Merge remote-tracking branch 'airlied/drm-next' into drm-intel-next-queued
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50 * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 struct dentry *ent,
54 const void *key)
55 {
56 struct drm_info_node *node;
57
58 node = kmalloc(sizeof(*node), GFP_KERNEL);
59 if (node == NULL) {
60 debugfs_remove(ent);
61 return -ENOMEM;
62 }
63
64 node->minor = minor;
65 node->dent = ent;
66 node->info_ent = (void *) key;
67
68 mutex_lock(&minor->debugfs_lock);
69 list_add(&node->list, &minor->debugfs_list);
70 mutex_unlock(&minor->debugfs_lock);
71
72 return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 struct drm_info_node *node = m->private;
78 struct drm_device *dev = node->minor->dev;
79 const struct intel_device_info *info = INTEL_INFO(dev);
80
81 seq_printf(m, "gen: %d\n", info->gen);
82 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89 return 0;
90 }
91
92 static char get_active_flag(struct drm_i915_gem_object *obj)
93 {
94 return i915_gem_object_is_active(obj) ? '*' : ' ';
95 }
96
97 static char get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 return obj->pin_display ? 'p' : ' ';
100 }
101
102 static char get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104 switch (i915_gem_object_get_tiling(obj)) {
105 default:
106 case I915_TILING_NONE: return ' ';
107 case I915_TILING_X: return 'X';
108 case I915_TILING_Y: return 'Y';
109 }
110 }
111
112 static char get_global_flag(struct drm_i915_gem_object *obj)
113 {
114 return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
115 }
116
117 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
118 {
119 return obj->mapping ? 'M' : ' ';
120 }
121
122 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
123 {
124 u64 size = 0;
125 struct i915_vma *vma;
126
127 list_for_each_entry(vma, &obj->vma_list, obj_link) {
128 if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
129 size += vma->node.size;
130 }
131
132 return size;
133 }
134
135 static void
136 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
137 {
138 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
139 struct intel_engine_cs *engine;
140 struct i915_vma *vma;
141 unsigned int frontbuffer_bits;
142 int pin_count = 0;
143 enum intel_engine_id id;
144
145 lockdep_assert_held(&obj->base.dev->struct_mutex);
146
147 seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
148 &obj->base,
149 get_active_flag(obj),
150 get_pin_flag(obj),
151 get_tiling_flag(obj),
152 get_global_flag(obj),
153 get_pin_mapped_flag(obj),
154 obj->base.size / 1024,
155 obj->base.read_domains,
156 obj->base.write_domain);
157 for_each_engine_id(engine, dev_priv, id)
158 seq_printf(m, "%x ",
159 i915_gem_active_get_seqno(&obj->last_read[id],
160 &obj->base.dev->struct_mutex));
161 seq_printf(m, "] %x %x%s%s%s",
162 i915_gem_active_get_seqno(&obj->last_write,
163 &obj->base.dev->struct_mutex),
164 i915_gem_active_get_seqno(&obj->last_fence,
165 &obj->base.dev->struct_mutex),
166 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
167 obj->dirty ? " dirty" : "",
168 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
169 if (obj->base.name)
170 seq_printf(m, " (name: %d)", obj->base.name);
171 list_for_each_entry(vma, &obj->vma_list, obj_link) {
172 if (i915_vma_is_pinned(vma))
173 pin_count++;
174 }
175 seq_printf(m, " (pinned x %d)", pin_count);
176 if (obj->pin_display)
177 seq_printf(m, " (display)");
178 if (obj->fence_reg != I915_FENCE_REG_NONE)
179 seq_printf(m, " (fence: %d)", obj->fence_reg);
180 list_for_each_entry(vma, &obj->vma_list, obj_link) {
181 if (!drm_mm_node_allocated(&vma->node))
182 continue;
183
184 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
185 i915_vma_is_ggtt(vma) ? "g" : "pp",
186 vma->node.start, vma->node.size);
187 if (i915_vma_is_ggtt(vma))
188 seq_printf(m, ", type: %u", vma->ggtt_view.type);
189 seq_puts(m, ")");
190 }
191 if (obj->stolen)
192 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
193 if (obj->pin_display || obj->fault_mappable) {
194 char s[3], *t = s;
195 if (obj->pin_display)
196 *t++ = 'p';
197 if (obj->fault_mappable)
198 *t++ = 'f';
199 *t = '\0';
200 seq_printf(m, " (%s mappable)", s);
201 }
202
203 engine = i915_gem_active_get_engine(&obj->last_write,
204 &obj->base.dev->struct_mutex);
205 if (engine)
206 seq_printf(m, " (%s)", engine->name);
207
208 frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
209 if (frontbuffer_bits)
210 seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
211 }
212
213 static int i915_gem_object_list_info(struct seq_file *m, void *data)
214 {
215 struct drm_info_node *node = m->private;
216 uintptr_t list = (uintptr_t) node->info_ent->data;
217 struct list_head *head;
218 struct drm_device *dev = node->minor->dev;
219 struct drm_i915_private *dev_priv = to_i915(dev);
220 struct i915_ggtt *ggtt = &dev_priv->ggtt;
221 struct i915_vma *vma;
222 u64 total_obj_size, total_gtt_size;
223 int count, ret;
224
225 ret = mutex_lock_interruptible(&dev->struct_mutex);
226 if (ret)
227 return ret;
228
229 /* FIXME: the user of this interface might want more than just GGTT */
230 switch (list) {
231 case ACTIVE_LIST:
232 seq_puts(m, "Active:\n");
233 head = &ggtt->base.active_list;
234 break;
235 case INACTIVE_LIST:
236 seq_puts(m, "Inactive:\n");
237 head = &ggtt->base.inactive_list;
238 break;
239 default:
240 mutex_unlock(&dev->struct_mutex);
241 return -EINVAL;
242 }
243
244 total_obj_size = total_gtt_size = count = 0;
245 list_for_each_entry(vma, head, vm_link) {
246 seq_printf(m, " ");
247 describe_obj(m, vma->obj);
248 seq_printf(m, "\n");
249 total_obj_size += vma->obj->base.size;
250 total_gtt_size += vma->node.size;
251 count++;
252 }
253 mutex_unlock(&dev->struct_mutex);
254
255 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
256 count, total_obj_size, total_gtt_size);
257 return 0;
258 }
259
260 static int obj_rank_by_stolen(void *priv,
261 struct list_head *A, struct list_head *B)
262 {
263 struct drm_i915_gem_object *a =
264 container_of(A, struct drm_i915_gem_object, obj_exec_link);
265 struct drm_i915_gem_object *b =
266 container_of(B, struct drm_i915_gem_object, obj_exec_link);
267
268 if (a->stolen->start < b->stolen->start)
269 return -1;
270 if (a->stolen->start > b->stolen->start)
271 return 1;
272 return 0;
273 }
274
275 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
276 {
277 struct drm_info_node *node = m->private;
278 struct drm_device *dev = node->minor->dev;
279 struct drm_i915_private *dev_priv = to_i915(dev);
280 struct drm_i915_gem_object *obj;
281 u64 total_obj_size, total_gtt_size;
282 LIST_HEAD(stolen);
283 int count, ret;
284
285 ret = mutex_lock_interruptible(&dev->struct_mutex);
286 if (ret)
287 return ret;
288
289 total_obj_size = total_gtt_size = count = 0;
290 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
291 if (obj->stolen == NULL)
292 continue;
293
294 list_add(&obj->obj_exec_link, &stolen);
295
296 total_obj_size += obj->base.size;
297 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
298 count++;
299 }
300 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
301 if (obj->stolen == NULL)
302 continue;
303
304 list_add(&obj->obj_exec_link, &stolen);
305
306 total_obj_size += obj->base.size;
307 count++;
308 }
309 list_sort(NULL, &stolen, obj_rank_by_stolen);
310 seq_puts(m, "Stolen:\n");
311 while (!list_empty(&stolen)) {
312 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
313 seq_puts(m, " ");
314 describe_obj(m, obj);
315 seq_putc(m, '\n');
316 list_del_init(&obj->obj_exec_link);
317 }
318 mutex_unlock(&dev->struct_mutex);
319
320 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
321 count, total_obj_size, total_gtt_size);
322 return 0;
323 }
324
325 #define count_objects(list, member) do { \
326 list_for_each_entry(obj, list, member) { \
327 size += i915_gem_obj_total_ggtt_size(obj); \
328 ++count; \
329 if (obj->map_and_fenceable) { \
330 mappable_size += i915_gem_obj_ggtt_size(obj); \
331 ++mappable_count; \
332 } \
333 } \
334 } while (0)
335
336 struct file_stats {
337 struct drm_i915_file_private *file_priv;
338 unsigned long count;
339 u64 total, unbound;
340 u64 global, shared;
341 u64 active, inactive;
342 };
343
344 static int per_file_stats(int id, void *ptr, void *data)
345 {
346 struct drm_i915_gem_object *obj = ptr;
347 struct file_stats *stats = data;
348 struct i915_vma *vma;
349
350 stats->count++;
351 stats->total += obj->base.size;
352 if (!obj->bind_count)
353 stats->unbound += obj->base.size;
354 if (obj->base.name || obj->base.dma_buf)
355 stats->shared += obj->base.size;
356
357 list_for_each_entry(vma, &obj->vma_list, obj_link) {
358 if (!drm_mm_node_allocated(&vma->node))
359 continue;
360
361 if (i915_vma_is_ggtt(vma)) {
362 stats->global += vma->node.size;
363 } else {
364 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
365
366 if (ppgtt->base.file != stats->file_priv)
367 continue;
368 }
369
370 if (i915_vma_is_active(vma))
371 stats->active += vma->node.size;
372 else
373 stats->inactive += vma->node.size;
374 }
375
376 return 0;
377 }
378
379 #define print_file_stats(m, name, stats) do { \
380 if (stats.count) \
381 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
382 name, \
383 stats.count, \
384 stats.total, \
385 stats.active, \
386 stats.inactive, \
387 stats.global, \
388 stats.shared, \
389 stats.unbound); \
390 } while (0)
391
392 static void print_batch_pool_stats(struct seq_file *m,
393 struct drm_i915_private *dev_priv)
394 {
395 struct drm_i915_gem_object *obj;
396 struct file_stats stats;
397 struct intel_engine_cs *engine;
398 int j;
399
400 memset(&stats, 0, sizeof(stats));
401
402 for_each_engine(engine, dev_priv) {
403 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
404 list_for_each_entry(obj,
405 &engine->batch_pool.cache_list[j],
406 batch_pool_link)
407 per_file_stats(0, obj, &stats);
408 }
409 }
410
411 print_file_stats(m, "[k]batch pool", stats);
412 }
413
414 static int per_file_ctx_stats(int id, void *ptr, void *data)
415 {
416 struct i915_gem_context *ctx = ptr;
417 int n;
418
419 for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
420 if (ctx->engine[n].state)
421 per_file_stats(0, ctx->engine[n].state, data);
422 if (ctx->engine[n].ring)
423 per_file_stats(0, ctx->engine[n].ring->obj, data);
424 }
425
426 return 0;
427 }
428
429 static void print_context_stats(struct seq_file *m,
430 struct drm_i915_private *dev_priv)
431 {
432 struct file_stats stats;
433 struct drm_file *file;
434
435 memset(&stats, 0, sizeof(stats));
436
437 mutex_lock(&dev_priv->drm.struct_mutex);
438 if (dev_priv->kernel_context)
439 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
440
441 list_for_each_entry(file, &dev_priv->drm.filelist, lhead) {
442 struct drm_i915_file_private *fpriv = file->driver_priv;
443 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
444 }
445 mutex_unlock(&dev_priv->drm.struct_mutex);
446
447 print_file_stats(m, "[k]contexts", stats);
448 }
449
450 #define count_vmas(list, member) do { \
451 list_for_each_entry(vma, list, member) { \
452 size += i915_gem_obj_total_ggtt_size(vma->obj); \
453 ++count; \
454 if (vma->obj->map_and_fenceable) { \
455 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
456 ++mappable_count; \
457 } \
458 } \
459 } while (0)
460
461 static int i915_gem_object_info(struct seq_file *m, void* data)
462 {
463 struct drm_info_node *node = m->private;
464 struct drm_device *dev = node->minor->dev;
465 struct drm_i915_private *dev_priv = to_i915(dev);
466 struct i915_ggtt *ggtt = &dev_priv->ggtt;
467 u32 count, mappable_count, purgeable_count;
468 u64 size, mappable_size, purgeable_size;
469 unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
470 u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
471 struct drm_i915_gem_object *obj;
472 struct drm_file *file;
473 struct i915_vma *vma;
474 int ret;
475
476 ret = mutex_lock_interruptible(&dev->struct_mutex);
477 if (ret)
478 return ret;
479
480 seq_printf(m, "%u objects, %zu bytes\n",
481 dev_priv->mm.object_count,
482 dev_priv->mm.object_memory);
483
484 size = count = mappable_size = mappable_count = 0;
485 count_objects(&dev_priv->mm.bound_list, global_list);
486 seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
487 count, mappable_count, size, mappable_size);
488
489 size = count = mappable_size = mappable_count = 0;
490 count_vmas(&ggtt->base.active_list, vm_link);
491 seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
492 count, mappable_count, size, mappable_size);
493
494 size = count = mappable_size = mappable_count = 0;
495 count_vmas(&ggtt->base.inactive_list, vm_link);
496 seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
497 count, mappable_count, size, mappable_size);
498
499 size = count = purgeable_size = purgeable_count = 0;
500 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
501 size += obj->base.size, ++count;
502 if (obj->madv == I915_MADV_DONTNEED)
503 purgeable_size += obj->base.size, ++purgeable_count;
504 if (obj->mapping) {
505 pin_mapped_count++;
506 pin_mapped_size += obj->base.size;
507 if (obj->pages_pin_count == 0) {
508 pin_mapped_purgeable_count++;
509 pin_mapped_purgeable_size += obj->base.size;
510 }
511 }
512 }
513 seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
514
515 size = count = mappable_size = mappable_count = 0;
516 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
517 if (obj->fault_mappable) {
518 size += i915_gem_obj_ggtt_size(obj);
519 ++count;
520 }
521 if (obj->pin_display) {
522 mappable_size += i915_gem_obj_ggtt_size(obj);
523 ++mappable_count;
524 }
525 if (obj->madv == I915_MADV_DONTNEED) {
526 purgeable_size += obj->base.size;
527 ++purgeable_count;
528 }
529 if (obj->mapping) {
530 pin_mapped_count++;
531 pin_mapped_size += obj->base.size;
532 if (obj->pages_pin_count == 0) {
533 pin_mapped_purgeable_count++;
534 pin_mapped_purgeable_size += obj->base.size;
535 }
536 }
537 }
538 seq_printf(m, "%u purgeable objects, %llu bytes\n",
539 purgeable_count, purgeable_size);
540 seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
541 mappable_count, mappable_size);
542 seq_printf(m, "%u fault mappable objects, %llu bytes\n",
543 count, size);
544 seq_printf(m,
545 "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
546 pin_mapped_count, pin_mapped_purgeable_count,
547 pin_mapped_size, pin_mapped_purgeable_size);
548
549 seq_printf(m, "%llu [%llu] gtt total\n",
550 ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
551
552 seq_putc(m, '\n');
553 print_batch_pool_stats(m, dev_priv);
554 mutex_unlock(&dev->struct_mutex);
555
556 mutex_lock(&dev->filelist_mutex);
557 print_context_stats(m, dev_priv);
558 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
559 struct file_stats stats;
560 struct task_struct *task;
561
562 memset(&stats, 0, sizeof(stats));
563 stats.file_priv = file->driver_priv;
564 spin_lock(&file->table_lock);
565 idr_for_each(&file->object_idr, per_file_stats, &stats);
566 spin_unlock(&file->table_lock);
567 /*
568 * Although we have a valid reference on file->pid, that does
569 * not guarantee that the task_struct who called get_pid() is
570 * still alive (e.g. get_pid(current) => fork() => exit()).
571 * Therefore, we need to protect this ->comm access using RCU.
