drm/i915/documentation: Add intel_uncore.c to drm.tmpl
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51 return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55 * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 struct dentry *ent,
59 const void *key)
60 {
61 struct drm_info_node *node;
62
63 node = kmalloc(sizeof(*node), GFP_KERNEL);
64 if (node == NULL) {
65 debugfs_remove(ent);
66 return -ENOMEM;
67 }
68
69 node->minor = minor;
70 node->dent = ent;
71 node->info_ent = (void *) key;
72
73 mutex_lock(&minor->debugfs_lock);
74 list_add(&node->list, &minor->debugfs_list);
75 mutex_unlock(&minor->debugfs_lock);
76
77 return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 struct drm_info_node *node = m->private;
83 struct drm_device *dev = node->minor->dev;
84 const struct intel_device_info *info = INTEL_INFO(dev);
85
86 seq_printf(m, "gen: %d\n", info->gen);
87 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94 return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 if (i915_gem_obj_is_pinned(obj))
100 return "p";
101 else
102 return " ";
103 }
104
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107 switch (obj->tiling_mode) {
108 default:
109 case I915_TILING_NONE: return " ";
110 case I915_TILING_X: return "X";
111 case I915_TILING_Y: return "Y";
112 }
113 }
114
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117 return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123 struct i915_vma *vma;
124 int pin_count = 0;
125
126 seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %x %x %x%s%s%s",
127 &obj->base,
128 get_pin_flag(obj),
129 get_tiling_flag(obj),
130 get_global_flag(obj),
131 obj->base.size / 1024,
132 obj->base.read_domains,
133 obj->base.write_domain,
134 i915_gem_request_get_seqno(obj->last_read_req),
135 i915_gem_request_get_seqno(obj->last_write_req),
136 i915_gem_request_get_seqno(obj->last_fenced_req),
137 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
138 obj->dirty ? " dirty" : "",
139 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
140 if (obj->base.name)
141 seq_printf(m, " (name: %d)", obj->base.name);
142 list_for_each_entry(vma, &obj->vma_list, vma_link)
143 if (vma->pin_count > 0)
144 pin_count++;
145 seq_printf(m, " (pinned x %d)", pin_count);
146 if (obj->pin_display)
147 seq_printf(m, " (display)");
148 if (obj->fence_reg != I915_FENCE_REG_NONE)
149 seq_printf(m, " (fence: %d)", obj->fence_reg);
150 list_for_each_entry(vma, &obj->vma_list, vma_link) {
151 if (!i915_is_ggtt(vma->vm))
152 seq_puts(m, " (pp");
153 else
154 seq_puts(m, " (g");
155 seq_printf(m, "gtt offset: %08lx, size: %08lx, type: %u)",
156 vma->node.start, vma->node.size,
157 vma->ggtt_view.type);
158 }
159 if (obj->stolen)
160 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
161 if (obj->pin_mappable || obj->fault_mappable) {
162 char s[3], *t = s;
163 if (obj->pin_mappable)
164 *t++ = 'p';
165 if (obj->fault_mappable)
166 *t++ = 'f';
167 *t = '\0';
168 seq_printf(m, " (%s mappable)", s);
169 }
170 if (obj->last_read_req != NULL)
171 seq_printf(m, " (%s)",
172 i915_gem_request_get_ring(obj->last_read_req)->name);
173 if (obj->frontbuffer_bits)
174 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
175 }
176
177 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
178 {
179 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
180 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
181 seq_putc(m, ' ');
182 }
183
184 static int i915_gem_object_list_info(struct seq_file *m, void *data)
185 {
186 struct drm_info_node *node = m->private;
187 uintptr_t list = (uintptr_t) node->info_ent->data;
188 struct list_head *head;
189 struct drm_device *dev = node->minor->dev;
190 struct drm_i915_private *dev_priv = dev->dev_private;
191 struct i915_address_space *vm = &dev_priv->gtt.base;
192 struct i915_vma *vma;
193 size_t total_obj_size, total_gtt_size;
194 int count, ret;
195
196 ret = mutex_lock_interruptible(&dev->struct_mutex);
197 if (ret)
198 return ret;
199
200 /* FIXME: the user of this interface might want more than just GGTT */
201 switch (list) {
202 case ACTIVE_LIST:
203 seq_puts(m, "Active:\n");
204 head = &vm->active_list;
205 break;
206 case INACTIVE_LIST:
207 seq_puts(m, "Inactive:\n");
208 head = &vm->inactive_list;
209 break;
210 default:
211 mutex_unlock(&dev->struct_mutex);
212 return -EINVAL;
213 }
214
215 total_obj_size = total_gtt_size = count = 0;
216 list_for_each_entry(vma, head, mm_list) {
217 seq_printf(m, " ");
218 describe_obj(m, vma->obj);
219 seq_printf(m, "\n");
220 total_obj_size += vma->obj->base.size;
221 total_gtt_size += vma->node.size;
222 count++;
223 }
224 mutex_unlock(&dev->struct_mutex);
225
226 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
227 count, total_obj_size, total_gtt_size);
228 return 0;
229 }
230
231 static int obj_rank_by_stolen(void *priv,
232 struct list_head *A, struct list_head *B)
233 {
234 struct drm_i915_gem_object *a =
235 container_of(A, struct drm_i915_gem_object, obj_exec_link);
236 struct drm_i915_gem_object *b =
237 container_of(B, struct drm_i915_gem_object, obj_exec_link);
238
239 return a->stolen->start - b->stolen->start;
240 }
241
242 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
243 {
244 struct drm_info_node *node = m->private;
245 struct drm_device *dev = node->minor->dev;
246 struct drm_i915_private *dev_priv = dev->dev_private;
247 struct drm_i915_gem_object *obj;
248 size_t total_obj_size, total_gtt_size;
249 LIST_HEAD(stolen);
250 int count, ret;
251
252 ret = mutex_lock_interruptible(&dev->struct_mutex);
253 if (ret)
254 return ret;
255
256 total_obj_size = total_gtt_size = count = 0;
257 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
258 if (obj->stolen == NULL)
259 continue;
260
261 list_add(&obj->obj_exec_link, &stolen);
262
263 total_obj_size += obj->base.size;
264 total_gtt_size += i915_gem_obj_ggtt_size(obj);
265 count++;
266 }
267 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
268 if (obj->stolen == NULL)
269 continue;
270
271 list_add(&obj->obj_exec_link, &stolen);
272
273 total_obj_size += obj->base.size;
274 count++;
275 }
276 list_sort(NULL, &stolen, obj_rank_by_stolen);
277 seq_puts(m, "Stolen:\n");
278 while (!list_empty(&stolen)) {
279 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
280 seq_puts(m, " ");
281 describe_obj(m, obj);
282 seq_putc(m, '\n');
283 list_del_init(&obj->obj_exec_link);
284 }
285 mutex_unlock(&dev->struct_mutex);
286
287 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
288 count, total_obj_size, total_gtt_size);
289 return 0;
290 }
291
292 #define count_objects(list, member) do { \
293 list_for_each_entry(obj, list, member) { \
294 size += i915_gem_obj_ggtt_size(obj); \
295 ++count; \
296 if (obj->map_and_fenceable) { \
297 mappable_size += i915_gem_obj_ggtt_size(obj); \
298 ++mappable_count; \
299 } \
300 } \
301 } while (0)
302
303 struct file_stats {
304 struct drm_i915_file_private *file_priv;
305 int count;
306 size_t total, unbound;
307 size_t global, shared;
308 size_t active, inactive;
309 };
310
311 static int per_file_stats(int id, void *ptr, void *data)
312 {
313 struct drm_i915_gem_object *obj = ptr;
314 struct file_stats *stats = data;
315 struct i915_vma *vma;
316
317 stats->count++;
318 stats->total += obj->base.size;
319
320 if (obj->base.name || obj->base.dma_buf)
321 stats->shared += obj->base.size;
322
323 if (USES_FULL_PPGTT(obj->base.dev)) {
324 list_for_each_entry(vma, &obj->vma_list, vma_link) {
325 struct i915_hw_ppgtt *ppgtt;
326
327 if (!drm_mm_node_allocated(&vma->node))
328 continue;
329
330 if (i915_is_ggtt(vma->vm)) {
331 stats->global += obj->base.size;
332 continue;
333 }
334
335 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
336 if (ppgtt->file_priv != stats->file_priv)
337 continue;
338
339 if (obj->active) /* XXX per-vma statistic */
340 stats->active += obj->base.size;
341 else
342 stats->inactive += obj->base.size;
343
344 return 0;
345 }
346 } else {
347 if (i915_gem_obj_ggtt_bound(obj)) {
348 stats->global += obj->base.size;
349 if (obj->active)
350 stats->active += obj->base.size;
351 else
352 stats->inactive += obj->base.size;
353 return 0;
354 }
355 }
356
357 if (!list_empty(&obj->global_list))
358 stats->unbound += obj->base.size;
359
360 return 0;
361 }
362
363 #define print_file_stats(m, name, stats) \
364 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
365 name, \
366 stats.count, \
367 stats.total, \
368 stats.active, \
369 stats.inactive, \
370 stats.global, \
371 stats.shared, \
372 stats.unbound)
373
374 static void print_batch_pool_stats(struct seq_file *m,
375 struct drm_i915_private *dev_priv)
376 {
377 struct drm_i915_gem_object *obj;
378 struct file_stats stats;
379
380 memset(&stats, 0, sizeof(stats));
381
382 list_for_each_entry(obj,
383 &dev_priv->mm.batch_pool.cache_list,
384 batch_pool_list)
385 per_file_stats(0, obj, &stats);
386
387 print_file_stats(m, "batch pool", stats);
388 }
389
390 #define count_vmas(list, member) do { \
391 list_for_each_entry(vma, list, member) { \
392 size += i915_gem_obj_ggtt_size(vma->obj); \
393 ++count; \
394 if (vma->obj->map_and_fenceable) { \
395 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
396 ++mappable_count; \
397 } \
398 } \
399 } while (0)
400
401 static int i915_gem_object_info(struct seq_file *m, void* data)
402 {
403 struct drm_info_node *node = m->private;
404 struct drm_device *dev = node->minor->dev;
405 struct drm_i915_private *dev_priv = dev->dev_private;
406 u32 count, mappable_count, purgeable_count;
407 size_t size, mappable_size, purgeable_size;
408 struct drm_i915_gem_object *obj;
409 struct i915_address_space *vm = &dev_priv->gtt.base;
410 struct drm_file *file;
411 struct i915_vma *vma;
412 int ret;
413
414 ret = mutex_lock_interruptible(&dev->struct_mutex);
415 if (ret)
416 return ret;
417
418 seq_printf(m, "%u objects, %zu bytes\n",
419 dev_priv->mm.object_count,
420 dev_priv->mm.object_memory);
421
422 size = count = mappable_size = mappable_count = 0;
423 count_objects(&dev_priv->mm.bound_list, global_list);
424 seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
425 count, mappable_count, size, mappable_size);
426
427 size = count = mappable_size = mappable_count = 0;
428 count_vmas(&vm->active_list, mm_list);
429 seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
430 count, mappable_count, size, mappable_size);
431
432 size = count = mappable_size = mappable_count = 0;
433 count_vmas(&vm->inactive_list, mm_list);
434 seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
435 count, mappable_count, size, mappable_size);
436
437 size = count = purgeable_size = purgeable_count = 0;
438 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
439 size += obj->base.size, ++count;
440 if (obj->madv == I915_MADV_DONTNEED)
441 purgeable_size += obj->base.size, ++purgeable_count;
442 }
443 seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
444
445 size = count = mappable_size = mappable_count = 0;
446 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
447 if (obj->fault_mappable) {
448 size += i915_gem_obj_ggtt_size(obj);
449 ++count;
450 }
451 if (obj->pin_mappable) {
452 mappable_size += i915_gem_obj_ggtt_size(obj);
453 ++mappable_count;
454 }
455 if (obj->madv == I915_MADV_DONTNEED) {
456 purgeable_size += obj->base.size;
457 ++purgeable_count;
458 }
459 }
460 seq_printf(m, "%u purgeable objects, %zu bytes\n",
461 purgeable_count, purgeable_size);
462 seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
463 mappable_count, mappable_size);
464 seq_printf(m, "%u fault mappable objects, %zu bytes\n",
465 count, size);
466
467 seq_printf(m, "%zu [%lu] gtt total\n",
468 dev_priv->gtt.base.total,
469 dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
470
471 seq_putc(m, '\n');
472 print_batch_pool_stats(m, dev_priv);
473
474 seq_putc(m, '\n');
475 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
476 struct file_stats stats;
477 struct task_struct *task;
478
479 memset(&stats, 0, sizeof(stats));
480 stats.file_priv = file->driver_priv;
481 spin_lock(&file->table_lock);
482 idr_for_each(&file->object_idr, per_file_stats, &stats);
483 spin_unlock(&file->table_lock);
484 /*
485 * Although we have a valid reference on file->pid, that does
486 * not guarantee that the task_struct who called get_pid() is
487 * still alive (e.g. get_pid(current) => fork() => exit()).
