Merge remote-tracking branches 'spi/fix/dw', 'spi/fix/orion', 'spi/fix/pl022', 'spi...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51 return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55 * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 struct dentry *ent,
59 const void *key)
60 {
61 struct drm_info_node *node;
62
63 node = kmalloc(sizeof(*node), GFP_KERNEL);
64 if (node == NULL) {
65 debugfs_remove(ent);
66 return -ENOMEM;
67 }
68
69 node->minor = minor;
70 node->dent = ent;
71 node->info_ent = (void *) key;
72
73 mutex_lock(&minor->debugfs_lock);
74 list_add(&node->list, &minor->debugfs_list);
75 mutex_unlock(&minor->debugfs_lock);
76
77 return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 struct drm_info_node *node = m->private;
83 struct drm_device *dev = node->minor->dev;
84 const struct intel_device_info *info = INTEL_INFO(dev);
85
86 seq_printf(m, "gen: %d\n", info->gen);
87 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94 return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 if (obj->user_pin_count > 0)
100 return "P";
101 else if (i915_gem_obj_is_pinned(obj))
102 return "p";
103 else
104 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109 switch (obj->tiling_mode) {
110 default:
111 case I915_TILING_NONE: return " ";
112 case I915_TILING_X: return "X";
113 case I915_TILING_Y: return "Y";
114 }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119 return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125 struct i915_vma *vma;
126 int pin_count = 0;
127
128 seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129 &obj->base,
130 get_pin_flag(obj),
131 get_tiling_flag(obj),
132 get_global_flag(obj),
133 obj->base.size / 1024,
134 obj->base.read_domains,
135 obj->base.write_domain,
136 obj->last_read_seqno,
137 obj->last_write_seqno,
138 obj->last_fenced_seqno,
139 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
140 obj->dirty ? " dirty" : "",
141 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142 if (obj->base.name)
143 seq_printf(m, " (name: %d)", obj->base.name);
144 list_for_each_entry(vma, &obj->vma_list, vma_link)
145 if (vma->pin_count > 0)
146 pin_count++;
147 seq_printf(m, " (pinned x %d)", pin_count);
148 if (obj->pin_display)
149 seq_printf(m, " (display)");
150 if (obj->fence_reg != I915_FENCE_REG_NONE)
151 seq_printf(m, " (fence: %d)", obj->fence_reg);
152 list_for_each_entry(vma, &obj->vma_list, vma_link) {
153 if (!i915_is_ggtt(vma->vm))
154 seq_puts(m, " (pp");
155 else
156 seq_puts(m, " (g");
157 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158 vma->node.start, vma->node.size);
159 }
160 if (obj->stolen)
161 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162 if (obj->pin_mappable || obj->fault_mappable) {
163 char s[3], *t = s;
164 if (obj->pin_mappable)
165 *t++ = 'p';
166 if (obj->fault_mappable)
167 *t++ = 'f';
168 *t = '\0';
169 seq_printf(m, " (%s mappable)", s);
170 }
171 if (obj->ring != NULL)
172 seq_printf(m, " (%s)", obj->ring->name);
173 if (obj->frontbuffer_bits)
174 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
175 }
176
177 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
178 {
179 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
180 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
181 seq_putc(m, ' ');
182 }
183
184 static int i915_gem_object_list_info(struct seq_file *m, void *data)
185 {
186 struct drm_info_node *node = m->private;
187 uintptr_t list = (uintptr_t) node->info_ent->data;
188 struct list_head *head;
189 struct drm_device *dev = node->minor->dev;
190 struct drm_i915_private *dev_priv = dev->dev_private;
191 struct i915_address_space *vm = &dev_priv->gtt.base;
192 struct i915_vma *vma;
193 size_t total_obj_size, total_gtt_size;
194 int count, ret;
195
196 ret = mutex_lock_interruptible(&dev->struct_mutex);
197 if (ret)
198 return ret;
199
200 /* FIXME: the user of this interface might want more than just GGTT */
201 switch (list) {
202 case ACTIVE_LIST:
203 seq_puts(m, "Active:\n");
204 head = &vm->active_list;
205 break;
206 case INACTIVE_LIST:
207 seq_puts(m, "Inactive:\n");
208 head = &vm->inactive_list;
209 break;
210 default:
211 mutex_unlock(&dev->struct_mutex);
212 return -EINVAL;
213 }
214
215 total_obj_size = total_gtt_size = count = 0;
216 list_for_each_entry(vma, head, mm_list) {
217 seq_printf(m, " ");
218 describe_obj(m, vma->obj);
219 seq_printf(m, "\n");
220 total_obj_size += vma->obj->base.size;
221 total_gtt_size += vma->node.size;
222 count++;
223 }
224 mutex_unlock(&dev->struct_mutex);
225
226 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
227 count, total_obj_size, total_gtt_size);
228 return 0;
229 }
230
231 static int obj_rank_by_stolen(void *priv,
232 struct list_head *A, struct list_head *B)
233 {
234 struct drm_i915_gem_object *a =
235 container_of(A, struct drm_i915_gem_object, obj_exec_link);
236 struct drm_i915_gem_object *b =
237 container_of(B, struct drm_i915_gem_object, obj_exec_link);
238
239 return a->stolen->start - b->stolen->start;
240 }
241
242 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
243 {
244 struct drm_info_node *node = m->private;
245 struct drm_device *dev = node->minor->dev;
246 struct drm_i915_private *dev_priv = dev->dev_private;
247 struct drm_i915_gem_object *obj;
248 size_t total_obj_size, total_gtt_size;
249 LIST_HEAD(stolen);
250 int count, ret;
251
252 ret = mutex_lock_interruptible(&dev->struct_mutex);
253 if (ret)
254 return ret;
255
256 total_obj_size = total_gtt_size = count = 0;
257 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
258 if (obj->stolen == NULL)
259 continue;
260
261 list_add(&obj->obj_exec_link, &stolen);
262
263 total_obj_size += obj->base.size;
264 total_gtt_size += i915_gem_obj_ggtt_size(obj);
265 count++;
266 }
267 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
268 if (obj->stolen == NULL)
269 continue;
270
271 list_add(&obj->obj_exec_link, &stolen);
272
273 total_obj_size += obj->base.size;
274 count++;
275 }
276 list_sort(NULL, &stolen, obj_rank_by_stolen);
277 seq_puts(m, "Stolen:\n");
278 while (!list_empty(&stolen)) {
279 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
280 seq_puts(m, " ");
281 describe_obj(m, obj);
282 seq_putc(m, '\n');
283 list_del_init(&obj->obj_exec_link);
284 }
285 mutex_unlock(&dev->struct_mutex);
286
287 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
288 count, total_obj_size, total_gtt_size);
289 return 0;
290 }
291
292 #define count_objects(list, member) do { \
293 list_for_each_entry(obj, list, member) { \
294 size += i915_gem_obj_ggtt_size(obj); \
295 ++count; \
296 if (obj->map_and_fenceable) { \
297 mappable_size += i915_gem_obj_ggtt_size(obj); \
298 ++mappable_count; \
299 } \
300 } \
301 } while (0)
302
303 struct file_stats {
304 struct drm_i915_file_private *file_priv;
305 int count;
306 size_t total, unbound;
307 size_t global, shared;
308 size_t active, inactive;
309 };
310
311 static int per_file_stats(int id, void *ptr, void *data)
312 {
313 struct drm_i915_gem_object *obj = ptr;
314 struct file_stats *stats = data;
315 struct i915_vma *vma;
316
317 stats->count++;
318 stats->total += obj->base.size;
319
320 if (obj->base.name || obj->base.dma_buf)
321 stats->shared += obj->base.size;
322
323 if (USES_FULL_PPGTT(obj->base.dev)) {
324 list_for_each_entry(vma, &obj->vma_list, vma_link) {
325 struct i915_hw_ppgtt *ppgtt;
326
327 if (!drm_mm_node_allocated(&vma->node))
328 continue;
329
330 if (i915_is_ggtt(vma->vm)) {
331 stats->global += obj->base.size;
332 continue;
333 }
334
335 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
336 if (ppgtt->file_priv != stats->file_priv)
337 continue;
338
339 if (obj->ring) /* XXX per-vma statistic */
340 stats->active += obj->base.size;
341 else
342 stats->inactive += obj->base.size;
343
344 return 0;
345 }
346 } else {
347 if (i915_gem_obj_ggtt_bound(obj)) {
348 stats->global += obj->base.size;
349 if (obj->ring)
350 stats->active += obj->base.size;
351 else
352 stats->inactive += obj->base.size;
353 return 0;
354 }
355 }
356
357 if (!list_empty(&obj->global_list))
358 stats->unbound += obj->base.size;
359
360 return 0;
361 }
362
363 #define count_vmas(list, member) do { \
364 list_for_each_entry(vma, list, member) { \
365 size += i915_gem_obj_ggtt_size(vma->obj); \
366 ++count; \
367 if (vma->obj->map_and_fenceable) { \
368 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
369 ++mappable_count; \
370 } \
371 } \
372 } while (0)
373
374 static int i915_gem_object_info(struct seq_file *m, void* data)
375 {
376 struct drm_info_node *node = m->private;
377 struct drm_device *dev = node->minor->dev;
378 struct drm_i915_private *dev_priv = dev->dev_private;
379 u32 count, mappable_count, purgeable_count;
380 size_t size, mappable_size, purgeable_size;
381 struct drm_i915_gem_object *obj;
382 struct i915_address_space *vm = &dev_priv->gtt.base;
383 struct drm_file *file;
384 struct i915_vma *vma;
385 int ret;
386
387 ret = mutex_lock_interruptible(&dev->struct_mutex);
388 if (ret)
389 return ret;
390
391 seq_printf(m, "%u objects, %zu bytes\n",
392 dev_priv->mm.object_count,
393 dev_priv->mm.object_memory);
394
395 size = count = mappable_size = mappable_count = 0;
396 count_objects(&dev_priv->mm.bound_list, global_list);
397 seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
398 count, mappable_count, size, mappable_size);
399
400 size = count = mappable_size = mappable_count = 0;
401 count_vmas(&vm->active_list, mm_list);
402 seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
403 count, mappable_count, size, mappable_size);
404
405 size = count = mappable_size = mappable_count = 0;
406 count_vmas(&vm->inactive_list, mm_list);
407 seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
408 count, mappable_count, size, mappable_size);
409
410 size = count = purgeable_size = purgeable_count = 0;
411 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
412 size += obj->base.size, ++count;
413 if (obj->madv == I915_MADV_DONTNEED)
414 purgeable_size += obj->base.size, ++purgeable_count;
415 }
416 seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
417
418 size = count = mappable_size = mappable_count = 0;
419 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
420 if (obj->fault_mappable) {
421 size += i915_gem_obj_ggtt_size(obj);
422 ++count;
423 }
424 if (obj->pin_mappable) {
425 mappable_size += i915_gem_obj_ggtt_size(obj);
426 ++mappable_count;
427 }
428 if (obj->madv == I915_MADV_DONTNEED) {
429 purgeable_size += obj->base.size;
430 ++purgeable_count;
431 }
432 }
433 seq_printf(m, "%u purgeable objects, %zu bytes\n",
434 purgeable_count, purgeable_size);
435 seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
436 mappable_count, mappable_size);
437 seq_printf(m, "%u fault mappable objects, %zu bytes\n",
438 count, size);
439
440 seq_printf(m, "%zu [%lu] gtt total\n",
441 dev_priv->gtt.base.total,
442 dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
443
444 seq_putc(m, '\n');
445 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
446 struct file_stats stats;
447 struct task_struct *task;
448
449 memset(&stats, 0, sizeof(stats));
450 stats.file_priv = file->driver_priv;
451 spin_lock(&file->table_lock);
452 idr_for_each(&file->object_idr, per_file_stats, &stats);
453 spin_unlock(&file->table_lock);
454 /*
455 * Although we have a valid reference on file->pid, that does
456 * not guarantee that the task_struct who called get_pid() is
457 * still alive (e.g. get_pid(current) => fork() => exit()).
458 * Therefore, we need to protect this ->comm access using RCU.
