d226f2f2f7bc7f273da229c9b2425bb8de91ca11
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include "drmP.h"
34 #include "drm.h"
35 #include "intel_drv.h"
36 #include "intel_ringbuffer.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39
40 #define DRM_I915_RING_DEBUG 1
41
42
43 #if defined(CONFIG_DEBUG_FS)
44
45 enum {
46 ACTIVE_LIST,
47 FLUSHING_LIST,
48 INACTIVE_LIST,
49 PINNED_LIST,
50 DEFERRED_FREE_LIST,
51 };
52
53 static const char *yesno(int v)
54 {
55 return v ? "yes" : "no";
56 }
57
58 static int i915_capabilities(struct seq_file *m, void *data)
59 {
60 struct drm_info_node *node = (struct drm_info_node *) m->private;
61 struct drm_device *dev = node->minor->dev;
62 const struct intel_device_info *info = INTEL_INFO(dev);
63
64 seq_printf(m, "gen: %d\n", info->gen);
65 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
66 #define B(x) seq_printf(m, #x ": %s\n", yesno(info->x))
67 B(is_mobile);
68 B(is_i85x);
69 B(is_i915g);
70 B(is_i945gm);
71 B(is_g33);
72 B(need_gfx_hws);
73 B(is_g4x);
74 B(is_pineview);
75 B(is_broadwater);
76 B(is_crestline);
77 B(has_fbc);
78 B(has_pipe_cxsr);
79 B(has_hotplug);
80 B(cursor_needs_physical);
81 B(has_overlay);
82 B(overlay_needs_physical);
83 B(supports_tv);
84 B(has_bsd_ring);
85 B(has_blt_ring);
86 B(has_llc);
87 #undef B
88
89 return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94 if (obj->user_pin_count > 0)
95 return "P";
96 else if (obj->pin_count > 0)
97 return "p";
98 else
99 return " ";
100 }
101
102 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104 switch (obj->tiling_mode) {
105 default:
106 case I915_TILING_NONE: return " ";
107 case I915_TILING_X: return "X";
108 case I915_TILING_Y: return "Y";
109 }
110 }
111
112 static const char *cache_level_str(int type)
113 {
114 switch (type) {
115 case I915_CACHE_NONE: return " uncached";
116 case I915_CACHE_LLC: return " snooped (LLC)";
117 case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)";
118 default: return "";
119 }
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125 seq_printf(m, "%p: %s%s %8zdKiB %04x %04x %d %d%s%s%s",
126 &obj->base,
127 get_pin_flag(obj),
128 get_tiling_flag(obj),
129 obj->base.size / 1024,
130 obj->base.read_domains,
131 obj->base.write_domain,
132 obj->last_rendering_seqno,
133 obj->last_fenced_seqno,
134 cache_level_str(obj->cache_level),
135 obj->dirty ? " dirty" : "",
136 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
137 if (obj->base.name)
138 seq_printf(m, " (name: %d)", obj->base.name);
139 if (obj->fence_reg != I915_FENCE_REG_NONE)
140 seq_printf(m, " (fence: %d)", obj->fence_reg);
141 if (obj->gtt_space != NULL)
142 seq_printf(m, " (gtt offset: %08x, size: %08x)",
143 obj->gtt_offset, (unsigned int)obj->gtt_space->size);
144 if (obj->pin_mappable || obj->fault_mappable) {
145 char s[3], *t = s;
146 if (obj->pin_mappable)
147 *t++ = 'p';
148 if (obj->fault_mappable)
149 *t++ = 'f';
150 *t = '\0';
151 seq_printf(m, " (%s mappable)", s);
152 }
153 if (obj->ring != NULL)
154 seq_printf(m, " (%s)", obj->ring->name);
155 }
156
157 static int i915_gem_object_list_info(struct seq_file *m, void *data)
158 {
159 struct drm_info_node *node = (struct drm_info_node *) m->private;
160 uintptr_t list = (uintptr_t) node->info_ent->data;
161 struct list_head *head;
162 struct drm_device *dev = node->minor->dev;
163 drm_i915_private_t *dev_priv = dev->dev_private;
164 struct drm_i915_gem_object *obj;
165 size_t total_obj_size, total_gtt_size;
166 int count, ret;
167
168 ret = mutex_lock_interruptible(&dev->struct_mutex);
169 if (ret)
170 return ret;
171
172 switch (list) {
173 case ACTIVE_LIST:
174 seq_printf(m, "Active:\n");
175 head = &dev_priv->mm.active_list;
176 break;
177 case INACTIVE_LIST:
178 seq_printf(m, "Inactive:\n");
179 head = &dev_priv->mm.inactive_list;
180 break;
181 case PINNED_LIST:
182 seq_printf(m, "Pinned:\n");
183 head = &dev_priv->mm.pinned_list;
184 break;
185 case FLUSHING_LIST:
186 seq_printf(m, "Flushing:\n");
187 head = &dev_priv->mm.flushing_list;
188 break;
189 case DEFERRED_FREE_LIST:
190 seq_printf(m, "Deferred free:\n");
191 head = &dev_priv->mm.deferred_free_list;
192 break;
193 default:
194 mutex_unlock(&dev->struct_mutex);
195 return -EINVAL;
196 }
197
198 total_obj_size = total_gtt_size = count = 0;
199 list_for_each_entry(obj, head, mm_list) {
200 seq_printf(m, " ");
201 describe_obj(m, obj);
202 seq_printf(m, "\n");
203 total_obj_size += obj->base.size;
204 total_gtt_size += obj->gtt_space->size;
205 count++;
206 }
207 mutex_unlock(&dev->struct_mutex);
208
209 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
210 count, total_obj_size, total_gtt_size);
211 return 0;
212 }
213
214 #define count_objects(list, member) do { \
215 list_for_each_entry(obj, list, member) { \
216 size += obj->gtt_space->size; \
217 ++count; \
218 if (obj->map_and_fenceable) { \
219 mappable_size += obj->gtt_space->size; \
220 ++mappable_count; \
221 } \
222 } \
223 } while (0)
224
225 static int i915_gem_object_info(struct seq_file *m, void* data)
226 {
227 struct drm_info_node *node = (struct drm_info_node *) m->private;
228 struct drm_device *dev = node->minor->dev;
229 struct drm_i915_private *dev_priv = dev->dev_private;
230 u32 count, mappable_count;
231 size_t size, mappable_size;
232 struct drm_i915_gem_object *obj;
233 int ret;
234
235 ret = mutex_lock_interruptible(&dev->struct_mutex);
236 if (ret)
237 return ret;
238
239 seq_printf(m, "%u objects, %zu bytes\n",
240 dev_priv->mm.object_count,
241 dev_priv->mm.object_memory);
242
243 size = count = mappable_size = mappable_count = 0;
244 count_objects(&dev_priv->mm.gtt_list, gtt_list);
245 seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
246 count, mappable_count, size, mappable_size);
247
248 size = count = mappable_size = mappable_count = 0;
249 count_objects(&dev_priv->mm.active_list, mm_list);
250 count_objects(&dev_priv->mm.flushing_list, mm_list);
251 seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
252 count, mappable_count, size, mappable_size);
253
254 size = count = mappable_size = mappable_count = 0;
255 count_objects(&dev_priv->mm.pinned_list, mm_list);
256 seq_printf(m, " %u [%u] pinned objects, %zu [%zu] bytes\n",
257 count, mappable_count, size, mappable_size);
258
259 size = count = mappable_size = mappable_count = 0;
260 count_objects(&dev_priv->mm.inactive_list, mm_list);
261 seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
262 count, mappable_count, size, mappable_size);
263
264 size = count = mappable_size = mappable_count = 0;
265 count_objects(&dev_priv->mm.deferred_free_list, mm_list);
266 seq_printf(m, " %u [%u] freed objects, %zu [%zu] bytes\n",
267 count, mappable_count, size, mappable_size);
268
269 size = count = mappable_size = mappable_count = 0;
270 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
271 if (obj->fault_mappable) {
272 size += obj->gtt_space->size;
273 ++count;
274 }
275 if (obj->pin_mappable) {
276 mappable_size += obj->gtt_space->size;
277 ++mappable_count;
278 }
279 }
280 seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
281 mappable_count, mappable_size);
