret;
2426
2427 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2428 "%8u %8x %8x %8x %8x %8x\n",
2429 entry->frame, entry->crc[0],
2430 entry->crc[1], entry->crc[2],
2431 entry->crc[3], entry->crc[4]);
2432
2433 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2434 buf, PIPE_CRC_LINE_LEN);
2435 if (ret == PIPE_CRC_LINE_LEN)
2436 return -EFAULT;
2437
2438 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2439 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2440 n++;
2441 } while (--n_entries);
2442
2443 spin_lock_irq(&pipe_crc->lock);
2444 pipe_crc->tail = tail;
2445 spin_unlock_irq(&pipe_crc->lock);
2446
2447 return bytes_read;
2448 }
2449
2450 static const struct file_operations i915_pipe_crc_fops = {
2451 .owner = THIS_MODULE,
2452 .open = i915_pipe_crc_open,
2453 .read = i915_pipe_crc_read,
2454 .release = i915_pipe_crc_release,
2455 };
2456
2457 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2458 {
2459 .name = "i915_pipe_A_crc",
2460 .pipe = PIPE_A,
2461 },
2462 {
2463 .name = "i915_pipe_B_crc",
2464 .pipe = PIPE_B,
2465 },
2466 {
2467 .name = "i915_pipe_C_crc",
2468 .pipe = PIPE_C,
2469 },
2470 };
2471
2472 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2473 enum pipe pipe)
2474 {
2475 struct drm_device *dev = minor->dev;
2476 struct dentry *ent;
2477 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2478
2479 info->dev = dev;
2480 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2481 &i915_pipe_crc_fops);
2482 if (!ent)
2483 return -ENOMEM;
2484
2485 return drm_add_fake_info_node(minor, ent, info);
2486 }
2487
2488 static const char * const pipe_crc_sources[] = {
2489 "none",
2490 "plane1",
2491 "plane2",
2492 "pf",
2493 "pipe",
2494 "TV",
2495 "DP-B",
2496 "DP-C",
2497 "DP-D",
2498 "auto",
2499 };
2500
2501 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2502 {
2503 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2504 return pipe_crc_sources[source];
2505 }
2506
2507 static int display_crc_ctl_show(struct seq_file *m, void *data)
2508 {
2509 struct drm_device *dev = m->private;
2510 struct drm_i915_private *dev_priv = dev->dev_private;
2511 int i;
2512
2513 for (i = 0; i < I915_MAX_PIPES; i++)
2514 seq_printf(m, "%c %s\n", pipe_name(i),
2515 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2516
2517 return 0;
2518 }
2519
2520 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2521 {
2522 struct drm_device *dev = inode->i_private;
2523
2524 return single_open(file, display_crc_ctl_show, dev);
2525 }
2526
2527 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2528 uint32_t *val)
2529 {
2530 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2531 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2532
2533 switch (*source) {
2534 case INTEL_PIPE_CRC_SOURCE_PIPE:
2535 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2536 break;
2537 case INTEL_PIPE_CRC_SOURCE_NONE:
2538 *val = 0;
2539 break;
2540 default:
2541 return -EINVAL;
2542 }
2543
2544 return 0;
2545 }
2546
2547 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2548 enum intel_pipe_crc_source *source)
2549 {
2550 struct intel_encoder *encoder;
2551 struct intel_crtc *crtc;
2552 struct intel_digital_port *dig_port;
2553 int ret = 0;
2554
2555 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2556
2557 mutex_lock(&dev->mode_config.mutex);
2558 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2559 base.head) {
2560 if (!encoder->base.crtc)
2561 continue;
2562
2563 crtc = to_intel_crtc(encoder->base.crtc);
2564
2565 if (crtc->pipe != pipe)
2566 continue;
2567
2568 switch (encoder->type) {
2569 case INTEL_OUTPUT_TVOUT:
2570 *source = INTEL_PIPE_CRC_SOURCE_TV;
2571 break;
2572 case INTEL_OUTPUT_DISPLAYPORT:
2573 case INTEL_OUTPUT_EDP:
2574 dig_port = enc_to_dig_port(&encoder->base);
2575 switch (dig_port->port) {
2576 case PORT_B:
2577 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
2578 break;
2579 case PORT_C:
2580 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
2581 break;
2582 case PORT_D:
2583 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
2584 break;
2585 default:
2586 WARN(1, "nonexisting DP port %c\n",
2587 port_name(dig_port->port));
2588 break;
2589 }
2590 break;
2591 }
2592 }
2593 mutex_unlock(&dev->mode_config.mutex);
2594
2595 return ret;
2596 }
2597
2598 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2599 enum pipe pipe,
2600 enum intel_pipe_crc_source *source,
2601 uint32_t *val)
2602 {
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 bool need_stable_symbols = false;
2605
2606 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2607 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2608 if (ret)
2609 return ret;
2610 }
2611
2612 switch (*source) {
2613 case INTEL_PIPE_CRC_SOURCE_PIPE:
2614 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2615 break;
2616 case INTEL_PIPE_CRC_SOURCE_DP_B:
2617 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2618 need_stable_symbols = true;