572 */
573 rcu_read_lock();
574 task = pid_task(file->pid, PIDTYPE_PID);
575 print_file_stats(m, task ? task->comm : "<unknown>", stats);
576 rcu_read_unlock();
577 }
578 mutex_unlock(&dev->filelist_mutex);
579
580 return 0;
581 }
582
583 static int i915_gem_gtt_info(struct seq_file *m, void *data)
584 {
585 struct drm_info_node *node = m->private;
586 struct drm_device *dev = node->minor->dev;
587 uintptr_t list = (uintptr_t) node->info_ent->data;
588 struct drm_i915_private *dev_priv = to_i915(dev);
589 struct drm_i915_gem_object *obj;
590 u64 total_obj_size, total_gtt_size;
591 int count, ret;
592
593 ret = mutex_lock_interruptible(&dev->struct_mutex);
594 if (ret)
595 return ret;
596
597 total_obj_size = total_gtt_size = count = 0;
598 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
599 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
600 continue;
601
602 seq_puts(m, " ");
603 describe_obj(m, obj);
604 seq_putc(m, '\n');
605 total_obj_size += obj->base.size;
606 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
607 count++;
608 }
609
610 mutex_unlock(&dev->struct_mutex);
611
612 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
613 count, total_obj_size, total_gtt_size);
614
615 return 0;
616 }
617
618 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
619 {
620 struct drm_info_node *node = m->private;
621 struct drm_device *dev = node->minor->dev;
622 struct drm_i915_private *dev_priv = to_i915(dev);
623 struct intel_crtc *crtc;
624 int ret;
625
626 ret = mutex_lock_interruptible(&dev->struct_mutex);
627 if (ret)
628 return ret;
629
630 for_each_intel_crtc(dev, crtc) {
631 const char pipe = pipe_name(crtc->pipe);
632 const char plane = plane_name(crtc->plane);
633 struct intel_flip_work *work;
634
635 spin_lock_irq(&dev->event_lock);
636 work = crtc->flip_work;
637 if (work == NULL) {
638 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
639 pipe, plane);
640 } else {
641 u32 pending;
642 u32 addr;
643
644 pending = atomic_read(&work->pending);
645 if (pending) {
646 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
647 pipe, plane);
648 } else {
649 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
650 pipe, plane);
651 }
652 if (work->flip_queued_req) {
653 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
654
655 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
656 engine->name,
657 i915_gem_request_get_seqno(work->flip_queued_req),
658 dev_priv->next_seqno,
659 intel_engine_get_seqno(engine),
660 i915_gem_request_completed(work->flip_queued_req));
661 } else
662 seq_printf(m, "Flip not associated with any ring\n");
663 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
664 work->flip_queued_vblank,
665 work->flip_ready_vblank,
666 intel_crtc_get_vblank_counter(crtc));
667 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
668
669 if (INTEL_INFO(dev)->gen >= 4)
670 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
671 else
672 addr = I915_READ(DSPADDR(crtc->plane));
673 seq_printf(m, "Current scanout address 0x%08x\n", addr);
674
675 if (work->pending_flip_obj) {
676 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
677 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
678 }
679 }
680 spin_unlock_irq(&dev->event_lock);
681 }
682
683 mutex_unlock(&dev->struct_mutex);
684
685 return 0;
686 }
687
688 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
689 {
690 struct drm_info_node *node = m->private;
691 struct drm_device *dev = node->minor->dev;
692 struct drm_i915_private *dev_priv = to_i915(dev);
693 struct drm_i915_gem_object *obj;
694 struct intel_engine_cs *engine;
695 int total = 0;
696 int ret, j;
697
698 ret = mutex_lock_interruptible(&dev->struct_mutex);
699 if (ret)
700 return ret;
701
702 for_each_engine(engine, dev_priv) {
703 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
704 int count;
705
706 count = 0;
707 list_for_each_entry(obj,
708 &engine->batch_pool.cache_list[j],
709 batch_pool_link)
710 count++;
711 seq_printf(m, "%s cache[%d]: %d objects\n",
712 engine->name, j, count);
713
714 list_for_each_entry(obj,
715 &engine->batch_pool.cache_list[j],
716 batch_pool_link) {
717 seq_puts(m, " ");
718 describe_obj(m, obj);
719 seq_putc(m, '\n');
720 }
721
722 total += count;
723 }
724 }
725
726 seq_printf(m, "total: %d\n", total);
727
728 mutex_unlock(&dev->struct_mutex);
729
730 return 0;
731 }
732
733 static int i915_gem_request_info(struct seq_file *m, void *data)
734 {
735 struct drm_info_node *node = m->private;
736 struct drm_device *dev = node->minor->dev;
737 struct drm_i915_private *dev_priv = to_i915(dev);
738 struct intel_engine_cs *engine;
739 struct drm_i915_gem_request *req;
740 int ret, any;
741
742 ret = mutex_lock_interruptible(&dev->struct_mutex);
743 if (ret)
744 return ret;
745
746 any = 0;
747 for_each_engine(engine, dev_priv) {
748 int count;
749
750 count = 0;
751 list_for_each_entry(req, &engine->request_list, link)
752 count++;
753 if (count == 0)
754 continue;
755
756 seq_printf(m, "%s requests: %d\n", engine->name, count);
757 list_for_each_entry(req, &engine->request_list, link) {
758 struct task_struct *task;
759
760 rcu_read_lock();
761 task = NULL;
762 if (req->pid)
763 task = pid_task(req->pid, PIDTYPE_PID);
764 seq_printf(m, " %x @ %d: %s [%d]\n",
765 req->fence.seqno,
766 (int) (jiffies - req->emitted_jiffies),
767 task ? task->comm : "<unknown>",
768 task ? task->pid : -1);
769 rcu_read_unlock();
770 }
771
772 any++;
773 }
774 mutex_unlock(&dev->struct_mutex);
775
776 if (any == 0)
777 seq_puts(m, "No requests\n");
778
779 return 0;
780 }
781
782 static void i915_ring_seqno_info(struct seq_file *m,
783 struct intel_engine_cs *engine)
784 {
785 struct intel_breadcrumbs *b = &engine->breadcrumbs;
786 struct rb_node *rb;
787
788 seq_printf(m, "Current sequence (%s): %x\n",
789 engine->name, intel_engine_get_seqno(engine));
790
791 spin_lock(&b->lock);
792 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
793 struct intel_wait *w = container_of(rb, typeof(*w), node);
794
795 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
796 engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
797 }
798 spin_unlock(&b->lock);
799 }
800
801 static int i915_gem_seqno_info(struct seq_file *m, void *data)
802 {
803 struct drm_info_node *node = m->private;
804 struct drm_device *dev = node->minor->dev;
805 struct drm_i915_private *dev_priv = to_i915(dev);
806 struct intel_engine_cs *engine;
807 int ret;
808
809 ret = mutex_lock_interruptible(&dev->struct_mutex);
810 if (ret)
811 return ret;
812 intel_runtime_pm_get(dev_priv);
813
814 for_each_engine(engine, dev_priv)
815 i915_ring_seqno_info(m, engine);
816
817 intel_runtime_pm_put(dev_priv);
818 mutex_unlock(&dev->struct_mutex);
819
820 return 0;
821 }
822
823
824 static int i915_interrupt_info(struct seq_file *m, void *data)
825 {
826 struct drm_info_node *node = m->private;
827 struct drm_device *dev = node->minor->dev;
828 struct drm_i915_private *dev_priv = to_i915(dev);
829 struct intel_engine_cs *engine;
830 int ret, i, pipe;
831
832 ret = mutex_lock_interruptible(&dev->struct_mutex);
833 if (ret)
834 return ret;
835 intel_runtime_pm_get(dev_priv);
836
837 if (IS_CHERRYVIEW(dev)) {
838 seq_printf(m, "Master Interrupt Control:\t%08x\n",
839 I915_READ(GEN8_MASTER_IRQ));
840
841 seq_printf(m, "Display IER:\t%08x\n",
842 I915_READ(VLV_IER));
843 seq_printf(m, "Display IIR:\t%08x\n",
844 I915_READ(VLV_IIR));
845 seq_printf(m, "Display IIR_RW:\t%08x\n",
846 I915_READ(VLV_IIR_RW));
847 seq_printf(m, "Display IMR:\t%08x\n",
848 I915_READ(VLV_IMR));
849 for_each_pipe(dev_priv, pipe)
850 seq_printf(m, "Pipe %c stat:\t%08x\n",
851 pipe_name(pipe),
852 I915_READ(PIPESTAT(pipe)));
853
854 seq_printf(m, "Port hotplug:\t%08x\n",
855 I915_READ(PORT_HOTPLUG_EN));
856 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
857 I915_READ(VLV_DPFLIPSTAT));
858 seq_printf(m, "DPINVGTT:\t%08x\n",
859 I915_READ(DPINVGTT));
860
861 for (i = 0; i < 4; i++) {
862 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
863 i, I915_READ(GEN8_GT_IMR(i)));
864 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
865 i, I915_READ(GEN8_GT_IIR(i)));
866 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
867 i, I915_READ(GEN8_GT_IER(i)));
868 }
869
870 seq_printf(m, "PCU interrupt mask:\t%08x\n",
871 I915_READ(GEN8_PCU_IMR));
872 seq_printf(m, "PCU interrupt identity:\t%08x\n",
873 I915_READ(GEN8_PCU_IIR));
874 seq_printf(m, "PCU interrupt enable:\t%08x\n",
875 I915_READ(GEN8_PCU_IER));
876 } else if (INTEL_INFO(dev)->gen >= 8) {
877 seq_printf(m, "Master Interrupt Control:\t%08x\n",
878 I915_READ(GEN8_MASTER_IRQ));
879
880 for (i = 0; i < 4; i++) {
881 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
882 i, I915_READ(GEN8_GT_IMR(i)));
883 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
884 i, I915_READ(GEN8_GT_IIR(i)));
885 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
886 i, I915_READ(GEN8_GT_IER(i)));
887 }
888
889 for_each_pipe(dev_priv, pipe) {
890 enum intel_display_power_domain power_domain;
891
892 power_domain = POWER_DOMAIN_PIPE(pipe);
893 if (!intel_display_power_get_if_enabled(dev_priv,
894 power_domain)) {
895 seq_printf(m, "Pipe %c power disabled\n",
896 pipe_name(pipe));
897 continue;
898 }
899 seq_printf(m, "Pipe %c IMR:\t%08x\n",
900 pipe_name(pipe),
901 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
902 seq_printf(m, "Pipe %c IIR:\t%08x\n",
903 pipe_name(pipe),
904 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
905 seq_printf(m, "Pipe %c IER:\t%08x\n",
906 pipe_name(pipe),
907 I915_READ(GEN8_DE_PIPE_IER(pipe)));
908
909 intel_display_power_put(dev_priv, power_domain);
910 }
911
912 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
913 I915_READ(GEN8_DE_PORT_IMR));
914 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
915 I915_READ(GEN8_DE_PORT_IIR));
916 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
917 I915_READ(GEN8_DE_PORT_IER));
918
919 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
920 I915_READ(GEN8_DE_MISC_IMR));
921 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
922 I915_READ(GEN8_DE_MISC_IIR));
923 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
924 I915_READ(GEN8_DE_MISC_IER));
925
926 seq_printf(m, "PCU interrupt mask:\t%08x\n",
927 I915_READ(GEN8_PCU_IMR));
928 seq_printf(m, "PCU interrupt identity:\t%08x\n",
929 I915_READ(GEN8_PCU_IIR));
930 seq_printf(m, "PCU interrupt enable:\t%08x\n",
931 I915_READ(GEN8_PCU_IER));
932 } else if (IS_VALLEYVIEW(dev)) {
933 seq_printf(m, "Display IER:\t%08x\n",
934 I915_READ(VLV_IER));
935 seq_printf(m, "Display IIR:\t%08x\n",
936 I915_READ(VLV_IIR));
937 seq_printf(m, "Display IIR_RW:\t%08x\n",
938 I915_READ(VLV_IIR_RW));
939 seq_printf(m, "Display IMR:\t%08x\n",
940 I915_READ(VLV_IMR));
941 for_each_pipe(dev_priv, pipe)
942 seq_printf(m, "Pipe %c stat:\t%08x\n",
943 pipe_name(pipe),
944 I915_READ(PIPESTAT(pipe)));
945
946 seq_printf(m, "Master IER:\t%08x\n",
947 I915_READ(VLV_MASTER_IER));
948
949 seq_printf(m, "Render IER:\t%08x\n",
950 I915_READ(GTIER));
951 seq_printf(m, "Render IIR:\t%08x\n",
952 I915_READ(GTIIR));
953 seq_printf(m, "Render IMR:\t%08x\n",
954 I915_READ(GTIMR));
955
956 seq_printf(m, "PM IER:\t\t%08x\n",
957 I915_READ(GEN6_PMIER));
958 seq_printf(m, "PM IIR:\t\t%08x\n",
959 I915_READ(GEN6_PMIIR));
960 seq_printf(m, "PM IMR:\t\t%08x\n",
961 I915_READ(GEN6_PMIMR));
962
963 seq_printf(m, "Port hotplug:\t%08x\n",
964 I915_READ(PORT_HOTPLUG_EN));
965 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
966 I915_READ(VLV_DPFLIPSTAT));
967 seq_printf(m, "DPINVGTT:\t%08x\n",
968 I915_READ(DPINVGTT));
969
970 } else if (!HAS_PCH_SPLIT(dev)) {
971 seq_printf(m, "Interrupt enable: %08x\n",
972 I915_READ(IER));
973 seq_printf(m, "Interrupt identity: %08x\n",
974 I915_READ(IIR));
975 seq_printf(m, "Interrupt mask: %08x\n",
976 I915_READ(IMR));
977 for_each_pipe(dev_priv, pipe)
978 seq_printf(m, "Pipe %c stat: %08x\n",
979 pipe_name(pipe),
980 I915_READ(PIPESTAT(pipe)));
981 } else {
982 seq_printf(m, "North Display Interrupt enable: %08x\n",
983 I915_READ(DEIER));
984 seq_printf(m, "North Display Interrupt identity: %08x\n",
985 I915_READ(DEIIR));
986 seq_printf(m, "North Display Interrupt mask: %08x\n",
987 I915_READ(DEIMR));
988 seq_printf(m, "South Display Interrupt enable: %08x\n",
989 I915_READ(SDEIER));
990 seq_printf(m, "South Display Interrupt identity: %08x\n",
991 I915_READ(SDEIIR));
992 seq_printf(m, "South Display Interrupt mask: %08x\n",
993 I915_READ(SDEIMR));
994 seq_printf(m, "Graphics Interrupt enable: %08x\n",
995 I915_READ(GTIER));
996 seq_printf(m, "Graphics Interrupt identity: %08x\n",
997 I915_READ(GTIIR));
998 seq_printf(m, "Graphics Interrupt mask: %08x\n",
999 I915_READ(GTIMR));
1000 }
1001 for_each_engine(engine, dev_priv) {
1002 if (INTEL_INFO(dev)->gen >= 6) {
1003 seq_printf(m,
1004 "Graphics Interrupt mask (%s): %08x\n",
1005 engine->name, I915_READ_IMR(engine));
1006 }
1007 i915_ring_seqno_info(m, engine);
1008 }
1009 intel_runtime_pm_put(dev_priv);
1010 mutex_unlock(&dev->struct_mutex);
1011
1012 return 0;
1013 }
1014
1015 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
1016 {
1017 struct drm_info_node *node = m->private;
1018 struct drm_device *dev = node->minor->dev;
1019 struct drm_i915_private *dev_priv = to_i915(dev);
1020 int i, ret;
1021
1022 ret = mutex_lock_interruptible(&dev->struct_mutex);
1023 if (ret)
1024 return ret;
1025
1026 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
1027 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1028 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
1029
1030 seq_printf(m, "Fence %d, pin count = %d, object = ",
1031 i, dev_priv->fence_regs[i].pin_count);
1032 if (obj == NULL)
1033 seq_puts(m, "unused");
1034 else
1035 describe_obj(m, obj);
1036 seq_putc(m, '\n');
1037 }
1038
1039 mutex_unlock(&dev->struct_mutex);
1040 return 0;
1041 }
1042
1043 static int i915_hws_info(struct seq_file *m, void *data)
1044 {
1045 struct drm_info_node *node = m->private;
1046 struct drm_device *dev = node->minor->dev;
1047 struct drm_i915_private *dev_priv = to_i915(dev);
1048 struct intel_engine_cs *engine;
1049 const u32 *hws;
1050 int i;
1051
1052 engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
1053 hws = engine->status_page.page_addr;
1054 if (hws == NULL)
1055 return 0;
1056
1057 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
1058 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1059 i * 4,
1060 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
1061 }
1062 return 0;
1063 }
1064
1065 static ssize_t
1066 i915_error_state_write(struct file *filp,
1067 const char __user *ubuf,
1068 size_t cnt,
1069 loff_t *ppos)
1070 {
1071 struct i915_error_state_file_priv *error_priv = filp->private_data;
1072 struct drm_device *dev = error_priv->dev;
1073 int ret;
1074
1075 DRM_DEBUG_DRIVER("Resetting error state\n");
1076
1077 ret = mutex_lock_interruptible(&dev->struct_mutex);
1078 if (ret)
1079 return ret;
1080
1081 i915_destroy_error_state(dev);
1082 mutex_unlock(&dev->struct_mutex);
1083
1084 return cnt;
1085 }
1086
1087 static int i915_error_state_open(struct inode *inode, struct file *file)
1088 {
1089 struct drm_device *dev = inode->i_private;
1090 struct i915_error_state_file_priv *error_priv;
1091
1092 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1093 if (!error_priv)
1094 return -ENOMEM;
1095
1096 error_priv->dev = dev;
1097
1098 i915_error_state_get(dev, error_priv);
1099
1100 file->private_data = error_priv;
1101
1102 return 0;
1103 }
1104
1105 static int i915_error_state_release(struct inode *inode, struct file *file)
1106 {
1107 struct i915_error_state_file_priv *error_priv = file->private_data;
1108
1109 i915_error_state_put(error_priv);
1110 kfree(error_priv);
1111
1112 return 0;
1113 }
1114
1115 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1116 size_t count, loff_t *pos)
1117 {
1118 struct i915_error_state_file_priv *error_priv = file->private_data;
1119 struct drm_i915_error_state_buf error_str;
1120 loff_t tmp_pos = 0;
1121 ssize_t ret_count = 0;
1122 int ret;
1123
1124 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1125 if (ret)
1126 return ret;
1127
1128 ret = i915_error_state_to_str(&error_str, error_priv);
1129 if (ret)
1130 goto out;
1131
1132 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1133 error_str.buf,
1134 error_str.bytes);
1135
1136 if (ret_count < 0)
1137 ret = ret_count;
1138 else
1139 *pos = error_str.start + ret_count;
1140 out:
1141 i915_error_state_buf_release(&error_str);
1142 return ret ?: ret_count;
1143 }
1144
1145 static const struct file_operations i915_error_state_fops = {
1146 .owner = THIS_MODULE,
1147 .open = i915_error_state_open,
1148 .read = i915_error_state_read,
1149 .write = i915_error_state_write,
1150 .llseek = default_llseek,
1151 .release = i915_error_state_release,
1152 };
1153
1154 static int
1155 i915_next_seqno_get(void *data, u64 *val)
1156 {
1157 struct drm_device *dev = data;
1158 struct drm_i915_private *dev_priv = to_i915(dev);
1159 int ret;
1160
1161 ret = mutex_lock_interruptible(&dev->struct_mutex);
1162 if (ret)
1163 return ret;
1164
1165 *val = dev_priv->next_seqno;
1166 mutex_unlock(&dev->struct_mutex);
1167
1168 return 0;
1169 }
1170
1171 static int
1172 i915_next_seqno_set(void *data, u64 val)
1173 {
1174 struct drm_device *dev = data;
1175 int ret;
1176
1177 ret = mutex_lock_interruptible(&dev->struct_mutex);
1178 if (ret)
1179 return ret;
1180
1181 ret = i915_gem_set_seqno(dev, val);
1182 mutex_unlock(&dev->struct_mutex);
1183
1184 return ret;
1185 }
1186
1187 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1188 i915_next_seqno_get, i915_next_seqno_set,
1189 "0x%llx\n");
1190
1191 static int i915_frequency_info(struct seq_file *m, void *unused)
1192 {
1193 struct drm_info_node *node = m->private;
1194 struct drm_device *dev = node->minor->dev;
1195 struct drm_i915_private *dev_priv = to_i915(dev);
1196 int ret = 0;
1197
1198 intel_runtime_pm_get(dev_priv);
1199
1200 if (IS_GEN5(dev)) {
1201 u16 rgvswctl = I915_READ16(MEMSWCTL);
1202 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1203
1204 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1205 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1206 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1207 MEMSTAT_VID_SHIFT);
1208 seq_printf(m, "Current P-state: %d\n",
1209 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1210 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1211 u32 freq_sts;
1212
1213 mutex_lock(&dev_priv->rps.hw_lock);
1214 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1215 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1216 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1217
1218 seq_printf(m, "actual GPU freq: %d MHz\n",
1219 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1220
1221 seq_printf(m, "current GPU freq: %d MHz\n",
1222 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1223
1224 seq_printf(m, "max GPU freq: %d MHz\n",
1225 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1226
1227 seq_printf(m, "min GPU freq: %d MHz\n",
1228 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1229
1230 seq_printf(m, "idle GPU freq: %d MHz\n",
1231 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1232
1233 seq_printf(m,
1234 "efficient (RPe) frequency: %d MHz\n",
1235 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1236 mutex_unlock(&dev_priv->rps.hw_lock);
1237 } else if (INTEL_INFO(dev)->gen >= 6) {
1238 u32 rp_state_limits;
1239 u32 gt_perf_status;
1240 u32 rp_state_cap;
1241 u32 rpmodectl, rpinclimit, rpdeclimit;
1242 u32 rpstat, cagf, reqf;
1243 u32 rpupei, rpcurup, rpprevup;
1244 u32 rpdownei, rpcurdown, rpprevdown;
1245 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1246 int max_freq;
1247
1248 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1249 if (IS_BROXTON(dev)) {
1250 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1251 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1252 } else {
1253 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1254 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1255 }
1256
1257 /* RPSTAT1 is in the GT power well */
1258 ret = mutex_lock_interruptible(&dev->struct_mutex);
1259 if (ret)
1260 goto out;
1261
1262 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1263
1264 reqf = I915_READ(GEN6_RPNSWREQ);
1265 if (IS_GEN9(dev))
1266 reqf >>= 23;
1267 else {
1268 reqf &= ~GEN6_TURBO_DISABLE;
1269 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1270 reqf >>= 24;
1271 else
1272 reqf >>= 25;
1273 }
1274 reqf = intel_gpu_freq(dev_priv, reqf);
1275
1276 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1277 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1278 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1279
1280 rpstat = I915_READ(GEN6_RPSTAT1);
1281 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1282 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1283 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1284 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1285 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1286 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1287 if (IS_GEN9(dev))
1288 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1289 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1290 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1291 else
1292 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1293 cagf = intel_gpu_freq(dev_priv, cagf);
1294
1295 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1296 mutex_unlock(&dev->struct_mutex);
1297
1298 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1299 pm_ier = I915_READ(GEN6_PMIER);
1300 pm_imr = I915_READ(GEN6_PMIMR);
1301 pm_isr = I915_READ(GEN6_PMISR);
1302 pm_iir = I915_READ(GEN6_PMIIR);
1303 pm_mask = I915_READ(GEN6_PMINTRMSK);
1304 } else {
1305 pm_ier = I915_READ(GEN8_GT_IER(2));
1306 pm_imr = I915_READ(GEN8_GT_IMR(2));
1307 pm_isr = I915_READ(GEN8_GT_ISR(2));
1308 pm_iir = I915_READ(GEN8_GT_IIR(2));
1309 pm_mask = I915_READ(GEN6_PMINTRMSK);
1310 }
1311 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1312 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1313 seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1314 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1315 seq_printf(m, "Render p-state ratio: %d\n",
1316 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1317 seq_printf(m, "Render p-state VID: %d\n",
1318 gt_perf_status & 0xff);
1319 seq_printf(m, "Render p-state limit: %d\n",
1320 rp_state_limits & 0xff);
1321 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1322 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1323 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1324 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1325 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1326 seq_printf(m, "CAGF: %dMHz\n", cagf);
1327 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1328 rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1329 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1330 rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1331 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1332 rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1333 seq_printf(m, "Up threshold: %d%%\n",
1334 dev_priv->rps.up_threshold);
1335
1336 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1337 rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1338 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1339 rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1340 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1341 rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1342 seq_printf(m, "Down threshold: %d%%\n",
