drm/i915/guc: index host arrays by i915 engine ID, not guc_id
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50 * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 struct dentry *ent,
54 const void *key)
55 {
56 struct drm_info_node *node;
57
58 node = kmalloc(sizeof(*node), GFP_KERNEL);
59 if (node == NULL) {
60 debugfs_remove(ent);
61 return -ENOMEM;
62 }
63
64 node->minor = minor;
65 node->dent = ent;
66 node->info_ent = (void *) key;
67
68 mutex_lock(&minor->debugfs_lock);
69 list_add(&node->list, &minor->debugfs_list);
70 mutex_unlock(&minor->debugfs_lock);
71
72 return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 struct drm_info_node *node = m->private;
78 struct drm_device *dev = node->minor->dev;
79 const struct intel_device_info *info = INTEL_INFO(dev);
80
81 seq_printf(m, "gen: %d\n", info->gen);
82 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89 return 0;
90 }
91
92 static char get_active_flag(struct drm_i915_gem_object *obj)
93 {
94 return obj->active ? '*' : ' ';
95 }
96
97 static char get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 return obj->pin_display ? 'p' : ' ';
100 }
101
102 static char get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104 switch (obj->tiling_mode) {
105 default:
106 case I915_TILING_NONE: return ' ';
107 case I915_TILING_X: return 'X';
108 case I915_TILING_Y: return 'Y';
109 }
110 }
111
112 static char get_global_flag(struct drm_i915_gem_object *obj)
113 {
114 return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
115 }
116
117 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
118 {
119 return obj->mapping ? 'M' : ' ';
120 }
121
122 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
123 {
124 u64 size = 0;
125 struct i915_vma *vma;
126
127 list_for_each_entry(vma, &obj->vma_list, obj_link) {
128 if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
129 size += vma->node.size;
130 }
131
132 return size;
133 }
134
135 static void
136 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
137 {
138 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
139 struct intel_engine_cs *engine;
140 struct i915_vma *vma;
141 int pin_count = 0;
142 enum intel_engine_id id;
143
144 lockdep_assert_held(&obj->base.dev->struct_mutex);
145
146 seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
147 &obj->base,
148 get_active_flag(obj),
149 get_pin_flag(obj),
150 get_tiling_flag(obj),
151 get_global_flag(obj),
152 get_pin_mapped_flag(obj),
153 obj->base.size / 1024,
154 obj->base.read_domains,
155 obj->base.write_domain);
156 for_each_engine_id(engine, dev_priv, id)
157 seq_printf(m, "%x ",
158 i915_gem_request_get_seqno(obj->last_read_req[id]));
159 seq_printf(m, "] %x %x%s%s%s",
160 i915_gem_request_get_seqno(obj->last_write_req),
161 i915_gem_request_get_seqno(obj->last_fenced_req),
162 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
163 obj->dirty ? " dirty" : "",
164 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
165 if (obj->base.name)
166 seq_printf(m, " (name: %d)", obj->base.name);
167 list_for_each_entry(vma, &obj->vma_list, obj_link) {
168 if (vma->pin_count > 0)
169 pin_count++;
170 }
171 seq_printf(m, " (pinned x %d)", pin_count);
172 if (obj->pin_display)
173 seq_printf(m, " (display)");
174 if (obj->fence_reg != I915_FENCE_REG_NONE)
175 seq_printf(m, " (fence: %d)", obj->fence_reg);
176 list_for_each_entry(vma, &obj->vma_list, obj_link) {
177 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
178 vma->is_ggtt ? "g" : "pp",
179 vma->node.start, vma->node.size);
180 if (vma->is_ggtt)
181 seq_printf(m, ", type: %u", vma->ggtt_view.type);
182 seq_puts(m, ")");
183 }
184 if (obj->stolen)
185 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
186 if (obj->pin_display || obj->fault_mappable) {
187 char s[3], *t = s;
188 if (obj->pin_display)
189 *t++ = 'p';
190 if (obj->fault_mappable)
191 *t++ = 'f';
192 *t = '\0';
193 seq_printf(m, " (%s mappable)", s);
194 }
195 if (obj->last_write_req != NULL)
196 seq_printf(m, " (%s)",
197 i915_gem_request_get_engine(obj->last_write_req)->name);
198 if (obj->frontbuffer_bits)
199 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
200 }
201
202 static int i915_gem_object_list_info(struct seq_file *m, void *data)
203 {
204 struct drm_info_node *node = m->private;
205 uintptr_t list = (uintptr_t) node->info_ent->data;
206 struct list_head *head;
207 struct drm_device *dev = node->minor->dev;
208 struct drm_i915_private *dev_priv = to_i915(dev);
209 struct i915_ggtt *ggtt = &dev_priv->ggtt;
210 struct i915_vma *vma;
211 u64 total_obj_size, total_gtt_size;
212 int count, ret;
213
214 ret = mutex_lock_interruptible(&dev->struct_mutex);
215 if (ret)
216 return ret;
217
218 /* FIXME: the user of this interface might want more than just GGTT */
219 switch (list) {
220 case ACTIVE_LIST:
221 seq_puts(m, "Active:\n");
222 head = &ggtt->base.active_list;
223 break;
224 case INACTIVE_LIST:
225 seq_puts(m, "Inactive:\n");
226 head = &ggtt->base.inactive_list;
227 break;
228 default:
229 mutex_unlock(&dev->struct_mutex);
230 return -EINVAL;
231 }
232
233 total_obj_size = total_gtt_size = count = 0;
234 list_for_each_entry(vma, head, vm_link) {
235 seq_printf(m, " ");
236 describe_obj(m, vma->obj);
237 seq_printf(m, "\n");
238 total_obj_size += vma->obj->base.size;
239 total_gtt_size += vma->node.size;
240 count++;
241 }
242 mutex_unlock(&dev->struct_mutex);
243
244 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
245 count, total_obj_size, total_gtt_size);
246 return 0;
247 }
248
249 static int obj_rank_by_stolen(void *priv,
250 struct list_head *A, struct list_head *B)
251 {
252 struct drm_i915_gem_object *a =
253 container_of(A, struct drm_i915_gem_object, obj_exec_link);
254 struct drm_i915_gem_object *b =
255 container_of(B, struct drm_i915_gem_object, obj_exec_link);
256
257 if (a->stolen->start < b->stolen->start)
258 return -1;
259 if (a->stolen->start > b->stolen->start)
260 return 1;
261 return 0;
262 }
263
264 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
265 {
266 struct drm_info_node *node = m->private;
267 struct drm_device *dev = node->minor->dev;
268 struct drm_i915_private *dev_priv = dev->dev_private;
269 struct drm_i915_gem_object *obj;
270 u64 total_obj_size, total_gtt_size;
271 LIST_HEAD(stolen);
272 int count, ret;
273
274 ret = mutex_lock_interruptible(&dev->struct_mutex);
275 if (ret)
276 return ret;
277
278 total_obj_size = total_gtt_size = count = 0;
279 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
280 if (obj->stolen == NULL)
281 continue;
282
283 list_add(&obj->obj_exec_link, &stolen);
284
285 total_obj_size += obj->base.size;
286 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
287 count++;
288 }
289 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
290 if (obj->stolen == NULL)
291 continue;
292
293 list_add(&obj->obj_exec_link, &stolen);
294
295 total_obj_size += obj->base.size;
296 count++;
297 }
298 list_sort(NULL, &stolen, obj_rank_by_stolen);
299 seq_puts(m, "Stolen:\n");
300 while (!list_empty(&stolen)) {
301 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
302 seq_puts(m, " ");
303 describe_obj(m, obj);
304 seq_putc(m, '\n');
305 list_del_init(&obj->obj_exec_link);
306 }
307 mutex_unlock(&dev->struct_mutex);
308
309 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
310 count, total_obj_size, total_gtt_size);
311 return 0;
312 }
313
314 #define count_objects(list, member) do { \
315 list_for_each_entry(obj, list, member) { \
316 size += i915_gem_obj_total_ggtt_size(obj); \
317 ++count; \
318 if (obj->map_and_fenceable) { \
319 mappable_size += i915_gem_obj_ggtt_size(obj); \
320 ++mappable_count; \
321 } \
322 } \
323 } while (0)
324
325 struct file_stats {
326 struct drm_i915_file_private *file_priv;
327 unsigned long count;
328 u64 total, unbound;
329 u64 global, shared;
330 u64 active, inactive;
331 };
332
333 static int per_file_stats(int id, void *ptr, void *data)
334 {
335 struct drm_i915_gem_object *obj = ptr;
336 struct file_stats *stats = data;
337 struct i915_vma *vma;
338
339 stats->count++;
340 stats->total += obj->base.size;
341
342 if (obj->base.name || obj->base.dma_buf)
343 stats->shared += obj->base.size;
344
345 if (USES_FULL_PPGTT(obj->base.dev)) {
346 list_for_each_entry(vma, &obj->vma_list, obj_link) {
347 struct i915_hw_ppgtt *ppgtt;
348
349 if (!drm_mm_node_allocated(&vma->node))
350 continue;
351
352 if (vma->is_ggtt) {
353 stats->global += obj->base.size;
354 continue;
355 }
356
357 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
358 if (ppgtt->file_priv != stats->file_priv)
359 continue;
360
361 if (obj->active) /* XXX per-vma statistic */
362 stats->active += obj->base.size;
363 else
364 stats->inactive += obj->base.size;
365
366 return 0;
367 }
368 } else {
369 if (i915_gem_obj_ggtt_bound(obj)) {
370 stats->global += obj->base.size;
371 if (obj->active)
372 stats->active += obj->base.size;
373 else
374 stats->inactive += obj->base.size;
375 return 0;
376 }
377 }
378
379 if (!list_empty(&obj->global_list))
380 stats->unbound += obj->base.size;
381
382 return 0;
383 }
384
385 #define print_file_stats(m, name, stats) do { \
386 if (stats.count) \
387 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
388 name, \
389 stats.count, \
390 stats.total, \
391 stats.active, \
392 stats.inactive, \
393 stats.global, \
394 stats.shared, \
395 stats.unbound); \
396 } while (0)
397
398 static void print_batch_pool_stats(struct seq_file *m,
399 struct drm_i915_private *dev_priv)
400 {
401 struct drm_i915_gem_object *obj;
402 struct file_stats stats;
403 struct intel_engine_cs *engine;
404 int j;
405
406 memset(&stats, 0, sizeof(stats));
407
408 for_each_engine(engine, dev_priv) {
409 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
410 list_for_each_entry(obj,
411 &engine->batch_pool.cache_list[j],
412 batch_pool_link)
413 per_file_stats(0, obj, &stats);
414 }
415 }
416
417 print_file_stats(m, "[k]batch pool", stats);
418 }
419
420 static int per_file_ctx_stats(int id, void *ptr, void *data)
421 {
422 struct i915_gem_context *ctx = ptr;
423 int n;
424
425 for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
426 if (ctx->engine[n].state)
427 per_file_stats(0, ctx->engine[n].state, data);
428 if (ctx->engine[n].ringbuf)
429 per_file_stats(0, ctx->engine[n].ringbuf->obj, data);
430 }
431
432 return 0;
433 }
434
435 static void print_context_stats(struct seq_file *m,
436 struct drm_i915_private *dev_priv)
437 {
438 struct file_stats stats;
439 struct drm_file *file;
440
441 memset(&stats, 0, sizeof(stats));
442
443 mutex_lock(&dev_priv->dev->struct_mutex);
444 if (dev_priv->kernel_context)
445 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
446
447 list_for_each_entry(file, &dev_priv->dev->filelist, lhead) {
448 struct drm_i915_file_private *fpriv = file->driver_priv;
449 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
450 }
451 mutex_unlock(&dev_priv->dev->struct_mutex);
452
453 print_file_stats(m, "[k]contexts", stats);
454 }
455
456 #define count_vmas(list, member) do { \
457 list_for_each_entry(vma, list, member) { \
458 size += i915_gem_obj_total_ggtt_size(vma->obj); \
459 ++count; \
460 if (vma->obj->map_and_fenceable) { \
461 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
462 ++mappable_count; \
463 } \
464 } \
465 } while (0)
466
467 static int i915_gem_object_info(struct seq_file *m, void* data)
468 {
469 struct drm_info_node *node = m->private;
470 struct drm_device *dev = node->minor->dev;
471 struct drm_i915_private *dev_priv = to_i915(dev);
472 struct i915_ggtt *ggtt = &dev_priv->ggtt;
473 u32 count, mappable_count, purgeable_count;
474 u64 size, mappable_size, purgeable_size;
475 unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
476 u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
477 struct drm_i915_gem_object *obj;
478 struct drm_file *file;
479 struct i915_vma *vma;
480 int ret;
481
482 ret = mutex_lock_interruptible(&dev->struct_mutex);
483 if (ret)
484 return ret;
485
486 seq_printf(m, "%u objects, %zu bytes\n",
487 dev_priv->mm.object_count,
488 dev_priv->mm.object_memory);
489
490 size = count = mappable_size = mappable_count = 0;
491 count_objects(&dev_priv->mm.bound_list, global_list);
492 seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
493 count, mappable_count, size, mappable_size);
494
495 size = count = mappable_size = mappable_count = 0;
496 count_vmas(&ggtt->base.active_list, vm_link);
497 seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
498 count, mappable_count, size, mappable_size);
499
500 size = count = mappable_size = mappable_count = 0;
501 count_vmas(&ggtt->base.inactive_list, vm_link);
502 seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
503 count, mappable_count, size, mappable_size);
504
505 size = count = purgeable_size = purgeable_count = 0;
506 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
507 size += obj->base.size, ++count;
508 if (obj->madv == I915_MADV_DONTNEED)
509 purgeable_size += obj->base.size, ++purgeable_count;
510 if (obj->mapping) {
511 pin_mapped_count++;
512 pin_mapped_size += obj->base.size;
513 if (obj->pages_pin_count == 0) {
514 pin_mapped_purgeable_count++;
515 pin_mapped_purgeable_size += obj->base.size;
516 }
517 }
518 }
519 seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
520
521 size = count = mappable_size = mappable_count = 0;
522 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
523 if (obj->fault_mappable) {
524 size += i915_gem_obj_ggtt_size(obj);
525 ++count;
526 }
527 if (obj->pin_display) {
528 mappable_size += i915_gem_obj_ggtt_size(obj);
529 ++mappable_count;
530 }
531 if (obj->madv == I915_MADV_DONTNEED) {
532 purgeable_size += obj->base.size;
533 ++purgeable_count;
534 }
535 if (obj->mapping) {
536 pin_mapped_count++;
537 pin_mapped_size += obj->base.size;
538 if (obj->pages_pin_count == 0) {
539 pin_mapped_purgeable_count++;
540 pin_mapped_purgeable_size += obj->base.size;
541 }
542 }
543 }
544 seq_printf(m, "%u purgeable objects, %llu bytes\n",
545 purgeable_count, purgeable_size);
546 seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
547 mappable_count, mappable_size);
548 seq_printf(m, "%u fault mappable objects, %llu bytes\n",
549 count, size);
550 seq_printf(m,
551 "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
552 pin_mapped_count, pin_mapped_purgeable_count,
553 pin_mapped_size, pin_mapped_purgeable_size);
554
555 seq_printf(m, "%llu [%llu] gtt total\n",
556 ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
557
558 seq_putc(m, '\n');
559 print_batch_pool_stats(m, dev_priv);
560 mutex_unlock(&dev->struct_mutex);
561
562 mutex_lock(&dev->filelist_mutex);
563 print_context_stats(m, dev_priv);
564 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
565 struct file_stats stats;
566 struct task_struct *task;
567
568 memset(&stats, 0, sizeof(stats));
569 stats.file_priv = file->driver_priv;
570 spin_lock(&file->table_lock);
571 idr_for_each(&file->object_idr, per_file_stats, &stats);
572 spin_unlock(&file->table_lock);
573 /*
574 * Although we have a valid reference on file->pid, that does
575 * not guarantee that the task_struct who called get_pid() is
576 * still alive (e.g. get_pid(current) => fork() => exit()).
577 * Therefore, we need to protect this ->comm access using RCU.