2619 break;
2620 case INTEL_PIPE_CRC_SOURCE_DP_C:
2621 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
2622 need_stable_symbols = true;
2623 break;
2624 case INTEL_PIPE_CRC_SOURCE_NONE:
2625 *val = 0;
2626 break;
2627 default:
2628 return -EINVAL;
2629 }
2630
2631 /*
2632 * When the pipe CRC tap point is after the transcoders we need
2633 * to tweak symbol-level features to produce a deterministic series of
2634 * symbols for a given frame. We need to reset those features only once
2635 * a frame (instead of every nth symbol):
2636 * - DC-balance: used to ensure a better clock recovery from the data
2637 * link (SDVO)
2638 * - DisplayPort scrambling: used for EMI reduction
2639 */
2640 if (need_stable_symbols) {
2641 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2642
2643 tmp |= DC_BALANCE_RESET_VLV;
2644 if (pipe == PIPE_A)
2645 tmp |= PIPE_A_SCRAMBLE_RESET;
2646 else
2647 tmp |= PIPE_B_SCRAMBLE_RESET;
2648
2649 I915_WRITE(PORT_DFT2_G4X, tmp);
2650 }
2651
2652 return 0;
2653 }
2654
2655 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
2656 enum pipe pipe,
2657 enum intel_pipe_crc_source *source,
2658 uint32_t *val)
2659 {
2660 struct drm_i915_private *dev_priv = dev->dev_private;
2661 bool need_stable_symbols = false;
2662
2663 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2664 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2665 if (ret)
2666 return ret;
2667 }
2668
2669 switch (*source) {
2670 case INTEL_PIPE_CRC_SOURCE_PIPE:
2671 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
2672 break;
2673 case INTEL_PIPE_CRC_SOURCE_TV:
2674 if (!SUPPORTS_TV(dev))
2675 return -EINVAL;
2676 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
2677 break;
2678 case INTEL_PIPE_CRC_SOURCE_DP_B:
2679 if (!IS_G4X(dev))
2680 return -EINVAL;
2681 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
2682 need_stable_symbols = true;
2683 break;
2684 case INTEL_PIPE_CRC_SOURCE_DP_C:
2685 if (!IS_G4X(dev))
2686 return -EINVAL;
2687 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
2688 need_stable_symbols = true;
2689 break;
2690 case INTEL_PIPE_CRC_SOURCE_DP_D:
2691 if (!IS_G4X(dev))
2692 return -EINVAL;
2693 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
2694 need_stable_symbols = true;
2695 break;
2696 case INTEL_PIPE_CRC_SOURCE_NONE:
2697 *val = 0;
2698 break;
2699 default:
2700 return -EINVAL;
2701 }
2702
2703 /*
2704 * When the pipe CRC tap point is after the transcoders we need
2705 * to tweak symbol-level features to produce a deterministic series of
2706 * symbols for a given frame. We need to reset those features only once
2707 * a frame (instead of every nth symbol):
2708 * - DC-balance: used to ensure a better clock recovery from the data
2709 * link (SDVO)
2710 * - DisplayPort scrambling: used for EMI reduction
2711 */
2712 if (need_stable_symbols) {
2713 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2714
2715 WARN_ON(!IS_G4X(dev));
2716
2717 I915_WRITE(PORT_DFT_I9XX,
2718 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
2719
2720 if (pipe == PIPE_A)
2721 tmp |= PIPE_A_SCRAMBLE_RESET;
2722 else
2723 tmp |= PIPE_B_SCRAMBLE_RESET;
2724
2725 I915_WRITE(PORT_DFT2_G4X, tmp);
2726 }
2727
2728 return 0;
2729 }
2730
2731 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
2732 enum pipe pipe)
2733 {
2734 struct drm_i915_private *dev_priv = dev->dev_private;
2735 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2736
2737 if (pipe == PIPE_A)
2738 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2739 else
2740 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2741 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
2742 tmp &= ~DC_BALANCE_RESET_VLV;
2743 I915_WRITE(PORT_DFT2_G4X, tmp);
2744
2745 }
2746
2747 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
2748 enum pipe pipe)
2749 {
2750 struct drm_i915_private *dev_priv = dev->dev_private;
2751 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2752
2753 if (pipe == PIPE_A)
2754 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2755 else
2756 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2757 I915_WRITE(PORT_DFT2_G4X, tmp);
2758
2759 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
2760 I915_WRITE(PORT_DFT_I9XX,
2761 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
2762 }
2763 }
2764
2765 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2766 uint32_t *val)
2767 {
2768 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2769 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2770
2771 switch (*source) {
2772 case INTEL_PIPE_CRC_SOURCE_PLANE1:
2773 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
2774 break;
2775 case INTEL_PIPE_CRC_SOURCE_PLANE2:
2776 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
2777 break;
2778 case INTEL_PIPE_CRC_SOURCE_PIPE:
2779 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
2780 break;
2781 case INTEL_PIPE_CRC_SOURCE_NONE:
2782 *val = 0;
2783 break;
2784 default:
2785 return -EINVAL;
2786 }
2787
2788 return 0;
2789 }
2790
2791 static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2792 uint32_t *val)
2793 {
2794 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2795 *source = INTEL_PIPE_CRC_SOURCE_PF;
2796
2797 switch (*source) {
2798 case INTEL_PIPE_CRC_SOURCE_PLANE1:
2799 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
2800 break;
2801 case INTEL_PIPE_CRC_SOURCE_PLANE2:
2802 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
2803 break;
2804 case INTEL_PIPE_CRC_SOURCE_PF:
2805 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
2806 break;
2807 case INTEL_PIPE_CRC_SOURCE_NONE:
2808 *val = 0;
2809 break;
2810 default:
2811 return -EINVAL;
2812 }
2813
2814 return 0;
2815 }
2816
2817 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
2818 enum intel_pipe_crc_source source)
2819 {
2820 struct drm_i915_private *dev_priv = dev->dev_private;
2821 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
2822 u32 val = 0; /* shut up gcc */
2823 int ret;
2824
2825 if (pipe_crc->source == source)
2826 return 0;
2827
2828 /* forbid changing the source without going back to 'none' */
2829 if (pipe_crc->source && source)
2830 return -EINVAL;
2831
2832 if (IS_GEN2(dev))
2833 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
2834 else if (INTEL_INFO(dev)->gen < 5)
2835 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
2836 else if (IS_VALLEYVIEW(dev))
2837 ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val);
2838 else if (IS_GEN5(dev) || IS_GEN6(dev))
2839 ret = ilk_pipe_crc_ctl_reg(&source, &val);
2840 else
2841 ret = ivb_pipe_crc_ctl_reg(&source, &val);
2842
2843 if (ret != 0)
2844 return ret;
2845
2846 /* none -> real source transition */
2847 if (source) {
2848 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
2849 pipe_name(pipe), pipe_crc_source_name(source));
2850
2851 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
2852 INTEL_PIPE_CRC_ENTRIES_NR,
2853 GFP_KERNEL);
2854 if (!pipe_crc->entries)
2855 return -ENOMEM;
2856
2857 spin_lock_irq(&pipe_crc->lock);
2858 pipe_crc->head = 0;
2859 pipe_crc->tail = 0;
2860 spin_unlock_irq(&pipe_crc->lock);
2861 }
2862
2863 pipe_crc->source = source;
2864
2865 I915_WRITE(PIPE_CRC_CTL(pipe), val);
2866 POSTING_READ(PIPE_CRC_CTL(pipe));
2867
2868 /* real source -> none transition */
2869 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
2870 struct intel_pipe_crc_entry *entries;
2871
2872 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
2873 pipe_name(pipe));
2874
2875 intel_wait_for_vblank(dev, pipe);
2876
2877 spin_lock_irq(&pipe_crc->lock);
2878 entries = pipe_crc->entries;
2879 pipe_crc->entries = NULL;
2880 spin_unlock_irq(&pipe_crc->lock);
2881
2882 kfree(entries);
2883
2884 if (IS_G4X(dev))
2885 g4x_undo_pipe_scramble_reset(dev, pipe);
2886 else if (IS_VALLEYVIEW(dev))
2887 vlv_undo_pipe_scramble_reset(dev, pipe);
2888 }
2889
2890 return 0;
2891 }
2892
2893 /*
2894 * Parse pipe CRC command strings:
2895 * command: wsp* object wsp+ name wsp+ source wsp*
2896 * object: 'pipe'
2897 * name: (A | B | C)
2898 * source: (none | plane1 | plane2 | pf)
2899 * wsp: (#0x20 | #0x9 | #0xA)+
2900 *
2901 * eg.:
2902 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
2903 * "pipe A none" -> Stop CRC
2904 */
2905 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
2906 {
2907 int n_words = 0;
2908
2909 while (*buf) {
2910 char *end;
2911
2912 /* skip leading white space */
2913 buf = skip_spaces(buf);
2914 if (!*buf)
2915 break; /* end of buffer */
2916
2917 /* find end of word */
2918 for (end = buf; *end && !isspace(*end); end++)
2919 ;
2920
2921 if (n_words == max_words) {
2922 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
2923 max_words);
2924 return -EINVAL; /* ran out of words[] before bytes */
2925 }
2926
2927 if (*end)
2928 *end++ = '\0';
2929 words[n_words++] = buf;
2930 buf = end;
2931 }
2932
2933 return n_words;
2934 }
2935
2936 enum intel_pipe_crc_object {
2937 PIPE_CRC_OBJECT_PIPE,
2938 };
2939
2940 static const char * const pipe_crc_objects[] = {
2941 "pipe",
2942 };
2943
2944 static int
2945 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
2946 {
2947 int i;
2948
2949 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
2950 if (!strcmp(buf, pipe_crc_objects[i])) {
2951 *o = i;
2952 return 0;
2953 }
2954
2955 return -EINVAL;
2956 }
2957
2958 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
2959 {
2960 const char name = buf[0];
2961
2962 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
2963 return -EINVAL;
2964
2965 *pipe = name - 'A';
2966
2967 return 0;
2968 }
2969
2970 static int
2971 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
2972 {
2973 int i;
2974
2975 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
2976 if (!strcmp(buf, pipe_crc_sources[i])) {
2977 *s = i;
2978 return 0;
2979 }
2980
2981 return -EINVAL;
