Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51 return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55 * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 struct dentry *ent,
59 const void *key)
60 {
61 struct drm_info_node *node;
62
63 node = kmalloc(sizeof(*node), GFP_KERNEL);
64 if (node == NULL) {
65 debugfs_remove(ent);
66 return -ENOMEM;
67 }
68
69 node->minor = minor;
70 node->dent = ent;
71 node->info_ent = (void *) key;
72
73 mutex_lock(&minor->debugfs_lock);
74 list_add(&node->list, &minor->debugfs_list);
75 mutex_unlock(&minor->debugfs_lock);
76
77 return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 struct drm_info_node *node = m->private;
83 struct drm_device *dev = node->minor->dev;
84 const struct intel_device_info *info = INTEL_INFO(dev);
85
86 seq_printf(m, "gen: %d\n", info->gen);
87 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94 return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 if (obj->user_pin_count > 0)
100 return "P";
101 else if (i915_gem_obj_is_pinned(obj))
102 return "p";
103 else
104 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109 switch (obj->tiling_mode) {
110 default:
111 case I915_TILING_NONE: return " ";
112 case I915_TILING_X: return "X";
113 case I915_TILING_Y: return "Y";
114 }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119 return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125 struct i915_vma *vma;
126 int pin_count = 0;
127
128 seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129 &obj->base,
130 get_pin_flag(obj),
131 get_tiling_flag(obj),
132 get_global_flag(obj),
133 obj->base.size / 1024,
134 obj->base.read_domains,
135 obj->base.write_domain,
136 obj->last_read_seqno,
137 obj->last_write_seqno,
138 obj->last_fenced_seqno,
139 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
140 obj->dirty ? " dirty" : "",
141 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142 if (obj->base.name)
143 seq_printf(m, " (name: %d)", obj->base.name);
144 list_for_each_entry(vma, &obj->vma_list, vma_link)
145 if (vma->pin_count > 0)
146 pin_count++;
147 seq_printf(m, " (pinned x %d)", pin_count);
148 if (obj->pin_display)
149 seq_printf(m, " (display)");
150 if (obj->fence_reg != I915_FENCE_REG_NONE)
151 seq_printf(m, " (fence: %d)", obj->fence_reg);
152 list_for_each_entry(vma, &obj->vma_list, vma_link) {
153 if (!i915_is_ggtt(vma->vm))
154 seq_puts(m, " (pp");
155 else
156 seq_puts(m, " (g");
157 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158 vma->node.start, vma->node.size);
159 }
160 if (obj->stolen)
161 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162 if (obj->pin_mappable || obj->fault_mappable) {
163 char s[3], *t = s;
164 if (obj->pin_mappable)
165 *t++ = 'p';
166 if (obj->fault_mappable)
167 *t++ = 'f';
168 *t = '\0';
169 seq_printf(m, " (%s mappable)", s);
170 }
171 if (obj->ring != NULL)
172 seq_printf(m, " (%s)", obj->ring->name);
173 if (obj->frontbuffer_bits)
174 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
175 }
176
177 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
178 {
179 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
180 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
181 seq_putc(m, ' ');
182 }
183
184 static int i915_gem_object_list_info(struct seq_file *m, void *data)
185 {
186 struct drm_info_node *node = m->private;
187 uintptr_t list = (uintptr_t) node->info_ent->data;
188 struct list_head *head;
189 struct drm_device *dev = node->minor->dev;
190 struct drm_i915_private *dev_priv = dev->dev_private;
191 struct i915_address_space *vm = &dev_priv->gtt.base;
192 struct i915_vma *vma;
193 size_t total_obj_size, total_gtt_size;
194 int count, ret;
195
196 ret = mutex_lock_interruptible(&dev->struct_mutex);
197 if (ret)
198 return ret;
199
200 /* FIXME: the user of this interface might want more than just GGTT */
201 switch (list) {
202 case ACTIVE_LIST:
203 seq_puts(m, "Active:\n");
204 head = &vm->active_list;
205 break;
206 case INACTIVE_LIST:
207 seq_puts(m, "Inactive:\n");
208 head = &vm->inactive_list;
209 break;
210 default:
211 mutex_unlock(&dev->struct_mutex);
212 return -EINVAL;
213 }
214
215 total_obj_size = total_gtt_size = count = 0;
216 list_for_each_entry(vma, head, mm_list) {
217 seq_printf(m, " ");
218 describe_obj(m, vma->obj);
219 seq_printf(m, "\n");
220 total_obj_size += vma->obj->base.size;
221 total_gtt_size += vma->node.size;
222 count++;
223 }
224 mutex_unlock(&dev->struct_mutex);
225
226 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
227 count, total_obj_size, total_gtt_size);
228 return 0;
229 }
230
231 static int obj_rank_by_stolen(void *priv,
232 struct list_head *A, struct list_head *B)
233 {
234 struct drm_i915_gem_object *a =
235 container_of(A, struct drm_i915_gem_object, obj_exec_link);
236 struct drm_i915_gem_object *b =
237 container_of(B, struct drm_i915_gem_object, obj_exec_link);
238
239 return a->stolen->start - b->stolen->start;
240 }
241
242 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
243 {
244 struct drm_info_node *node = m->private;
245 struct drm_device *dev = node->minor->dev;
246 struct drm_i915_private *dev_priv = dev->dev_private;
247 struct drm_i915_gem_object *obj;
248 size_t total_obj_size, total_gtt_size;
249 LIST_HEAD(stolen);
250 int count, ret;
251
252 ret = mutex_lock_interruptible(&dev->struct_mutex);
253 if (ret)
254 return ret;
255
256 total_obj_size = total_gtt_size = count = 0;
257 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
258 if (obj->stolen == NULL)
259 continue;
260
261 list_add(&obj->obj_exec_link, &stolen);
262
263 total_obj_size += obj->base.size;
264 total_gtt_size += i915_gem_obj_ggtt_size(obj);
265 count++;
266 }
267 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
268 if (obj->stolen == NULL)
269 continue;
270
271 list_add(&obj->obj_exec_link, &stolen);
272
273 total_obj_size += obj->base.size;
274 count++;
275 }
276 list_sort(NULL, &stolen, obj_rank_by_stolen);
277 seq_puts(m, "Stolen:\n");
278 while (!list_empty(&stolen)) {
279 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
280 seq_puts(m, " ");
281 describe_obj(m, obj);
282 seq_putc(m, '\n');
283 list_del_init(&obj->obj_exec_link);
284 }
285 mutex_unlock(&dev->struct_mutex);
286
287 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
288 count, total_obj_size, total_gtt_size);
289 return 0;
290 }
291
292 #define count_objects(list, member) do { \
293 list_for_each_entry(obj, list, member) { \
294 size += i915_gem_obj_ggtt_size(obj); \
295 ++count; \
296 if (obj->map_and_fenceable) { \
297 mappable_size += i915_gem_obj_ggtt_size(obj); \
298 ++mappable_count; \
299 } \
300 } \
301 } while (0)
302
303 struct file_stats {
304 struct drm_i915_file_private *file_priv;
305 int count;
306 size_t total, unbound;
307 size_t global, shared;
308 size_t active, inactive;
309 };
310
311 static int per_file_stats(int id, void *ptr, void *data)
312 {
313 struct drm_i915_gem_object *obj = ptr;
314 struct file_stats *stats = data;
315 struct i915_vma *vma;
316
317 stats->count++;
318 stats->total += obj->base.size;
319
320 if (obj->base.name || obj->base.dma_buf)
321 stats->shared += obj->base.size;
322
323 if (USES_FULL_PPGTT(obj->base.dev)) {
324 list_for_each_entry(vma, &obj->vma_list, vma_link) {
325 struct i915_hw_ppgtt *ppgtt;
326
327 if (!drm_mm_node_allocated(&vma->node))
328 continue;
329
330 if (i915_is_ggtt(vma->vm)) {
331 stats->global += obj->base.size;
332 continue;
333 }
334
335 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
336 if (ppgtt->file_priv != stats->file_priv)
337 continue;
338
339 if (obj->ring) /* XXX per-vma statistic */
340 stats->active += obj->base.size;
341 else
342 stats->inactive += obj->base.size;
343
344 return 0;
345 }
346 } else {
347 if (i915_gem_obj_ggtt_bound(obj)) {
348 stats->global += obj->base.size;
349 if (obj->ring)
350 stats->active += obj->base.size;
351 else
352 stats->inactive += obj->base.size;
353 return 0;
354 }
355 }
356
357 if (!list_empty(&obj->global_list))
358 stats->unbound += obj->base.size;
359
360 return 0;
361 }
362
363 #define count_vmas(list, member) do { \
364 list_for_each_entry(vma, list, member) { \
365 size += i915_gem_obj_ggtt_size(vma->obj); \
366 ++count; \
367 if (vma->obj->map_and_fenceable) { \
368 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
369 ++mappable_count; \
370 } \
371 } \
372 } while (0)
373
374 static int i915_gem_object_info(struct seq_file *m, void* data)
375 {
376 struct drm_info_node *node = m->private;
377 struct drm_device *dev = node->minor->dev;
378 struct drm_i915_private *dev_priv = dev->dev_private;
379 u32 count, mappable_count, purgeable_count;
380 size_t size, mappable_size, purgeable_size;
381 struct drm_i915_gem_object *obj;
382 struct i915_address_space *vm = &dev_priv->gtt.base;
383 struct drm_file *file;
384 struct i915_vma *vma;
385 int ret;
386
387 ret = mutex_lock_interruptible(&dev->struct_mutex);
388 if (ret)
389 return ret;
390
391 seq_printf(m, "%u objects, %zu bytes\n",
392 dev_priv->mm.object_count,
393 dev_priv->mm.object_memory);
394
395 size = count = mappable_size = mappable_count = 0;
396 count_objects(&dev_priv->mm.bound_list, global_list);
397 seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
398 count, mappable_count, size, mappable_size);
399
400 size = count = mappable_size = mappable_count = 0;
401 count_vmas(&vm->active_list, mm_list);
402 seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
403 count, mappable_count, size, mappable_size);
404
405 size = count = mappable_size = mappable_count = 0;
406 count_vmas(&vm->inactive_list, mm_list);
407 seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
408 count, mappable_count, size, mappable_size);
409
410 size = count = purgeable_size = purgeable_count = 0;
411 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
412 size += obj->base.size, ++count;
413 if (obj->madv == I915_MADV_DONTNEED)
414 purgeable_size += obj->base.size, ++purgeable_count;
415 }
416 seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
417
418 size = count = mappable_size = mappable_count = 0;
419 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
420 if (obj->fault_mappable) {
421 size += i915_gem_obj_ggtt_size(obj);
422 ++count;
423 }
424 if (obj->pin_mappable) {
425 mappable_size += i915_gem_obj_ggtt_size(obj);
426 ++mappable_count;
427 }
428 if (obj->madv == I915_MADV_DONTNEED) {
429 purgeable_size += obj->base.size;
430 ++purgeable_count;
431 }
432 }
433 seq_printf(m, "%u purgeable objects, %zu bytes\n",
434 purgeable_count, purgeable_size);
435 seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
436 mappable_count, mappable_size);
437 seq_printf(m, "%u fault mappable objects, %zu bytes\n",
438 count, size);
439
440 seq_printf(m, "%zu [%lu] gtt total\n",
441 dev_priv->gtt.base.total,
442 dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
443
444 seq_putc(m, '\n');
445 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
446 struct file_stats stats;
447 struct task_struct *task;
448
449 memset(&stats, 0, sizeof(stats));
450 stats.file_priv = file->driver_priv;
451 spin_lock(&file->table_lock);
452 idr_for_each(&file->object_idr, per_file_stats, &stats);
453 spin_unlock(&file->table_lock);
454 /*
455 * Although we have a valid reference on file->pid, that does
456 * not guarantee that the task_struct who called get_pid() is
457 * still alive (e.g. get_pid(current) => fork() => exit()).
458 * Therefore, we need to protect this ->comm access using RCU.