459 */
460 rcu_read_lock();
461 task = pid_task(file->pid, PIDTYPE_PID);
462 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
463 task ? task->comm : "<unknown>",
464 stats.count,
465 stats.total,
466 stats.active,
467 stats.inactive,
468 stats.global,
469 stats.shared,
470 stats.unbound);
471 rcu_read_unlock();
472 }
473
474 mutex_unlock(&dev->struct_mutex);
475
476 return 0;
477 }
478
479 static int i915_gem_gtt_info(struct seq_file *m, void *data)
480 {
481 struct drm_info_node *node = m->private;
482 struct drm_device *dev = node->minor->dev;
483 uintptr_t list = (uintptr_t) node->info_ent->data;
484 struct drm_i915_private *dev_priv = dev->dev_private;
485 struct drm_i915_gem_object *obj;
486 size_t total_obj_size, total_gtt_size;
487 int count, ret;
488
489 ret = mutex_lock_interruptible(&dev->struct_mutex);
490 if (ret)
491 return ret;
492
493 total_obj_size = total_gtt_size = count = 0;
494 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
495 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
496 continue;
497
498 seq_puts(m, " ");
499 describe_obj(m, obj);
500 seq_putc(m, '\n');
501 total_obj_size += obj->base.size;
502 total_gtt_size += i915_gem_obj_ggtt_size(obj);
503 count++;
504 }
505
506 mutex_unlock(&dev->struct_mutex);
507
508 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
509 count, total_obj_size, total_gtt_size);
510
511 return 0;
512 }
513
514 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
515 {
516 struct drm_info_node *node = m->private;
517 struct drm_device *dev = node->minor->dev;
518 struct drm_i915_private *dev_priv = dev->dev_private;
519 unsigned long flags;
520 struct intel_crtc *crtc;
521 int ret;
522
523 ret = mutex_lock_interruptible(&dev->struct_mutex);
524 if (ret)
525 return ret;
526
527 for_each_intel_crtc(dev, crtc) {
528 const char pipe = pipe_name(crtc->pipe);
529 const char plane = plane_name(crtc->plane);
530 struct intel_unpin_work *work;
531
532 spin_lock_irqsave(&dev->event_lock, flags);
533 work = crtc->unpin_work;
534 if (work == NULL) {
535 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
536 pipe, plane);
537 } else {
538 u32 addr;
539
540 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
541 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
542 pipe, plane);
543 } else {
544 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
545 pipe, plane);
546 }
547 if (work->flip_queued_ring) {
548 seq_printf(m, "Flip queued on %s at seqno %u, next seqno %u [current breadcrumb %u], completed? %d\n",
549 work->flip_queued_ring->name,
550 work->flip_queued_seqno,
551 dev_priv->next_seqno,
552 work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
553 i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
554 work->flip_queued_seqno));
555 } else
556 seq_printf(m, "Flip not associated with any ring\n");
557 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
558 work->flip_queued_vblank,
559 work->flip_ready_vblank,
560 drm_vblank_count(dev, crtc->pipe));
561 if (work->enable_stall_check)
562 seq_puts(m, "Stall check enabled, ");
563 else
564 seq_puts(m, "Stall check waiting for page flip ioctl, ");
565 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
566
567 if (INTEL_INFO(dev)->gen >= 4)
568 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
569 else
570 addr = I915_READ(DSPADDR(crtc->plane));
571 seq_printf(m, "Current scanout address 0x%08x\n", addr);
572
573 if (work->pending_flip_obj) {
574 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
575 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
576 }
577 }
578 spin_unlock_irqrestore(&dev->event_lock, flags);
579 }
580
581 mutex_unlock(&dev->struct_mutex);
582
583 return 0;
584 }
585
586 static int i915_gem_request_info(struct seq_file *m, void *data)
587 {
588 struct drm_info_node *node = m->private;
589 struct drm_device *dev = node->minor->dev;
590 struct drm_i915_private *dev_priv = dev->dev_private;
591 struct intel_engine_cs *ring;
592 struct drm_i915_gem_request *gem_request;
593 int ret, count, i;
594
595 ret = mutex_lock_interruptible(&dev->struct_mutex);
596 if (ret)
597 return ret;
598
599 count = 0;
600 for_each_ring(ring, dev_priv, i) {
601 if (list_empty(&ring->request_list))
602 continue;
603
604 seq_printf(m, "%s requests:\n", ring->name);
605 list_for_each_entry(gem_request,
606 &ring->request_list,
607 list) {
608 seq_printf(m, " %d @ %d\n",
609 gem_request->seqno,
610 (int) (jiffies - gem_request->emitted_jiffies));
611 }
612 count++;
613 }
614 mutex_unlock(&dev->struct_mutex);
615
616 if (count == 0)
617 seq_puts(m, "No requests\n");
618
619 return 0;
620 }
621
622 static void i915_ring_seqno_info(struct seq_file *m,
623 struct intel_engine_cs *ring)
624 {
625 if (ring->get_seqno) {
626 seq_printf(m, "Current sequence (%s): %u\n",
627 ring->name, ring->get_seqno(ring, false));
628 }
629 }
630
631 static int i915_gem_seqno_info(struct seq_file *m, void *data)
632 {
633 struct drm_info_node *node = m->private;
634 struct drm_device *dev = node->minor->dev;
635 struct drm_i915_private *dev_priv = dev->dev_private;
636 struct intel_engine_cs *ring;
637 int ret, i;
638
639 ret = mutex_lock_interruptible(&dev->struct_mutex);
640 if (ret)
641 return ret;
642 intel_runtime_pm_get(dev_priv);
643
644 for_each_ring(ring, dev_priv, i)
645 i915_ring_seqno_info(m, ring);
646
647 intel_runtime_pm_put(dev_priv);
648 mutex_unlock(&dev->struct_mutex);
649
650 return 0;
651 }
652
653
654 static int i915_interrupt_info(struct seq_file *m, void *data)
655 {
656 struct drm_info_node *node = m->private;
657 struct drm_device *dev = node->minor->dev;
658 struct drm_i915_private *dev_priv = dev->dev_private;
659 struct intel_engine_cs *ring;
660 int ret, i, pipe;
661
662 ret = mutex_lock_interruptible(&dev->struct_mutex);
663 if (ret)
664 return ret;
665 intel_runtime_pm_get(dev_priv);
666
667 if (IS_CHERRYVIEW(dev)) {
668 seq_printf(m, "Master Interrupt Control:\t%08x\n",
669 I915_READ(GEN8_MASTER_IRQ));
670
671 seq_printf(m, "Display IER:\t%08x\n",
672 I915_READ(VLV_IER));
673 seq_printf(m, "Display IIR:\t%08x\n",
674 I915_READ(VLV_IIR));
675 seq_printf(m, "Display IIR_RW:\t%08x\n",
676 I915_READ(VLV_IIR_RW));
677 seq_printf(m, "Display IMR:\t%08x\n",
678 I915_READ(VLV_IMR));
679 for_each_pipe(dev_priv, pipe)
680 seq_printf(m, "Pipe %c stat:\t%08x\n",
681 pipe_name(pipe),
682 I915_READ(PIPESTAT(pipe)));
683
684 seq_printf(m, "Port hotplug:\t%08x\n",
685 I915_READ(PORT_HOTPLUG_EN));
686 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
687 I915_READ(VLV_DPFLIPSTAT));
688 seq_printf(m, "DPINVGTT:\t%08x\n",
689 I915_READ(DPINVGTT));
690
691 for (i = 0; i < 4; i++) {
692 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
693 i, I915_READ(GEN8_GT_IMR(i)));
694 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
695 i, I915_READ(GEN8_GT_IIR(i)));
696 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
697 i, I915_READ(GEN8_GT_IER(i)));
698 }
699
700 seq_printf(m, "PCU interrupt mask:\t%08x\n",
701 I915_READ(GEN8_PCU_IMR));
702 seq_printf(m, "PCU interrupt identity:\t%08x\n",
703 I915_READ(GEN8_PCU_IIR));
704 seq_printf(m, "PCU interrupt enable:\t%08x\n",
705 I915_READ(GEN8_PCU_IER));
706 } else if (INTEL_INFO(dev)->gen >= 8) {
707 seq_printf(m, "Master Interrupt Control:\t%08x\n",
708 I915_READ(GEN8_MASTER_IRQ));
709
710 for (i = 0; i < 4; i++) {
711 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
712 i, I915_READ(GEN8_GT_IMR(i)));
713 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
714 i, I915_READ(GEN8_GT_IIR(i)));
715 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
716 i, I915_READ(GEN8_GT_IER(i)));
717 }
718
719 for_each_pipe(dev_priv, pipe) {
720 if (!intel_display_power_enabled(dev_priv,
721 POWER_DOMAIN_PIPE(pipe))) {
722 seq_printf(m, "Pipe %c power disabled\n",
723 pipe_name(pipe));
724 continue;
725 }
726 seq_printf(m, "Pipe %c IMR:\t%08x\n",
727 pipe_name(pipe),
728 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
729 seq_printf(m, "Pipe %c IIR:\t%08x\n",
730 pipe_name(pipe),
731 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
732 seq_printf(m, "Pipe %c IER:\t%08x\n",
733 pipe_name(pipe),
734 I915_READ(GEN8_DE_PIPE_IER(pipe)));
735 }
736
737 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
738 I915_READ(GEN8_DE_PORT_IMR));
739 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
740 I915_READ(GEN8_DE_PORT_IIR));
741 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
742 I915_READ(GEN8_DE_PORT_IER));
743
744 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
745 I915_READ(GEN8_DE_MISC_IMR));
746 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
747 I915_READ(GEN8_DE_MISC_IIR));
748 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
749 I915_READ(GEN8_DE_MISC_IER));
750
751 seq_printf(m, "PCU interrupt mask:\t%08x\n",
752 I915_READ(GEN8_PCU_IMR));
753 seq_printf(m, "PCU interrupt identity:\t%08x\n",
754 I915_READ(GEN8_PCU_IIR));
755 seq_printf(m, "PCU interrupt enable:\t%08x\n",
756 I915_READ(GEN8_PCU_IER));
757 } else if (IS_VALLEYVIEW(dev)) {
758 seq_printf(m, "Display IER:\t%08x\n",
759 I915_READ(VLV_IER));
760 seq_printf(m, "Display IIR:\t%08x\n",
761 I915_READ(VLV_IIR));
762 seq_printf(m, "Display IIR_RW:\t%08x\n",
763 I915_READ(VLV_IIR_RW));
764 seq_printf(m, "Display IMR:\t%08x\n",
765 I915_READ(VLV_IMR));
766 for_each_pipe(dev_priv, pipe)
767 seq_printf(m, "Pipe %c stat:\t%08x\n",
768 pipe_name(pipe),
769 I915_READ(PIPESTAT(pipe)));
770
771 seq_printf(m, "Master IER:\t%08x\n",
772 I915_READ(VLV_MASTER_IER));
773
774 seq_printf(m, "Render IER:\t%08x\n",
775 I915_READ(GTIER));
776 seq_printf(m, "Render IIR:\t%08x\n",
777 I915_READ(GTIIR));
778 seq_printf(m, "Render IMR:\t%08x\n",
779 I915_READ(GTIMR));
780
781 seq_printf(m, "PM IER:\t\t%08x\n",
782 I915_READ(GEN6_PMIER));
783 seq_printf(m, "PM IIR:\t\t%08x\n",
784 I915_READ(GEN6_PMIIR));
785 seq_printf(m, "PM IMR:\t\t%08x\n",
786 I915_READ(GEN6_PMIMR));
787
788 seq_printf(m, "Port hotplug:\t%08x\n",
789 I915_READ(PORT_HOTPLUG_EN));
790 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
791 I915_READ(VLV_DPFLIPSTAT));
792 seq_printf(m, "DPINVGTT:\t%08x\n",
793 I915_READ(DPINVGTT));
794
795 } else if (!HAS_PCH_SPLIT(dev)) {
796 seq_printf(m, "Interrupt enable: %08x\n",
797 I915_READ(IER));
798 seq_printf(m, "Interrupt identity: %08x\n",
799 I915_READ(IIR));
800 seq_printf(m, "Interrupt mask: %08x\n",
801 I915_READ(IMR));
802 for_each_pipe(dev_priv, pipe)
803 seq_printf(m, "Pipe %c stat: %08x\n",
804 pipe_name(pipe),
805 I915_READ(PIPESTAT(pipe)));
806 } else {
807 seq_printf(m, "North Display Interrupt enable: %08x\n",
808 I915_READ(DEIER));
809 seq_printf(m, "North Display Interrupt identity: %08x\n",
810 I915_READ(DEIIR));
811 seq_printf(m, "North Display Interrupt mask: %08x\n",
812 I915_READ(DEIMR));
813 seq_printf(m, "South Display Interrupt enable: %08x\n",
814 I915_READ(SDEIER));
815 seq_printf(m, "South Display Interrupt identity: %08x\n",
816 I915_READ(SDEIIR));
817 seq_printf(m, "South Display Interrupt mask: %08x\n",
818 I915_READ(SDEIMR));
819 seq_printf(m, "Graphics Interrupt enable: %08x\n",
820 I915_READ(GTIER));
821 seq_printf(m, "Graphics Interrupt identity: %08x\n",
822 I915_READ(GTIIR));
823 seq_printf(m, "Graphics Interrupt mask: %08x\n",
824 I915_READ(GTIMR));
825 }
826 for_each_ring(ring, dev_priv, i) {
827 if (INTEL_INFO(dev)->gen >= 6) {
828 seq_printf(m,
829 "Graphics Interrupt mask (%s): %08x\n",
830 ring->name, I915_READ_IMR(ring));
831 }
832 i915_ring_seqno_info(m, ring);
833 }
834 intel_runtime_pm_put(dev_priv);
835 mutex_unlock(&dev->struct_mutex);
836
837 return 0;
838 }
839
840 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
841 {
842 struct drm_info_node *node = m->private;
843 struct drm_device *dev = node->minor->dev;
844 struct drm_i915_private *dev_priv = dev->dev_private;
845 int i, ret;
846
847 ret = mutex_lock_interruptible(&dev->struct_mutex);
848 if (ret)
849 return ret;
850
851 seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
852 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
853 for (i = 0; i < dev_priv->num_fence_regs; i++) {
854 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
855
856 seq_printf(m, "Fence %d, pin count = %d, object = ",
857 i, dev_priv->fence_regs[i].pin_count);
858 if (obj == NULL)
859 seq_puts(m, "unused");
860 else
861 describe_obj(m, obj);
862 seq_putc(m, '\n');
863 }
864
865 mutex_unlock(&dev->struct_mutex);
866 return 0;
867 }
868
869 static int i915_hws_info(struct seq_file *m, void *data)
870 {
871 struct drm_info_node *node = m->private;
872 struct drm_device *dev = node->minor->dev;
873 struct drm_i915_private *dev_priv = dev->dev_private;
874 struct intel_engine_cs *ring;
875 const u32 *hws;
876 int i;
877
878 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
879 hws = ring->status_page.page_addr;
880 if (hws == NULL)
881 return 0;
882
883 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
884 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
885 i * 4,
886 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
887 }
888 return 0;
889 }
890
891 static ssize_t
892 i915_error_state_write(struct file *filp,
893 const char __user *ubuf,
894 size_t cnt,
895 loff_t *ppos)
896 {
897 struct i915_error_state_file_priv *error_priv = filp->private_data;
898 struct drm_device *dev = error_priv->dev;
899 int ret;
900
901 DRM_DEBUG_DRIVER("Resetting error state\n");
902
903 ret = mutex_lock_interruptible(&dev->struct_mutex);
904 if (ret)
905 return ret;
906
907 i915_destroy_error_state(dev);
908 mutex_unlock(&dev->struct_mutex);
909
910 return cnt;
911 }
912
913 static int i915_error_state_open(struct inode *inode, struct file *file)
914 {
915 struct drm_device *dev = inode->i_private;
916 struct i915_error_state_file_priv *error_priv;
917
918 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
919 if (!error_priv)
920 return -ENOMEM;
921
922 error_priv->dev = dev;
923
924 i915_error_state_get(dev, error_priv);
925
926 file->private_data = error_priv;
927
928 return 0;
929 }
930
931 static int i915_error_state_release(struct inode *inode, struct file *file)
932 {
933 struct i915_error_state_file_priv *error_priv = file->private_data;
934
935 i915_error_state_put(error_priv);
936 kfree(error_priv);
937
938 return 0;
939 }
940
941 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
942 size_t count, loff_t *pos)
943 {
944 struct i915_error_state_file_priv *error_priv = file->private_data;
945 struct drm_i915_error_state_buf error_str;
946 loff_t tmp_pos = 0;
947 ssize_t ret_count = 0;
948 int ret;
949
950 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
951 if (ret)
952 return ret;
953
954 ret = i915_error_state_to_str(&error_str, error_priv);
955 if (ret)
956 goto out;
957
958 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
959 error_str.buf,
960 error_str.bytes);
961
962 if (ret_count < 0)
963 ret = ret_count;
964 else
965 *pos = error_str.start + ret_count;
966 out:
967 i915_error_state_buf_release(&error_str);
968 return ret ?: ret_count;
969 }
970
971 static const struct file_operations i915_error_state_fops = {
972 .owner = THIS_MODULE,
973 .open = i915_error_state_open,
974 .read = i915_error_state_read,
975 .write = i915_error_state_write,
976 .llseek = default_llseek,
977 .release = i915_error_state_release,
978 };
979
980 static int
981 i915_next_seqno_get(void *data, u64 *val)
982 {
983 struct drm_device *dev = data;
984 struct drm_i915_private *dev_priv = dev->dev_private;
985 int ret;
986
987 ret = mutex_lock_interruptible(&dev->struct_mutex);
988 if (ret)
989 return ret;
990
991 *val = dev_priv->next_seqno;
992 mutex_unlock(&dev->struct_mutex);
993
994 return 0;
995 }
996
997 static int
998 i915_next_seqno_set(void *data, u64 val)
999 {
1000 struct drm_device *dev = data;
1001 int ret;
1002
1003 ret = mutex_lock_interruptible(&dev->struct_mutex);
1004 if (ret)
1005 return ret;
1006
1007 ret = i915_gem_set_seqno(dev, val);
1008 mutex_unlock(&dev->struct_mutex);
1009
1010 return ret;
1011 }
1012
1013 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1014 i915_next_seqno_get, i915_next_seqno_set,
1015 "0x%llx\n");
1016
1017 static int i915_frequency_info(struct seq_file *m, void *unused)
1018 {
1019 struct drm_info_node *node = m->private;