1343 dev_priv->rps.down_threshold);
1344
1345 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1346 rp_state_cap >> 16) & 0xff;
1347 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1348 GEN9_FREQ_SCALER : 1);
1349 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1350 intel_gpu_freq(dev_priv, max_freq));
1351
1352 max_freq = (rp_state_cap & 0xff00) >> 8;
1353 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1354 GEN9_FREQ_SCALER : 1);
1355 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1356 intel_gpu_freq(dev_priv, max_freq));
1357
1358 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1359 rp_state_cap >> 0) & 0xff;
1360 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1361 GEN9_FREQ_SCALER : 1);
1362 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1363 intel_gpu_freq(dev_priv, max_freq));
1364 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1365 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1366
1367 seq_printf(m, "Current freq: %d MHz\n",
1368 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1369 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1370 seq_printf(m, "Idle freq: %d MHz\n",
1371 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1372 seq_printf(m, "Min freq: %d MHz\n",
1373 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1374 seq_printf(m, "Boost freq: %d MHz\n",
1375 intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1376 seq_printf(m, "Max freq: %d MHz\n",
1377 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1378 seq_printf(m,
1379 "efficient (RPe) frequency: %d MHz\n",
1380 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1381 } else {
1382 seq_puts(m, "no P-state info available\n");
1383 }
1384
1385 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1386 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1387 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1388
1389 out:
1390 intel_runtime_pm_put(dev_priv);
1391 return ret;
1392 }
1393
1394 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1395 {
1396 struct drm_info_node *node = m->private;
1397 struct drm_device *dev = node->minor->dev;
1398 struct drm_i915_private *dev_priv = to_i915(dev);
1399 struct intel_engine_cs *engine;
1400 u64 acthd[I915_NUM_ENGINES];
1401 u32 seqno[I915_NUM_ENGINES];
1402 u32 instdone[I915_NUM_INSTDONE_REG];
1403 enum intel_engine_id id;
1404 int j;
1405
1406 if (!i915.enable_hangcheck) {
1407 seq_printf(m, "Hangcheck disabled\n");
1408 return 0;
1409 }
1410
1411 intel_runtime_pm_get(dev_priv);
1412
1413 for_each_engine_id(engine, dev_priv, id) {
1414 acthd[id] = intel_engine_get_active_head(engine);
1415 seqno[id] = intel_engine_get_seqno(engine);
1416 }
1417
1418 i915_get_extra_instdone(dev_priv, instdone);
1419
1420 intel_runtime_pm_put(dev_priv);
1421
1422 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1423 seq_printf(m, "Hangcheck active, fires in %dms\n",
1424 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1425 jiffies));
1426 } else
1427 seq_printf(m, "Hangcheck inactive\n");
1428
1429 for_each_engine_id(engine, dev_priv, id) {
1430 seq_printf(m, "%s:\n", engine->name);
1431 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1432 engine->hangcheck.seqno,
1433 seqno[id],
1434 engine->last_submitted_seqno);
1435 seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
1436 yesno(intel_engine_has_waiter(engine)),
1437 yesno(test_bit(engine->id,
1438 &dev_priv->gpu_error.missed_irq_rings)));
1439 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1440 (long long)engine->hangcheck.acthd,
1441 (long long)acthd[id]);
1442 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1443 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1444
1445 if (engine->id == RCS) {
1446 seq_puts(m, "\tinstdone read =");
1447
1448 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1449 seq_printf(m, " 0x%08x", instdone[j]);
1450
1451 seq_puts(m, "\n\tinstdone accu =");
1452
1453 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1454 seq_printf(m, " 0x%08x",
1455 engine->hangcheck.instdone[j]);
1456
1457 seq_puts(m, "\n");
1458 }
1459 }
1460
1461 return 0;
1462 }
1463
1464 static int ironlake_drpc_info(struct seq_file *m)
1465 {
1466 struct drm_info_node *node = m->private;
1467 struct drm_device *dev = node->minor->dev;
1468 struct drm_i915_private *dev_priv = to_i915(dev);
1469 u32 rgvmodectl, rstdbyctl;
1470 u16 crstandvid;
1471 int ret;
1472
1473 ret = mutex_lock_interruptible(&dev->struct_mutex);
1474 if (ret)
1475 return ret;
1476 intel_runtime_pm_get(dev_priv);
1477
1478 rgvmodectl = I915_READ(MEMMODECTL);
1479 rstdbyctl = I915_READ(RSTDBYCTL);
1480 crstandvid = I915_READ16(CRSTANDVID);
1481
1482 intel_runtime_pm_put(dev_priv);
1483 mutex_unlock(&dev->struct_mutex);
1484
1485 seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1486 seq_printf(m, "Boost freq: %d\n",
1487 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1488 MEMMODE_BOOST_FREQ_SHIFT);
1489 seq_printf(m, "HW control enabled: %s\n",
1490 yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1491 seq_printf(m, "SW control enabled: %s\n",
1492 yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1493 seq_printf(m, "Gated voltage change: %s\n",
1494 yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1495 seq_printf(m, "Starting frequency: P%d\n",
1496 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1497 seq_printf(m, "Max P-state: P%d\n",
1498 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1499 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1500 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1501 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1502 seq_printf(m, "Render standby enabled: %s\n",
1503 yesno(!(rstdbyctl & RCX_SW_EXIT)));
1504 seq_puts(m, "Current RS state: ");
1505 switch (rstdbyctl & RSX_STATUS_MASK) {
1506 case RSX_STATUS_ON:
1507 seq_puts(m, "on\n");
1508 break;
1509 case RSX_STATUS_RC1:
1510 seq_puts(m, "RC1\n");
1511 break;
1512 case RSX_STATUS_RC1E:
1513 seq_puts(m, "RC1E\n");
1514 break;
1515 case RSX_STATUS_RS1:
1516 seq_puts(m, "RS1\n");
1517 break;
1518 case RSX_STATUS_RS2:
1519 seq_puts(m, "RS2 (RC6)\n");
1520 break;
1521 case RSX_STATUS_RS3:
1522 seq_puts(m, "RC3 (RC6+)\n");
1523 break;
1524 default:
1525 seq_puts(m, "unknown\n");
1526 break;
1527 }
1528
1529 return 0;
1530 }
1531
1532 static int i915_forcewake_domains(struct seq_file *m, void *data)
1533 {
1534 struct drm_info_node *node = m->private;
1535 struct drm_device *dev = node->minor->dev;
1536 struct drm_i915_private *dev_priv = to_i915(dev);
1537 struct intel_uncore_forcewake_domain *fw_domain;
1538
1539 spin_lock_irq(&dev_priv->uncore.lock);
1540 for_each_fw_domain(fw_domain, dev_priv) {
1541 seq_printf(m, "%s.wake_count = %u\n",
1542 intel_uncore_forcewake_domain_to_str(fw_domain->id),
1543 fw_domain->wake_count);
1544 }
1545 spin_unlock_irq(&dev_priv->uncore.lock);
1546
1547 return 0;
1548 }
1549
1550 static int vlv_drpc_info(struct seq_file *m)
1551 {
1552 struct drm_info_node *node = m->private;
1553 struct drm_device *dev = node->minor->dev;
1554 struct drm_i915_private *dev_priv = to_i915(dev);
1555 u32 rpmodectl1, rcctl1, pw_status;
1556
1557 intel_runtime_pm_get(dev_priv);
1558
1559 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1560 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1561 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1562
1563 intel_runtime_pm_put(dev_priv);
1564
1565 seq_printf(m, "Video Turbo Mode: %s\n",
1566 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1567 seq_printf(m, "Turbo enabled: %s\n",
1568 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1569 seq_printf(m, "HW control enabled: %s\n",
1570 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1571 seq_printf(m, "SW control enabled: %s\n",
1572 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1573 GEN6_RP_MEDIA_SW_MODE));
1574 seq_printf(m, "RC6 Enabled: %s\n",
1575 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1576 GEN6_RC_CTL_EI_MODE(1))));
1577 seq_printf(m, "Render Power Well: %s\n",
1578 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1579 seq_printf(m, "Media Power Well: %s\n",
1580 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1581
1582 seq_printf(m, "Render RC6 residency since boot: %u\n",
1583 I915_READ(VLV_GT_RENDER_RC6));
1584 seq_printf(m, "Media RC6 residency since boot: %u\n",
1585 I915_READ(VLV_GT_MEDIA_RC6));
1586
1587 return i915_forcewake_domains(m, NULL);
1588 }
1589
1590 static int gen6_drpc_info(struct seq_file *m)
1591 {
1592 struct drm_info_node *node = m->private;
1593 struct drm_device *dev = node->minor->dev;
1594 struct drm_i915_private *dev_priv = to_i915(dev);
1595 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1596 u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1597 unsigned forcewake_count;
1598 int count = 0, ret;
1599
1600 ret = mutex_lock_interruptible(&dev->struct_mutex);
1601 if (ret)
1602 return ret;
1603 intel_runtime_pm_get(dev_priv);
1604
1605 spin_lock_irq(&dev_priv->uncore.lock);
1606 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1607 spin_unlock_irq(&dev_priv->uncore.lock);
1608
1609 if (forcewake_count) {
1610 seq_puts(m, "RC information inaccurate because somebody "
1611 "holds a forcewake reference \n");
1612 } else {
1613 /* NB: we cannot use forcewake, else we read the wrong values */
1614 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1615 udelay(10);
1616 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1617 }
1618
1619 gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1620 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1621
1622 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1623 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1624 if (INTEL_INFO(dev)->gen >= 9) {
1625 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1626 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1627 }
1628 mutex_unlock(&dev->struct_mutex);
1629 mutex_lock(&dev_priv->rps.hw_lock);
1630 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1631 mutex_unlock(&dev_priv->rps.hw_lock);
1632
1633 intel_runtime_pm_put(dev_priv);
1634
1635 seq_printf(m, "Video Turbo Mode: %s\n",
1636 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1637 seq_printf(m, "HW control enabled: %s\n",
1638 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1639 seq_printf(m, "SW control enabled: %s\n",
1640 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1641 GEN6_RP_MEDIA_SW_MODE));
1642 seq_printf(m, "RC1e Enabled: %s\n",
1643 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1644 seq_printf(m, "RC6 Enabled: %s\n",
1645 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1646 if (INTEL_INFO(dev)->gen >= 9) {
1647 seq_printf(m, "Render Well Gating Enabled: %s\n",
1648 yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1649 seq_printf(m, "Media Well Gating Enabled: %s\n",
1650 yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1651 }
1652 seq_printf(m, "Deep RC6 Enabled: %s\n",
1653 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1654 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1655 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1656 seq_puts(m, "Current RC state: ");
1657 switch (gt_core_status & GEN6_RCn_MASK) {
1658 case GEN6_RC0:
1659 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1660 seq_puts(m, "Core Power Down\n");
1661 else
1662 seq_puts(m, "on\n");
1663 break;
1664 case GEN6_RC3:
1665 seq_puts(m, "RC3\n");
1666 break;
1667 case GEN6_RC6:
1668 seq_puts(m, "RC6\n");
1669 break;
1670 case GEN6_RC7:
1671 seq_puts(m, "RC7\n");
1672 break;
1673 default:
1674 seq_puts(m, "Unknown\n");
1675 break;
1676 }
1677
1678 seq_printf(m, "Core Power Down: %s\n",
1679 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1680 if (INTEL_INFO(dev)->gen >= 9) {
1681 seq_printf(m, "Render Power Well: %s\n",
1682 (gen9_powergate_status &
1683 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1684 seq_printf(m, "Media Power Well: %s\n",
1685 (gen9_powergate_status &
1686 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1687 }
1688
1689 /* Not exactly sure what this is */
1690 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1691 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1692 seq_printf(m, "RC6 residency since boot: %u\n",
1693 I915_READ(GEN6_GT_GFX_RC6));
1694 seq_printf(m, "RC6+ residency since boot: %u\n",
1695 I915_READ(GEN6_GT_GFX_RC6p));
1696 seq_printf(m, "RC6++ residency since boot: %u\n",
1697 I915_READ(GEN6_GT_GFX_RC6pp));
1698
1699 seq_printf(m, "RC6 voltage: %dmV\n",
1700 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1701 seq_printf(m, "RC6+ voltage: %dmV\n",
1702 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1703 seq_printf(m, "RC6++ voltage: %dmV\n",
1704 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1705 return i915_forcewake_domains(m, NULL);
1706 }
1707
1708 static int i915_drpc_info(struct seq_file *m, void *unused)
1709 {
1710 struct drm_info_node *node = m->private;
1711 struct drm_device *dev = node->minor->dev;
1712
1713 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1714 return vlv_drpc_info(m);
1715 else if (INTEL_INFO(dev)->gen >= 6)
1716 return gen6_drpc_info(m);
1717 else
1718 return ironlake_drpc_info(m);
1719 }
1720
1721 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1722 {
1723 struct drm_info_node *node = m->private;
1724 struct drm_device *dev = node->minor->dev;
1725 struct drm_i915_private *dev_priv = to_i915(dev);
1726
1727 seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1728 dev_priv->fb_tracking.busy_bits);
1729
1730 seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1731 dev_priv->fb_tracking.flip_bits);
1732
1733 return 0;
1734 }
1735
1736 static int i915_fbc_status(struct seq_file *m, void *unused)
1737 {
1738 struct drm_info_node *node = m->private;
1739 struct drm_device *dev = node->minor->dev;
1740 struct drm_i915_private *dev_priv = to_i915(dev);
1741
1742 if (!HAS_FBC(dev)) {
1743 seq_puts(m, "FBC unsupported on this chipset\n");
1744 return 0;
1745 }
1746
1747 intel_runtime_pm_get(dev_priv);
1748 mutex_lock(&dev_priv->fbc.lock);
1749
1750 if (intel_fbc_is_active(dev_priv))
1751 seq_puts(m, "FBC enabled\n");
1752 else
1753 seq_printf(m, "FBC disabled: %s\n",
1754 dev_priv->fbc.no_fbc_reason);
1755
1756 if (INTEL_INFO(dev_priv)->gen >= 7)
1757 seq_printf(m, "Compressing: %s\n",
1758 yesno(I915_READ(FBC_STATUS2) &
1759 FBC_COMPRESSION_MASK));
1760
1761 mutex_unlock(&dev_priv->fbc.lock);
1762 intel_runtime_pm_put(dev_priv);
1763
1764 return 0;
1765 }
1766
1767 static int i915_fbc_fc_get(void *data, u64 *val)
1768 {
1769 struct drm_device *dev = data;
1770 struct drm_i915_private *dev_priv = to_i915(dev);
1771
1772 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1773 return -ENODEV;
1774
1775 *val = dev_priv->fbc.false_color;
1776
1777 return 0;
1778 }
1779
1780 static int i915_fbc_fc_set(void *data, u64 val)
1781 {
1782 struct drm_device *dev = data;
1783 struct drm_i915_private *dev_priv = to_i915(dev);
1784 u32 reg;
1785
1786 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1787 return -ENODEV;
1788
1789 mutex_lock(&dev_priv->fbc.lock);
1790
1791 reg = I915_READ(ILK_DPFC_CONTROL);
1792 dev_priv->fbc.false_color = val;
1793
1794 I915_WRITE(ILK_DPFC_CONTROL, val ?
1795 (reg | FBC_CTL_FALSE_COLOR) :
1796 (reg & ~FBC_CTL_FALSE_COLOR));
1797
1798 mutex_unlock(&dev_priv->fbc.lock);
1799 return 0;
1800 }
1801
1802 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1803 i915_fbc_fc_get, i915_fbc_fc_set,
1804 "%llu\n");
1805
1806 static int i915_ips_status(struct seq_file *m, void *unused)
1807 {
1808 struct drm_info_node *node = m->private;
1809 struct drm_device *dev = node->minor->dev;
1810 struct drm_i915_private *dev_priv = to_i915(dev);
1811
1812 if (!HAS_IPS(dev)) {
1813 seq_puts(m, "not supported\n");
1814 return 0;
1815 }
1816
1817 intel_runtime_pm_get(dev_priv);
1818
1819 seq_printf(m, "Enabled by kernel parameter: %s\n",
1820 yesno(i915.enable_ips));
1821
1822 if (INTEL_INFO(dev)->gen >= 8) {
1823 seq_puts(m, "Currently: unknown\n");
1824 } else {
1825 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1826 seq_puts(m, "Currently: enabled\n");
1827 else
1828 seq_puts(m, "Currently: disabled\n");
1829 }
1830
1831 intel_runtime_pm_put(dev_priv);
1832
1833 return 0;
1834 }
1835
1836 static int i915_sr_status(struct seq_file *m, void *unused)
1837 {
1838 struct drm_info_node *node = m->private;
1839 struct drm_device *dev = node->minor->dev;
1840 struct drm_i915_private *dev_priv = to_i915(dev);
1841 bool sr_enabled = false;
1842
1843 intel_runtime_pm_get(dev_priv);
1844
1845 if (HAS_PCH_SPLIT(dev))
1846 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1847 else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1848 IS_I945G(dev) || IS_I945GM(dev))
1849 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1850 else if (IS_I915GM(dev))
1851 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1852 else if (IS_PINEVIEW(dev))
1853 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1854 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1855 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1856
1857 intel_runtime_pm_put(dev_priv);
1858
1859 seq_printf(m, "self-refresh: %s\n",
1860 sr_enabled ? "enabled" : "disabled");
1861
1862 return 0;
1863 }
1864
1865 static int i915_emon_status(struct seq_file *m, void *unused)
1866 {
1867 struct drm_info_node *node = m->private;
1868 struct drm_device *dev = node->minor->dev;
1869 struct drm_i915_private *dev_priv = to_i915(dev);
1870 unsigned long temp, chipset, gfx;
1871 int ret;
1872
1873 if (!IS_GEN5(dev))
1874 return -ENODEV;
1875
1876 ret = mutex_lock_interruptible(&dev->struct_mutex);
1877 if (ret)
1878 return ret;
1879
1880 temp = i915_mch_val(dev_priv);
1881 chipset = i915_chipset_val(dev_priv);
1882 gfx = i915_gfx_val(dev_priv);
1883 mutex_unlock(&dev->struct_mutex);
1884
1885 seq_printf(m, "GMCH temp: %ld\n", temp);
1886 seq_printf(m, "Chipset power: %ld\n", chipset);
1887 seq_printf(m, "GFX power: %ld\n", gfx);
1888 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1889
1890 return 0;
1891 }
1892
1893 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1894 {
1895 struct drm_info_node *node = m->private;
1896 struct drm_device *dev = node->minor->dev;
1897 struct drm_i915_private *dev_priv = to_i915(dev);
1898 int ret = 0;
1899 int gpu_freq, ia_freq;
1900 unsigned int max_gpu_freq, min_gpu_freq;
1901
1902 if (!HAS_CORE_RING_FREQ(dev)) {
1903 seq_puts(m, "unsupported on this chipset\n");
1904 return 0;
1905 }
1906
1907 intel_runtime_pm_get(dev_priv);
1908
1909 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1910 if (ret)
1911 goto out;
1912
1913 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1914 /* Convert GT frequency to 50 HZ units */
1915 min_gpu_freq =
1916 dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1917 max_gpu_freq =
1918 dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1919 } else {
1920 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1921 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1922 }
1923
1924 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1925
1926 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1927 ia_freq = gpu_freq;
1928 sandybridge_pcode_read(dev_priv,
1929 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1930 &ia_freq);
1931 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1932 intel_gpu_freq(dev_priv, (gpu_freq *
1933 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1934 GEN9_FREQ_SCALER : 1))),
1935 ((ia_freq >> 0) & 0xff) * 100,
1936 ((ia_freq >> 8) & 0xff) * 100);
1937 }
1938
1939 mutex_unlock(&dev_priv->rps.hw_lock);
1940
1941 out:
1942 intel_runtime_pm_put(dev_priv);
1943 return ret;
1944 }
1945
1946 static int i915_opregion(struct seq_file *m, void *unused)
1947 {
1948 struct drm_info_node *node = m->private;
1949 struct drm_device *dev = node->minor->dev;
1950 struct drm_i915_private *dev_priv = to_i915(dev);
1951 struct intel_opregion *opregion = &dev_priv->opregion;
1952 int ret;
1953
1954 ret = mutex_lock_interruptible(&dev->struct_mutex);
1955 if (ret)
1956 goto out;
1957
1958 if (opregion->header)
1959 seq_write(m, opregion->header, OPREGION_SIZE);
1960
1961 mutex_unlock(&dev->struct_mutex);
1962
1963 out:
1964 return 0;
1965 }
1966
1967 static int i915_vbt(struct seq_file *m, void *unused)
1968 {
1969 struct drm_info_node *node = m->private;
1970 struct drm_device *dev = node->minor->dev;
1971 struct drm_i915_private *dev_priv = to_i915(dev);
1972 struct intel_opregion *opregion = &dev_priv->opregion;
1973
1974 if (opregion->vbt)
1975 seq_write(m, opregion->vbt, opregion->vbt_size);
1976
1977 return 0;
1978 }
1979
1980 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1981 {
1982 struct drm_info_node *node = m->private;
1983 struct drm_device *dev = node->minor->dev;
1984 struct intel_framebuffer *fbdev_fb = NULL;
1985 struct drm_framebuffer *drm_fb;
1986 int ret;
1987
1988 ret = mutex_lock_interruptible(&dev->struct_mutex);
1989 if (ret)
1990 return ret;
1991
1992 #ifdef CONFIG_DRM_FBDEV_EMULATION
1993 if (to_i915(dev)->fbdev) {
1994 fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1995
1996 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1997 fbdev_fb->base.width,
1998 fbdev_fb->base.height,
1999 fbdev_fb->base.depth,
2000 fbdev_fb->base.bits_per_pixel,
2001 fbdev_fb->base.modifier[0],
2002 drm_framebuffer_read_refcount(&fbdev_fb->base));
2003 describe_obj(m, fbdev_fb->obj);
2004 seq_putc(m, '\n');
2005 }
2006 #endif
2007
2008 mutex_lock(&dev->mode_config.fb_lock);
2009 drm_for_each_fb(drm_fb, dev) {
2010 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
2011 if (fb == fbdev_fb)
2012 continue;
2013
2014 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
2015 fb->base.width,
2016 fb->base.height,
2017 fb->base.depth,
2018 fb->base.bits_per_pixel,
2019 fb->base.modifier[0],
2020 drm_framebuffer_read_refcount(&fb->base));
2021 describe_obj(m, fb->obj);
2022 seq_putc(m, '\n');
2023 }
2024 mutex_unlock(&dev->mode_config.fb_lock);
2025 mutex_unlock(&dev->struct_mutex);
2026
2027 return 0;
2028 }
2029
2030 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
2031 {
2032 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
2033 ring->space, ring->head, ring->tail,
2034 ring->last_retired_head);
2035 }
2036
2037 static int i915_context_status(struct seq_file *m, void *unused)
2038 {
2039 struct drm_info_node *node = m->private;
2040 struct drm_device *dev = node->minor->dev;
2041 struct drm_i915_private *dev_priv = to_i915(dev);
2042 struct intel_engine_cs *engine;
2043 struct i915_gem_context *ctx;
2044 int ret;
2045
2046 ret = mutex_lock_interruptible(&dev->struct_mutex);
2047 if (ret)
2048 return ret;
2049
2050 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2051 seq_printf(m, "HW context %u ", ctx->hw_id);
2052 if (IS_ERR(ctx->file_priv)) {
2053 seq_puts(m, "(deleted) ");
2054 } else if (ctx->file_priv) {
2055 struct pid *pid = ctx->file_priv->file->pid;
2056 struct task_struct *task;
2057
2058 task = get_pid_task(pid, PIDTYPE_PID);
2059 if (task) {
2060 seq_printf(m, "(%s [%d]) ",
2061 task->comm, task->pid);
2062 put_task_struct(task);
2063 }
2064 } else {
2065 seq_puts(m, "(kernel) ");
2066 }
2067
2068 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
2069 seq_putc(m, '\n');
2070
2071 for_each_engine(engine, dev_priv) {
2072 struct intel_context *ce = &ctx->engine[engine->id];
2073
2074 seq_printf(m, "%s: ", engine->name);