578 */
579 rcu_read_lock();
580 task = pid_task(file->pid, PIDTYPE_PID);
581 print_file_stats(m, task ? task->comm : "<unknown>", stats);
582 rcu_read_unlock();
583 }
584 mutex_unlock(&dev->filelist_mutex);
585
586 return 0;
587 }
588
589 static int i915_gem_gtt_info(struct seq_file *m, void *data)
590 {
591 struct drm_info_node *node = m->private;
592 struct drm_device *dev = node->minor->dev;
593 uintptr_t list = (uintptr_t) node->info_ent->data;
594 struct drm_i915_private *dev_priv = dev->dev_private;
595 struct drm_i915_gem_object *obj;
596 u64 total_obj_size, total_gtt_size;
597 int count, ret;
598
599 ret = mutex_lock_interruptible(&dev->struct_mutex);
600 if (ret)
601 return ret;
602
603 total_obj_size = total_gtt_size = count = 0;
604 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
605 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
606 continue;
607
608 seq_puts(m, " ");
609 describe_obj(m, obj);
610 seq_putc(m, '\n');
611 total_obj_size += obj->base.size;
612 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
613 count++;
614 }
615
616 mutex_unlock(&dev->struct_mutex);
617
618 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
619 count, total_obj_size, total_gtt_size);
620
621 return 0;
622 }
623
624 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
625 {
626 struct drm_info_node *node = m->private;
627 struct drm_device *dev = node->minor->dev;
628 struct drm_i915_private *dev_priv = dev->dev_private;
629 struct intel_crtc *crtc;
630 int ret;
631
632 ret = mutex_lock_interruptible(&dev->struct_mutex);
633 if (ret)
634 return ret;
635
636 for_each_intel_crtc(dev, crtc) {
637 const char pipe = pipe_name(crtc->pipe);
638 const char plane = plane_name(crtc->plane);
639 struct intel_flip_work *work;
640
641 spin_lock_irq(&dev->event_lock);
642 work = crtc->flip_work;
643 if (work == NULL) {
644 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
645 pipe, plane);
646 } else {
647 u32 pending;
648 u32 addr;
649
650 pending = atomic_read(&work->pending);
651 if (pending) {
652 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
653 pipe, plane);
654 } else {
655 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
656 pipe, plane);
657 }
658 if (work->flip_queued_req) {
659 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
660
661 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
662 engine->name,
663 i915_gem_request_get_seqno(work->flip_queued_req),
664 dev_priv->next_seqno,
665 engine->get_seqno(engine),
666 i915_gem_request_completed(work->flip_queued_req, true));
667 } else
668 seq_printf(m, "Flip not associated with any ring\n");
669 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
670 work->flip_queued_vblank,
671 work->flip_ready_vblank,
672 intel_crtc_get_vblank_counter(crtc));
673 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
674
675 if (INTEL_INFO(dev)->gen >= 4)
676 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
677 else
678 addr = I915_READ(DSPADDR(crtc->plane));
679 seq_printf(m, "Current scanout address 0x%08x\n", addr);
680
681 if (work->pending_flip_obj) {
682 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
683 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
684 }
685 }
686 spin_unlock_irq(&dev->event_lock);
687 }
688
689 mutex_unlock(&dev->struct_mutex);
690
691 return 0;
692 }
693
694 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
695 {
696 struct drm_info_node *node = m->private;
697 struct drm_device *dev = node->minor->dev;
698 struct drm_i915_private *dev_priv = dev->dev_private;
699 struct drm_i915_gem_object *obj;
700 struct intel_engine_cs *engine;
701 int total = 0;
702 int ret, j;
703
704 ret = mutex_lock_interruptible(&dev->struct_mutex);
705 if (ret)
706 return ret;
707
708 for_each_engine(engine, dev_priv) {
709 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
710 int count;
711
712 count = 0;
713 list_for_each_entry(obj,
714 &engine->batch_pool.cache_list[j],
715 batch_pool_link)
716 count++;
717 seq_printf(m, "%s cache[%d]: %d objects\n",
718 engine->name, j, count);
719
720 list_for_each_entry(obj,
721 &engine->batch_pool.cache_list[j],
722 batch_pool_link) {
723 seq_puts(m, " ");
724 describe_obj(m, obj);
725 seq_putc(m, '\n');
726 }
727
728 total += count;
729 }
730 }
731
732 seq_printf(m, "total: %d\n", total);
733
734 mutex_unlock(&dev->struct_mutex);
735
736 return 0;
737 }
738
739 static int i915_gem_request_info(struct seq_file *m, void *data)
740 {
741 struct drm_info_node *node = m->private;
742 struct drm_device *dev = node->minor->dev;
743 struct drm_i915_private *dev_priv = dev->dev_private;
744 struct intel_engine_cs *engine;
745 struct drm_i915_gem_request *req;
746 int ret, any;
747
748 ret = mutex_lock_interruptible(&dev->struct_mutex);
749 if (ret)
750 return ret;
751
752 any = 0;
753 for_each_engine(engine, dev_priv) {
754 int count;
755
756 count = 0;
757 list_for_each_entry(req, &engine->request_list, list)
758 count++;
759 if (count == 0)
760 continue;
761
762 seq_printf(m, "%s requests: %d\n", engine->name, count);
763 list_for_each_entry(req, &engine->request_list, list) {
764 struct task_struct *task;
765
766 rcu_read_lock();
767 task = NULL;
768 if (req->pid)
769 task = pid_task(req->pid, PIDTYPE_PID);
770 seq_printf(m, " %x @ %d: %s [%d]\n",
771 req->seqno,
772 (int) (jiffies - req->emitted_jiffies),
773 task ? task->comm : "<unknown>",
774 task ? task->pid : -1);
775 rcu_read_unlock();
776 }
777
778 any++;
779 }
780 mutex_unlock(&dev->struct_mutex);
781
782 if (any == 0)
783 seq_puts(m, "No requests\n");
784
785 return 0;
786 }
787
788 static void i915_ring_seqno_info(struct seq_file *m,
789 struct intel_engine_cs *engine)
790 {
791 seq_printf(m, "Current sequence (%s): %x\n",
792 engine->name, engine->get_seqno(engine));
793 seq_printf(m, "Current user interrupts (%s): %x\n",
794 engine->name, READ_ONCE(engine->user_interrupts));
795 }
796
797 static int i915_gem_seqno_info(struct seq_file *m, void *data)
798 {
799 struct drm_info_node *node = m->private;
800 struct drm_device *dev = node->minor->dev;
801 struct drm_i915_private *dev_priv = dev->dev_private;
802 struct intel_engine_cs *engine;
803 int ret;
804
805 ret = mutex_lock_interruptible(&dev->struct_mutex);
806 if (ret)
807 return ret;
808 intel_runtime_pm_get(dev_priv);
809
810 for_each_engine(engine, dev_priv)
811 i915_ring_seqno_info(m, engine);
812
813 intel_runtime_pm_put(dev_priv);
814 mutex_unlock(&dev->struct_mutex);
815
816 return 0;
817 }
818
819
820 static int i915_interrupt_info(struct seq_file *m, void *data)
821 {
822 struct drm_info_node *node = m->private;
823 struct drm_device *dev = node->minor->dev;
824 struct drm_i915_private *dev_priv = dev->dev_private;
825 struct intel_engine_cs *engine;
826 int ret, i, pipe;
827
828 ret = mutex_lock_interruptible(&dev->struct_mutex);
829 if (ret)
830 return ret;
831 intel_runtime_pm_get(dev_priv);
832
833 if (IS_CHERRYVIEW(dev)) {
834 seq_printf(m, "Master Interrupt Control:\t%08x\n",
835 I915_READ(GEN8_MASTER_IRQ));
836
837 seq_printf(m, "Display IER:\t%08x\n",
838 I915_READ(VLV_IER));
839 seq_printf(m, "Display IIR:\t%08x\n",
840 I915_READ(VLV_IIR));
841 seq_printf(m, "Display IIR_RW:\t%08x\n",
842 I915_READ(VLV_IIR_RW));
843 seq_printf(m, "Display IMR:\t%08x\n",
844 I915_READ(VLV_IMR));
845 for_each_pipe(dev_priv, pipe)
846 seq_printf(m, "Pipe %c stat:\t%08x\n",
847 pipe_name(pipe),
848 I915_READ(PIPESTAT(pipe)));
849
850 seq_printf(m, "Port hotplug:\t%08x\n",
851 I915_READ(PORT_HOTPLUG_EN));
852 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
853 I915_READ(VLV_DPFLIPSTAT));
854 seq_printf(m, "DPINVGTT:\t%08x\n",
855 I915_READ(DPINVGTT));
856
857 for (i = 0; i < 4; i++) {
858 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
859 i, I915_READ(GEN8_GT_IMR(i)));
860 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
861 i, I915_READ(GEN8_GT_IIR(i)));
862 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
863 i, I915_READ(GEN8_GT_IER(i)));
864 }
865
866 seq_printf(m, "PCU interrupt mask:\t%08x\n",
867 I915_READ(GEN8_PCU_IMR));
868 seq_printf(m, "PCU interrupt identity:\t%08x\n",
869 I915_READ(GEN8_PCU_IIR));
870 seq_printf(m, "PCU interrupt enable:\t%08x\n",
871 I915_READ(GEN8_PCU_IER));
872 } else if (INTEL_INFO(dev)->gen >= 8) {
873 seq_printf(m, "Master Interrupt Control:\t%08x\n",
874 I915_READ(GEN8_MASTER_IRQ));
875
876 for (i = 0; i < 4; i++) {
877 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
878 i, I915_READ(GEN8_GT_IMR(i)));
879 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
880 i, I915_READ(GEN8_GT_IIR(i)));
881 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
882 i, I915_READ(GEN8_GT_IER(i)));
883 }
884
885 for_each_pipe(dev_priv, pipe) {
886 enum intel_display_power_domain power_domain;
887
888 power_domain = POWER_DOMAIN_PIPE(pipe);
889 if (!intel_display_power_get_if_enabled(dev_priv,
890 power_domain)) {
891 seq_printf(m, "Pipe %c power disabled\n",
892 pipe_name(pipe));
893 continue;
894 }
895 seq_printf(m, "Pipe %c IMR:\t%08x\n",
896 pipe_name(pipe),
897 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
898 seq_printf(m, "Pipe %c IIR:\t%08x\n",
899 pipe_name(pipe),
900 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
901 seq_printf(m, "Pipe %c IER:\t%08x\n",
902 pipe_name(pipe),
903 I915_READ(GEN8_DE_PIPE_IER(pipe)));
904
905 intel_display_power_put(dev_priv, power_domain);
906 }
907
908 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
909 I915_READ(GEN8_DE_PORT_IMR));
910 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
911 I915_READ(GEN8_DE_PORT_IIR));
912 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
913 I915_READ(GEN8_DE_PORT_IER));
914
915 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
916 I915_READ(GEN8_DE_MISC_IMR));
917 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
918 I915_READ(GEN8_DE_MISC_IIR));
919 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
920 I915_READ(GEN8_DE_MISC_IER));
921
922 seq_printf(m, "PCU interrupt mask:\t%08x\n",
923 I915_READ(GEN8_PCU_IMR));
924 seq_printf(m, "PCU interrupt identity:\t%08x\n",
925 I915_READ(GEN8_PCU_IIR));
926 seq_printf(m, "PCU interrupt enable:\t%08x\n",
927 I915_READ(GEN8_PCU_IER));
928 } else if (IS_VALLEYVIEW(dev)) {
929 seq_printf(m, "Display IER:\t%08x\n",
930 I915_READ(VLV_IER));
931 seq_printf(m, "Display IIR:\t%08x\n",
932 I915_READ(VLV_IIR));
933 seq_printf(m, "Display IIR_RW:\t%08x\n",
934 I915_READ(VLV_IIR_RW));
935 seq_printf(m, "Display IMR:\t%08x\n",
936 I915_READ(VLV_IMR));
937 for_each_pipe(dev_priv, pipe)
938 seq_printf(m, "Pipe %c stat:\t%08x\n",
939 pipe_name(pipe),
940 I915_READ(PIPESTAT(pipe)));
941
942 seq_printf(m, "Master IER:\t%08x\n",
943 I915_READ(VLV_MASTER_IER));
944
945 seq_printf(m, "Render IER:\t%08x\n",
946 I915_READ(GTIER));
947 seq_printf(m, "Render IIR:\t%08x\n",
948 I915_READ(GTIIR));
949 seq_printf(m, "Render IMR:\t%08x\n",
950 I915_READ(GTIMR));
951
952 seq_printf(m, "PM IER:\t\t%08x\n",
953 I915_READ(GEN6_PMIER));
954 seq_printf(m, "PM IIR:\t\t%08x\n",
955 I915_READ(GEN6_PMIIR));
956 seq_printf(m, "PM IMR:\t\t%08x\n",
957 I915_READ(GEN6_PMIMR));
958
959 seq_printf(m, "Port hotplug:\t%08x\n",
960 I915_READ(PORT_HOTPLUG_EN));
961 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
962 I915_READ(VLV_DPFLIPSTAT));
963 seq_printf(m, "DPINVGTT:\t%08x\n",
964 I915_READ(DPINVGTT));
965
966 } else if (!HAS_PCH_SPLIT(dev)) {
967 seq_printf(m, "Interrupt enable: %08x\n",
968 I915_READ(IER));
969 seq_printf(m, "Interrupt identity: %08x\n",
970 I915_READ(IIR));
971 seq_printf(m, "Interrupt mask: %08x\n",
972 I915_READ(IMR));
973 for_each_pipe(dev_priv, pipe)
974 seq_printf(m, "Pipe %c stat: %08x\n",
975 pipe_name(pipe),
976 I915_READ(PIPESTAT(pipe)));
977 } else {
978 seq_printf(m, "North Display Interrupt enable: %08x\n",
979 I915_READ(DEIER));
980 seq_printf(m, "North Display Interrupt identity: %08x\n",
981 I915_READ(DEIIR));
982 seq_printf(m, "North Display Interrupt mask: %08x\n",
983 I915_READ(DEIMR));
984 seq_printf(m, "South Display Interrupt enable: %08x\n",
985 I915_READ(SDEIER));
986 seq_printf(m, "South Display Interrupt identity: %08x\n",
987 I915_READ(SDEIIR));
988 seq_printf(m, "South Display Interrupt mask: %08x\n",
989 I915_READ(SDEIMR));
990 seq_printf(m, "Graphics Interrupt enable: %08x\n",
991 I915_READ(GTIER));
992 seq_printf(m, "Graphics Interrupt identity: %08x\n",
993 I915_READ(GTIIR));
994 seq_printf(m, "Graphics Interrupt mask: %08x\n",
995 I915_READ(GTIMR));
996 }
997 for_each_engine(engine, dev_priv) {
998 if (INTEL_INFO(dev)->gen >= 6) {
999 seq_printf(m,
1000 "Graphics Interrupt mask (%s): %08x\n",
1001 engine->name, I915_READ_IMR(engine));
1002 }
1003 i915_ring_seqno_info(m, engine);
1004 }
1005 intel_runtime_pm_put(dev_priv);
1006 mutex_unlock(&dev->struct_mutex);
1007
1008 return 0;
1009 }
1010
1011 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
1012 {
1013 struct drm_info_node *node = m->private;
1014 struct drm_device *dev = node->minor->dev;
1015 struct drm_i915_private *dev_priv = dev->dev_private;
1016 int i, ret;
1017
1018 ret = mutex_lock_interruptible(&dev->struct_mutex);
1019 if (ret)
1020 return ret;
1021
1022 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
1023 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1024 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
1025
1026 seq_printf(m, "Fence %d, pin count = %d, object = ",
1027 i, dev_priv->fence_regs[i].pin_count);
1028 if (obj == NULL)
1029 seq_puts(m, "unused");
1030 else
1031 describe_obj(m, obj);
1032 seq_putc(m, '\n');
1033 }
1034
1035 mutex_unlock(&dev->struct_mutex);
1036 return 0;
1037 }
1038
1039 static int i915_hws_info(struct seq_file *m, void *data)
1040 {
1041 struct drm_info_node *node = m->private;
1042 struct drm_device *dev = node->minor->dev;
1043 struct drm_i915_private *dev_priv = dev->dev_private;
1044 struct intel_engine_cs *engine;
1045 const u32 *hws;
1046 int i;
1047
1048 engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
1049 hws = engine->status_page.page_addr;
1050 if (hws == NULL)
1051 return 0;
1052
1053 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
1054 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1055 i * 4,
1056 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
1057 }
1058 return 0;
1059 }
1060
1061 static ssize_t
1062 i915_error_state_write(struct file *filp,
1063 const char __user *ubuf,
1064 size_t cnt,
1065 loff_t *ppos)
1066 {
1067 struct i915_error_state_file_priv *error_priv = filp->private_data;
1068 struct drm_device *dev = error_priv->dev;
1069 int ret;
1070
1071 DRM_DEBUG_DRIVER("Resetting error state\n");
1072
1073 ret = mutex_lock_interruptible(&dev->struct_mutex);
1074 if (ret)
1075 return ret;
1076
1077 i915_destroy_error_state(dev);
1078 mutex_unlock(&dev->struct_mutex);
1079
1080 return cnt;
1081 }
1082
1083 static int i915_error_state_open(struct inode *inode, struct file *file)
1084 {
1085 struct drm_device *dev = inode->i_private;
1086 struct i915_error_state_file_priv *error_priv;
1087
1088 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1089 if (!error_priv)
1090 return -ENOMEM;
1091
1092 error_priv->dev = dev;
1093
1094 i915_error_state_get(dev, error_priv);
1095
1096 file->private_data = error_priv;
1097
1098 return 0;
1099 }
1100
1101 static int i915_error_state_release(struct inode *inode, struct file *file)
1102 {
1103 struct i915_error_state_file_priv *error_priv = file->private_data;
1104
1105 i915_error_state_put(error_priv);
1106 kfree(error_priv);
1107
1108 return 0;
1109 }
1110
1111 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1112 size_t count, loff_t *pos)
1113 {
1114 struct i915_error_state_file_priv *error_priv = file->private_data;
1115 struct drm_i915_error_state_buf error_str;
1116 loff_t tmp_pos = 0;
1117 ssize_t ret_count = 0;
1118 int ret;
1119
1120 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1121 if (ret)
1122 return ret;
1123
1124 ret = i915_error_state_to_str(&error_str, error_priv);
1125 if (ret)
1126 goto out;
1127
1128 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1129 error_str.buf,
1130 error_str.bytes);
1131
1132 if (ret_count < 0)
1133 ret = ret_count;
1134 else
1135 *pos = error_str.start + ret_count;
1136 out:
1137 i915_error_state_buf_release(&error_str);
1138 return ret ?: ret_count;
1139 }
1140
1141 static const struct file_operations i915_error_state_fops = {
1142 .owner = THIS_MODULE,
1143 .open = i915_error_state_open,
1144 .read = i915_error_state_read,
1145 .write = i915_error_state_write,
1146 .llseek = default_llseek,
1147 .release = i915_error_state_release,
1148 };
1149
1150 static int
1151 i915_next_seqno_get(void *data, u64 *val)
1152 {
1153 struct drm_device *dev = data;
1154 struct drm_i915_private *dev_priv = dev->dev_private;
1155 int ret;
1156
1157 ret = mutex_lock_interruptible(&dev->struct_mutex);
1158 if (ret)
1159 return ret;
1160
1161 *val = dev_priv->next_seqno;
1162 mutex_unlock(&dev->struct_mutex);
1163
1164 return 0;
1165 }
1166
1167 static int
1168 i915_next_seqno_set(void *data, u64 val)
1169 {
1170 struct drm_device *dev = data;
1171 int ret;
1172
1173 ret = mutex_lock_interruptible(&dev->struct_mutex);
1174 if (ret)
1175 return ret;
1176
1177 ret = i915_gem_set_seqno(dev, val);
1178 mutex_unlock(&dev->struct_mutex);
1179
1180 return ret;
1181 }
1182
1183 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1184 i915_next_seqno_get, i915_next_seqno_set,
1185 "0x%llx\n");
1186
1187 static int i915_frequency_info(struct seq_file *m, void *unused)
1188 {
1189 struct drm_info_node *node = m->private;
1190 struct drm_device *dev = node->minor->dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 int ret = 0;
1193
1194 intel_runtime_pm_get(dev_priv);
1195
1196 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1197
1198 if (IS_GEN5(dev)) {
1199 u16 rgvswctl = I915_READ16(MEMSWCTL);
1200 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1201
1202 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1203 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1204 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1205 MEMSTAT_VID_SHIFT);
1206 seq_printf(m, "Current P-state: %d\n",
1207 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1208 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1209 u32 freq_sts;
1210
1211 mutex_lock(&dev_priv->rps.hw_lock);
1212 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1213 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1214 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1215
1216 seq_printf(m, "actual GPU freq: %d MHz\n",
1217 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1218
1219 seq_printf(m, "current GPU freq: %d MHz\n",
1220 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1221
1222 seq_printf(m, "max GPU freq: %d MHz\n",
1223 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1224
1225 seq_printf(m, "min GPU freq: %d MHz\n",
1226 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1227
1228 seq_printf(m, "idle GPU freq: %d MHz\n",
1229 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1230
1231 seq_printf(m,
1232 "efficient (RPe) frequency: %d MHz\n",
1233 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1234 mutex_unlock(&dev_priv->rps.hw_lock);
1235 } else if (INTEL_INFO(dev)->gen >= 6) {
1236 u32 rp_state_limits;
1237 u32 gt_perf_status;
1238 u32 rp_state_cap;
1239 u32 rpmodectl, rpinclimit, rpdeclimit;
1240 u32 rpstat, cagf, reqf;
1241 u32 rpupei, rpcurup, rpprevup;
1242 u32 rpdownei, rpcurdown, rpprevdown;
1243 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1244 int max_freq;
1245
1246 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1247 if (IS_BROXTON(dev)) {
1248 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1249 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1250 } else {
1251 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1252 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1253 }
1254
1255 /* RPSTAT1 is in the GT power well */
1256 ret = mutex_lock_interruptible(&dev->struct_mutex);
1257 if (ret)
1258 goto out;
1259
1260 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1261
1262 reqf = I915_READ(GEN6_RPNSWREQ);
1263 if (IS_GEN9(dev))
1264 reqf >>= 23;
1265 else {
1266 reqf &= ~GEN6_TURBO_DISABLE;
1267 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1268 reqf >>= 24;
1269 else
1270 reqf >>= 25;
1271 }
1272 reqf = intel_gpu_freq(dev_priv, reqf);
1273
1274 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1275 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1276 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1277
1278 rpstat = I915_READ(GEN6_RPSTAT1);
1279 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1280 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1281 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1282 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1283 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1284 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1285 if (IS_GEN9(dev))
1286 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1287 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1288 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1289 else
1290 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1291 cagf = intel_gpu_freq(dev_priv, cagf);
1292
1293 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1294 mutex_unlock(&dev->struct_mutex);
1295
1296 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1297 pm_ier = I915_READ(GEN6_PMIER);
1298 pm_imr = I915_READ(GEN6_PMIMR);
1299 pm_isr = I915_READ(GEN6_PMISR);
1300 pm_iir = I915_READ(GEN6_PMIIR);
1301 pm_mask = I915_READ(GEN6_PMINTRMSK);
1302 } else {
1303 pm_ier = I915_READ(GEN8_GT_IER(2));
1304 pm_imr = I915_READ(GEN8_GT_IMR(2));
1305 pm_isr = I915_READ(GEN8_GT_ISR(2));
1306 pm_iir = I915_READ(GEN8_GT_IIR(2));
1307 pm_mask = I915_READ(GEN6_PMINTRMSK);
1308 }
1309 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1310 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1311 seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1312 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1313 seq_printf(m, "Render p-state ratio: %d\n",
1314 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1315 seq_printf(m, "Render p-state VID: %d\n",
1316 gt_perf_status & 0xff);
1317 seq_printf(m, "Render p-state limit: %d\n",
1318 rp_state_limits & 0xff);
1319 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1320 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1321 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1322 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1323 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1324 seq_printf(m, "CAGF: %dMHz\n", cagf);
1325 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1326 rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1327 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1328 rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1329 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1330 rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1331 seq_printf(m, "Up threshold: %d%%\n",
1332 dev_priv->rps.up_threshold);
1333
1334 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1335 rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1336 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1337 rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1338 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1339 rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1340 seq_printf(m, "Down threshold: %d%%\n",