2982 }
2983
2984 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
2985 {
2986 #define N_WORDS 3
2987 int n_words;
2988 char *words[N_WORDS];
2989 enum pipe pipe;
2990 enum intel_pipe_crc_object object;
2991 enum intel_pipe_crc_source source;
2992
2993 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
2994 if (n_words != N_WORDS) {
2995 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
2996 N_WORDS);
2997 return -EINVAL;
2998 }
2999
3000 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3001 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3002 return -EINVAL;
3003 }
3004
3005 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3006 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3007 return -EINVAL;
3008 }
3009
3010 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3011 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3012 return -EINVAL;
3013 }
3014
3015 return pipe_crc_set_source(dev, pipe, source);
3016 }
3017
3018 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3019 size_t len, loff_t *offp)
3020 {
3021 struct seq_file *m = file->private_data;
3022 struct drm_device *dev = m->private;
3023 char *tmpbuf;
3024 int ret;
3025
3026 if (len == 0)
3027 return 0;
3028
3029 if (len > PAGE_SIZE - 1) {
3030 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3031 PAGE_SIZE);
3032 return -E2BIG;
3033 }
3034
3035 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3036 if (!tmpbuf)
3037 return -ENOMEM;
3038
3039 if (copy_from_user(tmpbuf, ubuf, len)) {
3040 ret = -EFAULT;
3041 goto out;
3042 }
3043 tmpbuf[len] = '\0';
3044
3045 ret = display_crc_ctl_parse(dev, tmpbuf, len);
3046
3047 out:
3048 kfree(tmpbuf);
3049 if (ret < 0)
3050 return ret;
3051
3052 *offp += len;
3053 return len;
3054 }
3055
3056 static const struct file_operations i915_display_crc_ctl_fops = {
3057 .owner = THIS_MODULE,
3058 .open = display_crc_ctl_open,
3059 .read = seq_read,
3060 .llseek = seq_lseek,
3061 .release = single_release,
3062 .write = display_crc_ctl_write
3063 };
3064
3065 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3066 {
3067 struct drm_device *dev = m->private;
3068 int num_levels = IS_HASWELL(dev) || IS_BROADWELL(dev) ? 5 : 4;
3069 int level;
3070
3071 drm_modeset_lock_all(dev);
3072
3073 for (level = 0; level < num_levels; level++) {
3074 unsigned int latency = wm[level];
3075
3076 /* WM1+ latency values in 0.5us units */
3077 if (level > 0)
3078 latency *= 5;
3079
3080 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3081 level, wm[level],
3082 latency / 10, latency % 10);
3083 }
3084
3085 drm_modeset_unlock_all(dev);
3086 }
3087
3088 static int pri_wm_latency_show(struct seq_file *m, void *data)
3089 {
3090 struct drm_device *dev = m->private;
3091
3092 wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3093
3094 return 0;
3095 }
3096
3097 static int spr_wm_latency_show(struct seq_file *m, void *data)
3098 {
3099 struct drm_device *dev = m->private;
3100
3101 wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3102
3103 return 0;
3104 }
3105
3106 static int cur_wm_latency_show(struct seq_file *m, void *data)
3107 {
3108 struct drm_device *dev = m->private;
3109
3110 wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3111
3112 return 0;
3113 }
3114
3115 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3116 {
3117 struct drm_device *dev = inode->i_private;
3118
3119 if (!HAS_PCH_SPLIT(dev))
3120 return -ENODEV;
3121
3122 return single_open(file, pri_wm_latency_show, dev);
3123 }
3124
3125 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3126 {
3127 struct drm_device *dev = inode->i_private;
3128
3129 if (!HAS_PCH_SPLIT(dev))
3130 return -ENODEV;
3131
3132 return single_open(file, spr_wm_latency_show, dev);
3133 }
3134
3135 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3136 {
3137 struct drm_device *dev = inode->i_private;
3138
3139 if (!HAS_PCH_SPLIT(dev))
3140 return -ENODEV;
3141
3142 return single_open(file, cur_wm_latency_show, dev);
3143 }
3144
3145 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3146 size_t len, loff_t *offp, uint16_t wm[5])
3147 {
3148 struct seq_file *m = file->private_data;
3149 struct drm_device *dev = m->private;
3150 uint16_t new[5] = { 0 };
3151 int num_levels = IS_HASWELL(dev) || IS_BROADWELL(dev) ? 5 : 4;
3152 int level;
3153 int ret;
3154 char tmp[32];
3155
3156 if (len >= sizeof(tmp))
3157 return -EINVAL;
3158
3159 if (copy_from_user(tmp, ubuf, len))
3160 return -EFAULT;
3161
3162 tmp[len] = '\0';
3163
3164 ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3165 if (ret != num_levels)
3166 return -EINVAL;
3167
3168 drm_modeset_lock_all(dev);
3169
3170 for (level = 0; level < num_levels; level++)
3171 wm[level] = new[level];
3172
3173 drm_modeset_unlock_all(dev);
3174
3175 return len;
3176 }
3177
3178
3179 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3180 size_t len, loff_t *offp)
3181 {
3182 struct seq_file *m = file->private_data;