459 */
460 rcu_read_lock();
461 task = pid_task(file->pid, PIDTYPE_PID);
462 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
463 task ? task->comm : "<unknown>",
464 stats.count,
465 stats.total,
466 stats.active,
467 stats.inactive,
468 stats.global,
469 stats.shared,
470 stats.unbound);
471 rcu_read_unlock();
472 }
473
474 mutex_unlock(&dev->struct_mutex);
475
476 return 0;
477 }
478
479 static int i915_gem_gtt_info(struct seq_file *m, void *data)
480 {
481 struct drm_info_node *node = m->private;
482 struct drm_device *dev = node->minor->dev;
483 uintptr_t list = (uintptr_t) node->info_ent->data;
484 struct drm_i915_private *dev_priv = dev->dev_private;
485 struct drm_i915_gem_object *obj;
486 size_t total_obj_size, total_gtt_size;
487 int count, ret;
488
489 ret = mutex_lock_interruptible(&dev->struct_mutex);
490 if (ret)
491 return ret;
492
493 total_obj_size = total_gtt_size = count = 0;
494 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
495 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
496 continue;
497
498 seq_puts(m, " ");
499 describe_obj(m, obj);
500 seq_putc(m, '\n');
501 total_obj_size += obj->base.size;
502 total_gtt_size += i915_gem_obj_ggtt_size(obj);
503 count++;
504 }
505
506 mutex_unlock(&dev->struct_mutex);
507
508 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
509 count, total_obj_size, total_gtt_size);
510
511 return 0;
512 }
513
514 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
515 {
516 struct drm_info_node *node = m->private;
517 struct drm_device *dev = node->minor->dev;
518 struct drm_i915_private *dev_priv = dev->dev_private;
519 struct intel_crtc *crtc;
520 int ret;
521
522 ret = mutex_lock_interruptible(&dev->struct_mutex);
523 if (ret)
524 return ret;
525
526 for_each_intel_crtc(dev, crtc) {
527 const char pipe = pipe_name(crtc->pipe);
528 const char plane = plane_name(crtc->plane);
529 struct intel_unpin_work *work;
530
531 spin_lock_irq(&dev->event_lock);
532 work = crtc->unpin_work;
533 if (work == NULL) {
534 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
535 pipe, plane);
536 } else {
537 u32 addr;
538
539 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
540 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
541 pipe, plane);
542 } else {
543 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
544 pipe, plane);
545 }
546 if (work->flip_queued_ring) {
547 seq_printf(m, "Flip queued on %s at seqno %u, next seqno %u [current breadcrumb %u], completed? %d\n",
548 work->flip_queued_ring->name,
549 work->flip_queued_seqno,
550 dev_priv->next_seqno,
551 work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
552 i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
553 work->flip_queued_seqno));
554 } else
555 seq_printf(m, "Flip not associated with any ring\n");
556 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
557 work->flip_queued_vblank,
558 work->flip_ready_vblank,
559 drm_vblank_count(dev, crtc->pipe));
560 if (work->enable_stall_check)
561 seq_puts(m, "Stall check enabled, ");
562 else
563 seq_puts(m, "Stall check waiting for page flip ioctl, ");
564 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
565
566 if (INTEL_INFO(dev)->gen >= 4)
567 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
568 else
569 addr = I915_READ(DSPADDR(crtc->plane));
570 seq_printf(m, "Current scanout address 0x%08x\n", addr);
571
572 if (work->pending_flip_obj) {
573 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
574 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
575 }
576 }
577 spin_unlock_irq(&dev->event_lock);
578 }
579
580 mutex_unlock(&dev->struct_mutex);
581
582 return 0;
583 }
584
585 static int i915_gem_request_info(struct seq_file *m, void *data)
586 {
587 struct drm_info_node *node = m->private;
588 struct drm_device *dev = node->minor->dev;
589 struct drm_i915_private *dev_priv = dev->dev_private;
590 struct intel_engine_cs *ring;
591 struct drm_i915_gem_request *gem_request;
592 int ret, count, i;
593
594 ret = mutex_lock_interruptible(&dev->struct_mutex);
595 if (ret)
596 return ret;
597
598 count = 0;
599 for_each_ring(ring, dev_priv, i) {
600 if (list_empty(&ring->request_list))
601 continue;
602
603 seq_printf(m, "%s requests:\n", ring->name);
604 list_for_each_entry(gem_request,
605 &ring->request_list,
606 list) {
607 seq_printf(m, " %d @ %d\n",
608 gem_request->seqno,
609 (int) (jiffies - gem_request->emitted_jiffies));
610 }
611 count++;
612 }
613 mutex_unlock(&dev->struct_mutex);
614
615 if (count == 0)
616 seq_puts(m, "No requests\n");
617
618 return 0;
619 }
620
621 static void i915_ring_seqno_info(struct seq_file *m,
622 struct intel_engine_cs *ring)
623 {
624 if (ring->get_seqno) {
625 seq_printf(m, "Current sequence (%s): %u\n",
626 ring->name, ring->get_seqno(ring, false));
627 }
628 }
629
630 static int i915_gem_seqno_info(struct seq_file *m, void *data)
631 {
632 struct drm_info_node *node = m->private;
633 struct drm_device *dev = node->minor->dev;
634 struct drm_i915_private *dev_priv = dev->dev_private;
635 struct intel_engine_cs *ring;
636 int ret, i;
637
638 ret = mutex_lock_interruptible(&dev->struct_mutex);
639 if (ret)
640 return ret;
641 intel_runtime_pm_get(dev_priv);
642
643 for_each_ring(ring, dev_priv, i)
644 i915_ring_seqno_info(m, ring);
645
646 intel_runtime_pm_put(dev_priv);
647 mutex_unlock(&dev->struct_mutex);
648
649 return 0;
650 }
651
652
653 static int i915_interrupt_info(struct seq_file *m, void *data)
654 {
655 struct drm_info_node *node = m->private;
656 struct drm_device *dev = node->minor->dev;
657 struct drm_i915_private *dev_priv = dev->dev_private;
658 struct intel_engine_cs *ring;
659 int ret, i, pipe;
660
661 ret = mutex_lock_interruptible(&dev->struct_mutex);
662 if (ret)
663 return ret;
664 intel_runtime_pm_get(dev_priv);
665
666 if (IS_CHERRYVIEW(dev)) {
667 seq_printf(m, "Master Interrupt Control:\t%08x\n",
668 I915_READ(GEN8_MASTER_IRQ));
669
670 seq_printf(m, "Display IER:\t%08x\n",
671 I915_READ(VLV_IER));
672 seq_printf(m, "Display IIR:\t%08x\n",
673 I915_READ(VLV_IIR));
674 seq_printf(m, "Display IIR_RW:\t%08x\n",
675 I915_READ(VLV_IIR_RW));
676 seq_printf(m, "Display IMR:\t%08x\n",
677 I915_READ(VLV_IMR));
678 for_each_pipe(dev_priv, pipe)
679 seq_printf(m, "Pipe %c stat:\t%08x\n",
680 pipe_name(pipe),
681 I915_READ(PIPESTAT(pipe)));
682
683 seq_printf(m, "Port hotplug:\t%08x\n",
684 I915_READ(PORT_HOTPLUG_EN));
685 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
686 I915_READ(VLV_DPFLIPSTAT));
687 seq_printf(m, "DPINVGTT:\t%08x\n",
688 I915_READ(DPINVGTT));
689
690 for (i = 0; i < 4; i++) {
691 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
692 i, I915_READ(GEN8_GT_IMR(i)));
693 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
694 i, I915_READ(GEN8_GT_IIR(i)));
695 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
696 i, I915_READ(GEN8_GT_IER(i)));
697 }
698
699 seq_printf(m, "PCU interrupt mask:\t%08x\n",
700 I915_READ(GEN8_PCU_IMR));
701 seq_printf(m, "PCU interrupt identity:\t%08x\n",
702 I915_READ(GEN8_PCU_IIR));
703 seq_printf(m, "PCU interrupt enable:\t%08x\n",
704 I915_READ(GEN8_PCU_IER));
705 } else if (INTEL_INFO(dev)->gen >= 8) {
706 seq_printf(m, "Master Interrupt Control:\t%08x\n",
707 I915_READ(GEN8_MASTER_IRQ));
708
709 for (i = 0; i < 4; i++) {
710 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
711 i, I915_READ(GEN8_GT_IMR(i)));
712 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
713 i, I915_READ(GEN8_GT_IIR(i)));
714 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
715 i, I915_READ(GEN8_GT_IER(i)));
716 }
717
718 for_each_pipe(dev_priv, pipe) {
719 if (!intel_display_power_is_enabled(dev_priv,
720 POWER_DOMAIN_PIPE(pipe))) {
721 seq_printf(m, "Pipe %c power disabled\n",
722 pipe_name(pipe));
723 continue;
724 }
725 seq_printf(m, "Pipe %c IMR:\t%08x\n",
726 pipe_name(pipe),
727 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
728 seq_printf(m, "Pipe %c IIR:\t%08x\n",
729 pipe_name(pipe),
730 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
731 seq_printf(m, "Pipe %c IER:\t%08x\n",
732 pipe_name(pipe),
733 I915_READ(GEN8_DE_PIPE_IER(pipe)));
734 }
735
736 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
737 I915_READ(GEN8_DE_PORT_IMR));
738 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
739 I915_READ(GEN8_DE_PORT_IIR));
740 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
741 I915_READ(GEN8_DE_PORT_IER));
742
743 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
744 I915_READ(GEN8_DE_MISC_IMR));
745 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
746 I915_READ(GEN8_DE_MISC_IIR));
747 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
748 I915_READ(GEN8_DE_MISC_IER));
749
750 seq_printf(m, "PCU interrupt mask:\t%08x\n",
751 I915_READ(GEN8_PCU_IMR));
752 seq_printf(m, "PCU interrupt identity:\t%08x\n",
753 I915_READ(GEN8_PCU_IIR));
754 seq_printf(m, "PCU interrupt enable:\t%08x\n",
755 I915_READ(GEN8_PCU_IER));
756 } else if (IS_VALLEYVIEW(dev)) {
757 seq_printf(m, "Display IER:\t%08x\n",
758 I915_READ(VLV_IER));
759 seq_printf(m, "Display IIR:\t%08x\n",
760 I915_READ(VLV_IIR));
761 seq_printf(m, "Display IIR_RW:\t%08x\n",
762 I915_READ(VLV_IIR_RW));
763 seq_printf(m, "Display IMR:\t%08x\n",
764 I915_READ(VLV_IMR));
765 for_each_pipe(dev_priv, pipe)
766 seq_printf(m, "Pipe %c stat:\t%08x\n",
767 pipe_name(pipe),
768 I915_READ(PIPESTAT(pipe)));
769
770 seq_printf(m, "Master IER:\t%08x\n",
771 I915_READ(VLV_MASTER_IER));
772
773 seq_printf(m, "Render IER:\t%08x\n",
774 I915_READ(GTIER));
775 seq_printf(m, "Render IIR:\t%08x\n",
776 I915_READ(GTIIR));
777 seq_printf(m, "Render IMR:\t%08x\n",
778 I915_READ(GTIMR));
779
780 seq_printf(m, "PM IER:\t\t%08x\n",
781 I915_READ(GEN6_PMIER));
782 seq_printf(m, "PM IIR:\t\t%08x\n",
783 I915_READ(GEN6_PMIIR));
784 seq_printf(m, "PM IMR:\t\t%08x\n",
785 I915_READ(GEN6_PMIMR));
786
787 seq_printf(m, "Port hotplug:\t%08x\n",
788 I915_READ(PORT_HOTPLUG_EN));
789 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
790 I915_READ(VLV_DPFLIPSTAT));
791 seq_printf(m, "DPINVGTT:\t%08x\n",
792 I915_READ(DPINVGTT));
793
794 } else if (!HAS_PCH_SPLIT(dev)) {
795 seq_printf(m, "Interrupt enable: %08x\n",
796 I915_READ(IER));
797 seq_printf(m, "Interrupt identity: %08x\n",
798 I915_READ(IIR));
799 seq_printf(m, "Interrupt mask: %08x\n",
800 I915_READ(IMR));
801 for_each_pipe(dev_priv, pipe)
802 seq_printf(m, "Pipe %c stat: %08x\n",
803 pipe_name(pipe),
804 I915_READ(PIPESTAT(pipe)));
805 } else {
806 seq_printf(m, "North Display Interrupt enable: %08x\n",
807 I915_READ(DEIER));
808 seq_printf(m, "North Display Interrupt identity: %08x\n",
809 I915_READ(DEIIR));
810 seq_printf(m, "North Display Interrupt mask: %08x\n",
811 I915_READ(DEIMR));
812 seq_printf(m, "South Display Interrupt enable: %08x\n",
813 I915_READ(SDEIER));
814 seq_printf(m, "South Display Interrupt identity: %08x\n",
815 I915_READ(SDEIIR));
816 seq_printf(m, "South Display Interrupt mask: %08x\n",
817 I915_READ(SDEIMR));
818 seq_printf(m, "Graphics Interrupt enable: %08x\n",
819 I915_READ(GTIER));
820 seq_printf(m, "Graphics Interrupt identity: %08x\n",
821 I915_READ(GTIIR));
822 seq_printf(m, "Graphics Interrupt mask: %08x\n",
823 I915_READ(GTIMR));
824 }
825 for_each_ring(ring, dev_priv, i) {
826 if (INTEL_INFO(dev)->gen >= 6) {
827 seq_printf(m,
828 "Graphics Interrupt mask (%s): %08x\n",
829 ring->name, I915_READ_IMR(ring));
830 }
831 i915_ring_seqno_info(m, ring);
832 }
833 intel_runtime_pm_put(dev_priv);
834 mutex_unlock(&dev->struct_mutex);
835
836 return 0;
837 }
838
839 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
840 {
841 struct drm_info_node *node = m->private;
842 struct drm_device *dev = node->minor->dev;
843 struct drm_i915_private *dev_priv = dev->dev_private;
844 int i, ret;
845
846 ret = mutex_lock_interruptible(&dev->struct_mutex);
847 if (ret)
848 return ret;
849
850 seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
851 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
852 for (i = 0; i < dev_priv->num_fence_regs; i++) {
853 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
854
855 seq_printf(m, "Fence %d, pin count = %d, object = ",
856 i, dev_priv->fence_regs[i].pin_count);
857 if (obj == NULL)
858 seq_puts(m, "unused");
859 else
860 describe_obj(m, obj);
861 seq_putc(m, '\n');
862 }
863
864 mutex_unlock(&dev->struct_mutex);
865 return 0;
866 }
867
868 static int i915_hws_info(struct seq_file *m, void *data)
869 {
870 struct drm_info_node *node = m->private;
871 struct drm_device *dev = node->minor->dev;
872 struct drm_i915_private *dev_priv = dev->dev_private;
873 struct intel_engine_cs *ring;
874 const u32 *hws;
875 int i;
876
877 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
878 hws = ring->status_page.page_addr;
879 if (hws == NULL)
880 return 0;
881
882 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
883 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
884 i * 4,
885 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
886 }
887 return 0;
888 }
889
890 static ssize_t
891 i915_error_state_write(struct file *filp,
892 const char __user *ubuf,
893 size_t cnt,
894 loff_t *ppos)
895 {
896 struct i915_error_state_file_priv *error_priv = filp->private_data;
897 struct drm_device *dev = error_priv->dev;
898 int ret;
899
900 DRM_DEBUG_DRIVER("Resetting error state\n");
901
902 ret = mutex_lock_interruptible(&dev->struct_mutex);
903 if (ret)
904 return ret;
905
906 i915_destroy_error_state(dev);
907 mutex_unlock(&dev->struct_mutex);
908
909 return cnt;
910 }
911
912 static int i915_error_state_open(struct inode *inode, struct file *file)
913 {
914 struct drm_device *dev = inode->i_private;
915 struct i915_error_state_file_priv *error_priv;
916
917 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
918 if (!error_priv)
919 return -ENOMEM;
920
921 error_priv->dev = dev;
922
923 i915_error_state_get(dev, error_priv);
924
925 file->private_data = error_priv;
926
927 return 0;
928 }
929
930 static int i915_error_state_release(struct inode *inode, struct file *file)
931 {
932 struct i915_error_state_file_priv *error_priv = file->private_data;
933
934 i915_error_state_put(error_priv);
935 kfree(error_priv);
936
937 return 0;
938 }
939
940 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
941 size_t count, loff_t *pos)
942 {
943 struct i915_error_state_file_priv *error_priv = file->private_data;
944 struct drm_i915_error_state_buf error_str;
945 loff_t tmp_pos = 0;
946 ssize_t ret_count = 0;
947 int ret;
948
949 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
950 if (ret)
951 return ret;
952
953 ret = i915_error_state_to_str(&error_str, error_priv);
954 if (ret)
955 goto out;
956
957 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
958 error_str.buf,
959 error_str.bytes);
960
961 if (ret_count < 0)
962 ret = ret_count;
963 else
964 *pos = error_str.start + ret_count;
965 out:
966 i915_error_state_buf_release(&error_str);
967 return ret ?: ret_count;
968 }
969
970 static const struct file_operations i915_error_state_fops = {
971 .owner = THIS_MODULE,
972 .open = i915_error_state_open,
973 .read = i915_error_state_read,
974 .write = i915_error_state_write,
975 .llseek = default_llseek,
976 .release = i915_error_state_release,
977 };
978
979 static int
980 i915_next_seqno_get(void *data, u64 *val)
981 {
982 struct drm_device *dev = data;
983 struct drm_i915_private *dev_priv = dev->dev_private;
984 int ret;
985
986 ret = mutex_lock_interruptible(&dev->struct_mutex);
987 if (ret)
988 return ret;
989
990 *val = dev_priv->next_seqno;
991 mutex_unlock(&dev->struct_mutex);
992
993 return 0;
994 }
995
996 static int
997 i915_next_seqno_set(void *data, u64 val)
998 {
999 struct drm_device *dev = data;
1000 int ret;
1001
1002 ret = mutex_lock_interruptible(&dev->struct_mutex);
1003 if (ret)
1004 return ret;
1005
1006 ret = i915_gem_set_seqno(dev, val);
1007 mutex_unlock(&dev->struct_mutex);
1008
1009 return ret;
1010 }
1011
1012 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1013 i915_next_seqno_get, i915_next_seqno_set,
1014 "0x%llx\n");
1015
1016 static int i915_frequency_info(struct seq_file *m, void *unused)
1017 {
1018 struct drm_info_node *node = m->private;