1341 dev_priv->rps.down_threshold);
1342
1343 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1344 rp_state_cap >> 16) & 0xff;
1345 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1346 GEN9_FREQ_SCALER : 1);
1347 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1348 intel_gpu_freq(dev_priv, max_freq));
1349
1350 max_freq = (rp_state_cap & 0xff00) >> 8;
1351 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1352 GEN9_FREQ_SCALER : 1);
1353 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1354 intel_gpu_freq(dev_priv, max_freq));
1355
1356 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1357 rp_state_cap >> 0) & 0xff;
1358 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1359 GEN9_FREQ_SCALER : 1);
1360 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1361 intel_gpu_freq(dev_priv, max_freq));
1362 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1363 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1364
1365 seq_printf(m, "Current freq: %d MHz\n",
1366 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1367 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1368 seq_printf(m, "Idle freq: %d MHz\n",
1369 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1370 seq_printf(m, "Min freq: %d MHz\n",
1371 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1372 seq_printf(m, "Max freq: %d MHz\n",
1373 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1374 seq_printf(m,
1375 "efficient (RPe) frequency: %d MHz\n",
1376 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1377 } else {
1378 seq_puts(m, "no P-state info available\n");
1379 }
1380
1381 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1382 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1383 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1384
1385 out:
1386 intel_runtime_pm_put(dev_priv);
1387 return ret;
1388 }
1389
1390 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1391 {
1392 struct drm_info_node *node = m->private;
1393 struct drm_device *dev = node->minor->dev;
1394 struct drm_i915_private *dev_priv = dev->dev_private;
1395 struct intel_engine_cs *engine;
1396 u64 acthd[I915_NUM_ENGINES];
1397 u32 seqno[I915_NUM_ENGINES];
1398 u32 instdone[I915_NUM_INSTDONE_REG];
1399 enum intel_engine_id id;
1400 int j;
1401
1402 if (!i915.enable_hangcheck) {
1403 seq_printf(m, "Hangcheck disabled\n");
1404 return 0;
1405 }
1406
1407 intel_runtime_pm_get(dev_priv);
1408
1409 for_each_engine_id(engine, dev_priv, id) {
1410 acthd[id] = intel_ring_get_active_head(engine);
1411 seqno[id] = engine->get_seqno(engine);
1412 }
1413
1414 i915_get_extra_instdone(dev_priv, instdone);
1415
1416 intel_runtime_pm_put(dev_priv);
1417
1418 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1419 seq_printf(m, "Hangcheck active, fires in %dms\n",
1420 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1421 jiffies));
1422 } else
1423 seq_printf(m, "Hangcheck inactive\n");
1424
1425 for_each_engine_id(engine, dev_priv, id) {
1426 seq_printf(m, "%s:\n", engine->name);
1427 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1428 engine->hangcheck.seqno,
1429 seqno[id],
1430 engine->last_submitted_seqno);
1431 seq_printf(m, "\tuser interrupts = %x [current %x]\n",
1432 engine->hangcheck.user_interrupts,
1433 READ_ONCE(engine->user_interrupts));
1434 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1435 (long long)engine->hangcheck.acthd,
1436 (long long)acthd[id]);
1437 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1438 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1439
1440 if (engine->id == RCS) {
1441 seq_puts(m, "\tinstdone read =");
1442
1443 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1444 seq_printf(m, " 0x%08x", instdone[j]);
1445
1446 seq_puts(m, "\n\tinstdone accu =");
1447
1448 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1449 seq_printf(m, " 0x%08x",
1450 engine->hangcheck.instdone[j]);
1451
1452 seq_puts(m, "\n");
1453 }
1454 }
1455
1456 return 0;
1457 }
1458
1459 static int ironlake_drpc_info(struct seq_file *m)
1460 {
1461 struct drm_info_node *node = m->private;
1462 struct drm_device *dev = node->minor->dev;
1463 struct drm_i915_private *dev_priv = dev->dev_private;
1464 u32 rgvmodectl, rstdbyctl;
1465 u16 crstandvid;
1466 int ret;
1467
1468 ret = mutex_lock_interruptible(&dev->struct_mutex);
1469 if (ret)
1470 return ret;
1471 intel_runtime_pm_get(dev_priv);
1472
1473 rgvmodectl = I915_READ(MEMMODECTL);
1474 rstdbyctl = I915_READ(RSTDBYCTL);
1475 crstandvid = I915_READ16(CRSTANDVID);
1476
1477 intel_runtime_pm_put(dev_priv);
1478 mutex_unlock(&dev->struct_mutex);
1479
1480 seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1481 seq_printf(m, "Boost freq: %d\n",
1482 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1483 MEMMODE_BOOST_FREQ_SHIFT);
1484 seq_printf(m, "HW control enabled: %s\n",
1485 yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1486 seq_printf(m, "SW control enabled: %s\n",
1487 yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1488 seq_printf(m, "Gated voltage change: %s\n",
1489 yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1490 seq_printf(m, "Starting frequency: P%d\n",
1491 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1492 seq_printf(m, "Max P-state: P%d\n",
1493 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1494 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1495 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1496 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1497 seq_printf(m, "Render standby enabled: %s\n",
1498 yesno(!(rstdbyctl & RCX_SW_EXIT)));
1499 seq_puts(m, "Current RS state: ");
1500 switch (rstdbyctl & RSX_STATUS_MASK) {
1501 case RSX_STATUS_ON:
1502 seq_puts(m, "on\n");
1503 break;
1504 case RSX_STATUS_RC1:
1505 seq_puts(m, "RC1\n");
1506 break;
1507 case RSX_STATUS_RC1E:
1508 seq_puts(m, "RC1E\n");
1509 break;
1510 case RSX_STATUS_RS1:
1511 seq_puts(m, "RS1\n");
1512 break;
1513 case RSX_STATUS_RS2:
1514 seq_puts(m, "RS2 (RC6)\n");
1515 break;
1516 case RSX_STATUS_RS3:
1517 seq_puts(m, "RC3 (RC6+)\n");
1518 break;
1519 default:
1520 seq_puts(m, "unknown\n");
1521 break;
1522 }
1523
1524 return 0;
1525 }
1526
1527 static int i915_forcewake_domains(struct seq_file *m, void *data)
1528 {
1529 struct drm_info_node *node = m->private;
1530 struct drm_device *dev = node->minor->dev;
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 struct intel_uncore_forcewake_domain *fw_domain;
1533
1534 spin_lock_irq(&dev_priv->uncore.lock);
1535 for_each_fw_domain(fw_domain, dev_priv) {
1536 seq_printf(m, "%s.wake_count = %u\n",
1537 intel_uncore_forcewake_domain_to_str(fw_domain->id),
1538 fw_domain->wake_count);
1539 }
1540 spin_unlock_irq(&dev_priv->uncore.lock);
1541
1542 return 0;
1543 }
1544
1545 static int vlv_drpc_info(struct seq_file *m)
1546 {
1547 struct drm_info_node *node = m->private;
1548 struct drm_device *dev = node->minor->dev;
1549 struct drm_i915_private *dev_priv = dev->dev_private;
1550 u32 rpmodectl1, rcctl1, pw_status;
1551
1552 intel_runtime_pm_get(dev_priv);
1553
1554 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1555 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1556 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1557
1558 intel_runtime_pm_put(dev_priv);
1559
1560 seq_printf(m, "Video Turbo Mode: %s\n",
1561 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1562 seq_printf(m, "Turbo enabled: %s\n",
1563 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1564 seq_printf(m, "HW control enabled: %s\n",
1565 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1566 seq_printf(m, "SW control enabled: %s\n",
1567 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1568 GEN6_RP_MEDIA_SW_MODE));
1569 seq_printf(m, "RC6 Enabled: %s\n",
1570 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1571 GEN6_RC_CTL_EI_MODE(1))));
1572 seq_printf(m, "Render Power Well: %s\n",
1573 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1574 seq_printf(m, "Media Power Well: %s\n",
1575 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1576
1577 seq_printf(m, "Render RC6 residency since boot: %u\n",
1578 I915_READ(VLV_GT_RENDER_RC6));
1579 seq_printf(m, "Media RC6 residency since boot: %u\n",
1580 I915_READ(VLV_GT_MEDIA_RC6));
1581
1582 return i915_forcewake_domains(m, NULL);
1583 }
1584
1585 static int gen6_drpc_info(struct seq_file *m)
1586 {
1587 struct drm_info_node *node = m->private;
1588 struct drm_device *dev = node->minor->dev;
1589 struct drm_i915_private *dev_priv = dev->dev_private;
1590 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1591 unsigned forcewake_count;
1592 int count = 0, ret;
1593
1594 ret = mutex_lock_interruptible(&dev->struct_mutex);
1595 if (ret)
1596 return ret;
1597 intel_runtime_pm_get(dev_priv);
1598
1599 spin_lock_irq(&dev_priv->uncore.lock);
1600 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1601 spin_unlock_irq(&dev_priv->uncore.lock);
1602
1603 if (forcewake_count) {
1604 seq_puts(m, "RC information inaccurate because somebody "
1605 "holds a forcewake reference \n");
1606 } else {
1607 /* NB: we cannot use forcewake, else we read the wrong values */
1608 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1609 udelay(10);
1610 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1611 }
1612
1613 gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1614 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1615
1616 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1617 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1618 mutex_unlock(&dev->struct_mutex);
1619 mutex_lock(&dev_priv->rps.hw_lock);
1620 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1621 mutex_unlock(&dev_priv->rps.hw_lock);
1622
1623 intel_runtime_pm_put(dev_priv);
1624
1625 seq_printf(m, "Video Turbo Mode: %s\n",
1626 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1627 seq_printf(m, "HW control enabled: %s\n",
1628 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1629 seq_printf(m, "SW control enabled: %s\n",
1630 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1631 GEN6_RP_MEDIA_SW_MODE));
1632 seq_printf(m, "RC1e Enabled: %s\n",
1633 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1634 seq_printf(m, "RC6 Enabled: %s\n",
1635 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1636 seq_printf(m, "Deep RC6 Enabled: %s\n",
1637 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1638 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1639 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1640 seq_puts(m, "Current RC state: ");
1641 switch (gt_core_status & GEN6_RCn_MASK) {
1642 case GEN6_RC0:
1643 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1644 seq_puts(m, "Core Power Down\n");
1645 else
1646 seq_puts(m, "on\n");
1647 break;
1648 case GEN6_RC3:
1649 seq_puts(m, "RC3\n");
1650 break;
1651 case GEN6_RC6:
1652 seq_puts(m, "RC6\n");
1653 break;
1654 case GEN6_RC7:
1655 seq_puts(m, "RC7\n");
1656 break;
1657 default:
1658 seq_puts(m, "Unknown\n");
1659 break;
1660 }
1661
1662 seq_printf(m, "Core Power Down: %s\n",
1663 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1664
1665 /* Not exactly sure what this is */
1666 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1667 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1668 seq_printf(m, "RC6 residency since boot: %u\n",
1669 I915_READ(GEN6_GT_GFX_RC6));
1670 seq_printf(m, "RC6+ residency since boot: %u\n",
1671 I915_READ(GEN6_GT_GFX_RC6p));
1672 seq_printf(m, "RC6++ residency since boot: %u\n",
1673 I915_READ(GEN6_GT_GFX_RC6pp));
1674
1675 seq_printf(m, "RC6 voltage: %dmV\n",
1676 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1677 seq_printf(m, "RC6+ voltage: %dmV\n",
1678 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1679 seq_printf(m, "RC6++ voltage: %dmV\n",
1680 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1681 return 0;
1682 }
1683
1684 static int i915_drpc_info(struct seq_file *m, void *unused)
1685 {
1686 struct drm_info_node *node = m->private;
1687 struct drm_device *dev = node->minor->dev;
1688
1689 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1690 return vlv_drpc_info(m);
1691 else if (INTEL_INFO(dev)->gen >= 6)
1692 return gen6_drpc_info(m);
1693 else
1694 return ironlake_drpc_info(m);
1695 }
1696
1697 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1698 {
1699 struct drm_info_node *node = m->private;
1700 struct drm_device *dev = node->minor->dev;
1701 struct drm_i915_private *dev_priv = dev->dev_private;
1702
1703 seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1704 dev_priv->fb_tracking.busy_bits);
1705
1706 seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1707 dev_priv->fb_tracking.flip_bits);
1708
1709 return 0;
1710 }
1711
1712 static int i915_fbc_status(struct seq_file *m, void *unused)
1713 {
1714 struct drm_info_node *node = m->private;
1715 struct drm_device *dev = node->minor->dev;
1716 struct drm_i915_private *dev_priv = dev->dev_private;
1717
1718 if (!HAS_FBC(dev)) {
1719 seq_puts(m, "FBC unsupported on this chipset\n");
1720 return 0;
1721 }
1722
1723 intel_runtime_pm_get(dev_priv);
1724 mutex_lock(&dev_priv->fbc.lock);
1725
1726 if (intel_fbc_is_active(dev_priv))
1727 seq_puts(m, "FBC enabled\n");
1728 else
1729 seq_printf(m, "FBC disabled: %s\n",
1730 dev_priv->fbc.no_fbc_reason);
1731
1732 if (INTEL_INFO(dev_priv)->gen >= 7)
1733 seq_printf(m, "Compressing: %s\n",
1734 yesno(I915_READ(FBC_STATUS2) &
1735 FBC_COMPRESSION_MASK));
1736
1737 mutex_unlock(&dev_priv->fbc.lock);
1738 intel_runtime_pm_put(dev_priv);
1739
1740 return 0;
1741 }
1742
1743 static int i915_fbc_fc_get(void *data, u64 *val)
1744 {
1745 struct drm_device *dev = data;
1746 struct drm_i915_private *dev_priv = dev->dev_private;
1747
1748 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1749 return -ENODEV;
1750
1751 *val = dev_priv->fbc.false_color;
1752
1753 return 0;
1754 }
1755
1756 static int i915_fbc_fc_set(void *data, u64 val)
1757 {
1758 struct drm_device *dev = data;
1759 struct drm_i915_private *dev_priv = dev->dev_private;
1760 u32 reg;
1761
1762 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1763 return -ENODEV;
1764
1765 mutex_lock(&dev_priv->fbc.lock);
1766
1767 reg = I915_READ(ILK_DPFC_CONTROL);
1768 dev_priv->fbc.false_color = val;
1769
1770 I915_WRITE(ILK_DPFC_CONTROL, val ?
1771 (reg | FBC_CTL_FALSE_COLOR) :
1772 (reg & ~FBC_CTL_FALSE_COLOR));
1773
1774 mutex_unlock(&dev_priv->fbc.lock);
1775 return 0;
1776 }
1777
1778 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1779 i915_fbc_fc_get, i915_fbc_fc_set,
1780 "%llu\n");
1781
1782 static int i915_ips_status(struct seq_file *m, void *unused)
1783 {
1784 struct drm_info_node *node = m->private;
1785 struct drm_device *dev = node->minor->dev;
1786 struct drm_i915_private *dev_priv = dev->dev_private;
1787
1788 if (!HAS_IPS(dev)) {
1789 seq_puts(m, "not supported\n");
1790 return 0;
1791 }
1792
1793 intel_runtime_pm_get(dev_priv);
1794
1795 seq_printf(m, "Enabled by kernel parameter: %s\n",
1796 yesno(i915.enable_ips));
1797
1798 if (INTEL_INFO(dev)->gen >= 8) {
1799 seq_puts(m, "Currently: unknown\n");
1800 } else {
1801 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1802 seq_puts(m, "Currently: enabled\n");
1803 else
1804 seq_puts(m, "Currently: disabled\n");
1805 }
1806
1807 intel_runtime_pm_put(dev_priv);
1808
1809 return 0;
1810 }
1811
1812 static int i915_sr_status(struct seq_file *m, void *unused)
1813 {
1814 struct drm_info_node *node = m->private;
1815 struct drm_device *dev = node->minor->dev;
1816 struct drm_i915_private *dev_priv = dev->dev_private;
1817 bool sr_enabled = false;
1818
1819 intel_runtime_pm_get(dev_priv);
1820
1821 if (HAS_PCH_SPLIT(dev))
1822 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1823 else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1824 IS_I945G(dev) || IS_I945GM(dev))
1825 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1826 else if (IS_I915GM(dev))
1827 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1828 else if (IS_PINEVIEW(dev))
1829 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1830 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1831 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1832
1833 intel_runtime_pm_put(dev_priv);
1834
1835 seq_printf(m, "self-refresh: %s\n",
1836 sr_enabled ? "enabled" : "disabled");
1837
1838 return 0;
1839 }
1840
1841 static int i915_emon_status(struct seq_file *m, void *unused)
1842 {
1843 struct drm_info_node *node = m->private;
1844 struct drm_device *dev = node->minor->dev;
1845 struct drm_i915_private *dev_priv = dev->dev_private;
1846 unsigned long temp, chipset, gfx;
1847 int ret;
1848
1849 if (!IS_GEN5(dev))
1850 return -ENODEV;
1851
1852 ret = mutex_lock_interruptible(&dev->struct_mutex);
1853 if (ret)
1854 return ret;
1855
1856 temp = i915_mch_val(dev_priv);
1857 chipset = i915_chipset_val(dev_priv);
1858 gfx = i915_gfx_val(dev_priv);
1859 mutex_unlock(&dev->struct_mutex);
1860
1861 seq_printf(m, "GMCH temp: %ld\n", temp);
1862 seq_printf(m, "Chipset power: %ld\n", chipset);
1863 seq_printf(m, "GFX power: %ld\n", gfx);
1864 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1865
1866 return 0;
1867 }
1868
1869 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1870 {
1871 struct drm_info_node *node = m->private;
1872 struct drm_device *dev = node->minor->dev;
1873 struct drm_i915_private *dev_priv = dev->dev_private;
1874 int ret = 0;
1875 int gpu_freq, ia_freq;
1876 unsigned int max_gpu_freq, min_gpu_freq;
1877
1878 if (!HAS_CORE_RING_FREQ(dev)) {
1879 seq_puts(m, "unsupported on this chipset\n");
1880 return 0;
1881 }
1882
1883 intel_runtime_pm_get(dev_priv);
1884
1885 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1886
1887 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1888 if (ret)
1889 goto out;
1890
1891 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1892 /* Convert GT frequency to 50 HZ units */
1893 min_gpu_freq =
1894 dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1895 max_gpu_freq =
1896 dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1897 } else {
1898 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1899 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1900 }
1901
1902 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1903
1904 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1905 ia_freq = gpu_freq;
1906 sandybridge_pcode_read(dev_priv,
1907 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1908 &ia_freq);
1909 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1910 intel_gpu_freq(dev_priv, (gpu_freq *
1911 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1912 GEN9_FREQ_SCALER : 1))),
1913 ((ia_freq >> 0) & 0xff) * 100,
1914 ((ia_freq >> 8) & 0xff) * 100);
1915 }
1916
1917 mutex_unlock(&dev_priv->rps.hw_lock);
1918
1919 out:
1920 intel_runtime_pm_put(dev_priv);
1921 return ret;
1922 }
1923
1924 static int i915_opregion(struct seq_file *m, void *unused)
1925 {
1926 struct drm_info_node *node = m->private;
1927 struct drm_device *dev = node->minor->dev;
1928 struct drm_i915_private *dev_priv = dev->dev_private;
1929 struct intel_opregion *opregion = &dev_priv->opregion;
1930 int ret;
1931
1932 ret = mutex_lock_interruptible(&dev->struct_mutex);
1933 if (ret)
1934 goto out;
1935
1936 if (opregion->header)
1937 seq_write(m, opregion->header, OPREGION_SIZE);
1938
1939 mutex_unlock(&dev->struct_mutex);
1940
1941 out:
1942 return 0;
1943 }
1944
1945 static int i915_vbt(struct seq_file *m, void *unused)
1946 {
1947 struct drm_info_node *node = m->private;
1948 struct drm_device *dev = node->minor->dev;
1949 struct drm_i915_private *dev_priv = dev->dev_private;
1950 struct intel_opregion *opregion = &dev_priv->opregion;
1951
1952 if (opregion->vbt)
1953 seq_write(m, opregion->vbt, opregion->vbt_size);
1954
1955 return 0;
1956 }
1957
1958 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1959 {
1960 struct drm_info_node *node = m->private;
1961 struct drm_device *dev = node->minor->dev;
1962 struct intel_framebuffer *fbdev_fb = NULL;
1963 struct drm_framebuffer *drm_fb;
1964 int ret;
1965
1966 ret = mutex_lock_interruptible(&dev->struct_mutex);
1967 if (ret)
1968 return ret;
1969
1970 #ifdef CONFIG_DRM_FBDEV_EMULATION
1971 if (to_i915(dev)->fbdev) {
1972 fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1973
1974 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1975 fbdev_fb->base.width,
1976 fbdev_fb->base.height,
1977 fbdev_fb->base.depth,
1978 fbdev_fb->base.bits_per_pixel,
1979 fbdev_fb->base.modifier[0],
1980 drm_framebuffer_read_refcount(&fbdev_fb->base));
1981 describe_obj(m, fbdev_fb->obj);
1982 seq_putc(m, '\n');
1983 }
1984 #endif
1985
1986 mutex_lock(&dev->mode_config.fb_lock);
1987 drm_for_each_fb(drm_fb, dev) {
1988 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1989 if (fb == fbdev_fb)
1990 continue;
1991
1992 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1993 fb->base.width,
1994 fb->base.height,
1995 fb->base.depth,
1996 fb->base.bits_per_pixel,
1997 fb->base.modifier[0],
1998 drm_framebuffer_read_refcount(&fb->base));
1999 describe_obj(m, fb->obj);
2000 seq_putc(m, '\n');
2001 }
2002 mutex_unlock(&dev->mode_config.fb_lock);
2003 mutex_unlock(&dev->struct_mutex);
2004
2005 return 0;
2006 }
2007
2008 static void describe_ctx_ringbuf(struct seq_file *m,
2009 struct intel_ringbuffer *ringbuf)
2010 {
2011 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
2012 ringbuf->space, ringbuf->head, ringbuf->tail,
2013 ringbuf->last_retired_head);
2014 }
2015
2016 static int i915_context_status(struct seq_file *m, void *unused)
2017 {
2018 struct drm_info_node *node = m->private;
2019 struct drm_device *dev = node->minor->dev;
2020 struct drm_i915_private *dev_priv = dev->dev_private;
2021 struct intel_engine_cs *engine;
2022 struct i915_gem_context *ctx;
2023 int ret;
2024
2025 ret = mutex_lock_interruptible(&dev->struct_mutex);
2026 if (ret)
2027 return ret;
2028
2029 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2030 seq_printf(m, "HW context %u ", ctx->hw_id);
2031 if (IS_ERR(ctx->file_priv)) {
2032 seq_puts(m, "(deleted) ");
2033 } else if (ctx->file_priv) {
2034 struct pid *pid = ctx->file_priv->file->pid;
2035 struct task_struct *task;
2036
2037 task = get_pid_task(pid, PIDTYPE_PID);
2038 if (task) {
2039 seq_printf(m, "(%s [%d]) ",
2040 task->comm, task->pid);
2041 put_task_struct(task);
2042 }
2043 } else {
2044 seq_puts(m, "(kernel) ");
2045 }
2046
2047 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
2048 seq_putc(m, '\n');
2049
2050 for_each_engine(engine, dev_priv) {
2051 struct intel_context *ce = &ctx->engine[engine->id];
2052
2053 seq_printf(m, "%s: ", engine->name);
2054 seq_putc(m, ce->initialised ? 'I' : 'i');
2055 if (ce->state)
2056 describe_obj(m, ce->state);
2057 if (ce->ringbuf)
2058 describe_ctx_ringbuf(m, ce->ringbuf);
2059 seq_putc(m, '\n');
2060 }
2061
2062 seq_putc(m, '\n');
2063 }
2064
2065 mutex_unlock(&dev->struct_mutex);
2066
2067 return 0;
2068 }
2069
2070 static void i915_dump_lrc_obj(struct seq_file *m,
2071 struct i915_gem_context *ctx,
2072 struct intel_engine_cs *engine)
2073 {
2074 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2075 struct page *page;
2076 uint32_t *reg_state;
2077 int j;
2078 unsigned long ggtt_offset = 0;
2079
2080 seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2081
2082 if (ctx_obj == NULL) {