282 seq_printf(m, "%u fault mappable objects, %zu bytes\n",
283 count, size);
284
285 seq_printf(m, "%zu [%zu] gtt total\n",
286 dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total);
287
288 mutex_unlock(&dev->struct_mutex);
289
290 return 0;
291 }
292
293 static int i915_gem_gtt_info(struct seq_file *m, void* data)
294 {
295 struct drm_info_node *node = (struct drm_info_node *) m->private;
296 struct drm_device *dev = node->minor->dev;
297 struct drm_i915_private *dev_priv = dev->dev_private;
298 struct drm_i915_gem_object *obj;
299 size_t total_obj_size, total_gtt_size;
300 int count, ret;
301
302 ret = mutex_lock_interruptible(&dev->struct_mutex);
303 if (ret)
304 return ret;
305
306 total_obj_size = total_gtt_size = count = 0;
307 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
308 seq_printf(m, " ");
309 describe_obj(m, obj);
310 seq_printf(m, "\n");
311 total_obj_size += obj->base.size;
312 total_gtt_size += obj->gtt_space->size;
313 count++;
314 }
315
316 mutex_unlock(&dev->struct_mutex);
317
318 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
319 count, total_obj_size, total_gtt_size);
320
321 return 0;
322 }
323
324
325 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
326 {
327 struct drm_info_node *node = (struct drm_info_node *) m->private;
328 struct drm_device *dev = node->minor->dev;
329 unsigned long flags;
330 struct intel_crtc *crtc;
331
332 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
333 const char pipe = pipe_name(crtc->pipe);
334 const char plane = plane_name(crtc->plane);
335 struct intel_unpin_work *work;
336
337 spin_lock_irqsave(&dev->event_lock, flags);
338 work = crtc->unpin_work;
339 if (work == NULL) {
340 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
341 pipe, plane);
342 } else {
343 if (!work->pending) {
344 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
345 pipe, plane);
346 } else {
347 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
348 pipe, plane);
349 }
350 if (work->enable_stall_check)
351 seq_printf(m, "Stall check enabled, ");
352 else
353 seq_printf(m, "Stall check waiting for page flip ioctl, ");
354 seq_printf(m, "%d prepares\n", work->pending);
355
356 if (work->old_fb_obj) {
357 struct drm_i915_gem_object *obj = work->old_fb_obj;
358 if (obj)
359 seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
360 }
361 if (work->pending_flip_obj) {
362 struct drm_i915_gem_object *obj = work->pending_flip_obj;
363 if (obj)
364 seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
365 }
366 }
367 spin_unlock_irqrestore(&dev->event_lock, flags);
368 }
369
370 return 0;
371 }
372
373 static int i915_gem_request_info(struct seq_file *m, void *data)
374 {
375 struct drm_info_node *node = (struct drm_info_node *) m->private;
376 struct drm_device *dev = node->minor->dev;
377 drm_i915_private_t *dev_priv = dev->dev_private;
378 struct drm_i915_gem_request *gem_request;
379 int ret, count;
380
381 ret = mutex_lock_interruptible(&dev->struct_mutex);
382 if (ret)
383 return ret;
384
385 count = 0;
386 if (!list_empty(&dev_priv->ring[RCS].request_list)) {
387 seq_printf(m, "Render requests:\n");
388 list_for_each_entry(gem_request,
389 &dev_priv->ring[RCS].request_list,
390 list) {
391 seq_printf(m, " %d @ %d\n",
392 gem_request->seqno,
393 (int) (jiffies - gem_request->emitted_jiffies));
394 }
395 count++;
396 }
397 if (!list_empty(&dev_priv->ring[VCS].request_list)) {
398 seq_printf(m, "BSD requests:\n");
399 list_for_each_entry(gem_request,
400 &dev_priv->ring[VCS].request_list,
401 list) {
402 seq_printf(m, " %d @ %d\n",
403 gem_request->seqno,
404 (int) (jiffies - gem_request->emitted_jiffies));
405 }
406 count++;
407 }
408 if (!list_empty(&dev_priv->ring[BCS].request_list)) {
409 seq_printf(m, "BLT requests:\n");
410 list_for_each_entry(gem_request,
411 &dev_priv->ring[BCS].request_list,
412 list) {
413 seq_printf(m, " %d @ %d\n",
414 gem_request->seqno,
415 (int) (jiffies - gem_request->emitted_jiffies));
416 }
417 count++;
418 }
419 mutex_unlock(&dev->struct_mutex);
420
421 if (count == 0)
422 seq_printf(m, "No requests\n");
423
424 return 0;
425 }
426
427 static void i915_ring_seqno_info(struct seq_file *m,
428 struct intel_ring_buffer *ring)
429 {
430 if (ring->get_seqno) {
431 seq_printf(m, "Current sequence (%s): %d\n",
432 ring->name, ring->get_seqno(ring));
433 seq_printf(m, "Waiter sequence (%s): %d\n",
434 ring->name, ring->waiting_seqno);
435 seq_printf(m, "IRQ sequence (%s): %d\n",
436 ring->name, ring->irq_seqno);
437 }
438 }
439
440 static int i915_gem_seqno_info(struct seq_file *m, void *data)
441 {
442 struct drm_info_node *node = (struct drm_info_node *) m->private;
443 struct drm_device *dev = node->minor->dev;
444 drm_i915_private_t *dev_priv = dev->dev_private;
445 int ret, i;
446
447 ret = mutex_lock_interruptible(&dev->struct_mutex);
448 if (ret)
449 return ret;
450
451 for (i = 0; i < I915_NUM_RINGS; i++)
452 i915_ring_seqno_info(m, &dev_priv->ring[i]);
453
454 mutex_unlock(&dev->struct_mutex);
455
456 return 0;
457 }
458
459
460 static int i915_interrupt_info(struct seq_file *m, void *data)
461 {
462 struct drm_info_node *node = (struct drm_info_node *) m->private;
463 struct drm_device *dev = node->minor->dev;
464 drm_i915_private_t *dev_priv = dev->dev_private;
465 int ret, i, pipe;
466
467 ret = mutex_lock_interruptible(&dev->struct_mutex);
468 if (ret)
469 return ret;
470
471 if (IS_VALLEYVIEW(dev)) {
472 seq_printf(m, "Display IER:\t%08x\n",
473 I915_READ(VLV_IER));
474 seq_printf(m, "Display IIR:\t%08x\n",
475 I915_READ(VLV_IIR));
476 seq_printf(m, "Display IIR_RW:\t%08x\n",
477 I915_READ(VLV_IIR_RW));
478 seq_printf(m, "Display IMR:\t%08x\n",
479 I915_READ(VLV_IMR));
480 for_each_pipe(pipe)
481 seq_printf(m, "Pipe %c stat:\t%08x\n",
482 pipe_name(pipe),
483 I915_READ(PIPESTAT(pipe)));
484
485 seq_printf(m, "Master IER:\t%08x\n",
486 I915_READ(VLV_MASTER_IER));
487
488 seq_printf(m, "Render IER:\t%08x\n",
489 I915_READ(GTIER));
490 seq_printf(m, "Render IIR:\t%08x\n",
491 I915_READ(GTIIR));
492 seq_printf(m, "Render IMR:\t%08x\n",
493 I915_READ(GTIMR));
494
495 seq_printf(m, "PM IER:\t\t%08x\n",
496 I915_READ(GEN6_PMIER));
497 seq_printf(m, "PM IIR:\t\t%08x\n",
498 I915_READ(GEN6_PMIIR));
499 seq_printf(m, "PM IMR:\t\t%08x\n",
500 I915_READ(GEN6_PMIMR));
501
502 seq_printf(m, "Port hotplug:\t%08x\n",
503 I915_READ(PORT_HOTPLUG_EN));
504 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
505 I915_READ(VLV_DPFLIPSTAT));
506 seq_printf(m, "DPINVGTT:\t%08x\n",
507 I915_READ(DPINVGTT));
508
509 } else if (!HAS_PCH_SPLIT(dev)) {
510 seq_printf(m, "Interrupt enable: %08x\n",
511 I915_READ(IER));
512 seq_printf(m, "Interrupt identity: %08x\n",
513 I915_READ(IIR));
514 seq_printf(m, "Interrupt mask: %08x\n",
515 I915_READ(IMR));
516 for_each_pipe(pipe)
517 seq_printf(m, "Pipe %c stat: %08x\n",
518 pipe_name(pipe),
519 I915_READ(PIPESTAT(pipe)));
520 } else {
521 seq_printf(m, "North Display Interrupt enable: %08x\n",
522 I915_READ(DEIER));
523 seq_printf(m, "North Display Interrupt identity: %08x\n",
524 I915_READ(DEIIR));
525 seq_printf(m, "North Display Interrupt mask: %08x\n",
526 I915_READ(DEIMR));