488 * Therefore, we need to protect this ->comm access using RCU.
489 */
490 rcu_read_lock();
491 task = pid_task(file->pid, PIDTYPE_PID);
492 print_file_stats(m, task ? task->comm : "<unknown>", stats);
493 rcu_read_unlock();
494 }
495
496 mutex_unlock(&dev->struct_mutex);
497
498 return 0;
499 }
500
501 static int i915_gem_gtt_info(struct seq_file *m, void *data)
502 {
503 struct drm_info_node *node = m->private;
504 struct drm_device *dev = node->minor->dev;
505 uintptr_t list = (uintptr_t) node->info_ent->data;
506 struct drm_i915_private *dev_priv = dev->dev_private;
507 struct drm_i915_gem_object *obj;
508 size_t total_obj_size, total_gtt_size;
509 int count, ret;
510
511 ret = mutex_lock_interruptible(&dev->struct_mutex);
512 if (ret)
513 return ret;
514
515 total_obj_size = total_gtt_size = count = 0;
516 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
517 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
518 continue;
519
520 seq_puts(m, " ");
521 describe_obj(m, obj);
522 seq_putc(m, '\n');
523 total_obj_size += obj->base.size;
524 total_gtt_size += i915_gem_obj_ggtt_size(obj);
525 count++;
526 }
527
528 mutex_unlock(&dev->struct_mutex);
529
530 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
531 count, total_obj_size, total_gtt_size);
532
533 return 0;
534 }
535
536 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
537 {
538 struct drm_info_node *node = m->private;
539 struct drm_device *dev = node->minor->dev;
540 struct drm_i915_private *dev_priv = dev->dev_private;
541 struct intel_crtc *crtc;
542 int ret;
543
544 ret = mutex_lock_interruptible(&dev->struct_mutex);
545 if (ret)
546 return ret;
547
548 for_each_intel_crtc(dev, crtc) {
549 const char pipe = pipe_name(crtc->pipe);
550 const char plane = plane_name(crtc->plane);
551 struct intel_unpin_work *work;
552
553 spin_lock_irq(&dev->event_lock);
554 work = crtc->unpin_work;
555 if (work == NULL) {
556 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
557 pipe, plane);
558 } else {
559 u32 addr;
560
561 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
562 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
563 pipe, plane);
564 } else {
565 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
566 pipe, plane);
567 }
568 if (work->flip_queued_req) {
569 struct intel_engine_cs *ring =
570 i915_gem_request_get_ring(work->flip_queued_req);
571
572 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
573 ring->name,
574 i915_gem_request_get_seqno(work->flip_queued_req),
575 dev_priv->next_seqno,
576 ring->get_seqno(ring, true),
577 i915_gem_request_completed(work->flip_queued_req, true));
578 } else
579 seq_printf(m, "Flip not associated with any ring\n");
580 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
581 work->flip_queued_vblank,
582 work->flip_ready_vblank,
583 drm_vblank_count(dev, crtc->pipe));
584 if (work->enable_stall_check)
585 seq_puts(m, "Stall check enabled, ");
586 else
587 seq_puts(m, "Stall check waiting for page flip ioctl, ");
588 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
589
590 if (INTEL_INFO(dev)->gen >= 4)
591 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
592 else
593 addr = I915_READ(DSPADDR(crtc->plane));
594 seq_printf(m, "Current scanout address 0x%08x\n", addr);
595
596 if (work->pending_flip_obj) {
597 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
598 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
599 }
600 }
601 spin_unlock_irq(&dev->event_lock);
602 }
603
604 mutex_unlock(&dev->struct_mutex);
605
606 return 0;
607 }
608
609 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
610 {
611 struct drm_info_node *node = m->private;
612 struct drm_device *dev = node->minor->dev;
613 struct drm_i915_private *dev_priv = dev->dev_private;
614 struct drm_i915_gem_object *obj;
615 int count = 0;
616 int ret;
617
618 ret = mutex_lock_interruptible(&dev->struct_mutex);
619 if (ret)
620 return ret;
621
622 seq_puts(m, "cache:\n");
623 list_for_each_entry(obj,
624 &dev_priv->mm.batch_pool.cache_list,
625 batch_pool_list) {
626 seq_puts(m, " ");
627 describe_obj(m, obj);
628 seq_putc(m, '\n');
629 count++;
630 }
631
632 seq_printf(m, "total: %d\n", count);
633
634 mutex_unlock(&dev->struct_mutex);
635
636 return 0;
637 }
638
639 static int i915_gem_request_info(struct seq_file *m, void *data)
640 {
641 struct drm_info_node *node = m->private;
642 struct drm_device *dev = node->minor->dev;
643 struct drm_i915_private *dev_priv = dev->dev_private;
644 struct intel_engine_cs *ring;
645 struct drm_i915_gem_request *gem_request;
646 int ret, count, i;
647
648 ret = mutex_lock_interruptible(&dev->struct_mutex);
649 if (ret)
650 return ret;
651
652 count = 0;
653 for_each_ring(ring, dev_priv, i) {
654 if (list_empty(&ring->request_list))
655 continue;
656
657 seq_printf(m, "%s requests:\n", ring->name);
658 list_for_each_entry(gem_request,
659 &ring->request_list,
660 list) {
661 seq_printf(m, " %x @ %d\n",
662 gem_request->seqno,
663 (int) (jiffies - gem_request->emitted_jiffies));
664 }
665 count++;
666 }
667 mutex_unlock(&dev->struct_mutex);
668
669 if (count == 0)
670 seq_puts(m, "No requests\n");
671
672 return 0;
673 }
674
675 static void i915_ring_seqno_info(struct seq_file *m,
676 struct intel_engine_cs *ring)
677 {
678 if (ring->get_seqno) {
679 seq_printf(m, "Current sequence (%s): %x\n",
680 ring->name, ring->get_seqno(ring, false));
681 }
682 }
683
684 static int i915_gem_seqno_info(struct seq_file *m, void *data)
685 {
686 struct drm_info_node *node = m->private;
687 struct drm_device *dev = node->minor->dev;
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 struct intel_engine_cs *ring;
690 int ret, i;
691
692 ret = mutex_lock_interruptible(&dev->struct_mutex);
693 if (ret)
694 return ret;
695 intel_runtime_pm_get(dev_priv);
696
697 for_each_ring(ring, dev_priv, i)
698 i915_ring_seqno_info(m, ring);
699
700 intel_runtime_pm_put(dev_priv);
701 mutex_unlock(&dev->struct_mutex);
702
703 return 0;
704 }
705
706
707 static int i915_interrupt_info(struct seq_file *m, void *data)
708 {
709 struct drm_info_node *node = m->private;
710 struct drm_device *dev = node->minor->dev;
711 struct drm_i915_private *dev_priv = dev->dev_private;
712 struct intel_engine_cs *ring;
713 int ret, i, pipe;
714
715 ret = mutex_lock_interruptible(&dev->struct_mutex);
716 if (ret)
717 return ret;
718 intel_runtime_pm_get(dev_priv);
719
720 if (IS_CHERRYVIEW(dev)) {
721 seq_printf(m, "Master Interrupt Control:\t%08x\n",
722 I915_READ(GEN8_MASTER_IRQ));
723
724 seq_printf(m, "Display IER:\t%08x\n",
725 I915_READ(VLV_IER));
726 seq_printf(m, "Display IIR:\t%08x\n",
727 I915_READ(VLV_IIR));
728 seq_printf(m, "Display IIR_RW:\t%08x\n",
729 I915_READ(VLV_IIR_RW));
730 seq_printf(m, "Display IMR:\t%08x\n",
731 I915_READ(VLV_IMR));
732 for_each_pipe(dev_priv, pipe)
733 seq_printf(m, "Pipe %c stat:\t%08x\n",
734 pipe_name(pipe),
735 I915_READ(PIPESTAT(pipe)));
736
737 seq_printf(m, "Port hotplug:\t%08x\n",
738 I915_READ(PORT_HOTPLUG_EN));
739 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
740 I915_READ(VLV_DPFLIPSTAT));
741 seq_printf(m, "DPINVGTT:\t%08x\n",
742 I915_READ(DPINVGTT));
743
744 for (i = 0; i < 4; i++) {
745 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
746 i, I915_READ(GEN8_GT_IMR(i)));
747 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
748 i, I915_READ(GEN8_GT_IIR(i)));
749 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
750 i, I915_READ(GEN8_GT_IER(i)));
751 }
752
753 seq_printf(m, "PCU interrupt mask:\t%08x\n",
754 I915_READ(GEN8_PCU_IMR));
755 seq_printf(m, "PCU interrupt identity:\t%08x\n",
756 I915_READ(GEN8_PCU_IIR));
757 seq_printf(m, "PCU interrupt enable:\t%08x\n",
758 I915_READ(GEN8_PCU_IER));
759 } else if (INTEL_INFO(dev)->gen >= 8) {
760 seq_printf(m, "Master Interrupt Control:\t%08x\n",
761 I915_READ(GEN8_MASTER_IRQ));
762
763 for (i = 0; i < 4; i++) {
764 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
765 i, I915_READ(GEN8_GT_IMR(i)));
766 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
767 i, I915_READ(GEN8_GT_IIR(i)));
768 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
769 i, I915_READ(GEN8_GT_IER(i)));
770 }
771
772 for_each_pipe(dev_priv, pipe) {
773 if (!intel_display_power_is_enabled(dev_priv,
774 POWER_DOMAIN_PIPE(pipe))) {
775 seq_printf(m, "Pipe %c power disabled\n",
776 pipe_name(pipe));
777 continue;
778 }
779 seq_printf(m, "Pipe %c IMR:\t%08x\n",
780 pipe_name(pipe),
781 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
782 seq_printf(m, "Pipe %c IIR:\t%08x\n",
783 pipe_name(pipe),
784 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