2083 seq_puts(m, "\tNot allocated\n");
2084 return;
2085 }
2086
2087 if (!i915_gem_obj_ggtt_bound(ctx_obj))
2088 seq_puts(m, "\tNot bound in GGTT\n");
2089 else
2090 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2091
2092 if (i915_gem_object_get_pages(ctx_obj)) {
2093 seq_puts(m, "\tFailed to get pages for context object\n");
2094 return;
2095 }
2096
2097 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2098 if (!WARN_ON(page == NULL)) {
2099 reg_state = kmap_atomic(page);
2100
2101 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2102 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2103 ggtt_offset + 4096 + (j * 4),
2104 reg_state[j], reg_state[j + 1],
2105 reg_state[j + 2], reg_state[j + 3]);
2106 }
2107 kunmap_atomic(reg_state);
2108 }
2109
2110 seq_putc(m, '\n');
2111 }
2112
2113 static int i915_dump_lrc(struct seq_file *m, void *unused)
2114 {
2115 struct drm_info_node *node = (struct drm_info_node *) m->private;
2116 struct drm_device *dev = node->minor->dev;
2117 struct drm_i915_private *dev_priv = dev->dev_private;
2118 struct intel_engine_cs *engine;
2119 struct i915_gem_context *ctx;
2120 int ret;
2121
2122 if (!i915.enable_execlists) {
2123 seq_printf(m, "Logical Ring Contexts are disabled\n");
2124 return 0;
2125 }
2126
2127 ret = mutex_lock_interruptible(&dev->struct_mutex);
2128 if (ret)
2129 return ret;
2130
2131 list_for_each_entry(ctx, &dev_priv->context_list, link)
2132 for_each_engine(engine, dev_priv)
2133 i915_dump_lrc_obj(m, ctx, engine);
2134
2135 mutex_unlock(&dev->struct_mutex);
2136
2137 return 0;
2138 }
2139
2140 static int i915_execlists(struct seq_file *m, void *data)
2141 {
2142 struct drm_info_node *node = (struct drm_info_node *)m->private;
2143 struct drm_device *dev = node->minor->dev;
2144 struct drm_i915_private *dev_priv = dev->dev_private;
2145 struct intel_engine_cs *engine;
2146 u32 status_pointer;
2147 u8 read_pointer;
2148 u8 write_pointer;
2149 u32 status;
2150 u32 ctx_id;
2151 struct list_head *cursor;
2152 int i, ret;
2153
2154 if (!i915.enable_execlists) {
2155 seq_puts(m, "Logical Ring Contexts are disabled\n");
2156 return 0;
2157 }
2158
2159 ret = mutex_lock_interruptible(&dev->struct_mutex);
2160 if (ret)
2161 return ret;
2162
2163 intel_runtime_pm_get(dev_priv);
2164
2165 for_each_engine(engine, dev_priv) {
2166 struct drm_i915_gem_request *head_req = NULL;
2167 int count = 0;
2168
2169 seq_printf(m, "%s\n", engine->name);
2170
2171 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2172 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2173 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2174 status, ctx_id);
2175
2176 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2177 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2178
2179 read_pointer = engine->next_context_status_buffer;
2180 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2181 if (read_pointer > write_pointer)
2182 write_pointer += GEN8_CSB_ENTRIES;
2183 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2184 read_pointer, write_pointer);
2185
2186 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2187 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2188 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2189
2190 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2191 i, status, ctx_id);
2192 }
2193
2194 spin_lock_bh(&engine->execlist_lock);
2195 list_for_each(cursor, &engine->execlist_queue)
2196 count++;
2197 head_req = list_first_entry_or_null(&engine->execlist_queue,
2198 struct drm_i915_gem_request,
2199 execlist_link);
2200 spin_unlock_bh(&engine->execlist_lock);
2201
2202 seq_printf(m, "\t%d requests in queue\n", count);
2203 if (head_req) {
2204 seq_printf(m, "\tHead request context: %u\n",
2205 head_req->ctx->hw_id);
2206 seq_printf(m, "\tHead request tail: %u\n",
2207 head_req->tail);
2208 }
2209
2210 seq_putc(m, '\n');
2211 }
2212
2213 intel_runtime_pm_put(dev_priv);
2214 mutex_unlock(&dev->struct_mutex);
2215
2216 return 0;
2217 }
2218
2219 static const char *swizzle_string(unsigned swizzle)
2220 {
2221 switch (swizzle) {
2222 case I915_BIT_6_SWIZZLE_NONE:
2223 return "none";
2224 case I915_BIT_6_SWIZZLE_9:
2225 return "bit9";
2226 case I915_BIT_6_SWIZZLE_9_10:
2227 return "bit9/bit10";
2228 case I915_BIT_6_SWIZZLE_9_11:
2229 return "bit9/bit11";
2230 case I915_BIT_6_SWIZZLE_9_10_11:
2231 return "bit9/bit10/bit11";
2232 case I915_BIT_6_SWIZZLE_9_17:
2233 return "bit9/bit17";
2234 case I915_BIT_6_SWIZZLE_9_10_17:
2235 return "bit9/bit10/bit17";
2236 case I915_BIT_6_SWIZZLE_UNKNOWN:
2237 return "unknown";
2238 }
2239
2240 return "bug";
2241 }
2242
2243 static int i915_swizzle_info(struct seq_file *m, void *data)
2244 {
2245 struct drm_info_node *node = m->private;
2246 struct drm_device *dev = node->minor->dev;
2247 struct drm_i915_private *dev_priv = dev->dev_private;
2248 int ret;
2249
2250 ret = mutex_lock_interruptible(&dev->struct_mutex);
2251 if (ret)
2252 return ret;
2253 intel_runtime_pm_get(dev_priv);
2254
2255 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2256 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2257 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2258 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2259
2260 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2261 seq_printf(m, "DDC = 0x%08x\n",
2262 I915_READ(DCC));
2263 seq_printf(m, "DDC2 = 0x%08x\n",
2264 I915_READ(DCC2));
2265 seq_printf(m, "C0DRB3 = 0x%04x\n",
2266 I915_READ16(C0DRB3));
2267 seq_printf(m, "C1DRB3 = 0x%04x\n",
2268 I915_READ16(C1DRB3));
2269 } else if (INTEL_INFO(dev)->gen >= 6) {
2270 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2271 I915_READ(MAD_DIMM_C0));
2272 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2273 I915_READ(MAD_DIMM_C1));
2274 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2275 I915_READ(MAD_DIMM_C2));
2276 seq_printf(m, "TILECTL = 0x%08x\n",
2277 I915_READ(TILECTL));
2278 if (INTEL_INFO(dev)->gen >= 8)
2279 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2280 I915_READ(GAMTARBMODE));
2281 else
2282 seq_printf(m, "ARB_MODE = 0x%08x\n",
2283 I915_READ(ARB_MODE));
2284 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2285 I915_READ(DISP_ARB_CTL));
2286 }
2287
2288 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2289 seq_puts(m, "L-shaped memory detected\n");
2290
2291 intel_runtime_pm_put(dev_priv);
2292 mutex_unlock(&dev->struct_mutex);
2293
2294 return 0;
2295 }
2296
2297 static int per_file_ctx(int id, void *ptr, void *data)
2298 {
2299 struct i915_gem_context *ctx = ptr;
2300 struct seq_file *m = data;
2301 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2302
2303 if (!ppgtt) {
2304 seq_printf(m, " no ppgtt for context %d\n",
2305 ctx->user_handle);
2306 return 0;
2307 }
2308
2309 if (i915_gem_context_is_default(ctx))
2310 seq_puts(m, " default context:\n");
2311 else
2312 seq_printf(m, " context %d:\n", ctx->user_handle);
2313 ppgtt->debug_dump(ppgtt, m);
2314
2315 return 0;
2316 }
2317
2318 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2319 {
2320 struct drm_i915_private *dev_priv = dev->dev_private;
2321 struct intel_engine_cs *engine;
2322 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2323 int i;
2324
2325 if (!ppgtt)
2326 return;
2327
2328 for_each_engine(engine, dev_priv) {
2329 seq_printf(m, "%s\n", engine->name);
2330 for (i = 0; i < 4; i++) {
2331 u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2332 pdp <<= 32;
2333 pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2334 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2335 }
2336 }
2337 }
2338
2339 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2340 {
2341 struct drm_i915_private *dev_priv = dev->dev_private;
2342 struct intel_engine_cs *engine;
2343
2344 if (IS_GEN6(dev_priv))
2345 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2346
2347 for_each_engine(engine, dev_priv) {
2348 seq_printf(m, "%s\n", engine->name);
2349 if (IS_GEN7(dev_priv))
2350 seq_printf(m, "GFX_MODE: 0x%08x\n",
2351 I915_READ(RING_MODE_GEN7(engine)));
2352 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2353 I915_READ(RING_PP_DIR_BASE(engine)));
2354 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2355 I915_READ(RING_PP_DIR_BASE_READ(engine)));
2356 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2357 I915_READ(RING_PP_DIR_DCLV(engine)));
2358 }
2359 if (dev_priv->mm.aliasing_ppgtt) {
2360 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2361
2362 seq_puts(m, "aliasing PPGTT:\n");
2363 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2364
2365 ppgtt->debug_dump(ppgtt, m);
2366 }
2367
2368 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2369 }
2370
2371 static int i915_ppgtt_info(struct seq_file *m, void *data)
2372 {
2373 struct drm_info_node *node = m->private;
2374 struct drm_device *dev = node->minor->dev;
2375 struct drm_i915_private *dev_priv = dev->dev_private;
2376 struct drm_file *file;
2377
2378 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2379 if (ret)
2380 return ret;
2381 intel_runtime_pm_get(dev_priv);
2382
2383 if (INTEL_INFO(dev)->gen >= 8)
2384 gen8_ppgtt_info(m, dev);
2385 else if (INTEL_INFO(dev)->gen >= 6)
2386 gen6_ppgtt_info(m, dev);
2387
2388 mutex_lock(&dev->filelist_mutex);
2389 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2390 struct drm_i915_file_private *file_priv = file->driver_priv;
2391 struct task_struct *task;
2392
2393 task = get_pid_task(file->pid, PIDTYPE_PID);
2394 if (!task) {
2395 ret = -ESRCH;
2396 goto out_unlock;
2397 }
2398 seq_printf(m, "\nproc: %s\n", task->comm);
2399 put_task_struct(task);
2400 idr_for_each(&file_priv->context_idr, per_file_ctx,
2401 (void *)(unsigned long)m);
2402 }
2403 out_unlock:
2404 mutex_unlock(&dev->filelist_mutex);
2405
2406 intel_runtime_pm_put(dev_priv);
2407 mutex_unlock(&dev->struct_mutex);
2408
2409 return ret;
2410 }
2411
2412 static int count_irq_waiters(struct drm_i915_private *i915)
2413 {
2414 struct intel_engine_cs *engine;
2415 int count = 0;
2416
2417 for_each_engine(engine, i915)
2418 count += engine->irq_refcount;
2419
2420 return count;
2421 }
2422
2423 static int i915_rps_boost_info(struct seq_file *m, void *data)
2424 {
2425 struct drm_info_node *node = m->private;
2426 struct drm_device *dev = node->minor->dev;
2427 struct drm_i915_private *dev_priv = dev->dev_private;
2428 struct drm_file *file;
2429
2430 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2431 seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2432 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2433 seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2434 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2435 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2436 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2437 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2438 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2439
2440 mutex_lock(&dev->filelist_mutex);
2441 spin_lock(&dev_priv->rps.client_lock);
2442 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2443 struct drm_i915_file_private *file_priv = file->driver_priv;
2444 struct task_struct *task;
2445
2446 rcu_read_lock();
2447 task = pid_task(file->pid, PIDTYPE_PID);
2448 seq_printf(m, "%s [%d]: %d boosts%s\n",
2449 task ? task->comm : "<unknown>",
2450 task ? task->pid : -1,
2451 file_priv->rps.boosts,
2452 list_empty(&file_priv->rps.link) ? "" : ", active");
2453 rcu_read_unlock();
2454 }
2455 seq_printf(m, "Semaphore boosts: %d%s\n",
2456 dev_priv->rps.semaphores.boosts,
2457 list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2458 seq_printf(m, "MMIO flip boosts: %d%s\n",
2459 dev_priv->rps.mmioflips.boosts,
2460 list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2461 seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2462 spin_unlock(&dev_priv->rps.client_lock);
2463 mutex_unlock(&dev->filelist_mutex);
2464
2465 return 0;
2466 }
2467
2468 static int i915_llc(struct seq_file *m, void *data)
2469 {
2470 struct drm_info_node *node = m->private;
2471 struct drm_device *dev = node->minor->dev;
2472 struct drm_i915_private *dev_priv = dev->dev_private;
2473 const bool edram = INTEL_GEN(dev_priv) > 8;
2474
2475 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2476 seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2477 intel_uncore_edram_size(dev_priv)/1024/1024);
2478
2479 return 0;
2480 }
2481
2482 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2483 {
2484 struct drm_info_node *node = m->private;
2485 struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2486 struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2487 u32 tmp, i;
2488
2489 if (!HAS_GUC_UCODE(dev_priv))
2490 return 0;
2491
2492 seq_printf(m, "GuC firmware status:\n");
2493 seq_printf(m, "\tpath: %s\n",
2494 guc_fw->guc_fw_path);
2495 seq_printf(m, "\tfetch: %s\n",
2496 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2497 seq_printf(m, "\tload: %s\n",
2498 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2499 seq_printf(m, "\tversion wanted: %d.%d\n",
2500 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2501 seq_printf(m, "\tversion found: %d.%d\n",
2502 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2503 seq_printf(m, "\theader: offset is %d; size = %d\n",
2504 guc_fw->header_offset, guc_fw->header_size);
2505 seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2506 guc_fw->ucode_offset, guc_fw->ucode_size);
2507 seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2508 guc_fw->rsa_offset, guc_fw->rsa_size);
2509
2510 tmp = I915_READ(GUC_STATUS);
2511
2512 seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2513 seq_printf(m, "\tBootrom status = 0x%x\n",
2514 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2515 seq_printf(m, "\tuKernel status = 0x%x\n",
2516 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2517 seq_printf(m, "\tMIA Core status = 0x%x\n",
2518 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2519 seq_puts(m, "\nScratch registers:\n");
2520 for (i = 0; i < 16; i++)
2521 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2522
2523 return 0;
2524 }
2525
2526 static void i915_guc_client_info(struct seq_file *m,
2527 struct drm_i915_private *dev_priv,
2528 struct i915_guc_client *client)
2529 {
2530 struct intel_engine_cs *engine;
2531 uint64_t tot = 0;
2532
2533 seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2534 client->priority, client->ctx_index, client->proc_desc_offset);
2535 seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2536 client->doorbell_id, client->doorbell_offset, client->cookie);
2537 seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2538 client->wq_size, client->wq_offset, client->wq_tail);
2539
2540 seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2541 seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2542 seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2543 seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2544
2545 for_each_engine(engine, dev_priv) {
2546 seq_printf(m, "\tSubmissions: %llu %s\n",
2547 client->submissions[engine->id],
2548 engine->name);
2549 tot += client->submissions[engine->id];
2550 }
2551 seq_printf(m, "\tTotal: %llu\n", tot);
2552 }
2553
2554 static int i915_guc_info(struct seq_file *m, void *data)
2555 {
2556 struct drm_info_node *node = m->private;
2557 struct drm_device *dev = node->minor->dev;
2558 struct drm_i915_private *dev_priv = dev->dev_private;
2559 struct intel_guc guc;
2560 struct i915_guc_client client = {};
2561 struct intel_engine_cs *engine;
2562 u64 total = 0;
2563
2564 if (!HAS_GUC_SCHED(dev_priv))
2565 return 0;
2566
2567 if (mutex_lock_interruptible(&dev->struct_mutex))
2568 return 0;
2569
2570 /* Take a local copy of the GuC data, so we can dump it at leisure */
2571 guc = dev_priv->guc;
2572 if (guc.execbuf_client)
2573 client = *guc.execbuf_client;
2574
2575 mutex_unlock(&dev->struct_mutex);
2576
2577 seq_printf(m, "Doorbell map:\n");
2578 seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2579 seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2580
2581 seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2582 seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2583 seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2584 seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2585 seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2586
2587 seq_printf(m, "\nGuC submissions:\n");
2588 for_each_engine(engine, dev_priv) {
2589 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2590 engine->name, guc.submissions[engine->id],
2591 guc.last_seqno[engine->id]);
2592 total += guc.submissions[engine->id];
2593 }
2594 seq_printf(m, "\t%s: %llu\n", "Total", total);
2595
2596 seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2597 i915_guc_client_info(m, dev_priv, &client);
2598
2599 /* Add more as required ... */
2600
2601 return 0;
2602 }
2603
2604 static int i915_guc_log_dump(struct seq_file *m, void *data)
2605 {
2606 struct drm_info_node *node = m->private;
2607 struct drm_device *dev = node->minor->dev;
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2610 u32 *log;
2611 int i = 0, pg;
2612
2613 if (!log_obj)
2614 return 0;
2615
2616 for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2617 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2618
2619 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2620 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2621 *(log + i), *(log + i + 1),
2622 *(log + i + 2), *(log + i + 3));
2623
2624 kunmap_atomic(log);
2625 }
2626
2627 seq_putc(m, '\n');
2628
2629 return 0;
2630 }
2631
2632 static int i915_edp_psr_status(struct seq_file *m, void *data)
2633 {
2634 struct drm_info_node *node = m->private;
2635 struct drm_device *dev = node->minor->dev;
2636 struct drm_i915_private *dev_priv = dev->dev_private;
2637 u32 psrperf = 0;
2638 u32 stat[3];
2639 enum pipe pipe;
2640 bool enabled = false;
2641
2642 if (!HAS_PSR(dev)) {
2643 seq_puts(m, "PSR not supported\n");
2644 return 0;
2645 }
2646
2647 intel_runtime_pm_get(dev_priv);
2648
2649 mutex_lock(&dev_priv->psr.lock);
2650 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2651 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2652 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2653 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2654 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2655 dev_priv->psr.busy_frontbuffer_bits);
2656 seq_printf(m, "Re-enable work scheduled: %s\n",
2657 yesno(work_busy(&dev_priv->psr.work.work)));
2658
2659 if (HAS_DDI(dev))
2660 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2661 else {
2662 for_each_pipe(dev_priv, pipe) {
2663 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2664 VLV_EDP_PSR_CURR_STATE_MASK;
2665 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2666 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2667 enabled = true;
2668 }
2669 }
2670
2671 seq_printf(m, "Main link in standby mode: %s\n",
2672 yesno(dev_priv->psr.link_standby));
2673
2674 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2675
2676 if (!HAS_DDI(dev))
2677 for_each_pipe(dev_priv, pipe) {
2678 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2679 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2680 seq_printf(m, " pipe %c", pipe_name(pipe));
2681 }
2682 seq_puts(m, "\n");
2683
2684 /*
2685 * VLV/CHV PSR has no kind of performance counter
2686 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2687 */
2688 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2689 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2690 EDP_PSR_PERF_CNT_MASK;
2691
2692 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2693 }
2694 mutex_unlock(&dev_priv->psr.lock);
2695
2696 intel_runtime_pm_put(dev_priv);
2697 return 0;
2698 }
2699
2700 static int i915_sink_crc(struct seq_file *m, void *data)
2701 {
2702 struct drm_info_node *node = m->private;
2703 struct drm_device *dev = node->minor->dev;
2704 struct intel_encoder *encoder;
2705 struct intel_connector *connector;
2706 struct intel_dp *intel_dp = NULL;
2707 int ret;
2708 u8 crc[6];
2709
2710 drm_modeset_lock_all(dev);
2711 for_each_intel_connector(dev, connector) {
2712
2713 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2714 continue;
2715
2716 if (!connector->base.encoder)
2717 continue;
2718
2719 encoder = to_intel_encoder(connector->base.encoder);
2720 if (encoder->type != INTEL_OUTPUT_EDP)
2721 continue;
2722
2723 intel_dp = enc_to_intel_dp(&encoder->base);
2724
2725 ret = intel_dp_sink_crc(intel_dp, crc);
2726 if (ret)
2727 goto out;
2728
2729 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2730 crc[0], crc[1], crc[2],
2731 crc[3], crc[4], crc[5]);
2732 goto out;
2733 }
2734 ret = -ENODEV;
2735 out:
2736 drm_modeset_unlock_all(dev);
2737 return ret;
2738 }
2739
2740 static int i915_energy_uJ(struct seq_file *m, void *data)
2741 {
2742 struct drm_info_node *node = m->private;
2743 struct drm_device *dev = node->minor->dev;
2744 struct drm_i915_private *dev_priv = dev->dev_private;
2745 u64 power;
2746 u32 units;
2747
2748 if (INTEL_INFO(dev)->gen < 6)
2749 return -ENODEV;
2750
2751 intel_runtime_pm_get(dev_priv);
2752
2753 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2754 power = (power & 0x1f00) >> 8;
2755 units = 1000000 / (1 << power); /* convert to uJ */
2756 power = I915_READ(MCH_SECP_NRG_STTS);
2757 power *= units;
2758
2759 intel_runtime_pm_put(dev_priv);
2760
2761 seq_printf(m, "%llu", (long long unsigned)power);
2762
2763 return 0;
2764 }
2765
2766 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2767 {
2768 struct drm_info_node *node = m->private;
2769 struct drm_device *dev = node->minor->dev;
2770 struct drm_i915_private *dev_priv = dev->dev_private;
2771
2772 if (!HAS_RUNTIME_PM(dev_priv))
2773 seq_puts(m, "Runtime power management not supported\n");
2774
2775 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2776 seq_printf(m, "IRQs disabled: %s\n",
2777 yesno(!intel_irqs_enabled(dev_priv)));
2778 #ifdef CONFIG_PM
2779 seq_printf(m, "Usage count: %d\n",
2780 atomic_read(&dev->dev->power.usage_count));
2781 #else
2782 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2783 #endif
2784 seq_printf(m, "PCI device power state: %s [%d]\n",
2785 pci_power_name(dev_priv->dev->pdev->current_state),
2786 dev_priv->dev->pdev->current_state);
2787
2788 return 0;
2789 }
2790
2791 static int i915_power_domain_info(struct seq_file *m, void *unused)
2792 {
2793 struct drm_info_node *node = m->private;
2794 struct drm_device *dev = node->minor->dev;
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2797 int i;
2798
2799 mutex_lock(&power_domains->lock);
2800
2801 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2802 for (i = 0; i < power_domains->power_well_count; i++) {
2803 struct i915_power_well *power_well;
2804 enum intel_display_power_domain power_domain;
2805
2806 power_well = &power_domains->power_wells[i];
2807 seq_printf(m, "%-25s %d\n", power_well->name,
2808 power_well->count);
2809
2810 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2811 power_domain++) {
2812 if (!(BIT(power_domain) & power_well->domains))
2813 continue;
2814
2815 seq_printf(m, " %-23s %d\n",
2816 intel_display_power_domain_str(power_domain),
2817 power_domains->domain_use_count[power_domain]);
2818 }
2819 }
2820
2821 mutex_unlock(&power_domains->lock);
2822
2823 return 0;
2824 }
2825
2826 static int i915_dmc_info(struct seq_file *m, void *unused)
2827 {