2075 seq_putc(m, ce->initialised ? 'I' : 'i');
2076 if (ce->state)
2077 describe_obj(m, ce->state);
2078 if (ce->ring)
2079 describe_ctx_ring(m, ce->ring);
2080 seq_putc(m, '\n');
2081 }
2082
2083 seq_putc(m, '\n');
2084 }
2085
2086 mutex_unlock(&dev->struct_mutex);
2087
2088 return 0;
2089 }
2090
2091 static void i915_dump_lrc_obj(struct seq_file *m,
2092 struct i915_gem_context *ctx,
2093 struct intel_engine_cs *engine)
2094 {
2095 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2096 struct page *page;
2097 uint32_t *reg_state;
2098 int j;
2099 unsigned long ggtt_offset = 0;
2100
2101 seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2102
2103 if (ctx_obj == NULL) {
2104 seq_puts(m, "\tNot allocated\n");
2105 return;
2106 }
2107
2108 if (!i915_gem_obj_ggtt_bound(ctx_obj))
2109 seq_puts(m, "\tNot bound in GGTT\n");
2110 else
2111 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2112
2113 if (i915_gem_object_get_pages(ctx_obj)) {
2114 seq_puts(m, "\tFailed to get pages for context object\n");
2115 return;
2116 }
2117
2118 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2119 if (!WARN_ON(page == NULL)) {
2120 reg_state = kmap_atomic(page);
2121
2122 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2123 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2124 ggtt_offset + 4096 + (j * 4),
2125 reg_state[j], reg_state[j + 1],
2126 reg_state[j + 2], reg_state[j + 3]);
2127 }
2128 kunmap_atomic(reg_state);
2129 }
2130
2131 seq_putc(m, '\n');
2132 }
2133
2134 static int i915_dump_lrc(struct seq_file *m, void *unused)
2135 {
2136 struct drm_info_node *node = (struct drm_info_node *) m->private;
2137 struct drm_device *dev = node->minor->dev;
2138 struct drm_i915_private *dev_priv = to_i915(dev);
2139 struct intel_engine_cs *engine;
2140 struct i915_gem_context *ctx;
2141 int ret;
2142
2143 if (!i915.enable_execlists) {
2144 seq_printf(m, "Logical Ring Contexts are disabled\n");
2145 return 0;
2146 }
2147
2148 ret = mutex_lock_interruptible(&dev->struct_mutex);
2149 if (ret)
2150 return ret;
2151
2152 list_for_each_entry(ctx, &dev_priv->context_list, link)
2153 for_each_engine(engine, dev_priv)
2154 i915_dump_lrc_obj(m, ctx, engine);
2155
2156 mutex_unlock(&dev->struct_mutex);
2157
2158 return 0;
2159 }
2160
2161 static int i915_execlists(struct seq_file *m, void *data)
2162 {
2163 struct drm_info_node *node = (struct drm_info_node *)m->private;
2164 struct drm_device *dev = node->minor->dev;
2165 struct drm_i915_private *dev_priv = to_i915(dev);
2166 struct intel_engine_cs *engine;
2167 u32 status_pointer;
2168 u8 read_pointer;
2169 u8 write_pointer;
2170 u32 status;
2171 u32 ctx_id;
2172 struct list_head *cursor;
2173 int i, ret;
2174
2175 if (!i915.enable_execlists) {
2176 seq_puts(m, "Logical Ring Contexts are disabled\n");
2177 return 0;
2178 }
2179
2180 ret = mutex_lock_interruptible(&dev->struct_mutex);
2181 if (ret)
2182 return ret;
2183
2184 intel_runtime_pm_get(dev_priv);
2185
2186 for_each_engine(engine, dev_priv) {
2187 struct drm_i915_gem_request *head_req = NULL;
2188 int count = 0;
2189
2190 seq_printf(m, "%s\n", engine->name);
2191
2192 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2193 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2194 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2195 status, ctx_id);
2196
2197 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2198 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2199
2200 read_pointer = engine->next_context_status_buffer;
2201 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2202 if (read_pointer > write_pointer)
2203 write_pointer += GEN8_CSB_ENTRIES;
2204 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2205 read_pointer, write_pointer);
2206
2207 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2208 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2209 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2210
2211 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2212 i, status, ctx_id);
2213 }
2214
2215 spin_lock_bh(&engine->execlist_lock);
2216 list_for_each(cursor, &engine->execlist_queue)
2217 count++;
2218 head_req = list_first_entry_or_null(&engine->execlist_queue,
2219 struct drm_i915_gem_request,
2220 execlist_link);
2221 spin_unlock_bh(&engine->execlist_lock);
2222
2223 seq_printf(m, "\t%d requests in queue\n", count);
2224 if (head_req) {
2225 seq_printf(m, "\tHead request context: %u\n",
2226 head_req->ctx->hw_id);
2227 seq_printf(m, "\tHead request tail: %u\n",
2228 head_req->tail);
2229 }
2230
2231 seq_putc(m, '\n');
2232 }
2233
2234 intel_runtime_pm_put(dev_priv);
2235 mutex_unlock(&dev->struct_mutex);
2236
2237 return 0;
2238 }
2239
2240 static const char *swizzle_string(unsigned swizzle)
2241 {
2242 switch (swizzle) {
2243 case I915_BIT_6_SWIZZLE_NONE:
2244 return "none";
2245 case I915_BIT_6_SWIZZLE_9:
2246 return "bit9";
2247 case I915_BIT_6_SWIZZLE_9_10:
2248 return "bit9/bit10";
2249 case I915_BIT_6_SWIZZLE_9_11:
2250 return "bit9/bit11";
2251 case I915_BIT_6_SWIZZLE_9_10_11:
2252 return "bit9/bit10/bit11";
2253 case I915_BIT_6_SWIZZLE_9_17:
2254 return "bit9/bit17";
2255 case I915_BIT_6_SWIZZLE_9_10_17:
2256 return "bit9/bit10/bit17";
2257 case I915_BIT_6_SWIZZLE_UNKNOWN:
2258 return "unknown";
2259 }
2260
2261 return "bug";
2262 }
2263
2264 static int i915_swizzle_info(struct seq_file *m, void *data)
2265 {
2266 struct drm_info_node *node = m->private;
2267 struct drm_device *dev = node->minor->dev;
2268 struct drm_i915_private *dev_priv = to_i915(dev);
2269 int ret;
2270
2271 ret = mutex_lock_interruptible(&dev->struct_mutex);
2272 if (ret)
2273 return ret;
2274 intel_runtime_pm_get(dev_priv);
2275
2276 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2277 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2278 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2279 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2280
2281 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2282 seq_printf(m, "DDC = 0x%08x\n",
2283 I915_READ(DCC));
2284 seq_printf(m, "DDC2 = 0x%08x\n",
2285 I915_READ(DCC2));
2286 seq_printf(m, "C0DRB3 = 0x%04x\n",
2287 I915_READ16(C0DRB3));
2288 seq_printf(m, "C1DRB3 = 0x%04x\n",
2289 I915_READ16(C1DRB3));
2290 } else if (INTEL_INFO(dev)->gen >= 6) {
2291 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2292 I915_READ(MAD_DIMM_C0));
2293 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2294 I915_READ(MAD_DIMM_C1));
2295 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2296 I915_READ(MAD_DIMM_C2));
2297 seq_printf(m, "TILECTL = 0x%08x\n",
2298 I915_READ(TILECTL));
2299 if (INTEL_INFO(dev)->gen >= 8)
2300 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2301 I915_READ(GAMTARBMODE));
2302 else
2303 seq_printf(m, "ARB_MODE = 0x%08x\n",
2304 I915_READ(ARB_MODE));
2305 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2306 I915_READ(DISP_ARB_CTL));
2307 }
2308
2309 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2310 seq_puts(m, "L-shaped memory detected\n");
2311
2312 intel_runtime_pm_put(dev_priv);
2313 mutex_unlock(&dev->struct_mutex);
2314
2315 return 0;
2316 }
2317
2318 static int per_file_ctx(int id, void *ptr, void *data)
2319 {
2320 struct i915_gem_context *ctx = ptr;
2321 struct seq_file *m = data;
2322 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2323
2324 if (!ppgtt) {
2325 seq_printf(m, " no ppgtt for context %d\n",
2326 ctx->user_handle);
2327 return 0;
2328 }
2329
2330 if (i915_gem_context_is_default(ctx))
2331 seq_puts(m, " default context:\n");
2332 else
2333 seq_printf(m, " context %d:\n", ctx->user_handle);
2334 ppgtt->debug_dump(ppgtt, m);
2335
2336 return 0;
2337 }
2338
2339 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2340 {
2341 struct drm_i915_private *dev_priv = to_i915(dev);
2342 struct intel_engine_cs *engine;
2343 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2344 int i;
2345
2346 if (!ppgtt)
2347 return;
2348
2349 for_each_engine(engine, dev_priv) {
2350 seq_printf(m, "%s\n", engine->name);
2351 for (i = 0; i < 4; i++) {
2352 u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2353 pdp <<= 32;
2354 pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2355 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2356 }
2357 }
2358 }
2359
2360 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2361 {
2362 struct drm_i915_private *dev_priv = to_i915(dev);
2363 struct intel_engine_cs *engine;
2364
2365 if (IS_GEN6(dev_priv))
2366 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2367
2368 for_each_engine(engine, dev_priv) {
2369 seq_printf(m, "%s\n", engine->name);
2370 if (IS_GEN7(dev_priv))
2371 seq_printf(m, "GFX_MODE: 0x%08x\n",
2372 I915_READ(RING_MODE_GEN7(engine)));
2373 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2374 I915_READ(RING_PP_DIR_BASE(engine)));
2375 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2376 I915_READ(RING_PP_DIR_BASE_READ(engine)));
2377 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2378 I915_READ(RING_PP_DIR_DCLV(engine)));
2379 }
2380 if (dev_priv->mm.aliasing_ppgtt) {
2381 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2382
2383 seq_puts(m, "aliasing PPGTT:\n");
2384 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2385
2386 ppgtt->debug_dump(ppgtt, m);
2387 }
2388
2389 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2390 }
2391
2392 static int i915_ppgtt_info(struct seq_file *m, void *data)
2393 {
2394 struct drm_info_node *node = m->private;
2395 struct drm_device *dev = node->minor->dev;
2396 struct drm_i915_private *dev_priv = to_i915(dev);
2397 struct drm_file *file;
2398
2399 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2400 if (ret)
2401 return ret;
2402 intel_runtime_pm_get(dev_priv);
2403
2404 if (INTEL_INFO(dev)->gen >= 8)
2405 gen8_ppgtt_info(m, dev);
2406 else if (INTEL_INFO(dev)->gen >= 6)
2407 gen6_ppgtt_info(m, dev);
2408
2409 mutex_lock(&dev->filelist_mutex);
2410 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2411 struct drm_i915_file_private *file_priv = file->driver_priv;
2412 struct task_struct *task;
2413
2414 task = get_pid_task(file->pid, PIDTYPE_PID);
2415 if (!task) {
2416 ret = -ESRCH;
2417 goto out_unlock;
2418 }
2419 seq_printf(m, "\nproc: %s\n", task->comm);
2420 put_task_struct(task);
2421 idr_for_each(&file_priv->context_idr, per_file_ctx,
2422 (void *)(unsigned long)m);
2423 }
2424 out_unlock:
2425 mutex_unlock(&dev->filelist_mutex);
2426
2427 intel_runtime_pm_put(dev_priv);
2428 mutex_unlock(&dev->struct_mutex);
2429
2430 return ret;
2431 }
2432
2433 static int count_irq_waiters(struct drm_i915_private *i915)
2434 {
2435 struct intel_engine_cs *engine;
2436 int count = 0;
2437
2438 for_each_engine(engine, i915)
2439 count += intel_engine_has_waiter(engine);
2440
2441 return count;
2442 }
2443
2444 static int i915_rps_boost_info(struct seq_file *m, void *data)
2445 {
2446 struct drm_info_node *node = m->private;
2447 struct drm_device *dev = node->minor->dev;
2448 struct drm_i915_private *dev_priv = to_i915(dev);
2449 struct drm_file *file;
2450
2451 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2452 seq_printf(m, "GPU busy? %s [%x]\n",
2453 yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
2454 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2455 seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2456 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2457 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2458 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2459 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2460 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2461
2462 mutex_lock(&dev->filelist_mutex);
2463 spin_lock(&dev_priv->rps.client_lock);
2464 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2465 struct drm_i915_file_private *file_priv = file->driver_priv;
2466 struct task_struct *task;
2467
2468 rcu_read_lock();
2469 task = pid_task(file->pid, PIDTYPE_PID);
2470 seq_printf(m, "%s [%d]: %d boosts%s\n",
2471 task ? task->comm : "<unknown>",
2472 task ? task->pid : -1,
2473 file_priv->rps.boosts,
2474 list_empty(&file_priv->rps.link) ? "" : ", active");
2475 rcu_read_unlock();
2476 }
2477 seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2478 spin_unlock(&dev_priv->rps.client_lock);
2479 mutex_unlock(&dev->filelist_mutex);
2480
2481 return 0;
2482 }
2483
2484 static int i915_llc(struct seq_file *m, void *data)
2485 {
2486 struct drm_info_node *node = m->private;
2487 struct drm_device *dev = node->minor->dev;
2488 struct drm_i915_private *dev_priv = to_i915(dev);
2489 const bool edram = INTEL_GEN(dev_priv) > 8;
2490
2491 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2492 seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2493 intel_uncore_edram_size(dev_priv)/1024/1024);
2494
2495 return 0;
2496 }
2497
2498 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2499 {
2500 struct drm_info_node *node = m->private;
2501 struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
2502 struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2503 u32 tmp, i;
2504
2505 if (!HAS_GUC_UCODE(dev_priv))
2506 return 0;
2507
2508 seq_printf(m, "GuC firmware status:\n");
2509 seq_printf(m, "\tpath: %s\n",
2510 guc_fw->guc_fw_path);
2511 seq_printf(m, "\tfetch: %s\n",
2512 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2513 seq_printf(m, "\tload: %s\n",
2514 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2515 seq_printf(m, "\tversion wanted: %d.%d\n",
2516 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2517 seq_printf(m, "\tversion found: %d.%d\n",
2518 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2519 seq_printf(m, "\theader: offset is %d; size = %d\n",
2520 guc_fw->header_offset, guc_fw->header_size);
2521 seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2522 guc_fw->ucode_offset, guc_fw->ucode_size);
2523 seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2524 guc_fw->rsa_offset, guc_fw->rsa_size);
2525
2526 tmp = I915_READ(GUC_STATUS);
2527
2528 seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2529 seq_printf(m, "\tBootrom status = 0x%x\n",
2530 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2531 seq_printf(m, "\tuKernel status = 0x%x\n",
2532 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2533 seq_printf(m, "\tMIA Core status = 0x%x\n",
2534 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2535 seq_puts(m, "\nScratch registers:\n");
2536 for (i = 0; i < 16; i++)
2537 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2538
2539 return 0;
2540 }
2541
2542 static void i915_guc_client_info(struct seq_file *m,
2543 struct drm_i915_private *dev_priv,
2544 struct i915_guc_client *client)
2545 {
2546 struct intel_engine_cs *engine;
2547 enum intel_engine_id id;
2548 uint64_t tot = 0;
2549
2550 seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2551 client->priority, client->ctx_index, client->proc_desc_offset);
2552 seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2553 client->doorbell_id, client->doorbell_offset, client->cookie);
2554 seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2555 client->wq_size, client->wq_offset, client->wq_tail);
2556
2557 seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2558 seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2559 seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2560
2561 for_each_engine_id(engine, dev_priv, id) {
2562 u64 submissions = client->submissions[id];
2563 tot += submissions;
2564 seq_printf(m, "\tSubmissions: %llu %s\n",
2565 submissions, engine->name);
2566 }
2567 seq_printf(m, "\tTotal: %llu\n", tot);
2568 }
2569
2570 static int i915_guc_info(struct seq_file *m, void *data)
2571 {
2572 struct drm_info_node *node = m->private;
2573 struct drm_device *dev = node->minor->dev;
2574 struct drm_i915_private *dev_priv = to_i915(dev);
2575 struct intel_guc guc;
2576 struct i915_guc_client client = {};
2577 struct intel_engine_cs *engine;
2578 enum intel_engine_id id;
2579 u64 total = 0;
2580
2581 if (!HAS_GUC_SCHED(dev_priv))
2582 return 0;
2583
2584 if (mutex_lock_interruptible(&dev->struct_mutex))
2585 return 0;
2586
2587 /* Take a local copy of the GuC data, so we can dump it at leisure */
2588 guc = dev_priv->guc;
2589 if (guc.execbuf_client)
2590 client = *guc.execbuf_client;
2591
2592 mutex_unlock(&dev->struct_mutex);
2593
2594 seq_printf(m, "Doorbell map:\n");
2595 seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2596 seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2597
2598 seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2599 seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2600 seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2601 seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2602 seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2603
2604 seq_printf(m, "\nGuC submissions:\n");
2605 for_each_engine_id(engine, dev_priv, id) {
2606 u64 submissions = guc.submissions[id];
2607 total += submissions;
2608 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2609 engine->name, submissions, guc.last_seqno[id]);
2610 }
2611 seq_printf(m, "\t%s: %llu\n", "Total", total);
2612
2613 seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2614 i915_guc_client_info(m, dev_priv, &client);
2615
2616 /* Add more as required ... */
2617
2618 return 0;
2619 }
2620
2621 static int i915_guc_log_dump(struct seq_file *m, void *data)
2622 {
2623 struct drm_info_node *node = m->private;
2624 struct drm_device *dev = node->minor->dev;
2625 struct drm_i915_private *dev_priv = to_i915(dev);
2626 struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2627 u32 *log;
2628 int i = 0, pg;
2629
2630 if (!log_obj)
2631 return 0;
2632
2633 for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2634 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2635
2636 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2637 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2638 *(log + i), *(log + i + 1),
2639 *(log + i + 2), *(log + i + 3));
2640
2641 kunmap_atomic(log);
2642 }
2643
2644 seq_putc(m, '\n');
2645
2646 return 0;
2647 }
2648
2649 static int i915_edp_psr_status(struct seq_file *m, void *data)
2650 {
2651 struct drm_info_node *node = m->private;
2652 struct drm_device *dev = node->minor->dev;
2653 struct drm_i915_private *dev_priv = to_i915(dev);
2654 u32 psrperf = 0;
2655 u32 stat[3];
2656 enum pipe pipe;
2657 bool enabled = false;
2658
2659 if (!HAS_PSR(dev)) {
2660 seq_puts(m, "PSR not supported\n");
2661 return 0;
2662 }
2663
2664 intel_runtime_pm_get(dev_priv);
2665
2666 mutex_lock(&dev_priv->psr.lock);
2667 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2668 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2669 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2670 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2671 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2672 dev_priv->psr.busy_frontbuffer_bits);
2673 seq_printf(m, "Re-enable work scheduled: %s\n",
2674 yesno(work_busy(&dev_priv->psr.work.work)));
2675
2676 if (HAS_DDI(dev))
2677 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2678 else {
2679 for_each_pipe(dev_priv, pipe) {
2680 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2681 VLV_EDP_PSR_CURR_STATE_MASK;
2682 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2683 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2684 enabled = true;
2685 }
2686 }
2687
2688 seq_printf(m, "Main link in standby mode: %s\n",
2689 yesno(dev_priv->psr.link_standby));
2690
2691 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2692
2693 if (!HAS_DDI(dev))
2694 for_each_pipe(dev_priv, pipe) {
2695 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2696 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2697 seq_printf(m, " pipe %c", pipe_name(pipe));
2698 }
2699 seq_puts(m, "\n");
2700
2701 /*
2702 * VLV/CHV PSR has no kind of performance counter
2703 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2704 */
2705 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2706 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2707 EDP_PSR_PERF_CNT_MASK;
2708
2709 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2710 }
2711 mutex_unlock(&dev_priv->psr.lock);
2712
2713 intel_runtime_pm_put(dev_priv);
2714 return 0;
2715 }
2716
2717 static int i915_sink_crc(struct seq_file *m, void *data)
2718 {
2719 struct drm_info_node *node = m->private;
2720 struct drm_device *dev = node->minor->dev;
2721 struct intel_connector *connector;
2722 struct intel_dp *intel_dp = NULL;
2723 int ret;
2724 u8 crc[6];
2725
2726 drm_modeset_lock_all(dev);
2727 for_each_intel_connector(dev, connector) {
2728 struct drm_crtc *crtc;
2729
2730 if (!connector->base.state->best_encoder)
2731 continue;
2732
2733 crtc = connector->base.state->crtc;
2734 if (!crtc->state->active)
2735 continue;
2736
2737 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2738 continue;
2739
2740 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2741
2742 ret = intel_dp_sink_crc(intel_dp, crc);
2743 if (ret)
2744 goto out;
2745
2746 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2747 crc[0], crc[1], crc[2],
2748 crc[3], crc[4], crc[5]);
2749 goto out;
2750 }
2751 ret = -ENODEV;
2752 out:
2753 drm_modeset_unlock_all(dev);
2754 return ret;
2755 }
2756
2757 static int i915_energy_uJ(struct seq_file *m, void *data)
2758 {
2759 struct drm_info_node *node = m->private;
2760 struct drm_device *dev = node->minor->dev;
2761 struct drm_i915_private *dev_priv = to_i915(dev);
2762 u64 power;
2763 u32 units;
2764
2765 if (INTEL_INFO(dev)->gen < 6)
2766 return -ENODEV;
2767
2768 intel_runtime_pm_get(dev_priv);
2769
2770 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2771 power = (power & 0x1f00) >> 8;
2772 units = 1000000 / (1 << power); /* convert to uJ */
2773 power = I915_READ(MCH_SECP_NRG_STTS);
2774 power *= units;
2775
2776 intel_runtime_pm_put(dev_priv);
2777
2778 seq_printf(m, "%llu", (long long unsigned)power);
2779
2780 return 0;
2781 }
2782
2783 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2784 {
2785 struct drm_info_node *node = m->private;
2786 struct drm_device *dev = node->minor->dev;
2787 struct drm_i915_private *dev_priv = to_i915(dev);
2788
2789 if (!HAS_RUNTIME_PM(dev_priv))
2790 seq_puts(m, "Runtime power management not supported\n");
2791
2792 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2793 seq_printf(m, "IRQs disabled: %s\n",
2794 yesno(!intel_irqs_enabled(dev_priv)));
2795 #ifdef CONFIG_PM
2796 seq_printf(m, "Usage count: %d\n",
2797 atomic_read(&dev->dev->power.usage_count));
2798 #else
2799 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2800 #endif
2801 seq_printf(m, "PCI device power state: %s [%d]\n",
2802 pci_power_name(dev_priv->drm.pdev->current_state),
2803 dev_priv->drm.pdev->current_state);
2804
2805 return 0;
2806 }
2807
2808 static int i915_power_domain_info(struct seq_file *m, void *unused)
2809 {
2810 struct drm_info_node *node = m->private;
2811 struct drm_device *dev = node->minor->dev;
2812 struct drm_i915_private *dev_priv = to_i915(dev);
2813 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2814 int i;
2815
2816 mutex_lock(&power_domains->lock);
2817
2818 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2819 for (i = 0; i < power_domains->power_well_count; i++) {
2820 struct i915_power_well *power_well;
2821 enum intel_display_power_domain power_domain;
2822
2823 power_well = &power_domains->power_wells[i];
2824 seq_printf(m, "%-25s %d\n", power_well->name,
2825 power_well->count);
2826
2827 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2828 power_domain++) {
2829 if (!(BIT(power_domain) & power_well->domains))