527 seq_printf(m, "South Display Interrupt enable: %08x\n",
528 I915_READ(SDEIER));
529 seq_printf(m, "South Display Interrupt identity: %08x\n",
530 I915_READ(SDEIIR));
531 seq_printf(m, "South Display Interrupt mask: %08x\n",
532 I915_READ(SDEIMR));
533 seq_printf(m, "Graphics Interrupt enable: %08x\n",
534 I915_READ(GTIER));
535 seq_printf(m, "Graphics Interrupt identity: %08x\n",
536 I915_READ(GTIIR));
537 seq_printf(m, "Graphics Interrupt mask: %08x\n",
538 I915_READ(GTIMR));
539 }
540 seq_printf(m, "Interrupts received: %d\n",
541 atomic_read(&dev_priv->irq_received));
542 for (i = 0; i < I915_NUM_RINGS; i++) {
543 if (IS_GEN6(dev) || IS_GEN7(dev)) {
544 seq_printf(m, "Graphics Interrupt mask (%s): %08x\n",
545 dev_priv->ring[i].name,
546 I915_READ_IMR(&dev_priv->ring[i]));
547 }
548 i915_ring_seqno_info(m, &dev_priv->ring[i]);
549 }
550 mutex_unlock(&dev->struct_mutex);
551
552 return 0;
553 }
554
555 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
556 {
557 struct drm_info_node *node = (struct drm_info_node *) m->private;
558 struct drm_device *dev = node->minor->dev;
559 drm_i915_private_t *dev_priv = dev->dev_private;
560 int i, ret;
561
562 ret = mutex_lock_interruptible(&dev->struct_mutex);
563 if (ret)
564 return ret;
565
566 seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
567 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
568 for (i = 0; i < dev_priv->num_fence_regs; i++) {
569 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
570
571 seq_printf(m, "Fenced object[%2d] = ", i);
572 if (obj == NULL)
573 seq_printf(m, "unused");
574 else
575 describe_obj(m, obj);
576 seq_printf(m, "\n");
577 }
578
579 mutex_unlock(&dev->struct_mutex);
580 return 0;
581 }
582
583 static int i915_hws_info(struct seq_file *m, void *data)
584 {
585 struct drm_info_node *node = (struct drm_info_node *) m->private;
586 struct drm_device *dev = node->minor->dev;
587 drm_i915_private_t *dev_priv = dev->dev_private;
588 struct intel_ring_buffer *ring;
589 const volatile u32 __iomem *hws;
590 int i;
591
592 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
593 hws = (volatile u32 __iomem *)ring->status_page.page_addr;
594 if (hws == NULL)
595 return 0;
596
597 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
598 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
599 i * 4,
600 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
601 }
602 return 0;
603 }
604
605 static int i915_ringbuffer_data(struct seq_file *m, void *data)
606 {
607 struct drm_info_node *node = (struct drm_info_node *) m->private;
608 struct drm_device *dev = node->minor->dev;
609 drm_i915_private_t *dev_priv = dev->dev_private;
610 struct intel_ring_buffer *ring;
611 int ret;
612
613 ret = mutex_lock_interruptible(&dev->struct_mutex);
614 if (ret)
615 return ret;
616
617 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
618 if (!ring->obj) {
619 seq_printf(m, "No ringbuffer setup\n");
620 } else {
621 const u8 __iomem *virt = ring->virtual_start;
622 uint32_t off;
623
624 for (off = 0; off < ring->size; off += 4) {
625 uint32_t *ptr = (uint32_t *)(virt + off);
626 seq_printf(m, "%08x : %08x\n", off, *ptr);
627 }
628 }
629 mutex_unlock(&dev->struct_mutex);
630
631 return 0;
632 }
633
634 static int i915_ringbuffer_info(struct seq_file *m, void *data)
635 {
636 struct drm_info_node *node = (struct drm_info_node *) m->private;
637 struct drm_device *dev = node->minor->dev;
638 drm_i915_private_t *dev_priv = dev->dev_private;
639 struct intel_ring_buffer *ring;
640 int ret;
641
642 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
643 if (ring->size == 0)
644 return 0;
645
646 ret = mutex_lock_interruptible(&dev->struct_mutex);
647 if (ret)
648 return ret;
649
650 seq_printf(m, "Ring %s:\n", ring->name);
651 seq_printf(m, " Head : %08x\n", I915_READ_HEAD(ring) & HEAD_ADDR);
652 seq_printf(m, " Tail : %08x\n", I915_READ_TAIL(ring) & TAIL_ADDR);
653 seq_printf(m, " Size : %08x\n", ring->size);
654 seq_printf(m, " Active : %08x\n", intel_ring_get_active_head(ring));
655 seq_printf(m, " NOPID : %08x\n", I915_READ_NOPID(ring));
656 if (IS_GEN6(dev) || IS_GEN7(dev)) {
657 seq_printf(m, " Sync 0 : %08x\n", I915_READ_SYNC_0(ring));
658 seq_printf(m, " Sync 1 : %08x\n", I915_READ_SYNC_1(ring));
659 }
660 seq_printf(m, " Control : %08x\n", I915_READ_CTL(ring));
661 seq_printf(m, " Start : %08x\n", I915_READ_START(ring));
662
663 mutex_unlock(&dev->struct_mutex);
664
665 return 0;
666 }
667
668 static const char *ring_str(int ring)
669 {
670 switch (ring) {
671 case RCS: return "render";
672 case VCS: return "bsd";
673 case BCS: return "blt";
674 default: return "";
675 }
676 }
677
678 static const char *pin_flag(int pinned)
679 {
680 if (pinned > 0)
681 return " P";
682 else if (pinned < 0)
683 return " p";
684 else
685 return "";
686 }
687
688 static const char *tiling_flag(int tiling)
689 {
690 switch (tiling) {
691 default:
692 case I915_TILING_NONE: return "";
693 case I915_TILING_X: return " X";
694 case I915_TILING_Y: return " Y";
695 }
696 }
697
698 static const char *dirty_flag(int dirty)
699 {
700 return dirty ? " dirty" : "";
701 }
702
703 static const char *purgeable_flag(int purgeable)
704 {
705 return purgeable ? " purgeable" : "";
706 }
707
708 static void print_error_buffers(struct seq_file *m,
709 const char *name,
710 struct drm_i915_error_buffer *err,
711 int count)
712 {
713 seq_printf(m, "%s [%d]:\n", name, count);
714
715 while (count--) {
716 seq_printf(m, " %08x %8u %04x %04x %08x%s%s%s%s%s%s%s",
717 err->gtt_offset,
718 err->size,
719 err->read_domains,
720 err->write_domain,
721 err->seqno,
722 pin_flag(err->pinned),
723 tiling_flag(err->tiling),
724 dirty_flag(err->dirty),
725 purgeable_flag(err->purgeable),
726 err->ring != -1 ? " " : "",
727 ring_str(err->ring),
728 cache_level_str(err->cache_level));
729
730 if (err->name)
731 seq_printf(m, " (name: %d)", err->name);
732 if (err->fence_reg != I915_FENCE_REG_NONE)
733 seq_printf(m, " (fence: %d)", err->fence_reg);
734
735 seq_printf(m, "\n");
736 err++;
737 }
738 }
739
740 static void i915_ring_error_state(struct seq_file *m,
741 struct drm_device *dev,
742 struct drm_i915_error_state *error,
743 unsigned ring)
744 {
745 BUG_ON(ring > VCS); /* shut up confused gcc */
746 seq_printf(m, "%s command stream:\n", ring_str(ring));
747 seq_printf(m, " HEAD: 0x%08x\n", error->head[ring]);
748 seq_printf(m, " TAIL: 0x%08x\n", error->tail[ring]);
749 seq_printf(m, " ACTHD: 0x%08x\n", error->acthd[ring]);
750 seq_printf(m, " IPEIR: 0x%08x\n", error->ipeir[ring]);
751 seq_printf(m, " IPEHR: 0x%08x\n", error->ipehr[ring]);
752 seq_printf(m, " INSTDONE: 0x%08x\n", error->instdone[ring]);
753 if (ring == RCS && INTEL_INFO(dev)->gen >= 4) {
754 seq_printf(m, " INSTDONE1: 0x%08x\n", error->instdone1);
755 seq_printf(m, " BBADDR: 0x%08llx\n", error->bbaddr);
756 }
757 if (INTEL_INFO(dev)->gen >= 4)
758 seq_printf(m, " INSTPS: 0x%08x\n", error->instps[ring]);
759 seq_printf(m, " INSTPM: 0x%08x\n", error->instpm[ring]);
760 if (INTEL_INFO(dev)->gen >= 6) {
761 seq_printf(m, " FADDR: 0x%08x\n", error->faddr[ring]);
762 seq_printf(m, " FAULT_REG: 0x%08x\n", error->fault_reg[ring]);