2828 struct drm_info_node *node = m->private;
2829 struct drm_device *dev = node->minor->dev;
2830 struct drm_i915_private *dev_priv = dev->dev_private;
2831 struct intel_csr *csr;
2832
2833 if (!HAS_CSR(dev)) {
2834 seq_puts(m, "not supported\n");
2835 return 0;
2836 }
2837
2838 csr = &dev_priv->csr;
2839
2840 intel_runtime_pm_get(dev_priv);
2841
2842 seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2843 seq_printf(m, "path: %s\n", csr->fw_path);
2844
2845 if (!csr->dmc_payload)
2846 goto out;
2847
2848 seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2849 CSR_VERSION_MINOR(csr->version));
2850
2851 if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2852 seq_printf(m, "DC3 -> DC5 count: %d\n",
2853 I915_READ(SKL_CSR_DC3_DC5_COUNT));
2854 seq_printf(m, "DC5 -> DC6 count: %d\n",
2855 I915_READ(SKL_CSR_DC5_DC6_COUNT));
2856 } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2857 seq_printf(m, "DC3 -> DC5 count: %d\n",
2858 I915_READ(BXT_CSR_DC3_DC5_COUNT));
2859 }
2860
2861 out:
2862 seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2863 seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2864 seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2865
2866 intel_runtime_pm_put(dev_priv);
2867
2868 return 0;
2869 }
2870
2871 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2872 struct drm_display_mode *mode)
2873 {
2874 int i;
2875
2876 for (i = 0; i < tabs; i++)
2877 seq_putc(m, '\t');
2878
2879 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2880 mode->base.id, mode->name,
2881 mode->vrefresh, mode->clock,
2882 mode->hdisplay, mode->hsync_start,
2883 mode->hsync_end, mode->htotal,
2884 mode->vdisplay, mode->vsync_start,
2885 mode->vsync_end, mode->vtotal,
2886 mode->type, mode->flags);
2887 }
2888
2889 static void intel_encoder_info(struct seq_file *m,
2890 struct intel_crtc *intel_crtc,
2891 struct intel_encoder *intel_encoder)
2892 {
2893 struct drm_info_node *node = m->private;
2894 struct drm_device *dev = node->minor->dev;
2895 struct drm_crtc *crtc = &intel_crtc->base;
2896 struct intel_connector *intel_connector;
2897 struct drm_encoder *encoder;
2898
2899 encoder = &intel_encoder->base;
2900 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2901 encoder->base.id, encoder->name);
2902 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2903 struct drm_connector *connector = &intel_connector->base;
2904 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2905 connector->base.id,
2906 connector->name,
2907 drm_get_connector_status_name(connector->status));
2908 if (connector->status == connector_status_connected) {
2909 struct drm_display_mode *mode = &crtc->mode;
2910 seq_printf(m, ", mode:\n");
2911 intel_seq_print_mode(m, 2, mode);
2912 } else {
2913 seq_putc(m, '\n');
2914 }
2915 }
2916 }
2917
2918 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2919 {
2920 struct drm_info_node *node = m->private;
2921 struct drm_device *dev = node->minor->dev;
2922 struct drm_crtc *crtc = &intel_crtc->base;
2923 struct intel_encoder *intel_encoder;
2924 struct drm_plane_state *plane_state = crtc->primary->state;
2925 struct drm_framebuffer *fb = plane_state->fb;
2926
2927 if (fb)
2928 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2929 fb->base.id, plane_state->src_x >> 16,
2930 plane_state->src_y >> 16, fb->width, fb->height);
2931 else
2932 seq_puts(m, "\tprimary plane disabled\n");
2933 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2934 intel_encoder_info(m, intel_crtc, intel_encoder);
2935 }
2936
2937 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2938 {
2939 struct drm_display_mode *mode = panel->fixed_mode;
2940
2941 seq_printf(m, "\tfixed mode:\n");
2942 intel_seq_print_mode(m, 2, mode);
2943 }
2944
2945 static void intel_dp_info(struct seq_file *m,
2946 struct intel_connector *intel_connector)
2947 {
2948 struct intel_encoder *intel_encoder = intel_connector->encoder;
2949 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2950
2951 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2952 seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2953 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2954 intel_panel_info(m, &intel_connector->panel);
2955 }
2956
2957 static void intel_hdmi_info(struct seq_file *m,
2958 struct intel_connector *intel_connector)
2959 {
2960 struct intel_encoder *intel_encoder = intel_connector->encoder;
2961 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2962
2963 seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2964 }
2965
2966 static void intel_lvds_info(struct seq_file *m,
2967 struct intel_connector *intel_connector)
2968 {
2969 intel_panel_info(m, &intel_connector->panel);
2970 }
2971
2972 static void intel_connector_info(struct seq_file *m,
2973 struct drm_connector *connector)
2974 {
2975 struct intel_connector *intel_connector = to_intel_connector(connector);
2976 struct intel_encoder *intel_encoder = intel_connector->encoder;
2977 struct drm_display_mode *mode;
2978
2979 seq_printf(m, "connector %d: type %s, status: %s\n",
2980 connector->base.id, connector->name,
2981 drm_get_connector_status_name(connector->status));
2982 if (connector->status == connector_status_connected) {
2983 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2984 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2985 connector->display_info.width_mm,
2986 connector->display_info.height_mm);
2987 seq_printf(m, "\tsubpixel order: %s\n",
2988 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2989 seq_printf(m, "\tCEA rev: %d\n",
2990 connector->display_info.cea_rev);
2991 }
2992 if (intel_encoder) {
2993 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2994 intel_encoder->type == INTEL_OUTPUT_EDP)
2995 intel_dp_info(m, intel_connector);
2996 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2997 intel_hdmi_info(m, intel_connector);
2998 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2999 intel_lvds_info(m, intel_connector);
3000 }
3001
3002 seq_printf(m, "\tmodes:\n");
3003 list_for_each_entry(mode, &connector->modes, head)
3004 intel_seq_print_mode(m, 2, mode);
3005 }
3006
3007 static bool cursor_active(struct drm_device *dev, int pipe)
3008 {
3009 struct drm_i915_private *dev_priv = dev->dev_private;
3010 u32 state;
3011
3012 if (IS_845G(dev) || IS_I865G(dev))
3013 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
3014 else
3015 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
3016
3017 return state;
3018 }
3019
3020 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
3021 {
3022 struct drm_i915_private *dev_priv = dev->dev_private;
3023 u32 pos;
3024
3025 pos = I915_READ(CURPOS(pipe));
3026
3027 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
3028 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
3029 *x = -*x;
3030
3031 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
3032 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3033 *y = -*y;
3034
3035 return cursor_active(dev, pipe);
3036 }
3037
3038 static const char *plane_type(enum drm_plane_type type)
3039 {
3040 switch (type) {
3041 case DRM_PLANE_TYPE_OVERLAY:
3042 return "OVL";
3043 case DRM_PLANE_TYPE_PRIMARY:
3044 return "PRI";
3045 case DRM_PLANE_TYPE_CURSOR:
3046 return "CUR";
3047 /*
3048 * Deliberately omitting default: to generate compiler warnings
3049 * when a new drm_plane_type gets added.
3050 */
3051 }
3052
3053 return "unknown";
3054 }
3055
3056 static const char *plane_rotation(unsigned int rotation)
3057 {
3058 static char buf[48];
3059 /*
3060 * According to doc only one DRM_ROTATE_ is allowed but this
3061 * will print them all to visualize if the values are misused
3062 */
3063 snprintf(buf, sizeof(buf),
3064 "%s%s%s%s%s%s(0x%08x)",
3065 (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3066 (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3067 (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3068 (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3069 (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3070 (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3071 rotation);
3072
3073 return buf;
3074 }
3075
3076 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3077 {
3078 struct drm_info_node *node = m->private;
3079 struct drm_device *dev = node->minor->dev;
3080 struct intel_plane *intel_plane;
3081
3082 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3083 struct drm_plane_state *state;
3084 struct drm_plane *plane = &intel_plane->base;
3085
3086 if (!plane->state) {
3087 seq_puts(m, "plane->state is NULL!\n");
3088 continue;
3089 }
3090
3091 state = plane->state;
3092
3093 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3094 plane->base.id,
3095 plane_type(intel_plane->base.type),
3096 state->crtc_x, state->crtc_y,
3097 state->crtc_w, state->crtc_h,
3098 (state->src_x >> 16),
3099 ((state->src_x & 0xffff) * 15625) >> 10,
3100 (state->src_y >> 16),
3101 ((state->src_y & 0xffff) * 15625) >> 10,
3102 (state->src_w >> 16),
3103 ((state->src_w & 0xffff) * 15625) >> 10,
3104 (state->src_h >> 16),
3105 ((state->src_h & 0xffff) * 15625) >> 10,
3106 state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3107 plane_rotation(state->rotation));
3108 }
3109 }
3110
3111 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3112 {
3113 struct intel_crtc_state *pipe_config;
3114 int num_scalers = intel_crtc->num_scalers;
3115 int i;
3116
3117 pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3118
3119 /* Not all platformas have a scaler */
3120 if (num_scalers) {
3121 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3122 num_scalers,
3123 pipe_config->scaler_state.scaler_users,
3124 pipe_config->scaler_state.scaler_id);
3125
3126 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3127 struct intel_scaler *sc =
3128 &pipe_config->scaler_state.scalers[i];
3129
3130 seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3131 i, yesno(sc->in_use), sc->mode);
3132 }
3133 seq_puts(m, "\n");
3134 } else {
3135 seq_puts(m, "\tNo scalers available on this platform\n");
3136 }
3137 }
3138
3139 static int i915_display_info(struct seq_file *m, void *unused)
3140 {
3141 struct drm_info_node *node = m->private;
3142 struct drm_device *dev = node->minor->dev;
3143 struct drm_i915_private *dev_priv = dev->dev_private;
3144 struct intel_crtc *crtc;
3145 struct drm_connector *connector;
3146
3147 intel_runtime_pm_get(dev_priv);
3148 drm_modeset_lock_all(dev);
3149 seq_printf(m, "CRTC info\n");
3150 seq_printf(m, "---------\n");
3151 for_each_intel_crtc(dev, crtc) {
3152 bool active;
3153 struct intel_crtc_state *pipe_config;
3154 int x, y;
3155
3156 pipe_config = to_intel_crtc_state(crtc->base.state);
3157
3158 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3159 crtc->base.base.id, pipe_name(crtc->pipe),
3160 yesno(pipe_config->base.active),
3161 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3162 yesno(pipe_config->dither), pipe_config->pipe_bpp);
3163
3164 if (pipe_config->base.active) {
3165 intel_crtc_info(m, crtc);
3166
3167 active = cursor_position(dev, crtc->pipe, &x, &y);
3168 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3169 yesno(crtc->cursor_base),
3170 x, y, crtc->base.cursor->state->crtc_w,
3171 crtc->base.cursor->state->crtc_h,
3172 crtc->cursor_addr, yesno(active));
3173 intel_scaler_info(m, crtc);
3174 intel_plane_info(m, crtc);
3175 }
3176
3177 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3178 yesno(!crtc->cpu_fifo_underrun_disabled),
3179 yesno(!crtc->pch_fifo_underrun_disabled));
3180 }
3181
3182 seq_printf(m, "\n");
3183 seq_printf(m, "Connector info\n");
3184 seq_printf(m, "--------------\n");
3185 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3186 intel_connector_info(m, connector);
3187 }
3188 drm_modeset_unlock_all(dev);
3189 intel_runtime_pm_put(dev_priv);
3190
3191 return 0;
3192 }
3193
3194 static int i915_semaphore_status(struct seq_file *m, void *unused)
3195 {
3196 struct drm_info_node *node = (struct drm_info_node *) m->private;
3197 struct drm_device *dev = node->minor->dev;
3198 struct drm_i915_private *dev_priv = dev->dev_private;
3199 struct intel_engine_cs *engine;
3200 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3201 enum intel_engine_id id;
3202 int j, ret;
3203
3204 if (!i915_semaphore_is_enabled(dev_priv)) {
3205 seq_puts(m, "Semaphores are disabled\n");
3206 return 0;
3207 }
3208
3209 ret = mutex_lock_interruptible(&dev->struct_mutex);
3210 if (ret)
3211 return ret;
3212 intel_runtime_pm_get(dev_priv);
3213
3214 if (IS_BROADWELL(dev)) {
3215 struct page *page;
3216 uint64_t *seqno;
3217
3218 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3219
3220 seqno = (uint64_t *)kmap_atomic(page);
3221 for_each_engine_id(engine, dev_priv, id) {
3222 uint64_t offset;
3223
3224 seq_printf(m, "%s\n", engine->name);
3225
3226 seq_puts(m, " Last signal:");
3227 for (j = 0; j < num_rings; j++) {
3228 offset = id * I915_NUM_ENGINES + j;
3229 seq_printf(m, "0x%08llx (0x%02llx) ",
3230 seqno[offset], offset * 8);
3231 }
3232 seq_putc(m, '\n');
3233
3234 seq_puts(m, " Last wait: ");
3235 for (j = 0; j < num_rings; j++) {
3236 offset = id + (j * I915_NUM_ENGINES);
3237 seq_printf(m, "0x%08llx (0x%02llx) ",
3238 seqno[offset], offset * 8);
3239 }
3240 seq_putc(m, '\n');
3241
3242 }
3243 kunmap_atomic(seqno);
3244 } else {
3245 seq_puts(m, " Last signal:");
3246 for_each_engine(engine, dev_priv)
3247 for (j = 0; j < num_rings; j++)
3248 seq_printf(m, "0x%08x\n",
3249 I915_READ(engine->semaphore.mbox.signal[j]));
3250 seq_putc(m, '\n');
3251 }
3252
3253 seq_puts(m, "\nSync seqno:\n");
3254 for_each_engine(engine, dev_priv) {
3255 for (j = 0; j < num_rings; j++)
3256 seq_printf(m, " 0x%08x ",
3257 engine->semaphore.sync_seqno[j]);
3258 seq_putc(m, '\n');
3259 }
3260 seq_putc(m, '\n');
3261
3262 intel_runtime_pm_put(dev_priv);
3263 mutex_unlock(&dev->struct_mutex);
3264 return 0;
3265 }
3266
3267 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3268 {
3269 struct drm_info_node *node = (struct drm_info_node *) m->private;
3270 struct drm_device *dev = node->minor->dev;
3271 struct drm_i915_private *dev_priv = dev->dev_private;
3272 int i;
3273
3274 drm_modeset_lock_all(dev);
3275 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3276 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3277
3278 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3279 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3280 pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3281 seq_printf(m, " tracked hardware state:\n");
3282 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
3283 seq_printf(m, " dpll_md: 0x%08x\n",
3284 pll->config.hw_state.dpll_md);
3285 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
3286 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
3287 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
3288 }
3289 drm_modeset_unlock_all(dev);
3290
3291 return 0;
3292 }
3293
3294 static int i915_wa_registers(struct seq_file *m, void *unused)
3295 {
3296 int i;
3297 int ret;
3298 struct intel_engine_cs *engine;
3299 struct drm_info_node *node = (struct drm_info_node *) m->private;
3300 struct drm_device *dev = node->minor->dev;
3301 struct drm_i915_private *dev_priv = dev->dev_private;
3302 struct i915_workarounds *workarounds = &dev_priv->workarounds;
3303 enum intel_engine_id id;
3304
3305 ret = mutex_lock_interruptible(&dev->struct_mutex);
3306 if (ret)
3307 return ret;
3308
3309 intel_runtime_pm_get(dev_priv);
3310
3311 seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3312 for_each_engine_id(engine, dev_priv, id)
3313 seq_printf(m, "HW whitelist count for %s: %d\n",
3314 engine->name, workarounds->hw_whitelist_count[id]);
3315 for (i = 0; i < workarounds->count; ++i) {
3316 i915_reg_t addr;
3317 u32 mask, value, read;
3318 bool ok;
3319
3320 addr = workarounds->reg[i].addr;
3321 mask = workarounds->reg[i].mask;
3322 value = workarounds->reg[i].value;
3323 read = I915_READ(addr);
3324 ok = (value & mask) == (read & mask);
3325 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3326 i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3327 }
3328
3329 intel_runtime_pm_put(dev_priv);
3330 mutex_unlock(&dev->struct_mutex);
3331
3332 return 0;
3333 }
3334
3335 static int i915_ddb_info(struct seq_file *m, void *unused)
3336 {
3337 struct drm_info_node *node = m->private;
3338 struct drm_device *dev = node->minor->dev;
3339 struct drm_i915_private *dev_priv = dev->dev_private;
3340 struct skl_ddb_allocation *ddb;
3341 struct skl_ddb_entry *entry;
3342 enum pipe pipe;
3343 int plane;
3344
3345 if (INTEL_INFO(dev)->gen < 9)
3346 return 0;
3347
3348 drm_modeset_lock_all(dev);
3349
3350 ddb = &dev_priv->wm.skl_hw.ddb;
3351
3352 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3353
3354 for_each_pipe(dev_priv, pipe) {
3355 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3356
3357 for_each_plane(dev_priv, pipe, plane) {
3358 entry = &ddb->plane[pipe][plane];
3359 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
3360 entry->start, entry->end,
3361 skl_ddb_entry_size(entry));
3362 }
3363
3364 entry = &ddb->plane[pipe][PLANE_CURSOR];
3365 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
3366 entry->end, skl_ddb_entry_size(entry));
3367 }
3368
3369 drm_modeset_unlock_all(dev);
3370
3371 return 0;
3372 }
3373
3374 static void drrs_status_per_crtc(struct seq_file *m,
3375 struct drm_device *dev, struct intel_crtc *intel_crtc)
3376 {
3377 struct intel_encoder *intel_encoder;
3378 struct drm_i915_private *dev_priv = dev->dev_private;
3379 struct i915_drrs *drrs = &dev_priv->drrs;
3380 int vrefresh = 0;
3381
3382 for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3383 /* Encoder connected on this CRTC */
3384 switch (intel_encoder->type) {
3385 case INTEL_OUTPUT_EDP:
3386 seq_puts(m, "eDP:\n");
3387 break;
3388 case INTEL_OUTPUT_DSI:
3389 seq_puts(m, "DSI:\n");
3390 break;
3391 case INTEL_OUTPUT_HDMI:
3392 seq_puts(m, "HDMI:\n");
3393 break;
3394 case INTEL_OUTPUT_DISPLAYPORT:
3395 seq_puts(m, "DP:\n");
3396 break;
3397 default:
3398 seq_printf(m, "Other encoder (id=%d).\n",
3399 intel_encoder->type);
3400 return;
3401 }
3402 }
3403
3404 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3405 seq_puts(m, "\tVBT: DRRS_type: Static");
3406 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3407 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3408 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3409 seq_puts(m, "\tVBT: DRRS_type: None");
3410 else
3411 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3412
3413 seq_puts(m, "\n\n");
3414
3415 if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3416 struct intel_panel *panel;
3417
3418 mutex_lock(&drrs->mutex);
3419 /* DRRS Supported */
3420 seq_puts(m, "\tDRRS Supported: Yes\n");
3421
3422 /* disable_drrs() will make drrs->dp NULL */
3423 if (!drrs->dp) {
3424 seq_puts(m, "Idleness DRRS: Disabled");
3425 mutex_unlock(&drrs->mutex);
3426 return;
3427 }
3428
3429 panel = &drrs->dp->attached_connector->panel;
3430 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3431 drrs->busy_frontbuffer_bits);
3432
3433 seq_puts(m, "\n\t\t");
3434 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3435 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3436 vrefresh = panel->fixed_mode->vrefresh;
3437 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3438 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3439 vrefresh = panel->downclock_mode->vrefresh;
3440 } else {
3441 seq_printf(m, "DRRS_State: Unknown(%d)\n",
3442 drrs->refresh_rate_type);
3443 mutex_unlock(&drrs->mutex);
3444 return;
3445 }
3446 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3447
3448 seq_puts(m, "\n\t\t");
3449 mutex_unlock(&drrs->mutex);
3450 } else {
3451 /* DRRS not supported. Print the VBT parameter*/
3452 seq_puts(m, "\tDRRS Supported : No");
3453 }
3454 seq_puts(m, "\n");
3455 }
3456
3457 static int i915_drrs_status(struct seq_file *m, void *unused)
3458 {
3459 struct drm_info_node *node = m->private;
3460 struct drm_device *dev = node->minor->dev;
3461 struct intel_crtc *intel_crtc;
3462 int active_crtc_cnt = 0;
3463
3464 for_each_intel_crtc(dev, intel_crtc) {
3465 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3466
3467 if (intel_crtc->base.state->active) {
3468 active_crtc_cnt++;
3469 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
3470
3471 drrs_status_per_crtc(m, dev, intel_crtc);
3472 }
3473
3474 drm_modeset_unlock(&intel_crtc->base.mutex);
3475 }
3476
3477 if (!active_crtc_cnt)
3478 seq_puts(m, "No active crtc found\n");
3479
3480 return 0;
3481 }
3482
3483 struct pipe_crc_info {
3484 const char *name;
3485 struct drm_device *dev;
3486 enum pipe pipe;
3487 };
3488
3489 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3490 {
3491 struct drm_info_node *node = (struct drm_info_node *) m->private;
3492 struct drm_device *dev = node->minor->dev;
3493 struct drm_encoder *encoder;
3494 struct intel_encoder *intel_encoder;
3495 struct intel_digital_port *intel_dig_port;
3496 drm_modeset_lock_all(dev);
3497 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3498 intel_encoder = to_intel_encoder(encoder);
3499 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3500 continue;
3501 intel_dig_port = enc_to_dig_port(encoder);
3502 if (!intel_dig_port->dp.can_mst)
3503 continue;
3504 seq_printf(m, "MST Source Port %c\n",
3505 port_name(intel_dig_port->port));
3506 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3507 }
3508 drm_modeset_unlock_all(dev);
3509 return 0;
3510 }
3511
3512 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3513 {
3514 struct pipe_crc_info *info = inode->i_private;
3515 struct drm_i915_private *dev_priv = info->dev->dev_private;
3516 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3517
3518 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3519 return -ENODEV;
3520
3521 spin_lock_irq(&pipe_crc->lock);
3522
3523 if (pipe_crc->opened) {
3524 spin_unlock_irq(&pipe_crc->lock);
3525 return -EBUSY; /* already open */
3526 }
3527
3528 pipe_crc->opened = true;
3529 filep->private_data = inode->i_private;
3530
3531 spin_unlock_irq(&pipe_crc->lock);
3532
3533 return 0;
3534 }
3535
3536 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3537 {
3538 struct pipe_crc_info *info = inode->i_private;
3539 struct drm_i915_private *dev_priv = info->dev->dev_private;
3540 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3541
3542 spin_lock_irq(&pipe_crc->lock);
3543 pipe_crc->opened = false;
3544 spin_unlock_irq(&pipe_crc->lock);
3545
3546 return 0;
3547 }
3548
3549 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3550 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
3551 /* account for \'0' */
3552 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
3553
3554 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3555 {
3556 assert_spin_locked(&pipe_crc->lock);
3557 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3558 INTEL_PIPE_CRC_ENTRIES_NR);
3559 }
3560
3561 static ssize_t
3562 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3563 loff_t *pos)
3564 {
3565 struct pipe_crc_info *info = filep->private_data;
3566 struct drm_device *dev = info->dev;
3567 struct drm_i915_private *dev_priv = dev->dev_private;
3568 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3569 char buf[PIPE_CRC_BUFFER_LEN];
3570 int n_entries;
3571 ssize_t bytes_read;
3572
3573 /*
3574 * Don't allow user space to provide buffers not big enough to hold
3575 * a line of data.