1019 struct drm_device *dev = node->minor->dev;
1020 struct drm_i915_private *dev_priv = dev->dev_private;
1021 int ret = 0;
1022
1023 intel_runtime_pm_get(dev_priv);
1024
1025 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1026
1027 if (IS_GEN5(dev)) {
1028 u16 rgvswctl = I915_READ16(MEMSWCTL);
1029 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1030
1031 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1032 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1033 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1034 MEMSTAT_VID_SHIFT);
1035 seq_printf(m, "Current P-state: %d\n",
1036 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1037 } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1038 IS_BROADWELL(dev)) {
1039 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1040 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1041 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1042 u32 rpmodectl, rpinclimit, rpdeclimit;
1043 u32 rpstat, cagf, reqf;
1044 u32 rpupei, rpcurup, rpprevup;
1045 u32 rpdownei, rpcurdown, rpprevdown;
1046 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1047 int max_freq;
1048
1049 /* RPSTAT1 is in the GT power well */
1050 ret = mutex_lock_interruptible(&dev->struct_mutex);
1051 if (ret)
1052 goto out;
1053
1054 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1055
1056 reqf = I915_READ(GEN6_RPNSWREQ);
1057 reqf &= ~GEN6_TURBO_DISABLE;
1058 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1059 reqf >>= 24;
1060 else
1061 reqf >>= 25;
1062 reqf *= GT_FREQUENCY_MULTIPLIER;
1063
1064 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1065 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1066 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1067
1068 rpstat = I915_READ(GEN6_RPSTAT1);
1069 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1070 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1071 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1072 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1073 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1074 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1075 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1076 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1077 else
1078 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1079 cagf *= GT_FREQUENCY_MULTIPLIER;
1080
1081 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1082 mutex_unlock(&dev->struct_mutex);
1083
1084 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1085 pm_ier = I915_READ(GEN6_PMIER);
1086 pm_imr = I915_READ(GEN6_PMIMR);
1087 pm_isr = I915_READ(GEN6_PMISR);
1088 pm_iir = I915_READ(GEN6_PMIIR);
1089 pm_mask = I915_READ(GEN6_PMINTRMSK);
1090 } else {
1091 pm_ier = I915_READ(GEN8_GT_IER(2));
1092 pm_imr = I915_READ(GEN8_GT_IMR(2));
1093 pm_isr = I915_READ(GEN8_GT_ISR(2));
1094 pm_iir = I915_READ(GEN8_GT_IIR(2));
1095 pm_mask = I915_READ(GEN6_PMINTRMSK);
1096 }
1097 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1098 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1099 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1100 seq_printf(m, "Render p-state ratio: %d\n",
1101 (gt_perf_status & 0xff00) >> 8);
1102 seq_printf(m, "Render p-state VID: %d\n",
1103 gt_perf_status & 0xff);
1104 seq_printf(m, "Render p-state limit: %d\n",
1105 rp_state_limits & 0xff);
1106 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1107 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1108 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1109 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1110 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1111 seq_printf(m, "CAGF: %dMHz\n", cagf);
1112 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1113 GEN6_CURICONT_MASK);
1114 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1115 GEN6_CURBSYTAVG_MASK);
1116 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1117 GEN6_CURBSYTAVG_MASK);
1118 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1119 GEN6_CURIAVG_MASK);
1120 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1121 GEN6_CURBSYTAVG_MASK);
1122 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1123 GEN6_CURBSYTAVG_MASK);
1124
1125 max_freq = (rp_state_cap & 0xff0000) >> 16;
1126 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1127 max_freq * GT_FREQUENCY_MULTIPLIER);
1128
1129 max_freq = (rp_state_cap & 0xff00) >> 8;
1130 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1131 max_freq * GT_FREQUENCY_MULTIPLIER);
1132
1133 max_freq = rp_state_cap & 0xff;
1134 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1135 max_freq * GT_FREQUENCY_MULTIPLIER);
1136
1137 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1138 dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1139 } else if (IS_VALLEYVIEW(dev)) {
1140 u32 freq_sts;
1141
1142 mutex_lock(&dev_priv->rps.hw_lock);
1143 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1144 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1145 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1146
1147 seq_printf(m, "max GPU freq: %d MHz\n",
1148 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1149
1150 seq_printf(m, "min GPU freq: %d MHz\n",
1151 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1152
1153 seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
1154 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1155
1156 seq_printf(m, "current GPU freq: %d MHz\n",
1157 vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1158 mutex_unlock(&dev_priv->rps.hw_lock);
1159 } else {
1160 seq_puts(m, "no P-state info available\n");
1161 }
1162
1163 out:
1164 intel_runtime_pm_put(dev_priv);
1165 return ret;
1166 }
1167
1168 static int ironlake_drpc_info(struct seq_file *m)
1169 {
1170 struct drm_info_node *node = m->private;
1171 struct drm_device *dev = node->minor->dev;
1172 struct drm_i915_private *dev_priv = dev->dev_private;
1173 u32 rgvmodectl, rstdbyctl;
1174 u16 crstandvid;
1175 int ret;
1176
1177 ret = mutex_lock_interruptible(&dev->struct_mutex);
1178 if (ret)
1179 return ret;
1180 intel_runtime_pm_get(dev_priv);
1181
1182 rgvmodectl = I915_READ(MEMMODECTL);
1183 rstdbyctl = I915_READ(RSTDBYCTL);
1184 crstandvid = I915_READ16(CRSTANDVID);
1185
1186 intel_runtime_pm_put(dev_priv);
1187 mutex_unlock(&dev->struct_mutex);
1188
1189 seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1190 "yes" : "no");
1191 seq_printf(m, "Boost freq: %d\n",
1192 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1193 MEMMODE_BOOST_FREQ_SHIFT);
1194 seq_printf(m, "HW control enabled: %s\n",
1195 rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1196 seq_printf(m, "SW control enabled: %s\n",
1197 rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1198 seq_printf(m, "Gated voltage change: %s\n",
1199 rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1200 seq_printf(m, "Starting frequency: P%d\n",
1201 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1202 seq_printf(m, "Max P-state: P%d\n",
1203 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1204 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1205 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1206 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1207 seq_printf(m, "Render standby enabled: %s\n",
1208 (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1209 seq_puts(m, "Current RS state: ");
1210 switch (rstdbyctl & RSX_STATUS_MASK) {
1211 case RSX_STATUS_ON:
1212 seq_puts(m, "on\n");
1213 break;
1214 case RSX_STATUS_RC1:
1215 seq_puts(m, "RC1\n");
1216 break;
1217 case RSX_STATUS_RC1E:
1218 seq_puts(m, "RC1E\n");
1219 break;
1220 case RSX_STATUS_RS1:
1221 seq_puts(m, "RS1\n");
1222 break;
1223 case RSX_STATUS_RS2:
1224 seq_puts(m, "RS2 (RC6)\n");
1225 break;
1226 case RSX_STATUS_RS3:
1227 seq_puts(m, "RC3 (RC6+)\n");
1228 break;
1229 default:
1230 seq_puts(m, "unknown\n");
1231 break;
1232 }
1233
1234 return 0;
1235 }
1236
1237 static int vlv_drpc_info(struct seq_file *m)
1238 {
1239
1240 struct drm_info_node *node = m->private;
1241 struct drm_device *dev = node->minor->dev;
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 u32 rpmodectl1, rcctl1, pw_status;
1244 unsigned fw_rendercount = 0, fw_mediacount = 0;
1245
1246 intel_runtime_pm_get(dev_priv);
1247
1248 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1249 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1250 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1251
1252 intel_runtime_pm_put(dev_priv);
1253
1254 seq_printf(m, "Video Turbo Mode: %s\n",
1255 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1256 seq_printf(m, "Turbo enabled: %s\n",
1257 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1258 seq_printf(m, "HW control enabled: %s\n",
1259 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1260 seq_printf(m, "SW control enabled: %s\n",
1261 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1262 GEN6_RP_MEDIA_SW_MODE));
1263 seq_printf(m, "RC6 Enabled: %s\n",
1264 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1265 GEN6_RC_CTL_EI_MODE(1))));
1266 seq_printf(m, "Render Power Well: %s\n",
1267 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1268 seq_printf(m, "Media Power Well: %s\n",
1269 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1270
1271 seq_printf(m, "Render RC6 residency since boot: %u\n",
1272 I915_READ(VLV_GT_RENDER_RC6));
1273 seq_printf(m, "Media RC6 residency since boot: %u\n",
1274 I915_READ(VLV_GT_MEDIA_RC6));
1275
1276 spin_lock_irq(&dev_priv->uncore.lock);
1277 fw_rendercount = dev_priv->uncore.fw_rendercount;
1278 fw_mediacount = dev_priv->uncore.fw_mediacount;
1279 spin_unlock_irq(&dev_priv->uncore.lock);
1280
1281 seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1282 seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1283
1284
1285 return 0;
1286 }
1287
1288
1289 static int gen6_drpc_info(struct seq_file *m)
1290 {
1291
1292 struct drm_info_node *node = m->private;
1293 struct drm_device *dev = node->minor->dev;
1294 struct drm_i915_private *dev_priv = dev->dev_private;
1295 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1296 unsigned forcewake_count;
1297 int count = 0, ret;
1298
1299 ret = mutex_lock_interruptible(&dev->struct_mutex);
1300 if (ret)
1301 return ret;
1302 intel_runtime_pm_get(dev_priv);
1303
1304 spin_lock_irq(&dev_priv->uncore.lock);
1305 forcewake_count = dev_priv->uncore.forcewake_count;
1306 spin_unlock_irq(&dev_priv->uncore.lock);
1307
1308 if (forcewake_count) {
1309 seq_puts(m, "RC information inaccurate because somebody "
1310 "holds a forcewake reference \n");
1311 } else {
1312 /* NB: we cannot use forcewake, else we read the wrong values */
1313 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1314 udelay(10);
1315 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1316 }
1317
1318 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1319 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1320
1321 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1322 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1323 mutex_unlock(&dev->struct_mutex);
1324 mutex_lock(&dev_priv->rps.hw_lock);
1325 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1326 mutex_unlock(&dev_priv->rps.hw_lock);
1327
1328 intel_runtime_pm_put(dev_priv);
1329
1330 seq_printf(m, "Video Turbo Mode: %s\n",
1331 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1332 seq_printf(m, "HW control enabled: %s\n",
1333 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1334 seq_printf(m, "SW control enabled: %s\n",
1335 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1336 GEN6_RP_MEDIA_SW_MODE));
1337 seq_printf(m, "RC1e Enabled: %s\n",
1338 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1339 seq_printf(m, "RC6 Enabled: %s\n",
1340 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1341 seq_printf(m, "Deep RC6 Enabled: %s\n",
1342 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1343 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1344 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1345 seq_puts(m, "Current RC state: ");
1346 switch (gt_core_status & GEN6_RCn_MASK) {
1347 case GEN6_RC0:
1348 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1349 seq_puts(m, "Core Power Down\n");
1350 else
1351 seq_puts(m, "on\n");
1352 break;
1353 case GEN6_RC3:
1354 seq_puts(m, "RC3\n");
1355 break;
1356 case GEN6_RC6:
1357 seq_puts(m, "RC6\n");
1358 break;
1359 case GEN6_RC7:
1360 seq_puts(m, "RC7\n");
1361 break;
1362 default:
1363 seq_puts(m, "Unknown\n");
1364 break;
1365 }
1366
1367 seq_printf(m, "Core Power Down: %s\n",
1368 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1369
1370 /* Not exactly sure what this is */
1371 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1372 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1373 seq_printf(m, "RC6 residency since boot: %u\n",
1374 I915_READ(GEN6_GT_GFX_RC6));
1375 seq_printf(m, "RC6+ residency since boot: %u\n",
1376 I915_READ(GEN6_GT_GFX_RC6p));
1377 seq_printf(m, "RC6++ residency since boot: %u\n",
1378 I915_READ(GEN6_GT_GFX_RC6pp));
1379
1380 seq_printf(m, "RC6 voltage: %dmV\n",
1381 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1382 seq_printf(m, "RC6+ voltage: %dmV\n",
1383 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1384 seq_printf(m, "RC6++ voltage: %dmV\n",
1385 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1386 return 0;
1387 }
1388
1389 static int i915_drpc_info(struct seq_file *m, void *unused)
1390 {
1391 struct drm_info_node *node = m->private;
1392 struct drm_device *dev = node->minor->dev;
1393
1394 if (IS_VALLEYVIEW(dev))
1395 return vlv_drpc_info(m);
1396 else if (INTEL_INFO(dev)->gen >= 6)
1397 return gen6_drpc_info(m);
1398 else
1399 return ironlake_drpc_info(m);
1400 }
1401
1402 static int i915_fbc_status(struct seq_file *m, void *unused)
1403 {
1404 struct drm_info_node *node = m->private;
1405 struct drm_device *dev = node->minor->dev;
1406 struct drm_i915_private *dev_priv = dev->dev_private;
1407
1408 if (!HAS_FBC(dev)) {
1409 seq_puts(m, "FBC unsupported on this chipset\n");
1410 return 0;
1411 }
1412
1413 intel_runtime_pm_get(dev_priv);
1414
1415 if (intel_fbc_enabled(dev)) {
1416 seq_puts(m, "FBC enabled\n");
1417 } else {
1418 seq_puts(m, "FBC disabled: ");
1419 switch (dev_priv->fbc.no_fbc_reason) {
1420 case FBC_OK:
1421 seq_puts(m, "FBC actived, but currently disabled in hardware");
1422 break;
1423 case FBC_UNSUPPORTED:
1424 seq_puts(m, "unsupported by this chipset");
1425 break;
1426 case FBC_NO_OUTPUT:
1427 seq_puts(m, "no outputs");
1428 break;
1429 case FBC_STOLEN_TOO_SMALL:
1430 seq_puts(m, "not enough stolen memory");
1431 break;
1432 case FBC_UNSUPPORTED_MODE:
1433 seq_puts(m, "mode not supported");
1434 break;
1435 case FBC_MODE_TOO_LARGE:
1436 seq_puts(m, "mode too large");
1437 break;
1438 case FBC_BAD_PLANE:
1439 seq_puts(m, "FBC unsupported on plane");
1440 break;
1441 case FBC_NOT_TILED:
1442 seq_puts(m, "scanout buffer not tiled");
1443 break;
1444 case FBC_MULTIPLE_PIPES:
1445 seq_puts(m, "multiple pipes are enabled");
1446 break;
1447 case FBC_MODULE_PARAM:
1448 seq_puts(m, "disabled per module param (default off)");
1449 break;
1450 case FBC_CHIP_DEFAULT:
1451 seq_puts(m, "disabled per chip default");
1452 break;
1453 default:
1454 seq_puts(m, "unknown reason");
1455 }
1456 seq_putc(m, '\n');
1457 }
1458
1459 intel_runtime_pm_put(dev_priv);
1460
1461 return 0;
1462 }
1463
1464 static int i915_fbc_fc_get(void *data, u64 *val)
1465 {
1466 struct drm_device *dev = data;
1467 struct drm_i915_private *dev_priv = dev->dev_private;
1468
1469 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1470 return -ENODEV;
1471
1472 drm_modeset_lock_all(dev);
1473 *val = dev_priv->fbc.false_color;
1474 drm_modeset_unlock_all(dev);
1475
1476 return 0;
1477 }
1478
1479 static int i915_fbc_fc_set(void *data, u64 val)
1480 {
1481 struct drm_device *dev = data;
1482 struct drm_i915_private *dev_priv = dev->dev_private;
1483 u32 reg;
1484
1485 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1486 return -ENODEV;
1487
1488 drm_modeset_lock_all(dev);
1489
1490 reg = I915_READ(ILK_DPFC_CONTROL);
1491 dev_priv->fbc.false_color = val;