1020 struct drm_device *dev = node->minor->dev;
1021 struct drm_i915_private *dev_priv = dev->dev_private;
1022 int ret = 0;
1023
1024 intel_runtime_pm_get(dev_priv);
1025
1026 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1027
1028 if (IS_GEN5(dev)) {
1029 u16 rgvswctl = I915_READ16(MEMSWCTL);
1030 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1031
1032 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1033 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1034 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1035 MEMSTAT_VID_SHIFT);
1036 seq_printf(m, "Current P-state: %d\n",
1037 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1038 } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1039 IS_BROADWELL(dev)) {
1040 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1041 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1042 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1043 u32 rpmodectl, rpinclimit, rpdeclimit;
1044 u32 rpstat, cagf, reqf;
1045 u32 rpupei, rpcurup, rpprevup;
1046 u32 rpdownei, rpcurdown, rpprevdown;
1047 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1048 int max_freq;
1049
1050 /* RPSTAT1 is in the GT power well */
1051 ret = mutex_lock_interruptible(&dev->struct_mutex);
1052 if (ret)
1053 goto out;
1054
1055 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1056
1057 reqf = I915_READ(GEN6_RPNSWREQ);
1058 reqf &= ~GEN6_TURBO_DISABLE;
1059 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1060 reqf >>= 24;
1061 else
1062 reqf >>= 25;
1063 reqf *= GT_FREQUENCY_MULTIPLIER;
1064
1065 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1066 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1067 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1068
1069 rpstat = I915_READ(GEN6_RPSTAT1);
1070 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1071 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1072 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1073 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1074 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1075 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1076 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1077 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1078 else
1079 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1080 cagf *= GT_FREQUENCY_MULTIPLIER;
1081
1082 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1083 mutex_unlock(&dev->struct_mutex);
1084
1085 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1086 pm_ier = I915_READ(GEN6_PMIER);
1087 pm_imr = I915_READ(GEN6_PMIMR);
1088 pm_isr = I915_READ(GEN6_PMISR);
1089 pm_iir = I915_READ(GEN6_PMIIR);
1090 pm_mask = I915_READ(GEN6_PMINTRMSK);
1091 } else {
1092 pm_ier = I915_READ(GEN8_GT_IER(2));
1093 pm_imr = I915_READ(GEN8_GT_IMR(2));
1094 pm_isr = I915_READ(GEN8_GT_ISR(2));
1095 pm_iir = I915_READ(GEN8_GT_IIR(2));
1096 pm_mask = I915_READ(GEN6_PMINTRMSK);
1097 }
1098 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1099 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1100 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1101 seq_printf(m, "Render p-state ratio: %d\n",
1102 (gt_perf_status & 0xff00) >> 8);
1103 seq_printf(m, "Render p-state VID: %d\n",
1104 gt_perf_status & 0xff);
1105 seq_printf(m, "Render p-state limit: %d\n",
1106 rp_state_limits & 0xff);
1107 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1108 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1109 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1110 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1111 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1112 seq_printf(m, "CAGF: %dMHz\n", cagf);
1113 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1114 GEN6_CURICONT_MASK);
1115 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1116 GEN6_CURBSYTAVG_MASK);
1117 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1118 GEN6_CURBSYTAVG_MASK);
1119 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1120 GEN6_CURIAVG_MASK);
1121 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1122 GEN6_CURBSYTAVG_MASK);
1123 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1124 GEN6_CURBSYTAVG_MASK);
1125
1126 max_freq = (rp_state_cap & 0xff0000) >> 16;
1127 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1128 max_freq * GT_FREQUENCY_MULTIPLIER);
1129
1130 max_freq = (rp_state_cap & 0xff00) >> 8;
1131 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1132 max_freq * GT_FREQUENCY_MULTIPLIER);
1133
1134 max_freq = rp_state_cap & 0xff;
1135 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1136 max_freq * GT_FREQUENCY_MULTIPLIER);
1137
1138 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1139 dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1140 } else if (IS_VALLEYVIEW(dev)) {
1141 u32 freq_sts;
1142
1143 mutex_lock(&dev_priv->rps.hw_lock);
1144 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1145 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1146 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1147
1148 seq_printf(m, "max GPU freq: %d MHz\n",
1149 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1150
1151 seq_printf(m, "min GPU freq: %d MHz\n",
1152 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1153
1154 seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
1155 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1156
1157 seq_printf(m, "current GPU freq: %d MHz\n",
1158 vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1159 mutex_unlock(&dev_priv->rps.hw_lock);
1160 } else {
1161 seq_puts(m, "no P-state info available\n");
1162 }
1163
1164 out:
1165 intel_runtime_pm_put(dev_priv);
1166 return ret;
1167 }
1168
1169 static int ironlake_drpc_info(struct seq_file *m)
1170 {
1171 struct drm_info_node *node = m->private;
1172 struct drm_device *dev = node->minor->dev;
1173 struct drm_i915_private *dev_priv = dev->dev_private;
1174 u32 rgvmodectl, rstdbyctl;
1175 u16 crstandvid;
1176 int ret;
1177
1178 ret = mutex_lock_interruptible(&dev->struct_mutex);
1179 if (ret)
1180 return ret;
1181 intel_runtime_pm_get(dev_priv);
1182
1183 rgvmodectl = I915_READ(MEMMODECTL);
1184 rstdbyctl = I915_READ(RSTDBYCTL);
1185 crstandvid = I915_READ16(CRSTANDVID);
1186
1187 intel_runtime_pm_put(dev_priv);
1188 mutex_unlock(&dev->struct_mutex);
1189
1190 seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1191 "yes" : "no");
1192 seq_printf(m, "Boost freq: %d\n",
1193 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1194 MEMMODE_BOOST_FREQ_SHIFT);
1195 seq_printf(m, "HW control enabled: %s\n",
1196 rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1197 seq_printf(m, "SW control enabled: %s\n",
1198 rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1199 seq_printf(m, "Gated voltage change: %s\n",
1200 rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1201 seq_printf(m, "Starting frequency: P%d\n",
1202 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1203 seq_printf(m, "Max P-state: P%d\n",
1204 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1205 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1206 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1207 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1208 seq_printf(m, "Render standby enabled: %s\n",
1209 (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1210 seq_puts(m, "Current RS state: ");
1211 switch (rstdbyctl & RSX_STATUS_MASK) {
1212 case RSX_STATUS_ON:
1213 seq_puts(m, "on\n");
1214 break;
1215 case RSX_STATUS_RC1:
1216 seq_puts(m, "RC1\n");
1217 break;
1218 case RSX_STATUS_RC1E:
1219 seq_puts(m, "RC1E\n");
1220 break;
1221 case RSX_STATUS_RS1:
1222 seq_puts(m, "RS1\n");
1223 break;
1224 case RSX_STATUS_RS2:
1225 seq_puts(m, "RS2 (RC6)\n");
1226 break;
1227 case RSX_STATUS_RS3:
1228 seq_puts(m, "RC3 (RC6+)\n");
1229 break;
1230 default:
1231 seq_puts(m, "unknown\n");
1232 break;
1233 }
1234
1235 return 0;
1236 }
1237
1238 static int vlv_drpc_info(struct seq_file *m)
1239 {
1240
1241 struct drm_info_node *node = m->private;
1242 struct drm_device *dev = node->minor->dev;
1243 struct drm_i915_private *dev_priv = dev->dev_private;
1244 u32 rpmodectl1, rcctl1;
1245 unsigned fw_rendercount = 0, fw_mediacount = 0;
1246
1247 intel_runtime_pm_get(dev_priv);
1248
1249 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1250 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1251
1252 intel_runtime_pm_put(dev_priv);
1253
1254 seq_printf(m, "Video Turbo Mode: %s\n",
1255 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1256 seq_printf(m, "Turbo enabled: %s\n",
1257 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1258 seq_printf(m, "HW control enabled: %s\n",
1259 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1260 seq_printf(m, "SW control enabled: %s\n",
1261 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1262 GEN6_RP_MEDIA_SW_MODE));
1263 seq_printf(m, "RC6 Enabled: %s\n",
1264 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1265 GEN6_RC_CTL_EI_MODE(1))));
1266 seq_printf(m, "Render Power Well: %s\n",
1267 (I915_READ(VLV_GTLC_PW_STATUS) &
1268 VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1269 seq_printf(m, "Media Power Well: %s\n",
1270 (I915_READ(VLV_GTLC_PW_STATUS) &
1271 VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1272
1273 seq_printf(m, "Render RC6 residency since boot: %u\n",
1274 I915_READ(VLV_GT_RENDER_RC6));
1275 seq_printf(m, "Media RC6 residency since boot: %u\n",
1276 I915_READ(VLV_GT_MEDIA_RC6));
1277
1278 spin_lock_irq(&dev_priv->uncore.lock);
1279 fw_rendercount = dev_priv->uncore.fw_rendercount;
1280 fw_mediacount = dev_priv->uncore.fw_mediacount;
1281 spin_unlock_irq(&dev_priv->uncore.lock);
1282
1283 seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1284 seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1285
1286
1287 return 0;
1288 }
1289
1290
1291 static int gen6_drpc_info(struct seq_file *m)
1292 {
1293
1294 struct drm_info_node *node = m->private;
1295 struct drm_device *dev = node->minor->dev;
1296 struct drm_i915_private *dev_priv = dev->dev_private;
1297 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1298 unsigned forcewake_count;
1299 int count = 0, ret;
1300
1301 ret = mutex_lock_interruptible(&dev->struct_mutex);
1302 if (ret)
1303 return ret;
1304 intel_runtime_pm_get(dev_priv);
1305
1306 spin_lock_irq(&dev_priv->uncore.lock);
1307 forcewake_count = dev_priv->uncore.forcewake_count;
1308 spin_unlock_irq(&dev_priv->uncore.lock);
1309
1310 if (forcewake_count) {
1311 seq_puts(m, "RC information inaccurate because somebody "
1312 "holds a forcewake reference \n");
1313 } else {
1314 /* NB: we cannot use forcewake, else we read the wrong values */
1315 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1316 udelay(10);
1317 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1318 }
1319
1320 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1321 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1322
1323 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1324 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1325 mutex_unlock(&dev->struct_mutex);
1326 mutex_lock(&dev_priv->rps.hw_lock);
1327 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1328 mutex_unlock(&dev_priv->rps.hw_lock);
1329
1330 intel_runtime_pm_put(dev_priv);
1331
1332 seq_printf(m, "Video Turbo Mode: %s\n",
1333 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1334 seq_printf(m, "HW control enabled: %s\n",
1335 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1336 seq_printf(m, "SW control enabled: %s\n",
1337 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1338 GEN6_RP_MEDIA_SW_MODE));
1339 seq_printf(m, "RC1e Enabled: %s\n",
1340 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1341 seq_printf(m, "RC6 Enabled: %s\n",
1342 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1343 seq_printf(m, "Deep RC6 Enabled: %s\n",
1344 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1345 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1346 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1347 seq_puts(m, "Current RC state: ");
1348 switch (gt_core_status & GEN6_RCn_MASK) {
1349 case GEN6_RC0:
1350 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1351 seq_puts(m, "Core Power Down\n");
1352 else
1353 seq_puts(m, "on\n");
1354 break;
1355 case GEN6_RC3:
1356 seq_puts(m, "RC3\n");
1357 break;
1358 case GEN6_RC6:
1359 seq_puts(m, "RC6\n");
1360 break;
1361 case GEN6_RC7:
1362 seq_puts(m, "RC7\n");
1363 break;
1364 default:
1365 seq_puts(m, "Unknown\n");
1366 break;
1367 }
1368
1369 seq_printf(m, "Core Power Down: %s\n",
1370 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1371
1372 /* Not exactly sure what this is */
1373 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1374 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1375 seq_printf(m, "RC6 residency since boot: %u\n",
1376 I915_READ(GEN6_GT_GFX_RC6));
1377 seq_printf(m, "RC6+ residency since boot: %u\n",
1378 I915_READ(GEN6_GT_GFX_RC6p));
1379 seq_printf(m, "RC6++ residency since boot: %u\n",
1380 I915_READ(GEN6_GT_GFX_RC6pp));
1381
1382 seq_printf(m, "RC6 voltage: %dmV\n",
1383 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1384 seq_printf(m, "RC6+ voltage: %dmV\n",
1385 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1386 seq_printf(m, "RC6++ voltage: %dmV\n",
1387 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1388 return 0;
1389 }
1390
1391 static int i915_drpc_info(struct seq_file *m, void *unused)
1392 {
1393 struct drm_info_node *node = m->private;
1394 struct drm_device *dev = node->minor->dev;
1395
1396 if (IS_VALLEYVIEW(dev))
1397 return vlv_drpc_info(m);
1398 else if (INTEL_INFO(dev)->gen >= 6)
1399 return gen6_drpc_info(m);
1400 else
1401 return ironlake_drpc_info(m);
1402 }
1403
1404 static int i915_fbc_status(struct seq_file *m, void *unused)
1405 {
1406 struct drm_info_node *node = m->private;
1407 struct drm_device *dev = node->minor->dev;
1408 struct drm_i915_private *dev_priv = dev->dev_private;
1409
1410 if (!HAS_FBC(dev)) {
1411 seq_puts(m, "FBC unsupported on this chipset\n");
1412 return 0;
1413 }
1414
1415 intel_runtime_pm_get(dev_priv);
1416
1417 if (intel_fbc_enabled(dev)) {
1418 seq_puts(m, "FBC enabled\n");
1419 } else {
1420 seq_puts(m, "FBC disabled: ");
1421 switch (dev_priv->fbc.no_fbc_reason) {
1422 case FBC_OK:
1423 seq_puts(m, "FBC actived, but currently disabled in hardware");
1424 break;
1425 case FBC_UNSUPPORTED:
1426 seq_puts(m, "unsupported by this chipset");
1427 break;
1428 case FBC_NO_OUTPUT:
1429 seq_puts(m, "no outputs");
1430 break;
1431 case FBC_STOLEN_TOO_SMALL:
1432 seq_puts(m, "not enough stolen memory");
1433 break;
1434 case FBC_UNSUPPORTED_MODE:
1435 seq_puts(m, "mode not supported");
1436 break;
1437 case FBC_MODE_TOO_LARGE:
1438 seq_puts(m, "mode too large");
1439 break;
1440 case FBC_BAD_PLANE:
1441 seq_puts(m, "FBC unsupported on plane");
1442 break;
1443 case FBC_NOT_TILED:
1444 seq_puts(m, "scanout buffer not tiled");
1445 break;
1446 case FBC_MULTIPLE_PIPES:
1447 seq_puts(m, "multiple pipes are enabled");
1448 break;
1449 case FBC_MODULE_PARAM:
1450 seq_puts(m, "disabled per module param (default off)");
1451 break;
1452 case FBC_CHIP_DEFAULT:
1453 seq_puts(m, "disabled per chip default");
1454 break;
1455 default:
1456 seq_puts(m, "unknown reason");
1457 }
1458 seq_putc(m, '\n');
1459 }
1460
1461 intel_runtime_pm_put(dev_priv);
1462
1463 return 0;
1464 }
1465
1466 static int i915_fbc_fc_get(void *data, u64 *val)
1467 {
1468 struct drm_device *dev = data;
1469 struct drm_i915_private *dev_priv = dev->dev_private;
1470
1471 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1472 return -ENODEV;
1473
1474 drm_modeset_lock_all(dev);
1475 *val = dev_priv->fbc.false_color;
1476 drm_modeset_unlock_all(dev);
1477
1478 return 0;
1479 }
1480
1481 static int i915_fbc_fc_set(void *data, u64 val)
1482 {
1483 struct drm_device *dev = data;
1484 struct drm_i915_private *dev_priv = dev->dev_private;
1485 u32 reg;
1486
1487 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1488 return -ENODEV;
1489
1490 drm_modeset_lock_all(dev);
1491
1492 reg = I915_READ(ILK_DPFC_CONTROL);
1493 dev_priv->fbc.false_color = val;