785 seq_printf(m, "Pipe %c IER:\t%08x\n",
786 pipe_name(pipe),
787 I915_READ(GEN8_DE_PIPE_IER(pipe)));
788 }
789
790 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
791 I915_READ(GEN8_DE_PORT_IMR));
792 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
793 I915_READ(GEN8_DE_PORT_IIR));
794 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
795 I915_READ(GEN8_DE_PORT_IER));
796
797 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
798 I915_READ(GEN8_DE_MISC_IMR));
799 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
800 I915_READ(GEN8_DE_MISC_IIR));
801 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
802 I915_READ(GEN8_DE_MISC_IER));
803
804 seq_printf(m, "PCU interrupt mask:\t%08x\n",
805 I915_READ(GEN8_PCU_IMR));
806 seq_printf(m, "PCU interrupt identity:\t%08x\n",
807 I915_READ(GEN8_PCU_IIR));
808 seq_printf(m, "PCU interrupt enable:\t%08x\n",
809 I915_READ(GEN8_PCU_IER));
810 } else if (IS_VALLEYVIEW(dev)) {
811 seq_printf(m, "Display IER:\t%08x\n",
812 I915_READ(VLV_IER));
813 seq_printf(m, "Display IIR:\t%08x\n",
814 I915_READ(VLV_IIR));
815 seq_printf(m, "Display IIR_RW:\t%08x\n",
816 I915_READ(VLV_IIR_RW));
817 seq_printf(m, "Display IMR:\t%08x\n",
818 I915_READ(VLV_IMR));
819 for_each_pipe(dev_priv, pipe)
820 seq_printf(m, "Pipe %c stat:\t%08x\n",
821 pipe_name(pipe),
822 I915_READ(PIPESTAT(pipe)));
823
824 seq_printf(m, "Master IER:\t%08x\n",
825 I915_READ(VLV_MASTER_IER));
826
827 seq_printf(m, "Render IER:\t%08x\n",
828 I915_READ(GTIER));
829 seq_printf(m, "Render IIR:\t%08x\n",
830 I915_READ(GTIIR));
831 seq_printf(m, "Render IMR:\t%08x\n",
832 I915_READ(GTIMR));
833
834 seq_printf(m, "PM IER:\t\t%08x\n",
835 I915_READ(GEN6_PMIER));
836 seq_printf(m, "PM IIR:\t\t%08x\n",
837 I915_READ(GEN6_PMIIR));
838 seq_printf(m, "PM IMR:\t\t%08x\n",
839 I915_READ(GEN6_PMIMR));
840
841 seq_printf(m, "Port hotplug:\t%08x\n",
842 I915_READ(PORT_HOTPLUG_EN));
843 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
844 I915_READ(VLV_DPFLIPSTAT));
845 seq_printf(m, "DPINVGTT:\t%08x\n",
846 I915_READ(DPINVGTT));
847
848 } else if (!HAS_PCH_SPLIT(dev)) {
849 seq_printf(m, "Interrupt enable: %08x\n",
850 I915_READ(IER));
851 seq_printf(m, "Interrupt identity: %08x\n",
852 I915_READ(IIR));
853 seq_printf(m, "Interrupt mask: %08x\n",
854 I915_READ(IMR));
855 for_each_pipe(dev_priv, pipe)
856 seq_printf(m, "Pipe %c stat: %08x\n",
857 pipe_name(pipe),
858 I915_READ(PIPESTAT(pipe)));
859 } else {
860 seq_printf(m, "North Display Interrupt enable: %08x\n",
861 I915_READ(DEIER));
862 seq_printf(m, "North Display Interrupt identity: %08x\n",
863 I915_READ(DEIIR));
864 seq_printf(m, "North Display Interrupt mask: %08x\n",
865 I915_READ(DEIMR));
866 seq_printf(m, "South Display Interrupt enable: %08x\n",
867 I915_READ(SDEIER));
868 seq_printf(m, "South Display Interrupt identity: %08x\n",
869 I915_READ(SDEIIR));
870 seq_printf(m, "South Display Interrupt mask: %08x\n",
871 I915_READ(SDEIMR));
872 seq_printf(m, "Graphics Interrupt enable: %08x\n",
873 I915_READ(GTIER));
874 seq_printf(m, "Graphics Interrupt identity: %08x\n",
875 I915_READ(GTIIR));
876 seq_printf(m, "Graphics Interrupt mask: %08x\n",
877 I915_READ(GTIMR));
878 }
879 for_each_ring(ring, dev_priv, i) {
880 if (INTEL_INFO(dev)->gen >= 6) {
881 seq_printf(m,
882 "Graphics Interrupt mask (%s): %08x\n",
883 ring->name, I915_READ_IMR(ring));
884 }
885 i915_ring_seqno_info(m, ring);
886 }
887 intel_runtime_pm_put(dev_priv);
888 mutex_unlock(&dev->struct_mutex);
889
890 return 0;
891 }
892
893 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
894 {
895 struct drm_info_node *node = m->private;
896 struct drm_device *dev = node->minor->dev;
897 struct drm_i915_private *dev_priv = dev->dev_private;
898 int i, ret;
899
900 ret = mutex_lock_interruptible(&dev->struct_mutex);
901 if (ret)
902 return ret;
903
904 seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
905 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
906 for (i = 0; i < dev_priv->num_fence_regs; i++) {
907 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
908
909 seq_printf(m, "Fence %d, pin count = %d, object = ",
910 i, dev_priv->fence_regs[i].pin_count);
911 if (obj == NULL)
912 seq_puts(m, "unused");
913 else
914 describe_obj(m, obj);
915 seq_putc(m, '\n');
916 }
917
918 mutex_unlock(&dev->struct_mutex);
919 return 0;
920 }
921
922 static int i915_hws_info(struct seq_file *m, void *data)
923 {
924 struct drm_info_node *node = m->private;
925 struct drm_device *dev = node->minor->dev;
926 struct drm_i915_private *dev_priv = dev->dev_private;
927 struct intel_engine_cs *ring;
928 const u32 *hws;
929 int i;
930
931 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
932 hws = ring->status_page.page_addr;
933 if (hws == NULL)
934 return 0;
935
936 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
937 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
938 i * 4,
939 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
940 }
941 return 0;
942 }
943
944 static ssize_t
945 i915_error_state_write(struct file *filp,
946 const char __user *ubuf,
947 size_t cnt,
948 loff_t *ppos)
949 {
950 struct i915_error_state_file_priv *error_priv = filp->private_data;
951 struct drm_device *dev = error_priv->dev;
952 int ret;
953
954 DRM_DEBUG_DRIVER("Resetting error state\n");
955
956 ret = mutex_lock_interruptible(&dev->struct_mutex);
957 if (ret)
958 return ret;
959
960 i915_destroy_error_state(dev);
961 mutex_unlock(&dev->struct_mutex);
962
963 return cnt;
964 }
965
966 static int i915_error_state_open(struct inode *inode, struct file *file)
967 {
968 struct drm_device *dev = inode->i_private;
969 struct i915_error_state_file_priv *error_priv;
970
971 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
972 if (!error_priv)
973 return -ENOMEM;
974
975 error_priv->dev = dev;
976
977 i915_error_state_get(dev, error_priv);
978
979 file->private_data = error_priv;
980
981 return 0;
982 }
983
984 static int i915_error_state_release(struct inode *inode, struct file *file)
985 {
986 struct i915_error_state_file_priv *error_priv = file->private_data;
987
988 i915_error_state_put(error_priv);
989 kfree(error_priv);
990
991 return 0;
992 }
993
994 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
995 size_t count, loff_t *pos)
996 {
997 struct i915_error_state_file_priv *error_priv = file->private_data;
998 struct drm_i915_error_state_buf error_str;
999 loff_t tmp_pos = 0;
1000 ssize_t ret_count = 0;
1001 int ret;
1002
1003 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1004 if (ret)
1005 return ret;
1006
1007 ret = i915_error_state_to_str(&error_str, error_priv);
1008 if (ret)
1009 goto out;
1010
1011 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1012 error_str.buf,
1013 error_str.bytes);
1014
1015 if (ret_count < 0)
1016 ret = ret_count;
1017 else
1018 *pos = error_str.start + ret_count;
1019 out:
1020 i915_error_state_buf_release(&error_str);
1021 return ret ?: ret_count;
1022 }
1023
1024 static const struct file_operations i915_error_state_fops = {
1025 .owner = THIS_MODULE,
1026 .open = i915_error_state_open,
1027 .read = i915_error_state_read,
1028 .write = i915_error_state_write,
1029 .llseek = default_llseek,
1030 .release = i915_error_state_release,
1031 };
1032
1033 static int
1034 i915_next_seqno_get(void *data, u64 *val)
1035 {
1036 struct drm_device *dev = data;
1037 struct drm_i915_private *dev_priv = dev->dev_private;
1038 int ret;
1039
1040 ret = mutex_lock_interruptible(&dev->struct_mutex);
1041 if (ret)
1042 return ret;
1043
1044 *val = dev_priv->next_seqno;
1045 mutex_unlock(&dev->struct_mutex);
1046
1047 return 0;
1048 }
1049
1050 static int
1051 i915_next_seqno_set(void *data, u64 val)
1052 {
1053 struct drm_device *dev = data;
1054 int ret;
1055
1056 ret = mutex_lock_interruptible(&dev->struct_mutex);
1057 if (ret)
1058 return ret;
1059
1060 ret = i915_gem_set_seqno(dev, val);
1061 mutex_unlock(&dev->struct_mutex);
1062
1063 return ret;
1064 }
1065
1066 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1067 i915_next_seqno_get, i915_next_seqno_set,
1068 "0x%llx\n");
1069
1070 static int i915_frequency_info(struct seq_file *m, void *unused)
1071 {
1072 struct drm_info_node *node = m->private;
1073 struct drm_device *dev = node->minor->dev;
1074 struct drm_i915_private *dev_priv = dev->dev_private;
1075 int ret = 0;
1076
1077 intel_runtime_pm_get(dev_priv);
1078
1079 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1080
1081 if (IS_GEN5(dev)) {
1082 u16 rgvswctl = I915_READ16(MEMSWCTL);
1083 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1084