2830 continue;
2831
2832 seq_printf(m, " %-23s %d\n",
2833 intel_display_power_domain_str(power_domain),
2834 power_domains->domain_use_count[power_domain]);
2835 }
2836 }
2837
2838 mutex_unlock(&power_domains->lock);
2839
2840 return 0;
2841 }
2842
2843 static int i915_dmc_info(struct seq_file *m, void *unused)
2844 {
2845 struct drm_info_node *node = m->private;
2846 struct drm_device *dev = node->minor->dev;
2847 struct drm_i915_private *dev_priv = to_i915(dev);
2848 struct intel_csr *csr;
2849
2850 if (!HAS_CSR(dev)) {
2851 seq_puts(m, "not supported\n");
2852 return 0;
2853 }
2854
2855 csr = &dev_priv->csr;
2856
2857 intel_runtime_pm_get(dev_priv);
2858
2859 seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2860 seq_printf(m, "path: %s\n", csr->fw_path);
2861
2862 if (!csr->dmc_payload)
2863 goto out;
2864
2865 seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2866 CSR_VERSION_MINOR(csr->version));
2867
2868 if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2869 seq_printf(m, "DC3 -> DC5 count: %d\n",
2870 I915_READ(SKL_CSR_DC3_DC5_COUNT));
2871 seq_printf(m, "DC5 -> DC6 count: %d\n",
2872 I915_READ(SKL_CSR_DC5_DC6_COUNT));
2873 } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2874 seq_printf(m, "DC3 -> DC5 count: %d\n",
2875 I915_READ(BXT_CSR_DC3_DC5_COUNT));
2876 }
2877
2878 out:
2879 seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2880 seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2881 seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2882
2883 intel_runtime_pm_put(dev_priv);
2884
2885 return 0;
2886 }
2887
2888 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2889 struct drm_display_mode *mode)
2890 {
2891 int i;
2892
2893 for (i = 0; i < tabs; i++)
2894 seq_putc(m, '\t');
2895
2896 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2897 mode->base.id, mode->name,
2898 mode->vrefresh, mode->clock,
2899 mode->hdisplay, mode->hsync_start,
2900 mode->hsync_end, mode->htotal,
2901 mode->vdisplay, mode->vsync_start,
2902 mode->vsync_end, mode->vtotal,
2903 mode->type, mode->flags);
2904 }
2905
2906 static void intel_encoder_info(struct seq_file *m,
2907 struct intel_crtc *intel_crtc,
2908 struct intel_encoder *intel_encoder)
2909 {
2910 struct drm_info_node *node = m->private;
2911 struct drm_device *dev = node->minor->dev;
2912 struct drm_crtc *crtc = &intel_crtc->base;
2913 struct intel_connector *intel_connector;
2914 struct drm_encoder *encoder;
2915
2916 encoder = &intel_encoder->base;
2917 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2918 encoder->base.id, encoder->name);
2919 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2920 struct drm_connector *connector = &intel_connector->base;
2921 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2922 connector->base.id,
2923 connector->name,
2924 drm_get_connector_status_name(connector->status));
2925 if (connector->status == connector_status_connected) {
2926 struct drm_display_mode *mode = &crtc->mode;
2927 seq_printf(m, ", mode:\n");
2928 intel_seq_print_mode(m, 2, mode);
2929 } else {
2930 seq_putc(m, '\n');
2931 }
2932 }
2933 }
2934
2935 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2936 {
2937 struct drm_info_node *node = m->private;
2938 struct drm_device *dev = node->minor->dev;
2939 struct drm_crtc *crtc = &intel_crtc->base;
2940 struct intel_encoder *intel_encoder;
2941 struct drm_plane_state *plane_state = crtc->primary->state;
2942 struct drm_framebuffer *fb = plane_state->fb;
2943
2944 if (fb)
2945 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2946 fb->base.id, plane_state->src_x >> 16,
2947 plane_state->src_y >> 16, fb->width, fb->height);
2948 else
2949 seq_puts(m, "\tprimary plane disabled\n");
2950 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2951 intel_encoder_info(m, intel_crtc, intel_encoder);
2952 }
2953
2954 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2955 {
2956 struct drm_display_mode *mode = panel->fixed_mode;
2957
2958 seq_printf(m, "\tfixed mode:\n");
2959 intel_seq_print_mode(m, 2, mode);
2960 }
2961
2962 static void intel_dp_info(struct seq_file *m,
2963 struct intel_connector *intel_connector)
2964 {
2965 struct intel_encoder *intel_encoder = intel_connector->encoder;
2966 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2967
2968 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2969 seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2970 if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2971 intel_panel_info(m, &intel_connector->panel);
2972 }
2973
2974 static void intel_hdmi_info(struct seq_file *m,
2975 struct intel_connector *intel_connector)
2976 {
2977 struct intel_encoder *intel_encoder = intel_connector->encoder;
2978 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2979
2980 seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2981 }
2982
2983 static void intel_lvds_info(struct seq_file *m,
2984 struct intel_connector *intel_connector)
2985 {
2986 intel_panel_info(m, &intel_connector->panel);
2987 }
2988
2989 static void intel_connector_info(struct seq_file *m,
2990 struct drm_connector *connector)
2991 {
2992 struct intel_connector *intel_connector = to_intel_connector(connector);
2993 struct intel_encoder *intel_encoder = intel_connector->encoder;
2994 struct drm_display_mode *mode;
2995
2996 seq_printf(m, "connector %d: type %s, status: %s\n",
2997 connector->base.id, connector->name,
2998 drm_get_connector_status_name(connector->status));
2999 if (connector->status == connector_status_connected) {
3000 seq_printf(m, "\tname: %s\n", connector->display_info.name);
3001 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3002 connector->display_info.width_mm,
3003 connector->display_info.height_mm);
3004 seq_printf(m, "\tsubpixel order: %s\n",
3005 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3006 seq_printf(m, "\tCEA rev: %d\n",
3007 connector->display_info.cea_rev);
3008 }
3009
3010 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3011 return;
3012
3013 switch (connector->connector_type) {
3014 case DRM_MODE_CONNECTOR_DisplayPort:
3015 case DRM_MODE_CONNECTOR_eDP:
3016 intel_dp_info(m, intel_connector);
3017 break;
3018 case DRM_MODE_CONNECTOR_LVDS:
3019 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3020 intel_lvds_info(m, intel_connector);
3021 break;
3022 case DRM_MODE_CONNECTOR_HDMIA:
3023 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3024 intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3025 intel_hdmi_info(m, intel_connector);
3026 break;
3027 default:
3028 break;
3029 }
3030
3031 seq_printf(m, "\tmodes:\n");
3032 list_for_each_entry(mode, &connector->modes, head)
3033 intel_seq_print_mode(m, 2, mode);
3034 }
3035
3036 static bool cursor_active(struct drm_device *dev, int pipe)
3037 {
3038 struct drm_i915_private *dev_priv = to_i915(dev);
3039 u32 state;
3040
3041 if (IS_845G(dev) || IS_I865G(dev))
3042 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
3043 else
3044 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
3045
3046 return state;
3047 }
3048
3049 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
3050 {
3051 struct drm_i915_private *dev_priv = to_i915(dev);
3052 u32 pos;
3053
3054 pos = I915_READ(CURPOS(pipe));
3055
3056 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
3057 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
3058 *x = -*x;
3059
3060 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
3061 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3062 *y = -*y;
3063
3064 return cursor_active(dev, pipe);
3065 }
3066
3067 static const char *plane_type(enum drm_plane_type type)
3068 {
3069 switch (type) {
3070 case DRM_PLANE_TYPE_OVERLAY:
3071 return "OVL";
3072 case DRM_PLANE_TYPE_PRIMARY:
3073 return "PRI";
3074 case DRM_PLANE_TYPE_CURSOR:
3075 return "CUR";
3076 /*
3077 * Deliberately omitting default: to generate compiler warnings
3078 * when a new drm_plane_type gets added.
3079 */
3080 }
3081
3082 return "unknown";
3083 }
3084
3085 static const char *plane_rotation(unsigned int rotation)
3086 {
3087 static char buf[48];
3088 /*
3089 * According to doc only one DRM_ROTATE_ is allowed but this
3090 * will print them all to visualize if the values are misused
3091 */
3092 snprintf(buf, sizeof(buf),
3093 "%s%s%s%s%s%s(0x%08x)",
3094 (rotation & DRM_ROTATE_0) ? "0 " : "",
3095 (rotation & DRM_ROTATE_90) ? "90 " : "",
3096 (rotation & DRM_ROTATE_180) ? "180 " : "",
3097 (rotation & DRM_ROTATE_270) ? "270 " : "",
3098 (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
3099 (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
3100 rotation);
3101
3102 return buf;
3103 }
3104
3105 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3106 {
3107 struct drm_info_node *node = m->private;
3108 struct drm_device *dev = node->minor->dev;
3109 struct intel_plane *intel_plane;
3110
3111 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3112 struct drm_plane_state *state;
3113 struct drm_plane *plane = &intel_plane->base;
3114
3115 if (!plane->state) {
3116 seq_puts(m, "plane->state is NULL!\n");
3117 continue;
3118 }
3119
3120 state = plane->state;
3121
3122 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3123 plane->base.id,
3124 plane_type(intel_plane->base.type),
3125 state->crtc_x, state->crtc_y,
3126 state->crtc_w, state->crtc_h,
3127 (state->src_x >> 16),
3128 ((state->src_x & 0xffff) * 15625) >> 10,
3129 (state->src_y >> 16),
3130 ((state->src_y & 0xffff) * 15625) >> 10,
3131 (state->src_w >> 16),
3132 ((state->src_w & 0xffff) * 15625) >> 10,
3133 (state->src_h >> 16),
3134 ((state->src_h & 0xffff) * 15625) >> 10,
3135 state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3136 plane_rotation(state->rotation));
3137 }
3138 }
3139
3140 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3141 {
3142 struct intel_crtc_state *pipe_config;
3143 int num_scalers = intel_crtc->num_scalers;
3144 int i;
3145
3146 pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3147
3148 /* Not all platformas have a scaler */
3149 if (num_scalers) {
3150 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3151 num_scalers,
3152 pipe_config->scaler_state.scaler_users,
3153 pipe_config->scaler_state.scaler_id);
3154
3155 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3156 struct intel_scaler *sc =
3157 &pipe_config->scaler_state.scalers[i];
3158
3159 seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3160 i, yesno(sc->in_use), sc->mode);
3161 }
3162 seq_puts(m, "\n");
3163 } else {
3164 seq_puts(m, "\tNo scalers available on this platform\n");
3165 }
3166 }
3167
3168 static int i915_display_info(struct seq_file *m, void *unused)
3169 {
3170 struct drm_info_node *node = m->private;
3171 struct drm_device *dev = node->minor->dev;
3172 struct drm_i915_private *dev_priv = to_i915(dev);
3173 struct intel_crtc *crtc;
3174 struct drm_connector *connector;
3175
3176 intel_runtime_pm_get(dev_priv);
3177 drm_modeset_lock_all(dev);
3178 seq_printf(m, "CRTC info\n");
3179 seq_printf(m, "---------\n");
3180 for_each_intel_crtc(dev, crtc) {
3181 bool active;
3182 struct intel_crtc_state *pipe_config;
3183 int x, y;
3184
3185 pipe_config = to_intel_crtc_state(crtc->base.state);
3186
3187 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3188 crtc->base.base.id, pipe_name(crtc->pipe),
3189 yesno(pipe_config->base.active),
3190 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3191 yesno(pipe_config->dither), pipe_config->pipe_bpp);
3192
3193 if (pipe_config->base.active) {
3194 intel_crtc_info(m, crtc);
3195
3196 active = cursor_position(dev, crtc->pipe, &x, &y);
3197 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3198 yesno(crtc->cursor_base),
3199 x, y, crtc->base.cursor->state->crtc_w,
3200 crtc->base.cursor->state->crtc_h,
3201 crtc->cursor_addr, yesno(active));
3202 intel_scaler_info(m, crtc);
3203 intel_plane_info(m, crtc);
3204 }
3205
3206 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3207 yesno(!crtc->cpu_fifo_underrun_disabled),
3208 yesno(!crtc->pch_fifo_underrun_disabled));
3209 }
3210
3211 seq_printf(m, "\n");
3212 seq_printf(m, "Connector info\n");
3213 seq_printf(m, "--------------\n");
3214 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3215 intel_connector_info(m, connector);
3216 }
3217 drm_modeset_unlock_all(dev);
3218 intel_runtime_pm_put(dev_priv);
3219
3220 return 0;
3221 }
3222
3223 static int i915_semaphore_status(struct seq_file *m, void *unused)
3224 {
3225 struct drm_info_node *node = (struct drm_info_node *) m->private;
3226 struct drm_device *dev = node->minor->dev;
3227 struct drm_i915_private *dev_priv = to_i915(dev);
3228 struct intel_engine_cs *engine;
3229 int num_rings = INTEL_INFO(dev)->num_rings;
3230 enum intel_engine_id id;
3231 int j, ret;
3232
3233 if (!i915.semaphores) {
3234 seq_puts(m, "Semaphores are disabled\n");
3235 return 0;
3236 }
3237
3238 ret = mutex_lock_interruptible(&dev->struct_mutex);
3239 if (ret)
3240 return ret;
3241 intel_runtime_pm_get(dev_priv);
3242
3243 if (IS_BROADWELL(dev)) {
3244 struct page *page;
3245 uint64_t *seqno;
3246
3247 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3248
3249 seqno = (uint64_t *)kmap_atomic(page);
3250 for_each_engine_id(engine, dev_priv, id) {
3251 uint64_t offset;
3252
3253 seq_printf(m, "%s\n", engine->name);
3254
3255 seq_puts(m, " Last signal:");
3256 for (j = 0; j < num_rings; j++) {
3257 offset = id * I915_NUM_ENGINES + j;
3258 seq_printf(m, "0x%08llx (0x%02llx) ",
3259 seqno[offset], offset * 8);
3260 }
3261 seq_putc(m, '\n');
3262
3263 seq_puts(m, " Last wait: ");
3264 for (j = 0; j < num_rings; j++) {
3265 offset = id + (j * I915_NUM_ENGINES);
3266 seq_printf(m, "0x%08llx (0x%02llx) ",
3267 seqno[offset], offset * 8);
3268 }
3269 seq_putc(m, '\n');
3270
3271 }
3272 kunmap_atomic(seqno);
3273 } else {
3274 seq_puts(m, " Last signal:");
3275 for_each_engine(engine, dev_priv)
3276 for (j = 0; j < num_rings; j++)
3277 seq_printf(m, "0x%08x\n",
3278 I915_READ(engine->semaphore.mbox.signal[j]));
3279 seq_putc(m, '\n');
3280 }
3281
3282 seq_puts(m, "\nSync seqno:\n");
3283 for_each_engine(engine, dev_priv) {
3284 for (j = 0; j < num_rings; j++)
3285 seq_printf(m, " 0x%08x ",
3286 engine->semaphore.sync_seqno[j]);
3287 seq_putc(m, '\n');
3288 }
3289 seq_putc(m, '\n');
3290
3291 intel_runtime_pm_put(dev_priv);
3292 mutex_unlock(&dev->struct_mutex);
3293 return 0;
3294 }
3295
3296 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3297 {
3298 struct drm_info_node *node = (struct drm_info_node *) m->private;
3299 struct drm_device *dev = node->minor->dev;
3300 struct drm_i915_private *dev_priv = to_i915(dev);
3301 int i;
3302
3303 drm_modeset_lock_all(dev);
3304 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3305 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3306
3307 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3308 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3309 pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3310 seq_printf(m, " tracked hardware state:\n");
3311 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
3312 seq_printf(m, " dpll_md: 0x%08x\n",
3313 pll->config.hw_state.dpll_md);
3314 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
3315 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
3316 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
3317 }
3318 drm_modeset_unlock_all(dev);
3319
3320 return 0;
3321 }
3322
3323 static int i915_wa_registers(struct seq_file *m, void *unused)
3324 {
3325 int i;
3326 int ret;
3327 struct intel_engine_cs *engine;
3328 struct drm_info_node *node = (struct drm_info_node *) m->private;
3329 struct drm_device *dev = node->minor->dev;
3330 struct drm_i915_private *dev_priv = to_i915(dev);
3331 struct i915_workarounds *workarounds = &dev_priv->workarounds;
3332 enum intel_engine_id id;
3333
3334 ret = mutex_lock_interruptible(&dev->struct_mutex);
3335 if (ret)
3336 return ret;
3337
3338 intel_runtime_pm_get(dev_priv);
3339
3340 seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3341 for_each_engine_id(engine, dev_priv, id)
3342 seq_printf(m, "HW whitelist count for %s: %d\n",
3343 engine->name, workarounds->hw_whitelist_count[id]);
3344 for (i = 0; i < workarounds->count; ++i) {
3345 i915_reg_t addr;
3346 u32 mask, value, read;
3347 bool ok;
3348
3349 addr = workarounds->reg[i].addr;
3350 mask = workarounds->reg[i].mask;
3351 value = workarounds->reg[i].value;
3352 read = I915_READ(addr);
3353 ok = (value & mask) == (read & mask);
3354 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3355 i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3356 }
3357
3358 intel_runtime_pm_put(dev_priv);
3359 mutex_unlock(&dev->struct_mutex);
3360
3361 return 0;
3362 }
3363
3364 static int i915_ddb_info(struct seq_file *m, void *unused)
3365 {
3366 struct drm_info_node *node = m->private;
3367 struct drm_device *dev = node->minor->dev;
3368 struct drm_i915_private *dev_priv = to_i915(dev);
3369 struct skl_ddb_allocation *ddb;
3370 struct skl_ddb_entry *entry;
3371 enum pipe pipe;
3372 int plane;
3373
3374 if (INTEL_INFO(dev)->gen < 9)
3375 return 0;
3376
3377 drm_modeset_lock_all(dev);
3378
3379 ddb = &dev_priv->wm.skl_hw.ddb;
3380
3381 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3382
3383 for_each_pipe(dev_priv, pipe) {
3384 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3385
3386 for_each_plane(dev_priv, pipe, plane) {
3387 entry = &ddb->plane[pipe][plane];
3388 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
3389 entry->start, entry->end,
3390 skl_ddb_entry_size(entry));
3391 }
3392
3393 entry = &ddb->plane[pipe][PLANE_CURSOR];
3394 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
3395 entry->end, skl_ddb_entry_size(entry));
3396 }
3397
3398 drm_modeset_unlock_all(dev);
3399
3400 return 0;
3401 }
3402
3403 static void drrs_status_per_crtc(struct seq_file *m,
3404 struct drm_device *dev, struct intel_crtc *intel_crtc)
3405 {
3406 struct drm_i915_private *dev_priv = to_i915(dev);
3407 struct i915_drrs *drrs = &dev_priv->drrs;
3408 int vrefresh = 0;
3409 struct drm_connector *connector;
3410
3411 drm_for_each_connector(connector, dev) {
3412 if (connector->state->crtc != &intel_crtc->base)
3413 continue;
3414
3415 seq_printf(m, "%s:\n", connector->name);
3416 }
3417
3418 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3419 seq_puts(m, "\tVBT: DRRS_type: Static");
3420 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3421 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3422 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3423 seq_puts(m, "\tVBT: DRRS_type: None");
3424 else
3425 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3426
3427 seq_puts(m, "\n\n");
3428
3429 if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3430 struct intel_panel *panel;
3431
3432 mutex_lock(&drrs->mutex);
3433 /* DRRS Supported */
3434 seq_puts(m, "\tDRRS Supported: Yes\n");
3435
3436 /* disable_drrs() will make drrs->dp NULL */
3437 if (!drrs->dp) {
3438 seq_puts(m, "Idleness DRRS: Disabled");
3439 mutex_unlock(&drrs->mutex);
3440 return;
3441 }
3442
3443 panel = &drrs->dp->attached_connector->panel;
3444 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3445 drrs->busy_frontbuffer_bits);
3446
3447 seq_puts(m, "\n\t\t");
3448 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3449 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3450 vrefresh = panel->fixed_mode->vrefresh;
3451 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3452 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3453 vrefresh = panel->downclock_mode->vrefresh;
3454 } else {
3455 seq_printf(m, "DRRS_State: Unknown(%d)\n",
3456 drrs->refresh_rate_type);
3457 mutex_unlock(&drrs->mutex);
3458 return;
3459 }
3460 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3461
3462 seq_puts(m, "\n\t\t");
3463 mutex_unlock(&drrs->mutex);
3464 } else {
3465 /* DRRS not supported. Print the VBT parameter*/
3466 seq_puts(m, "\tDRRS Supported : No");
3467 }
3468 seq_puts(m, "\n");
3469 }
3470
3471 static int i915_drrs_status(struct seq_file *m, void *unused)
3472 {
3473 struct drm_info_node *node = m->private;
3474 struct drm_device *dev = node->minor->dev;
3475 struct intel_crtc *intel_crtc;
3476 int active_crtc_cnt = 0;
3477
3478 drm_modeset_lock_all(dev);
3479 for_each_intel_crtc(dev, intel_crtc) {
3480 if (intel_crtc->base.state->active) {
3481 active_crtc_cnt++;
3482 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
3483
3484 drrs_status_per_crtc(m, dev, intel_crtc);
3485 }
3486 }
3487 drm_modeset_unlock_all(dev);
3488
3489 if (!active_crtc_cnt)
3490 seq_puts(m, "No active crtc found\n");
3491
3492 return 0;
3493 }
3494
3495 struct pipe_crc_info {
3496 const char *name;
3497 struct drm_device *dev;
3498 enum pipe pipe;
3499 };
3500
3501 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3502 {
3503 struct drm_info_node *node = (struct drm_info_node *) m->private;
3504 struct drm_device *dev = node->minor->dev;
3505 struct intel_encoder *intel_encoder;
3506 struct intel_digital_port *intel_dig_port;
3507 struct drm_connector *connector;
3508
3509 drm_modeset_lock_all(dev);
3510 drm_for_each_connector(connector, dev) {
3511 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3512 continue;
3513
3514 intel_encoder = intel_attached_encoder(connector);
3515 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3516 continue;
3517
3518 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3519 if (!intel_dig_port->dp.can_mst)
3520 continue;
3521
3522 seq_printf(m, "MST Source Port %c\n",
3523 port_name(intel_dig_port->port));
3524 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3525 }
3526 drm_modeset_unlock_all(dev);
3527 return 0;
3528 }
3529
3530 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3531 {
3532 struct pipe_crc_info *info = inode->i_private;
3533 struct drm_i915_private *dev_priv = to_i915(info->dev);
3534 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3535
3536 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3537 return -ENODEV;
3538
3539 spin_lock_irq(&pipe_crc->lock);
3540
3541 if (pipe_crc->opened) {
3542 spin_unlock_irq(&pipe_crc->lock);
3543 return -EBUSY; /* already open */
3544 }
3545
3546 pipe_crc->opened = true;
3547 filep->private_data = inode->i_private;
3548
3549 spin_unlock_irq(&pipe_crc->lock);
3550
3551 return 0;
3552 }
3553
3554 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3555 {
3556 struct pipe_crc_info *info = inode->i_private;
3557 struct drm_i915_private *dev_priv = to_i915(info->dev);
3558 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3559
3560 spin_lock_irq(&pipe_crc->lock);
3561 pipe_crc->opened = false;
3562 spin_unlock_irq(&pipe_crc->lock);
3563
3564 return 0;
3565 }
3566
3567 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3568 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
3569 /* account for \'0' */
3570 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
3571
3572 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3573 {
3574 assert_spin_locked(&pipe_crc->lock);
3575 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3576 INTEL_PIPE_CRC_ENTRIES_NR);
3577 }
3578
3579 static ssize_t
3580 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3581 loff_t *pos)
3582 {
3583 struct pipe_crc_info *info = filep->private_data;
3584 struct drm_device *dev = info->dev;
3585 struct drm_i915_private *dev_priv = to_i915(dev);
3586 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3587 char buf[PIPE_CRC_BUFFER_LEN];
3588 int n_entries;
3589 ssize_t bytes_read;
3590
3591 /*
3592 * Don't allow user space to provide buffers not big enough to hold
3593 * a line of data.