1494
1495 I915_WRITE(ILK_DPFC_CONTROL, val ?
1496 (reg | FBC_CTL_FALSE_COLOR) :
1497 (reg & ~FBC_CTL_FALSE_COLOR));
1498
1499 drm_modeset_unlock_all(dev);
1500 return 0;
1501 }
1502
1503 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1504 i915_fbc_fc_get, i915_fbc_fc_set,
1505 "%llu\n");
1506
1507 static int i915_ips_status(struct seq_file *m, void *unused)
1508 {
1509 struct drm_info_node *node = m->private;
1510 struct drm_device *dev = node->minor->dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 if (!HAS_IPS(dev)) {
1514 seq_puts(m, "not supported\n");
1515 return 0;
1516 }
1517
1518 intel_runtime_pm_get(dev_priv);
1519
1520 seq_printf(m, "Enabled by kernel parameter: %s\n",
1521 yesno(i915.enable_ips));
1522
1523 if (INTEL_INFO(dev)->gen >= 8) {
1524 seq_puts(m, "Currently: unknown\n");
1525 } else {
1526 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1527 seq_puts(m, "Currently: enabled\n");
1528 else
1529 seq_puts(m, "Currently: disabled\n");
1530 }
1531
1532 intel_runtime_pm_put(dev_priv);
1533
1534 return 0;
1535 }
1536
1537 static int i915_sr_status(struct seq_file *m, void *unused)
1538 {
1539 struct drm_info_node *node = m->private;
1540 struct drm_device *dev = node->minor->dev;
1541 struct drm_i915_private *dev_priv = dev->dev_private;
1542 bool sr_enabled = false;
1543
1544 intel_runtime_pm_get(dev_priv);
1545
1546 if (HAS_PCH_SPLIT(dev))
1547 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1548 else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1549 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1550 else if (IS_I915GM(dev))
1551 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1552 else if (IS_PINEVIEW(dev))
1553 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1554
1555 intel_runtime_pm_put(dev_priv);
1556
1557 seq_printf(m, "self-refresh: %s\n",
1558 sr_enabled ? "enabled" : "disabled");
1559
1560 return 0;
1561 }
1562
1563 static int i915_emon_status(struct seq_file *m, void *unused)
1564 {
1565 struct drm_info_node *node = m->private;
1566 struct drm_device *dev = node->minor->dev;
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568 unsigned long temp, chipset, gfx;
1569 int ret;
1570
1571 if (!IS_GEN5(dev))
1572 return -ENODEV;
1573
1574 ret = mutex_lock_interruptible(&dev->struct_mutex);
1575 if (ret)
1576 return ret;
1577
1578 temp = i915_mch_val(dev_priv);
1579 chipset = i915_chipset_val(dev_priv);
1580 gfx = i915_gfx_val(dev_priv);
1581 mutex_unlock(&dev->struct_mutex);
1582
1583 seq_printf(m, "GMCH temp: %ld\n", temp);
1584 seq_printf(m, "Chipset power: %ld\n", chipset);
1585 seq_printf(m, "GFX power: %ld\n", gfx);
1586 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1587
1588 return 0;
1589 }
1590
1591 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1592 {
1593 struct drm_info_node *node = m->private;
1594 struct drm_device *dev = node->minor->dev;
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596 int ret = 0;
1597 int gpu_freq, ia_freq;
1598
1599 if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1600 seq_puts(m, "unsupported on this chipset\n");
1601 return 0;
1602 }
1603
1604 intel_runtime_pm_get(dev_priv);
1605
1606 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1607
1608 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1609 if (ret)
1610 goto out;
1611
1612 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1613
1614 for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1615 gpu_freq <= dev_priv->rps.max_freq_softlimit;
1616 gpu_freq++) {
1617 ia_freq = gpu_freq;
1618 sandybridge_pcode_read(dev_priv,
1619 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1620 &ia_freq);
1621 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1622 gpu_freq * GT_FREQUENCY_MULTIPLIER,
1623 ((ia_freq >> 0) & 0xff) * 100,
1624 ((ia_freq >> 8) & 0xff) * 100);
1625 }
1626
1627 mutex_unlock(&dev_priv->rps.hw_lock);
1628
1629 out:
1630 intel_runtime_pm_put(dev_priv);
1631 return ret;
1632 }
1633
1634 static int i915_opregion(struct seq_file *m, void *unused)
1635 {
1636 struct drm_info_node *node = m->private;
1637 struct drm_device *dev = node->minor->dev;
1638 struct drm_i915_private *dev_priv = dev->dev_private;
1639 struct intel_opregion *opregion = &dev_priv->opregion;
1640 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1641 int ret;
1642
1643 if (data == NULL)
1644 return -ENOMEM;
1645
1646 ret = mutex_lock_interruptible(&dev->struct_mutex);
1647 if (ret)
1648 goto out;
1649
1650 if (opregion->header) {
1651 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1652 seq_write(m, data, OPREGION_SIZE);
1653 }
1654
1655 mutex_unlock(&dev->struct_mutex);
1656
1657 out:
1658 kfree(data);
1659 return 0;
1660 }
1661
1662 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1663 {
1664 struct drm_info_node *node = m->private;
1665 struct drm_device *dev = node->minor->dev;
1666 struct intel_fbdev *ifbdev = NULL;
1667 struct intel_framebuffer *fb;
1668
1669 #ifdef CONFIG_DRM_I915_FBDEV
1670 struct drm_i915_private *dev_priv = dev->dev_private;
1671
1672 ifbdev = dev_priv->fbdev;
1673 fb = to_intel_framebuffer(ifbdev->helper.fb);
1674
1675 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1676 fb->base.width,
1677 fb->base.height,
1678 fb->base.depth,
1679 fb->base.bits_per_pixel,
1680 atomic_read(&fb->base.refcount.refcount));
1681 describe_obj(m, fb->obj);
1682 seq_putc(m, '\n');
1683 #endif
1684
1685 mutex_lock(&dev->mode_config.fb_lock);
1686 list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1687 if (ifbdev && &fb->base == ifbdev->helper.fb)
1688 continue;
1689
1690 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1691 fb->base.width,
1692 fb->base.height,
1693 fb->base.depth,
1694 fb->base.bits_per_pixel,
1695 atomic_read(&fb->base.refcount.refcount));
1696 describe_obj(m, fb->obj);
1697 seq_putc(m, '\n');
1698 }
1699 mutex_unlock(&dev->mode_config.fb_lock);
1700
1701 return 0;
1702 }
1703
1704 static void describe_ctx_ringbuf(struct seq_file *m,
1705 struct intel_ringbuffer *ringbuf)
1706 {
1707 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1708 ringbuf->space, ringbuf->head, ringbuf->tail,
1709 ringbuf->last_retired_head);
1710 }
1711
1712 static int i915_context_status(struct seq_file *m, void *unused)
1713 {
1714 struct drm_info_node *node = m->private;
1715 struct drm_device *dev = node->minor->dev;
1716 struct drm_i915_private *dev_priv = dev->dev_private;
1717 struct intel_engine_cs *ring;
1718 struct intel_context *ctx;
1719 int ret, i;
1720
1721 ret = mutex_lock_interruptible(&dev->struct_mutex);
1722 if (ret)
1723 return ret;
1724
1725 if (dev_priv->ips.pwrctx) {
1726 seq_puts(m, "power context ");
1727 describe_obj(m, dev_priv->ips.pwrctx);
1728 seq_putc(m, '\n');
1729 }
1730
1731 if (dev_priv->ips.renderctx) {
1732 seq_puts(m, "render context ");
1733 describe_obj(m, dev_priv->ips.renderctx);
1734 seq_putc(m, '\n');
1735 }
1736
1737 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1738 if (!i915.enable_execlists &&
1739 ctx->legacy_hw_ctx.rcs_state == NULL)
1740 continue;
1741
1742 seq_puts(m, "HW context ");
1743 describe_ctx(m, ctx);
1744 for_each_ring(ring, dev_priv, i) {
1745 if (ring->default_context == ctx)
1746 seq_printf(m, "(default context %s) ",
1747 ring->name);
1748 }
1749
1750 if (i915.enable_execlists) {
1751 seq_putc(m, '\n');
1752 for_each_ring(ring, dev_priv, i) {
1753 struct drm_i915_gem_object *ctx_obj =
1754 ctx->engine[i].state;
1755 struct intel_ringbuffer *ringbuf =
1756 ctx->engine[i].ringbuf;
1757
1758 seq_printf(m, "%s: ", ring->name);
1759 if (ctx_obj)
1760 describe_obj(m, ctx_obj);
1761 if (ringbuf)
1762 describe_ctx_ringbuf(m, ringbuf);
1763 seq_putc(m, '\n');
1764 }
1765 } else {
1766 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1767 }
1768
1769 seq_putc(m, '\n');
1770 }
1771
1772 mutex_unlock(&dev->struct_mutex);
1773
1774 return 0;
1775 }
1776
1777 static int i915_dump_lrc(struct seq_file *m, void *unused)
1778 {
1779 struct drm_info_node *node = (struct drm_info_node *) m->private;
1780 struct drm_device *dev = node->minor->dev;
1781 struct drm_i915_private *dev_priv = dev->dev_private;
1782 struct intel_engine_cs *ring;
1783 struct intel_context *ctx;
1784 int ret, i;
1785
1786 if (!i915.enable_execlists) {
1787 seq_printf(m, "Logical Ring Contexts are disabled\n");
1788 return 0;
1789 }
1790
1791 ret = mutex_lock_interruptible(&dev->struct_mutex);
1792 if (ret)
1793 return ret;
1794
1795 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1796 for_each_ring(ring, dev_priv, i) {
1797 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1798
1799 if (ring->default_context == ctx)
1800 continue;
1801
1802 if (ctx_obj) {
1803 struct page *page = i915_gem_object_get_page(ctx_obj, 1);
1804 uint32_t *reg_state = kmap_atomic(page);
1805 int j;
1806
1807 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1808 intel_execlists_ctx_id(ctx_obj));
1809
1810 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1811 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1812 i915_gem_obj_ggtt_offset(ctx_obj) + 4096 + (j * 4),
1813 reg_state[j], reg_state[j + 1],
1814 reg_state[j + 2], reg_state[j + 3]);
1815 }
1816 kunmap_atomic(reg_state);
1817
1818 seq_putc(m, '\n');
1819 }
1820 }
1821 }
1822
1823 mutex_unlock(&dev->struct_mutex);
1824
1825 return 0;
1826 }
1827
1828 static int i915_execlists(struct seq_file *m, void *data)
1829 {
1830 struct drm_info_node *node = (struct drm_info_node *)m->private;
1831 struct drm_device *dev = node->minor->dev;
1832 struct drm_i915_private *dev_priv = dev->dev_private;
1833 struct intel_engine_cs *ring;
1834 u32 status_pointer;
1835 u8 read_pointer;
1836 u8 write_pointer;
1837 u32 status;
1838 u32 ctx_id;
1839 struct list_head *cursor;
1840 int ring_id, i;
1841 int ret;
1842
1843 if (!i915.enable_execlists) {
1844 seq_puts(m, "Logical Ring Contexts are disabled\n");
1845 return 0;
1846 }
1847
1848 ret = mutex_lock_interruptible(&dev->struct_mutex);
1849 if (ret)
1850 return ret;
1851
1852 for_each_ring(ring, dev_priv, ring_id) {
1853 struct intel_ctx_submit_request *head_req = NULL;
1854 int count = 0;
1855 unsigned long flags;
1856
1857 seq_printf(m, "%s\n", ring->name);
1858
1859 status = I915_READ(RING_EXECLIST_STATUS(ring));
1860 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1861 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1862 status, ctx_id);
1863
1864 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1865 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1866
1867 read_pointer = ring->next_context_status_buffer;
1868 write_pointer = status_pointer & 0x07;
1869 if (read_pointer > write_pointer)
1870 write_pointer += 6;
1871 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
1872 read_pointer, write_pointer);
1873
1874 for (i = 0; i < 6; i++) {
1875 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
1876 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
1877
1878 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
1879 i, status, ctx_id);
1880 }
1881
1882 spin_lock_irqsave(&ring->execlist_lock, flags);
1883 list_for_each(cursor, &ring->execlist_queue)
1884 count++;
1885 head_req = list_first_entry_or_null(&ring->execlist_queue,
1886 struct intel_ctx_submit_request, execlist_link);
1887 spin_unlock_irqrestore(&ring->execlist_lock, flags);
1888
1889 seq_printf(m, "\t%d requests in queue\n", count);
1890 if (head_req) {
1891 struct drm_i915_gem_object *ctx_obj;
1892
1893 ctx_obj = head_req->ctx->engine[ring_id].state;
1894 seq_printf(m, "\tHead request id: %u\n",
1895 intel_execlists_ctx_id(ctx_obj));
1896 seq_printf(m, "\tHead request tail: %u\n",
1897 head_req->tail);
1898 }
1899
1900 seq_putc(m, '\n');
1901 }
1902
1903 mutex_unlock(&dev->struct_mutex);
1904
1905 return 0;
1906 }
1907
1908 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1909 {
1910 struct drm_info_node *node = m->private;
1911 struct drm_device *dev = node->minor->dev;
1912 struct drm_i915_private *dev_priv = dev->dev_private;
1913 unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1914
1915 spin_lock_irq(&dev_priv->uncore.lock);
1916 if (IS_VALLEYVIEW(dev)) {
1917 fw_rendercount = dev_priv->uncore.fw_rendercount;
1918 fw_mediacount = dev_priv->uncore.fw_mediacount;
1919 } else
1920 forcewake_count = dev_priv->uncore.forcewake_count;
1921 spin_unlock_irq(&dev_priv->uncore.lock);
1922
1923 if (IS_VALLEYVIEW(dev)) {
1924 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1925 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1926 } else
1927 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1928
1929 return 0;
1930 }
1931
1932 static const char *swizzle_string(unsigned swizzle)
1933 {
1934 switch (swizzle) {
1935 case I915_BIT_6_SWIZZLE_NONE:
1936 return "none";
1937 case I915_BIT_6_SWIZZLE_9:
1938 return "bit9";
1939 case I915_BIT_6_SWIZZLE_9_10:
1940 return "bit9/bit10";
1941 case I915_BIT_6_SWIZZLE_9_11:
1942 return "bit9/bit11";
1943 case I915_BIT_6_SWIZZLE_9_10_11:
1944 return "bit9/bit10/bit11";
1945 case I915_BIT_6_SWIZZLE_9_17:
1946 return "bit9/bit17";
1947 case I915_BIT_6_SWIZZLE_9_10_17:
1948 return "bit9/bit10/bit17";
1949 case I915_BIT_6_SWIZZLE_UNKNOWN:
1950 return "unknown";
1951 }
1952
1953 return "bug";
1954 }
1955
1956 static int i915_swizzle_info(struct seq_file *m, void *data)
1957 {
1958 struct drm_info_node *node = m->private;
1959 struct drm_device *dev = node->minor->dev;
1960 struct drm_i915_private *dev_priv = dev->dev_private;
1961 int ret;
1962
1963 ret = mutex_lock_interruptible(&dev->struct_mutex);
1964 if (ret)
1965 return ret;
1966 intel_runtime_pm_get(dev_priv);
1967
1968 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1969 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1970 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1971 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1972
1973 if (IS_GEN3(dev) || IS_GEN4(dev)) {
1974 seq_printf(m, "DDC = 0x%08x\n",
1975 I915_READ(DCC));
1976 seq_printf(m, "C0DRB3 = 0x%04x\n",
1977 I915_READ16(C0DRB3));
1978 seq_printf(m, "C1DRB3 = 0x%04x\n",
1979 I915_READ16(C1DRB3));
1980 } else if (INTEL_INFO(dev)->gen >= 6) {
1981 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1982 I915_READ(MAD_DIMM_C0));
1983 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1984 I915_READ(MAD_DIMM_C1));
1985 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1986 I915_READ(MAD_DIMM_C2));
1987 seq_printf(m, "TILECTL = 0x%08x\n",
1988 I915_READ(TILECTL));
1989 if (IS_GEN8(dev))
1990 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1991 I915_READ(GAMTARBMODE));
1992 else
1993 seq_printf(m, "ARB_MODE = 0x%08x\n",
1994 I915_READ(ARB_MODE));
1995 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1996 I915_READ(DISP_ARB_CTL));
1997 }
1998 intel_runtime_pm_put(dev_priv);
1999 mutex_unlock(&dev->struct_mutex);
2000
2001 return 0;
2002 }
2003
2004 static int per_file_ctx(int id, void *ptr, void *data)
2005 {
2006 struct intel_context *ctx = ptr;
2007 struct seq_file *m = data;
2008 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2009
2010 if (!ppgtt) {
2011 seq_printf(m, " no ppgtt for context %d\n",
2012 ctx->user_handle);
2013 return 0;
2014 }
2015
2016 if (i915_gem_context_is_default(ctx))
2017 seq_puts(m, " default context:\n");
2018 else
2019 seq_printf(m, " context %d:\n", ctx->user_handle);
2020 ppgtt->debug_dump(ppgtt, m);
2021
2022 return 0;
2023 }
2024
2025 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2026 {
2027 struct drm_i915_private *dev_priv = dev->dev_private;
2028 struct intel_engine_cs *ring;
2029 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2030 int unused, i;
2031
2032 if (!ppgtt)
2033 return;
2034
2035 seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2036 seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2037 for_each_ring(ring, dev_priv, unused) {
2038 seq_printf(m, "%s\n", ring->name);
2039 for (i = 0; i < 4; i++) {
2040 u32 offset = 0x270 + i * 8;
2041 u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2042 pdp <<= 32;
2043 pdp |= I915_READ(ring->mmio_base + offset);
2044 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2045 }
2046 }
2047 }
2048
2049 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2050 {
2051 struct drm_i915_private *dev_priv = dev->dev_private;
2052 struct intel_engine_cs *ring;
2053 struct drm_file *file;
2054 int i;
2055
2056 if (INTEL_INFO(dev)->gen == 6)
2057 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2058
2059 for_each_ring(ring, dev_priv, i) {
2060 seq_printf(m, "%s\n", ring->name);
2061 if (INTEL_INFO(dev)->gen == 7)
2062 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2063 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2064 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2065 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2066 }