1085 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1086 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1087 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1088 MEMSTAT_VID_SHIFT);
1089 seq_printf(m, "Current P-state: %d\n",
1090 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1091 } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1092 IS_BROADWELL(dev)) {
1093 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1094 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1095 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1096 u32 rpmodectl, rpinclimit, rpdeclimit;
1097 u32 rpstat, cagf, reqf;
1098 u32 rpupei, rpcurup, rpprevup;
1099 u32 rpdownei, rpcurdown, rpprevdown;
1100 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1101 int max_freq;
1102
1103 /* RPSTAT1 is in the GT power well */
1104 ret = mutex_lock_interruptible(&dev->struct_mutex);
1105 if (ret)
1106 goto out;
1107
1108 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1109
1110 reqf = I915_READ(GEN6_RPNSWREQ);
1111 reqf &= ~GEN6_TURBO_DISABLE;
1112 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1113 reqf >>= 24;
1114 else
1115 reqf >>= 25;
1116 reqf = intel_gpu_freq(dev_priv, reqf);
1117
1118 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1119 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1120 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1121
1122 rpstat = I915_READ(GEN6_RPSTAT1);
1123 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1124 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1125 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1126 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1127 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1128 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1129 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1130 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1131 else
1132 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1133 cagf = intel_gpu_freq(dev_priv, cagf);
1134
1135 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1136 mutex_unlock(&dev->struct_mutex);
1137
1138 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1139 pm_ier = I915_READ(GEN6_PMIER);
1140 pm_imr = I915_READ(GEN6_PMIMR);
1141 pm_isr = I915_READ(GEN6_PMISR);
1142 pm_iir = I915_READ(GEN6_PMIIR);
1143 pm_mask = I915_READ(GEN6_PMINTRMSK);
1144 } else {
1145 pm_ier = I915_READ(GEN8_GT_IER(2));
1146 pm_imr = I915_READ(GEN8_GT_IMR(2));
1147 pm_isr = I915_READ(GEN8_GT_ISR(2));
1148 pm_iir = I915_READ(GEN8_GT_IIR(2));
1149 pm_mask = I915_READ(GEN6_PMINTRMSK);
1150 }
1151 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1152 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1153 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1154 seq_printf(m, "Render p-state ratio: %d\n",
1155 (gt_perf_status & 0xff00) >> 8);
1156 seq_printf(m, "Render p-state VID: %d\n",
1157 gt_perf_status & 0xff);
1158 seq_printf(m, "Render p-state limit: %d\n",
1159 rp_state_limits & 0xff);
1160 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1161 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1162 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1163 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1164 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1165 seq_printf(m, "CAGF: %dMHz\n", cagf);
1166 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1167 GEN6_CURICONT_MASK);
1168 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1169 GEN6_CURBSYTAVG_MASK);
1170 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1171 GEN6_CURBSYTAVG_MASK);
1172 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1173 GEN6_CURIAVG_MASK);
1174 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1175 GEN6_CURBSYTAVG_MASK);
1176 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1177 GEN6_CURBSYTAVG_MASK);
1178
1179 max_freq = (rp_state_cap & 0xff0000) >> 16;
1180 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1181 intel_gpu_freq(dev_priv, max_freq));
1182
1183 max_freq = (rp_state_cap & 0xff00) >> 8;
1184 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1185 intel_gpu_freq(dev_priv, max_freq));
1186
1187 max_freq = rp_state_cap & 0xff;
1188 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1189 intel_gpu_freq(dev_priv, max_freq));
1190
1191 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1192 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1193 } else if (IS_VALLEYVIEW(dev)) {
1194 u32 freq_sts;
1195
1196 mutex_lock(&dev_priv->rps.hw_lock);
1197 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1198 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1199 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1200
1201 seq_printf(m, "max GPU freq: %d MHz\n",
1202 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1203
1204 seq_printf(m, "min GPU freq: %d MHz\n",
1205 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1206
1207 seq_printf(m,
1208 "efficient (RPe) frequency: %d MHz\n",
1209 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1210
1211 seq_printf(m, "current GPU freq: %d MHz\n",
1212 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1213 mutex_unlock(&dev_priv->rps.hw_lock);
1214 } else {
1215 seq_puts(m, "no P-state info available\n");
1216 }
1217
1218 out:
1219 intel_runtime_pm_put(dev_priv);
1220 return ret;
1221 }
1222
1223 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1224 {
1225 struct drm_info_node *node = m->private;
1226 struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
1227 struct intel_engine_cs *ring;
1228 int i;
1229
1230 if (!i915.enable_hangcheck) {
1231 seq_printf(m, "Hangcheck disabled\n");
1232 return 0;
1233 }
1234
1235 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1236 seq_printf(m, "Hangcheck active, fires in %dms\n",
1237 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1238 jiffies));
1239 } else
1240 seq_printf(m, "Hangcheck inactive\n");
1241
1242 for_each_ring(ring, dev_priv, i) {
1243 seq_printf(m, "%s:\n", ring->name);
1244 seq_printf(m, "\tseqno = %x [current %x]\n",
1245 ring->hangcheck.seqno, ring->get_seqno(ring, false));
1246 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1247 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1248 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1249 (long long)ring->hangcheck.acthd,
1250 (long long)intel_ring_get_active_head(ring));
1251 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1252 (long long)ring->hangcheck.max_acthd);
1253 }
1254
1255 return 0;
1256 }
1257
1258 static int ironlake_drpc_info(struct seq_file *m)
1259 {
1260 struct drm_info_node *node = m->private;
1261 struct drm_device *dev = node->minor->dev;
1262 struct drm_i915_private *dev_priv = dev->dev_private;
1263 u32 rgvmodectl, rstdbyctl;
1264 u16 crstandvid;
1265 int ret;
1266
1267 ret = mutex_lock_interruptible(&dev->struct_mutex);
1268 if (ret)
1269 return ret;
1270 intel_runtime_pm_get(dev_priv);
1271
1272 rgvmodectl = I915_READ(MEMMODECTL);
1273 rstdbyctl = I915_READ(RSTDBYCTL);
1274 crstandvid = I915_READ16(CRSTANDVID);
1275
1276 intel_runtime_pm_put(dev_priv);
1277 mutex_unlock(&dev->struct_mutex);
1278
1279 seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1280 "yes" : "no");
1281 seq_printf(m, "Boost freq: %d\n",
1282 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1283 MEMMODE_BOOST_FREQ_SHIFT);
1284 seq_printf(m, "HW control enabled: %s\n",
1285 rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1286 seq_printf(m, "SW control enabled: %s\n",
1287 rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1288 seq_printf(m, "Gated voltage change: %s\n",
1289 rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1290 seq_printf(m, "Starting frequency: P%d\n",
1291 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1292 seq_printf(m, "Max P-state: P%d\n",
1293 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1294 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1295 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1296 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1297 seq_printf(m, "Render standby enabled: %s\n",
1298 (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1299 seq_puts(m, "Current RS state: ");
1300 switch (rstdbyctl & RSX_STATUS_MASK) {
1301 case RSX_STATUS_ON:
1302 seq_puts(m, "on\n");
1303 break;
1304 case RSX_STATUS_RC1:
1305 seq_puts(m, "RC1\n");
1306 break;
1307 case RSX_STATUS_RC1E:
1308 seq_puts(m, "RC1E\n");
1309 break;
1310 case RSX_STATUS_RS1:
1311 seq_puts(m, "RS1\n");
1312 break;
1313 case RSX_STATUS_RS2:
1314 seq_puts(m, "RS2 (RC6)\n");
1315 break;
1316 case RSX_STATUS_RS3:
1317 seq_puts(m, "RC3 (RC6+)\n");