763 seq_printf(m, " SYNC_0: 0x%08x\n",
764 error->semaphore_mboxes[ring][0]);
765 seq_printf(m, " SYNC_1: 0x%08x\n",
766 error->semaphore_mboxes[ring][1]);
767 }
768 seq_printf(m, " seqno: 0x%08x\n", error->seqno[ring]);
769 seq_printf(m, " ring->head: 0x%08x\n", error->cpu_ring_head[ring]);
770 seq_printf(m, " ring->tail: 0x%08x\n", error->cpu_ring_tail[ring]);
771 }
772
773 static int i915_error_state(struct seq_file *m, void *unused)
774 {
775 struct drm_info_node *node = (struct drm_info_node *) m->private;
776 struct drm_device *dev = node->minor->dev;
777 drm_i915_private_t *dev_priv = dev->dev_private;
778 struct drm_i915_error_state *error;
779 unsigned long flags;
780 int i, j, page, offset, elt;
781
782 spin_lock_irqsave(&dev_priv->error_lock, flags);
783 if (!dev_priv->first_error) {
784 seq_printf(m, "no error state collected\n");
785 goto out;
786 }
787
788 error = dev_priv->first_error;
789
790 seq_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec,
791 error->time.tv_usec);
792 seq_printf(m, "PCI ID: 0x%04x\n", dev->pci_device);
793 seq_printf(m, "EIR: 0x%08x\n", error->eir);
794 seq_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er);
795
796 for (i = 0; i < dev_priv->num_fence_regs; i++)
797 seq_printf(m, " fence[%d] = %08llx\n", i, error->fence[i]);
798
799 if (INTEL_INFO(dev)->gen >= 6) {
800 seq_printf(m, "ERROR: 0x%08x\n", error->error);
801 seq_printf(m, "DONE_REG: 0x%08x\n", error->done_reg);
802 }
803
804 i915_ring_error_state(m, dev, error, RCS);
805 if (HAS_BLT(dev))
806 i915_ring_error_state(m, dev, error, BCS);
807 if (HAS_BSD(dev))
808 i915_ring_error_state(m, dev, error, VCS);
809
810 if (error->active_bo)
811 print_error_buffers(m, "Active",
812 error->active_bo,
813 error->active_bo_count);
814
815 if (error->pinned_bo)
816 print_error_buffers(m, "Pinned",
817 error->pinned_bo,
818 error->pinned_bo_count);
819
820 for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
821 struct drm_i915_error_object *obj;
822
823 if ((obj = error->ring[i].batchbuffer)) {
824 seq_printf(m, "%s --- gtt_offset = 0x%08x\n",
825 dev_priv->ring[i].name,
826 obj->gtt_offset);
827 offset = 0;
828 for (page = 0; page < obj->page_count; page++) {
829 for (elt = 0; elt < PAGE_SIZE/4; elt++) {
830 seq_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]);
831 offset += 4;
832 }
833 }
834 }
835
836 if (error->ring[i].num_requests) {
837 seq_printf(m, "%s --- %d requests\n",
838 dev_priv->ring[i].name,
839 error->ring[i].num_requests);
840 for (j = 0; j < error->ring[i].num_requests; j++) {
841 seq_printf(m, " seqno 0x%08x, emitted %ld, tail 0x%08x\n",
842 error->ring[i].requests[j].seqno,
843 error->ring[i].requests[j].jiffies,
844 error->ring[i].requests[j].tail);
845 }
846 }
847
848 if ((obj = error->ring[i].ringbuffer)) {
849 seq_printf(m, "%s --- ringbuffer = 0x%08x\n",
850 dev_priv->ring[i].name,
851 obj->gtt_offset);
852 offset = 0;
853 for (page = 0; page < obj->page_count; page++) {
854 for (elt = 0; elt < PAGE_SIZE/4; elt++) {
855 seq_printf(m, "%08x : %08x\n",
856 offset,
857 obj->pages[page][elt]);
858 offset += 4;
859 }
860 }
861 }
862 }
863
864 if (error->overlay)
865 intel_overlay_print_error_state(m, error->overlay);
866
867 if (error->display)
868 intel_display_print_error_state(m, dev, error->display);
869
870 out:
871 spin_unlock_irqrestore(&dev_priv->error_lock, flags);
872
873 return 0;
874 }
875
876 static int i915_rstdby_delays(struct seq_file *m, void *unused)
877 {
878 struct drm_info_node *node = (struct drm_info_node *) m->private;
879 struct drm_device *dev = node->minor->dev;
880 drm_i915_private_t *dev_priv = dev->dev_private;
881 u16 crstanddelay;
882 int ret;
883
884 ret = mutex_lock_interruptible(&dev->struct_mutex);
885 if (ret)
886 return ret;
887
888 crstanddelay = I915_READ16(CRSTANDVID);
889
890 mutex_unlock(&dev->struct_mutex);
891
892 seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
893
894 return 0;
895 }
896
897 static int i915_cur_delayinfo(struct seq_file *m, void *unused)
898 {
899 struct drm_info_node *node = (struct drm_info_node *) m->private;
900 struct drm_device *dev = node->minor->dev;
901 drm_i915_private_t *dev_priv = dev->dev_private;
902 int ret;
903
904 if (IS_GEN5(dev)) {
905 u16 rgvswctl = I915_READ16(MEMSWCTL);
906 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
907
908 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
909 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
910 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
911 MEMSTAT_VID_SHIFT);
912 seq_printf(m, "Current P-state: %d\n",
913 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
914 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
915 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
916 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
917 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
918 u32 rpstat;
919 u32 rpupei, rpcurup, rpprevup;
920 u32 rpdownei, rpcurdown, rpprevdown;
921 int max_freq;
922
923 /* RPSTAT1 is in the GT power well */
924 ret = mutex_lock_interruptible(&dev->struct_mutex);
925 if (ret)
926 return ret;
927
928 gen6_gt_force_wake_get(dev_priv);
929
930 rpstat = I915_READ(GEN6_RPSTAT1);
931 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
932 rpcurup = I915_READ(GEN6_RP_CUR_UP);
933 rpprevup = I915_READ(GEN6_RP_PREV_UP);
934 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
935 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
936 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
937
938 gen6_gt_force_wake_put(dev_priv);
939 mutex_unlock(&dev->struct_mutex);
940
941 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
942 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
943 seq_printf(m, "Render p-state ratio: %d\n",
944 (gt_perf_status & 0xff00) >> 8);
945 seq_printf(m, "Render p-state VID: %d\n",
946 gt_perf_status & 0xff);
947 seq_printf(m, "Render p-state limit: %d\n",
948 rp_state_limits & 0xff);
949 seq_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >>
950 GEN6_CAGF_SHIFT) * 50);
951 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
952 GEN6_CURICONT_MASK);
953 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
954 GEN6_CURBSYTAVG_MASK);
955 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
956 GEN6_CURBSYTAVG_MASK);
957 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
958 GEN6_CURIAVG_MASK);
959 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
960 GEN6_CURBSYTAVG_MASK);
961 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
962 GEN6_CURBSYTAVG_MASK);
963
964 max_freq = (rp_state_cap & 0xff0000) >> 16;
965 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
966 max_freq * 50);
967
968 max_freq = (rp_state_cap & 0xff00) >> 8;
969 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
970 max_freq * 50);
971
972 max_freq = rp_state_cap & 0xff;
973 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
974 max_freq * 50);
975 } else {
976 seq_printf(m, "no P-state info available\n");
977 }
978
979 return 0;
980 }
981
982 static int i915_delayfreq_table(struct seq_file *m, void *unused)
983 {