3594 */
3595 if (count < PIPE_CRC_LINE_LEN)
3596 return -EINVAL;
3597
3598 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3599 return 0;
3600
3601 /* nothing to read */
3602 spin_lock_irq(&pipe_crc->lock);
3603 while (pipe_crc_data_count(pipe_crc) == 0) {
3604 int ret;
3605
3606 if (filep->f_flags & O_NONBLOCK) {
3607 spin_unlock_irq(&pipe_crc->lock);
3608 return -EAGAIN;
3609 }
3610
3611 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3612 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3613 if (ret) {
3614 spin_unlock_irq(&pipe_crc->lock);
3615 return ret;
3616 }
3617 }
3618
3619 /* We now have one or more entries to read */
3620 n_entries = count / PIPE_CRC_LINE_LEN;
3621
3622 bytes_read = 0;
3623 while (n_entries > 0) {
3624 struct intel_pipe_crc_entry *entry =
3625 &pipe_crc->entries[pipe_crc->tail];
3626
3627 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3628 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3629 break;
3630
3631 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3632 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3633
3634 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3635 "%8u %8x %8x %8x %8x %8x\n",
3636 entry->frame, entry->crc[0],
3637 entry->crc[1], entry->crc[2],
3638 entry->crc[3], entry->crc[4]);
3639
3640 spin_unlock_irq(&pipe_crc->lock);
3641
3642 if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
3643 return -EFAULT;
3644
3645 user_buf += PIPE_CRC_LINE_LEN;
3646 n_entries--;
3647
3648 spin_lock_irq(&pipe_crc->lock);
3649 }
3650
3651 spin_unlock_irq(&pipe_crc->lock);
3652
3653 return bytes_read;
3654 }
3655
3656 static const struct file_operations i915_pipe_crc_fops = {
3657 .owner = THIS_MODULE,
3658 .open = i915_pipe_crc_open,
3659 .read = i915_pipe_crc_read,
3660 .release = i915_pipe_crc_release,
3661 };
3662
3663 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3664 {
3665 .name = "i915_pipe_A_crc",
3666 .pipe = PIPE_A,
3667 },
3668 {
3669 .name = "i915_pipe_B_crc",
3670 .pipe = PIPE_B,
3671 },
3672 {
3673 .name = "i915_pipe_C_crc",
3674 .pipe = PIPE_C,
3675 },
3676 };
3677
3678 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3679 enum pipe pipe)
3680 {
3681 struct drm_device *dev = minor->dev;
3682 struct dentry *ent;
3683 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3684
3685 info->dev = dev;
3686 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3687 &i915_pipe_crc_fops);
3688 if (!ent)
3689 return -ENOMEM;
3690
3691 return drm_add_fake_info_node(minor, ent, info);
3692 }
3693
3694 static const char * const pipe_crc_sources[] = {
3695 "none",
3696 "plane1",
3697 "plane2",
3698 "pf",
3699 "pipe",
3700 "TV",
3701 "DP-B",
3702 "DP-C",
3703 "DP-D",
3704 "auto",
3705 };
3706
3707 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3708 {
3709 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3710 return pipe_crc_sources[source];
3711 }
3712
3713 static int display_crc_ctl_show(struct seq_file *m, void *data)
3714 {
3715 struct drm_device *dev = m->private;
3716 struct drm_i915_private *dev_priv = to_i915(dev);
3717 int i;
3718
3719 for (i = 0; i < I915_MAX_PIPES; i++)
3720 seq_printf(m, "%c %s\n", pipe_name(i),
3721 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3722
3723 return 0;
3724 }
3725
3726 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3727 {
3728 struct drm_device *dev = inode->i_private;
3729
3730 return single_open(file, display_crc_ctl_show, dev);
3731 }
3732
3733 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3734 uint32_t *val)
3735 {
3736 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3737 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3738
3739 switch (*source) {
3740 case INTEL_PIPE_CRC_SOURCE_PIPE:
3741 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3742 break;
3743 case INTEL_PIPE_CRC_SOURCE_NONE:
3744 *val = 0;
3745 break;
3746 default:
3747 return -EINVAL;
3748 }
3749
3750 return 0;
3751 }
3752
3753 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3754 enum intel_pipe_crc_source *source)
3755 {
3756 struct intel_encoder *encoder;
3757 struct intel_crtc *crtc;
3758 struct intel_digital_port *dig_port;
3759 int ret = 0;
3760
3761 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3762
3763 drm_modeset_lock_all(dev);
3764 for_each_intel_encoder(dev, encoder) {
3765 if (!encoder->base.crtc)
3766 continue;
3767
3768 crtc = to_intel_crtc(encoder->base.crtc);
3769
3770 if (crtc->pipe != pipe)
3771 continue;
3772
3773 switch (encoder->type) {
3774 case INTEL_OUTPUT_TVOUT:
3775 *source = INTEL_PIPE_CRC_SOURCE_TV;
3776 break;
3777 case INTEL_OUTPUT_DP:
3778 case INTEL_OUTPUT_EDP:
3779 dig_port = enc_to_dig_port(&encoder->base);
3780 switch (dig_port->port) {
3781 case PORT_B:
3782 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3783 break;
3784 case PORT_C:
3785 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3786 break;
3787 case PORT_D:
3788 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3789 break;
3790 default:
3791 WARN(1, "nonexisting DP port %c\n",
3792 port_name(dig_port->port));
3793 break;
3794 }
3795 break;
3796 default:
3797 break;
3798 }
3799 }
3800 drm_modeset_unlock_all(dev);
3801
3802 return ret;
3803 }
3804
3805 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3806 enum pipe pipe,
3807 enum intel_pipe_crc_source *source,
3808 uint32_t *val)
3809 {
3810 struct drm_i915_private *dev_priv = to_i915(dev);
3811 bool need_stable_symbols = false;
3812
3813 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3814 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3815 if (ret)
3816 return ret;
3817 }
3818
3819 switch (*source) {
3820 case INTEL_PIPE_CRC_SOURCE_PIPE:
3821 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3822 break;
3823 case INTEL_PIPE_CRC_SOURCE_DP_B:
3824 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3825 need_stable_symbols = true;
3826 break;
3827 case INTEL_PIPE_CRC_SOURCE_DP_C:
3828 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3829 need_stable_symbols = true;
3830 break;
3831 case INTEL_PIPE_CRC_SOURCE_DP_D:
3832 if (!IS_CHERRYVIEW(dev))
3833 return -EINVAL;
3834 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3835 need_stable_symbols = true;
3836 break;
3837 case INTEL_PIPE_CRC_SOURCE_NONE:
3838 *val = 0;
3839 break;
3840 default:
3841 return -EINVAL;
3842 }
3843
3844 /*
3845 * When the pipe CRC tap point is after the transcoders we need
3846 * to tweak symbol-level features to produce a deterministic series of
3847 * symbols for a given frame. We need to reset those features only once
3848 * a frame (instead of every nth symbol):
3849 * - DC-balance: used to ensure a better clock recovery from the data
3850 * link (SDVO)
3851 * - DisplayPort scrambling: used for EMI reduction
3852 */
3853 if (need_stable_symbols) {
3854 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3855
3856 tmp |= DC_BALANCE_RESET_VLV;
3857 switch (pipe) {
3858 case PIPE_A:
3859 tmp |= PIPE_A_SCRAMBLE_RESET;
3860 break;
3861 case PIPE_B:
3862 tmp |= PIPE_B_SCRAMBLE_RESET;
3863 break;
3864 case PIPE_C:
3865 tmp |= PIPE_C_SCRAMBLE_RESET;
3866 break;
3867 default:
3868 return -EINVAL;
3869 }
3870 I915_WRITE(PORT_DFT2_G4X, tmp);
3871 }
3872
3873 return 0;
3874 }
3875
3876 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3877 enum pipe pipe,
3878 enum intel_pipe_crc_source *source,
3879 uint32_t *val)
3880 {
3881 struct drm_i915_private *dev_priv = to_i915(dev);
3882 bool need_stable_symbols = false;
3883
3884 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3885 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3886 if (ret)
3887 return ret;
3888 }
3889
3890 switch (*source) {
3891 case INTEL_PIPE_CRC_SOURCE_PIPE:
3892 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3893 break;
3894 case INTEL_PIPE_CRC_SOURCE_TV:
3895 if (!SUPPORTS_TV(dev))
3896 return -EINVAL;
3897 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3898 break;
3899 case INTEL_PIPE_CRC_SOURCE_DP_B:
3900 if (!IS_G4X(dev))
3901 return -EINVAL;
3902 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3903 need_stable_symbols = true;
3904 break;
3905 case INTEL_PIPE_CRC_SOURCE_DP_C:
3906 if (!IS_G4X(dev))
3907 return -EINVAL;
3908 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3909 need_stable_symbols = true;
3910 break;
3911 case INTEL_PIPE_CRC_SOURCE_DP_D:
3912 if (!IS_G4X(dev))
3913 return -EINVAL;
3914 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3915 need_stable_symbols = true;
3916 break;
3917 case INTEL_PIPE_CRC_SOURCE_NONE:
3918 *val = 0;
3919 break;
3920 default:
3921 return -EINVAL;
3922 }
3923
3924 /*
3925 * When the pipe CRC tap point is after the transcoders we need
3926 * to tweak symbol-level features to produce a deterministic series of
3927 * symbols for a given frame. We need to reset those features only once
3928 * a frame (instead of every nth symbol):
3929 * - DC-balance: used to ensure a better clock recovery from the data
3930 * link (SDVO)
3931 * - DisplayPort scrambling: used for EMI reduction
3932 */
3933 if (need_stable_symbols) {
3934 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3935
3936 WARN_ON(!IS_G4X(dev));
3937
3938 I915_WRITE(PORT_DFT_I9XX,
3939 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3940
3941 if (pipe == PIPE_A)
3942 tmp |= PIPE_A_SCRAMBLE_RESET;
3943 else
3944 tmp |= PIPE_B_SCRAMBLE_RESET;
3945
3946 I915_WRITE(PORT_DFT2_G4X, tmp);
3947 }
3948
3949 return 0;
3950 }
3951
3952 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3953 enum pipe pipe)
3954 {
3955 struct drm_i915_private *dev_priv = to_i915(dev);
3956 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3957
3958 switch (pipe) {
3959 case PIPE_A:
3960 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3961 break;
3962 case PIPE_B:
3963 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3964 break;
3965 case PIPE_C:
3966 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3967 break;
3968 default:
3969 return;
3970 }
3971 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3972 tmp &= ~DC_BALANCE_RESET_VLV;
3973 I915_WRITE(PORT_DFT2_G4X, tmp);
3974
3975 }
3976
3977 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3978 enum pipe pipe)
3979 {
3980 struct drm_i915_private *dev_priv = to_i915(dev);
3981 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3982
3983 if (pipe == PIPE_A)
3984 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3985 else
3986 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3987 I915_WRITE(PORT_DFT2_G4X, tmp);
3988
3989 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3990 I915_WRITE(PORT_DFT_I9XX,
3991 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3992 }
3993 }
3994
3995 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3996 uint32_t *val)
3997 {
3998 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3999 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
4000
4001 switch (*source) {
4002 case INTEL_PIPE_CRC_SOURCE_PLANE1:
4003 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
4004 break;
4005 case INTEL_PIPE_CRC_SOURCE_PLANE2:
4006 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
4007 break;
4008 case INTEL_PIPE_CRC_SOURCE_PIPE:
4009 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
4010 break;
4011 case INTEL_PIPE_CRC_SOURCE_NONE:
4012 *val = 0;
4013 break;
4014 default:
4015 return -EINVAL;
4016 }
4017
4018 return 0;
4019 }
4020
4021 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
4022 {
4023 struct drm_i915_private *dev_priv = to_i915(dev);
4024 struct intel_crtc *crtc =
4025 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
4026 struct intel_crtc_state *pipe_config;
4027 struct drm_atomic_state *state;
4028 int ret = 0;
4029
4030 drm_modeset_lock_all(dev);
4031 state = drm_atomic_state_alloc(dev);
4032 if (!state) {
4033 ret = -ENOMEM;
4034 goto out;
4035 }
4036
4037 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4038 pipe_config = intel_atomic_get_crtc_state(state, crtc);
4039 if (IS_ERR(pipe_config)) {
4040 ret = PTR_ERR(pipe_config);
4041 goto out;
4042 }
4043
4044 pipe_config->pch_pfit.force_thru = enable;
4045 if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4046 pipe_config->pch_pfit.enabled != enable)
4047 pipe_config->base.connectors_changed = true;
4048
4049 ret = drm_atomic_commit(state);
4050 out:
4051 drm_modeset_unlock_all(dev);
4052 WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4053 if (ret)
4054 drm_atomic_state_free(state);
4055 }
4056
4057 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
4058 enum pipe pipe,
4059 enum intel_pipe_crc_source *source,
4060 uint32_t *val)
4061 {
4062 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4063 *source = INTEL_PIPE_CRC_SOURCE_PF;
4064
4065 switch (*source) {
4066 case INTEL_PIPE_CRC_SOURCE_PLANE1:
4067 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4068 break;
4069 case INTEL_PIPE_CRC_SOURCE_PLANE2:
4070 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4071 break;
4072 case INTEL_PIPE_CRC_SOURCE_PF:
4073 if (IS_HASWELL(dev) && pipe == PIPE_A)
4074 hsw_trans_edp_pipe_A_crc_wa(dev, true);
4075
4076 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4077 break;
4078 case INTEL_PIPE_CRC_SOURCE_NONE:
4079 *val = 0;
4080 break;
4081 default:
4082 return -EINVAL;
4083 }
4084
4085 return 0;
4086 }
4087
4088 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4089 enum intel_pipe_crc_source source)
4090 {
4091 struct drm_i915_private *dev_priv = to_i915(dev);
4092 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4093 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4094 pipe));
4095 enum intel_display_power_domain power_domain;
4096 u32 val = 0; /* shut up gcc */
4097 int ret;
4098
4099 if (pipe_crc->source == source)
4100 return 0;
4101
4102 /* forbid changing the source without going back to 'none' */
4103 if (pipe_crc->source && source)
4104 return -EINVAL;
4105
4106 power_domain = POWER_DOMAIN_PIPE(pipe);
4107 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4108 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4109 return -EIO;
4110 }
4111
4112 if (IS_GEN2(dev))
4113 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4114 else if (INTEL_INFO(dev)->gen < 5)
4115 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4116 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4117 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4118 else if (IS_GEN5(dev) || IS_GEN6(dev))
4119 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4120 else
4121 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4122
4123 if (ret != 0)
4124 goto out;
4125
4126 /* none -> real source transition */
4127 if (source) {
4128 struct intel_pipe_crc_entry *entries;
4129
4130 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4131 pipe_name(pipe), pipe_crc_source_name(source));
4132
4133 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4134 sizeof(pipe_crc->entries[0]),
4135 GFP_KERNEL);
4136 if (!entries) {
4137 ret = -ENOMEM;
4138 goto out;
4139 }
4140
4141 /*
4142 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4143 * enabled and disabled dynamically based on package C states,
4144 * user space can't make reliable use of the CRCs, so let's just
4145 * completely disable it.