1318 break;
1319 default:
1320 seq_puts(m, "unknown\n");
1321 break;
1322 }
1323
1324 return 0;
1325 }
1326
1327 static int i915_forcewake_domains(struct seq_file *m, void *data)
1328 {
1329 struct drm_info_node *node = m->private;
1330 struct drm_device *dev = node->minor->dev;
1331 struct drm_i915_private *dev_priv = dev->dev_private;
1332 struct intel_uncore_forcewake_domain *fw_domain;
1333 int i;
1334
1335 spin_lock_irq(&dev_priv->uncore.lock);
1336 for_each_fw_domain(fw_domain, dev_priv, i) {
1337 seq_printf(m, "%s.wake_count = %u\n",
1338 intel_uncore_forcewake_domain_to_str(i),
1339 fw_domain->wake_count);
1340 }
1341 spin_unlock_irq(&dev_priv->uncore.lock);
1342
1343 return 0;
1344 }
1345
1346 static int vlv_drpc_info(struct seq_file *m)
1347 {
1348 struct drm_info_node *node = m->private;
1349 struct drm_device *dev = node->minor->dev;
1350 struct drm_i915_private *dev_priv = dev->dev_private;
1351 u32 rpmodectl1, rcctl1, pw_status;
1352
1353 intel_runtime_pm_get(dev_priv);
1354
1355 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1356 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1357 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1358
1359 intel_runtime_pm_put(dev_priv);
1360
1361 seq_printf(m, "Video Turbo Mode: %s\n",
1362 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1363 seq_printf(m, "Turbo enabled: %s\n",
1364 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1365 seq_printf(m, "HW control enabled: %s\n",
1366 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1367 seq_printf(m, "SW control enabled: %s\n",
1368 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1369 GEN6_RP_MEDIA_SW_MODE));
1370 seq_printf(m, "RC6 Enabled: %s\n",
1371 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1372 GEN6_RC_CTL_EI_MODE(1))));
1373 seq_printf(m, "Render Power Well: %s\n",
1374 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1375 seq_printf(m, "Media Power Well: %s\n",
1376 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1377
1378 seq_printf(m, "Render RC6 residency since boot: %u\n",
1379 I915_READ(VLV_GT_RENDER_RC6));
1380 seq_printf(m, "Media RC6 residency since boot: %u\n",
1381 I915_READ(VLV_GT_MEDIA_RC6));
1382
1383 return i915_forcewake_domains(m, NULL);
1384 }
1385
1386 static int gen6_drpc_info(struct seq_file *m)
1387 {
1388 struct drm_info_node *node = m->private;
1389 struct drm_device *dev = node->minor->dev;
1390 struct drm_i915_private *dev_priv = dev->dev_private;
1391 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1392 unsigned forcewake_count;
1393 int count = 0, ret;
1394
1395 ret = mutex_lock_interruptible(&dev->struct_mutex);
1396 if (ret)
1397 return ret;
1398 intel_runtime_pm_get(dev_priv);
1399
1400 spin_lock_irq(&dev_priv->uncore.lock);
1401 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1402 spin_unlock_irq(&dev_priv->uncore.lock);
1403
1404 if (forcewake_count) {
1405 seq_puts(m, "RC information inaccurate because somebody "
1406 "holds a forcewake reference \n");
1407 } else {
1408 /* NB: we cannot use forcewake, else we read the wrong values */
1409 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1410 udelay(10);
1411 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1412 }
1413
1414 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1415 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1416
1417 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1418 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1419 mutex_unlock(&dev->struct_mutex);
1420 mutex_lock(&dev_priv->rps.hw_lock);
1421 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1422 mutex_unlock(&dev_priv->rps.hw_lock);
1423
1424 intel_runtime_pm_put(dev_priv);
1425
1426 seq_printf(m, "Video Turbo Mode: %s\n",
1427 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1428 seq_printf(m, "HW control enabled: %s\n",
1429 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1430 seq_printf(m, "SW control enabled: %s\n",
1431 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1432 GEN6_RP_MEDIA_SW_MODE));
1433 seq_printf(m, "RC1e Enabled: %s\n",
1434 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1435 seq_printf(m, "RC6 Enabled: %s\n",
1436 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1437 seq_printf(m, "Deep RC6 Enabled: %s\n",
1438 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1439 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1440 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1441 seq_puts(m, "Current RC state: ");
1442 switch (gt_core_status & GEN6_RCn_MASK) {
1443 case GEN6_RC0:
1444 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1445 seq_puts(m, "Core Power Down\n");
1446 else
1447 seq_puts(m, "on\n");
1448 break;
1449 case GEN6_RC3:
1450 seq_puts(m, "RC3\n");
1451 break;
1452 case GEN6_RC6:
1453 seq_puts(m, "RC6\n");
1454 break;
1455 case GEN6_RC7:
1456 seq_puts(m, "RC7\n");
1457 break;
1458 default:
1459 seq_puts(m, "Unknown\n");
1460 break;
1461 }
1462
1463 seq_printf(m, "Core Power Down: %s\n",
1464 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1465
1466 /* Not exactly sure what this is */
1467 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1468 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1469 seq_printf(m, "RC6 residency since boot: %u\n",
1470 I915_READ(GEN6_GT_GFX_RC6));
1471 seq_printf(m, "RC6+ residency since boot: %u\n",
1472 I915_READ(GEN6_GT_GFX_RC6p));
1473 seq_printf(m, "RC6++ residency since boot: %u\n",
1474 I915_READ(GEN6_GT_GFX_RC6pp));
1475
1476 seq_printf(m, "RC6 voltage: %dmV\n",
1477 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1478 seq_printf(m, "RC6+ voltage: %dmV\n",
1479 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1480 seq_printf(m, "RC6++ voltage: %dmV\n",
1481 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1482 return 0;
1483 }
1484
1485 static int i915_drpc_info(struct seq_file *m, void *unused)
1486 {
1487 struct drm_info_node *node = m->private;
1488 struct drm_device *dev = node->minor->dev;
1489
1490 if (IS_VALLEYVIEW(dev))
1491 return vlv_drpc_info(m);
1492 else if (INTEL_INFO(dev)->gen >= 6)
1493 return gen6_drpc_info(m);
1494 else
1495 return ironlake_drpc_info(m);
1496 }
1497
1498 static int i915_fbc_status(struct seq_file *m, void *unused)
1499 {
1500 struct drm_info_node *node = m->private;
1501 struct drm_device *dev = node->minor->dev;
1502 struct drm_i915_private *dev_priv = dev->dev_private;
1503
1504 if (!HAS_FBC(dev)) {
1505 seq_puts(m, "FBC unsupported on this chipset\n");
1506 return 0;
1507 }
1508
1509 intel_runtime_pm_get(dev_priv);
1510
1511 if (intel_fbc_enabled(dev)) {
1512 seq_puts(m, "FBC enabled\n");
1513 } else {
1514 seq_puts(m, "FBC disabled: ");
1515 switch (dev_priv->fbc.no_fbc_reason) {
1516 case FBC_OK:
1517 seq_puts(m, "FBC actived, but currently disabled in hardware");
1518 break;
1519 case FBC_UNSUPPORTED:
1520 seq_puts(m, "unsupported by this chipset");
1521 break;
1522 case FBC_NO_OUTPUT:
1523 seq_puts(m, "no outputs");
1524 break;
1525 case FBC_STOLEN_TOO_SMALL:
1526 seq_puts(m, "not enough stolen memory");
1527 break;
1528 case FBC_UNSUPPORTED_MODE:
1529 seq_puts(m, "mode not supported");
1530 break;
1531 case FBC_MODE_TOO_LARGE:
1532 seq_puts(m, "mode too large");
1533 break;
1534 case FBC_BAD_PLANE:
1535 seq_puts(m, "FBC unsupported on plane");
1536 break;
1537 case FBC_NOT_TILED:
1538 seq_puts(m, "scanout buffer not tiled");
1539 break;
1540 case FBC_MULTIPLE_PIPES:
1541 seq_puts(m, "multiple pipes are enabled");
1542 break;
1543 case FBC_MODULE_PARAM:
1544 seq_puts(m, "disabled per module param (default off)");
1545 break;
1546 case FBC_CHIP_DEFAULT:
1547 seq_puts(m, "disabled per chip default");
1548 break;
1549 default:
1550 seq_puts(m, "unknown reason");
1551 }
1552 seq_putc(m, '\n');
1553 }
1554
1555 intel_runtime_pm_put(dev_priv);
1556
1557 return 0;
1558 }
1559
1560 static int i915_fbc_fc_get(void *data, u64 *val)
1561 {
1562 struct drm_device *dev = data;
1563 struct drm_i915_private *dev_priv = dev->dev_private;
1564
1565 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1566 return -ENODEV;
1567
1568 drm_modeset_lock_all(dev);
1569 *val = dev_priv->fbc.false_color;
1570 drm_modeset_unlock_all(dev);
1571
1572 return 0;
1573 }
1574
1575 static int i915_fbc_fc_set(void *data, u64 val)
1576 {
1577 struct drm_device *dev = data;
1578 struct drm_i915_private *dev_priv = dev->dev_private;
1579 u32 reg;
1580
1581 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1582 return -ENODEV;
1583
1584 drm_modeset_lock_all(dev);
1585
1586 reg = I915_READ(ILK_DPFC_CONTROL);
1587 dev_priv->fbc.false_color = val;