2067 if (dev_priv->mm.aliasing_ppgtt) {
2068 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2069
2070 seq_puts(m, "aliasing PPGTT:\n");
2071 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
2072
2073 ppgtt->debug_dump(ppgtt, m);
2074 }
2075
2076 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2077 struct drm_i915_file_private *file_priv = file->driver_priv;
2078
2079 seq_printf(m, "proc: %s\n",
2080 get_pid_task(file->pid, PIDTYPE_PID)->comm);
2081 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2082 }
2083 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2084 }
2085
2086 static int i915_ppgtt_info(struct seq_file *m, void *data)
2087 {
2088 struct drm_info_node *node = m->private;
2089 struct drm_device *dev = node->minor->dev;
2090 struct drm_i915_private *dev_priv = dev->dev_private;
2091
2092 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2093 if (ret)
2094 return ret;
2095 intel_runtime_pm_get(dev_priv);
2096
2097 if (INTEL_INFO(dev)->gen >= 8)
2098 gen8_ppgtt_info(m, dev);
2099 else if (INTEL_INFO(dev)->gen >= 6)
2100 gen6_ppgtt_info(m, dev);
2101
2102 intel_runtime_pm_put(dev_priv);
2103 mutex_unlock(&dev->struct_mutex);
2104
2105 return 0;
2106 }
2107
2108 static int i915_llc(struct seq_file *m, void *data)
2109 {
2110 struct drm_info_node *node = m->private;
2111 struct drm_device *dev = node->minor->dev;
2112 struct drm_i915_private *dev_priv = dev->dev_private;
2113
2114 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2115 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2116 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2117
2118 return 0;
2119 }
2120
2121 static int i915_edp_psr_status(struct seq_file *m, void *data)
2122 {
2123 struct drm_info_node *node = m->private;
2124 struct drm_device *dev = node->minor->dev;
2125 struct drm_i915_private *dev_priv = dev->dev_private;
2126 u32 psrperf = 0;
2127 bool enabled = false;
2128
2129 intel_runtime_pm_get(dev_priv);
2130
2131 mutex_lock(&dev_priv->psr.lock);
2132 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2133 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2134 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2135 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2136 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2137 dev_priv->psr.busy_frontbuffer_bits);
2138 seq_printf(m, "Re-enable work scheduled: %s\n",
2139 yesno(work_busy(&dev_priv->psr.work.work)));
2140
2141 enabled = HAS_PSR(dev) &&
2142 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2143 seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
2144
2145 if (HAS_PSR(dev))
2146 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2147 EDP_PSR_PERF_CNT_MASK;
2148 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2149 mutex_unlock(&dev_priv->psr.lock);
2150
2151 intel_runtime_pm_put(dev_priv);
2152 return 0;
2153 }
2154
2155 static int i915_sink_crc(struct seq_file *m, void *data)
2156 {
2157 struct drm_info_node *node = m->private;
2158 struct drm_device *dev = node->minor->dev;
2159 struct intel_encoder *encoder;
2160 struct intel_connector *connector;
2161 struct intel_dp *intel_dp = NULL;
2162 int ret;
2163 u8 crc[6];
2164
2165 drm_modeset_lock_all(dev);
2166 list_for_each_entry(connector, &dev->mode_config.connector_list,
2167 base.head) {
2168
2169 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2170 continue;
2171
2172 if (!connector->base.encoder)
2173 continue;
2174
2175 encoder = to_intel_encoder(connector->base.encoder);
2176 if (encoder->type != INTEL_OUTPUT_EDP)
2177 continue;
2178
2179 intel_dp = enc_to_intel_dp(&encoder->base);
2180
2181 ret = intel_dp_sink_crc(intel_dp, crc);
2182 if (ret)
2183 goto out;
2184
2185 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2186 crc[0], crc[1], crc[2],
2187 crc[3], crc[4], crc[5]);
2188 goto out;
2189 }
2190 ret = -ENODEV;
2191 out:
2192 drm_modeset_unlock_all(dev);
2193 return ret;
2194 }
2195
2196 static int i915_energy_uJ(struct seq_file *m, void *data)
2197 {
2198 struct drm_info_node *node = m->private;
2199 struct drm_device *dev = node->minor->dev;
2200 struct drm_i915_private *dev_priv = dev->dev_private;
2201 u64 power;
2202 u32 units;
2203
2204 if (INTEL_INFO(dev)->gen < 6)
2205 return -ENODEV;
2206
2207 intel_runtime_pm_get(dev_priv);
2208
2209 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2210 power = (power & 0x1f00) >> 8;
2211 units = 1000000 / (1 << power); /* convert to uJ */
2212 power = I915_READ(MCH_SECP_NRG_STTS);
2213 power *= units;
2214
2215 intel_runtime_pm_put(dev_priv);
2216
2217 seq_printf(m, "%llu", (long long unsigned)power);
2218
2219 return 0;
2220 }
2221
2222 static int i915_pc8_status(struct seq_file *m, void *unused)
2223 {
2224 struct drm_info_node *node = m->private;
2225 struct drm_device *dev = node->minor->dev;
2226 struct drm_i915_private *dev_priv = dev->dev_private;
2227
2228 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2229 seq_puts(m, "not supported\n");
2230 return 0;
2231 }
2232
2233 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2234 seq_printf(m, "IRQs disabled: %s\n",
2235 yesno(!intel_irqs_enabled(dev_priv)));
2236
2237 return 0;
2238 }
2239
2240 static const char *power_domain_str(enum intel_display_power_domain domain)
2241 {
2242 switch (domain) {
2243 case POWER_DOMAIN_PIPE_A:
2244 return "PIPE_A";
2245 case POWER_DOMAIN_PIPE_B:
2246 return "PIPE_B";
2247 case POWER_DOMAIN_PIPE_C:
2248 return "PIPE_C";
2249 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2250 return "PIPE_A_PANEL_FITTER";
2251 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2252 return "PIPE_B_PANEL_FITTER";
2253 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2254 return "PIPE_C_PANEL_FITTER";
2255 case POWER_DOMAIN_TRANSCODER_A:
2256 return "TRANSCODER_A";
2257 case POWER_DOMAIN_TRANSCODER_B:
2258 return "TRANSCODER_B";
2259 case POWER_DOMAIN_TRANSCODER_C:
2260 return "TRANSCODER_C";
2261 case POWER_DOMAIN_TRANSCODER_EDP:
2262 return "TRANSCODER_EDP";
2263 case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2264 return "PORT_DDI_A_2_LANES";
2265 case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2266 return "PORT_DDI_A_4_LANES";
2267 case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2268 return "PORT_DDI_B_2_LANES";
2269 case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2270 return "PORT_DDI_B_4_LANES";
2271 case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2272 return "PORT_DDI_C_2_LANES";
2273 case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2274 return "PORT_DDI_C_4_LANES";
2275 case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2276 return "PORT_DDI_D_2_LANES";
2277 case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2278 return "PORT_DDI_D_4_LANES";
2279 case POWER_DOMAIN_PORT_DSI:
2280 return "PORT_DSI";
2281 case POWER_DOMAIN_PORT_CRT:
2282 return "PORT_CRT";
2283 case POWER_DOMAIN_PORT_OTHER:
2284 return "PORT_OTHER";
2285 case POWER_DOMAIN_VGA:
2286 return "VGA";
2287 case POWER_DOMAIN_AUDIO:
2288 return "AUDIO";
2289 case POWER_DOMAIN_PLLS:
2290 return "PLLS";
2291 case POWER_DOMAIN_INIT:
2292 return "INIT";
2293 default:
2294 WARN_ON(1);
2295 return "?";
2296 }
2297 }
2298
2299 static int i915_power_domain_info(struct seq_file *m, void *unused)
2300 {
2301 struct drm_info_node *node = m->private;
2302 struct drm_device *dev = node->minor->dev;
2303 struct drm_i915_private *dev_priv = dev->dev_private;
2304 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2305 int i;
2306
2307 mutex_lock(&power_domains->lock);
2308
2309 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2310 for (i = 0; i < power_domains->power_well_count; i++) {
2311 struct i915_power_well *power_well;
2312 enum intel_display_power_domain power_domain;
2313
2314 power_well = &power_domains->power_wells[i];
2315 seq_printf(m, "%-25s %d\n", power_well->name,
2316 power_well->count);
2317
2318 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2319 power_domain++) {
2320 if (!(BIT(power_domain) & power_well->domains))
2321 continue;
2322
2323 seq_printf(m, " %-23s %d\n",
2324 power_domain_str(power_domain),
2325 power_domains->domain_use_count[power_domain]);
2326 }
2327 }
2328
2329 mutex_unlock(&power_domains->lock);
2330
2331 return 0;
2332 }
2333
2334 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2335 struct drm_display_mode *mode)
2336 {
2337 int i;
2338
2339 for (i = 0; i < tabs; i++)
2340 seq_putc(m, '\t');
2341
2342 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2343 mode->base.id, mode->name,
2344 mode->vrefresh, mode->clock,
2345 mode->hdisplay, mode->hsync_start,
2346 mode->hsync_end, mode->htotal,
2347 mode->vdisplay, mode->vsync_start,
2348 mode->vsync_end, mode->vtotal,
2349 mode->type, mode->flags);
2350 }
2351
2352 static void intel_encoder_info(struct seq_file *m,
2353 struct intel_crtc *intel_crtc,
2354 struct intel_encoder *intel_encoder)
2355 {
2356 struct drm_info_node *node = m->private;
2357 struct drm_device *dev = node->minor->dev;
2358 struct drm_crtc *crtc = &intel_crtc->base;
2359 struct intel_connector *intel_connector;
2360 struct drm_encoder *encoder;
2361
2362 encoder = &intel_encoder->base;
2363 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2364 encoder->base.id, encoder->name);
2365 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2366 struct drm_connector *connector = &intel_connector->base;
2367 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2368 connector->base.id,
2369 connector->name,
2370 drm_get_connector_status_name(connector->status));
2371 if (connector->status == connector_status_connected) {
2372 struct drm_display_mode *mode = &crtc->mode;
2373 seq_printf(m, ", mode:\n");
2374 intel_seq_print_mode(m, 2, mode);
2375 } else {
2376 seq_putc(m, '\n');
2377 }
2378 }
2379 }
2380
2381 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2382 {
2383 struct drm_info_node *node = m->private;
2384 struct drm_device *dev = node->minor->dev;
2385 struct drm_crtc *crtc = &intel_crtc->base;
2386 struct intel_encoder *intel_encoder;
2387
2388 if (crtc->primary->fb)
2389 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2390 crtc->primary->fb->base.id, crtc->x, crtc->y,
2391 crtc->primary->fb->width, crtc->primary->fb->height);
2392 else
2393 seq_puts(m, "\tprimary plane disabled\n");
2394 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2395 intel_encoder_info(m, intel_crtc, intel_encoder);
2396 }
2397
2398 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2399 {
2400 struct drm_display_mode *mode = panel->fixed_mode;
2401
2402 seq_printf(m, "\tfixed mode:\n");
2403 intel_seq_print_mode(m, 2, mode);
2404 }
2405
2406 static void intel_dp_info(struct seq_file *m,
2407 struct intel_connector *intel_connector)
2408 {
2409 struct intel_encoder *intel_encoder = intel_connector->encoder;
2410 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2411
2412 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2413 seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2414 "no");
2415 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2416 intel_panel_info(m, &intel_connector->panel);
2417 }
2418
2419 static void intel_hdmi_info(struct seq_file *m,
2420 struct intel_connector *intel_connector)
2421 {
2422 struct intel_encoder *intel_encoder = intel_connector->encoder;
2423 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2424
2425 seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2426 "no");
2427 }
2428
2429 static void intel_lvds_info(struct seq_file *m,
2430 struct intel_connector *intel_connector)
2431 {
2432 intel_panel_info(m, &intel_connector->panel);
2433 }
2434
2435 static void intel_connector_info(struct seq_file *m,
2436 struct drm_connector *connector)
2437 {
2438 struct intel_connector *intel_connector = to_intel_connector(connector);
2439 struct intel_encoder *intel_encoder = intel_connector->encoder;
2440 struct drm_display_mode *mode;
2441
2442 seq_printf(m, "connector %d: type %s, status: %s\n",
2443 connector->base.id, connector->name,
2444 drm_get_connector_status_name(connector->status));
2445 if (connector->status == connector_status_connected) {
2446 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2447 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2448 connector->display_info.width_mm,
2449 connector->display_info.height_mm);
2450 seq_printf(m, "\tsubpixel order: %s\n",
2451 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2452 seq_printf(m, "\tCEA rev: %d\n",
2453 connector->display_info.cea_rev);
2454 }
2455 if (intel_encoder) {
2456 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2457 intel_encoder->type == INTEL_OUTPUT_EDP)
2458 intel_dp_info(m, intel_connector);
2459 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2460 intel_hdmi_info(m, intel_connector);
2461 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2462 intel_lvds_info(m, intel_connector);
2463 }
2464
2465 seq_printf(m, "\tmodes:\n");
2466 list_for_each_entry(mode, &connector->modes, head)
2467 intel_seq_print_mode(m, 2, mode);
2468 }
2469
2470 static bool cursor_active(struct drm_device *dev, int pipe)
2471 {
2472 struct drm_i915_private *dev_priv = dev->dev_private;
2473 u32 state;
2474
2475 if (IS_845G(dev) || IS_I865G(dev))
2476 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2477 else
2478 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2479
2480 return state;
2481 }
2482
2483 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2484 {
2485 struct drm_i915_private *dev_priv = dev->dev_private;
2486 u32 pos;
2487
2488 pos = I915_READ(CURPOS(pipe));
2489
2490 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2491 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2492 *x = -*x;
2493
2494 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2495 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2496 *y = -*y;
2497
2498 return cursor_active(dev, pipe);
2499 }
2500
2501 static int i915_display_info(struct seq_file *m, void *unused)
2502 {
2503 struct drm_info_node *node = m->private;
2504 struct drm_device *dev = node->minor->dev;
2505 struct drm_i915_private *dev_priv = dev->dev_private;
2506 struct intel_crtc *crtc;
2507 struct drm_connector *connector;
2508
2509 intel_runtime_pm_get(dev_priv);
2510 drm_modeset_lock_all(dev);
2511 seq_printf(m, "CRTC info\n");
2512 seq_printf(m, "---------\n");
2513 for_each_intel_crtc(dev, crtc) {
2514 bool active;
2515 int x, y;
2516
2517 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2518 crtc->base.base.id, pipe_name(crtc->pipe),
2519 yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
2520 if (crtc->active) {
2521 intel_crtc_info(m, crtc);
2522
2523 active = cursor_position(dev, crtc->pipe, &x, &y);
2524 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2525 yesno(crtc->cursor_base),
2526 x, y, crtc->cursor_width, crtc->cursor_height,
2527 crtc->cursor_addr, yesno(active));
2528 }
2529
2530 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2531 yesno(!crtc->cpu_fifo_underrun_disabled),
2532 yesno(!crtc->pch_fifo_underrun_disabled));
2533 }
2534
2535 seq_printf(m, "\n");
2536 seq_printf(m, "Connector info\n");
2537 seq_printf(m, "--------------\n");
2538 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2539 intel_connector_info(m, connector);
2540 }
2541 drm_modeset_unlock_all(dev);
2542 intel_runtime_pm_put(dev_priv);
2543
2544 return 0;
2545 }
2546
2547 static int i915_semaphore_status(struct seq_file *m, void *unused)
2548 {
2549 struct drm_info_node *node = (struct drm_info_node *) m->private;
2550 struct drm_device *dev = node->minor->dev;
2551 struct drm_i915_private *dev_priv = dev->dev_private;
2552 struct intel_engine_cs *ring;
2553 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2554 int i, j, ret;
2555
2556 if (!i915_semaphore_is_enabled(dev)) {
2557 seq_puts(m, "Semaphores are disabled\n");
2558 return 0;
2559 }
2560
2561 ret = mutex_lock_interruptible(&dev->struct_mutex);
2562 if (ret)
2563 return ret;
2564 intel_runtime_pm_get(dev_priv);
2565
2566 if (IS_BROADWELL(dev)) {
2567 struct page *page;
2568 uint64_t *seqno;
2569
2570 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2571
2572 seqno = (uint64_t *)kmap_atomic(page);
2573 for_each_ring(ring, dev_priv, i) {
2574 uint64_t offset;
2575
2576 seq_printf(m, "%s\n", ring->name);
2577
2578 seq_puts(m, " Last signal:");
2579 for (j = 0; j < num_rings; j++) {
2580 offset = i * I915_NUM_RINGS + j;
2581 seq_printf(m, "0x%08llx (0x%02llx) ",
2582 seqno[offset], offset * 8);
2583 }
2584 seq_putc(m, '\n');
2585
2586 seq_puts(m, " Last wait: ");
2587 for (j = 0; j < num_rings; j++) {
2588 offset = i + (j * I915_NUM_RINGS);
2589 seq_printf(m, "0x%08llx (0x%02llx) ",
2590 seqno[offset], offset * 8);
2591 }
2592 seq_putc(m, '\n');
2593
2594 }
2595 kunmap_atomic(seqno);
2596 } else {
2597 seq_puts(m, " Last signal:");