3183 struct drm_device *dev = m->private;
3184
3185 return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3186 }
3187
3188 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3189 size_t len, loff_t *offp)
3190 {
3191 struct seq_file *m = file->private_data;
3192 struct drm_device *dev = m->private;
3193
3194 return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3195 }
3196
3197 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3198 size_t len, loff_t *offp)
3199 {
3200 struct seq_file *m = file->private_data;
3201 struct drm_device *dev = m->private;
3202
3203 return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3204 }
3205
3206 static const struct file_operations i915_pri_wm_latency_fops = {
3207 .owner = THIS_MODULE,
3208 .open = pri_wm_latency_open,
3209 .read = seq_read,
3210 .llseek = seq_lseek,
3211 .release = single_release,
3212 .write = pri_wm_latency_write
3213 };
3214
3215 static const struct file_operations i915_spr_wm_latency_fops = {
3216 .owner = THIS_MODULE,
3217 .open = spr_wm_latency_open,
3218 .read = seq_read,
3219 .llseek = seq_lseek,
3220 .release = single_release,
3221 .write = spr_wm_latency_write
3222 };
3223
3224 static const struct file_operations i915_cur_wm_latency_fops = {
3225 .owner = THIS_MODULE,
3226 .open = cur_wm_latency_open,
3227 .read = seq_read,
3228 .llseek = seq_lseek,
3229 .release = single_release,
3230 .write = cur_wm_latency_write
3231 };
3232
3233 static int
3234 i915_wedged_get(void *data, u64 *val)
3235 {
3236 struct drm_device *dev = data;
3237 drm_i915_private_t *dev_priv = dev->dev_private;
3238
3239 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3240
3241 return 0;
3242 }
3243
3244 static int
3245 i915_wedged_set(void *data, u64 val)
3246 {
3247 struct drm_device *dev = data;
3248
3249 i915_handle_error(dev, val,
3250 "Manually setting wedged to %llu", val);
3251 return 0;
3252 }
3253
3254 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3255 i915_wedged_get, i915_wedged_set,
3256 "%llu\n");
3257
3258 static int
3259 i915_ring_stop_get(void *data, u64 *val)
3260 {
3261 struct drm_device *dev = data;
3262 drm_i915_private_t *dev_priv = dev->dev_private;
3263
3264 *val = dev_priv->gpu_error.stop_rings;
3265
3266 return 0;
3267 }
3268
3269 static int
3270 i915_ring_stop_set(void *data, u64 val)
3271 {
3272 struct drm_device *dev = data;
3273 struct drm_i915_private *dev_priv = dev->dev_private;
3274 int ret;
3275
3276 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3277
3278 ret = mutex_lock_interruptible(&dev->struct_mutex);
3279 if (ret)
3280 return ret;
3281
3282 dev_priv->gpu_error.stop_rings = val;
3283 mutex_unlock(&dev->struct_mutex);
3284
3285 return 0;
3286 }
3287
3288 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3289 i915_ring_stop_get, i915_ring_stop_set,
3290 "0x%08llx\n");
3291
3292 static int
3293 i915_ring_missed_irq_get(void *data, u64 *val)
3294 {
3295 struct drm_device *dev = data;
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297
3298 *val = dev_priv->gpu_error.missed_irq_rings;
3299 return 0;
3300 }
3301
3302 static int
3303 i915_ring_missed_irq_set(void *data, u64 val)
3304 {
3305 struct drm_device *dev = data;
3306 struct drm_i915_private *dev_priv = dev->dev_private;
3307 int ret;
3308
3309 /* Lock against concurrent debugfs callers */
3310 ret = mutex_lock_interruptible(&dev->struct_mutex);
3311 if (ret)
3312 return ret;
3313 dev_priv->gpu_error.missed_irq_rings = val;
3314 mutex_unlock(&dev->struct_mutex);
3315
3316 return 0;
3317 }
3318
3319 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3320 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3321 "0x%08llx\n");
3322
3323 static int
3324 i915_ring_test_irq_get(void *data, u64 *val)
3325 {
3326 struct drm_device *dev = data;
3327 struct drm_i915_private *dev_priv = dev->dev_private;
3328
3329 *val = dev_priv->gpu_error.test_irq_rings;
3330
3331 return 0;
3332 }
3333
3334 static int
3335 i915_ring_test_irq_set(void *data, u64 val)
3336 {
3337 struct drm_device *dev = data;
3338 struct drm_i915_private *dev_priv = dev->dev_private;
3339 int ret;
3340
3341 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3342
3343 /* Lock against concurrent debugfs callers */
3344 ret = mutex_lock_interruptible(&dev->struct_mutex);
3345 if (ret)
3346 return ret;
3347
3348 dev_priv->gpu_error.test_irq_rings = val;
3349 mutex_unlock(&dev->struct_mutex);
3350
3351 return 0;
3352 }
3353
3354 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3355 i915_ring_test_irq_get, i915_ring_test_irq_set,
3356 "0x%08llx\n");
3357
3358 #define DROP_UNBOUND 0x1
3359 #define DROP_BOUND 0x2
3360 #define DROP_RETIRE 0x4
3361 #define DROP_ACTIVE 0x8
3362 #define DROP_ALL (DROP_UNBOUND | \
3363 DROP_BOUND | \
3364 DROP_RETIRE | \
3365 DROP_ACTIVE)
3366 static int
3367 i915_drop_caches_get(void *data, u64 *val)
3368 {
3369 *val = DROP_ALL;
3370
3371 return 0;
3372 }
3373