1588
1589 I915_WRITE(ILK_DPFC_CONTROL, val ?
1590 (reg | FBC_CTL_FALSE_COLOR) :
1591 (reg & ~FBC_CTL_FALSE_COLOR));
1592
1593 drm_modeset_unlock_all(dev);
1594 return 0;
1595 }
1596
1597 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1598 i915_fbc_fc_get, i915_fbc_fc_set,
1599 "%llu\n");
1600
1601 static int i915_ips_status(struct seq_file *m, void *unused)
1602 {
1603 struct drm_info_node *node = m->private;
1604 struct drm_device *dev = node->minor->dev;
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606
1607 if (!HAS_IPS(dev)) {
1608 seq_puts(m, "not supported\n");
1609 return 0;
1610 }
1611
1612 intel_runtime_pm_get(dev_priv);
1613
1614 seq_printf(m, "Enabled by kernel parameter: %s\n",
1615 yesno(i915.enable_ips));
1616
1617 if (INTEL_INFO(dev)->gen >= 8) {
1618 seq_puts(m, "Currently: unknown\n");
1619 } else {
1620 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1621 seq_puts(m, "Currently: enabled\n");
1622 else
1623 seq_puts(m, "Currently: disabled\n");
1624 }
1625
1626 intel_runtime_pm_put(dev_priv);
1627
1628 return 0;
1629 }
1630
1631 static int i915_sr_status(struct seq_file *m, void *unused)
1632 {
1633 struct drm_info_node *node = m->private;
1634 struct drm_device *dev = node->minor->dev;
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 bool sr_enabled = false;
1637
1638 intel_runtime_pm_get(dev_priv);
1639
1640 if (HAS_PCH_SPLIT(dev))
1641 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1642 else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1643 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1644 else if (IS_I915GM(dev))
1645 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1646 else if (IS_PINEVIEW(dev))
1647 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1648
1649 intel_runtime_pm_put(dev_priv);
1650
1651 seq_printf(m, "self-refresh: %s\n",
1652 sr_enabled ? "enabled" : "disabled");
1653
1654 return 0;
1655 }
1656
1657 static int i915_emon_status(struct seq_file *m, void *unused)
1658 {
1659 struct drm_info_node *node = m->private;
1660 struct drm_device *dev = node->minor->dev;
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 unsigned long temp, chipset, gfx;
1663 int ret;
1664
1665 if (!IS_GEN5(dev))
1666 return -ENODEV;
1667
1668 ret = mutex_lock_interruptible(&dev->struct_mutex);
1669 if (ret)
1670 return ret;
1671
1672 temp = i915_mch_val(dev_priv);
1673 chipset = i915_chipset_val(dev_priv);
1674 gfx = i915_gfx_val(dev_priv);
1675 mutex_unlock(&dev->struct_mutex);
1676
1677 seq_printf(m, "GMCH temp: %ld\n", temp);
1678 seq_printf(m, "Chipset power: %ld\n", chipset);
1679 seq_printf(m, "GFX power: %ld\n", gfx);
1680 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1681
1682 return 0;
1683 }
1684
1685 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1686 {
1687 struct drm_info_node *node = m->private;
1688 struct drm_device *dev = node->minor->dev;
1689 struct drm_i915_private *dev_priv = dev->dev_private;
1690 int ret = 0;
1691 int gpu_freq, ia_freq;
1692
1693 if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1694 seq_puts(m, "unsupported on this chipset\n");
1695 return 0;
1696 }
1697
1698 intel_runtime_pm_get(dev_priv);
1699
1700 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1701
1702 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1703 if (ret)
1704 goto out;
1705
1706 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1707
1708 for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1709 gpu_freq <= dev_priv->rps.max_freq_softlimit;
1710 gpu_freq++) {
1711 ia_freq = gpu_freq;
1712 sandybridge_pcode_read(dev_priv,
1713 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1714 &ia_freq);
1715 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1716 intel_gpu_freq(dev_priv, gpu_freq),
1717 ((ia_freq >> 0) & 0xff) * 100,
1718 ((ia_freq >> 8) & 0xff) * 100);
1719 }
1720
1721 mutex_unlock(&dev_priv->rps.hw_lock);
1722
1723 out:
1724 intel_runtime_pm_put(dev_priv);
1725 return ret;
1726 }
1727
1728 static int i915_opregion(struct seq_file *m, void *unused)
1729 {
1730 struct drm_info_node *node = m->private;
1731 struct drm_device *dev = node->minor->dev;
1732 struct drm_i915_private *dev_priv = dev->dev_private;
1733 struct intel_opregion *opregion = &dev_priv->opregion;
1734 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1735 int ret;
1736
1737 if (data == NULL)
1738 return -ENOMEM;
1739
1740 ret = mutex_lock_interruptible(&dev->struct_mutex);
1741 if (ret)
1742 goto out;
1743
1744 if (opregion->header) {
1745 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1746 seq_write(m, data, OPREGION_SIZE);
1747 }
1748
1749 mutex_unlock(&dev->struct_mutex);
1750
1751 out:
1752 kfree(data);
1753 return 0;
1754 }
1755
1756 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1757 {
1758 struct drm_info_node *node = m->private;
1759 struct drm_device *dev = node->minor->dev;
1760 struct intel_fbdev *ifbdev = NULL;
1761 struct intel_framebuffer *fb;
1762
1763 #ifdef CONFIG_DRM_I915_FBDEV
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765
1766 ifbdev = dev_priv->fbdev;
1767 fb = to_intel_framebuffer(ifbdev->helper.fb);
1768
1769 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1770 fb->base.width,
1771 fb->base.height,
1772 fb->base.depth,
1773 fb->base.bits_per_pixel,
1774 atomic_read(&fb->base.refcount.refcount));
1775 describe_obj(m, fb->obj);
1776 seq_putc(m, '\n');
1777 #endif
1778
1779 mutex_lock(&dev->mode_config.fb_lock);
1780 list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1781 if (ifbdev && &fb->base == ifbdev->helper.fb)
1782 continue;
1783
1784 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1785 fb->base.width,
1786 fb->base.height,
1787 fb->base.depth,
1788 fb->base.bits_per_pixel,
1789 atomic_read(&fb->base.refcount.refcount));
1790 describe_obj(m, fb->obj);
1791 seq_putc(m, '\n');
1792 }
1793 mutex_unlock(&dev->mode_config.fb_lock);
1794
1795 return 0;
1796 }
1797
1798 static void describe_ctx_ringbuf(struct seq_file *m,
1799 struct intel_ringbuffer *ringbuf)
1800 {
1801 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1802 ringbuf->space, ringbuf->head, ringbuf->tail,
1803 ringbuf->last_retired_head);
1804 }
1805
1806 static int i915_context_status(struct seq_file *m, void *unused)
1807 {
1808 struct drm_info_node *node = m->private;
1809 struct drm_device *dev = node->minor->dev;
1810 struct drm_i915_private *dev_priv = dev->dev_private;
1811 struct intel_engine_cs *ring;
1812 struct intel_context *ctx;
1813 int ret, i;
1814
1815 ret = mutex_lock_interruptible(&dev->struct_mutex);
1816 if (ret)
1817 return ret;
1818
1819 if (dev_priv->ips.pwrctx) {
1820 seq_puts(m, "power context ");
1821 describe_obj(m, dev_priv->ips.pwrctx);
1822 seq_putc(m, '\n');
1823 }
1824
1825 if (dev_priv->ips.renderctx) {
1826 seq_puts(m, "render context ");
1827 describe_obj(m, dev_priv->ips.renderctx);
1828 seq_putc(m, '\n');
1829 }
1830
1831 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1832 if (!i915.enable_execlists &&
1833 ctx->legacy_hw_ctx.rcs_state == NULL)
1834 continue;
1835
1836 seq_puts(m, "HW context ");
1837 describe_ctx(m, ctx);
1838 for_each_ring(ring, dev_priv, i) {
1839 if (ring->default_context == ctx)
1840 seq_printf(m, "(default context %s) ",
1841 ring->name);
1842 }
1843
1844 if (i915.enable_execlists) {
1845 seq_putc(m, '\n');
1846 for_each_ring(ring, dev_priv, i) {
1847 struct drm_i915_gem_object *ctx_obj =
1848 ctx->engine[i].state;
1849 struct intel_ringbuffer *ringbuf =
1850 ctx->engine[i].ringbuf;
1851
1852 seq_printf(m, "%s: ", ring->name);
1853 if (ctx_obj)
1854 describe_obj(m, ctx_obj);
1855 if (ringbuf)
1856 describe_ctx_ringbuf(m, ringbuf);
1857 seq_putc(m, '\n');
1858 }
1859 } else {
1860 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1861 }
1862
1863 seq_putc(m, '\n');
1864 }
1865
1866 mutex_unlock(&dev->struct_mutex);
1867
1868 return 0;
1869 }
1870
1871 static void i915_dump_lrc_obj(struct seq_file *m,
1872 struct intel_engine_cs *ring,
1873 struct drm_i915_gem_object *ctx_obj)
1874 {
1875 struct page *page;
1876 uint32_t *reg_state;
1877 int j;
1878 unsigned long ggtt_offset = 0;
1879
1880 if (ctx_obj == NULL) {
1881 seq_printf(m, "Context on %s with no gem object\n",
1882 ring->name);
1883 return;
1884 }
1885
1886 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1887 intel_execlists_ctx_id(ctx_obj));
1888
1889 if (!i915_gem_obj_ggtt_bound(ctx_obj))
1890 seq_puts(m, "\tNot bound in GGTT\n");
1891 else
1892 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1893
1894 if (i915_gem_object_get_pages(ctx_obj)) {
1895 seq_puts(m, "\tFailed to get pages for context object\n");
1896 return;
1897 }
1898
1899 page = i915_gem_object_get_page(ctx_obj, 1);
1900 if (!WARN_ON(page == NULL)) {
1901 reg_state = kmap_atomic(page);
1902
1903 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1904 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1905 ggtt_offset + 4096 + (j * 4),
1906 reg_state[j], reg_state[j + 1],
1907 reg_state[j + 2], reg_state[j + 3]);
1908 }
1909 kunmap_atomic(reg_state);
1910 }
1911
1912 seq_putc(m, '\n');
1913 }
1914
1915 static int i915_dump_lrc(struct seq_file *m, void *unused)
1916 {
1917 struct drm_info_node *node = (struct drm_info_node *) m->private;
1918 struct drm_device *dev = node->minor->dev;
1919 struct drm_i915_private *dev_priv = dev->dev_private;
1920 struct intel_engine_cs *ring;
1921 struct intel_context *ctx;
1922 int ret, i;
1923
1924 if (!i915.enable_execlists) {
1925 seq_printf(m, "Logical Ring Contexts are disabled\n");
1926 return 0;
1927 }
1928
1929 ret = mutex_lock_interruptible(&dev->struct_mutex);
1930 if (ret)
1931 return ret;
1932
1933 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1934 for_each_ring(ring, dev_priv, i) {
1935 if (ring->default_context != ctx)
1936 i915_dump_lrc_obj(m, ring,
1937 ctx->engine[i].state);
1938 }
1939 }
1940
1941 mutex_unlock(&dev->struct_mutex);
1942
1943 return 0;
1944 }
1945
1946 static int i915_execlists(struct seq_file *m, void *data)
1947 {
1948 struct drm_info_node *node = (struct drm_info_node *)m->private;
1949 struct drm_device *dev = node->minor->dev;
1950 struct drm_i915_private *dev_priv = dev->dev_private;
1951 struct intel_engine_cs *ring;
1952 u32 status_pointer;
1953 u8 read_pointer;
1954 u8 write_pointer;
1955 u32 status;
1956 u32 ctx_id;