2598 for_each_ring(ring, dev_priv, i)
2599 for (j = 0; j < num_rings; j++)
2600 seq_printf(m, "0x%08x\n",
2601 I915_READ(ring->semaphore.mbox.signal[j]));
2602 seq_putc(m, '\n');
2603 }
2604
2605 seq_puts(m, "\nSync seqno:\n");
2606 for_each_ring(ring, dev_priv, i) {
2607 for (j = 0; j < num_rings; j++) {
2608 seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
2609 }
2610 seq_putc(m, '\n');
2611 }
2612 seq_putc(m, '\n');
2613
2614 intel_runtime_pm_put(dev_priv);
2615 mutex_unlock(&dev->struct_mutex);
2616 return 0;
2617 }
2618
2619 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2620 {
2621 struct drm_info_node *node = (struct drm_info_node *) m->private;
2622 struct drm_device *dev = node->minor->dev;
2623 struct drm_i915_private *dev_priv = dev->dev_private;
2624 int i;
2625
2626 drm_modeset_lock_all(dev);
2627 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2628 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2629
2630 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2631 seq_printf(m, " refcount: %i, active: %i, on: %s\n", pll->refcount,
2632 pll->active, yesno(pll->on));
2633 seq_printf(m, " tracked hardware state:\n");
2634 seq_printf(m, " dpll: 0x%08x\n", pll->hw_state.dpll);
2635 seq_printf(m, " dpll_md: 0x%08x\n", pll->hw_state.dpll_md);
2636 seq_printf(m, " fp0: 0x%08x\n", pll->hw_state.fp0);
2637 seq_printf(m, " fp1: 0x%08x\n", pll->hw_state.fp1);
2638 seq_printf(m, " wrpll: 0x%08x\n", pll->hw_state.wrpll);
2639 }
2640 drm_modeset_unlock_all(dev);
2641
2642 return 0;
2643 }
2644
2645 static int i915_wa_registers(struct seq_file *m, void *unused)
2646 {
2647 int i;
2648 int ret;
2649 struct drm_info_node *node = (struct drm_info_node *) m->private;
2650 struct drm_device *dev = node->minor->dev;
2651 struct drm_i915_private *dev_priv = dev->dev_private;
2652
2653 ret = mutex_lock_interruptible(&dev->struct_mutex);
2654 if (ret)
2655 return ret;
2656
2657 intel_runtime_pm_get(dev_priv);
2658
2659 seq_printf(m, "Workarounds applied: %d\n", dev_priv->num_wa_regs);
2660 for (i = 0; i < dev_priv->num_wa_regs; ++i) {
2661 u32 addr, mask;
2662
2663 addr = dev_priv->intel_wa_regs[i].addr;
2664 mask = dev_priv->intel_wa_regs[i].mask;
2665 dev_priv->intel_wa_regs[i].value = I915_READ(addr) | mask;
2666 if (dev_priv->intel_wa_regs[i].addr)
2667 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
2668 dev_priv->intel_wa_regs[i].addr,
2669 dev_priv->intel_wa_regs[i].value,
2670 dev_priv->intel_wa_regs[i].mask);
2671 }
2672
2673 intel_runtime_pm_put(dev_priv);
2674 mutex_unlock(&dev->struct_mutex);
2675
2676 return 0;
2677 }
2678
2679 struct pipe_crc_info {
2680 const char *name;
2681 struct drm_device *dev;
2682 enum pipe pipe;
2683 };
2684
2685 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2686 {
2687 struct drm_info_node *node = (struct drm_info_node *) m->private;
2688 struct drm_device *dev = node->minor->dev;
2689 struct drm_encoder *encoder;
2690 struct intel_encoder *intel_encoder;
2691 struct intel_digital_port *intel_dig_port;
2692 drm_modeset_lock_all(dev);
2693 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2694 intel_encoder = to_intel_encoder(encoder);
2695 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2696 continue;
2697 intel_dig_port = enc_to_dig_port(encoder);
2698 if (!intel_dig_port->dp.can_mst)
2699 continue;
2700
2701 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2702 }
2703 drm_modeset_unlock_all(dev);
2704 return 0;
2705 }
2706
2707 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2708 {
2709 struct pipe_crc_info *info = inode->i_private;
2710 struct drm_i915_private *dev_priv = info->dev->dev_private;
2711 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2712
2713 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2714 return -ENODEV;
2715
2716 spin_lock_irq(&pipe_crc->lock);
2717
2718 if (pipe_crc->opened) {
2719 spin_unlock_irq(&pipe_crc->lock);
2720 return -EBUSY; /* already open */
2721 }
2722
2723 pipe_crc->opened = true;
2724 filep->private_data = inode->i_private;
2725
2726 spin_unlock_irq(&pipe_crc->lock);
2727
2728 return 0;
2729 }
2730
2731 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2732 {
2733 struct pipe_crc_info *info = inode->i_private;
2734 struct drm_i915_private *dev_priv = info->dev->dev_private;
2735 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2736
2737 spin_lock_irq(&pipe_crc->lock);
2738 pipe_crc->opened = false;
2739 spin_unlock_irq(&pipe_crc->lock);
2740
2741 return 0;
2742 }
2743
2744 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2745 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
2746 /* account for \'0' */
2747 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
2748
2749 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2750 {
2751 assert_spin_locked(&pipe_crc->lock);
2752 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2753 INTEL_PIPE_CRC_ENTRIES_NR);
2754 }
2755
2756 static ssize_t
2757 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2758 loff_t *pos)
2759 {
2760 struct pipe_crc_info *info = filep->private_data;
2761 struct drm_device *dev = info->dev;
2762 struct drm_i915_private *dev_priv = dev->dev_private;
2763 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2764 char buf[PIPE_CRC_BUFFER_LEN];
2765 int head, tail, n_entries, n;
2766 ssize_t bytes_read;
2767
2768 /*
2769 * Don't allow user space to provide buffers not big enough to hold
2770 * a line of data.
2771 */
2772 if (count < PIPE_CRC_LINE_LEN)
2773 return -EINVAL;
2774
2775 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2776 return 0;
2777
2778 /* nothing to read */
2779 spin_lock_irq(&pipe_crc->lock);
2780 while (pipe_crc_data_count(pipe_crc) == 0) {
2781 int ret;
2782
2783 if (filep->f_flags & O_NONBLOCK) {
2784 spin_unlock_irq(&pipe_crc->lock);
2785 return -EAGAIN;
2786 }
2787
2788 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2789 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2790 if (ret) {
2791 spin_unlock_irq(&pipe_crc->lock);
2792 return ret;
2793 }
2794 }
2795
2796 /* We now have one or more entries to read */
2797 head = pipe_crc->head;
2798 tail = pipe_crc->tail;
2799 n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2800 count / PIPE_CRC_LINE_LEN);
2801 spin_unlock_irq(&pipe_crc->lock);
2802
2803 bytes_read = 0;
2804 n = 0;
2805 do {
2806 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2807 int ret;
2808
2809 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2810 "%8u %8x %8x %8x %8x %8x\n",
2811 entry->frame, entry->crc[0],
2812 entry->crc[1], entry->crc[2],
2813 entry->crc[3], entry->crc[4]);
2814
2815 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2816 buf, PIPE_CRC_LINE_LEN);
2817 if (ret == PIPE_CRC_LINE_LEN)
2818 return -EFAULT;
2819
2820 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2821 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2822 n++;
2823 } while (--n_entries);
2824
2825 spin_lock_irq(&pipe_crc->lock);
2826 pipe_crc->tail = tail;
2827 spin_unlock_irq(&pipe_crc->lock);
2828
2829 return bytes_read;
2830 }
2831
2832 static const struct file_operations i915_pipe_crc_fops = {
2833 .owner = THIS_MODULE,
2834 .open = i915_pipe_crc_open,
2835 .read = i915_pipe_crc_read,
2836 .release = i915_pipe_crc_release,
2837 };
2838
2839 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2840 {
2841 .name = "i915_pipe_A_crc",
2842 .pipe = PIPE_A,
2843 },
2844 {
2845 .name = "i915_pipe_B_crc",
2846 .pipe = PIPE_B,
2847 },
2848 {
2849 .name = "i915_pipe_C_crc",
2850 .pipe = PIPE_C,
2851 },
2852 };
2853
2854 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2855 enum pipe pipe)
2856 {
2857 struct drm_device *dev = minor->dev;
2858 struct dentry *ent;
2859 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2860
2861 info->dev = dev;
2862 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2863 &i915_pipe_crc_fops);
2864 if (!ent)
2865 return -ENOMEM;
2866
2867 return drm_add_fake_info_node(minor, ent, info);
2868 }
2869
2870 static const char * const pipe_crc_sources[] = {
2871 "none",
2872 "plane1",
2873 "plane2",
2874 "pf",
2875 "pipe",
2876 "TV",
2877 "DP-B",
2878 "DP-C",
2879 "DP-D",
2880 "auto",
2881 };
2882
2883 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2884 {
2885 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2886 return pipe_crc_sources[source];
2887 }
2888
2889 static int display_crc_ctl_show(struct seq_file *m, void *data)
2890 {
2891 struct drm_device *dev = m->private;
2892 struct drm_i915_private *dev_priv = dev->dev_private;
2893 int i;
2894
2895 for (i = 0; i < I915_MAX_PIPES; i++)
2896 seq_printf(m, "%c %s\n", pipe_name(i),
2897 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2898
2899 return 0;
2900 }
2901
2902 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2903 {
2904 struct drm_device *dev = inode->i_private;
2905
2906 return single_open(file, display_crc_ctl_show, dev);
2907 }
2908
2909 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2910 uint32_t *val)
2911 {
2912 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2913 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2914
2915 switch (*source) {
2916 case INTEL_PIPE_CRC_SOURCE_PIPE:
2917 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2918 break;
2919 case INTEL_PIPE_CRC_SOURCE_NONE:
2920 *val = 0;
2921 break;
2922 default:
2923 return -EINVAL;
2924 }
2925
2926 return 0;
2927 }
2928
2929 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2930 enum intel_pipe_crc_source *source)
2931 {
2932 struct intel_encoder *encoder;
2933 struct intel_crtc *crtc;
2934 struct intel_digital_port *dig_port;
2935 int ret = 0;
2936
2937 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2938
2939 drm_modeset_lock_all(dev);
2940 for_each_intel_encoder(dev, encoder) {
2941 if (!encoder->base.crtc)
2942 continue;
2943
2944 crtc = to_intel_crtc(encoder->base.crtc);
2945
2946 if (crtc->pipe != pipe)
2947 continue;
2948
2949 switch (encoder->type) {
2950 case INTEL_OUTPUT_TVOUT:
2951 *source = INTEL_PIPE_CRC_SOURCE_TV;
2952 break;
2953 case INTEL_OUTPUT_DISPLAYPORT:
2954 case INTEL_OUTPUT_EDP:
2955 dig_port = enc_to_dig_port(&encoder->base);
2956 switch (dig_port->port) {
2957 case PORT_B:
2958 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
2959 break;
2960 case PORT_C:
2961 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
2962 break;
2963 case PORT_D:
2964 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
2965 break;
2966 default:
2967 WARN(1, "nonexisting DP port %c\n",
2968 port_name(dig_port->port));
2969 break;
2970 }
2971 break;
2972 }
2973 }
2974 drm_modeset_unlock_all(dev);
2975
2976 return ret;
2977 }
2978
2979 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2980 enum pipe pipe,
2981 enum intel_pipe_crc_source *source,
2982 uint32_t *val)
2983 {
2984 struct drm_i915_private *dev_priv = dev->dev_private;
2985 bool need_stable_symbols = false;
2986
2987 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2988 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2989 if (ret)
2990 return ret;
2991 }
2992
2993 switch (*source) {
2994 case INTEL_PIPE_CRC_SOURCE_PIPE:
2995 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2996 break;
2997 case INTEL_PIPE_CRC_SOURCE_DP_B:
2998 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2999 need_stable_symbols = true;
3000 break;
3001 case INTEL_PIPE_CRC_SOURCE_DP_C:
3002 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3003 need_stable_symbols = true;
3004 break;
3005 case INTEL_PIPE_CRC_SOURCE_NONE:
3006 *val = 0;
3007 break;
3008 default:
3009 return -EINVAL;
3010 }
3011
3012 /*
3013 * When the pipe CRC tap point is after the transcoders we need
3014 * to tweak symbol-level features to produce a deterministic series of
3015 * symbols for a given frame. We need to reset those features only once
3016 * a frame (instead of every nth symbol):
3017 * - DC-balance: used to ensure a better clock recovery from the data
3018 * link (SDVO)
3019 * - DisplayPort scrambling: used for EMI reduction
3020 */
3021 if (need_stable_symbols) {
3022 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3023
3024 tmp |= DC_BALANCE_RESET_VLV;
3025 if (pipe == PIPE_A)
3026 tmp |= PIPE_A_SCRAMBLE_RESET;
3027 else
3028 tmp |= PIPE_B_SCRAMBLE_RESET;
3029
3030 I915_WRITE(PORT_DFT2_G4X, tmp);
3031 }
3032
3033 return 0;
3034 }
3035
3036 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3037 enum pipe pipe,
3038 enum intel_pipe_crc_source *source,
3039 uint32_t *val)
3040 {
3041 struct drm_i915_private *dev_priv = dev->dev_private;
3042 bool need_stable_symbols = false;
3043
3044 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3045 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3046 if (ret)
3047 return ret;
3048 }
3049
3050 switch (*source) {
3051 case INTEL_PIPE_CRC_SOURCE_PIPE:
3052 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3053 break;
3054 case INTEL_PIPE_CRC_SOURCE_TV:
3055 if (!SUPPORTS_TV(dev))
3056 return -EINVAL;
3057 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3058 break;
3059 case INTEL_PIPE_CRC_SOURCE_DP_B:
3060 if (!IS_G4X(dev))
3061 return -EINVAL;
3062 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3063 need_stable_symbols = true;
3064 break;
3065 case INTEL_PIPE_CRC_SOURCE_DP_C:
3066 if (!IS_G4X(dev))
3067 return -EINVAL;
3068 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3069 need_stable_symbols = true;
3070 break;
3071 case INTEL_PIPE_CRC_SOURCE_DP_D:
3072 if (!IS_G4X(dev))
3073 return -EINVAL;
3074 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3075 need_stable_symbols = true;
3076 break;
3077 case INTEL_PIPE_CRC_SOURCE_NONE:
3078 *val = 0;
3079 break;
3080 default:
3081 return -EINVAL;
3082 }
3083
3084 /*
3085 * When the pipe CRC tap point is after the transcoders we need
3086 * to tweak symbol-level features to produce a deterministic series of
3087 * symbols for a given frame. We need to reset those features only once
3088 * a frame (instead of every nth symbol):
3089 * - DC-balance: used to ensure a better clock recovery from the data
3090 * link (SDVO)
3091 * - DisplayPort scrambling: used for EMI reduction
3092 */
3093 if (need_stable_symbols) {
3094 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3095
3096 WARN_ON(!IS_G4X(dev));
3097
3098 I915_WRITE(PORT_DFT_I9XX,
3099 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3100
3101 if (pipe == PIPE_A)
3102 tmp |= PIPE_A_SCRAMBLE_RESET;
3103 else
3104 tmp |= PIPE_B_SCRAMBLE_RESET;
3105
3106 I915_WRITE(PORT_DFT2_G4X, tmp);
3107 }
3108
3109 return 0;
3110 }
3111
3112 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3113 enum pipe pipe)
3114 {
3115 struct drm_i915_private *dev_priv = dev->dev_private;
3116 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3117
3118 if (pipe == PIPE_A)
3119 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3120 else
3121 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3122 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3123 tmp &= ~DC_BALANCE_RESET_VLV;
3124 I915_WRITE(PORT_DFT2_G4X, tmp);
3125
3126 }
3127
3128 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3129 enum pipe pipe)
3130 {
3131 struct drm_i915_private *dev_priv = dev->dev_private;
3132 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3133
3134 if (pipe == PIPE_A)
3135 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3136 else
3137 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3138 I915_WRITE(PORT_DFT2_G4X, tmp);
3139
3140 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3141 I915_WRITE(PORT_DFT_I9XX,
3142 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3143 }
3144 }
3145
3146 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3147 uint32_t *val)
3148 {
3149 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3150 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3151
3152 switch (*source) {
3153 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3154 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3155 break;
3156 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3157 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3158 break;
3159 case INTEL_PIPE_CRC_SOURCE_PIPE:
3160 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3161 break;
3162 case INTEL_PIPE_CRC_SOURCE_NONE:
3163 *val = 0;
3164 break;
3165 default:
3166 return -EINVAL;
3167 }
3168
3169 return 0;
3170 }
3171
3172 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3173 {
3174 struct drm_i915_private *dev_priv = dev->dev_private;
3175 struct intel_crtc *crtc =
3176 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3177
3178 drm_modeset_lock_all(dev);
3179 /*
3180 * If we use the eDP transcoder we need to make sure that we don't
3181 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3182 * relevant on hsw with pipe A when using the always-on power well
3183 * routing.