1492
1493 I915_WRITE(ILK_DPFC_CONTROL, val ?
1494 (reg | FBC_CTL_FALSE_COLOR) :
1495 (reg & ~FBC_CTL_FALSE_COLOR));
1496
1497 drm_modeset_unlock_all(dev);
1498 return 0;
1499 }
1500
1501 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1502 i915_fbc_fc_get, i915_fbc_fc_set,
1503 "%llu\n");
1504
1505 static int i915_ips_status(struct seq_file *m, void *unused)
1506 {
1507 struct drm_info_node *node = m->private;
1508 struct drm_device *dev = node->minor->dev;
1509 struct drm_i915_private *dev_priv = dev->dev_private;
1510
1511 if (!HAS_IPS(dev)) {
1512 seq_puts(m, "not supported\n");
1513 return 0;
1514 }
1515
1516 intel_runtime_pm_get(dev_priv);
1517
1518 seq_printf(m, "Enabled by kernel parameter: %s\n",
1519 yesno(i915.enable_ips));
1520
1521 if (INTEL_INFO(dev)->gen >= 8) {
1522 seq_puts(m, "Currently: unknown\n");
1523 } else {
1524 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1525 seq_puts(m, "Currently: enabled\n");
1526 else
1527 seq_puts(m, "Currently: disabled\n");
1528 }
1529
1530 intel_runtime_pm_put(dev_priv);
1531
1532 return 0;
1533 }
1534
1535 static int i915_sr_status(struct seq_file *m, void *unused)
1536 {
1537 struct drm_info_node *node = m->private;
1538 struct drm_device *dev = node->minor->dev;
1539 struct drm_i915_private *dev_priv = dev->dev_private;
1540 bool sr_enabled = false;
1541
1542 intel_runtime_pm_get(dev_priv);
1543
1544 if (HAS_PCH_SPLIT(dev))
1545 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1546 else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1547 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1548 else if (IS_I915GM(dev))
1549 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1550 else if (IS_PINEVIEW(dev))
1551 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1552
1553 intel_runtime_pm_put(dev_priv);
1554
1555 seq_printf(m, "self-refresh: %s\n",
1556 sr_enabled ? "enabled" : "disabled");
1557
1558 return 0;
1559 }
1560
1561 static int i915_emon_status(struct seq_file *m, void *unused)
1562 {
1563 struct drm_info_node *node = m->private;
1564 struct drm_device *dev = node->minor->dev;
1565 struct drm_i915_private *dev_priv = dev->dev_private;
1566 unsigned long temp, chipset, gfx;
1567 int ret;
1568
1569 if (!IS_GEN5(dev))
1570 return -ENODEV;
1571
1572 ret = mutex_lock_interruptible(&dev->struct_mutex);
1573 if (ret)
1574 return ret;
1575
1576 temp = i915_mch_val(dev_priv);
1577 chipset = i915_chipset_val(dev_priv);
1578 gfx = i915_gfx_val(dev_priv);
1579 mutex_unlock(&dev->struct_mutex);
1580
1581 seq_printf(m, "GMCH temp: %ld\n", temp);
1582 seq_printf(m, "Chipset power: %ld\n", chipset);
1583 seq_printf(m, "GFX power: %ld\n", gfx);
1584 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1585
1586 return 0;
1587 }
1588
1589 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1590 {
1591 struct drm_info_node *node = m->private;
1592 struct drm_device *dev = node->minor->dev;
1593 struct drm_i915_private *dev_priv = dev->dev_private;
1594 int ret = 0;
1595 int gpu_freq, ia_freq;
1596
1597 if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1598 seq_puts(m, "unsupported on this chipset\n");
1599 return 0;
1600 }
1601
1602 intel_runtime_pm_get(dev_priv);
1603
1604 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1605
1606 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1607 if (ret)
1608 goto out;
1609
1610 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1611
1612 for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1613 gpu_freq <= dev_priv->rps.max_freq_softlimit;
1614 gpu_freq++) {
1615 ia_freq = gpu_freq;
1616 sandybridge_pcode_read(dev_priv,
1617 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1618 &ia_freq);
1619 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1620 gpu_freq * GT_FREQUENCY_MULTIPLIER,
1621 ((ia_freq >> 0) & 0xff) * 100,
1622 ((ia_freq >> 8) & 0xff) * 100);
1623 }
1624
1625 mutex_unlock(&dev_priv->rps.hw_lock);
1626
1627 out:
1628 intel_runtime_pm_put(dev_priv);
1629 return ret;
1630 }
1631
1632 static int i915_opregion(struct seq_file *m, void *unused)
1633 {
1634 struct drm_info_node *node = m->private;
1635 struct drm_device *dev = node->minor->dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 struct intel_opregion *opregion = &dev_priv->opregion;
1638 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1639 int ret;
1640
1641 if (data == NULL)
1642 return -ENOMEM;
1643
1644 ret = mutex_lock_interruptible(&dev->struct_mutex);
1645 if (ret)
1646 goto out;
1647
1648 if (opregion->header) {
1649 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1650 seq_write(m, data, OPREGION_SIZE);
1651 }
1652
1653 mutex_unlock(&dev->struct_mutex);
1654
1655 out:
1656 kfree(data);
1657 return 0;
1658 }
1659
1660 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1661 {
1662 struct drm_info_node *node = m->private;
1663 struct drm_device *dev = node->minor->dev;
1664 struct intel_fbdev *ifbdev = NULL;
1665 struct intel_framebuffer *fb;
1666
1667 #ifdef CONFIG_DRM_I915_FBDEV
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669
1670 ifbdev = dev_priv->fbdev;
1671 fb = to_intel_framebuffer(ifbdev->helper.fb);
1672
1673 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1674 fb->base.width,
1675 fb->base.height,
1676 fb->base.depth,
1677 fb->base.bits_per_pixel,
1678 atomic_read(&fb->base.refcount.refcount));
1679 describe_obj(m, fb->obj);
1680 seq_putc(m, '\n');
1681 #endif
1682
1683 mutex_lock(&dev->mode_config.fb_lock);
1684 list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1685 if (ifbdev && &fb->base == ifbdev->helper.fb)
1686 continue;
1687
1688 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1689 fb->base.width,
1690 fb->base.height,
1691 fb->base.depth,
1692 fb->base.bits_per_pixel,
1693 atomic_read(&fb->base.refcount.refcount));
1694 describe_obj(m, fb->obj);
1695 seq_putc(m, '\n');
1696 }
1697 mutex_unlock(&dev->mode_config.fb_lock);
1698
1699 return 0;
1700 }
1701
1702 static void describe_ctx_ringbuf(struct seq_file *m,
1703 struct intel_ringbuffer *ringbuf)
1704 {
1705 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1706 ringbuf->space, ringbuf->head, ringbuf->tail,
1707 ringbuf->last_retired_head);
1708 }
1709
1710 static int i915_context_status(struct seq_file *m, void *unused)
1711 {
1712 struct drm_info_node *node = m->private;
1713 struct drm_device *dev = node->minor->dev;
1714 struct drm_i915_private *dev_priv = dev->dev_private;
1715 struct intel_engine_cs *ring;
1716 struct intel_context *ctx;
1717 int ret, i;
1718
1719 ret = mutex_lock_interruptible(&dev->struct_mutex);
1720 if (ret)
1721 return ret;
1722
1723 if (dev_priv->ips.pwrctx) {
1724 seq_puts(m, "power context ");
1725 describe_obj(m, dev_priv->ips.pwrctx);
1726 seq_putc(m, '\n');
1727 }
1728
1729 if (dev_priv->ips.renderctx) {
1730 seq_puts(m, "render context ");
1731 describe_obj(m, dev_priv->ips.renderctx);
1732 seq_putc(m, '\n');
1733 }
1734
1735 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1736 if (!i915.enable_execlists &&
1737 ctx->legacy_hw_ctx.rcs_state == NULL)
1738 continue;
1739
1740 seq_puts(m, "HW context ");
1741 describe_ctx(m, ctx);
1742 for_each_ring(ring, dev_priv, i) {
1743 if (ring->default_context == ctx)
1744 seq_printf(m, "(default context %s) ",
1745 ring->name);
1746 }
1747
1748 if (i915.enable_execlists) {
1749 seq_putc(m, '\n');
1750 for_each_ring(ring, dev_priv, i) {
1751 struct drm_i915_gem_object *ctx_obj =
1752 ctx->engine[i].state;
1753 struct intel_ringbuffer *ringbuf =
1754 ctx->engine[i].ringbuf;
1755
1756 seq_printf(m, "%s: ", ring->name);
1757 if (ctx_obj)
1758 describe_obj(m, ctx_obj);
1759 if (ringbuf)
1760 describe_ctx_ringbuf(m, ringbuf);
1761 seq_putc(m, '\n');
1762 }
1763 } else {
1764 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1765 }
1766
1767 seq_putc(m, '\n');
1768 }
1769
1770 mutex_unlock(&dev->struct_mutex);
1771
1772 return 0;
1773 }
1774
1775 static void i915_dump_lrc_obj(struct seq_file *m,
1776 struct intel_engine_cs *ring,
1777 struct drm_i915_gem_object *ctx_obj)
1778 {
1779 struct page *page;
1780 uint32_t *reg_state;
1781 int j;
1782 unsigned long ggtt_offset = 0;
1783
1784 if (ctx_obj == NULL) {
1785 seq_printf(m, "Context on %s with no gem object\n",
1786 ring->name);
1787 return;
1788 }
1789
1790 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1791 intel_execlists_ctx_id(ctx_obj));
1792
1793 if (!i915_gem_obj_ggtt_bound(ctx_obj))
1794 seq_puts(m, "\tNot bound in GGTT\n");
1795 else
1796 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1797
1798 if (i915_gem_object_get_pages(ctx_obj)) {
1799 seq_puts(m, "\tFailed to get pages for context object\n");
1800 return;
1801 }
1802
1803 page = i915_gem_object_get_page(ctx_obj, 1);
1804 if (!WARN_ON(page == NULL)) {
1805 reg_state = kmap_atomic(page);
1806
1807 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1808 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1809 ggtt_offset + 4096 + (j * 4),
1810 reg_state[j], reg_state[j + 1],
1811 reg_state[j + 2], reg_state[j + 3]);
1812 }
1813 kunmap_atomic(reg_state);
1814 }
1815
1816 seq_putc(m, '\n');
1817 }
1818
1819 static int i915_dump_lrc(struct seq_file *m, void *unused)
1820 {
1821 struct drm_info_node *node = (struct drm_info_node *) m->private;
1822 struct drm_device *dev = node->minor->dev;
1823 struct drm_i915_private *dev_priv = dev->dev_private;
1824 struct intel_engine_cs *ring;
1825 struct intel_context *ctx;
1826 int ret, i;
1827
1828 if (!i915.enable_execlists) {
1829 seq_printf(m, "Logical Ring Contexts are disabled\n");
1830 return 0;
1831 }
1832
1833 ret = mutex_lock_interruptible(&dev->struct_mutex);
1834 if (ret)
1835 return ret;
1836
1837 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1838 for_each_ring(ring, dev_priv, i) {
1839 if (ring->default_context != ctx)
1840 i915_dump_lrc_obj(m, ring,
1841 ctx->engine[i].state);
1842 }
1843 }
1844
1845 mutex_unlock(&dev->struct_mutex);
1846
1847 return 0;
1848 }
1849
1850 static int i915_execlists(struct seq_file *m, void *data)
1851 {
1852 struct drm_info_node *node = (struct drm_info_node *)m->private;
1853 struct drm_device *dev = node->minor->dev;
1854 struct drm_i915_private *dev_priv = dev->dev_private;
1855 struct intel_engine_cs *ring;
1856 u32 status_pointer;
1857 u8 read_pointer;
1858 u8 write_pointer;
1859 u32 status;
1860 u32 ctx_id;
1861 struct list_head *cursor;
1862 int ring_id, i;
1863 int ret;
1864
1865 if (!i915.enable_execlists) {
1866 seq_puts(m, "Logical Ring Contexts are disabled\n");
1867 return 0;
1868 }
1869
1870 ret = mutex_lock_interruptible(&dev->struct_mutex);
1871 if (ret)
1872 return ret;
1873
1874 intel_runtime_pm_get(dev_priv);
1875
1876 for_each_ring(ring, dev_priv, ring_id) {
1877 struct intel_ctx_submit_request *head_req = NULL;
1878 int count = 0;
1879 unsigned long flags;
1880
1881 seq_printf(m, "%s\n", ring->name);
1882
1883 status = I915_READ(RING_EXECLIST_STATUS(ring));
1884 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1885 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1886 status, ctx_id);
1887
1888 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1889 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1890
1891 read_pointer = ring->next_context_status_buffer;
1892 write_pointer = status_pointer & 0x07;
1893 if (read_pointer > write_pointer)
1894 write_pointer += 6;
1895 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
1896 read_pointer, write_pointer);
1897
1898 for (i = 0; i < 6; i++) {
1899 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
1900 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
1901
1902 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
1903 i, status, ctx_id);
1904 }
1905
1906 spin_lock_irqsave(&ring->execlist_lock, flags);
1907 list_for_each(cursor, &ring->execlist_queue)
1908 count++;
1909 head_req = list_first_entry_or_null(&ring->execlist_queue,
1910 struct intel_ctx_submit_request, execlist_link);
1911 spin_unlock_irqrestore(&ring->execlist_lock, flags);
1912
1913 seq_printf(m, "\t%d requests in queue\n", count);
1914 if (head_req) {
1915 struct drm_i915_gem_object *ctx_obj;
1916
1917 ctx_obj = head_req->ctx->engine[ring_id].state;
1918 seq_printf(m, "\tHead request id: %u\n",
1919 intel_execlists_ctx_id(ctx_obj));
1920 seq_printf(m, "\tHead request tail: %u\n",
1921 head_req->tail);
1922 }
1923
1924 seq_putc(m, '\n');
1925 }
1926
1927 intel_runtime_pm_put(dev_priv);
1928 mutex_unlock(&dev->struct_mutex);
1929
1930 return 0;
1931 }
1932
1933 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1934 {
1935 struct drm_info_node *node = m->private;
1936 struct drm_device *dev = node->minor->dev;
1937 struct drm_i915_private *dev_priv = dev->dev_private;
1938 unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1939
1940 spin_lock_irq(&dev_priv->uncore.lock);
1941 if (IS_VALLEYVIEW(dev)) {
1942 fw_rendercount = dev_priv->uncore.fw_rendercount;
1943 fw_mediacount = dev_priv->uncore.fw_mediacount;
1944 } else
1945 forcewake_count = dev_priv->uncore.forcewake_count;
1946 spin_unlock_irq(&dev_priv->uncore.lock);
1947
1948 if (IS_VALLEYVIEW(dev)) {
1949 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1950 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1951 } else
1952 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1953
1954 return 0;
1955 }
1956
1957 static const char *swizzle_string(unsigned swizzle)
1958 {
1959 switch (swizzle) {
1960 case I915_BIT_6_SWIZZLE_NONE:
1961 return "none";
1962 case I915_BIT_6_SWIZZLE_9:
1963 return "bit9";
1964 case I915_BIT_6_SWIZZLE_9_10:
1965 return "bit9/bit10";
1966 case I915_BIT_6_SWIZZLE_9_11:
1967 return "bit9/bit11";
1968 case I915_BIT_6_SWIZZLE_9_10_11:
1969 return "bit9/bit10/bit11";
1970 case I915_BIT_6_SWIZZLE_9_17:
1971 return "bit9/bit17";
1972 case I915_BIT_6_SWIZZLE_9_10_17:
1973 return "bit9/bit10/bit17";
1974 case I915_BIT_6_SWIZZLE_UNKNOWN:
1975 return "unknown";
1976 }
1977
1978 return "bug";
1979 }
1980
1981 static int i915_swizzle_info(struct seq_file *m, void *data)
1982 {
1983 struct drm_info_node *node = m->private;
1984 struct drm_device *dev = node->minor->dev;
1985 struct drm_i915_private *dev_priv = dev->dev_private;
1986 int ret;
1987
1988 ret = mutex_lock_interruptible(&dev->struct_mutex);
1989 if (ret)
1990 return ret;
1991 intel_runtime_pm_get(dev_priv);
1992
1993 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1994 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1995 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1996 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1997
1998 if (IS_GEN3(dev) || IS_GEN4(dev)) {
1999 seq_printf(m, "DDC = 0x%08x\n",
2000 I915_READ(DCC));
2001 seq_printf(m, "DDC2 = 0x%08x\n",
2002 I915_READ(DCC2));
2003 seq_printf(m, "C0DRB3 = 0x%04x\n",
2004 I915_READ16(C0DRB3));
2005 seq_printf(m, "C1DRB3 = 0x%04x\n",
2006 I915_READ16(C1DRB3));
2007 } else if (INTEL_INFO(dev)->gen >= 6) {
2008 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2009 I915_READ(MAD_DIMM_C0));
2010 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2011 I915_READ(MAD_DIMM_C1));
2012 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2013 I915_READ(MAD_DIMM_C2));
2014 seq_printf(m, "TILECTL = 0x%08x\n",
2015 I915_READ(TILECTL));
2016 if (INTEL_INFO(dev)->gen >= 8)
2017 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2018 I915_READ(GAMTARBMODE));
2019 else
2020 seq_printf(m, "ARB_MODE = 0x%08x\n",
2021 I915_READ(ARB_MODE));
2022 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2023 I915_READ(DISP_ARB_CTL));
2024 }
2025
2026 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2027 seq_puts(m, "L-shaped memory detected\n");
2028
2029 intel_runtime_pm_put(dev_priv);
2030 mutex_unlock(&dev->struct_mutex);
2031
2032 return 0;
2033 }
2034
2035 static int per_file_ctx(int id, void *ptr, void *data)
2036 {
2037 struct intel_context *ctx = ptr;
2038 struct seq_file *m = data;
2039 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2040
2041 if (!ppgtt) {
2042 seq_printf(m, " no ppgtt for context %d\n",
2043 ctx->user_handle);
2044 return 0;
2045 }
2046
2047 if (i915_gem_context_is_default(ctx))
2048 seq_puts(m, " default context:\n");
2049 else
2050 seq_printf(m, " context %d:\n", ctx->user_handle);
2051 ppgtt->debug_dump(ppgtt, m);
2052
2053 return 0;
2054 }
2055
2056 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2057 {
2058 struct drm_i915_private *dev_priv = dev->dev_private;
2059 struct intel_engine_cs *ring;
2060 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2061 int unused, i;
2062
2063 if (!ppgtt)
2064 return;
2065
2066 seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2067 seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2068 for_each_ring(ring, dev_priv, unused) {
2069 seq_printf(m, "%s\n", ring->name);
2070 for (i = 0; i < 4; i++) {
2071 u32 offset = 0x270 + i * 8;
2072 u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2073 pdp <<= 32;
2074 pdp |= I915_READ(ring->mmio_base + offset);
2075 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2076 }
2077 }
2078 }
2079
2080 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2081 {
2082 struct drm_i915_private *dev_priv = dev->dev_private;
2083 struct intel_engine_cs *ring;
2084 struct drm_file *file;
2085 int i;
2086
2087 if (INTEL_INFO(dev)->gen == 6)
2088 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2089
2090 for_each_ring(ring, dev_priv, i) {
2091 seq_printf(m, "%s\n", ring->name);