1957 struct list_head *cursor;
1958 int ring_id, i;
1959 int ret;
1960
1961 if (!i915.enable_execlists) {
1962 seq_puts(m, "Logical Ring Contexts are disabled\n");
1963 return 0;
1964 }
1965
1966 ret = mutex_lock_interruptible(&dev->struct_mutex);
1967 if (ret)
1968 return ret;
1969
1970 intel_runtime_pm_get(dev_priv);
1971
1972 for_each_ring(ring, dev_priv, ring_id) {
1973 struct drm_i915_gem_request *head_req = NULL;
1974 int count = 0;
1975 unsigned long flags;
1976
1977 seq_printf(m, "%s\n", ring->name);
1978
1979 status = I915_READ(RING_EXECLIST_STATUS(ring));
1980 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1981 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1982 status, ctx_id);
1983
1984 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1985 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1986
1987 read_pointer = ring->next_context_status_buffer;
1988 write_pointer = status_pointer & 0x07;
1989 if (read_pointer > write_pointer)
1990 write_pointer += 6;
1991 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
1992 read_pointer, write_pointer);
1993
1994 for (i = 0; i < 6; i++) {
1995 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
1996 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
1997
1998 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
1999 i, status, ctx_id);
2000 }
2001
2002 spin_lock_irqsave(&ring->execlist_lock, flags);
2003 list_for_each(cursor, &ring->execlist_queue)
2004 count++;
2005 head_req = list_first_entry_or_null(&ring->execlist_queue,
2006 struct drm_i915_gem_request, execlist_link);
2007 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2008
2009 seq_printf(m, "\t%d requests in queue\n", count);
2010 if (head_req) {
2011 struct drm_i915_gem_object *ctx_obj;
2012
2013 ctx_obj = head_req->ctx->engine[ring_id].state;
2014 seq_printf(m, "\tHead request id: %u\n",
2015 intel_execlists_ctx_id(ctx_obj));
2016 seq_printf(m, "\tHead request tail: %u\n",
2017 head_req->tail);
2018 }
2019
2020 seq_putc(m, '\n');
2021 }
2022
2023 intel_runtime_pm_put(dev_priv);
2024 mutex_unlock(&dev->struct_mutex);
2025
2026 return 0;
2027 }
2028
2029 static const char *swizzle_string(unsigned swizzle)
2030 {
2031 switch (swizzle) {
2032 case I915_BIT_6_SWIZZLE_NONE:
2033 return "none";
2034 case I915_BIT_6_SWIZZLE_9:
2035 return "bit9";
2036 case I915_BIT_6_SWIZZLE_9_10:
2037 return "bit9/bit10";
2038 case I915_BIT_6_SWIZZLE_9_11:
2039 return "bit9/bit11";
2040 case I915_BIT_6_SWIZZLE_9_10_11:
2041 return "bit9/bit10/bit11";
2042 case I915_BIT_6_SWIZZLE_9_17:
2043 return "bit9/bit17";
2044 case I915_BIT_6_SWIZZLE_9_10_17:
2045 return "bit9/bit10/bit17";
2046 case I915_BIT_6_SWIZZLE_UNKNOWN:
2047 return "unknown";
2048 }
2049
2050 return "bug";
2051 }
2052
2053 static int i915_swizzle_info(struct seq_file *m, void *data)
2054 {
2055 struct drm_info_node *node = m->private;
2056 struct drm_device *dev = node->minor->dev;
2057 struct drm_i915_private *dev_priv = dev->dev_private;
2058 int ret;
2059
2060 ret = mutex_lock_interruptible(&dev->struct_mutex);
2061 if (ret)
2062 return ret;
2063 intel_runtime_pm_get(dev_priv);
2064
2065 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2066 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2067 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2068 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2069
2070 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2071 seq_printf(m, "DDC = 0x%08x\n",
2072 I915_READ(DCC));
2073 seq_printf(m, "DDC2 = 0x%08x\n",
2074 I915_READ(DCC2));
2075 seq_printf(m, "C0DRB3 = 0x%04x\n",
2076 I915_READ16(C0DRB3));
2077 seq_printf(m, "C1DRB3 = 0x%04x\n",
2078 I915_READ16(C1DRB3));
2079 } else if (INTEL_INFO(dev)->gen >= 6) {
2080 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2081 I915_READ(MAD_DIMM_C0));
2082 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2083 I915_READ(MAD_DIMM_C1));
2084 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2085 I915_READ(MAD_DIMM_C2));
2086 seq_printf(m, "TILECTL = 0x%08x\n",
2087 I915_READ(TILECTL));
2088 if (INTEL_INFO(dev)->gen >= 8)
2089 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2090 I915_READ(GAMTARBMODE));
2091 else
2092 seq_printf(m, "ARB_MODE = 0x%08x\n",
2093 I915_READ(ARB_MODE));
2094 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2095 I915_READ(DISP_ARB_CTL));
2096 }
2097
2098 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2099 seq_puts(m, "L-shaped memory detected\n");
2100
2101 intel_runtime_pm_put(dev_priv);
2102 mutex_unlock(&dev->struct_mutex);
2103
2104 return 0;
2105 }
2106
2107 static int per_file_ctx(int id, void *ptr, void *data)
2108 {
2109 struct intel_context *ctx = ptr;
2110 struct seq_file *m = data;
2111 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2112
2113 if (!ppgtt) {
2114 seq_printf(m, " no ppgtt for context %d\n",
2115 ctx->user_handle);
2116 return 0;
2117 }
2118
2119 if (i915_gem_context_is_default(ctx))
2120 seq_puts(m, " default context:\n");
2121 else
2122 seq_printf(m, " context %d:\n", ctx->user_handle);
2123 ppgtt->debug_dump(ppgtt, m);
2124
2125 return 0;
2126 }
2127
2128 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2129 {
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2131 struct intel_engine_cs *ring;
2132 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2133 int unused, i;
2134
2135 if (!ppgtt)
2136 return;
2137
2138 seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2139 seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2140 for_each_ring(ring, dev_priv, unused) {
2141 seq_printf(m, "%s\n", ring->name);
2142 for (i = 0; i < 4; i++) {
2143 u32 offset = 0x270 + i * 8;
2144 u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2145 pdp <<= 32;
2146 pdp |= I915_READ(ring->mmio_base + offset);
2147 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2148 }
2149 }
2150 }
2151
2152 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2153 {
2154 struct drm_i915_private *dev_priv = dev->dev_private;
2155 struct intel_engine_cs *ring;
2156 struct drm_file *file;
2157 int i;
2158
2159 if (INTEL_INFO(dev)->gen == 6)
2160 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2161
2162 for_each_ring(ring, dev_priv, i) {
2163 seq_printf(m, "%s\n", ring->name);
2164 if (INTEL_INFO(dev)->gen == 7)
2165 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2166 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2167 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2168 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2169 }
2170 if (dev_priv->mm.aliasing_ppgtt) {
2171 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2172
2173 seq_puts(m, "aliasing PPGTT:\n");
2174 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
2175
2176 ppgtt->debug_dump(ppgtt, m);
2177 }
2178
2179 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2180 struct drm_i915_file_private *file_priv = file->driver_priv;
2181
2182 seq_printf(m, "proc: %s\n",
2183 get_pid_task(file->pid, PIDTYPE_PID)->comm);
2184 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2185 }
2186 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2187 }
2188
2189 static int i915_ppgtt_info(struct seq_file *m, void *data)
2190 {
2191 struct drm_info_node *node = m->private;
2192 struct drm_device *dev = node->minor->dev;
2193 struct drm_i915_private *dev_priv = dev->dev_private;
2194
2195 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2196 if (ret)
2197 return ret;
2198 intel_runtime_pm_get(dev_priv);
2199
2200 if (INTEL_INFO(dev)->gen >= 8)
2201 gen8_ppgtt_info(m, dev);
2202 else if (INTEL_INFO(dev)->gen >= 6)
2203 gen6_ppgtt_info(m, dev);
2204
2205 intel_runtime_pm_put(dev_priv);
2206 mutex_unlock(&dev->struct_mutex);
2207
2208 return 0;
2209 }
2210
2211 static int i915_llc(struct seq_file *m, void *data)
2212 {
2213 struct drm_info_node *node = m->private;
2214 struct drm_device *dev = node->minor->dev;
2215 struct drm_i915_private *dev_priv = dev->dev_private;
2216
2217 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2218 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2219 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2220
2221 return 0;
2222 }
2223
2224 static int i915_edp_psr_status(struct seq_file *m, void *data)
2225 {
2226 struct drm_info_node *node = m->private;
2227 struct drm_device *dev = node->minor->dev;
2228 struct drm_i915_private *dev_priv = dev->dev_private;
2229 u32 psrperf = 0;
2230 u32 stat[3];
2231 enum pipe pipe;
2232 bool enabled = false;
2233
2234 intel_runtime_pm_get(dev_priv);
2235
2236 mutex_lock(&dev_priv->psr.lock);
2237 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2238 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2239 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2240 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2241 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2242 dev_priv->psr.busy_frontbuffer_bits);
2243 seq_printf(m, "Re-enable work scheduled: %s\n",
2244 yesno(work_busy(&dev_priv->psr.work.work)));
2245
2246 if (HAS_PSR(dev)) {
2247 if (HAS_DDI(dev))
2248 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2249 else {
2250 for_each_pipe(dev_priv, pipe) {
2251 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2252 VLV_EDP_PSR_CURR_STATE_MASK;
2253 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2254 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2255 enabled = true;
2256 }
2257 }
2258 }
2259 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2260
2261 if (!HAS_DDI(dev))
2262 for_each_pipe(dev_priv, pipe) {
2263 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2264 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2265 seq_printf(m, " pipe %c", pipe_name(pipe));
2266 }
2267 seq_puts(m, "\n");
2268
2269 seq_printf(m, "Link standby: %s\n",
2270 yesno((bool)dev_priv->psr.link_standby));
2271
2272 /* CHV PSR has no kind of performance counter */
2273 if (HAS_PSR(dev) && HAS_DDI(dev)) {
2274 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2275 EDP_PSR_PERF_CNT_MASK;
2276
2277 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2278 }
2279 mutex_unlock(&dev_priv->psr.lock);
2280
2281 intel_runtime_pm_put(dev_priv);
2282 return 0;
2283 }
2284
2285 static int i915_sink_crc(struct seq_file *m, void *data)
2286 {
2287 struct drm_info_node *node = m->private;
2288 struct drm_device *dev = node->minor->dev;