3576 */
3577 if (count < PIPE_CRC_LINE_LEN)
3578 return -EINVAL;
3579
3580 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3581 return 0;
3582
3583 /* nothing to read */
3584 spin_lock_irq(&pipe_crc->lock);
3585 while (pipe_crc_data_count(pipe_crc) == 0) {
3586 int ret;
3587
3588 if (filep->f_flags & O_NONBLOCK) {
3589 spin_unlock_irq(&pipe_crc->lock);
3590 return -EAGAIN;
3591 }
3592
3593 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3594 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3595 if (ret) {
3596 spin_unlock_irq(&pipe_crc->lock);
3597 return ret;
3598 }
3599 }
3600
3601 /* We now have one or more entries to read */
3602 n_entries = count / PIPE_CRC_LINE_LEN;
3603
3604 bytes_read = 0;
3605 while (n_entries > 0) {
3606 struct intel_pipe_crc_entry *entry =
3607 &pipe_crc->entries[pipe_crc->tail];
3608 int ret;
3609
3610 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3611 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3612 break;
3613
3614 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3615 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3616
3617 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3618 "%8u %8x %8x %8x %8x %8x\n",
3619 entry->frame, entry->crc[0],
3620 entry->crc[1], entry->crc[2],
3621 entry->crc[3], entry->crc[4]);
3622
3623 spin_unlock_irq(&pipe_crc->lock);
3624
3625 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3626 if (ret == PIPE_CRC_LINE_LEN)
3627 return -EFAULT;
3628
3629 user_buf += PIPE_CRC_LINE_LEN;
3630 n_entries--;
3631
3632 spin_lock_irq(&pipe_crc->lock);
3633 }
3634
3635 spin_unlock_irq(&pipe_crc->lock);
3636
3637 return bytes_read;
3638 }
3639
3640 static const struct file_operations i915_pipe_crc_fops = {
3641 .owner = THIS_MODULE,
3642 .open = i915_pipe_crc_open,
3643 .read = i915_pipe_crc_read,
3644 .release = i915_pipe_crc_release,
3645 };
3646
3647 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3648 {
3649 .name = "i915_pipe_A_crc",
3650 .pipe = PIPE_A,
3651 },
3652 {
3653 .name = "i915_pipe_B_crc",
3654 .pipe = PIPE_B,
3655 },
3656 {
3657 .name = "i915_pipe_C_crc",
3658 .pipe = PIPE_C,
3659 },
3660 };
3661
3662 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3663 enum pipe pipe)
3664 {
3665 struct drm_device *dev = minor->dev;
3666 struct dentry *ent;
3667 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3668
3669 info->dev = dev;
3670 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3671 &i915_pipe_crc_fops);
3672 if (!ent)
3673 return -ENOMEM;
3674
3675 return drm_add_fake_info_node(minor, ent, info);
3676 }
3677
3678 static const char * const pipe_crc_sources[] = {
3679 "none",
3680 "plane1",
3681 "plane2",
3682 "pf",
3683 "pipe",
3684 "TV",
3685 "DP-B",
3686 "DP-C",
3687 "DP-D",
3688 "auto",
3689 };
3690
3691 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3692 {
3693 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3694 return pipe_crc_sources[source];
3695 }
3696
3697 static int display_crc_ctl_show(struct seq_file *m, void *data)
3698 {
3699 struct drm_device *dev = m->private;
3700 struct drm_i915_private *dev_priv = dev->dev_private;
3701 int i;
3702
3703 for (i = 0; i < I915_MAX_PIPES; i++)
3704 seq_printf(m, "%c %s\n", pipe_name(i),
3705 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3706
3707 return 0;
3708 }
3709
3710 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3711 {
3712 struct drm_device *dev = inode->i_private;
3713
3714 return single_open(file, display_crc_ctl_show, dev);
3715 }
3716
3717 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3718 uint32_t *val)
3719 {
3720 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3721 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3722
3723 switch (*source) {
3724 case INTEL_PIPE_CRC_SOURCE_PIPE:
3725 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3726 break;
3727 case INTEL_PIPE_CRC_SOURCE_NONE:
3728 *val = 0;
3729 break;
3730 default:
3731 return -EINVAL;
3732 }
3733
3734 return 0;
3735 }
3736
3737 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3738 enum intel_pipe_crc_source *source)
3739 {
3740 struct intel_encoder *encoder;
3741 struct intel_crtc *crtc;
3742 struct intel_digital_port *dig_port;
3743 int ret = 0;
3744
3745 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3746
3747 drm_modeset_lock_all(dev);
3748 for_each_intel_encoder(dev, encoder) {
3749 if (!encoder->base.crtc)
3750 continue;
3751
3752 crtc = to_intel_crtc(encoder->base.crtc);
3753
3754 if (crtc->pipe != pipe)
3755 continue;
3756
3757 switch (encoder->type) {
3758 case INTEL_OUTPUT_TVOUT:
3759 *source = INTEL_PIPE_CRC_SOURCE_TV;
3760 break;
3761 case INTEL_OUTPUT_DISPLAYPORT:
3762 case INTEL_OUTPUT_EDP:
3763 dig_port = enc_to_dig_port(&encoder->base);
3764 switch (dig_port->port) {
3765 case PORT_B:
3766 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3767 break;
3768 case PORT_C:
3769 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3770 break;
3771 case PORT_D:
3772 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3773 break;
3774 default:
3775 WARN(1, "nonexisting DP port %c\n",
3776 port_name(dig_port->port));
3777 break;
3778 }
3779 break;
3780 default:
3781 break;
3782 }
3783 }
3784 drm_modeset_unlock_all(dev);
3785
3786 return ret;
3787 }
3788
3789 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3790 enum pipe pipe,
3791 enum intel_pipe_crc_source *source,
3792 uint32_t *val)
3793 {
3794 struct drm_i915_private *dev_priv = dev->dev_private;
3795 bool need_stable_symbols = false;
3796
3797 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3798 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3799 if (ret)
3800 return ret;
3801 }
3802
3803 switch (*source) {
3804 case INTEL_PIPE_CRC_SOURCE_PIPE:
3805 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3806 break;
3807 case INTEL_PIPE_CRC_SOURCE_DP_B:
3808 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3809 need_stable_symbols = true;
3810 break;
3811 case INTEL_PIPE_CRC_SOURCE_DP_C:
3812 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3813 need_stable_symbols = true;
3814 break;
3815 case INTEL_PIPE_CRC_SOURCE_DP_D:
3816 if (!IS_CHERRYVIEW(dev))
3817 return -EINVAL;
3818 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3819 need_stable_symbols = true;
3820 break;
3821 case INTEL_PIPE_CRC_SOURCE_NONE:
3822 *val = 0;
3823 break;
3824 default:
3825 return -EINVAL;
3826 }
3827
3828 /*
3829 * When the pipe CRC tap point is after the transcoders we need
3830 * to tweak symbol-level features to produce a deterministic series of
3831 * symbols for a given frame. We need to reset those features only once
3832 * a frame (instead of every nth symbol):
3833 * - DC-balance: used to ensure a better clock recovery from the data
3834 * link (SDVO)
3835 * - DisplayPort scrambling: used for EMI reduction
3836 */
3837 if (need_stable_symbols) {
3838 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3839
3840 tmp |= DC_BALANCE_RESET_VLV;
3841 switch (pipe) {
3842 case PIPE_A:
3843 tmp |= PIPE_A_SCRAMBLE_RESET;
3844 break;
3845 case PIPE_B:
3846 tmp |= PIPE_B_SCRAMBLE_RESET;
3847 break;
3848 case PIPE_C:
3849 tmp |= PIPE_C_SCRAMBLE_RESET;
3850 break;
3851 default:
3852 return -EINVAL;
3853 }
3854 I915_WRITE(PORT_DFT2_G4X, tmp);
3855 }
3856
3857 return 0;
3858 }
3859
3860 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3861 enum pipe pipe,
3862 enum intel_pipe_crc_source *source,
3863 uint32_t *val)
3864 {
3865 struct drm_i915_private *dev_priv = dev->dev_private;
3866 bool need_stable_symbols = false;
3867
3868 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3869 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3870 if (ret)
3871 return ret;
3872 }
3873
3874 switch (*source) {
3875 case INTEL_PIPE_CRC_SOURCE_PIPE:
3876 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3877 break;
3878 case INTEL_PIPE_CRC_SOURCE_TV:
3879 if (!SUPPORTS_TV(dev))
3880 return -EINVAL;
3881 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3882 break;
3883 case INTEL_PIPE_CRC_SOURCE_DP_B:
3884 if (!IS_G4X(dev))
3885 return -EINVAL;
3886 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3887 need_stable_symbols = true;
3888 break;
3889 case INTEL_PIPE_CRC_SOURCE_DP_C:
3890 if (!IS_G4X(dev))
3891 return -EINVAL;
3892 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3893 need_stable_symbols = true;
3894 break;
3895 case INTEL_PIPE_CRC_SOURCE_DP_D:
3896 if (!IS_G4X(dev))
3897 return -EINVAL;
3898 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3899 need_stable_symbols = true;
3900 break;
3901 case INTEL_PIPE_CRC_SOURCE_NONE:
3902 *val = 0;
3903 break;
3904 default:
3905 return -EINVAL;
3906 }
3907
3908 /*
3909 * When the pipe CRC tap point is after the transcoders we need
3910 * to tweak symbol-level features to produce a deterministic series of
3911 * symbols for a given frame. We need to reset those features only once
3912 * a frame (instead of every nth symbol):
3913 * - DC-balance: used to ensure a better clock recovery from the data
3914 * link (SDVO)
3915 * - DisplayPort scrambling: used for EMI reduction
3916 */
3917 if (need_stable_symbols) {
3918 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3919
3920 WARN_ON(!IS_G4X(dev));
3921
3922 I915_WRITE(PORT_DFT_I9XX,
3923 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3924
3925 if (pipe == PIPE_A)
3926 tmp |= PIPE_A_SCRAMBLE_RESET;
3927 else
3928 tmp |= PIPE_B_SCRAMBLE_RESET;
3929
3930 I915_WRITE(PORT_DFT2_G4X, tmp);
3931 }
3932
3933 return 0;
3934 }
3935
3936 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3937 enum pipe pipe)
3938 {
3939 struct drm_i915_private *dev_priv = dev->dev_private;
3940 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3941
3942 switch (pipe) {
3943 case PIPE_A:
3944 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3945 break;
3946 case PIPE_B:
3947 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3948 break;
3949 case PIPE_C:
3950 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3951 break;
3952 default:
3953 return;
3954 }
3955 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3956 tmp &= ~DC_BALANCE_RESET_VLV;
3957 I915_WRITE(PORT_DFT2_G4X, tmp);
3958
3959 }
3960
3961 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3962 enum pipe pipe)
3963 {
3964 struct drm_i915_private *dev_priv = dev->dev_private;
3965 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3966
3967 if (pipe == PIPE_A)
3968 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3969 else
3970 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3971 I915_WRITE(PORT_DFT2_G4X, tmp);
3972
3973 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3974 I915_WRITE(PORT_DFT_I9XX,
3975 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3976 }
3977 }
3978
3979 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3980 uint32_t *val)
3981 {
3982 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3983 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3984
3985 switch (*source) {
3986 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3987 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3988 break;
3989 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3990 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3991 break;
3992 case INTEL_PIPE_CRC_SOURCE_PIPE:
3993 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3994 break;
3995 case INTEL_PIPE_CRC_SOURCE_NONE:
3996 *val = 0;
3997 break;
3998 default:
3999 return -EINVAL;
4000 }
4001
4002 return 0;
4003 }
4004
4005 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
4006 {
4007 struct drm_i915_private *dev_priv = dev->dev_private;
4008 struct intel_crtc *crtc =
4009 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
4010 struct intel_crtc_state *pipe_config;
4011 struct drm_atomic_state *state;
4012 int ret = 0;
4013
4014 drm_modeset_lock_all(dev);
4015 state = drm_atomic_state_alloc(dev);
4016 if (!state) {
4017 ret = -ENOMEM;
4018 goto out;
4019 }
4020
4021 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4022 pipe_config = intel_atomic_get_crtc_state(state, crtc);
4023 if (IS_ERR(pipe_config)) {
4024 ret = PTR_ERR(pipe_config);
4025 goto out;
4026 }
4027
4028 pipe_config->pch_pfit.force_thru = enable;
4029 if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4030 pipe_config->pch_pfit.enabled != enable)
4031 pipe_config->base.connectors_changed = true;
4032
4033 ret = drm_atomic_commit(state);
4034 out:
4035 drm_modeset_unlock_all(dev);
4036 WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4037 if (ret)
4038 drm_atomic_state_free(state);
4039 }
4040
4041 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
4042 enum pipe pipe,
4043 enum intel_pipe_crc_source *source,
4044 uint32_t *val)
4045 {
4046 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4047 *source = INTEL_PIPE_CRC_SOURCE_PF;
4048
4049 switch (*source) {
4050 case INTEL_PIPE_CRC_SOURCE_PLANE1:
4051 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4052 break;
4053 case INTEL_PIPE_CRC_SOURCE_PLANE2:
4054 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4055 break;
4056 case INTEL_PIPE_CRC_SOURCE_PF:
4057 if (IS_HASWELL(dev) && pipe == PIPE_A)
4058 hsw_trans_edp_pipe_A_crc_wa(dev, true);
4059
4060 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4061 break;
4062 case INTEL_PIPE_CRC_SOURCE_NONE:
4063 *val = 0;
4064 break;
4065 default:
4066 return -EINVAL;
4067 }
4068
4069 return 0;
4070 }
4071
4072 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4073 enum intel_pipe_crc_source source)
4074 {
4075 struct drm_i915_private *dev_priv = dev->dev_private;
4076 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4077 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4078 pipe));
4079 enum intel_display_power_domain power_domain;
4080 u32 val = 0; /* shut up gcc */
4081 int ret;
4082
4083 if (pipe_crc->source == source)
4084 return 0;
4085
4086 /* forbid changing the source without going back to 'none' */
4087 if (pipe_crc->source && source)
4088 return -EINVAL;
4089
4090 power_domain = POWER_DOMAIN_PIPE(pipe);
4091 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4092 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4093 return -EIO;
4094 }
4095
4096 if (IS_GEN2(dev))
4097 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4098 else if (INTEL_INFO(dev)->gen < 5)
4099 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4100 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4101 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4102 else if (IS_GEN5(dev) || IS_GEN6(dev))
4103 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4104 else
4105 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4106
4107 if (ret != 0)
4108 goto out;
4109
4110 /* none -> real source transition */
4111 if (source) {
4112 struct intel_pipe_crc_entry *entries;
4113
4114 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4115 pipe_name(pipe), pipe_crc_source_name(source));
4116
4117 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4118 sizeof(pipe_crc->entries[0]),
4119 GFP_KERNEL);
4120 if (!entries) {
4121 ret = -ENOMEM;
4122 goto out;
4123 }
4124
4125 /*
4126 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4127 * enabled and disabled dynamically based on package C states,
4128 * user space can't make reliable use of the CRCs, so let's just
4129 * completely disable it.