2092 if (INTEL_INFO(dev)->gen == 7)
2093 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2094 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2095 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2096 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2097 }
2098 if (dev_priv->mm.aliasing_ppgtt) {
2099 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2100
2101 seq_puts(m, "aliasing PPGTT:\n");
2102 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
2103
2104 ppgtt->debug_dump(ppgtt, m);
2105 }
2106
2107 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2108 struct drm_i915_file_private *file_priv = file->driver_priv;
2109
2110 seq_printf(m, "proc: %s\n",
2111 get_pid_task(file->pid, PIDTYPE_PID)->comm);
2112 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2113 }
2114 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2115 }
2116
2117 static int i915_ppgtt_info(struct seq_file *m, void *data)
2118 {
2119 struct drm_info_node *node = m->private;
2120 struct drm_device *dev = node->minor->dev;
2121 struct drm_i915_private *dev_priv = dev->dev_private;
2122
2123 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2124 if (ret)
2125 return ret;
2126 intel_runtime_pm_get(dev_priv);
2127
2128 if (INTEL_INFO(dev)->gen >= 8)
2129 gen8_ppgtt_info(m, dev);
2130 else if (INTEL_INFO(dev)->gen >= 6)
2131 gen6_ppgtt_info(m, dev);
2132
2133 intel_runtime_pm_put(dev_priv);
2134 mutex_unlock(&dev->struct_mutex);
2135
2136 return 0;
2137 }
2138
2139 static int i915_llc(struct seq_file *m, void *data)
2140 {
2141 struct drm_info_node *node = m->private;
2142 struct drm_device *dev = node->minor->dev;
2143 struct drm_i915_private *dev_priv = dev->dev_private;
2144
2145 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2146 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2147 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2148
2149 return 0;
2150 }
2151
2152 static int i915_edp_psr_status(struct seq_file *m, void *data)
2153 {
2154 struct drm_info_node *node = m->private;
2155 struct drm_device *dev = node->minor->dev;
2156 struct drm_i915_private *dev_priv = dev->dev_private;
2157 u32 psrperf = 0;
2158 bool enabled = false;
2159
2160 intel_runtime_pm_get(dev_priv);
2161
2162 mutex_lock(&dev_priv->psr.lock);
2163 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2164 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2165 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2166 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2167 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2168 dev_priv->psr.busy_frontbuffer_bits);
2169 seq_printf(m, "Re-enable work scheduled: %s\n",
2170 yesno(work_busy(&dev_priv->psr.work.work)));
2171
2172 enabled = HAS_PSR(dev) &&
2173 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2174 seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
2175
2176 if (HAS_PSR(dev))
2177 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2178 EDP_PSR_PERF_CNT_MASK;
2179 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2180 mutex_unlock(&dev_priv->psr.lock);
2181
2182 intel_runtime_pm_put(dev_priv);
2183 return 0;
2184 }
2185
2186 static int i915_sink_crc(struct seq_file *m, void *data)
2187 {
2188 struct drm_info_node *node = m->private;
2189 struct drm_device *dev = node->minor->dev;
2190 struct intel_encoder *encoder;
2191 struct intel_connector *connector;
2192 struct intel_dp *intel_dp = NULL;
2193 int ret;
2194 u8 crc[6];
2195
2196 drm_modeset_lock_all(dev);
2197 list_for_each_entry(connector, &dev->mode_config.connector_list,
2198 base.head) {
2199
2200 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2201 continue;
2202
2203 if (!connector->base.encoder)
2204 continue;
2205
2206 encoder = to_intel_encoder(connector->base.encoder);
2207 if (encoder->type != INTEL_OUTPUT_EDP)
2208 continue;
2209
2210 intel_dp = enc_to_intel_dp(&encoder->base);
2211
2212 ret = intel_dp_sink_crc(intel_dp, crc);
2213 if (ret)
2214 goto out;
2215
2216 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2217 crc[0], crc[1], crc[2],
2218 crc[3], crc[4], crc[5]);
2219 goto out;
2220 }
2221 ret = -ENODEV;
2222 out:
2223 drm_modeset_unlock_all(dev);
2224 return ret;
2225 }
2226
2227 static int i915_energy_uJ(struct seq_file *m, void *data)
2228 {
2229 struct drm_info_node *node = m->private;
2230 struct drm_device *dev = node->minor->dev;
2231 struct drm_i915_private *dev_priv = dev->dev_private;
2232 u64 power;
2233 u32 units;
2234
2235 if (INTEL_INFO(dev)->gen < 6)
2236 return -ENODEV;
2237
2238 intel_runtime_pm_get(dev_priv);
2239
2240 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2241 power = (power & 0x1f00) >> 8;
2242 units = 1000000 / (1 << power); /* convert to uJ */
2243 power = I915_READ(MCH_SECP_NRG_STTS);
2244 power *= units;
2245
2246 intel_runtime_pm_put(dev_priv);
2247
2248 seq_printf(m, "%llu", (long long unsigned)power);
2249
2250 return 0;
2251 }
2252
2253 static int i915_pc8_status(struct seq_file *m, void *unused)
2254 {
2255 struct drm_info_node *node = m->private;
2256 struct drm_device *dev = node->minor->dev;
2257 struct drm_i915_private *dev_priv = dev->dev_private;
2258
2259 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2260 seq_puts(m, "not supported\n");
2261 return 0;
2262 }
2263
2264 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2265 seq_printf(m, "IRQs disabled: %s\n",
2266 yesno(!intel_irqs_enabled(dev_priv)));
2267
2268 return 0;
2269 }
2270
2271 static const char *power_domain_str(enum intel_display_power_domain domain)
2272 {
2273 switch (domain) {
2274 case POWER_DOMAIN_PIPE_A:
2275 return "PIPE_A";
2276 case POWER_DOMAIN_PIPE_B:
2277 return "PIPE_B";
2278 case POWER_DOMAIN_PIPE_C:
2279 return "PIPE_C";
2280 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2281 return "PIPE_A_PANEL_FITTER";
2282 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2283 return "PIPE_B_PANEL_FITTER";
2284 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2285 return "PIPE_C_PANEL_FITTER";
2286 case POWER_DOMAIN_TRANSCODER_A:
2287 return "TRANSCODER_A";
2288 case POWER_DOMAIN_TRANSCODER_B:
2289 return "TRANSCODER_B";
2290 case POWER_DOMAIN_TRANSCODER_C:
2291 return "TRANSCODER_C";
2292 case POWER_DOMAIN_TRANSCODER_EDP:
2293 return "TRANSCODER_EDP";
2294 case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2295 return "PORT_DDI_A_2_LANES";
2296 case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2297 return "PORT_DDI_A_4_LANES";
2298 case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2299 return "PORT_DDI_B_2_LANES";
2300 case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2301 return "PORT_DDI_B_4_LANES";
2302 case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2303 return "PORT_DDI_C_2_LANES";
2304 case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2305 return "PORT_DDI_C_4_LANES";
2306 case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2307 return "PORT_DDI_D_2_LANES";
2308 case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2309 return "PORT_DDI_D_4_LANES";
2310 case POWER_DOMAIN_PORT_DSI:
2311 return "PORT_DSI";
2312 case POWER_DOMAIN_PORT_CRT:
2313 return "PORT_CRT";
2314 case POWER_DOMAIN_PORT_OTHER:
2315 return "PORT_OTHER";
2316 case POWER_DOMAIN_VGA:
2317 return "VGA";
2318 case POWER_DOMAIN_AUDIO:
2319 return "AUDIO";
2320 case POWER_DOMAIN_PLLS:
2321 return "PLLS";
2322 case POWER_DOMAIN_INIT:
2323 return "INIT";
2324 default:
2325 WARN_ON(1);
2326 return "?";
2327 }
2328 }
2329
2330 static int i915_power_domain_info(struct seq_file *m, void *unused)
2331 {
2332 struct drm_info_node *node = m->private;
2333 struct drm_device *dev = node->minor->dev;
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2336 int i;
2337
2338 mutex_lock(&power_domains->lock);
2339
2340 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2341 for (i = 0; i < power_domains->power_well_count; i++) {
2342 struct i915_power_well *power_well;
2343 enum intel_display_power_domain power_domain;
2344
2345 power_well = &power_domains->power_wells[i];
2346 seq_printf(m, "%-25s %d\n", power_well->name,
2347 power_well->count);
2348
2349 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2350 power_domain++) {
2351 if (!(BIT(power_domain) & power_well->domains))
2352 continue;
2353
2354 seq_printf(m, " %-23s %d\n",
2355 power_domain_str(power_domain),
2356 power_domains->domain_use_count[power_domain]);
2357 }
2358 }
2359
2360 mutex_unlock(&power_domains->lock);
2361
2362 return 0;
2363 }
2364
2365 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2366 struct drm_display_mode *mode)
2367 {
2368 int i;
2369
2370 for (i = 0; i < tabs; i++)
2371 seq_putc(m, '\t');
2372
2373 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2374 mode->base.id, mode->name,
2375 mode->vrefresh, mode->clock,
2376 mode->hdisplay, mode->hsync_start,
2377 mode->hsync_end, mode->htotal,
2378 mode->vdisplay, mode->vsync_start,
2379 mode->vsync_end, mode->vtotal,
2380 mode->type, mode->flags);
2381 }
2382
2383 static void intel_encoder_info(struct seq_file *m,
2384 struct intel_crtc *intel_crtc,
2385 struct intel_encoder *intel_encoder)
2386 {
2387 struct drm_info_node *node = m->private;
2388 struct drm_device *dev = node->minor->dev;
2389 struct drm_crtc *crtc = &intel_crtc->base;
2390 struct intel_connector *intel_connector;
2391 struct drm_encoder *encoder;
2392
2393 encoder = &intel_encoder->base;
2394 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2395 encoder->base.id, encoder->name);
2396 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2397 struct drm_connector *connector = &intel_connector->base;
2398 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2399 connector->base.id,
2400 connector->name,
2401 drm_get_connector_status_name(connector->status));
2402 if (connector->status == connector_status_connected) {
2403 struct drm_display_mode *mode = &crtc->mode;
2404 seq_printf(m, ", mode:\n");
2405 intel_seq_print_mode(m, 2, mode);
2406 } else {
2407 seq_putc(m, '\n');
2408 }
2409 }
2410 }
2411
2412 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2413 {
2414 struct drm_info_node *node = m->private;
2415 struct drm_device *dev = node->minor->dev;
2416 struct drm_crtc *crtc = &intel_crtc->base;
2417 struct intel_encoder *intel_encoder;
2418
2419 if (crtc->primary->fb)
2420 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2421 crtc->primary->fb->base.id, crtc->x, crtc->y,
2422 crtc->primary->fb->width, crtc->primary->fb->height);
2423 else
2424 seq_puts(m, "\tprimary plane disabled\n");
2425 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2426 intel_encoder_info(m, intel_crtc, intel_encoder);
2427 }
2428
2429 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2430 {
2431 struct drm_display_mode *mode = panel->fixed_mode;
2432
2433 seq_printf(m, "\tfixed mode:\n");
2434 intel_seq_print_mode(m, 2, mode);
2435 }
2436
2437 static void intel_dp_info(struct seq_file *m,
2438 struct intel_connector *intel_connector)
2439 {
2440 struct intel_encoder *intel_encoder = intel_connector->encoder;
2441 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2442
2443 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2444 seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2445 "no");
2446 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2447 intel_panel_info(m, &intel_connector->panel);
2448 }
2449
2450 static void intel_hdmi_info(struct seq_file *m,
2451 struct intel_connector *intel_connector)
2452 {
2453 struct intel_encoder *intel_encoder = intel_connector->encoder;
2454 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2455
2456 seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2457 "no");
2458 }
2459
2460 static void intel_lvds_info(struct seq_file *m,
2461 struct intel_connector *intel_connector)
2462 {
2463 intel_panel_info(m, &intel_connector->panel);
2464 }
2465
2466 static void intel_connector_info(struct seq_file *m,
2467 struct drm_connector *connector)
2468 {
2469 struct intel_connector *intel_connector = to_intel_connector(connector);
2470 struct intel_encoder *intel_encoder = intel_connector->encoder;
2471 struct drm_display_mode *mode;
2472
2473 seq_printf(m, "connector %d: type %s, status: %s\n",
2474 connector->base.id, connector->name,
2475 drm_get_connector_status_name(connector->status));
2476 if (connector->status == connector_status_connected) {
2477 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2478 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2479 connector->display_info.width_mm,
2480 connector->display_info.height_mm);
2481 seq_printf(m, "\tsubpixel order: %s\n",
2482 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2483 seq_printf(m, "\tCEA rev: %d\n",
2484 connector->display_info.cea_rev);
2485 }
2486 if (intel_encoder) {
2487 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2488 intel_encoder->type == INTEL_OUTPUT_EDP)
2489 intel_dp_info(m, intel_connector);
2490 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2491 intel_hdmi_info(m, intel_connector);
2492 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2493 intel_lvds_info(m, intel_connector);
2494 }
2495
2496 seq_printf(m, "\tmodes:\n");
2497 list_for_each_entry(mode, &connector->modes, head)
2498 intel_seq_print_mode(m, 2, mode);
2499 }
2500
2501 static bool cursor_active(struct drm_device *dev, int pipe)
2502 {
2503 struct drm_i915_private *dev_priv = dev->dev_private;
2504 u32 state;
2505
2506 if (IS_845G(dev) || IS_I865G(dev))
2507 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2508 else
2509 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2510
2511 return state;
2512 }
2513
2514 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2515 {
2516 struct drm_i915_private *dev_priv = dev->dev_private;
2517 u32 pos;
2518
2519 pos = I915_READ(CURPOS(pipe));
2520
2521 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2522 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2523 *x = -*x;
2524
2525 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2526 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2527 *y = -*y;
2528
2529 return cursor_active(dev, pipe);
2530 }
2531
2532 static int i915_display_info(struct seq_file *m, void *unused)
2533 {
2534 struct drm_info_node *node = m->private;
2535 struct drm_device *dev = node->minor->dev;
2536 struct drm_i915_private *dev_priv = dev->dev_private;
2537 struct intel_crtc *crtc;
2538 struct drm_connector *connector;
2539
2540 intel_runtime_pm_get(dev_priv);
2541 drm_modeset_lock_all(dev);
2542 seq_printf(m, "CRTC info\n");
2543 seq_printf(m, "---------\n");
2544 for_each_intel_crtc(dev, crtc) {
2545 bool active;
2546 int x, y;
2547
2548 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2549 crtc->base.base.id, pipe_name(crtc->pipe),
2550 yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
2551 if (crtc->active) {
2552 intel_crtc_info(m, crtc);
2553
2554 active = cursor_position(dev, crtc->pipe, &x, &y);
2555 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2556 yesno(crtc->cursor_base),
2557 x, y, crtc->cursor_width, crtc->cursor_height,
2558 crtc->cursor_addr, yesno(active));
2559 }
2560
2561 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2562 yesno(!crtc->cpu_fifo_underrun_disabled),
2563 yesno(!crtc->pch_fifo_underrun_disabled));
2564 }
2565
2566 seq_printf(m, "\n");
2567 seq_printf(m, "Connector info\n");
2568 seq_printf(m, "--------------\n");
2569 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2570 intel_connector_info(m, connector);
2571 }
2572 drm_modeset_unlock_all(dev);
2573 intel_runtime_pm_put(dev_priv);
2574
2575 return 0;
2576 }
2577
2578 static int i915_semaphore_status(struct seq_file *m, void *unused)
2579 {
2580 struct drm_info_node *node = (struct drm_info_node *) m->private;
2581 struct drm_device *dev = node->minor->dev;
2582 struct drm_i915_private *dev_priv = dev->dev_private;
2583 struct intel_engine_cs *ring;
2584 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2585 int i, j, ret;
2586
2587 if (!i915_semaphore_is_enabled(dev)) {
2588 seq_puts(m, "Semaphores are disabled\n");
2589 return 0;
2590 }
2591
2592 ret = mutex_lock_interruptible(&dev->struct_mutex);
2593 if (ret)
2594 return ret;
2595 intel_runtime_pm_get(dev_priv);
2596
2597 if (IS_BROADWELL(dev)) {
2598 struct page *page;
2599 uint64_t *seqno;
2600
2601 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2602
2603 seqno = (uint64_t *)kmap_atomic(page);
2604 for_each_ring(ring, dev_priv, i) {
2605 uint64_t offset;
2606
2607 seq_printf(m, "%s\n", ring->name);
2608
2609 seq_puts(m, " Last signal:");
2610 for (j = 0; j < num_rings; j++) {
2611 offset = i * I915_NUM_RINGS + j;
2612 seq_printf(m, "0x%08llx (0x%02llx) ",
2613 seqno[offset], offset * 8);
2614 }
2615 seq_putc(m, '\n');
2616
2617 seq_puts(m, " Last wait: ");
2618 for (j = 0; j < num_rings; j++) {
2619 offset = i + (j * I915_NUM_RINGS);
2620 seq_printf(m, "0x%08llx (0x%02llx) ",
2621 seqno[offset], offset * 8);
2622 }
2623 seq_putc(m, '\n');
2624
2625 }
2626 kunmap_atomic(seqno);
2627 } else {
2628 seq_puts(m, " Last signal:");
2629 for_each_ring(ring, dev_priv, i)
2630 for (j = 0; j < num_rings; j++)
2631 seq_printf(m, "0x%08x\n",
2632 I915_READ(ring->semaphore.mbox.signal[j]));
2633 seq_putc(m, '\n');
2634 }
2635
2636 seq_puts(m, "\nSync seqno:\n");
2637 for_each_ring(ring, dev_priv, i) {
2638 for (j = 0; j < num_rings; j++) {
2639 seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
2640 }
2641 seq_putc(m, '\n');