3184 */
3185 if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
3186 !crtc->config.pch_pfit.enabled) {
3187 crtc->config.pch_pfit.force_thru = true;
3188
3189 intel_display_power_get(dev_priv,
3190 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3191
3192 dev_priv->display.crtc_disable(&crtc->base);
3193 dev_priv->display.crtc_enable(&crtc->base);
3194 }
3195 drm_modeset_unlock_all(dev);
3196 }
3197
3198 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3199 {
3200 struct drm_i915_private *dev_priv = dev->dev_private;
3201 struct intel_crtc *crtc =
3202 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3203
3204 drm_modeset_lock_all(dev);
3205 /*
3206 * If we use the eDP transcoder we need to make sure that we don't
3207 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3208 * relevant on hsw with pipe A when using the always-on power well
3209 * routing.
3210 */
3211 if (crtc->config.pch_pfit.force_thru) {
3212 crtc->config.pch_pfit.force_thru = false;
3213
3214 dev_priv->display.crtc_disable(&crtc->base);
3215 dev_priv->display.crtc_enable(&crtc->base);
3216
3217 intel_display_power_put(dev_priv,
3218 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3219 }
3220 drm_modeset_unlock_all(dev);
3221 }
3222
3223 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3224 enum pipe pipe,
3225 enum intel_pipe_crc_source *source,
3226 uint32_t *val)
3227 {
3228 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3229 *source = INTEL_PIPE_CRC_SOURCE_PF;
3230
3231 switch (*source) {
3232 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3233 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3234 break;
3235 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3236 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3237 break;
3238 case INTEL_PIPE_CRC_SOURCE_PF:
3239 if (IS_HASWELL(dev) && pipe == PIPE_A)
3240 hsw_trans_edp_pipe_A_crc_wa(dev);
3241
3242 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3243 break;
3244 case INTEL_PIPE_CRC_SOURCE_NONE:
3245 *val = 0;
3246 break;
3247 default:
3248 return -EINVAL;
3249 }
3250
3251 return 0;
3252 }
3253
3254 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3255 enum intel_pipe_crc_source source)
3256 {
3257 struct drm_i915_private *dev_priv = dev->dev_private;
3258 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3259 u32 val = 0; /* shut up gcc */
3260 int ret;
3261
3262 if (pipe_crc->source == source)
3263 return 0;
3264
3265 /* forbid changing the source without going back to 'none' */
3266 if (pipe_crc->source && source)
3267 return -EINVAL;
3268
3269 if (IS_GEN2(dev))
3270 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3271 else if (INTEL_INFO(dev)->gen < 5)
3272 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3273 else if (IS_VALLEYVIEW(dev))
3274 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3275 else if (IS_GEN5(dev) || IS_GEN6(dev))
3276 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3277 else
3278 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3279
3280 if (ret != 0)
3281 return ret;
3282
3283 /* none -> real source transition */
3284 if (source) {
3285 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3286 pipe_name(pipe), pipe_crc_source_name(source));
3287
3288 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
3289 INTEL_PIPE_CRC_ENTRIES_NR,
3290 GFP_KERNEL);
3291 if (!pipe_crc->entries)
3292 return -ENOMEM;
3293
3294 spin_lock_irq(&pipe_crc->lock);
3295 pipe_crc->head = 0;
3296 pipe_crc->tail = 0;
3297 spin_unlock_irq(&pipe_crc->lock);
3298 }
3299
3300 pipe_crc->source = source;
3301
3302 I915_WRITE(PIPE_CRC_CTL(pipe), val);
3303 POSTING_READ(PIPE_CRC_CTL(pipe));
3304
3305 /* real source -> none transition */
3306 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3307 struct intel_pipe_crc_entry *entries;
3308 struct intel_crtc *crtc =
3309 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3310
3311 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3312 pipe_name(pipe));
3313
3314 drm_modeset_lock(&crtc->base.mutex, NULL);
3315 if (crtc->active)
3316 intel_wait_for_vblank(dev, pipe);
3317 drm_modeset_unlock(&crtc->base.mutex);
3318
3319 spin_lock_irq(&pipe_crc->lock);
3320 entries = pipe_crc->entries;
3321 pipe_crc->entries = NULL;
3322 spin_unlock_irq(&pipe_crc->lock);
3323
3324 kfree(entries);
3325
3326 if (IS_G4X(dev))
3327 g4x_undo_pipe_scramble_reset(dev, pipe);
3328 else if (IS_VALLEYVIEW(dev))
3329 vlv_undo_pipe_scramble_reset(dev, pipe);
3330 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3331 hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3332 }
3333
3334 return 0;
3335 }
3336
3337 /*
3338 * Parse pipe CRC command strings:
3339 * command: wsp* object wsp+ name wsp+ source wsp*
3340 * object: 'pipe'
3341 * name: (A | B | C)
3342 * source: (none | plane1 | plane2 | pf)
3343 * wsp: (#0x20 | #0x9 | #0xA)+
3344 *
3345 * eg.:
3346 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
3347 * "pipe A none" -> Stop CRC
3348 */
3349 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3350 {
3351 int n_words = 0;
3352
3353 while (*buf) {
3354 char *end;
3355
3356 /* skip leading white space */
3357 buf = skip_spaces(buf);
3358 if (!*buf)
3359 break; /* end of buffer */
3360
3361 /* find end of word */
3362 for (end = buf; *end && !isspace(*end); end++)
3363 ;
3364
3365 if (n_words == max_words) {
3366 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3367 max_words);
3368 return -EINVAL; /* ran out of words[] before bytes */
3369 }
3370
3371 if (*end)
3372 *end++ = '\0';
3373 words[n_words++] = buf;
3374 buf = end;
3375 }
3376
3377 return n_words;
3378 }
3379
3380 enum intel_pipe_crc_object {
3381 PIPE_CRC_OBJECT_PIPE,
3382 };
3383
3384 static const char * const pipe_crc_objects[] = {
3385 "pipe",
3386 };
3387
3388 static int
3389 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3390 {
3391 int i;
3392
3393 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3394 if (!strcmp(buf, pipe_crc_objects[i])) {
3395 *o = i;
3396 return 0;
3397 }
3398
3399 return -EINVAL;
3400 }
3401
3402 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3403 {
3404 const char name = buf[0];
3405
3406 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3407 return -EINVAL;
3408
3409 *pipe = name - 'A';
3410
3411 return 0;
3412 }
3413
3414 static int
3415 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3416 {
3417 int i;
3418
3419 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3420 if (!strcmp(buf, pipe_crc_sources[i])) {
3421 *s = i;
3422 return 0;
3423 }
3424
3425 return -EINVAL;
3426 }
3427
3428 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3429 {
3430 #define N_WORDS 3
3431 int n_words;
3432 char *words[N_WORDS];
3433 enum pipe pipe;
3434 enum intel_pipe_crc_object object;
3435 enum intel_pipe_crc_source source;
3436
3437 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3438 if (n_words != N_WORDS) {
3439 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3440 N_WORDS);
3441 return -EINVAL;
3442 }
3443
3444 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3445 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3446 return -EINVAL;
3447 }
3448
3449 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3450 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3451 return -EINVAL;
3452 }
3453
3454 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3455 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3456 return -EINVAL;
3457 }
3458
3459 return pipe_crc_set_source(dev, pipe, source);
3460 }
3461
3462 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3463 size_t len, loff_t *offp)
3464 {
3465 struct seq_file *m = file->private_data;
3466 struct drm_device *dev = m->private;
3467 char *tmpbuf;
3468 int ret;
3469
3470 if (len == 0)
3471 return 0;
3472
3473 if (len > PAGE_SIZE - 1) {
3474 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3475 PAGE_SIZE);
3476 return -E2BIG;
3477 }
3478
3479 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3480 if (!tmpbuf)
3481 return -ENOMEM;
3482
3483 if (copy_from_user(tmpbuf, ubuf, len)) {
3484 ret = -EFAULT;
3485 goto out;
3486 }
3487 tmpbuf[len] = '\0';
3488
3489 ret = display_crc_ctl_parse(dev, tmpbuf, len);
3490
3491 out:
3492 kfree(tmpbuf);
3493 if (ret < 0)
3494 return ret;
3495
3496 *offp += len;
3497 return len;
3498 }
3499
3500 static const struct file_operations i915_display_crc_ctl_fops = {
3501 .owner = THIS_MODULE,
3502 .open = display_crc_ctl_open,
3503 .read = seq_read,
3504 .llseek = seq_lseek,
3505 .release = single_release,
3506 .write = display_crc_ctl_write
3507 };
3508
3509 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3510 {
3511 struct drm_device *dev = m->private;
3512 int num_levels = ilk_wm_max_level(dev) + 1;
3513 int level;
3514
3515 drm_modeset_lock_all(dev);
3516
3517 for (level = 0; level < num_levels; level++) {
3518 unsigned int latency = wm[level];
3519
3520 /* WM1+ latency values in 0.5us units */
3521 if (level > 0)
3522 latency *= 5;
3523
3524 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3525 level, wm[level],
3526 latency / 10, latency % 10);
3527 }
3528
3529 drm_modeset_unlock_all(dev);
3530 }
3531
3532 static int pri_wm_latency_show(struct seq_file *m, void *data)
3533 {
3534 struct drm_device *dev = m->private;
3535
3536 wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3537
3538 return 0;
3539 }
3540
3541 static int spr_wm_latency_show(struct seq_file *m, void *data)
3542 {
3543 struct drm_device *dev = m->private;
3544
3545 wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3546
3547 return 0;
3548 }
3549
3550 static int cur_wm_latency_show(struct seq_file *m, void *data)
3551 {
3552 struct drm_device *dev = m->private;
3553
3554 wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3555
3556 return 0;
3557 }
3558
3559 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3560 {
3561 struct drm_device *dev = inode->i_private;
3562
3563 if (HAS_GMCH_DISPLAY(dev))
3564 return -ENODEV;
3565
3566 return single_open(file, pri_wm_latency_show, dev);
3567 }
3568
3569 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3570 {
3571 struct drm_device *dev = inode->i_private;
3572
3573 if (HAS_GMCH_DISPLAY(dev))
3574 return -ENODEV;
3575
3576 return single_open(file, spr_wm_latency_show, dev);
3577 }
3578
3579 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3580 {
3581 struct drm_device *dev = inode->i_private;
3582
3583 if (HAS_GMCH_DISPLAY(dev))
3584 return -ENODEV;
3585
3586 return single_open(file, cur_wm_latency_show, dev);
3587 }
3588
3589 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3590 size_t len, loff_t *offp, uint16_t wm[5])
3591 {
3592 struct seq_file *m = file->private_data;
3593 struct drm_device *dev = m->private;
3594 uint16_t new[5] = { 0 };
3595 int num_levels = ilk_wm_max_level(dev) + 1;
3596 int level;
3597 int ret;
3598 char tmp[32];
3599
3600 if (len >= sizeof(tmp))
3601 return -EINVAL;
3602
3603 if (copy_from_user(tmp, ubuf, len))
3604 return -EFAULT;
3605
3606 tmp[len] = '\0';
3607
3608 ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3609 if (ret != num_levels)
3610 return -EINVAL;
3611
3612 drm_modeset_lock_all(dev);
3613
3614 for (level = 0; level < num_levels; level++)
3615 wm[level] = new[level];
3616
3617 drm_modeset_unlock_all(dev);
3618
3619 return len;
3620 }
3621
3622
3623 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3624 size_t len, loff_t *offp)
3625 {
3626 struct seq_file *m = file->private_data;
3627 struct drm_device *dev = m->private;
3628
3629 return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3630 }
3631
3632 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3633 size_t len, loff_t *offp)
3634 {
3635 struct seq_file *m = file->private_data;
3636 struct drm_device *dev = m->private;
3637
3638 return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3639 }
3640
3641 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3642 size_t len, loff_t *offp)
3643 {
3644 struct seq_file *m = file->private_data;
3645 struct drm_device *dev = m->private;
3646
3647 return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3648 }
3649
3650 static const struct file_operations i915_pri_wm_latency_fops = {
3651 .owner = THIS_MODULE,
3652 .open = pri_wm_latency_open,
3653 .read = seq_read,
3654 .llseek = seq_lseek,
3655 .release = single_release,
3656 .write = pri_wm_latency_write
3657 };
3658
3659 static const struct file_operations i915_spr_wm_latency_fops = {
3660 .owner = THIS_MODULE,
3661 .open = spr_wm_latency_open,
3662 .read = seq_read,
3663 .llseek = seq_lseek,
3664 .release = single_release,
3665 .write = spr_wm_latency_write
3666 };
3667
3668 static const struct file_operations i915_cur_wm_latency_fops = {
3669 .owner = THIS_MODULE,
3670 .open = cur_wm_latency_open,
3671 .read = seq_read,
3672 .llseek = seq_lseek,
3673 .release = single_release,
3674 .write = cur_wm_latency_write
3675 };
3676
3677 static int
3678 i915_wedged_get(void *data, u64 *val)
3679 {
3680 struct drm_device *dev = data;
3681 struct drm_i915_private *dev_priv = dev->dev_private;
3682
3683 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3684
3685 return 0;
3686 }
3687
3688 static int
3689 i915_wedged_set(void *data, u64 val)
3690 {
3691 struct drm_device *dev = data;
3692 struct drm_i915_private *dev_priv = dev->dev_private;
3693
3694 intel_runtime_pm_get(dev_priv);
3695
3696 i915_handle_error(dev, val,
3697 "Manually setting wedged to %llu", val);
3698
3699 intel_runtime_pm_put(dev_priv);
3700
3701 return 0;
3702 }
3703
3704 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3705 i915_wedged_get, i915_wedged_set,
3706 "%llu\n");
3707
3708 static int
3709 i915_ring_stop_get(void *data, u64 *val)
3710 {
3711 struct drm_device *dev = data;
3712 struct drm_i915_private *dev_priv = dev->dev_private;
3713
3714 *val = dev_priv->gpu_error.stop_rings;
3715
3716 return 0;
3717 }
3718
3719 static int
3720 i915_ring_stop_set(void *data, u64 val)
3721 {
3722 struct drm_device *dev = data;
3723 struct drm_i915_private *dev_priv = dev->dev_private;
3724 int ret;
3725
3726 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3727
3728 ret = mutex_lock_interruptible(&dev->struct_mutex);
3729 if (ret)
3730 return ret;
3731
3732 dev_priv->gpu_error.stop_rings = val;
3733 mutex_unlock(&dev->struct_mutex);
3734
3735 return 0;
3736 }
3737
3738 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3739 i915_ring_stop_get, i915_ring_stop_set,
3740 "0x%08llx\n");
3741
3742 static int
3743 i915_ring_missed_irq_get(void *data, u64 *val)
3744 {
3745 struct drm_device *dev = data;
3746 struct drm_i915_private *dev_priv = dev->dev_private;
3747
3748 *val = dev_priv->gpu_error.missed_irq_rings;
3749 return 0;
3750 }
3751
3752 static int
3753 i915_ring_missed_irq_set(void *data, u64 val)
3754 {
3755 struct drm_device *dev = data;
3756 struct drm_i915_private *dev_priv = dev->dev_private;
3757 int ret;
3758
3759 /* Lock against concurrent debugfs callers */
3760 ret = mutex_lock_interruptible(&dev->struct_mutex);
3761 if (ret)
3762 return ret;
3763 dev_priv->gpu_error.missed_irq_rings = val;
3764 mutex_unlock(&dev->struct_mutex);
3765
3766 return 0;
3767 }
3768
3769 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3770 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3771 "0x%08llx\n");
3772
3773 static int
3774 i915_ring_test_irq_get(void *data, u64 *val)
3775 {
3776 struct drm_device *dev = data;
3777 struct drm_i915_private *dev_priv = dev->dev_private;
3778
3779 *val = dev_priv->gpu_error.test_irq_rings;
3780
3781 return 0;
3782 }
3783
3784 static int
3785 i915_ring_test_irq_set(void *data, u64 val)
3786 {
3787 struct drm_device *dev = data;
3788 struct drm_i915_private *dev_priv = dev->dev_private;
3789 int ret;
3790
3791 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3792
3793 /* Lock against concurrent debugfs callers */
3794 ret = mutex_lock_interruptible(&dev->struct_mutex);
3795 if (ret)
3796 return ret;
3797
3798 dev_priv->gpu_error.test_irq_rings = val;
3799 mutex_unlock(&dev->struct_mutex);
3800
3801 return 0;
3802 }
3803
3804 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3805 i915_ring_test_irq_get, i915_ring_test_irq_set,
3806 "0x%08llx\n");
3807
3808 #define DROP_UNBOUND 0x1
3809 #define DROP_BOUND 0x2
3810 #define DROP_RETIRE 0x4
3811 #define DROP_ACTIVE 0x8
3812 #define DROP_ALL (DROP_UNBOUND | \
3813 DROP_BOUND | \
3814 DROP_RETIRE | \
3815 DROP_ACTIVE)
3816 static int
3817 i915_drop_caches_get(void *data, u64 *val)
3818 {
3819 *val = DROP_ALL;
3820
3821 return 0;
3822 }
3823
3824 static int
3825 i915_drop_caches_set(void *data, u64 val)
3826 {
3827 struct drm_device *dev = data;
3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829 int ret;
3830
3831 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3832
3833 /* No need to check and wait for gpu resets, only libdrm auto-restarts
3834 * on ioctls on -EAGAIN. */
3835 ret = mutex_lock_interruptible(&dev->struct_mutex);
3836 if (ret)
3837 return ret;
3838
3839 if (val & DROP_ACTIVE) {
3840 ret = i915_gpu_idle(dev);
3841 if (ret)
3842 goto unlock;
3843 }
3844
3845 if (val & (DROP_RETIRE | DROP_ACTIVE))
3846 i915_gem_retire_requests(dev);
3847
3848 if (val & DROP_BOUND)
3849 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
3850
3851 if (val & DROP_UNBOUND)
3852 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
3853
3854 unlock:
3855 mutex_unlock(&dev->struct_mutex);
3856
3857 return ret;
3858 }
3859
3860 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3861 i915_drop_caches_get, i915_drop_caches_set,
3862 "0x%08llx\n");
3863
3864 static int
3865 i915_max_freq_get(void *data, u64 *val)
3866 {
3867 struct drm_device *dev = data;
3868 struct drm_i915_private *dev_priv = dev->dev_private;
3869 int ret;
3870
3871 if (INTEL_INFO(dev)->gen < 6)
3872 return -ENODEV;
3873
3874 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3875
3876 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3877 if (ret)
3878 return ret;
3879
3880 if (IS_VALLEYVIEW(dev))
3881 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
3882 else
3883 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3884 mutex_unlock(&dev_priv->rps.hw_lock);
3885
3886 return 0;
3887 }
3888
3889 static int
3890 i915_max_freq_set(void *data, u64 val)
3891 {
3892 struct drm_device *dev = data;
3893 struct drm_i915_private *dev_priv = dev->dev_private;
3894 u32 rp_state_cap, hw_max, hw_min;
3895 int ret;
3896
3897 if (INTEL_INFO(dev)->gen < 6)
3898 return -ENODEV;
3899
3900 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3901
3902 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3903
3904 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3905 if (ret)
3906 return ret;
3907
3908 /*
3909 * Turbo will still be enabled, but won't go above the set value.