4146 */
4147 hsw_disable_ips(crtc);
4148
4149 spin_lock_irq(&pipe_crc->lock);
4150 kfree(pipe_crc->entries);
4151 pipe_crc->entries = entries;
4152 pipe_crc->head = 0;
4153 pipe_crc->tail = 0;
4154 spin_unlock_irq(&pipe_crc->lock);
4155 }
4156
4157 pipe_crc->source = source;
4158
4159 I915_WRITE(PIPE_CRC_CTL(pipe), val);
4160 POSTING_READ(PIPE_CRC_CTL(pipe));
4161
4162 /* real source -> none transition */
4163 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4164 struct intel_pipe_crc_entry *entries;
4165 struct intel_crtc *crtc =
4166 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4167
4168 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4169 pipe_name(pipe));
4170
4171 drm_modeset_lock(&crtc->base.mutex, NULL);
4172 if (crtc->base.state->active)
4173 intel_wait_for_vblank(dev, pipe);
4174 drm_modeset_unlock(&crtc->base.mutex);
4175
4176 spin_lock_irq(&pipe_crc->lock);
4177 entries = pipe_crc->entries;
4178 pipe_crc->entries = NULL;
4179 pipe_crc->head = 0;
4180 pipe_crc->tail = 0;
4181 spin_unlock_irq(&pipe_crc->lock);
4182
4183 kfree(entries);
4184
4185 if (IS_G4X(dev))
4186 g4x_undo_pipe_scramble_reset(dev, pipe);
4187 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4188 vlv_undo_pipe_scramble_reset(dev, pipe);
4189 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4190 hsw_trans_edp_pipe_A_crc_wa(dev, false);
4191
4192 hsw_enable_ips(crtc);
4193 }
4194
4195 ret = 0;
4196
4197 out:
4198 intel_display_power_put(dev_priv, power_domain);
4199
4200 return ret;
4201 }
4202
4203 /*
4204 * Parse pipe CRC command strings:
4205 * command: wsp* object wsp+ name wsp+ source wsp*
4206 * object: 'pipe'
4207 * name: (A | B | C)
4208 * source: (none | plane1 | plane2 | pf)
4209 * wsp: (#0x20 | #0x9 | #0xA)+
4210 *
4211 * eg.:
4212 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
4213 * "pipe A none" -> Stop CRC
4214 */
4215 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4216 {
4217 int n_words = 0;
4218
4219 while (*buf) {
4220 char *end;
4221
4222 /* skip leading white space */
4223 buf = skip_spaces(buf);
4224 if (!*buf)
4225 break; /* end of buffer */
4226
4227 /* find end of word */
4228 for (end = buf; *end && !isspace(*end); end++)
4229 ;
4230
4231 if (n_words == max_words) {
4232 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4233 max_words);
4234 return -EINVAL; /* ran out of words[] before bytes */
4235 }
4236
4237 if (*end)
4238 *end++ = '\0';
4239 words[n_words++] = buf;
4240 buf = end;
4241 }
4242
4243 return n_words;
4244 }
4245
4246 enum intel_pipe_crc_object {
4247 PIPE_CRC_OBJECT_PIPE,
4248 };
4249
4250 static const char * const pipe_crc_objects[] = {
4251 "pipe",
4252 };
4253
4254 static int
4255 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4256 {
4257 int i;
4258
4259 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4260 if (!strcmp(buf, pipe_crc_objects[i])) {
4261 *o = i;
4262 return 0;
4263 }
4264
4265 return -EINVAL;
4266 }
4267
4268 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4269 {
4270 const char name = buf[0];
4271
4272 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4273 return -EINVAL;
4274
4275 *pipe = name - 'A';
4276
4277 return 0;
4278 }
4279
4280 static int
4281 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4282 {
4283 int i;
4284
4285 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4286 if (!strcmp(buf, pipe_crc_sources[i])) {
4287 *s = i;
4288 return 0;
4289 }
4290
4291 return -EINVAL;
4292 }
4293
4294 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4295 {
4296 #define N_WORDS 3
4297 int n_words;
4298 char *words[N_WORDS];
4299 enum pipe pipe;
4300 enum intel_pipe_crc_object object;
4301 enum intel_pipe_crc_source source;
4302
4303 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4304 if (n_words != N_WORDS) {
4305 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4306 N_WORDS);
4307 return -EINVAL;
4308 }
4309
4310 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4311 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4312 return -EINVAL;
4313 }
4314
4315 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4316 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4317 return -EINVAL;
4318 }
4319
4320 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4321 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4322 return -EINVAL;
4323 }
4324
4325 return pipe_crc_set_source(dev, pipe, source);
4326 }
4327
4328 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4329 size_t len, loff_t *offp)
4330 {
4331 struct seq_file *m = file->private_data;
4332 struct drm_device *dev = m->private;
4333 char *tmpbuf;
4334 int ret;
4335
4336 if (len == 0)
4337 return 0;
4338
4339 if (len > PAGE_SIZE - 1) {
4340 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4341 PAGE_SIZE);
4342 return -E2BIG;
4343 }
4344
4345 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4346 if (!tmpbuf)
4347 return -ENOMEM;
4348
4349 if (copy_from_user(tmpbuf, ubuf, len)) {
4350 ret = -EFAULT;
4351 goto out;
4352 }
4353 tmpbuf[len] = '\0';
4354
4355 ret = display_crc_ctl_parse(dev, tmpbuf, len);
4356
4357 out:
4358 kfree(tmpbuf);
4359 if (ret < 0)
4360 return ret;
4361
4362 *offp += len;
4363 return len;
4364 }
4365
4366 static const struct file_operations i915_display_crc_ctl_fops = {
4367 .owner = THIS_MODULE,
4368 .open = display_crc_ctl_open,
4369 .read = seq_read,
4370 .llseek = seq_lseek,
4371 .release = single_release,
4372 .write = display_crc_ctl_write
4373 };
4374
4375 static ssize_t i915_displayport_test_active_write(struct file *file,
4376 const char __user *ubuf,
4377 size_t len, loff_t *offp)
4378 {
4379 char *input_buffer;
4380 int status = 0;
4381 struct drm_device *dev;
4382 struct drm_connector *connector;
4383 struct list_head *connector_list;
4384 struct intel_dp *intel_dp;
4385 int val = 0;
4386
4387 dev = ((struct seq_file *)file->private_data)->private;
4388
4389 connector_list = &dev->mode_config.connector_list;
4390
4391 if (len == 0)
4392 return 0;
4393
4394 input_buffer = kmalloc(len + 1, GFP_KERNEL);
4395 if (!input_buffer)
4396 return -ENOMEM;
4397
4398 if (copy_from_user(input_buffer, ubuf, len)) {
4399 status = -EFAULT;
4400 goto out;
4401 }
4402
4403 input_buffer[len] = '\0';
4404 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4405
4406 list_for_each_entry(connector, connector_list, head) {
4407
4408 if (connector->connector_type !=
4409 DRM_MODE_CONNECTOR_DisplayPort)
4410 continue;
4411
4412 if (connector->status == connector_status_connected &&
4413 connector->encoder != NULL) {
4414 intel_dp = enc_to_intel_dp(connector->encoder);
4415 status = kstrtoint(input_buffer, 10, &val);
4416 if (status < 0)
4417 goto out;
4418 DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4419 /* To prevent erroneous activation of the compliance
4420 * testing code, only accept an actual value of 1 here
4421 */
4422 if (val == 1)
4423 intel_dp->compliance_test_active = 1;
4424 else
4425 intel_dp->compliance_test_active = 0;
4426 }
4427 }
4428 out:
4429 kfree(input_buffer);
4430 if (status < 0)
4431 return status;
4432
4433 *offp += len;
4434 return len;
4435 }
4436
4437 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4438 {
4439 struct drm_device *dev = m->private;
4440 struct drm_connector *connector;
4441 struct list_head *connector_list = &dev->mode_config.connector_list;
4442 struct intel_dp *intel_dp;
4443
4444 list_for_each_entry(connector, connector_list, head) {
4445
4446 if (connector->connector_type !=
4447 DRM_MODE_CONNECTOR_DisplayPort)
4448 continue;
4449
4450 if (connector->status == connector_status_connected &&
4451 connector->encoder != NULL) {
4452 intel_dp = enc_to_intel_dp(connector->encoder);
4453 if (intel_dp->compliance_test_active)
4454 seq_puts(m, "1");
4455 else
4456 seq_puts(m, "0");
4457 } else
4458 seq_puts(m, "0");
4459 }
4460
4461 return 0;
4462 }
4463
4464 static int i915_displayport_test_active_open(struct inode *inode,
4465 struct file *file)
4466 {
4467 struct drm_device *dev = inode->i_private;
4468
4469 return single_open(file, i915_displayport_test_active_show, dev);
4470 }
4471
4472 static const struct file_operations i915_displayport_test_active_fops = {
4473 .owner = THIS_MODULE,
4474 .open = i915_displayport_test_active_open,
4475 .read = seq_read,
4476 .llseek = seq_lseek,
4477 .release = single_release,
4478 .write = i915_displayport_test_active_write
4479 };
4480
4481 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4482 {
4483 struct drm_device *dev = m->private;
4484 struct drm_connector *connector;
4485 struct list_head *connector_list = &dev->mode_config.connector_list;
4486 struct intel_dp *intel_dp;
4487
4488 list_for_each_entry(connector, connector_list, head) {
4489
4490 if (connector->connector_type !=
4491 DRM_MODE_CONNECTOR_DisplayPort)
4492 continue;
4493
4494 if (connector->status == connector_status_connected &&
4495 connector->encoder != NULL) {
4496 intel_dp = enc_to_intel_dp(connector->encoder);
4497 seq_printf(m, "%lx", intel_dp->compliance_test_data);
4498 } else
4499 seq_puts(m, "0");
4500 }
4501
4502 return 0;
4503 }
4504 static int i915_displayport_test_data_open(struct inode *inode,
4505 struct file *file)
4506 {
4507 struct drm_device *dev = inode->i_private;
4508
4509 return single_open(file, i915_displayport_test_data_show, dev);
4510 }
4511
4512 static const struct file_operations i915_displayport_test_data_fops = {
4513 .owner = THIS_MODULE,
4514 .open = i915_displayport_test_data_open,
4515 .read = seq_read,
4516 .llseek = seq_lseek,
4517 .release = single_release
4518 };
4519
4520 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4521 {
4522 struct drm_device *dev = m->private;
4523 struct drm_connector *connector;
4524 struct list_head *connector_list = &dev->mode_config.connector_list;
4525 struct intel_dp *intel_dp;
4526
4527 list_for_each_entry(connector, connector_list, head) {
4528
4529 if (connector->connector_type !=
4530 DRM_MODE_CONNECTOR_DisplayPort)
4531 continue;
4532
4533 if (connector->status == connector_status_connected &&
4534 connector->encoder != NULL) {
4535 intel_dp = enc_to_intel_dp(connector->encoder);
4536 seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4537 } else
4538 seq_puts(m, "0");
4539 }
4540
4541 return 0;
4542 }
4543
4544 static int i915_displayport_test_type_open(struct inode *inode,
4545 struct file *file)
4546 {
4547 struct drm_device *dev = inode->i_private;
4548
4549 return single_open(file, i915_displayport_test_type_show, dev);
4550 }
4551
4552 static const struct file_operations i915_displayport_test_type_fops = {
4553 .owner = THIS_MODULE,
4554 .open = i915_displayport_test_type_open,
4555 .read = seq_read,
4556 .llseek = seq_lseek,
4557 .release = single_release
4558 };
4559
4560 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4561 {
4562 struct drm_device *dev = m->private;
4563 int level;
4564 int num_levels;
4565
4566 if (IS_CHERRYVIEW(dev))
4567 num_levels = 3;
4568 else if (IS_VALLEYVIEW(dev))
4569 num_levels = 1;
4570 else
4571 num_levels = ilk_wm_max_level(dev) + 1;
4572
4573 drm_modeset_lock_all(dev);
4574
4575 for (level = 0; level < num_levels; level++) {
4576 unsigned int latency = wm[level];
4577
4578 /*
4579 * - WM1+ latency values in 0.5us units
4580 * - latencies are in us on gen9/vlv/chv
4581 */
4582 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4583 IS_CHERRYVIEW(dev))
4584 latency *= 10;
4585 else if (level > 0)
4586 latency *= 5;
4587
4588 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4589 level, wm[level], latency / 10, latency % 10);
4590 }
4591
4592 drm_modeset_unlock_all(dev);
4593 }
4594
4595 static int pri_wm_latency_show(struct seq_file *m, void *data)
4596 {
4597 struct drm_device *dev = m->private;
4598 struct drm_i915_private *dev_priv = to_i915(dev);
4599 const uint16_t *latencies;
4600
4601 if (INTEL_INFO(dev)->gen >= 9)
4602 latencies = dev_priv->wm.skl_latency;
4603 else
4604 latencies = to_i915(dev)->wm.pri_latency;
4605
4606 wm_latency_show(m, latencies);
4607
4608 return 0;
4609 }
4610
4611 static int spr_wm_latency_show(struct seq_file *m, void *data)
4612 {
4613 struct drm_device *dev = m->private;
4614 struct drm_i915_private *dev_priv = to_i915(dev);
4615 const uint16_t *latencies;
4616
4617 if (INTEL_INFO(dev)->gen >= 9)
4618 latencies = dev_priv->wm.skl_latency;
4619 else
4620 latencies = to_i915(dev)->wm.spr_latency;
4621
4622 wm_latency_show(m, latencies);
4623
4624 return 0;
4625 }
4626
4627 static int cur_wm_latency_show(struct seq_file *m, void *data)
4628 {
4629 struct drm_device *dev = m->private;
4630 struct drm_i915_private *dev_priv = to_i915(dev);
4631 const uint16_t *latencies;
4632
4633 if (INTEL_INFO(dev)->gen >= 9)
4634 latencies = dev_priv->wm.skl_latency;
4635 else
4636 latencies = to_i915(dev)->wm.cur_latency;
4637
4638 wm_latency_show(m, latencies);
4639
4640 return 0;
4641 }
4642
4643 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4644 {
4645 struct drm_device *dev = inode->i_private;
4646
4647 if (INTEL_INFO(dev)->gen < 5)
4648 return -ENODEV;
4649
4650 return single_open(file, pri_wm_latency_show, dev);
4651 }
4652
4653 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4654 {
4655 struct drm_device *dev = inode->i_private;
4656
4657 if (HAS_GMCH_DISPLAY(dev))
4658 return -ENODEV;
4659
4660 return single_open(file, spr_wm_latency_show, dev);
4661 }
4662
4663 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4664 {
4665 struct drm_device *dev = inode->i_private;
4666
4667 if (HAS_GMCH_DISPLAY(dev))
4668 return -ENODEV;
4669
4670 return single_open(file, cur_wm_latency_show, dev);
4671 }
4672
4673 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4674 size_t len, loff_t *offp, uint16_t wm[8])
4675 {
4676 struct seq_file *m = file->private_data;
4677 struct drm_device *dev = m->private;
4678 uint16_t new[8] = { 0 };
4679 int num_levels;
4680 int level;
4681 int ret;
4682 char tmp[32];
4683
4684 if (IS_CHERRYVIEW(dev))
4685 num_levels = 3;
4686 else if (IS_VALLEYVIEW(dev))
4687 num_levels = 1;
4688 else
4689 num_levels = ilk_wm_max_level(dev) + 1;
4690
4691 if (len >= sizeof(tmp))
4692 return -EINVAL;
4693
4694 if (copy_from_user(tmp, ubuf, len))
4695 return -EFAULT;
4696
4697 tmp[len] = '\0';
4698
4699 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4700 &new[0], &new[1], &new[2], &new[3],
4701 &new[4], &new[5], &new[6], &new[7]);
4702 if (ret != num_levels)
4703 return -EINVAL;
4704
4705 drm_modeset_lock_all(dev);
4706
4707 for (level = 0; level < num_levels; level++)
4708 wm[level] = new[level];
4709
4710 drm_modeset_unlock_all(dev);
4711
4712 return len;
4713 }
4714
4715
4716 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4717 size_t len, loff_t *offp)
4718 {
4719 struct seq_file *m = file->private_data;
4720 struct drm_device *dev = m->private;
4721 struct drm_i915_private *dev_priv = to_i915(dev);
4722 uint16_t *latencies;
4723
4724 if (INTEL_INFO(dev)->gen >= 9)
4725 latencies = dev_priv->wm.skl_latency;
4726 else
4727 latencies = to_i915(dev)->wm.pri_latency;
4728
4729 return wm_latency_write(file, ubuf, len, offp, latencies);
4730 }
4731
4732 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4733 size_t len, loff_t *offp)
4734 {
4735 struct seq_file *m = file->private_data;
4736 struct drm_device *dev = m->private;
4737 struct drm_i915_private *dev_priv = to_i915(dev);
4738 uint16_t *latencies;
4739
4740 if (INTEL_INFO(dev)->gen >= 9)
4741 latencies = dev_priv->wm.skl_latency;
4742 else
4743 latencies = to_i915(dev)->wm.spr_latency;
4744
4745 return wm_latency_write(file, ubuf, len, offp, latencies);
4746 }
4747
4748 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4749 size_t len, loff_t *offp)
4750 {
4751 struct seq_file *m = file->private_data;
4752 struct drm_device *dev = m->private;
4753 struct drm_i915_private *dev_priv = to_i915(dev);
4754 uint16_t *latencies;
4755
4756 if (INTEL_INFO(dev)->gen >= 9)
4757 latencies = dev_priv->wm.skl_latency;
4758 else
4759 latencies = to_i915(dev)->wm.cur_latency;
4760
4761 return wm_latency_write(file, ubuf, len, offp, latencies);
4762 }
4763
4764 static const struct file_operations i915_pri_wm_latency_fops = {
4765 .owner = THIS_MODULE,
4766 .open = pri_wm_latency_open,
4767 .read = seq_read,
4768 .llseek = seq_lseek,
4769 .release = single_release,
4770 .write = pri_wm_latency_write
4771 };
4772
4773 static const struct file_operations i915_spr_wm_latency_fops = {
4774 .owner = THIS_MODULE,
4775 .open = spr_wm_latency_open,
4776 .read = seq_read,
4777 .llseek = seq_lseek,
4778 .release = single_release,
4779 .write = spr_wm_latency_write
4780 };
4781
4782 static const struct file_operations i915_cur_wm_latency_fops = {
4783 .owner = THIS_MODULE,
4784 .open = cur_wm_latency_open,
4785 .read = seq_read,
4786 .llseek = seq_lseek,
4787 .release = single_release,
4788 .write = cur_wm_latency_write
4789 };
4790
4791 static int
4792 i915_wedged_get(void *data, u64 *val)
4793 {
4794 struct drm_device *dev = data;
4795 struct drm_i915_private *dev_priv = to_i915(dev);
4796
4797 *val = i915_terminally_wedged(&dev_priv->gpu_error);
4798
4799 return 0;
4800 }
4801
4802 static int
4803 i915_wedged_set(void *data, u64 val)
4804 {
4805 struct drm_device *dev = data;
4806 struct drm_i915_private *dev_priv = to_i915(dev);
4807
4808 /*
4809 * There is no safeguard against this debugfs entry colliding
4810 * with the hangcheck calling same i915_handle_error() in
4811 * parallel, causing an explosion. For now we assume that the
4812 * test harness is responsible enough not to inject gpu hangs
4813 * while it is writing to 'i915_wedged'
4814 */
4815
4816 if (i915_reset_in_progress(&dev_priv->gpu_error))
4817 return -EAGAIN;
4818
4819 intel_runtime_pm_get(dev_priv);
4820
4821 i915_handle_error(dev_priv, val,
4822 "Manually setting wedged to %llu", val);
4823
4824 intel_runtime_pm_put(dev_priv);
4825
4826 return 0;
4827 }
4828
4829 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4830 i915_wedged_get, i915_wedged_set,
4831 "%llu\n");
4832
4833 static int
4834 i915_ring_missed_irq_get(void *data, u64 *val)
4835 {
4836 struct drm_device *dev = data;
4837 struct drm_i915_private *dev_priv = to_i915(dev);
4838
4839 *val = dev_priv->gpu_error.missed_irq_rings;
4840 return 0;
4841 }
4842
4843 static int
4844 i915_ring_missed_irq_set(void *data, u64 val)
4845 {
4846 struct drm_device *dev = data;
4847 struct drm_i915_private *dev_priv = to_i915(dev);
4848 int ret;
4849
4850 /* Lock against concurrent debugfs callers */
4851 ret = mutex_lock_interruptible(&dev->struct_mutex);
4852 if (ret)
4853 return ret;
4854 dev_priv->gpu_error.missed_irq_rings = val;
4855 mutex_unlock(&dev->struct_mutex);
4856
4857 return 0;
4858 }
4859
4860 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4861 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4862 "0x%08llx\n");
4863
4864 static int
4865 i915_ring_test_irq_get(void *data, u64 *val)
4866 {
4867 struct drm_device *dev = data;
4868 struct drm_i915_private *dev_priv = to_i915(dev);
4869
4870 *val = dev_priv->gpu_error.test_irq_rings;
4871
4872 return 0;
4873 }
4874
4875 static int
4876 i915_ring_test_irq_set(void *data, u64 val)
4877 {
4878 struct drm_device *dev = data;
4879 struct drm_i915_private *dev_priv = to_i915(dev);
4880
4881 val &= INTEL_INFO(dev_priv)->ring_mask;
4882 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4883 dev_priv->gpu_error.test_irq_rings = val;
4884
4885 return 0;
4886 }
4887
4888 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4889 i915_ring_test_irq_get, i915_ring_test_irq_set,
4890 "0x%08llx\n");
4891
4892 #define DROP_UNBOUND 0x1
4893 #define DROP_BOUND 0x2
4894 #define DROP_RETIRE 0x4
4895 #define DROP_ACTIVE 0x8
4896 #define DROP_ALL (DROP_UNBOUND | \
4897 DROP_BOUND | \
4898 DROP_RETIRE | \
4899 DROP_ACTIVE)
4900 static int
4901 i915_drop_caches_get(void *data, u64 *val)
4902 {
4903 *val = DROP_ALL;
4904
4905 return 0;
4906 }
4907
4908 static int
4909 i915_drop_caches_set(void *data, u64 val)
4910 {
4911 struct drm_device *dev = data;
4912 struct drm_i915_private *dev_priv = to_i915(dev);
4913 int ret;
4914
4915 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4916
4917 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4918 * on ioctls on -EAGAIN. */
4919 ret = mutex_lock_interruptible(&dev->struct_mutex);
4920 if (ret)
4921 return ret;
4922
4923 if (val & DROP_ACTIVE) {
4924 ret = i915_gem_wait_for_idle(dev_priv, true);
4925 if (ret)
4926 goto unlock;
4927 }
4928
4929 if (val & (DROP_RETIRE | DROP_ACTIVE))
4930 i915_gem_retire_requests(dev_priv);
4931
4932 if (val & DROP_BOUND)
4933 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4934
4935 if (val & DROP_UNBOUND)
4936 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4937
4938 unlock:
4939 mutex_unlock(&dev->struct_mutex);
4940
4941 return ret;
4942 }
4943
4944 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4945 i915_drop_caches_get, i915_drop_caches_set,
4946 "0x%08llx\n");
4947
4948 static int
4949 i915_max_freq_get(void *data, u64 *val)
4950 {
4951 struct drm_device *dev = data;
4952 struct drm_i915_private *dev_priv = to_i915(dev);
4953
4954 if (INTEL_INFO(dev)->gen < 6)
4955 return -ENODEV;
4956
4957 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4958 return 0;
4959 }
4960
4961 static int
4962 i915_max_freq_set(void *data, u64 val)
4963 {
4964 struct drm_device *dev = data;
4965 struct drm_i915_private *dev_priv = to_i915(dev);
4966 u32 hw_max, hw_min;
4967 int ret;
4968
4969 if (INTEL_INFO(dev)->gen < 6)
4970 return -ENODEV;
4971
4972 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4973
4974 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4975 if (ret)
4976 return ret;
4977
4978 /*
4979 * Turbo will still be enabled, but won't go above the set value.