4130 */
4131 hsw_disable_ips(crtc);
4132
4133 spin_lock_irq(&pipe_crc->lock);
4134 kfree(pipe_crc->entries);
4135 pipe_crc->entries = entries;
4136 pipe_crc->head = 0;
4137 pipe_crc->tail = 0;
4138 spin_unlock_irq(&pipe_crc->lock);
4139 }
4140
4141 pipe_crc->source = source;
4142
4143 I915_WRITE(PIPE_CRC_CTL(pipe), val);
4144 POSTING_READ(PIPE_CRC_CTL(pipe));
4145
4146 /* real source -> none transition */
4147 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4148 struct intel_pipe_crc_entry *entries;
4149 struct intel_crtc *crtc =
4150 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4151
4152 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4153 pipe_name(pipe));
4154
4155 drm_modeset_lock(&crtc->base.mutex, NULL);
4156 if (crtc->base.state->active)
4157 intel_wait_for_vblank(dev, pipe);
4158 drm_modeset_unlock(&crtc->base.mutex);
4159
4160 spin_lock_irq(&pipe_crc->lock);
4161 entries = pipe_crc->entries;
4162 pipe_crc->entries = NULL;
4163 pipe_crc->head = 0;
4164 pipe_crc->tail = 0;
4165 spin_unlock_irq(&pipe_crc->lock);
4166
4167 kfree(entries);
4168
4169 if (IS_G4X(dev))
4170 g4x_undo_pipe_scramble_reset(dev, pipe);
4171 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4172 vlv_undo_pipe_scramble_reset(dev, pipe);
4173 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4174 hsw_trans_edp_pipe_A_crc_wa(dev, false);
4175
4176 hsw_enable_ips(crtc);
4177 }
4178
4179 ret = 0;
4180
4181 out:
4182 intel_display_power_put(dev_priv, power_domain);
4183
4184 return ret;
4185 }
4186
4187 /*
4188 * Parse pipe CRC command strings:
4189 * command: wsp* object wsp+ name wsp+ source wsp*
4190 * object: 'pipe'
4191 * name: (A | B | C)
4192 * source: (none | plane1 | plane2 | pf)
4193 * wsp: (#0x20 | #0x9 | #0xA)+
4194 *
4195 * eg.:
4196 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
4197 * "pipe A none" -> Stop CRC
4198 */
4199 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4200 {
4201 int n_words = 0;
4202
4203 while (*buf) {
4204 char *end;
4205
4206 /* skip leading white space */
4207 buf = skip_spaces(buf);
4208 if (!*buf)
4209 break; /* end of buffer */
4210
4211 /* find end of word */
4212 for (end = buf; *end && !isspace(*end); end++)
4213 ;
4214
4215 if (n_words == max_words) {
4216 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4217 max_words);
4218 return -EINVAL; /* ran out of words[] before bytes */
4219 }
4220
4221 if (*end)
4222 *end++ = '\0';
4223 words[n_words++] = buf;
4224 buf = end;
4225 }
4226
4227 return n_words;
4228 }
4229
4230 enum intel_pipe_crc_object {
4231 PIPE_CRC_OBJECT_PIPE,
4232 };
4233
4234 static const char * const pipe_crc_objects[] = {
4235 "pipe",
4236 };
4237
4238 static int
4239 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4240 {
4241 int i;
4242
4243 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4244 if (!strcmp(buf, pipe_crc_objects[i])) {
4245 *o = i;
4246 return 0;
4247 }
4248
4249 return -EINVAL;
4250 }
4251
4252 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4253 {
4254 const char name = buf[0];
4255
4256 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4257 return -EINVAL;
4258
4259 *pipe = name - 'A';
4260
4261 return 0;
4262 }
4263
4264 static int
4265 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4266 {
4267 int i;
4268
4269 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4270 if (!strcmp(buf, pipe_crc_sources[i])) {
4271 *s = i;
4272 return 0;
4273 }
4274
4275 return -EINVAL;
4276 }
4277
4278 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4279 {
4280 #define N_WORDS 3
4281 int n_words;
4282 char *words[N_WORDS];
4283 enum pipe pipe;
4284 enum intel_pipe_crc_object object;
4285 enum intel_pipe_crc_source source;
4286
4287 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4288 if (n_words != N_WORDS) {
4289 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4290 N_WORDS);
4291 return -EINVAL;
4292 }
4293
4294 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4295 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4296 return -EINVAL;
4297 }
4298
4299 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4300 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4301 return -EINVAL;
4302 }
4303
4304 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4305 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4306 return -EINVAL;
4307 }
4308
4309 return pipe_crc_set_source(dev, pipe, source);
4310 }
4311
4312 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4313 size_t len, loff_t *offp)
4314 {
4315 struct seq_file *m = file->private_data;
4316 struct drm_device *dev = m->private;
4317 char *tmpbuf;
4318 int ret;
4319
4320 if (len == 0)
4321 return 0;
4322
4323 if (len > PAGE_SIZE - 1) {
4324 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4325 PAGE_SIZE);
4326 return -E2BIG;
4327 }
4328
4329 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4330 if (!tmpbuf)
4331 return -ENOMEM;
4332
4333 if (copy_from_user(tmpbuf, ubuf, len)) {
4334 ret = -EFAULT;
4335 goto out;
4336 }
4337 tmpbuf[len] = '\0';
4338
4339 ret = display_crc_ctl_parse(dev, tmpbuf, len);
4340
4341 out:
4342 kfree(tmpbuf);
4343 if (ret < 0)
4344 return ret;
4345
4346 *offp += len;
4347 return len;
4348 }
4349
4350 static const struct file_operations i915_display_crc_ctl_fops = {
4351 .owner = THIS_MODULE,
4352 .open = display_crc_ctl_open,
4353 .read = seq_read,
4354 .llseek = seq_lseek,
4355 .release = single_release,
4356 .write = display_crc_ctl_write
4357 };
4358
4359 static ssize_t i915_displayport_test_active_write(struct file *file,
4360 const char __user *ubuf,
4361 size_t len, loff_t *offp)
4362 {
4363 char *input_buffer;
4364 int status = 0;
4365 struct drm_device *dev;
4366 struct drm_connector *connector;
4367 struct list_head *connector_list;
4368 struct intel_dp *intel_dp;
4369 int val = 0;
4370
4371 dev = ((struct seq_file *)file->private_data)->private;
4372
4373 connector_list = &dev->mode_config.connector_list;
4374
4375 if (len == 0)
4376 return 0;
4377
4378 input_buffer = kmalloc(len + 1, GFP_KERNEL);
4379 if (!input_buffer)
4380 return -ENOMEM;
4381
4382 if (copy_from_user(input_buffer, ubuf, len)) {
4383 status = -EFAULT;
4384 goto out;
4385 }
4386
4387 input_buffer[len] = '\0';
4388 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4389
4390 list_for_each_entry(connector, connector_list, head) {
4391
4392 if (connector->connector_type !=
4393 DRM_MODE_CONNECTOR_DisplayPort)
4394 continue;
4395
4396 if (connector->status == connector_status_connected &&
4397 connector->encoder != NULL) {
4398 intel_dp = enc_to_intel_dp(connector->encoder);
4399 status = kstrtoint(input_buffer, 10, &val);
4400 if (status < 0)
4401 goto out;
4402 DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4403 /* To prevent erroneous activation of the compliance
4404 * testing code, only accept an actual value of 1 here
4405 */
4406 if (val == 1)
4407 intel_dp->compliance_test_active = 1;
4408 else
4409 intel_dp->compliance_test_active = 0;
4410 }
4411 }
4412 out:
4413 kfree(input_buffer);
4414 if (status < 0)
4415 return status;
4416
4417 *offp += len;
4418 return len;
4419 }
4420
4421 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4422 {
4423 struct drm_device *dev = m->private;
4424 struct drm_connector *connector;
4425 struct list_head *connector_list = &dev->mode_config.connector_list;
4426 struct intel_dp *intel_dp;
4427
4428 list_for_each_entry(connector, connector_list, head) {
4429
4430 if (connector->connector_type !=
4431 DRM_MODE_CONNECTOR_DisplayPort)
4432 continue;
4433
4434 if (connector->status == connector_status_connected &&
4435 connector->encoder != NULL) {
4436 intel_dp = enc_to_intel_dp(connector->encoder);
4437 if (intel_dp->compliance_test_active)
4438 seq_puts(m, "1");
4439 else
4440 seq_puts(m, "0");
4441 } else
4442 seq_puts(m, "0");
4443 }
4444
4445 return 0;
4446 }
4447
4448 static int i915_displayport_test_active_open(struct inode *inode,
4449 struct file *file)
4450 {
4451 struct drm_device *dev = inode->i_private;
4452
4453 return single_open(file, i915_displayport_test_active_show, dev);
4454 }
4455
4456 static const struct file_operations i915_displayport_test_active_fops = {
4457 .owner = THIS_MODULE,
4458 .open = i915_displayport_test_active_open,
4459 .read = seq_read,
4460 .llseek = seq_lseek,
4461 .release = single_release,
4462 .write = i915_displayport_test_active_write
4463 };
4464
4465 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4466 {
4467 struct drm_device *dev = m->private;
4468 struct drm_connector *connector;
4469 struct list_head *connector_list = &dev->mode_config.connector_list;
4470 struct intel_dp *intel_dp;
4471
4472 list_for_each_entry(connector, connector_list, head) {
4473
4474 if (connector->connector_type !=
4475 DRM_MODE_CONNECTOR_DisplayPort)
4476 continue;
4477
4478 if (connector->status == connector_status_connected &&
4479 connector->encoder != NULL) {
4480 intel_dp = enc_to_intel_dp(connector->encoder);
4481 seq_printf(m, "%lx", intel_dp->compliance_test_data);
4482 } else
4483 seq_puts(m, "0");
4484 }
4485
4486 return 0;
4487 }
4488 static int i915_displayport_test_data_open(struct inode *inode,
4489 struct file *file)
4490 {
4491 struct drm_device *dev = inode->i_private;
4492
4493 return single_open(file, i915_displayport_test_data_show, dev);
4494 }
4495
4496 static const struct file_operations i915_displayport_test_data_fops = {
4497 .owner = THIS_MODULE,
4498 .open = i915_displayport_test_data_open,
4499 .read = seq_read,
4500 .llseek = seq_lseek,
4501 .release = single_release
4502 };
4503
4504 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4505 {
4506 struct drm_device *dev = m->private;
4507 struct drm_connector *connector;
4508 struct list_head *connector_list = &dev->mode_config.connector_list;
4509 struct intel_dp *intel_dp;
4510
4511 list_for_each_entry(connector, connector_list, head) {
4512
4513 if (connector->connector_type !=
4514 DRM_MODE_CONNECTOR_DisplayPort)
4515 continue;
4516
4517 if (connector->status == connector_status_connected &&
4518 connector->encoder != NULL) {
4519 intel_dp = enc_to_intel_dp(connector->encoder);
4520 seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4521 } else
4522 seq_puts(m, "0");
4523 }
4524
4525 return 0;
4526 }
4527
4528 static int i915_displayport_test_type_open(struct inode *inode,
4529 struct file *file)
4530 {
4531 struct drm_device *dev = inode->i_private;
4532
4533 return single_open(file, i915_displayport_test_type_show, dev);
4534 }
4535
4536 static const struct file_operations i915_displayport_test_type_fops = {
4537 .owner = THIS_MODULE,
4538 .open = i915_displayport_test_type_open,
4539 .read = seq_read,
4540 .llseek = seq_lseek,
4541 .release = single_release
4542 };
4543
4544 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4545 {
4546 struct drm_device *dev = m->private;
4547 int level;
4548 int num_levels;
4549
4550 if (IS_CHERRYVIEW(dev))
4551 num_levels = 3;
4552 else if (IS_VALLEYVIEW(dev))
4553 num_levels = 1;
4554 else
4555 num_levels = ilk_wm_max_level(dev) + 1;
4556
4557 drm_modeset_lock_all(dev);
4558
4559 for (level = 0; level < num_levels; level++) {
4560 unsigned int latency = wm[level];
4561
4562 /*
4563 * - WM1+ latency values in 0.5us units
4564 * - latencies are in us on gen9/vlv/chv
4565 */
4566 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4567 IS_CHERRYVIEW(dev))
4568 latency *= 10;
4569 else if (level > 0)
4570 latency *= 5;
4571
4572 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4573 level, wm[level], latency / 10, latency % 10);
4574 }
4575
4576 drm_modeset_unlock_all(dev);
4577 }
4578
4579 static int pri_wm_latency_show(struct seq_file *m, void *data)
4580 {
4581 struct drm_device *dev = m->private;
4582 struct drm_i915_private *dev_priv = dev->dev_private;
4583 const uint16_t *latencies;
4584
4585 if (INTEL_INFO(dev)->gen >= 9)
4586 latencies = dev_priv->wm.skl_latency;
4587 else
4588 latencies = to_i915(dev)->wm.pri_latency;
4589
4590 wm_latency_show(m, latencies);
4591
4592 return 0;
4593 }
4594
4595 static int spr_wm_latency_show(struct seq_file *m, void *data)
4596 {
4597 struct drm_device *dev = m->private;
4598 struct drm_i915_private *dev_priv = dev->dev_private;
4599 const uint16_t *latencies;
4600
4601 if (INTEL_INFO(dev)->gen >= 9)
4602 latencies = dev_priv->wm.skl_latency;
4603 else
4604 latencies = to_i915(dev)->wm.spr_latency;
4605
4606 wm_latency_show(m, latencies);
4607
4608 return 0;
4609 }
4610
4611 static int cur_wm_latency_show(struct seq_file *m, void *data)
4612 {
4613 struct drm_device *dev = m->private;
4614 struct drm_i915_private *dev_priv = dev->dev_private;
4615 const uint16_t *latencies;
4616
4617 if (INTEL_INFO(dev)->gen >= 9)
4618 latencies = dev_priv->wm.skl_latency;
4619 else
4620 latencies = to_i915(dev)->wm.cur_latency;
4621
4622 wm_latency_show(m, latencies);
4623
4624 return 0;
4625 }
4626
4627 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4628 {
4629 struct drm_device *dev = inode->i_private;
4630
4631 if (INTEL_INFO(dev)->gen < 5)
4632 return -ENODEV;
4633
4634 return single_open(file, pri_wm_latency_show, dev);
4635 }
4636
4637 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4638 {
4639 struct drm_device *dev = inode->i_private;
4640
4641 if (HAS_GMCH_DISPLAY(dev))
4642 return -ENODEV;
4643
4644 return single_open(file, spr_wm_latency_show, dev);
4645 }
4646
4647 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4648 {
4649 struct drm_device *dev = inode->i_private;
4650
4651 if (HAS_GMCH_DISPLAY(dev))
4652 return -ENODEV;
4653
4654 return single_open(file, cur_wm_latency_show, dev);
4655 }
4656
4657 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4658 size_t len, loff_t *offp, uint16_t wm[8])
4659 {
4660 struct seq_file *m = file->private_data;
4661 struct drm_device *dev = m->private;
4662 uint16_t new[8] = { 0 };
4663 int num_levels;
4664 int level;
4665 int ret;
4666 char tmp[32];
4667
4668 if (IS_CHERRYVIEW(dev))
4669 num_levels = 3;
4670 else if (IS_VALLEYVIEW(dev))
4671 num_levels = 1;
4672 else
4673 num_levels = ilk_wm_max_level(dev) + 1;
4674
4675 if (len >= sizeof(tmp))
4676 return -EINVAL;
4677
4678 if (copy_from_user(tmp, ubuf, len))
4679 return -EFAULT;
4680
4681 tmp[len] = '\0';
4682
4683 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4684 &new[0], &new[1], &new[2], &new[3],
4685 &new[4], &new[5], &new[6], &new[7]);
4686 if (ret != num_levels)
4687 return -EINVAL;
4688
4689 drm_modeset_lock_all(dev);
4690
4691 for (level = 0; level < num_levels; level++)
4692 wm[level] = new[level];
4693
4694 drm_modeset_unlock_all(dev);
4695
4696 return len;
4697 }
4698
4699
4700 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4701 size_t len, loff_t *offp)
4702 {
4703 struct seq_file *m = file->private_data;
4704 struct drm_device *dev = m->private;
4705 struct drm_i915_private *dev_priv = dev->dev_private;
4706 uint16_t *latencies;
4707
4708 if (INTEL_INFO(dev)->gen >= 9)
4709 latencies = dev_priv->wm.skl_latency;
4710 else
4711 latencies = to_i915(dev)->wm.pri_latency;
4712
4713 return wm_latency_write(file, ubuf, len, offp, latencies);
4714 }
4715
4716 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4717 size_t len, loff_t *offp)
4718 {
4719 struct seq_file *m = file->private_data;
4720 struct drm_device *dev = m->private;
4721 struct drm_i915_private *dev_priv = dev->dev_private;
4722 uint16_t *latencies;
4723
4724 if (INTEL_INFO(dev)->gen >= 9)
4725 latencies = dev_priv->wm.skl_latency;
4726 else
4727 latencies = to_i915(dev)->wm.spr_latency;
4728
4729 return wm_latency_write(file, ubuf, len, offp, latencies);
4730 }
4731
4732 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4733 size_t len, loff_t *offp)
4734 {
4735 struct seq_file *m = file->private_data;
4736 struct drm_device *dev = m->private;
4737 struct drm_i915_private *dev_priv = dev->dev_private;
4738 uint16_t *latencies;
4739
4740 if (INTEL_INFO(dev)->gen >= 9)
4741 latencies = dev_priv->wm.skl_latency;
4742 else
4743 latencies = to_i915(dev)->wm.cur_latency;
4744
4745 return wm_latency_write(file, ubuf, len, offp, latencies);
4746 }
4747
4748 static const struct file_operations i915_pri_wm_latency_fops = {
4749 .owner = THIS_MODULE,
4750 .open = pri_wm_latency_open,
4751 .read = seq_read,
4752 .llseek = seq_lseek,
4753 .release = single_release,
4754 .write = pri_wm_latency_write
4755 };
4756
4757 static const struct file_operations i915_spr_wm_latency_fops = {
4758 .owner = THIS_MODULE,
4759 .open = spr_wm_latency_open,
4760 .read = seq_read,
4761 .llseek = seq_lseek,
4762 .release = single_release,
4763 .write = spr_wm_latency_write
4764 };
4765
4766 static const struct file_operations i915_cur_wm_latency_fops = {
4767 .owner = THIS_MODULE,
4768 .open = cur_wm_latency_open,
4769 .read = seq_read,
4770 .llseek = seq_lseek,
4771 .release = single_release,
4772 .write = cur_wm_latency_write
4773 };
4774
4775 static int
4776 i915_wedged_get(void *data, u64 *val)
4777 {
4778 struct drm_device *dev = data;
4779 struct drm_i915_private *dev_priv = dev->dev_private;
4780
4781 *val = i915_terminally_wedged(&dev_priv->gpu_error);
4782
4783 return 0;
4784 }
4785
4786 static int
4787 i915_wedged_set(void *data, u64 val)
4788 {
4789 struct drm_device *dev = data;
4790 struct drm_i915_private *dev_priv = dev->dev_private;
4791
4792 /*
4793 * There is no safeguard against this debugfs entry colliding
4794 * with the hangcheck calling same i915_handle_error() in
4795 * parallel, causing an explosion. For now we assume that the
4796 * test harness is responsible enough not to inject gpu hangs
4797 * while it is writing to 'i915_wedged'
4798 */
4799
4800 if (i915_reset_in_progress(&dev_priv->gpu_error))
4801 return -EAGAIN;
4802
4803 intel_runtime_pm_get(dev_priv);
4804
4805 i915_handle_error(dev_priv, val,
4806 "Manually setting wedged to %llu", val);
4807
4808 intel_runtime_pm_put(dev_priv);
4809
4810 return 0;
4811 }
4812
4813 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4814 i915_wedged_get, i915_wedged_set,
4815 "%llu\n");
4816
4817 static int
4818 i915_ring_stop_get(void *data, u64 *val)
4819 {
4820 struct drm_device *dev = data;
4821 struct drm_i915_private *dev_priv = dev->dev_private;
4822
4823 *val = dev_priv->gpu_error.stop_rings;
4824
4825 return 0;
4826 }
4827
4828 static int
4829 i915_ring_stop_set(void *data, u64 val)
4830 {
4831 struct drm_device *dev = data;
4832 struct drm_i915_private *dev_priv = dev->dev_private;
4833 int ret;
4834
4835 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4836
4837 ret = mutex_lock_interruptible(&dev->struct_mutex);
4838 if (ret)
4839 return ret;
4840
4841 dev_priv->gpu_error.stop_rings = val;
4842 mutex_unlock(&dev->struct_mutex);
4843
4844 return 0;
4845 }
4846
4847 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4848 i915_ring_stop_get, i915_ring_stop_set,
4849 "0x%08llx\n");
4850
4851 static int
4852 i915_ring_missed_irq_get(void *data, u64 *val)
4853 {
4854 struct drm_device *dev = data;
4855 struct drm_i915_private *dev_priv = dev->dev_private;
4856
4857 *val = dev_priv->gpu_error.missed_irq_rings;
4858 return 0;
4859 }
4860
4861 static int
4862 i915_ring_missed_irq_set(void *data, u64 val)
4863 {
4864 struct drm_device *dev = data;
4865 struct drm_i915_private *dev_priv = dev->dev_private;
4866 int ret;
4867
4868 /* Lock against concurrent debugfs callers */
4869 ret = mutex_lock_interruptible(&dev->struct_mutex);
4870 if (ret)
4871 return ret;
4872 dev_priv->gpu_error.missed_irq_rings = val;
4873 mutex_unlock(&dev->struct_mutex);
4874
4875 return 0;
4876 }
4877
4878 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4879 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4880 "0x%08llx\n");
4881
4882 static int
4883 i915_ring_test_irq_get(void *data, u64 *val)
4884 {
4885 struct drm_device *dev = data;
4886 struct drm_i915_private *dev_priv = dev->dev_private;
4887
4888 *val = dev_priv->gpu_error.test_irq_rings;
4889
4890 return 0;
4891 }
4892
4893 static int
4894 i915_ring_test_irq_set(void *data, u64 val)
4895 {
4896 struct drm_device *dev = data;
4897 struct drm_i915_private *dev_priv = dev->dev_private;
4898 int ret;
4899
4900 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4901
4902 /* Lock against concurrent debugfs callers */
4903 ret = mutex_lock_interruptible(&dev->struct_mutex);
4904 if (ret)
4905 return ret;
4906
4907 dev_priv->gpu_error.test_irq_rings = val;
4908 mutex_unlock(&dev->struct_mutex);
4909
4910 return 0;
4911 }
4912
4913 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4914 i915_ring_test_irq_get, i915_ring_test_irq_set,
4915 "0x%08llx\n");
4916
4917 #define DROP_UNBOUND 0x1
4918 #define DROP_BOUND 0x2
4919 #define DROP_RETIRE 0x4
4920 #define DROP_ACTIVE 0x8
4921 #define DROP_ALL (DROP_UNBOUND | \
4922 DROP_BOUND | \
4923 DROP_RETIRE | \
4924 DROP_ACTIVE)
4925 static int
4926 i915_drop_caches_get(void *data, u64 *val)
4927 {
4928 *val = DROP_ALL;
4929
4930 return 0;
4931 }
4932
4933 static int
4934 i915_drop_caches_set(void *data, u64 val)
4935 {
4936 struct drm_device *dev = data;
4937 struct drm_i915_private *dev_priv = dev->dev_private;
4938 int ret;
4939
4940 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4941
4942 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4943 * on ioctls on -EAGAIN. */
4944 ret = mutex_lock_interruptible(&dev->struct_mutex);
4945 if (ret)
4946 return ret;
4947
4948 if (val & DROP_ACTIVE) {
4949 ret = i915_gpu_idle(dev);
4950 if (ret)
4951 goto unlock;
4952 }
4953
4954 if (val & (DROP_RETIRE | DROP_ACTIVE))
4955 i915_gem_retire_requests(dev_priv);
4956
4957 if (val & DROP_BOUND)
4958 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4959
4960 if (val & DROP_UNBOUND)
4961 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4962
4963 unlock:
4964 mutex_unlock(&dev->struct_mutex);
4965
4966 return ret;
4967 }
4968
4969 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4970 i915_drop_caches_get, i915_drop_caches_set,
4971 "0x%08llx\n");
4972
4973 static int
4974 i915_max_freq_get(void *data, u64 *val)
4975 {
4976 struct drm_device *dev = data;
4977 struct drm_i915_private *dev_priv = dev->dev_private;
4978 int ret;
4979
4980 if (INTEL_INFO(dev)->gen < 6)
4981 return -ENODEV;
4982
4983 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4984
4985 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4986 if (ret)
4987 return ret;
4988
4989 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4990 mutex_unlock(&dev_priv->rps.hw_lock);
4991
4992 return 0;
4993 }
4994
4995 static int
4996 i915_max_freq_set(void *data, u64 val)
4997 {
4998 struct drm_device *dev = data;
4999 struct drm_i915_private *dev_priv = dev->dev_private;
5000 u32 hw_max, hw_min;
5001 int ret;
5002
5003 if (INTEL_INFO(dev)->gen < 6)
5004 return -ENODEV;
5005
5006 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5007
5008 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
5009
5010 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5011 if (ret)
5012 return ret;
5013
5014 /*
5015 * Turbo will still be enabled, but won't go above the set value.