3910 */
3911 if (IS_VALLEYVIEW(dev)) {
3912 val = vlv_freq_opcode(dev_priv, val);
3913
3914 hw_max = dev_priv->rps.max_freq;
3915 hw_min = dev_priv->rps.min_freq;
3916 } else {
3917 do_div(val, GT_FREQUENCY_MULTIPLIER);
3918
3919 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3920 hw_max = dev_priv->rps.max_freq;
3921 hw_min = (rp_state_cap >> 16) & 0xff;
3922 }
3923
3924 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
3925 mutex_unlock(&dev_priv->rps.hw_lock);
3926 return -EINVAL;
3927 }
3928
3929 dev_priv->rps.max_freq_softlimit = val;
3930
3931 if (IS_VALLEYVIEW(dev))
3932 valleyview_set_rps(dev, val);
3933 else
3934 gen6_set_rps(dev, val);
3935
3936 mutex_unlock(&dev_priv->rps.hw_lock);
3937
3938 return 0;
3939 }
3940
3941 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3942 i915_max_freq_get, i915_max_freq_set,
3943 "%llu\n");
3944
3945 static int
3946 i915_min_freq_get(void *data, u64 *val)
3947 {
3948 struct drm_device *dev = data;
3949 struct drm_i915_private *dev_priv = dev->dev_private;
3950 int ret;
3951
3952 if (INTEL_INFO(dev)->gen < 6)
3953 return -ENODEV;
3954
3955 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3956
3957 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3958 if (ret)
3959 return ret;
3960
3961 if (IS_VALLEYVIEW(dev))
3962 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
3963 else
3964 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3965 mutex_unlock(&dev_priv->rps.hw_lock);
3966
3967 return 0;
3968 }
3969
3970 static int
3971 i915_min_freq_set(void *data, u64 val)
3972 {
3973 struct drm_device *dev = data;
3974 struct drm_i915_private *dev_priv = dev->dev_private;
3975 u32 rp_state_cap, hw_max, hw_min;
3976 int ret;
3977
3978 if (INTEL_INFO(dev)->gen < 6)
3979 return -ENODEV;
3980
3981 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3982
3983 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3984
3985 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3986 if (ret)
3987 return ret;
3988
3989 /*
3990 * Turbo will still be enabled, but won't go below the set value.
3991 */
3992 if (IS_VALLEYVIEW(dev)) {
3993 val = vlv_freq_opcode(dev_priv, val);
3994
3995 hw_max = dev_priv->rps.max_freq;
3996 hw_min = dev_priv->rps.min_freq;
3997 } else {
3998 do_div(val, GT_FREQUENCY_MULTIPLIER);
3999
4000 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4001 hw_max = dev_priv->rps.max_freq;
4002 hw_min = (rp_state_cap >> 16) & 0xff;
4003 }
4004
4005 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4006 mutex_unlock(&dev_priv->rps.hw_lock);
4007 return -EINVAL;
4008 }
4009
4010 dev_priv->rps.min_freq_softlimit = val;
4011
4012 if (IS_VALLEYVIEW(dev))
4013 valleyview_set_rps(dev, val);
4014 else
4015 gen6_set_rps(dev, val);
4016
4017 mutex_unlock(&dev_priv->rps.hw_lock);
4018
4019 return 0;
4020 }
4021
4022 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4023 i915_min_freq_get, i915_min_freq_set,
4024 "%llu\n");
4025
4026 static int
4027 i915_cache_sharing_get(void *data, u64 *val)
4028 {
4029 struct drm_device *dev = data;
4030 struct drm_i915_private *dev_priv = dev->dev_private;
4031 u32 snpcr;
4032 int ret;
4033
4034 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4035 return -ENODEV;
4036
4037 ret = mutex_lock_interruptible(&dev->struct_mutex);
4038 if (ret)
4039 return ret;
4040 intel_runtime_pm_get(dev_priv);
4041
4042 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4043
4044 intel_runtime_pm_put(dev_priv);
4045 mutex_unlock(&dev_priv->dev->struct_mutex);
4046
4047 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4048
4049 return 0;
4050 }
4051
4052 static int
4053 i915_cache_sharing_set(void *data, u64 val)
4054 {
4055 struct drm_device *dev = data;
4056 struct drm_i915_private *dev_priv = dev->dev_private;
4057 u32 snpcr;
4058
4059 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4060 return -ENODEV;
4061
4062 if (val > 3)
4063 return -EINVAL;
4064
4065 intel_runtime_pm_get(dev_priv);
4066 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4067
4068 /* Update the cache sharing policy here as well */
4069 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4070 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4071 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4072 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4073
4074 intel_runtime_pm_put(dev_priv);
4075 return 0;
4076 }
4077
4078 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4079 i915_cache_sharing_get, i915_cache_sharing_set,
4080 "%llu\n");
4081
4082 static int i915_forcewake_open(struct inode *inode, struct file *file)
4083 {
4084 struct drm_device *dev = inode->i_private;
4085 struct drm_i915_private *dev_priv = dev->dev_private;
4086
4087 if (INTEL_INFO(dev)->gen < 6)
4088 return 0;
4089
4090 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4091
4092 return 0;
4093 }
4094
4095 static int i915_forcewake_release(struct inode *inode, struct file *file)
4096 {
4097 struct drm_device *dev = inode->i_private;
4098 struct drm_i915_private *dev_priv = dev->dev_private;
4099
4100 if (INTEL_INFO(dev)->gen < 6)
4101 return 0;
4102
4103 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4104
4105 return 0;
4106 }
4107
4108 static const struct file_operations i915_forcewake_fops = {
4109 .owner = THIS_MODULE,
4110 .open = i915_forcewake_open,
4111 .release = i915_forcewake_release,
4112 };
4113
4114 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4115 {
4116 struct drm_device *dev = minor->dev;
4117 struct dentry *ent;
4118
4119 ent = debugfs_create_file("i915_forcewake_user",
4120 S_IRUSR,
4121 root, dev,
4122 &i915_forcewake_fops);
4123 if (!ent)
4124 return -ENOMEM;
4125
4126 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4127 }
4128
4129 static int i915_debugfs_create(struct dentry *root,
4130 struct drm_minor *minor,
4131 const char *name,
4132 const struct file_operations *fops)
4133 {
4134 struct drm_device *dev = minor->dev;
4135 struct dentry *ent;
4136
4137 ent = debugfs_create_file(name,
4138 S_IRUGO | S_IWUSR,
4139 root, dev,
4140 fops);
4141 if (!ent)
4142 return -ENOMEM;
4143
4144 return drm_add_fake_info_node(minor, ent, fops);
4145 }
4146
4147 static const struct drm_info_list i915_debugfs_list[] = {
4148 {"i915_capabilities", i915_capabilities, 0},
4149 {"i915_gem_objects", i915_gem_object_info, 0},
4150 {"i915_gem_gtt", i915_gem_gtt_info, 0},
4151 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4152 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4153 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4154 {"i915_gem_stolen", i915_gem_stolen_list_info },
4155 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4156 {"i915_gem_request", i915_gem_request_info, 0},
4157 {"i915_gem_seqno", i915_gem_seqno_info, 0},
4158 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4159 {"i915_gem_interrupt", i915_interrupt_info, 0},
4160 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4161 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4162 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4163 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4164 {"i915_frequency_info", i915_frequency_info, 0},
4165 {"i915_drpc_info", i915_drpc_info, 0},
4166 {"i915_emon_status", i915_emon_status, 0},
4167 {"i915_ring_freq_table", i915_ring_freq_table, 0},
4168 {"i915_fbc_status", i915_fbc_status, 0},
4169 {"i915_ips_status", i915_ips_status, 0},
4170 {"i915_sr_status", i915_sr_status, 0},
4171 {"i915_opregion", i915_opregion, 0},
4172 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4173 {"i915_context_status", i915_context_status, 0},
4174 {"i915_dump_lrc", i915_dump_lrc, 0},
4175 {"i915_execlists", i915_execlists, 0},
4176 {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
4177 {"i915_swizzle_info", i915_swizzle_info, 0},
4178 {"i915_ppgtt_info", i915_ppgtt_info, 0},
4179 {"i915_llc", i915_llc, 0},
4180 {"i915_edp_psr_status", i915_edp_psr_status, 0},
4181 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4182 {"i915_energy_uJ", i915_energy_uJ, 0},
4183 {"i915_pc8_status", i915_pc8_status, 0},
4184 {"i915_power_domain_info", i915_power_domain_info, 0},
4185 {"i915_display_info", i915_display_info, 0},
4186 {"i915_semaphore_status", i915_semaphore_status, 0},
4187 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4188 {"i915_dp_mst_info", i915_dp_mst_info, 0},
4189 {"i915_wa_registers", i915_wa_registers, 0},
4190 };
4191 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4192
4193 static const struct i915_debugfs_files {
4194 const char *name;
4195 const struct file_operations *fops;
4196 } i915_debugfs_files[] = {
4197 {"i915_wedged", &i915_wedged_fops},
4198 {"i915_max_freq", &i915_max_freq_fops},
4199 {"i915_min_freq", &i915_min_freq_fops},
4200 {"i915_cache_sharing", &i915_cache_sharing_fops},
4201 {"i915_ring_stop", &i915_ring_stop_fops},
4202 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4203 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4204 {"i915_gem_drop_caches", &i915_drop_caches_fops},
4205 {"i915_error_state", &i915_error_state_fops},
4206 {"i915_next_seqno", &i915_next_seqno_fops},
4207 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4208 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4209 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4210 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4211 {"i915_fbc_false_color", &i915_fbc_fc_fops},
4212 };
4213
4214 void intel_display_crc_init(struct drm_device *dev)
4215 {
4216 struct drm_i915_private *dev_priv = dev->dev_private;
4217 enum pipe pipe;
4218
4219 for_each_pipe(dev_priv, pipe) {
4220 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4221
4222 pipe_crc->opened = false;
4223 spin_lock_init(&pipe_crc->lock);
4224 init_waitqueue_head(&pipe_crc->wq);
4225 }
4226 }
4227
4228 int i915_debugfs_init(struct drm_minor *minor)
4229 {
4230 int ret, i;
4231
4232 ret = i915_forcewake_create(minor->debugfs_root, minor);
4233 if (ret)
4234 return ret;
4235
4236 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4237 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4238 if (ret)
4239 return ret;
4240 }
4241
4242 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4243 ret = i915_debugfs_create(minor->debugfs_root, minor,
4244 i915_debugfs_files[i].name,
4245 i915_debugfs_files[i].fops);
4246 if (ret)
4247 return ret;
4248 }
4249
4250 return drm_debugfs_create_files(i915_debugfs_list,
4251 I915_DEBUGFS_ENTRIES,
4252 minor->debugfs_root, minor);
4253 }
4254
4255 void i915_debugfs_cleanup(struct drm_minor *minor)
4256 {
4257 int i;
4258
4259 drm_debugfs_remove_files(i915_debugfs_list,
4260 I915_DEBUGFS_ENTRIES, minor);
4261
4262 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4263 1, minor);
4264
4265 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4266 struct drm_info_list *info_list =
4267 (struct drm_info_list *)&i915_pipe_crc_data[i];
4268
4269 drm_debugfs_remove_files(info_list, 1, minor);
4270 }
4271
4272 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4273 struct drm_info_list *info_list =
4274 (struct drm_info_list *) i915_debugfs_files[i].fops;
4275
4276 drm_debugfs_remove_files(info_list, 1, minor);
4277 }
4278 }
This page took 0.238231 seconds and 6 git commands to generate.