4980 */
4981 val = intel_freq_opcode(dev_priv, val);
4982
4983 hw_max = dev_priv->rps.max_freq;
4984 hw_min = dev_priv->rps.min_freq;
4985
4986 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4987 mutex_unlock(&dev_priv->rps.hw_lock);
4988 return -EINVAL;
4989 }
4990
4991 dev_priv->rps.max_freq_softlimit = val;
4992
4993 intel_set_rps(dev_priv, val);
4994
4995 mutex_unlock(&dev_priv->rps.hw_lock);
4996
4997 return 0;
4998 }
4999
5000 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
5001 i915_max_freq_get, i915_max_freq_set,
5002 "%llu\n");
5003
5004 static int
5005 i915_min_freq_get(void *data, u64 *val)
5006 {
5007 struct drm_device *dev = data;
5008 struct drm_i915_private *dev_priv = to_i915(dev);
5009
5010 if (INTEL_GEN(dev_priv) < 6)
5011 return -ENODEV;
5012
5013 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5014 return 0;
5015 }
5016
5017 static int
5018 i915_min_freq_set(void *data, u64 val)
5019 {
5020 struct drm_device *dev = data;
5021 struct drm_i915_private *dev_priv = to_i915(dev);
5022 u32 hw_max, hw_min;
5023 int ret;
5024
5025 if (INTEL_GEN(dev_priv) < 6)
5026 return -ENODEV;
5027
5028 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5029
5030 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5031 if (ret)
5032 return ret;
5033
5034 /*
5035 * Turbo will still be enabled, but won't go below the set value.
5036 */
5037 val = intel_freq_opcode(dev_priv, val);
5038
5039 hw_max = dev_priv->rps.max_freq;
5040 hw_min = dev_priv->rps.min_freq;
5041
5042 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5043 mutex_unlock(&dev_priv->rps.hw_lock);
5044 return -EINVAL;
5045 }
5046
5047 dev_priv->rps.min_freq_softlimit = val;
5048
5049 intel_set_rps(dev_priv, val);
5050
5051 mutex_unlock(&dev_priv->rps.hw_lock);
5052
5053 return 0;
5054 }
5055
5056 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5057 i915_min_freq_get, i915_min_freq_set,
5058 "%llu\n");
5059
5060 static int
5061 i915_cache_sharing_get(void *data, u64 *val)
5062 {
5063 struct drm_device *dev = data;
5064 struct drm_i915_private *dev_priv = to_i915(dev);
5065 u32 snpcr;
5066 int ret;
5067
5068 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5069 return -ENODEV;
5070
5071 ret = mutex_lock_interruptible(&dev->struct_mutex);
5072 if (ret)
5073 return ret;
5074 intel_runtime_pm_get(dev_priv);
5075
5076 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5077
5078 intel_runtime_pm_put(dev_priv);
5079 mutex_unlock(&dev_priv->drm.struct_mutex);
5080
5081 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5082
5083 return 0;
5084 }
5085
5086 static int
5087 i915_cache_sharing_set(void *data, u64 val)
5088 {
5089 struct drm_device *dev = data;
5090 struct drm_i915_private *dev_priv = to_i915(dev);
5091 u32 snpcr;
5092
5093 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5094 return -ENODEV;
5095
5096 if (val > 3)
5097 return -EINVAL;
5098
5099 intel_runtime_pm_get(dev_priv);
5100 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5101
5102 /* Update the cache sharing policy here as well */
5103 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5104 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5105 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5106 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5107
5108 intel_runtime_pm_put(dev_priv);
5109 return 0;
5110 }
5111
5112 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5113 i915_cache_sharing_get, i915_cache_sharing_set,
5114 "%llu\n");
5115
5116 struct sseu_dev_status {
5117 unsigned int slice_total;
5118 unsigned int subslice_total;
5119 unsigned int subslice_per_slice;
5120 unsigned int eu_total;
5121 unsigned int eu_per_subslice;
5122 };
5123
5124 static void cherryview_sseu_device_status(struct drm_device *dev,
5125 struct sseu_dev_status *stat)
5126 {
5127 struct drm_i915_private *dev_priv = to_i915(dev);
5128 int ss_max = 2;
5129 int ss;
5130 u32 sig1[ss_max], sig2[ss_max];
5131
5132 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5133 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5134 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5135 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5136
5137 for (ss = 0; ss < ss_max; ss++) {
5138 unsigned int eu_cnt;
5139
5140 if (sig1[ss] & CHV_SS_PG_ENABLE)
5141 /* skip disabled subslice */
5142 continue;
5143
5144 stat->slice_total = 1;
5145 stat->subslice_per_slice++;
5146 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5147 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5148 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5149 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5150 stat->eu_total += eu_cnt;
5151 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5152 }
5153 stat->subslice_total = stat->subslice_per_slice;
5154 }
5155
5156 static void gen9_sseu_device_status(struct drm_device *dev,
5157 struct sseu_dev_status *stat)
5158 {
5159 struct drm_i915_private *dev_priv = to_i915(dev);
5160 int s_max = 3, ss_max = 4;
5161 int s, ss;
5162 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5163
5164 /* BXT has a single slice and at most 3 subslices. */
5165 if (IS_BROXTON(dev)) {
5166 s_max = 1;
5167 ss_max = 3;
5168 }
5169
5170 for (s = 0; s < s_max; s++) {
5171 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5172 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5173 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5174 }
5175
5176 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5177 GEN9_PGCTL_SSA_EU19_ACK |
5178 GEN9_PGCTL_SSA_EU210_ACK |
5179 GEN9_PGCTL_SSA_EU311_ACK;
5180 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5181 GEN9_PGCTL_SSB_EU19_ACK |
5182 GEN9_PGCTL_SSB_EU210_ACK |
5183 GEN9_PGCTL_SSB_EU311_ACK;
5184
5185 for (s = 0; s < s_max; s++) {
5186 unsigned int ss_cnt = 0;
5187
5188 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5189 /* skip disabled slice */
5190 continue;
5191
5192 stat->slice_total++;
5193
5194 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5195 ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5196
5197 for (ss = 0; ss < ss_max; ss++) {
5198 unsigned int eu_cnt;
5199
5200 if (IS_BROXTON(dev) &&
5201 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5202 /* skip disabled subslice */
5203 continue;
5204
5205 if (IS_BROXTON(dev))
5206 ss_cnt++;
5207
5208 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5209 eu_mask[ss%2]);
5210 stat->eu_total += eu_cnt;
5211 stat->eu_per_subslice = max(stat->eu_per_subslice,
5212 eu_cnt);
5213 }
5214
5215 stat->subslice_total += ss_cnt;
5216 stat->subslice_per_slice = max(stat->subslice_per_slice,
5217 ss_cnt);
5218 }
5219 }
5220
5221 static void broadwell_sseu_device_status(struct drm_device *dev,
5222 struct sseu_dev_status *stat)
5223 {
5224 struct drm_i915_private *dev_priv = to_i915(dev);
5225 int s;
5226 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5227
5228 stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5229
5230 if (stat->slice_total) {
5231 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5232 stat->subslice_total = stat->slice_total *
5233 stat->subslice_per_slice;
5234 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5235 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5236
5237 /* subtract fused off EU(s) from enabled slice(s) */
5238 for (s = 0; s < stat->slice_total; s++) {
5239 u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5240
5241 stat->eu_total -= hweight8(subslice_7eu);
5242 }
5243 }
5244 }
5245
5246 static int i915_sseu_status(struct seq_file *m, void *unused)
5247 {
5248 struct drm_info_node *node = (struct drm_info_node *) m->private;
5249 struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
5250 struct drm_device *dev = &dev_priv->drm;
5251 struct sseu_dev_status stat;
5252
5253 if (INTEL_INFO(dev)->gen < 8)
5254 return -ENODEV;
5255
5256 seq_puts(m, "SSEU Device Info\n");
5257 seq_printf(m, " Available Slice Total: %u\n",
5258 INTEL_INFO(dev)->slice_total);
5259 seq_printf(m, " Available Subslice Total: %u\n",
5260 INTEL_INFO(dev)->subslice_total);
5261 seq_printf(m, " Available Subslice Per Slice: %u\n",
5262 INTEL_INFO(dev)->subslice_per_slice);
5263 seq_printf(m, " Available EU Total: %u\n",
5264 INTEL_INFO(dev)->eu_total);
5265 seq_printf(m, " Available EU Per Subslice: %u\n",
5266 INTEL_INFO(dev)->eu_per_subslice);
5267 seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev)));
5268 if (HAS_POOLED_EU(dev))
5269 seq_printf(m, " Min EU in pool: %u\n",
5270 INTEL_INFO(dev)->min_eu_in_pool);
5271 seq_printf(m, " Has Slice Power Gating: %s\n",
5272 yesno(INTEL_INFO(dev)->has_slice_pg));
5273 seq_printf(m, " Has Subslice Power Gating: %s\n",
5274 yesno(INTEL_INFO(dev)->has_subslice_pg));
5275 seq_printf(m, " Has EU Power Gating: %s\n",
5276 yesno(INTEL_INFO(dev)->has_eu_pg));
5277
5278 seq_puts(m, "SSEU Device Status\n");
5279 memset(&stat, 0, sizeof(stat));
5280
5281 intel_runtime_pm_get(dev_priv);
5282
5283 if (IS_CHERRYVIEW(dev)) {
5284 cherryview_sseu_device_status(dev, &stat);
5285 } else if (IS_BROADWELL(dev)) {
5286 broadwell_sseu_device_status(dev, &stat);
5287 } else if (INTEL_INFO(dev)->gen >= 9) {
5288 gen9_sseu_device_status(dev, &stat);
5289 }
5290
5291 intel_runtime_pm_put(dev_priv);
5292
5293 seq_printf(m, " Enabled Slice Total: %u\n",
5294 stat.slice_total);
5295 seq_printf(m, " Enabled Subslice Total: %u\n",
5296 stat.subslice_total);
5297 seq_printf(m, " Enabled Subslice Per Slice: %u\n",
5298 stat.subslice_per_slice);
5299 seq_printf(m, " Enabled EU Total: %u\n",
5300 stat.eu_total);
5301 seq_printf(m, " Enabled EU Per Subslice: %u\n",
5302 stat.eu_per_subslice);
5303
5304 return 0;
5305 }
5306
5307 static int i915_forcewake_open(struct inode *inode, struct file *file)
5308 {
5309 struct drm_device *dev = inode->i_private;
5310 struct drm_i915_private *dev_priv = to_i915(dev);
5311
5312 if (INTEL_INFO(dev)->gen < 6)
5313 return 0;
5314
5315 intel_runtime_pm_get(dev_priv);
5316 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5317
5318 return 0;
5319 }
5320
5321 static int i915_forcewake_release(struct inode *inode, struct file *file)
5322 {
5323 struct drm_device *dev = inode->i_private;
5324 struct drm_i915_private *dev_priv = to_i915(dev);
5325
5326 if (INTEL_INFO(dev)->gen < 6)
5327 return 0;
5328
5329 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5330 intel_runtime_pm_put(dev_priv);
5331
5332 return 0;
5333 }
5334
5335 static const struct file_operations i915_forcewake_fops = {
5336 .owner = THIS_MODULE,
5337 .open = i915_forcewake_open,
5338 .release = i915_forcewake_release,
5339 };
5340
5341 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5342 {
5343 struct drm_device *dev = minor->dev;
5344 struct dentry *ent;
5345
5346 ent = debugfs_create_file("i915_forcewake_user",
5347 S_IRUSR,
5348 root, dev,
5349 &i915_forcewake_fops);
5350 if (!ent)
5351 return -ENOMEM;
5352
5353 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5354 }
5355
5356 static int i915_debugfs_create(struct dentry *root,
5357 struct drm_minor *minor,
5358 const char *name,
5359 const struct file_operations *fops)
5360 {
5361 struct drm_device *dev = minor->dev;
5362 struct dentry *ent;
5363
5364 ent = debugfs_create_file(name,
5365 S_IRUGO | S_IWUSR,
5366 root, dev,
5367 fops);
5368 if (!ent)
5369 return -ENOMEM;
5370
5371 return drm_add_fake_info_node(minor, ent, fops);
5372 }
5373
5374 static const struct drm_info_list i915_debugfs_list[] = {
5375 {"i915_capabilities", i915_capabilities, 0},
5376 {"i915_gem_objects", i915_gem_object_info, 0},
5377 {"i915_gem_gtt", i915_gem_gtt_info, 0},
5378 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5379 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5380 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5381 {"i915_gem_stolen", i915_gem_stolen_list_info },
5382 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5383 {"i915_gem_request", i915_gem_request_info, 0},
5384 {"i915_gem_seqno", i915_gem_seqno_info, 0},
5385 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5386 {"i915_gem_interrupt", i915_interrupt_info, 0},
5387 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5388 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5389 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5390 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5391 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5392 {"i915_guc_info", i915_guc_info, 0},
5393 {"i915_guc_load_status", i915_guc_load_status_info, 0},
5394 {"i915_guc_log_dump", i915_guc_log_dump, 0},
5395 {"i915_frequency_info", i915_frequency_info, 0},
5396 {"i915_hangcheck_info", i915_hangcheck_info, 0},
5397 {"i915_drpc_info", i915_drpc_info, 0},
5398 {"i915_emon_status", i915_emon_status, 0},
5399 {"i915_ring_freq_table", i915_ring_freq_table, 0},
5400 {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5401 {"i915_fbc_status", i915_fbc_status, 0},
5402 {"i915_ips_status", i915_ips_status, 0},
5403 {"i915_sr_status", i915_sr_status, 0},
5404 {"i915_opregion", i915_opregion, 0},
5405 {"i915_vbt", i915_vbt, 0},
5406 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5407 {"i915_context_status", i915_context_status, 0},
5408 {"i915_dump_lrc", i915_dump_lrc, 0},
5409 {"i915_execlists", i915_execlists, 0},
5410 {"i915_forcewake_domains", i915_forcewake_domains, 0},
5411 {"i915_swizzle_info", i915_swizzle_info, 0},
5412 {"i915_ppgtt_info", i915_ppgtt_info, 0},
5413 {"i915_llc", i915_llc, 0},
5414 {"i915_edp_psr_status", i915_edp_psr_status, 0},
5415 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5416 {"i915_energy_uJ", i915_energy_uJ, 0},
5417 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5418 {"i915_power_domain_info", i915_power_domain_info, 0},
5419 {"i915_dmc_info", i915_dmc_info, 0},
5420 {"i915_display_info", i915_display_info, 0},
5421 {"i915_semaphore_status", i915_semaphore_status, 0},
5422 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5423 {"i915_dp_mst_info", i915_dp_mst_info, 0},
5424 {"i915_wa_registers", i915_wa_registers, 0},
5425 {"i915_ddb_info", i915_ddb_info, 0},
5426 {"i915_sseu_status", i915_sseu_status, 0},
5427 {"i915_drrs_status", i915_drrs_status, 0},
5428 {"i915_rps_boost_info", i915_rps_boost_info, 0},
5429 };
5430 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5431
5432 static const struct i915_debugfs_files {
5433 const char *name;
5434 const struct file_operations *fops;
5435 } i915_debugfs_files[] = {
5436 {"i915_wedged", &i915_wedged_fops},
5437 {"i915_max_freq", &i915_max_freq_fops},
5438 {"i915_min_freq", &i915_min_freq_fops},
5439 {"i915_cache_sharing", &i915_cache_sharing_fops},
5440 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5441 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5442 {"i915_gem_drop_caches", &i915_drop_caches_fops},
5443 {"i915_error_state", &i915_error_state_fops},
5444 {"i915_next_seqno", &i915_next_seqno_fops},
5445 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5446 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5447 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5448 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5449 {"i915_fbc_false_color", &i915_fbc_fc_fops},
5450 {"i915_dp_test_data", &i915_displayport_test_data_fops},
5451 {"i915_dp_test_type", &i915_displayport_test_type_fops},
5452 {"i915_dp_test_active", &i915_displayport_test_active_fops}
5453 };
5454
5455 void intel_display_crc_init(struct drm_device *dev)
5456 {
5457 struct drm_i915_private *dev_priv = to_i915(dev);
5458 enum pipe pipe;
5459
5460 for_each_pipe(dev_priv, pipe) {
5461 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5462
5463 pipe_crc->opened = false;
5464 spin_lock_init(&pipe_crc->lock);
5465 init_waitqueue_head(&pipe_crc->wq);
5466 }
5467 }
5468
5469 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5470 {
5471 struct drm_minor *minor = dev_priv->drm.primary;
5472 int ret, i;
5473
5474 ret = i915_forcewake_create(minor->debugfs_root, minor);
5475 if (ret)
5476 return ret;
5477
5478 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5479 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5480 if (ret)
5481 return ret;
5482 }
5483
5484 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5485 ret = i915_debugfs_create(minor->debugfs_root, minor,
5486 i915_debugfs_files[i].name,
5487 i915_debugfs_files[i].fops);
5488 if (ret)
5489 return ret;
5490 }
5491
5492 return drm_debugfs_create_files(i915_debugfs_list,
5493 I915_DEBUGFS_ENTRIES,
5494 minor->debugfs_root, minor);
5495 }
5496
5497 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5498 {
5499 struct drm_minor *minor = dev_priv->drm.primary;
5500 int i;
5501
5502 drm_debugfs_remove_files(i915_debugfs_list,
5503 I915_DEBUGFS_ENTRIES, minor);
5504
5505 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5506 1, minor);
5507
5508 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5509 struct drm_info_list *info_list =
5510 (struct drm_info_list *)&i915_pipe_crc_data[i];
5511
5512 drm_debugfs_remove_files(info_list, 1, minor);
5513 }
5514
5515 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5516 struct drm_info_list *info_list =
5517 (struct drm_info_list *) i915_debugfs_files[i].fops;
5518
5519 drm_debugfs_remove_files(info_list, 1, minor);
5520 }
5521 }
5522
5523 struct dpcd_block {
5524 /* DPCD dump start address. */
5525 unsigned int offset;
5526 /* DPCD dump end address, inclusive. If unset, .size will be used. */
5527 unsigned int end;
5528 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5529 size_t size;
5530 /* Only valid for eDP. */
5531 bool edp;
5532 };
5533
5534 static const struct dpcd_block i915_dpcd_debug[] = {
5535 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5536 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5537 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5538 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5539 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5540 { .offset = DP_SET_POWER },
5541 { .offset = DP_EDP_DPCD_REV },
5542 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5543 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5544 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5545 };
5546
5547 static int i915_dpcd_show(struct seq_file *m, void *data)
5548 {
5549 struct drm_connector *connector = m->private;
5550 struct intel_dp *intel_dp =
5551 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5552 uint8_t buf[16];
5553 ssize_t err;
5554 int i;
5555
5556 if (connector->status != connector_status_connected)
5557 return -ENODEV;
5558
5559 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5560 const struct dpcd_block *b = &i915_dpcd_debug[i];
5561 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5562
5563 if (b->edp &&
5564 connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5565 continue;
5566
5567 /* low tech for now */
5568 if (WARN_ON(size > sizeof(buf)))
5569 continue;
5570
5571 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5572 if (err <= 0) {
5573 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5574 size, b->offset, err);
5575 continue;
5576 }
5577
5578 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5579 }
5580
5581 return 0;
5582 }
5583
5584 static int i915_dpcd_open(struct inode *inode, struct file *file)
5585 {
5586 return single_open(file, i915_dpcd_show, inode->i_private);
5587 }
5588
5589 static const struct file_operations i915_dpcd_fops = {
5590 .owner = THIS_MODULE,
5591 .open = i915_dpcd_open,
5592 .read = seq_read,
5593 .llseek = seq_lseek,
5594 .release = single_release,
5595 };
5596
5597 /**
5598 * i915_debugfs_connector_add - add i915 specific connector debugfs files
5599 * @connector: pointer to a registered drm_connector
5600 *
5601 * Cleanup will be done by drm_connector_unregister() through a call to
5602 * drm_debugfs_connector_remove().
5603 *
5604 * Returns 0 on success, negative error codes on error.
5605 */
5606 int i915_debugfs_connector_add(struct drm_connector *connector)
5607 {
5608 struct dentry *root = connector->debugfs_entry;
5609
5610 /* The connector must have been registered beforehands. */
5611 if (!root)
5612 return -ENODEV;
5613
5614 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5615 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5616 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5617 &i915_dpcd_fops);
5618
5619 return 0;
5620 }
This page took 0.166722 seconds and 5 git commands to generate.