984 struct drm_info_node *node = (struct drm_info_node *) m->private;
985 struct drm_device *dev = node->minor->dev;
986 drm_i915_private_t *dev_priv = dev->dev_private;
987 u32 delayfreq;
988 int ret, i;
989
990 ret = mutex_lock_interruptible(&dev->struct_mutex);
991 if (ret)
992 return ret;
993
994 for (i = 0; i < 16; i++) {
995 delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
996 seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
997 (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
998 }
999
1000 mutex_unlock(&dev->struct_mutex);
1001
1002 return 0;
1003 }
1004
1005 static inline int MAP_TO_MV(int map)
1006 {
1007 return 1250 - (map * 25);
1008 }
1009
1010 static int i915_inttoext_table(struct seq_file *m, void *unused)
1011 {
1012 struct drm_info_node *node = (struct drm_info_node *) m->private;
1013 struct drm_device *dev = node->minor->dev;
1014 drm_i915_private_t *dev_priv = dev->dev_private;
1015 u32 inttoext;
1016 int ret, i;
1017
1018 ret = mutex_lock_interruptible(&dev->struct_mutex);
1019 if (ret)
1020 return ret;
1021
1022 for (i = 1; i <= 32; i++) {
1023 inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
1024 seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
1025 }
1026
1027 mutex_unlock(&dev->struct_mutex);
1028
1029 return 0;
1030 }
1031
1032 static int ironlake_drpc_info(struct seq_file *m)
1033 {
1034 struct drm_info_node *node = (struct drm_info_node *) m->private;
1035 struct drm_device *dev = node->minor->dev;
1036 drm_i915_private_t *dev_priv = dev->dev_private;
1037 u32 rgvmodectl, rstdbyctl;
1038 u16 crstandvid;
1039 int ret;
1040
1041 ret = mutex_lock_interruptible(&dev->struct_mutex);
1042 if (ret)
1043 return ret;
1044
1045 rgvmodectl = I915_READ(MEMMODECTL);
1046 rstdbyctl = I915_READ(RSTDBYCTL);
1047 crstandvid = I915_READ16(CRSTANDVID);
1048
1049 mutex_unlock(&dev->struct_mutex);
1050
1051 seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1052 "yes" : "no");
1053 seq_printf(m, "Boost freq: %d\n",
1054 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1055 MEMMODE_BOOST_FREQ_SHIFT);
1056 seq_printf(m, "HW control enabled: %s\n",
1057 rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1058 seq_printf(m, "SW control enabled: %s\n",
1059 rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1060 seq_printf(m, "Gated voltage change: %s\n",
1061 rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1062 seq_printf(m, "Starting frequency: P%d\n",
1063 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1064 seq_printf(m, "Max P-state: P%d\n",
1065 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1066 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1067 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1068 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1069 seq_printf(m, "Render standby enabled: %s\n",
1070 (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1071 seq_printf(m, "Current RS state: ");
1072 switch (rstdbyctl & RSX_STATUS_MASK) {
1073 case RSX_STATUS_ON:
1074 seq_printf(m, "on\n");
1075 break;
1076 case RSX_STATUS_RC1:
1077 seq_printf(m, "RC1\n");
1078 break;
1079 case RSX_STATUS_RC1E:
1080 seq_printf(m, "RC1E\n");
1081 break;
1082 case RSX_STATUS_RS1:
1083 seq_printf(m, "RS1\n");
1084 break;
1085 case RSX_STATUS_RS2:
1086 seq_printf(m, "RS2 (RC6)\n");
1087 break;
1088 case RSX_STATUS_RS3:
1089 seq_printf(m, "RC3 (RC6+)\n");
1090 break;
1091 default:
1092 seq_printf(m, "unknown\n");
1093 break;
1094 }
1095
1096 return 0;
1097 }
1098
1099 static int gen6_drpc_info(struct seq_file *m)
1100 {
1101
1102 struct drm_info_node *node = (struct drm_info_node *) m->private;
1103 struct drm_device *dev = node->minor->dev;
1104 struct drm_i915_private *dev_priv = dev->dev_private;
1105 u32 rpmodectl1, gt_core_status, rcctl1;
1106 unsigned forcewake_count;
1107 int count=0, ret;
1108
1109
1110 ret = mutex_lock_interruptible(&dev->struct_mutex);
1111 if (ret)
1112 return ret;
1113
1114 spin_lock_irq(&dev_priv->gt_lock);
1115 forcewake_count = dev_priv->forcewake_count;
1116 spin_unlock_irq(&dev_priv->gt_lock);
1117
1118 if (forcewake_count) {
1119 seq_printf(m, "RC information inaccurate because somebody "
1120 "holds a forcewake reference \n");
1121 } else {
1122 /* NB: we cannot use forcewake, else we read the wrong values */
1123 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1124 udelay(10);
1125 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1126 }
1127
1128 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1129 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4);
1130
1131 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1132 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1133 mutex_unlock(&dev->struct_mutex);
1134
1135 seq_printf(m, "Video Turbo Mode: %s\n",
1136 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1137 seq_printf(m, "HW control enabled: %s\n",
1138 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1139 seq_printf(m, "SW control enabled: %s\n",
1140 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1141 GEN6_RP_MEDIA_SW_MODE));
1142 seq_printf(m, "RC1e Enabled: %s\n",
1143 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1144 seq_printf(m, "RC6 Enabled: %s\n",
1145 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1146 seq_printf(m, "Deep RC6 Enabled: %s\n",
1147 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1148 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1149 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1150 seq_printf(m, "Current RC state: ");
1151 switch (gt_core_status & GEN6_RCn_MASK) {
1152 case GEN6_RC0:
1153 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1154 seq_printf(m, "Core Power Down\n");
1155 else
1156 seq_printf(m, "on\n");
1157 break;
1158 case GEN6_RC3:
1159 seq_printf(m, "RC3\n");
1160 break;
1161 case GEN6_RC6:
1162 seq_printf(m, "RC6\n");
1163 break;
1164 case GEN6_RC7:
1165 seq_printf(m, "RC7\n");
1166 break;
1167 default:
1168 seq_printf(m, "Unknown\n");
1169 break;
1170 }
1171
1172 seq_printf(m, "Core Power Down: %s\n",
1173 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1174 return 0;
1175 }
1176
1177 static int i915_drpc_info(struct seq_file *m, void *unused)
1178 {
1179 struct drm_info_node *node = (struct drm_info_node *) m->private;
1180 struct drm_device *dev = node->minor->dev;
1181
1182 if (IS_GEN6(dev) || IS_GEN7(dev))
1183 return gen6_drpc_info(m);
1184 else
1185 return ironlake_drpc_info(m);
1186 }
1187
1188 static int i915_fbc_status(struct seq_file *m, void *unused)
1189 {
1190 struct drm_info_node *node = (struct drm_info_node *) m->private;
1191 struct drm_device *dev = node->minor->dev;
1192 drm_i915_private_t *dev_priv = dev->dev_private;
1193
1194 if (!I915_HAS_FBC(dev)) {
1195 seq_printf(m, "FBC unsupported on this chipset\n");
1196 return 0;
1197 }
1198
1199 if (intel_fbc_enabled(dev)) {
1200 seq_printf(m, "FBC enabled\n");
1201 } else {
1202 seq_printf(m, "FBC disabled: ");
1203 switch (dev_priv->no_fbc_reason) {
1204 case FBC_NO_OUTPUT:
1205 seq_printf(m, "no outputs");
1206 break;
1207 case FBC_STOLEN_TOO_SMALL:
1208 seq_printf(m, "not enough stolen memory");
1209 break;