3374 static int
3375 i915_drop_caches_set(void *data, u64 val)
3376 {
3377 struct drm_device *dev = data;
3378 struct drm_i915_private *dev_priv = dev->dev_private;
3379 struct drm_i915_gem_object *obj, *next;
3380 struct i915_address_space *vm;
3381 struct i915_vma *vma, *x;
3382 int ret;
3383
3384 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3385
3386 /* No need to check and wait for gpu resets, only libdrm auto-restarts
3387 * on ioctls on -EAGAIN. */
3388 ret = mutex_lock_interruptible(&dev->struct_mutex);
3389 if (ret)
3390 return ret;
3391
3392 if (val & DROP_ACTIVE) {
3393 ret = i915_gpu_idle(dev);
3394 if (ret)
3395 goto unlock;
3396 }
3397
3398 if (val & (DROP_RETIRE | DROP_ACTIVE))
3399 i915_gem_retire_requests(dev);
3400
3401 if (val & DROP_BOUND) {
3402 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3403 list_for_each_entry_safe(vma, x, &vm->inactive_list,
3404 mm_list) {
3405 if (vma->pin_count)
3406 continue;
3407
3408 ret = i915_vma_unbind(vma);
3409 if (ret)
3410 goto unlock;
3411 }
3412 }
3413 }
3414
3415 if (val & DROP_UNBOUND) {
3416 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
3417 global_list)
3418 if (obj->pages_pin_count == 0) {
3419 ret = i915_gem_object_put_pages(obj);
3420 if (ret)
3421 goto unlock;
3422 }
3423 }
3424
3425 unlock:
3426 mutex_unlock(&dev->struct_mutex);
3427
3428 return ret;
3429 }
3430
3431 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3432 i915_drop_caches_get, i915_drop_caches_set,
3433 "0x%08llx\n");
3434
3435 static int
3436 i915_max_freq_get(void *data, u64 *val)
3437 {
3438 struct drm_device *dev = data;
3439 drm_i915_private_t *dev_priv = dev->dev_private;
3440 int ret;
3441
3442 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3443 return -ENODEV;
3444
3445 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3446
3447 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3448 if (ret)
3449 return ret;
3450
3451 if (IS_VALLEYVIEW(dev))
3452 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay);
3453 else
3454 *val = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
3455 mutex_unlock(&dev_priv->rps.hw_lock);
3456
3457 return 0;
3458 }
3459
3460 static int
3461 i915_max_freq_set(void *data, u64 val)
3462 {
3463 struct drm_device *dev = data;
3464 struct drm_i915_private *dev_priv = dev->dev_private;
3465 u32 rp_state_cap, hw_max, hw_min;
3466 int ret;
3467
3468 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3469 return -ENODEV;
3470
3471 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3472
3473 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3474
3475 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3476 if (ret)
3477 return ret;
3478
3479 /*
3480 * Turbo will still be enabled, but won't go above the set value.
3481 */
3482 if (IS_VALLEYVIEW(dev)) {
3483 val = vlv_freq_opcode(dev_priv, val);
3484
3485 hw_max = valleyview_rps_max_freq(dev_priv);
3486 hw_min = valleyview_rps_min_freq(dev_priv);
3487 } else {
3488 do_div(val, GT_FREQUENCY_MULTIPLIER);
3489
3490 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3491 hw_max = dev_priv->rps.hw_max;
3492 hw_min = (rp_state_cap >> 16) & 0xff;
3493 }
3494
3495 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_delay) {
3496 mutex_unlock(&dev_priv->rps.hw_lock);
3497 return -EINVAL;
3498 }
3499
3500 dev_priv->rps.max_delay = val;
3501
3502 if (IS_VALLEYVIEW(dev))
3503 valleyview_set_rps(dev, val);
3504 else
3505 gen6_set_rps(dev, val);
3506
3507 mutex_unlock(&dev_priv->rps.hw_lock);
3508
3509 return 0;
3510 }
3511
3512 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3513 i915_max_freq_get, i915_max_freq_set,
3514 "%llu\n");
3515
3516 static int
3517 i915_min_freq_get(void *data, u64 *val)
3518 {
3519 struct drm_device *dev = data;
3520 drm_i915_private_t *dev_priv = dev->dev_private;
3521 int ret;
3522
3523 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3524 return -ENODEV;
3525
3526 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3527
3528 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3529 if (ret)
3530 return ret;
3531
3532 if (IS_VALLEYVIEW(dev))
3533 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay);
3534 else
3535 *val = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
3536 mutex_unlock(&dev_priv->rps.hw_lock);
3537
3538 return 0;
3539 }
3540
3541 static int
3542 i915_min_freq_set(void *data, u64 val)
3543 {
3544 struct drm_device *dev = data;
3545 struct drm_i915_private *dev_priv = dev->dev_private;
3546 u32 rp_state_cap, hw_max, hw_min;
3547 int ret;
3548
3549 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3550 return -ENODEV;
3551
3552 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3553
3554 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3555
3556 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3557 if (ret)
3558 return ret;
3559
3560 /*
3561 * Turbo will still be enabled, but won't go below the set value.