2642 }
2643 seq_putc(m, '\n');
2644
2645 intel_runtime_pm_put(dev_priv);
2646 mutex_unlock(&dev->struct_mutex);
2647 return 0;
2648 }
2649
2650 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2651 {
2652 struct drm_info_node *node = (struct drm_info_node *) m->private;
2653 struct drm_device *dev = node->minor->dev;
2654 struct drm_i915_private *dev_priv = dev->dev_private;
2655 int i;
2656
2657 drm_modeset_lock_all(dev);
2658 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2659 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2660
2661 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2662 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2663 pll->config.crtc_mask, pll->active, yesno(pll->on));
2664 seq_printf(m, " tracked hardware state:\n");
2665 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
2666 seq_printf(m, " dpll_md: 0x%08x\n",
2667 pll->config.hw_state.dpll_md);
2668 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
2669 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
2670 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
2671 }
2672 drm_modeset_unlock_all(dev);
2673
2674 return 0;
2675 }
2676
2677 static int i915_wa_registers(struct seq_file *m, void *unused)
2678 {
2679 int i;
2680 int ret;
2681 struct drm_info_node *node = (struct drm_info_node *) m->private;
2682 struct drm_device *dev = node->minor->dev;
2683 struct drm_i915_private *dev_priv = dev->dev_private;
2684
2685 ret = mutex_lock_interruptible(&dev->struct_mutex);
2686 if (ret)
2687 return ret;
2688
2689 intel_runtime_pm_get(dev_priv);
2690
2691 seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2692 for (i = 0; i < dev_priv->workarounds.count; ++i) {
2693 u32 addr, mask, value, read;
2694 bool ok;
2695
2696 addr = dev_priv->workarounds.reg[i].addr;
2697 mask = dev_priv->workarounds.reg[i].mask;
2698 value = dev_priv->workarounds.reg[i].value;
2699 read = I915_READ(addr);
2700 ok = (value & mask) == (read & mask);
2701 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2702 addr, value, mask, read, ok ? "OK" : "FAIL");
2703 }
2704
2705 intel_runtime_pm_put(dev_priv);
2706 mutex_unlock(&dev->struct_mutex);
2707
2708 return 0;
2709 }
2710
2711 static int i915_ddb_info(struct seq_file *m, void *unused)
2712 {
2713 struct drm_info_node *node = m->private;
2714 struct drm_device *dev = node->minor->dev;
2715 struct drm_i915_private *dev_priv = dev->dev_private;
2716 struct skl_ddb_allocation *ddb;
2717 struct skl_ddb_entry *entry;
2718 enum pipe pipe;
2719 int plane;
2720
2721 drm_modeset_lock_all(dev);
2722
2723 ddb = &dev_priv->wm.skl_hw.ddb;
2724
2725 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2726
2727 for_each_pipe(dev_priv, pipe) {
2728 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2729
2730 for_each_plane(pipe, plane) {
2731 entry = &ddb->plane[pipe][plane];
2732 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
2733 entry->start, entry->end,
2734 skl_ddb_entry_size(entry));
2735 }
2736
2737 entry = &ddb->cursor[pipe];
2738 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
2739 entry->end, skl_ddb_entry_size(entry));
2740 }
2741
2742 drm_modeset_unlock_all(dev);
2743
2744 return 0;
2745 }
2746
2747 struct pipe_crc_info {
2748 const char *name;
2749 struct drm_device *dev;
2750 enum pipe pipe;
2751 };
2752
2753 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2754 {
2755 struct drm_info_node *node = (struct drm_info_node *) m->private;
2756 struct drm_device *dev = node->minor->dev;
2757 struct drm_encoder *encoder;
2758 struct intel_encoder *intel_encoder;
2759 struct intel_digital_port *intel_dig_port;
2760 drm_modeset_lock_all(dev);
2761 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2762 intel_encoder = to_intel_encoder(encoder);
2763 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2764 continue;
2765 intel_dig_port = enc_to_dig_port(encoder);
2766 if (!intel_dig_port->dp.can_mst)
2767 continue;
2768
2769 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2770 }
2771 drm_modeset_unlock_all(dev);
2772 return 0;
2773 }
2774
2775 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2776 {
2777 struct pipe_crc_info *info = inode->i_private;
2778 struct drm_i915_private *dev_priv = info->dev->dev_private;
2779 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2780
2781 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2782 return -ENODEV;
2783
2784 spin_lock_irq(&pipe_crc->lock);
2785
2786 if (pipe_crc->opened) {
2787 spin_unlock_irq(&pipe_crc->lock);
2788 return -EBUSY; /* already open */
2789 }
2790
2791 pipe_crc->opened = true;
2792 filep->private_data = inode->i_private;
2793
2794 spin_unlock_irq(&pipe_crc->lock);
2795
2796 return 0;
2797 }
2798
2799 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2800 {
2801 struct pipe_crc_info *info = inode->i_private;
2802 struct drm_i915_private *dev_priv = info->dev->dev_private;
2803 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2804
2805 spin_lock_irq(&pipe_crc->lock);
2806 pipe_crc->opened = false;
2807 spin_unlock_irq(&pipe_crc->lock);
2808
2809 return 0;
2810 }
2811
2812 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2813 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
2814 /* account for \'0' */
2815 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
2816
2817 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2818 {
2819 assert_spin_locked(&pipe_crc->lock);
2820 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2821 INTEL_PIPE_CRC_ENTRIES_NR);
2822 }
2823
2824 static ssize_t
2825 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2826 loff_t *pos)
2827 {
2828 struct pipe_crc_info *info = filep->private_data;
2829 struct drm_device *dev = info->dev;
2830 struct drm_i915_private *dev_priv = dev->dev_private;
2831 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2832 char buf[PIPE_CRC_BUFFER_LEN];
2833 int head, tail, n_entries, n;
2834 ssize_t bytes_read;
2835
2836 /*
2837 * Don't allow user space to provide buffers not big enough to hold
2838 * a line of data.
2839 */
2840 if (count < PIPE_CRC_LINE_LEN)
2841 return -EINVAL;
2842
2843 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2844 return 0;
2845
2846 /* nothing to read */
2847 spin_lock_irq(&pipe_crc->lock);
2848 while (pipe_crc_data_count(pipe_crc) == 0) {
2849 int ret;
2850
2851 if (filep->f_flags & O_NONBLOCK) {
2852 spin_unlock_irq(&pipe_crc->lock);
2853 return -EAGAIN;
2854 }
2855
2856 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2857 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2858 if (ret) {
2859 spin_unlock_irq(&pipe_crc->lock);
2860 return ret;
2861 }
2862 }
2863
2864 /* We now have one or more entries to read */
2865 head = pipe_crc->head;
2866 tail = pipe_crc->tail;
2867 n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2868 count / PIPE_CRC_LINE_LEN);
2869 spin_unlock_irq(&pipe_crc->lock);
2870
2871 bytes_read = 0;
2872 n = 0;
2873 do {
2874 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2875 int ret;
2876
2877 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2878 "%8u %8x %8x %8x %8x %8x\n",
2879 entry->frame, entry->crc[0],
2880 entry->crc[1], entry->crc[2],
2881 entry->crc[3], entry->crc[4]);
2882
2883 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2884 buf, PIPE_CRC_LINE_LEN);
2885 if (ret == PIPE_CRC_LINE_LEN)
2886 return -EFAULT;
2887
2888 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2889 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2890 n++;
2891 } while (--n_entries);
2892
2893 spin_lock_irq(&pipe_crc->lock);
2894 pipe_crc->tail = tail;
2895 spin_unlock_irq(&pipe_crc->lock);
2896
2897 return bytes_read;
2898 }
2899
2900 static const struct file_operations i915_pipe_crc_fops = {
2901 .owner = THIS_MODULE,
2902 .open = i915_pipe_crc_open,
2903 .read = i915_pipe_crc_read,
2904 .release = i915_pipe_crc_release,
2905 };
2906
2907 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2908 {
2909 .name = "i915_pipe_A_crc",
2910 .pipe = PIPE_A,
2911 },
2912 {
2913 .name = "i915_pipe_B_crc",
2914 .pipe = PIPE_B,
2915 },
2916 {
2917 .name = "i915_pipe_C_crc",
2918 .pipe = PIPE_C,
2919 },
2920 };
2921
2922 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2923 enum pipe pipe)
2924 {
2925 struct drm_device *dev = minor->dev;
2926 struct dentry *ent;
2927 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2928
2929 info->dev = dev;
2930 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2931 &i915_pipe_crc_fops);
2932 if (!ent)
2933 return -ENOMEM;
2934
2935 return drm_add_fake_info_node(minor, ent, info);
2936 }
2937
2938 static const char * const pipe_crc_sources[] = {
2939 "none",
2940 "plane1",
2941 "plane2",
2942 "pf",
2943 "pipe",
2944 "TV",
2945 "DP-B",
2946 "DP-C",
2947 "DP-D",
2948 "auto",
2949 };
2950
2951 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2952 {
2953 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2954 return pipe_crc_sources[source];
2955 }
2956
2957 static int display_crc_ctl_show(struct seq_file *m, void *data)
2958 {
2959 struct drm_device *dev = m->private;
2960 struct drm_i915_private *dev_priv = dev->dev_private;
2961 int i;
2962
2963 for (i = 0; i < I915_MAX_PIPES; i++)
2964 seq_printf(m, "%c %s\n", pipe_name(i),
2965 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2966
2967 return 0;
2968 }
2969
2970 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2971 {
2972 struct drm_device *dev = inode->i_private;
2973
2974 return single_open(file, display_crc_ctl_show, dev);
2975 }
2976
2977 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2978 uint32_t *val)
2979 {
2980 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2981 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2982
2983 switch (*source) {
2984 case INTEL_PIPE_CRC_SOURCE_PIPE:
2985 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2986 break;
2987 case INTEL_PIPE_CRC_SOURCE_NONE:
2988 *val = 0;
2989 break;
2990 default:
2991 return -EINVAL;
2992 }
2993
2994 return 0;
2995 }
2996
2997 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2998 enum intel_pipe_crc_source *source)
2999 {
3000 struct intel_encoder *encoder;
3001 struct intel_crtc *crtc;
3002 struct intel_digital_port *dig_port;
3003 int ret = 0;
3004
3005 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3006
3007 drm_modeset_lock_all(dev);
3008 for_each_intel_encoder(dev, encoder) {
3009 if (!encoder->base.crtc)
3010 continue;
3011
3012 crtc = to_intel_crtc(encoder->base.crtc);
3013
3014 if (crtc->pipe != pipe)
3015 continue;
3016
3017 switch (encoder->type) {
3018 case INTEL_OUTPUT_TVOUT:
3019 *source = INTEL_PIPE_CRC_SOURCE_TV;
3020 break;
3021 case INTEL_OUTPUT_DISPLAYPORT:
3022 case INTEL_OUTPUT_EDP:
3023 dig_port = enc_to_dig_port(&encoder->base);
3024 switch (dig_port->port) {
3025 case PORT_B:
3026 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3027 break;
3028 case PORT_C:
3029 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3030 break;
3031 case PORT_D:
3032 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3033 break;
3034 default:
3035 WARN(1, "nonexisting DP port %c\n",
3036 port_name(dig_port->port));
3037 break;
3038 }
3039 break;
3040 default:
3041 break;
3042 }
3043 }
3044 drm_modeset_unlock_all(dev);
3045
3046 return ret;
3047 }
3048
3049 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3050 enum pipe pipe,
3051 enum intel_pipe_crc_source *source,
3052 uint32_t *val)
3053 {
3054 struct drm_i915_private *dev_priv = dev->dev_private;
3055 bool need_stable_symbols = false;
3056
3057 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3058 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3059 if (ret)
3060 return ret;
3061 }
3062
3063 switch (*source) {
3064 case INTEL_PIPE_CRC_SOURCE_PIPE:
3065 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3066 break;
3067 case INTEL_PIPE_CRC_SOURCE_DP_B:
3068 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3069 need_stable_symbols = true;
3070 break;
3071 case INTEL_PIPE_CRC_SOURCE_DP_C:
3072 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3073 need_stable_symbols = true;
3074 break;
3075 case INTEL_PIPE_CRC_SOURCE_NONE:
3076 *val = 0;
3077 break;
3078 default:
3079 return -EINVAL;
3080 }
3081
3082 /*
3083 * When the pipe CRC tap point is after the transcoders we need
3084 * to tweak symbol-level features to produce a deterministic series of
3085 * symbols for a given frame. We need to reset those features only once
3086 * a frame (instead of every nth symbol):
3087 * - DC-balance: used to ensure a better clock recovery from the data
3088 * link (SDVO)
3089 * - DisplayPort scrambling: used for EMI reduction
3090 */
3091 if (need_stable_symbols) {
3092 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3093
3094 tmp |= DC_BALANCE_RESET_VLV;
3095 if (pipe == PIPE_A)
3096 tmp |= PIPE_A_SCRAMBLE_RESET;
3097 else
3098 tmp |= PIPE_B_SCRAMBLE_RESET;
3099
3100 I915_WRITE(PORT_DFT2_G4X, tmp);
3101 }
3102
3103 return 0;
3104 }
3105
3106 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3107 enum pipe pipe,
3108 enum intel_pipe_crc_source *source,
3109 uint32_t *val)
3110 {
3111 struct drm_i915_private *dev_priv = dev->dev_private;
3112 bool need_stable_symbols = false;
3113
3114 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3115 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3116 if (ret)
3117 return ret;
3118 }
3119
3120 switch (*source) {
3121 case INTEL_PIPE_CRC_SOURCE_PIPE:
3122 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3123 break;
3124 case INTEL_PIPE_CRC_SOURCE_TV:
3125 if (!SUPPORTS_TV(dev))
3126 return -EINVAL;
3127 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3128 break;
3129 case INTEL_PIPE_CRC_SOURCE_DP_B:
3130 if (!IS_G4X(dev))
3131 return -EINVAL;
3132 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3133 need_stable_symbols = true;
3134 break;
3135 case INTEL_PIPE_CRC_SOURCE_DP_C:
3136 if (!IS_G4X(dev))
3137 return -EINVAL;
3138 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3139 need_stable_symbols = true;
3140 break;
3141 case INTEL_PIPE_CRC_SOURCE_DP_D:
3142 if (!IS_G4X(dev))
3143 return -EINVAL;
3144 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3145 need_stable_symbols = true;
3146 break;
3147 case INTEL_PIPE_CRC_SOURCE_NONE:
3148 *val = 0;
3149 break;
3150 default:
3151 return -EINVAL;
3152 }
3153
3154 /*
3155 * When the pipe CRC tap point is after the transcoders we need
3156 * to tweak symbol-level features to produce a deterministic series of
3157 * symbols for a given frame. We need to reset those features only once
3158 * a frame (instead of every nth symbol):
3159 * - DC-balance: used to ensure a better clock recovery from the data
3160 * link (SDVO)
3161 * - DisplayPort scrambling: used for EMI reduction
3162 */
3163 if (need_stable_symbols) {
3164 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3165
3166 WARN_ON(!IS_G4X(dev));
3167
3168 I915_WRITE(PORT_DFT_I9XX,
3169 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3170
3171 if (pipe == PIPE_A)
3172 tmp |= PIPE_A_SCRAMBLE_RESET;
3173 else
3174 tmp |= PIPE_B_SCRAMBLE_RESET;
3175
3176 I915_WRITE(PORT_DFT2_G4X, tmp);
3177 }
3178
3179 return 0;
3180 }
3181
3182 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3183 enum pipe pipe)
3184 {
3185 struct drm_i915_private *dev_priv = dev->dev_private;
3186 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3187
3188 if (pipe == PIPE_A)
3189 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3190 else
3191 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3192 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3193 tmp &= ~DC_BALANCE_RESET_VLV;
3194 I915_WRITE(PORT_DFT2_G4X, tmp);
3195
3196 }
3197
3198 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3199 enum pipe pipe)
3200 {
3201 struct drm_i915_private *dev_priv = dev->dev_private;
3202 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3203
3204 if (pipe == PIPE_A)
3205 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3206 else
3207 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3208 I915_WRITE(PORT_DFT2_G4X, tmp);
3209
3210 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3211 I915_WRITE(PORT_DFT_I9XX,
3212 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3213 }
3214 }
3215
3216 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3217 uint32_t *val)
3218 {
3219 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3220 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3221
3222 switch (*source) {
3223 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3224 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3225 break;
3226 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3227 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3228 break;
3229 case INTEL_PIPE_CRC_SOURCE_PIPE:
3230 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3231 break;
3232 case INTEL_PIPE_CRC_SOURCE_NONE:
3233 *val = 0;
3234 break;
3235 default:
3236 return -EINVAL;
3237 }
3238
3239 return 0;
3240 }
3241
3242 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3243 {
3244 struct drm_i915_private *dev_priv = dev->dev_private;
3245 struct intel_crtc *crtc =
3246 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3247
3248 drm_modeset_lock_all(dev);
3249 /*
3250 * If we use the eDP transcoder we need to make sure that we don't
3251 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3252 * relevant on hsw with pipe A when using the always-on power well
3253 * routing.