1210 case FBC_UNSUPPORTED_MODE:
1211 seq_printf(m, "mode not supported");
1212 break;
1213 case FBC_MODE_TOO_LARGE:
1214 seq_printf(m, "mode too large");
1215 break;
1216 case FBC_BAD_PLANE:
1217 seq_printf(m, "FBC unsupported on plane");
1218 break;
1219 case FBC_NOT_TILED:
1220 seq_printf(m, "scanout buffer not tiled");
1221 break;
1222 case FBC_MULTIPLE_PIPES:
1223 seq_printf(m, "multiple pipes are enabled");
1224 break;
1225 case FBC_MODULE_PARAM:
1226 seq_printf(m, "disabled per module param (default off)");
1227 break;
1228 default:
1229 seq_printf(m, "unknown reason");
1230 }
1231 seq_printf(m, "\n");
1232 }
1233 return 0;
1234 }
1235
1236 static int i915_sr_status(struct seq_file *m, void *unused)
1237 {
1238 struct drm_info_node *node = (struct drm_info_node *) m->private;
1239 struct drm_device *dev = node->minor->dev;
1240 drm_i915_private_t *dev_priv = dev->dev_private;
1241 bool sr_enabled = false;
1242
1243 if (HAS_PCH_SPLIT(dev))
1244 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1245 else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1246 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1247 else if (IS_I915GM(dev))
1248 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1249 else if (IS_PINEVIEW(dev))
1250 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1251
1252 seq_printf(m, "self-refresh: %s\n",
1253 sr_enabled ? "enabled" : "disabled");
1254
1255 return 0;
1256 }
1257
1258 static int i915_emon_status(struct seq_file *m, void *unused)
1259 {
1260 struct drm_info_node *node = (struct drm_info_node *) m->private;
1261 struct drm_device *dev = node->minor->dev;
1262 drm_i915_private_t *dev_priv = dev->dev_private;
1263 unsigned long temp, chipset, gfx;
1264 int ret;
1265
1266 ret = mutex_lock_interruptible(&dev->struct_mutex);
1267 if (ret)
1268 return ret;
1269
1270 temp = i915_mch_val(dev_priv);
1271 chipset = i915_chipset_val(dev_priv);
1272 gfx = i915_gfx_val(dev_priv);
1273 mutex_unlock(&dev->struct_mutex);
1274
1275 seq_printf(m, "GMCH temp: %ld\n", temp);
1276 seq_printf(m, "Chipset power: %ld\n", chipset);
1277 seq_printf(m, "GFX power: %ld\n", gfx);
1278 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1279
1280 return 0;
1281 }
1282
1283 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1284 {
1285 struct drm_info_node *node = (struct drm_info_node *) m->private;
1286 struct drm_device *dev = node->minor->dev;
1287 drm_i915_private_t *dev_priv = dev->dev_private;
1288 int ret;
1289 int gpu_freq, ia_freq;
1290
1291 if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1292 seq_printf(m, "unsupported on this chipset\n");
1293 return 0;
1294 }
1295
1296 ret = mutex_lock_interruptible(&dev->struct_mutex);
1297 if (ret)
1298 return ret;
1299
1300 seq_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n");
1301
1302 for (gpu_freq = dev_priv->min_delay; gpu_freq <= dev_priv->max_delay;
1303 gpu_freq++) {
1304 I915_WRITE(GEN6_PCODE_DATA, gpu_freq);
1305 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
1306 GEN6_PCODE_READ_MIN_FREQ_TABLE);
1307 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
1308 GEN6_PCODE_READY) == 0, 10)) {
1309 DRM_ERROR("pcode read of freq table timed out\n");
1310 continue;
1311 }
1312 ia_freq = I915_READ(GEN6_PCODE_DATA);
1313 seq_printf(m, "%d\t\t%d\n", gpu_freq * 50, ia_freq * 100);
1314 }
1315
1316 mutex_unlock(&dev->struct_mutex);
1317
1318 return 0;
1319 }
1320
1321 static int i915_gfxec(struct seq_file *m, void *unused)
1322 {
1323 struct drm_info_node *node = (struct drm_info_node *) m->private;
1324 struct drm_device *dev = node->minor->dev;
1325 drm_i915_private_t *dev_priv = dev->dev_private;
1326 int ret;
1327
1328 ret = mutex_lock_interruptible(&dev->struct_mutex);
1329 if (ret)
1330 return ret;
1331
1332 seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1333
1334 mutex_unlock(&dev->struct_mutex);
1335
1336 return 0;
1337 }
1338
1339 static int i915_opregion(struct seq_file *m, void *unused)
1340 {
1341 struct drm_info_node *node = (struct drm_info_node *) m->private;
1342 struct drm_device *dev = node->minor->dev;
1343 drm_i915_private_t *dev_priv = dev->dev_private;
1344 struct intel_opregion *opregion = &dev_priv->opregion;
1345 int ret;
1346
1347 ret = mutex_lock_interruptible(&dev->struct_mutex);
1348 if (ret)
1349 return ret;
1350
1351 if (opregion->header)
1352 seq_write(m, opregion->header, OPREGION_SIZE);
1353
1354 mutex_unlock(&dev->struct_mutex);
1355
1356 return 0;
1357 }
1358
1359 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1360 {
1361 struct drm_info_node *node = (struct drm_info_node *) m->private;
1362 struct drm_device *dev = node->minor->dev;
1363 drm_i915_private_t *dev_priv = dev->dev_private;
1364 struct intel_fbdev *ifbdev;
1365 struct intel_framebuffer *fb;
1366 int ret;
1367
1368 ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1369 if (ret)
1370 return ret;
1371
1372 ifbdev = dev_priv->fbdev;
1373 fb = to_intel_framebuffer(ifbdev->helper.fb);
1374
1375 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ",
1376 fb->base.width,
1377 fb->base.height,
1378 fb->base.depth,
1379 fb->base.bits_per_pixel);
1380 describe_obj(m, fb->obj);
1381 seq_printf(m, "\n");
1382
1383 list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1384 if (&fb->base == ifbdev->helper.fb)
1385 continue;
1386
1387 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ",
1388 fb->base.width,
1389 fb->base.height,
1390 fb->base.depth,
1391 fb->base.bits_per_pixel);
1392 describe_obj(m, fb->obj);
1393 seq_printf(m, "\n");
1394 }
1395
1396 mutex_unlock(&dev->mode_config.mutex);
1397
1398 return 0;
1399 }
1400
1401 static int i915_context_status(struct seq_file *m, void *unused)
1402 {
1403 struct drm_info_node *node = (struct drm_info_node *) m->private;
1404 struct drm_device *dev = node->minor->dev;
1405 drm_i915_private_t *dev_priv = dev->dev_private;
1406 int ret;
1407
1408 ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1409 if (ret)
1410 return ret;
1411
1412 if (dev_priv->pwrctx) {
1413 seq_printf(m, "power context ");
1414 describe_obj(m, dev_priv->pwrctx);
1415 seq_printf(m, "\n");
1416 }
1417
1418 if (dev_priv->renderctx) {
1419 seq_printf(m, "render context ");
1420 describe_obj(m, dev_priv->renderctx);
1421 seq_printf(m, "\n");
1422 }
1423
1424 mutex_unlock(&dev->mode_config.mutex);
1425
1426 return 0;
1427 }
1428
1429 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1430 {
1431 struct drm_info_node *node = (struct drm_info_node *) m->private;
1432 struct drm_device *dev = node->minor->dev;
1433 struct drm_i915_private *dev_priv = dev->dev_private;
1434 unsigned forcewake_count;
1435
1436 spin_lock_irq(&dev_priv->gt_lock);
1437 forcewake_count = dev_priv->forcewake_count;
1438 spin_unlock_irq(&dev_priv->gt_lock);
1439
1440 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1441
1442 return 0;
1443 }
1444
1445 static const char *swizzle_string(unsigned swizzle)
1446 {
1447 switch(swizzle) {
1448 case I915_BIT_6_SWIZZLE_NONE:
1449 return "none";
1450 case I915_BIT_6_SWIZZLE_9:
1451 return "bit9";
1452 case I915_BIT_6_SWIZZLE_9_10:
1453 return "bit9/bit10";
1454 case I915_BIT_6_SWIZZLE_9_11:
1455 return "bit9/bit11";
1456 case I915_BIT_6_SWIZZLE_9_10_11:
1457 return "bit9/bit10/bit11";
1458 case I915_BIT_6_SWIZZLE_9_17:
1459 return "bit9/bit17";
1460 case I915_BIT_6_SWIZZLE_9_10_17:
1461 return "bit9/bit10/bit17";
1462 case I915_BIT_6_SWIZZLE_UNKNOWN:
1463 return "unkown";
1464 }
1465
1466 return "bug";
1467 }
1468
1469 static int i915_swizzle_info(struct seq_file *m, void *data)
1470 {
1471 struct drm_info_node *node = (struct drm_info_node *) m->private;
1472 struct drm_device *dev = node->minor->dev;
1473 struct drm_i915_private *dev_priv = dev->dev_private;
1474
1475 mutex_lock(&dev->struct_mutex);
1476 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1477 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1478 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1479 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1480
1481 if (IS_GEN3(dev) || IS_GEN4(dev)) {
1482 seq_printf(m, "DDC = 0x%08x\n",
1483 I915_READ(DCC));
1484 seq_printf(m, "C0DRB3 = 0x%04x\n",
1485 I915_READ16(C0DRB3));
1486 seq_printf(m, "C1DRB3 = 0x%04x\n",
1487 I915_READ16(C1DRB3));
1488 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
1489 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1490 I915_READ(MAD_DIMM_C0));
1491 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1492 I915_READ(MAD_DIMM_C1));
1493 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1494 I915_READ(MAD_DIMM_C2));
1495 seq_printf(m, "TILECTL = 0x%08x\n",
1496 I915_READ(TILECTL));
1497 seq_printf(m, "ARB_MODE = 0x%08x\n",
1498 I915_READ(ARB_MODE));
1499 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1500 I915_READ(DISP_ARB_CTL));
1501 }
1502 mutex_unlock(&dev->struct_mutex);
1503
1504 return 0;
1505 }
1506
1507 static int i915_ppgtt_info(struct seq_file *m, void *data)
1508 {
1509 struct drm_info_node *node = (struct drm_info_node *) m->private;
1510 struct drm_device *dev = node->minor->dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 struct intel_ring_buffer *ring;
1513 int i, ret;
1514
1515
1516 ret = mutex_lock_interruptible(&dev->struct_mutex);
1517 if (ret)
1518 return ret;
1519 if (INTEL_INFO(dev)->gen == 6)
1520 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1521
1522 for (i = 0; i < I915_NUM_RINGS; i++) {
1523 ring = &dev_priv->ring[i];
1524
1525 seq_printf(m, "%s\n", ring->name);
1526 if (INTEL_INFO(dev)->gen == 7)
1527 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1528 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1529 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1530 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1531 }
1532 if (dev_priv->mm.aliasing_ppgtt) {
1533 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1534
1535 seq_printf(m, "aliasing PPGTT:\n");
1536 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1537 }
1538 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1539 mutex_unlock(&dev->struct_mutex);
1540
1541 return 0;
1542 }
1543
1544 static int i915_dpio_info(struct seq_file *m, void *data)
1545 {
1546 struct drm_info_node *node = (struct drm_info_node *) m->private;
1547 struct drm_device *dev = node->minor->dev;
1548 struct drm_i915_private *dev_priv = dev->dev_private;
1549 int ret;
1550
1551
1552 if (!IS_VALLEYVIEW(dev)) {
1553 seq_printf(m, "unsupported\n");
1554 return 0;
1555 }
1556
1557 ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1558 if (ret)
1559 return ret;
1560
1561 seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
1562
1563 seq_printf(m, "DPIO_DIV_A: 0x%08x\n",
1564 intel_dpio_read(dev_priv, _DPIO_DIV_A));
1565 seq_printf(m, "DPIO_DIV_B: 0x%08x\n",
1566 intel_dpio_read(dev_priv, _DPIO_DIV_B));
1567
1568 seq_printf(m, "DPIO_REFSFR_A: 0x%08x\n",
1569 intel_dpio_read(dev_priv, _DPIO_REFSFR_A));
1570 seq_printf(m, "DPIO_REFSFR_B: 0x%08x\n",
1571 intel_dpio_read(dev_priv, _DPIO_REFSFR_B));
1572
1573 seq_printf(m, "DPIO_CORE_CLK_A: 0x%08x\n",
1574 intel_dpio_read(dev_priv, _DPIO_CORE_CLK_A));
1575 seq_printf(m, "DPIO_CORE_CLK_B: 0x%08x\n",
1576 intel_dpio_read(dev_priv, _DPIO_CORE_CLK_B));
1577
1578 seq_printf(m, "DPIO_LFP_COEFF_A: 0x%08x\n",
1579 intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_A));
1580 seq_printf(m, "DPIO_LFP_COEFF_B: 0x%08x\n",
1581 intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_B));
1582
1583 seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
1584 intel_dpio_read(dev_priv, DPIO_FASTCLK_DISABLE));
1585
1586 mutex_unlock(&dev->mode_config.mutex);
1587
1588 return 0;
1589 }
1590
1591 static int
1592 i915_debugfs_common_open(struct inode *inode,
1593 struct file *filp)
1594 {
1595 filp->private_data = inode->i_private;
1596 return 0;
1597 }
1598
1599 static ssize_t
1600 i915_wedged_read(struct file *filp,
1601 char __user *ubuf,
1602 size_t max,
1603 loff_t *ppos)
1604 {
1605 struct drm_device *dev = filp->private_data;
1606 drm_i915_private_t *dev_priv = dev->dev_private;
1607 char buf[80];
1608 int len;
1609
1610 len = snprintf(buf, sizeof(buf),
1611 "wedged : %d\n",
1612 atomic_read(&dev_priv->mm.wedged));
1613
1614 if (len > sizeof(buf))
1615 len = sizeof(buf);
1616
1617 return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1618 }
1619
1620 static ssize_t
1621 i915_wedged_write(struct file *filp,
1622 const char __user *ubuf,
1623 size_t cnt,
1624 loff_t *ppos)
1625 {
1626 struct drm_device *dev = filp->private_data;
1627 char buf[20];
1628 int val = 1;
1629
1630 if (cnt > 0) {
1631 if (cnt > sizeof(buf) - 1)
1632 return -EINVAL;
1633
1634 if (copy_from_user(buf, ubuf, cnt))
1635 return -EFAULT;
1636 buf[cnt] = 0;
1637
1638 val = simple_strtoul(buf, NULL, 0);
1639 }
1640
1641 DRM_INFO("Manually setting wedged to %d\n", val);
1642 i915_handle_error(dev, val);
1643
1644 return cnt;
1645 }
1646
1647 static const struct file_operations i915_wedged_fops = {
1648 .owner = THIS_MODULE,
1649 .open = i915_debugfs_common_open,
1650 .read = i915_wedged_read,
1651 .write = i915_wedged_write,
1652 .llseek = default_llseek,
1653 };
1654
1655 static ssize_t
1656 i915_max_freq_read(struct file *filp,
1657 char __user *ubuf,
1658 size_t max,
1659 loff_t *ppos)
1660 {
1661 struct drm_device *dev = filp->private_data;
1662 drm_i915_private_t *dev_priv = dev->dev_private;
1663 char buf[80];
1664 int len;
1665
1666 len = snprintf(buf, sizeof(buf),
1667 "max freq: %d\n", dev_priv->max_delay * 50);
1668
1669 if (len > sizeof(buf))
1670 len = sizeof(buf);
1671
1672 return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1673 }
1674
1675 static ssize_t
1676 i915_max_freq_write(struct file *filp,
1677 const char __user *ubuf,
1678 size_t cnt,
1679 loff_t *ppos)
1680 {
1681 struct drm_device *dev = filp->private_data;
1682 struct drm_i915_private *dev_priv = dev->dev_private;
1683 char buf[20];
1684 int val = 1;
1685
1686 if (cnt > 0) {
1687 if (cnt > sizeof(buf) - 1)
1688 return -EINVAL;
1689
1690 if (copy_from_user(buf, ubuf, cnt))
1691 return -EFAULT;
1692 buf[cnt] = 0;
1693
1694 val = simple_strtoul(buf, NULL, 0);
1695 }
1696
1697 DRM_DEBUG_DRIVER("Manually setting max freq to %d\n", val);
1698
1699 /*
1700 * Turbo will still be enabled, but won't go above the set value.