3562 */
3563 if (IS_VALLEYVIEW(dev)) {
3564 val = vlv_freq_opcode(dev_priv, val);
3565
3566 hw_max = valleyview_rps_max_freq(dev_priv);
3567 hw_min = valleyview_rps_min_freq(dev_priv);
3568 } else {
3569 do_div(val, GT_FREQUENCY_MULTIPLIER);
3570
3571 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3572 hw_max = dev_priv->rps.hw_max;
3573 hw_min = (rp_state_cap >> 16) & 0xff;
3574 }
3575
3576 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) {
3577 mutex_unlock(&dev_priv->rps.hw_lock);
3578 return -EINVAL;
3579 }
3580
3581 dev_priv->rps.min_delay = val;
3582
3583 if (IS_VALLEYVIEW(dev))
3584 valleyview_set_rps(dev, val);
3585 else
3586 gen6_set_rps(dev, val);
3587
3588 mutex_unlock(&dev_priv->rps.hw_lock);
3589
3590 return 0;
3591 }
3592
3593 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
3594 i915_min_freq_get, i915_min_freq_set,
3595 "%llu\n");
3596
3597 static int
3598 i915_cache_sharing_get(void *data, u64 *val)
3599 {
3600 struct drm_device *dev = data;
3601 drm_i915_private_t *dev_priv = dev->dev_private;
3602 u32 snpcr;
3603 int ret;
3604
3605 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3606 return -ENODEV;
3607
3608 ret = mutex_lock_interruptible(&dev->struct_mutex);
3609 if (ret)
3610 return ret;
3611 intel_runtime_pm_get(dev_priv);
3612
3613 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3614
3615 intel_runtime_pm_put(dev_priv);
3616 mutex_unlock(&dev_priv->dev->struct_mutex);
3617
3618 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
3619
3620 return 0;
3621 }
3622
3623 static int
3624 i915_cache_sharing_set(void *data, u64 val)
3625 {
3626 struct drm_device *dev = data;
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628 u32 snpcr;
3629
3630 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3631 return -ENODEV;
3632
3633 if (val > 3)
3634 return -EINVAL;
3635
3636 intel_runtime_pm_get(dev_priv);
3637 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
3638
3639 /* Update the cache sharing policy here as well */
3640 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3641 snpcr &= ~GEN6_MBC_SNPCR_MASK;
3642 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
3643 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3644
3645 intel_runtime_pm_put(dev_priv);
3646 return 0;
3647 }
3648
3649 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
3650 i915_cache_sharing_get, i915_cache_sharing_set,
3651 "%llu\n");
3652
3653 static int i915_forcewake_open(struct inode *inode, struct file *file)
3654 {
3655 struct drm_device *dev = inode->i_private;
3656 struct drm_i915_private *dev_priv = dev->dev_private;
3657
3658 if (INTEL_INFO(dev)->gen < 6)
3659 return 0;
3660
3661 intel_runtime_pm_get(dev_priv);
3662 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3663
3664 return 0;
3665 }
3666
3667 static int i915_forcewake_release(struct inode *inode, struct file *file)
3668 {
3669 struct drm_device *dev = inode->i_private;
3670 struct drm_i915_private *dev_priv = dev->dev_private;
3671
3672 if (INTEL_INFO(dev)->gen < 6)
3673 return 0;
3674
3675 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3676 intel_runtime_pm_put(dev_priv);
3677
3678 return 0;
3679 }
3680
3681 static const struct file_operations i915_forcewake_fops = {
3682 .owner = THIS_MODULE,
3683 .open = i915_forcewake_open,
3684 .release = i915_forcewake_release,
3685 };
3686
3687 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
3688 {
3689 struct drm_device *dev = minor->dev;
3690 struct dentry *ent;
3691
3692 ent = debugfs_create_file("i915_forcewake_user",
3693 S_IRUSR,
3694 root, dev,
3695 &i915_forcewake_fops);
3696 if (!ent)
3697 return -ENOMEM;
3698
3699 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
3700 }
3701
3702 static int i915_debugfs_create(struct dentry *root,
3703 struct drm_minor *minor,
3704 const char *name,
3705 const struct file_operations *fops)
3706 {
3707 struct drm_device *dev = minor->dev;
3708 struct dentry *ent;
3709
3710 ent = debugfs_create_file(name,
3711 S_IRUGO | S_IWUSR,
3712 root, dev,
3713 fops);
3714 if (!ent)
3715 return -ENOMEM;
3716
3717 return drm_add_fake_info_node(minor, ent, fops);
3718 }
3719
3720 static const struct drm_info_list i915_debugfs_list[] = {
3721 {"i915_capabilities", i915_capabilities, 0},
3722 {"i915_gem_objects", i915_gem_object_info, 0},
3723 {"i915_gem_gtt", i915_gem_gtt_info, 0},
3724 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
3725 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
3726 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