3254 */
3255 if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
3256 !crtc->config.pch_pfit.enabled) {
3257 crtc->config.pch_pfit.force_thru = true;
3258
3259 intel_display_power_get(dev_priv,
3260 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3261
3262 dev_priv->display.crtc_disable(&crtc->base);
3263 dev_priv->display.crtc_enable(&crtc->base);
3264 }
3265 drm_modeset_unlock_all(dev);
3266 }
3267
3268 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3269 {
3270 struct drm_i915_private *dev_priv = dev->dev_private;
3271 struct intel_crtc *crtc =
3272 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3273
3274 drm_modeset_lock_all(dev);
3275 /*
3276 * If we use the eDP transcoder we need to make sure that we don't
3277 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3278 * relevant on hsw with pipe A when using the always-on power well
3279 * routing.
3280 */
3281 if (crtc->config.pch_pfit.force_thru) {
3282 crtc->config.pch_pfit.force_thru = false;
3283
3284 dev_priv->display.crtc_disable(&crtc->base);
3285 dev_priv->display.crtc_enable(&crtc->base);
3286
3287 intel_display_power_put(dev_priv,
3288 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3289 }
3290 drm_modeset_unlock_all(dev);
3291 }
3292
3293 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3294 enum pipe pipe,
3295 enum intel_pipe_crc_source *source,
3296 uint32_t *val)
3297 {
3298 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3299 *source = INTEL_PIPE_CRC_SOURCE_PF;
3300
3301 switch (*source) {
3302 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3303 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3304 break;
3305 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3306 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3307 break;
3308 case INTEL_PIPE_CRC_SOURCE_PF:
3309 if (IS_HASWELL(dev) && pipe == PIPE_A)
3310 hsw_trans_edp_pipe_A_crc_wa(dev);
3311
3312 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3313 break;
3314 case INTEL_PIPE_CRC_SOURCE_NONE:
3315 *val = 0;
3316 break;
3317 default:
3318 return -EINVAL;
3319 }
3320
3321 return 0;
3322 }
3323
3324 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3325 enum intel_pipe_crc_source source)
3326 {
3327 struct drm_i915_private *dev_priv = dev->dev_private;
3328 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3329 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3330 pipe));
3331 u32 val = 0; /* shut up gcc */
3332 int ret;
3333
3334 if (pipe_crc->source == source)
3335 return 0;
3336
3337 /* forbid changing the source without going back to 'none' */
3338 if (pipe_crc->source && source)
3339 return -EINVAL;
3340
3341 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3342 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3343 return -EIO;
3344 }
3345
3346 if (IS_GEN2(dev))
3347 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3348 else if (INTEL_INFO(dev)->gen < 5)
3349 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3350 else if (IS_VALLEYVIEW(dev))
3351 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3352 else if (IS_GEN5(dev) || IS_GEN6(dev))
3353 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3354 else
3355 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3356
3357 if (ret != 0)
3358 return ret;
3359
3360 /* none -> real source transition */
3361 if (source) {
3362 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3363 pipe_name(pipe), pipe_crc_source_name(source));
3364
3365 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
3366 INTEL_PIPE_CRC_ENTRIES_NR,
3367 GFP_KERNEL);
3368 if (!pipe_crc->entries)
3369 return -ENOMEM;
3370
3371 /*
3372 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3373 * enabled and disabled dynamically based on package C states,
3374 * user space can't make reliable use of the CRCs, so let's just
3375 * completely disable it.
3376 */
3377 hsw_disable_ips(crtc);
3378
3379 spin_lock_irq(&pipe_crc->lock);
3380 pipe_crc->head = 0;
3381 pipe_crc->tail = 0;
3382 spin_unlock_irq(&pipe_crc->lock);
3383 }
3384
3385 pipe_crc->source = source;
3386
3387 I915_WRITE(PIPE_CRC_CTL(pipe), val);
3388 POSTING_READ(PIPE_CRC_CTL(pipe));
3389
3390 /* real source -> none transition */
3391 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3392 struct intel_pipe_crc_entry *entries;
3393 struct intel_crtc *crtc =
3394 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3395
3396 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3397 pipe_name(pipe));
3398
3399 drm_modeset_lock(&crtc->base.mutex, NULL);
3400 if (crtc->active)
3401 intel_wait_for_vblank(dev, pipe);
3402 drm_modeset_unlock(&crtc->base.mutex);
3403
3404 spin_lock_irq(&pipe_crc->lock);
3405 entries = pipe_crc->entries;
3406 pipe_crc->entries = NULL;
3407 spin_unlock_irq(&pipe_crc->lock);
3408
3409 kfree(entries);
3410
3411 if (IS_G4X(dev))
3412 g4x_undo_pipe_scramble_reset(dev, pipe);
3413 else if (IS_VALLEYVIEW(dev))
3414 vlv_undo_pipe_scramble_reset(dev, pipe);
3415 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3416 hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3417
3418 hsw_enable_ips(crtc);
3419 }
3420
3421 return 0;
3422 }
3423
3424 /*
3425 * Parse pipe CRC command strings:
3426 * command: wsp* object wsp+ name wsp+ source wsp*
3427 * object: 'pipe'
3428 * name: (A | B | C)
3429 * source: (none | plane1 | plane2 | pf)
3430 * wsp: (#0x20 | #0x9 | #0xA)+
3431 *
3432 * eg.:
3433 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
3434 * "pipe A none" -> Stop CRC
3435 */
3436 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3437 {
3438 int n_words = 0;
3439
3440 while (*buf) {
3441 char *end;
3442
3443 /* skip leading white space */
3444 buf = skip_spaces(buf);
3445 if (!*buf)
3446 break; /* end of buffer */
3447
3448 /* find end of word */
3449 for (end = buf; *end && !isspace(*end); end++)
3450 ;
3451
3452 if (n_words == max_words) {
3453 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3454 max_words);
3455 return -EINVAL; /* ran out of words[] before bytes */
3456 }
3457
3458 if (*end)
3459 *end++ = '\0';
3460 words[n_words++] = buf;
3461 buf = end;
3462 }
3463
3464 return n_words;
3465 }
3466
3467 enum intel_pipe_crc_object {
3468 PIPE_CRC_OBJECT_PIPE,
3469 };
3470
3471 static const char * const pipe_crc_objects[] = {
3472 "pipe",
3473 };
3474
3475 static int
3476 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3477 {
3478 int i;
3479
3480 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3481 if (!strcmp(buf, pipe_crc_objects[i])) {
3482 *o = i;
3483 return 0;
3484 }
3485
3486 return -EINVAL;
3487 }
3488
3489 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3490 {
3491 const char name = buf[0];
3492
3493 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3494 return -EINVAL;
3495
3496 *pipe = name - 'A';
3497
3498 return 0;
3499 }
3500
3501 static int
3502 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3503 {
3504 int i;
3505
3506 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3507 if (!strcmp(buf, pipe_crc_sources[i])) {
3508 *s = i;
3509 return 0;
3510 }
3511
3512 return -EINVAL;
3513 }
3514
3515 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3516 {
3517 #define N_WORDS 3
3518 int n_words;
3519 char *words[N_WORDS];
3520 enum pipe pipe;
3521 enum intel_pipe_crc_object object;
3522 enum intel_pipe_crc_source source;
3523
3524 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3525 if (n_words != N_WORDS) {
3526 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3527 N_WORDS);
3528 return -EINVAL;
3529 }
3530
3531 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3532 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3533 return -EINVAL;
3534 }
3535
3536 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3537 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3538 return -EINVAL;
3539 }
3540
3541 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3542 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3543 return -EINVAL;
3544 }
3545
3546 return pipe_crc_set_source(dev, pipe, source);
3547 }
3548
3549 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3550 size_t len, loff_t *offp)
3551 {
3552 struct seq_file *m = file->private_data;
3553 struct drm_device *dev = m->private;
3554 char *tmpbuf;
3555 int ret;
3556
3557 if (len == 0)
3558 return 0;
3559
3560 if (len > PAGE_SIZE - 1) {
3561 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3562 PAGE_SIZE);
3563 return -E2BIG;
3564 }
3565
3566 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3567 if (!tmpbuf)
3568 return -ENOMEM;
3569
3570 if (copy_from_user(tmpbuf, ubuf, len)) {
3571 ret = -EFAULT;
3572 goto out;
3573 }
3574 tmpbuf[len] = '\0';
3575
3576 ret = display_crc_ctl_parse(dev, tmpbuf, len);
3577
3578 out:
3579 kfree(tmpbuf);
3580 if (ret < 0)
3581 return ret;
3582
3583 *offp += len;
3584 return len;
3585 }
3586
3587 static const struct file_operations i915_display_crc_ctl_fops = {
3588 .owner = THIS_MODULE,
3589 .open = display_crc_ctl_open,
3590 .read = seq_read,
3591 .llseek = seq_lseek,
3592 .release = single_release,
3593 .write = display_crc_ctl_write
3594 };
3595
3596 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3597 {
3598 struct drm_device *dev = m->private;
3599 int num_levels = ilk_wm_max_level(dev) + 1;
3600 int level;
3601
3602 drm_modeset_lock_all(dev);
3603
3604 for (level = 0; level < num_levels; level++) {
3605 unsigned int latency = wm[level];
3606
3607 /*
3608 * - WM1+ latency values in 0.5us units
3609 * - latencies are in us on gen9
3610 */
3611 if (INTEL_INFO(dev)->gen >= 9)
3612 latency *= 10;
3613 else if (level > 0)
3614 latency *= 5;
3615
3616 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3617 level, wm[level], latency / 10, latency % 10);
3618 }
3619
3620 drm_modeset_unlock_all(dev);
3621 }
3622
3623 static int pri_wm_latency_show(struct seq_file *m, void *data)
3624 {
3625 struct drm_device *dev = m->private;
3626 struct drm_i915_private *dev_priv = dev->dev_private;
3627 const uint16_t *latencies;
3628
3629 if (INTEL_INFO(dev)->gen >= 9)
3630 latencies = dev_priv->wm.skl_latency;
3631 else
3632 latencies = to_i915(dev)->wm.pri_latency;
3633
3634 wm_latency_show(m, latencies);
3635
3636 return 0;
3637 }
3638
3639 static int spr_wm_latency_show(struct seq_file *m, void *data)
3640 {
3641 struct drm_device *dev = m->private;
3642 struct drm_i915_private *dev_priv = dev->dev_private;
3643 const uint16_t *latencies;
3644
3645 if (INTEL_INFO(dev)->gen >= 9)
3646 latencies = dev_priv->wm.skl_latency;
3647 else
3648 latencies = to_i915(dev)->wm.spr_latency;
3649
3650 wm_latency_show(m, latencies);
3651
3652 return 0;
3653 }
3654
3655 static int cur_wm_latency_show(struct seq_file *m, void *data)
3656 {
3657 struct drm_device *dev = m->private;
3658 struct drm_i915_private *dev_priv = dev->dev_private;
3659 const uint16_t *latencies;
3660
3661 if (INTEL_INFO(dev)->gen >= 9)
3662 latencies = dev_priv->wm.skl_latency;
3663 else
3664 latencies = to_i915(dev)->wm.cur_latency;
3665
3666 wm_latency_show(m, latencies);
3667
3668 return 0;
3669 }
3670
3671 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3672 {
3673 struct drm_device *dev = inode->i_private;
3674
3675 if (HAS_GMCH_DISPLAY(dev))
3676 return -ENODEV;
3677
3678 return single_open(file, pri_wm_latency_show, dev);
3679 }
3680
3681 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3682 {
3683 struct drm_device *dev = inode->i_private;
3684
3685 if (HAS_GMCH_DISPLAY(dev))
3686 return -ENODEV;
3687
3688 return single_open(file, spr_wm_latency_show, dev);
3689 }
3690
3691 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3692 {
3693 struct drm_device *dev = inode->i_private;
3694
3695 if (HAS_GMCH_DISPLAY(dev))
3696 return -ENODEV;
3697
3698 return single_open(file, cur_wm_latency_show, dev);
3699 }
3700
3701 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3702 size_t len, loff_t *offp, uint16_t wm[8])
3703 {
3704 struct seq_file *m = file->private_data;
3705 struct drm_device *dev = m->private;
3706 uint16_t new[8] = { 0 };
3707 int num_levels = ilk_wm_max_level(dev) + 1;
3708 int level;
3709 int ret;
3710 char tmp[32];
3711
3712 if (len >= sizeof(tmp))
3713 return -EINVAL;
3714
3715 if (copy_from_user(tmp, ubuf, len))
3716 return -EFAULT;
3717
3718 tmp[len] = '\0';
3719
3720 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3721 &new[0], &new[1], &new[2], &new[3],
3722 &new[4], &new[5], &new[6], &new[7]);
3723 if (ret != num_levels)
3724 return -EINVAL;
3725
3726 drm_modeset_lock_all(dev);
3727
3728 for (level = 0; level < num_levels; level++)
3729 wm[level] = new[level];
3730
3731 drm_modeset_unlock_all(dev);
3732
3733 return len;
3734 }
3735
3736
3737 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3738 size_t len, loff_t *offp)
3739 {
3740 struct seq_file *m = file->private_data;
3741 struct drm_device *dev = m->private;
3742 struct drm_i915_private *dev_priv = dev->dev_private;
3743 uint16_t *latencies;
3744
3745 if (INTEL_INFO(dev)->gen >= 9)
3746 latencies = dev_priv->wm.skl_latency;
3747 else
3748 latencies = to_i915(dev)->wm.pri_latency;
3749
3750 return wm_latency_write(file, ubuf, len, offp, latencies);
3751 }
3752
3753 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3754 size_t len, loff_t *offp)
3755 {
3756 struct seq_file *m = file->private_data;
3757 struct drm_device *dev = m->private;
3758 struct drm_i915_private *dev_priv = dev->dev_private;
3759 uint16_t *latencies;
3760
3761 if (INTEL_INFO(dev)->gen >= 9)
3762 latencies = dev_priv->wm.skl_latency;
3763 else
3764 latencies = to_i915(dev)->wm.spr_latency;
3765
3766 return wm_latency_write(file, ubuf, len, offp, latencies);
3767 }
3768
3769 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3770 size_t len, loff_t *offp)
3771 {
3772 struct seq_file *m = file->private_data;
3773 struct drm_device *dev = m->private;
3774 struct drm_i915_private *dev_priv = dev->dev_private;
3775 uint16_t *latencies;
3776
3777 if (INTEL_INFO(dev)->gen >= 9)
3778 latencies = dev_priv->wm.skl_latency;
3779 else
3780 latencies = to_i915(dev)->wm.cur_latency;
3781
3782 return wm_latency_write(file, ubuf, len, offp, latencies);
3783 }
3784
3785 static const struct file_operations i915_pri_wm_latency_fops = {
3786 .owner = THIS_MODULE,
3787 .open = pri_wm_latency_open,
3788 .read = seq_read,
3789 .llseek = seq_lseek,
3790 .release = single_release,
3791 .write = pri_wm_latency_write
3792 };
3793
3794 static const struct file_operations i915_spr_wm_latency_fops = {
3795 .owner = THIS_MODULE,
3796 .open = spr_wm_latency_open,
3797 .read = seq_read,
3798 .llseek = seq_lseek,
3799 .release = single_release,
3800 .write = spr_wm_latency_write
3801 };
3802
3803 static const struct file_operations i915_cur_wm_latency_fops = {
3804 .owner = THIS_MODULE,
3805 .open = cur_wm_latency_open,
3806 .read = seq_read,
3807 .llseek = seq_lseek,
3808 .release = single_release,
3809 .write = cur_wm_latency_write
3810 };
3811
3812 static int
3813 i915_wedged_get(void *data, u64 *val)
3814 {
3815 struct drm_device *dev = data;
3816 struct drm_i915_private *dev_priv = dev->dev_private;
3817
3818 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3819
3820 return 0;
3821 }
3822
3823 static int
3824 i915_wedged_set(void *data, u64 val)
3825 {
3826 struct drm_device *dev = data;
3827 struct drm_i915_private *dev_priv = dev->dev_private;
3828
3829 intel_runtime_pm_get(dev_priv);
3830
3831 i915_handle_error(dev, val,
3832 "Manually setting wedged to %llu", val);
3833
3834 intel_runtime_pm_put(dev_priv);
3835
3836 return 0;
3837 }
3838
3839 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3840 i915_wedged_get, i915_wedged_set,
3841 "%llu\n");
3842
3843 static int
3844 i915_ring_stop_get(void *data, u64 *val)
3845 {
3846 struct drm_device *dev = data;
3847 struct drm_i915_private *dev_priv = dev->dev_private;
3848
3849 *val = dev_priv->gpu_error.stop_rings;
3850
3851 return 0;
3852 }
3853
3854 static int
3855 i915_ring_stop_set(void *data, u64 val)
3856 {
3857 struct drm_device *dev = data;
3858 struct drm_i915_private *dev_priv = dev->dev_private;