1701 */
1702 dev_priv->max_delay = val / 50;
1703
1704 gen6_set_rps(dev, val / 50);
1705
1706 return cnt;
1707 }
1708
1709 static const struct file_operations i915_max_freq_fops = {
1710 .owner = THIS_MODULE,
1711 .open = i915_debugfs_common_open,
1712 .read = i915_max_freq_read,
1713 .write = i915_max_freq_write,
1714 .llseek = default_llseek,
1715 };
1716
1717 static ssize_t
1718 i915_cache_sharing_read(struct file *filp,
1719 char __user *ubuf,
1720 size_t max,
1721 loff_t *ppos)
1722 {
1723 struct drm_device *dev = filp->private_data;
1724 drm_i915_private_t *dev_priv = dev->dev_private;
1725 char buf[80];
1726 u32 snpcr;
1727 int len;
1728
1729 mutex_lock(&dev_priv->dev->struct_mutex);
1730 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1731 mutex_unlock(&dev_priv->dev->struct_mutex);
1732
1733 len = snprintf(buf, sizeof(buf),
1734 "%d\n", (snpcr & GEN6_MBC_SNPCR_MASK) >>
1735 GEN6_MBC_SNPCR_SHIFT);
1736
1737 if (len > sizeof(buf))
1738 len = sizeof(buf);
1739
1740 return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1741 }
1742
1743 static ssize_t
1744 i915_cache_sharing_write(struct file *filp,
1745 const char __user *ubuf,
1746 size_t cnt,
1747 loff_t *ppos)
1748 {
1749 struct drm_device *dev = filp->private_data;
1750 struct drm_i915_private *dev_priv = dev->dev_private;
1751 char buf[20];
1752 u32 snpcr;
1753 int val = 1;
1754
1755 if (cnt > 0) {
1756 if (cnt > sizeof(buf) - 1)
1757 return -EINVAL;
1758
1759 if (copy_from_user(buf, ubuf, cnt))
1760 return -EFAULT;
1761 buf[cnt] = 0;
1762
1763 val = simple_strtoul(buf, NULL, 0);
1764 }
1765
1766 if (val < 0 || val > 3)
1767 return -EINVAL;
1768
1769 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %d\n", val);
1770
1771 /* Update the cache sharing policy here as well */
1772 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1773 snpcr &= ~GEN6_MBC_SNPCR_MASK;
1774 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
1775 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
1776
1777 return cnt;
1778 }
1779
1780 static const struct file_operations i915_cache_sharing_fops = {
1781 .owner = THIS_MODULE,
1782 .open = i915_debugfs_common_open,
1783 .read = i915_cache_sharing_read,
1784 .write = i915_cache_sharing_write,
1785 .llseek = default_llseek,
1786 };
1787
1788 /* As the drm_debugfs_init() routines are called before dev->dev_private is
1789 * allocated we need to hook into the minor for release. */
1790 static int
1791 drm_add_fake_info_node(struct drm_minor *minor,
1792 struct dentry *ent,
1793 const void *key)
1794 {
1795 struct drm_info_node *node;
1796
1797 node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL);
1798 if (node == NULL) {
1799 debugfs_remove(ent);
1800 return -ENOMEM;
1801 }
1802
1803 node->minor = minor;
1804 node->dent = ent;
1805 node->info_ent = (void *) key;
1806
1807 mutex_lock(&minor->debugfs_lock);
1808 list_add(&node->list, &minor->debugfs_list);
1809 mutex_unlock(&minor->debugfs_lock);
1810
1811 return 0;
1812 }
1813
1814 static int i915_forcewake_open(struct inode *inode, struct file *file)
1815 {
1816 struct drm_device *dev = inode->i_private;
1817 struct drm_i915_private *dev_priv = dev->dev_private;
1818 int ret;
1819
1820 if (INTEL_INFO(dev)->gen < 6)
1821 return 0;
1822
1823 ret = mutex_lock_interruptible(&dev->struct_mutex);
1824 if (ret)
1825 return ret;
1826 gen6_gt_force_wake_get(dev_priv);
1827 mutex_unlock(&dev->struct_mutex);
1828
1829 return 0;
1830 }
1831
1832 int i915_forcewake_release(struct inode *inode, struct file *file)
1833 {
1834 struct drm_device *dev = inode->i_private;
1835 struct drm_i915_private *dev_priv = dev->dev_private;
1836
1837 if (INTEL_INFO(dev)->gen < 6)
1838 return 0;
1839
1840 /*
1841 * It's bad that we can potentially hang userspace if struct_mutex gets
1842 * forever stuck. However, if we cannot acquire this lock it means that
1843 * almost certainly the driver has hung, is not unload-able. Therefore
1844 * hanging here is probably a minor inconvenience not to be seen my
1845 * almost every user.
1846 */
1847 mutex_lock(&dev->struct_mutex);
1848 gen6_gt_force_wake_put(dev_priv);
1849 mutex_unlock(&dev->struct_mutex);
1850
1851 return 0;
1852 }
1853
1854 static const struct file_operations i915_forcewake_fops = {
1855 .owner = THIS_MODULE,
1856 .open = i915_forcewake_open,
1857 .release = i915_forcewake_release,
1858 };
1859
1860 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
1861 {
1862 struct drm_device *dev = minor->dev;
1863 struct dentry *ent;
1864
1865 ent = debugfs_create_file("i915_forcewake_user",
1866 S_IRUSR,
1867 root, dev,
1868 &i915_forcewake_fops);
1869 if (IS_ERR(ent))
1870 return PTR_ERR(ent);
1871
1872 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
1873 }
1874
1875 static int i915_debugfs_create(struct dentry *root,
1876 struct drm_minor *minor,
1877 const char *name,
1878 const struct file_operations *fops)
1879 {
1880 struct drm_device *dev = minor->dev;
1881 struct dentry *ent;
1882
1883 ent = debugfs_create_file(name,
1884 S_IRUGO | S_IWUSR,
1885 root, dev,
1886 fops);
1887 if (IS_ERR(ent))
1888 return PTR_ERR(ent);
1889
1890 return drm_add_fake_info_node(minor, ent, fops);
1891 }
1892
1893 static struct drm_info_list i915_debugfs_list[] = {
1894 {"i915_capabilities", i915_capabilities, 0},
1895 {"i915_gem_objects", i915_gem_object_info, 0},
1896 {"i915_gem_gtt", i915_gem_gtt_info, 0},
1897 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
1898 {"i915_gem_flushing", i915_gem_object_list_info, 0, (void *) FLUSHING_LIST},
1899 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
1900 {"i915_gem_pinned", i915_gem_object_list_info, 0, (void *) PINNED_LIST},
1901 {"i915_gem_deferred_free", i915_gem_object_list_info, 0, (void *) DEFERRED_FREE_LIST},
1902 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
1903 {"i915_gem_request", i915_gem_request_info, 0},
1904 {"i915_gem_seqno", i915_gem_seqno_info, 0},
1905 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
1906 {"i915_gem_interrupt", i915_interrupt_info, 0},
1907 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
1908 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
1909 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
1910 {"i915_ringbuffer_data", i915_ringbuffer_data, 0, (void *)RCS},
1911 {"i915_ringbuffer_info", i915_ringbuffer_info, 0, (void *)RCS},
1912 {"i915_bsd_ringbuffer_data", i915_ringbuffer_data, 0, (void *)VCS},
1913 {"i915_bsd_ringbuffer_info", i915_ringbuffer_info, 0, (void *)VCS},
1914 {"i915_blt_ringbuffer_data", i915_ringbuffer_data, 0, (void *)BCS},
1915 {"i915_blt_ringbuffer_info", i915_ringbuffer_info, 0, (void *)BCS},
1916 {"i915_error_state", i915_error_state, 0},
1917 {"i915_rstdby_delays", i915_rstdby_delays, 0},
1918 {"i915_cur_delayinfo", i915_cur_delayinfo, 0},
1919 {"i915_delayfreq_table", i915_delayfreq_table, 0},
1920 {"i915_inttoext_table", i915_inttoext_table, 0},
1921 {"i915_drpc_info", i915_drpc_info, 0},
1922 {"i915_emon_status", i915_emon_status, 0},
1923 {"i915_ring_freq_table", i915_ring_freq_table, 0},
1924 {"i915_gfxec", i915_gfxec, 0},
1925 {"i915_fbc_status", i915_fbc_status, 0},
1926 {"i915_sr_status", i915_sr_status, 0},
1927 {"i915_opregion", i915_opregion, 0},
1928 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
1929 {"i915_context_status", i915_context_status, 0},
1930 {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
1931 {"i915_swizzle_info", i915_swizzle_info, 0},
1932 {"i915_ppgtt_info", i915_ppgtt_info, 0},
1933 {"i915_dpio", i915_dpio_info, 0},
1934 };
1935 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
1936
1937 int i915_debugfs_init(struct drm_minor *minor)
1938 {
1939 int ret;
1940
1941 ret = i915_debugfs_create(minor->debugfs_root, minor,
1942 "i915_wedged",
1943 &i915_wedged_fops);
1944 if (ret)
1945 return ret;
1946
1947 ret = i915_forcewake_create(minor->debugfs_root, minor);
1948 if (ret)
1949 return ret;
1950
1951 ret = i915_debugfs_create(minor->debugfs_root, minor,
1952 "i915_max_freq",
1953 &i915_max_freq_fops);
1954 if (ret)
1955 return ret;
1956
1957 ret = i915_debugfs_create(minor->debugfs_root, minor,
1958 "i915_cache_sharing",
1959 &i915_cache_sharing_fops);
1960 if (ret)
1961 return ret;
1962
1963 return drm_debugfs_create_files(i915_debugfs_list,
1964 I915_DEBUGFS_ENTRIES,
1965 minor->debugfs_root, minor);
1966 }
1967
1968 void i915_debugfs_cleanup(struct drm_minor *minor)
1969 {
1970 drm_debugfs_remove_files(i915_debugfs_list,
1971 I915_DEBUGFS_ENTRIES, minor);
1972 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
1973 1, minor);
1974 drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops,
1975 1, minor);
1976 drm_debugfs_remove_files((struct drm_info_list *) &i915_max_freq_fops,
1977 1, minor);
1978 drm_debugfs_remove_files((struct drm_info_list *) &i915_cache_sharing_fops,
1979 1, minor);
1980 }
1981
1982 #endif /* CONFIG_DEBUG_FS */
This page took 0.070176 seconds and 4 git commands to generate.