5016 */
5017 val = intel_freq_opcode(dev_priv, val);
5018
5019 hw_max = dev_priv->rps.max_freq;
5020 hw_min = dev_priv->rps.min_freq;
5021
5022 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
5023 mutex_unlock(&dev_priv->rps.hw_lock);
5024 return -EINVAL;
5025 }
5026
5027 dev_priv->rps.max_freq_softlimit = val;
5028
5029 intel_set_rps(dev_priv, val);
5030
5031 mutex_unlock(&dev_priv->rps.hw_lock);
5032
5033 return 0;
5034 }
5035
5036 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
5037 i915_max_freq_get, i915_max_freq_set,
5038 "%llu\n");
5039
5040 static int
5041 i915_min_freq_get(void *data, u64 *val)
5042 {
5043 struct drm_device *dev = data;
5044 struct drm_i915_private *dev_priv = dev->dev_private;
5045 int ret;
5046
5047 if (INTEL_INFO(dev)->gen < 6)
5048 return -ENODEV;
5049
5050 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5051
5052 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5053 if (ret)
5054 return ret;
5055
5056 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5057 mutex_unlock(&dev_priv->rps.hw_lock);
5058
5059 return 0;
5060 }
5061
5062 static int
5063 i915_min_freq_set(void *data, u64 val)
5064 {
5065 struct drm_device *dev = data;
5066 struct drm_i915_private *dev_priv = dev->dev_private;
5067 u32 hw_max, hw_min;
5068 int ret;
5069
5070 if (INTEL_INFO(dev)->gen < 6)
5071 return -ENODEV;
5072
5073 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5074
5075 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5076
5077 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5078 if (ret)
5079 return ret;
5080
5081 /*
5082 * Turbo will still be enabled, but won't go below the set value.
5083 */
5084 val = intel_freq_opcode(dev_priv, val);
5085
5086 hw_max = dev_priv->rps.max_freq;
5087 hw_min = dev_priv->rps.min_freq;
5088
5089 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5090 mutex_unlock(&dev_priv->rps.hw_lock);
5091 return -EINVAL;
5092 }
5093
5094 dev_priv->rps.min_freq_softlimit = val;
5095
5096 intel_set_rps(dev_priv, val);
5097
5098 mutex_unlock(&dev_priv->rps.hw_lock);
5099
5100 return 0;
5101 }
5102
5103 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5104 i915_min_freq_get, i915_min_freq_set,
5105 "%llu\n");
5106
5107 static int
5108 i915_cache_sharing_get(void *data, u64 *val)
5109 {
5110 struct drm_device *dev = data;
5111 struct drm_i915_private *dev_priv = dev->dev_private;
5112 u32 snpcr;
5113 int ret;
5114
5115 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5116 return -ENODEV;
5117
5118 ret = mutex_lock_interruptible(&dev->struct_mutex);
5119 if (ret)
5120 return ret;
5121 intel_runtime_pm_get(dev_priv);
5122
5123 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5124
5125 intel_runtime_pm_put(dev_priv);
5126 mutex_unlock(&dev_priv->dev->struct_mutex);
5127
5128 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5129
5130 return 0;
5131 }
5132
5133 static int
5134 i915_cache_sharing_set(void *data, u64 val)
5135 {
5136 struct drm_device *dev = data;
5137 struct drm_i915_private *dev_priv = dev->dev_private;
5138 u32 snpcr;
5139
5140 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5141 return -ENODEV;
5142
5143 if (val > 3)
5144 return -EINVAL;
5145
5146 intel_runtime_pm_get(dev_priv);
5147 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5148
5149 /* Update the cache sharing policy here as well */
5150 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5151 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5152 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5153 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5154
5155 intel_runtime_pm_put(dev_priv);
5156 return 0;
5157 }
5158
5159 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5160 i915_cache_sharing_get, i915_cache_sharing_set,
5161 "%llu\n");
5162
5163 struct sseu_dev_status {
5164 unsigned int slice_total;
5165 unsigned int subslice_total;
5166 unsigned int subslice_per_slice;
5167 unsigned int eu_total;
5168 unsigned int eu_per_subslice;
5169 };
5170
5171 static void cherryview_sseu_device_status(struct drm_device *dev,
5172 struct sseu_dev_status *stat)
5173 {
5174 struct drm_i915_private *dev_priv = dev->dev_private;
5175 int ss_max = 2;
5176 int ss;
5177 u32 sig1[ss_max], sig2[ss_max];
5178
5179 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5180 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5181 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5182 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5183
5184 for (ss = 0; ss < ss_max; ss++) {
5185 unsigned int eu_cnt;
5186
5187 if (sig1[ss] & CHV_SS_PG_ENABLE)
5188 /* skip disabled subslice */
5189 continue;
5190
5191 stat->slice_total = 1;
5192 stat->subslice_per_slice++;
5193 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5194 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5195 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5196 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5197 stat->eu_total += eu_cnt;
5198 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5199 }
5200 stat->subslice_total = stat->subslice_per_slice;
5201 }
5202
5203 static void gen9_sseu_device_status(struct drm_device *dev,
5204 struct sseu_dev_status *stat)
5205 {
5206 struct drm_i915_private *dev_priv = dev->dev_private;
5207 int s_max = 3, ss_max = 4;
5208 int s, ss;
5209 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5210
5211 /* BXT has a single slice and at most 3 subslices. */
5212 if (IS_BROXTON(dev)) {
5213 s_max = 1;
5214 ss_max = 3;
5215 }
5216
5217 for (s = 0; s < s_max; s++) {
5218 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5219 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5220 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5221 }
5222
5223 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5224 GEN9_PGCTL_SSA_EU19_ACK |
5225 GEN9_PGCTL_SSA_EU210_ACK |
5226 GEN9_PGCTL_SSA_EU311_ACK;
5227 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5228 GEN9_PGCTL_SSB_EU19_ACK |
5229 GEN9_PGCTL_SSB_EU210_ACK |
5230 GEN9_PGCTL_SSB_EU311_ACK;
5231
5232 for (s = 0; s < s_max; s++) {
5233 unsigned int ss_cnt = 0;
5234
5235 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5236 /* skip disabled slice */
5237 continue;
5238
5239 stat->slice_total++;
5240
5241 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5242 ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5243
5244 for (ss = 0; ss < ss_max; ss++) {
5245 unsigned int eu_cnt;
5246
5247 if (IS_BROXTON(dev) &&
5248 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5249 /* skip disabled subslice */
5250 continue;
5251
5252 if (IS_BROXTON(dev))
5253 ss_cnt++;
5254
5255 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5256 eu_mask[ss%2]);
5257 stat->eu_total += eu_cnt;
5258 stat->eu_per_subslice = max(stat->eu_per_subslice,
5259 eu_cnt);
5260 }
5261
5262 stat->subslice_total += ss_cnt;
5263 stat->subslice_per_slice = max(stat->subslice_per_slice,
5264 ss_cnt);
5265 }
5266 }
5267
5268 static void broadwell_sseu_device_status(struct drm_device *dev,
5269 struct sseu_dev_status *stat)
5270 {
5271 struct drm_i915_private *dev_priv = dev->dev_private;
5272 int s;
5273 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5274
5275 stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5276
5277 if (stat->slice_total) {
5278 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5279 stat->subslice_total = stat->slice_total *
5280 stat->subslice_per_slice;
5281 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5282 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5283
5284 /* subtract fused off EU(s) from enabled slice(s) */
5285 for (s = 0; s < stat->slice_total; s++) {
5286 u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5287
5288 stat->eu_total -= hweight8(subslice_7eu);
5289 }
5290 }
5291 }
5292
5293 static int i915_sseu_status(struct seq_file *m, void *unused)
5294 {
5295 struct drm_info_node *node = (struct drm_info_node *) m->private;
5296 struct drm_device *dev = node->minor->dev;
5297 struct sseu_dev_status stat;
5298
5299 if (INTEL_INFO(dev)->gen < 8)
5300 return -ENODEV;
5301
5302 seq_puts(m, "SSEU Device Info\n");
5303 seq_printf(m, " Available Slice Total: %u\n",
5304 INTEL_INFO(dev)->slice_total);
5305 seq_printf(m, " Available Subslice Total: %u\n",
5306 INTEL_INFO(dev)->subslice_total);
5307 seq_printf(m, " Available Subslice Per Slice: %u\n",
5308 INTEL_INFO(dev)->subslice_per_slice);
5309 seq_printf(m, " Available EU Total: %u\n",
5310 INTEL_INFO(dev)->eu_total);
5311 seq_printf(m, " Available EU Per Subslice: %u\n",
5312 INTEL_INFO(dev)->eu_per_subslice);
5313 seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev)));
5314 if (HAS_POOLED_EU(dev))
5315 seq_printf(m, " Min EU in pool: %u\n",
5316 INTEL_INFO(dev)->min_eu_in_pool);
5317 seq_printf(m, " Has Slice Power Gating: %s\n",
5318 yesno(INTEL_INFO(dev)->has_slice_pg));
5319 seq_printf(m, " Has Subslice Power Gating: %s\n",
5320 yesno(INTEL_INFO(dev)->has_subslice_pg));
5321 seq_printf(m, " Has EU Power Gating: %s\n",
5322 yesno(INTEL_INFO(dev)->has_eu_pg));
5323
5324 seq_puts(m, "SSEU Device Status\n");
5325 memset(&stat, 0, sizeof(stat));
5326 if (IS_CHERRYVIEW(dev)) {
5327 cherryview_sseu_device_status(dev, &stat);
5328 } else if (IS_BROADWELL(dev)) {
5329 broadwell_sseu_device_status(dev, &stat);
5330 } else if (INTEL_INFO(dev)->gen >= 9) {
5331 gen9_sseu_device_status(dev, &stat);
5332 }
5333 seq_printf(m, " Enabled Slice Total: %u\n",
5334 stat.slice_total);
5335 seq_printf(m, " Enabled Subslice Total: %u\n",
5336 stat.subslice_total);
5337 seq_printf(m, " Enabled Subslice Per Slice: %u\n",
5338 stat.subslice_per_slice);
5339 seq_printf(m, " Enabled EU Total: %u\n",
5340 stat.eu_total);
5341 seq_printf(m, " Enabled EU Per Subslice: %u\n",
5342 stat.eu_per_subslice);
5343
5344 return 0;
5345 }
5346
5347 static int i915_forcewake_open(struct inode *inode, struct file *file)
5348 {
5349 struct drm_device *dev = inode->i_private;
5350 struct drm_i915_private *dev_priv = dev->dev_private;
5351
5352 if (INTEL_INFO(dev)->gen < 6)
5353 return 0;
5354
5355 intel_runtime_pm_get(dev_priv);
5356 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5357
5358 return 0;
5359 }
5360
5361 static int i915_forcewake_release(struct inode *inode, struct file *file)
5362 {
5363 struct drm_device *dev = inode->i_private;
5364 struct drm_i915_private *dev_priv = dev->dev_private;
5365
5366 if (INTEL_INFO(dev)->gen < 6)
5367 return 0;
5368
5369 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5370 intel_runtime_pm_put(dev_priv);
5371
5372 return 0;
5373 }
5374
5375 static const struct file_operations i915_forcewake_fops = {
5376 .owner = THIS_MODULE,
5377 .open = i915_forcewake_open,
5378 .release = i915_forcewake_release,
5379 };
5380
5381 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5382 {
5383 struct drm_device *dev = minor->dev;
5384 struct dentry *ent;
5385
5386 ent = debugfs_create_file("i915_forcewake_user",
5387 S_IRUSR,
5388 root, dev,
5389 &i915_forcewake_fops);
5390 if (!ent)
5391 return -ENOMEM;
5392
5393 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5394 }
5395
5396 static int i915_debugfs_create(struct dentry *root,
5397 struct drm_minor *minor,
5398 const char *name,
5399 const struct file_operations *fops)
5400 {
5401 struct drm_device *dev = minor->dev;
5402 struct dentry *ent;
5403
5404 ent = debugfs_create_file(name,
5405 S_IRUGO | S_IWUSR,
5406 root, dev,
5407 fops);
5408 if (!ent)
5409 return -ENOMEM;
5410
5411 return drm_add_fake_info_node(minor, ent, fops);
5412 }
5413
5414 static const struct drm_info_list i915_debugfs_list[] = {
5415 {"i915_capabilities", i915_capabilities, 0},
5416 {"i915_gem_objects", i915_gem_object_info, 0},
5417 {"i915_gem_gtt", i915_gem_gtt_info, 0},
5418 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5419 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5420 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5421 {"i915_gem_stolen", i915_gem_stolen_list_info },
5422 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5423 {"i915_gem_request", i915_gem_request_info, 0},
5424 {"i915_gem_seqno", i915_gem_seqno_info, 0},
5425 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5426 {"i915_gem_interrupt", i915_interrupt_info, 0},
5427 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5428 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5429 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5430 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5431 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5432 {"i915_guc_info", i915_guc_info, 0},
5433 {"i915_guc_load_status", i915_guc_load_status_info, 0},
5434 {"i915_guc_log_dump", i915_guc_log_dump, 0},
5435 {"i915_frequency_info", i915_frequency_info, 0},
5436 {"i915_hangcheck_info", i915_hangcheck_info, 0},
5437 {"i915_drpc_info", i915_drpc_info, 0},
5438 {"i915_emon_status", i915_emon_status, 0},
5439 {"i915_ring_freq_table", i915_ring_freq_table, 0},
5440 {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5441 {"i915_fbc_status", i915_fbc_status, 0},
5442 {"i915_ips_status", i915_ips_status, 0},
5443 {"i915_sr_status", i915_sr_status, 0},
5444 {"i915_opregion", i915_opregion, 0},
5445 {"i915_vbt", i915_vbt, 0},
5446 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5447 {"i915_context_status", i915_context_status, 0},
5448 {"i915_dump_lrc", i915_dump_lrc, 0},
5449 {"i915_execlists", i915_execlists, 0},
5450 {"i915_forcewake_domains", i915_forcewake_domains, 0},
5451 {"i915_swizzle_info", i915_swizzle_info, 0},
5452 {"i915_ppgtt_info", i915_ppgtt_info, 0},
5453 {"i915_llc", i915_llc, 0},
5454 {"i915_edp_psr_status", i915_edp_psr_status, 0},
5455 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5456 {"i915_energy_uJ", i915_energy_uJ, 0},
5457 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5458 {"i915_power_domain_info", i915_power_domain_info, 0},
5459 {"i915_dmc_info", i915_dmc_info, 0},
5460 {"i915_display_info", i915_display_info, 0},
5461 {"i915_semaphore_status", i915_semaphore_status, 0},
5462 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5463 {"i915_dp_mst_info", i915_dp_mst_info, 0},
5464 {"i915_wa_registers", i915_wa_registers, 0},
5465 {"i915_ddb_info", i915_ddb_info, 0},
5466 {"i915_sseu_status", i915_sseu_status, 0},
5467 {"i915_drrs_status", i915_drrs_status, 0},
5468 {"i915_rps_boost_info", i915_rps_boost_info, 0},
5469 };
5470 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5471
5472 static const struct i915_debugfs_files {
5473 const char *name;
5474 const struct file_operations *fops;
5475 } i915_debugfs_files[] = {
5476 {"i915_wedged", &i915_wedged_fops},
5477 {"i915_max_freq", &i915_max_freq_fops},
5478 {"i915_min_freq", &i915_min_freq_fops},
5479 {"i915_cache_sharing", &i915_cache_sharing_fops},
5480 {"i915_ring_stop", &i915_ring_stop_fops},
5481 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5482 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5483 {"i915_gem_drop_caches", &i915_drop_caches_fops},
5484 {"i915_error_state", &i915_error_state_fops},
5485 {"i915_next_seqno", &i915_next_seqno_fops},
5486 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5487 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5488 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5489 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5490 {"i915_fbc_false_color", &i915_fbc_fc_fops},
5491 {"i915_dp_test_data", &i915_displayport_test_data_fops},
5492 {"i915_dp_test_type", &i915_displayport_test_type_fops},
5493 {"i915_dp_test_active", &i915_displayport_test_active_fops}
5494 };
5495
5496 void intel_display_crc_init(struct drm_device *dev)
5497 {
5498 struct drm_i915_private *dev_priv = dev->dev_private;
5499 enum pipe pipe;
5500
5501 for_each_pipe(dev_priv, pipe) {
5502 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5503
5504 pipe_crc->opened = false;
5505 spin_lock_init(&pipe_crc->lock);
5506 init_waitqueue_head(&pipe_crc->wq);
5507 }
5508 }
5509
5510 int i915_debugfs_init(struct drm_minor *minor)
5511 {
5512 int ret, i;
5513
5514 ret = i915_forcewake_create(minor->debugfs_root, minor);
5515 if (ret)
5516 return ret;
5517
5518 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5519 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5520 if (ret)
5521 return ret;
5522 }
5523
5524 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5525 ret = i915_debugfs_create(minor->debugfs_root, minor,
5526 i915_debugfs_files[i].name,
5527 i915_debugfs_files[i].fops);
5528 if (ret)
5529 return ret;
5530 }
5531
5532 return drm_debugfs_create_files(i915_debugfs_list,
5533 I915_DEBUGFS_ENTRIES,
5534 minor->debugfs_root, minor);
5535 }
5536
5537 void i915_debugfs_cleanup(struct drm_minor *minor)
5538 {
5539 int i;
5540
5541 drm_debugfs_remove_files(i915_debugfs_list,
5542 I915_DEBUGFS_ENTRIES, minor);
5543
5544 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5545 1, minor);
5546
5547 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5548 struct drm_info_list *info_list =
5549 (struct drm_info_list *)&i915_pipe_crc_data[i];
5550
5551 drm_debugfs_remove_files(info_list, 1, minor);
5552 }
5553
5554 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5555 struct drm_info_list *info_list =
5556 (struct drm_info_list *) i915_debugfs_files[i].fops;
5557
5558 drm_debugfs_remove_files(info_list, 1, minor);
5559 }
5560 }
5561
5562 struct dpcd_block {
5563 /* DPCD dump start address. */
5564 unsigned int offset;
5565 /* DPCD dump end address, inclusive. If unset, .size will be used. */
5566 unsigned int end;
5567 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5568 size_t size;
5569 /* Only valid for eDP. */
5570 bool edp;
5571 };
5572
5573 static const struct dpcd_block i915_dpcd_debug[] = {
5574 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5575 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5576 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5577 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5578 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5579 { .offset = DP_SET_POWER },
5580 { .offset = DP_EDP_DPCD_REV },
5581 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5582 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5583 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5584 };
5585
5586 static int i915_dpcd_show(struct seq_file *m, void *data)
5587 {
5588 struct drm_connector *connector = m->private;
5589 struct intel_dp *intel_dp =
5590 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5591 uint8_t buf[16];
5592 ssize_t err;
5593 int i;
5594
5595 if (connector->status != connector_status_connected)
5596 return -ENODEV;
5597
5598 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5599 const struct dpcd_block *b = &i915_dpcd_debug[i];
5600 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5601
5602 if (b->edp &&
5603 connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5604 continue;
5605
5606 /* low tech for now */
5607 if (WARN_ON(size > sizeof(buf)))
5608 continue;
5609
5610 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5611 if (err <= 0) {
5612 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5613 size, b->offset, err);
5614 continue;
5615 }
5616
5617 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5618 }
5619
5620 return 0;
5621 }
5622
5623 static int i915_dpcd_open(struct inode *inode, struct file *file)
5624 {
5625 return single_open(file, i915_dpcd_show, inode->i_private);
5626 }
5627
5628 static const struct file_operations i915_dpcd_fops = {
5629 .owner = THIS_MODULE,
5630 .open = i915_dpcd_open,
5631 .read = seq_read,
5632 .llseek = seq_lseek,
5633 .release = single_release,
5634 };
5635
5636 /**
5637 * i915_debugfs_connector_add - add i915 specific connector debugfs files
5638 * @connector: pointer to a registered drm_connector
5639 *
5640 * Cleanup will be done by drm_connector_unregister() through a call to
5641 * drm_debugfs_connector_remove().
5642 *
5643 * Returns 0 on success, negative error codes on error.
5644 */
5645 int i915_debugfs_connector_add(struct drm_connector *connector)
5646 {
5647 struct dentry *root = connector->debugfs_entry;
5648
5649 /* The connector must have been registered beforehands. */
5650 if (!root)
5651 return -ENODEV;
5652
5653 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5654 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5655 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5656 &i915_dpcd_fops);
5657
5658 return 0;
5659 }
This page took 0.155099 seconds and 6 git commands to generate.