3859 int ret;
3860
3861 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3862
3863 ret = mutex_lock_interruptible(&dev->struct_mutex);
3864 if (ret)
3865 return ret;
3866
3867 dev_priv->gpu_error.stop_rings = val;
3868 mutex_unlock(&dev->struct_mutex);
3869
3870 return 0;
3871 }
3872
3873 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3874 i915_ring_stop_get, i915_ring_stop_set,
3875 "0x%08llx\n");
3876
3877 static int
3878 i915_ring_missed_irq_get(void *data, u64 *val)
3879 {
3880 struct drm_device *dev = data;
3881 struct drm_i915_private *dev_priv = dev->dev_private;
3882
3883 *val = dev_priv->gpu_error.missed_irq_rings;
3884 return 0;
3885 }
3886
3887 static int
3888 i915_ring_missed_irq_set(void *data, u64 val)
3889 {
3890 struct drm_device *dev = data;
3891 struct drm_i915_private *dev_priv = dev->dev_private;
3892 int ret;
3893
3894 /* Lock against concurrent debugfs callers */
3895 ret = mutex_lock_interruptible(&dev->struct_mutex);
3896 if (ret)
3897 return ret;
3898 dev_priv->gpu_error.missed_irq_rings = val;
3899 mutex_unlock(&dev->struct_mutex);
3900
3901 return 0;
3902 }
3903
3904 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3905 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3906 "0x%08llx\n");
3907
3908 static int
3909 i915_ring_test_irq_get(void *data, u64 *val)
3910 {
3911 struct drm_device *dev = data;
3912 struct drm_i915_private *dev_priv = dev->dev_private;
3913
3914 *val = dev_priv->gpu_error.test_irq_rings;
3915
3916 return 0;
3917 }
3918
3919 static int
3920 i915_ring_test_irq_set(void *data, u64 val)
3921 {
3922 struct drm_device *dev = data;
3923 struct drm_i915_private *dev_priv = dev->dev_private;
3924 int ret;
3925
3926 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3927
3928 /* Lock against concurrent debugfs callers */
3929 ret = mutex_lock_interruptible(&dev->struct_mutex);
3930 if (ret)
3931 return ret;
3932
3933 dev_priv->gpu_error.test_irq_rings = val;
3934 mutex_unlock(&dev->struct_mutex);
3935
3936 return 0;
3937 }
3938
3939 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3940 i915_ring_test_irq_get, i915_ring_test_irq_set,
3941 "0x%08llx\n");
3942
3943 #define DROP_UNBOUND 0x1
3944 #define DROP_BOUND 0x2
3945 #define DROP_RETIRE 0x4
3946 #define DROP_ACTIVE 0x8
3947 #define DROP_ALL (DROP_UNBOUND | \
3948 DROP_BOUND | \
3949 DROP_RETIRE | \
3950 DROP_ACTIVE)
3951 static int
3952 i915_drop_caches_get(void *data, u64 *val)
3953 {
3954 *val = DROP_ALL;
3955
3956 return 0;
3957 }
3958
3959 static int
3960 i915_drop_caches_set(void *data, u64 val)
3961 {
3962 struct drm_device *dev = data;
3963 struct drm_i915_private *dev_priv = dev->dev_private;
3964 int ret;
3965
3966 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3967
3968 /* No need to check and wait for gpu resets, only libdrm auto-restarts
3969 * on ioctls on -EAGAIN. */
3970 ret = mutex_lock_interruptible(&dev->struct_mutex);
3971 if (ret)
3972 return ret;
3973
3974 if (val & DROP_ACTIVE) {
3975 ret = i915_gpu_idle(dev);
3976 if (ret)
3977 goto unlock;
3978 }
3979
3980 if (val & (DROP_RETIRE | DROP_ACTIVE))
3981 i915_gem_retire_requests(dev);
3982
3983 if (val & DROP_BOUND)
3984 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
3985
3986 if (val & DROP_UNBOUND)
3987 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
3988
3989 unlock:
3990 mutex_unlock(&dev->struct_mutex);
3991
3992 return ret;
3993 }
3994
3995 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3996 i915_drop_caches_get, i915_drop_caches_set,
3997 "0x%08llx\n");
3998
3999 static int
4000 i915_max_freq_get(void *data, u64 *val)
4001 {
4002 struct drm_device *dev = data;
4003 struct drm_i915_private *dev_priv = dev->dev_private;
4004 int ret;
4005
4006 if (INTEL_INFO(dev)->gen < 6)
4007 return -ENODEV;
4008
4009 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4010
4011 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4012 if (ret)
4013 return ret;
4014
4015 if (IS_VALLEYVIEW(dev))
4016 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4017 else
4018 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
4019 mutex_unlock(&dev_priv->rps.hw_lock);
4020
4021 return 0;
4022 }
4023
4024 static int
4025 i915_max_freq_set(void *data, u64 val)
4026 {
4027 struct drm_device *dev = data;
4028 struct drm_i915_private *dev_priv = dev->dev_private;
4029 u32 rp_state_cap, hw_max, hw_min;
4030 int ret;
4031
4032 if (INTEL_INFO(dev)->gen < 6)
4033 return -ENODEV;
4034
4035 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4036
4037 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4038
4039 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4040 if (ret)
4041 return ret;
4042
4043 /*
4044 * Turbo will still be enabled, but won't go above the set value.
4045 */
4046 if (IS_VALLEYVIEW(dev)) {
4047 val = vlv_freq_opcode(dev_priv, val);
4048
4049 hw_max = dev_priv->rps.max_freq;
4050 hw_min = dev_priv->rps.min_freq;
4051 } else {
4052 do_div(val, GT_FREQUENCY_MULTIPLIER);
4053
4054 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4055 hw_max = dev_priv->rps.max_freq;
4056 hw_min = (rp_state_cap >> 16) & 0xff;
4057 }
4058
4059 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4060 mutex_unlock(&dev_priv->rps.hw_lock);
4061 return -EINVAL;
4062 }
4063
4064 dev_priv->rps.max_freq_softlimit = val;
4065
4066 if (IS_VALLEYVIEW(dev))
4067 valleyview_set_rps(dev, val);
4068 else
4069 gen6_set_rps(dev, val);
4070
4071 mutex_unlock(&dev_priv->rps.hw_lock);
4072
4073 return 0;
4074 }
4075
4076 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4077 i915_max_freq_get, i915_max_freq_set,
4078 "%llu\n");
4079
4080 static int
4081 i915_min_freq_get(void *data, u64 *val)
4082 {
4083 struct drm_device *dev = data;
4084 struct drm_i915_private *dev_priv = dev->dev_private;
4085 int ret;
4086
4087 if (INTEL_INFO(dev)->gen < 6)
4088 return -ENODEV;
4089
4090 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4091
4092 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4093 if (ret)
4094 return ret;
4095
4096 if (IS_VALLEYVIEW(dev))
4097 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4098 else
4099 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
4100 mutex_unlock(&dev_priv->rps.hw_lock);
4101
4102 return 0;
4103 }
4104
4105 static int
4106 i915_min_freq_set(void *data, u64 val)
4107 {
4108 struct drm_device *dev = data;
4109 struct drm_i915_private *dev_priv = dev->dev_private;
4110 u32 rp_state_cap, hw_max, hw_min;
4111 int ret;
4112
4113 if (INTEL_INFO(dev)->gen < 6)
4114 return -ENODEV;
4115
4116 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4117
4118 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4119
4120 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4121 if (ret)
4122 return ret;
4123
4124 /*
4125 * Turbo will still be enabled, but won't go below the set value.
4126 */
4127 if (IS_VALLEYVIEW(dev)) {
4128 val = vlv_freq_opcode(dev_priv, val);
4129
4130 hw_max = dev_priv->rps.max_freq;
4131 hw_min = dev_priv->rps.min_freq;
4132 } else {
4133 do_div(val, GT_FREQUENCY_MULTIPLIER);
4134
4135 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4136 hw_max = dev_priv->rps.max_freq;
4137 hw_min = (rp_state_cap >> 16) & 0xff;
4138 }
4139
4140 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4141 mutex_unlock(&dev_priv->rps.hw_lock);
4142 return -EINVAL;
4143 }
4144
4145 dev_priv->rps.min_freq_softlimit = val;
4146
4147 if (IS_VALLEYVIEW(dev))
4148 valleyview_set_rps(dev, val);
4149 else
4150 gen6_set_rps(dev, val);
4151
4152 mutex_unlock(&dev_priv->rps.hw_lock);
4153
4154 return 0;
4155 }
4156
4157 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4158 i915_min_freq_get, i915_min_freq_set,
4159 "%llu\n");
4160
4161 static int
4162 i915_cache_sharing_get(void *data, u64 *val)
4163 {
4164 struct drm_device *dev = data;
4165 struct drm_i915_private *dev_priv = dev->dev_private;
4166 u32 snpcr;
4167 int ret;
4168
4169 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4170 return -ENODEV;
4171
4172 ret = mutex_lock_interruptible(&dev->struct_mutex);
4173 if (ret)
4174 return ret;
4175 intel_runtime_pm_get(dev_priv);
4176
4177 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4178
4179 intel_runtime_pm_put(dev_priv);
4180 mutex_unlock(&dev_priv->dev->struct_mutex);
4181
4182 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4183
4184 return 0;
4185 }
4186
4187 static int
4188 i915_cache_sharing_set(void *data, u64 val)
4189 {
4190 struct drm_device *dev = data;
4191 struct drm_i915_private *dev_priv = dev->dev_private;
4192 u32 snpcr;
4193
4194 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4195 return -ENODEV;
4196
4197 if (val > 3)
4198 return -EINVAL;
4199
4200 intel_runtime_pm_get(dev_priv);
4201 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4202
4203 /* Update the cache sharing policy here as well */
4204 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4205 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4206 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4207 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4208
4209 intel_runtime_pm_put(dev_priv);
4210 return 0;
4211 }
4212
4213 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4214 i915_cache_sharing_get, i915_cache_sharing_set,
4215 "%llu\n");
4216
4217 static int i915_forcewake_open(struct inode *inode, struct file *file)
4218 {
4219 struct drm_device *dev = inode->i_private;
4220 struct drm_i915_private *dev_priv = dev->dev_private;
4221
4222 if (INTEL_INFO(dev)->gen < 6)
4223 return 0;
4224
4225 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4226
4227 return 0;
4228 }
4229
4230 static int i915_forcewake_release(struct inode *inode, struct file *file)
4231 {
4232 struct drm_device *dev = inode->i_private;
4233 struct drm_i915_private *dev_priv = dev->dev_private;
4234
4235 if (INTEL_INFO(dev)->gen < 6)
4236 return 0;
4237
4238 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4239
4240 return 0;
4241 }
4242
4243 static const struct file_operations i915_forcewake_fops = {
4244 .owner = THIS_MODULE,
4245 .open = i915_forcewake_open,
4246 .release = i915_forcewake_release,
4247 };
4248
4249 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4250 {
4251 struct drm_device *dev = minor->dev;
4252 struct dentry *ent;
4253
4254 ent = debugfs_create_file("i915_forcewake_user",
4255 S_IRUSR,
4256 root, dev,
4257 &i915_forcewake_fops);
4258 if (!ent)
4259 return -ENOMEM;
4260
4261 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4262 }
4263
4264 static int i915_debugfs_create(struct dentry *root,
4265 struct drm_minor *minor,
4266 const char *name,
4267 const struct file_operations *fops)
4268 {
4269 struct drm_device *dev = minor->dev;
4270 struct dentry *ent;
4271
4272 ent = debugfs_create_file(name,
4273 S_IRUGO | S_IWUSR,
4274 root, dev,
4275 fops);
4276 if (!ent)
4277 return -ENOMEM;
4278
4279 return drm_add_fake_info_node(minor, ent, fops);
4280 }
4281
4282 static const struct drm_info_list i915_debugfs_list[] = {
4283 {"i915_capabilities", i915_capabilities, 0},
4284 {"i915_gem_objects", i915_gem_object_info, 0},
4285 {"i915_gem_gtt", i915_gem_gtt_info, 0},
4286 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4287 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4288 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4289 {"i915_gem_stolen", i915_gem_stolen_list_info },
4290 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4291 {"i915_gem_request", i915_gem_request_info, 0},
4292 {"i915_gem_seqno", i915_gem_seqno_info, 0},
4293 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4294 {"i915_gem_interrupt", i915_interrupt_info, 0},
4295 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4296 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4297 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4298 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4299 {"i915_frequency_info", i915_frequency_info, 0},
4300 {"i915_drpc_info", i915_drpc_info, 0},
4301 {"i915_emon_status", i915_emon_status, 0},
4302 {"i915_ring_freq_table", i915_ring_freq_table, 0},
4303 {"i915_fbc_status", i915_fbc_status, 0},
4304 {"i915_ips_status", i915_ips_status, 0},
4305 {"i915_sr_status", i915_sr_status, 0},
4306 {"i915_opregion", i915_opregion, 0},
4307 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4308 {"i915_context_status", i915_context_status, 0},
4309 {"i915_dump_lrc", i915_dump_lrc, 0},
4310 {"i915_execlists", i915_execlists, 0},
4311 {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
4312 {"i915_swizzle_info", i915_swizzle_info, 0},
4313 {"i915_ppgtt_info", i915_ppgtt_info, 0},
4314 {"i915_llc", i915_llc, 0},
4315 {"i915_edp_psr_status", i915_edp_psr_status, 0},
4316 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4317 {"i915_energy_uJ", i915_energy_uJ, 0},
4318 {"i915_pc8_status", i915_pc8_status, 0},
4319 {"i915_power_domain_info", i915_power_domain_info, 0},
4320 {"i915_display_info", i915_display_info, 0},
4321 {"i915_semaphore_status", i915_semaphore_status, 0},
4322 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4323 {"i915_dp_mst_info", i915_dp_mst_info, 0},
4324 {"i915_wa_registers", i915_wa_registers, 0},
4325 {"i915_ddb_info", i915_ddb_info, 0},
4326 };
4327 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4328
4329 static const struct i915_debugfs_files {
4330 const char *name;
4331 const struct file_operations *fops;
4332 } i915_debugfs_files[] = {
4333 {"i915_wedged", &i915_wedged_fops},
4334 {"i915_max_freq", &i915_max_freq_fops},
4335 {"i915_min_freq", &i915_min_freq_fops},
4336 {"i915_cache_sharing", &i915_cache_sharing_fops},
4337 {"i915_ring_stop", &i915_ring_stop_fops},
4338 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4339 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4340 {"i915_gem_drop_caches", &i915_drop_caches_fops},
4341 {"i915_error_state", &i915_error_state_fops},
4342 {"i915_next_seqno", &i915_next_seqno_fops},
4343 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4344 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4345 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4346 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4347 {"i915_fbc_false_color", &i915_fbc_fc_fops},
4348 };
4349
4350 void intel_display_crc_init(struct drm_device *dev)
4351 {
4352 struct drm_i915_private *dev_priv = dev->dev_private;
4353 enum pipe pipe;
4354
4355 for_each_pipe(dev_priv, pipe) {
4356 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4357
4358 pipe_crc->opened = false;
4359 spin_lock_init(&pipe_crc->lock);
4360 init_waitqueue_head(&pipe_crc->wq);
4361 }
4362 }
4363
4364 int i915_debugfs_init(struct drm_minor *minor)
4365 {
4366 int ret, i;
4367
4368 ret = i915_forcewake_create(minor->debugfs_root, minor);
4369 if (ret)
4370 return ret;
4371
4372 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4373 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4374 if (ret)
4375 return ret;
4376 }
4377
4378 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4379 ret = i915_debugfs_create(minor->debugfs_root, minor,
4380 i915_debugfs_files[i].name,
4381 i915_debugfs_files[i].fops);
4382 if (ret)
4383 return ret;
4384 }
4385
4386 return drm_debugfs_create_files(i915_debugfs_list,
4387 I915_DEBUGFS_ENTRIES,
4388 minor->debugfs_root, minor);
4389 }
4390
4391 void i915_debugfs_cleanup(struct drm_minor *minor)
4392 {
4393 int i;
4394
4395 drm_debugfs_remove_files(i915_debugfs_list,
4396 I915_DEBUGFS_ENTRIES, minor);
4397
4398 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4399 1, minor);
4400
4401 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4402 struct drm_info_list *info_list =
4403 (struct drm_info_list *)&i915_pipe_crc_data[i];
4404
4405 drm_debugfs_remove_files(info_list, 1, minor);
4406 }
4407
4408 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4409 struct drm_info_list *info_list =
4410 (struct drm_info_list *) i915_debugfs_files[i].fops;
4411
4412 drm_debugfs_remove_files(info_list, 1, minor);
4413 }
4414 }
This page took 0.222434 seconds and 6 git commands to generate.