3727 {"i915_gem_stolen", i915_gem_stolen_list_info },
3728 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
3729 {"i915_gem_request", i915_gem_request_info, 0},
3730 {"i915_gem_seqno", i915_gem_seqno_info, 0},
3731 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
3732 {"i915_gem_interrupt", i915_interrupt_info, 0},
3733 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
3734 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
3735 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
3736 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
3737 {"i915_rstdby_delays", i915_rstdby_delays, 0},
3738 {"i915_cur_delayinfo", i915_cur_delayinfo, 0},
3739 {"i915_delayfreq_table", i915_delayfreq_table, 0},
3740 {"i915_inttoext_table", i915_inttoext_table, 0},
3741 {"i915_drpc_info", i915_drpc_info, 0},
3742 {"i915_emon_status", i915_emon_status, 0},
3743 {"i915_ring_freq_table", i915_ring_freq_table, 0},
3744 {"i915_gfxec", i915_gfxec, 0},
3745 {"i915_fbc_status", i915_fbc_status, 0},
3746 {"i915_ips_status", i915_ips_status, 0},
3747 {"i915_sr_status", i915_sr_status, 0},
3748 {"i915_opregion", i915_opregion, 0},
3749 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
3750 {"i915_context_status", i915_context_status, 0},
3751 {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
3752 {"i915_swizzle_info", i915_swizzle_info, 0},
3753 {"i915_ppgtt_info", i915_ppgtt_info, 0},
3754 {"i915_dpio", i915_dpio_info, 0},
3755 {"i915_llc", i915_llc, 0},
3756 {"i915_edp_psr_status", i915_edp_psr_status, 0},
3757 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
3758 {"i915_energy_uJ", i915_energy_uJ, 0},
3759 {"i915_pc8_status", i915_pc8_status, 0},
3760 {"i915_power_domain_info", i915_power_domain_info, 0},
3761 {"i915_display_info", i915_display_info, 0},
3762 };
3763 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
3764
3765 static const struct i915_debugfs_files {
3766 const char *name;
3767 const struct file_operations *fops;
3768 } i915_debugfs_files[] = {
3769 {"i915_wedged", &i915_wedged_fops},
3770 {"i915_max_freq", &i915_max_freq_fops},
3771 {"i915_min_freq", &i915_min_freq_fops},
3772 {"i915_cache_sharing", &i915_cache_sharing_fops},
3773 {"i915_ring_stop", &i915_ring_stop_fops},
3774 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
3775 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
3776 {"i915_gem_drop_caches", &i915_drop_caches_fops},
3777 {"i915_error_state", &i915_error_state_fops},
3778 {"i915_next_seqno", &i915_next_seqno_fops},
3779 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
3780 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
3781 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
3782 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
3783 };
3784
3785 void intel_display_crc_init(struct drm_device *dev)
3786 {
3787 struct drm_i915_private *dev_priv = dev->dev_private;
3788 enum pipe pipe;
3789
3790 for_each_pipe(pipe) {
3791 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3792
3793 pipe_crc->opened = false;
3794 spin_lock_init(&pipe_crc->lock);
3795 init_waitqueue_head(&pipe_crc->wq);
3796 }
3797 }
3798
3799 int i915_debugfs_init(struct drm_minor *minor)
3800 {
3801 int ret, i;
3802
3803 ret = i915_forcewake_create(minor->debugfs_root, minor);
3804 if (ret)
3805 return ret;
3806
3807 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3808 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
3809 if (ret)
3810 return ret;
3811 }
3812
3813 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3814 ret = i915_debugfs_create(minor->debugfs_root, minor,
3815 i915_debugfs_files[i].name,
3816 i915_debugfs_files[i].fops);
3817 if (ret)
3818 return ret;
3819 }
3820
3821 return drm_debugfs_create_files(i915_debugfs_list,
3822 I915_DEBUGFS_ENTRIES,
3823 minor->debugfs_root, minor);
3824 }
3825
3826 void i915_debugfs_cleanup(struct drm_minor *minor)
3827 {
3828 int i;
3829
3830 drm_debugfs_remove_files(i915_debugfs_list,
3831 I915_DEBUGFS_ENTRIES, minor);
3832
3833 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
3834 1, minor);
3835
3836 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3837 struct drm_info_list *info_list =
3838 (struct drm_info_list *)&i915_pipe_crc_data[i];
3839
3840 drm_debugfs_remove_files(info_list, 1, minor);
3841 }
3842
3843 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3844 struct drm_info_list *info_list =
3845 (struct drm_info_list *) i915_debugfs_files[i].fops;
3846
3847 drm_debugfs_remove_files(info_list, 1, minor);
3848 }
3849 }
This page took 0.204662 seconds and 5 git commands to generate.