2289 struct intel_encoder *encoder;
2290 struct intel_connector *connector;
2291 struct intel_dp *intel_dp = NULL;
2292 int ret;
2293 u8 crc[6];
2294
2295 drm_modeset_lock_all(dev);
2296 list_for_each_entry(connector, &dev->mode_config.connector_list,
2297 base.head) {
2298
2299 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2300 continue;
2301
2302 if (!connector->base.encoder)
2303 continue;
2304
2305 encoder = to_intel_encoder(connector->base.encoder);
2306 if (encoder->type != INTEL_OUTPUT_EDP)
2307 continue;
2308
2309 intel_dp = enc_to_intel_dp(&encoder->base);
2310
2311 ret = intel_dp_sink_crc(intel_dp, crc);
2312 if (ret)
2313 goto out;
2314
2315 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2316 crc[0], crc[1], crc[2],
2317 crc[3], crc[4], crc[5]);
2318 goto out;
2319 }
2320 ret = -ENODEV;
2321 out:
2322 drm_modeset_unlock_all(dev);
2323 return ret;
2324 }
2325
2326 static int i915_energy_uJ(struct seq_file *m, void *data)
2327 {
2328 struct drm_info_node *node = m->private;
2329 struct drm_device *dev = node->minor->dev;
2330 struct drm_i915_private *dev_priv = dev->dev_private;
2331 u64 power;
2332 u32 units;
2333
2334 if (INTEL_INFO(dev)->gen < 6)
2335 return -ENODEV;
2336
2337 intel_runtime_pm_get(dev_priv);
2338
2339 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2340 power = (power & 0x1f00) >> 8;
2341 units = 1000000 / (1 << power); /* convert to uJ */
2342 power = I915_READ(MCH_SECP_NRG_STTS);
2343 power *= units;
2344
2345 intel_runtime_pm_put(dev_priv);
2346
2347 seq_printf(m, "%llu", (long long unsigned)power);
2348
2349 return 0;
2350 }
2351
2352 static int i915_pc8_status(struct seq_file *m, void *unused)
2353 {
2354 struct drm_info_node *node = m->private;
2355 struct drm_device *dev = node->minor->dev;
2356 struct drm_i915_private *dev_priv = dev->dev_private;
2357
2358 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2359 seq_puts(m, "not supported\n");
2360 return 0;
2361 }
2362
2363 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2364 seq_printf(m, "IRQs disabled: %s\n",
2365 yesno(!intel_irqs_enabled(dev_priv)));
2366
2367 return 0;
2368 }
2369
2370 static const char *power_domain_str(enum intel_display_power_domain domain)
2371 {
2372 switch (domain) {
2373 case POWER_DOMAIN_PIPE_A:
2374 return "PIPE_A";
2375 case POWER_DOMAIN_PIPE_B:
2376 return "PIPE_B";
2377 case POWER_DOMAIN_PIPE_C:
2378 return "PIPE_C";
2379 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2380 return "PIPE_A_PANEL_FITTER";
2381 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2382 return "PIPE_B_PANEL_FITTER";
2383 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2384 return "PIPE_C_PANEL_FITTER";
2385 case POWER_DOMAIN_TRANSCODER_A:
2386 return "TRANSCODER_A";
2387 case POWER_DOMAIN_TRANSCODER_B:
2388 return "TRANSCODER_B";
2389 case POWER_DOMAIN_TRANSCODER_C:
2390 return "TRANSCODER_C";
2391 case POWER_DOMAIN_TRANSCODER_EDP:
2392 return "TRANSCODER_EDP";
2393 case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2394 return "PORT_DDI_A_2_LANES";
2395 case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2396 return "PORT_DDI_A_4_LANES";
2397 case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2398 return "PORT_DDI_B_2_LANES";
2399 case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2400 return "PORT_DDI_B_4_LANES";
2401 case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2402 return "PORT_DDI_C_2_LANES";
2403 case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2404 return "PORT_DDI_C_4_LANES";
2405 case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2406 return "PORT_DDI_D_2_LANES";
2407 case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2408 return "PORT_DDI_D_4_LANES";
2409 case POWER_DOMAIN_PORT_DSI:
2410 return "PORT_DSI";
2411 case POWER_DOMAIN_PORT_CRT:
2412 return "PORT_CRT";
2413 case POWER_DOMAIN_PORT_OTHER:
2414 return "PORT_OTHER";
2415 case POWER_DOMAIN_VGA:
2416 return "VGA";
2417 case POWER_DOMAIN_AUDIO:
2418 return "AUDIO";
2419 case POWER_DOMAIN_PLLS:
2420 return "PLLS";
2421 case POWER_DOMAIN_AUX_A:
2422 return "AUX_A";
2423 case POWER_DOMAIN_AUX_B:
2424 return "AUX_B";
2425 case POWER_DOMAIN_AUX_C:
2426 return "AUX_C";
2427 case POWER_DOMAIN_AUX_D:
2428 return "AUX_D";
2429 case POWER_DOMAIN_INIT:
2430 return "INIT";
2431 default:
2432 MISSING_CASE(domain);
2433 return "?";
2434 }
2435 }
2436
2437 static int i915_power_domain_info(struct seq_file *m, void *unused)
2438 {
2439 struct drm_info_node *node = m->private;
2440 struct drm_device *dev = node->minor->dev;
2441 struct drm_i915_private *dev_priv = dev->dev_private;
2442 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2443 int i;
2444
2445 mutex_lock(&power_domains->lock);
2446
2447 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2448 for (i = 0; i < power_domains->power_well_count; i++) {
2449 struct i915_power_well *power_well;
2450 enum intel_display_power_domain power_domain;
2451
2452 power_well = &power_domains->power_wells[i];
2453 seq_printf(m, "%-25s %d\n", power_well->name,
2454 power_well->count);
2455
2456 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2457 power_domain++) {
2458 if (!(BIT(power_domain) & power_well->domains))
2459 continue;
2460
2461 seq_printf(m, " %-23s %d\n",
2462 power_domain_str(power_domain),
2463 power_domains->domain_use_count[power_domain]);
2464 }
2465 }
2466
2467 mutex_unlock(&power_domains->lock);
2468
2469 return 0;
2470 }
2471
2472 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2473 struct drm_display_mode *mode)
2474 {
2475 int i;
2476
2477 for (i = 0; i < tabs; i++)
2478 seq_putc(m, '\t');
2479
2480 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2481 mode->base.id, mode->name,
2482 mode->vrefresh, mode->clock,
2483 mode->hdisplay, mode->hsync_start,
2484 mode->hsync_end, mode->htotal,
2485 mode->vdisplay, mode->vsync_start,
2486 mode->vsync_end, mode->vtotal,
2487 mode->type, mode->flags);
2488 }
2489
2490 static void intel_encoder_info(struct seq_file *m,
2491 struct intel_crtc *intel_crtc,
2492 struct intel_encoder *intel_encoder)
2493 {
2494 struct drm_info_node *node = m->private;
2495 struct drm_device *dev = node->minor->dev;
2496 struct drm_crtc *crtc = &intel_crtc->base;
2497 struct intel_connector *intel_connector;
2498 struct drm_encoder *encoder;
2499
2500 encoder = &intel_encoder->base;
2501 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2502 encoder->base.id, encoder->name);
2503 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2504 struct drm_connector *connector = &intel_connector->base;
2505 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2506 connector->base.id,
2507 connector->name,
2508 drm_get_connector_status_name(connector->status));
2509 if (connector->status == connector_status_connected) {
2510 struct drm_display_mode *mode = &crtc->mode;
2511 seq_printf(m, ", mode:\n");
2512 intel_seq_print_mode(m, 2, mode);
2513 } else {
2514 seq_putc(m, '\n');
2515 }
2516 }
2517 }
2518
2519 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2520 {
2521 struct drm_info_node *node = m->private;
2522 struct drm_device *dev = node->minor->dev;
2523 struct drm_crtc *crtc = &intel_crtc->base;
2524 struct intel_encoder *intel_encoder;
2525
2526 if (crtc->primary->fb)
2527 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2528 crtc->primary->fb->base.id, crtc->x, crtc->y,
2529 crtc->primary->fb->width, crtc->primary->fb->height);
2530 else
2531 seq_puts(m, "\tprimary plane disabled\n");
2532 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2533 intel_encoder_info(m, intel_crtc, intel_encoder);
2534 }
2535
2536 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2537 {
2538 struct drm_display_mode *mode = panel->fixed_mode;
2539
2540 seq_printf(m, "\tfixed mode:\n");
2541 intel_seq_print_mode(m, 2, mode);
2542 }
2543
2544 static void intel_dp_info(struct seq_file *m,
2545 struct intel_connector *intel_connector)
2546 {
2547 struct intel_encoder *intel_encoder = intel_connector->encoder;
2548 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2549
2550 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2551 seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2552 "no");
2553 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2554 intel_panel_info(m, &intel_connector->panel);
2555 }
2556
2557 static void intel_hdmi_info(struct seq_file *m,
2558 struct intel_connector *intel_connector)
2559 {
2560 struct intel_encoder *intel_encoder = intel_connector->encoder;
2561 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2562
2563 seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2564 "no");
2565 }
2566
2567 static void intel_lvds_info(struct seq_file *m,
2568 struct intel_connector *intel_connector)
2569 {
2570 intel_panel_info(m, &intel_connector->panel);
2571 }
2572
2573 static void intel_connector_info(struct seq_file *m,
2574 struct drm_connector *connector)
2575 {
2576 struct intel_connector *intel_connector = to_intel_connector(connector);
2577 struct intel_encoder *intel_encoder = intel_connector->encoder;
2578 struct drm_display_mode *mode;
2579
2580 seq_printf(m, "connector %d: type %s, status: %s\n",
2581 connector->base.id, connector->name,
2582 drm_get_connector_status_name(connector->status));
2583 if (connector->status == connector_status_connected) {
2584 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2585 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2586 connector->display_info.width_mm,
2587 connector->display_info.height_mm);
2588 seq_printf(m, "\tsubpixel order: %s\n",
2589 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2590 seq_printf(m, "\tCEA rev: %d\n",
2591 connector->display_info.cea_rev);
2592 }
2593 if (intel_encoder) {
2594 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2595 intel_encoder->type == INTEL_OUTPUT_EDP)
2596 intel_dp_info(m, intel_connector);
2597 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2598 intel_hdmi_info(m, intel_connector);
2599 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2600 intel_lvds_info(m, intel_connector);
2601 }
2602
2603 seq_printf(m, "\tmodes:\n");
2604 list_for_each_entry(mode, &connector->modes, head)
2605 intel_seq_print_mode(m, 2, mode);
2606 }
2607
2608 static bool cursor_active(struct drm_device *dev, int pipe)
2609 {
2610 struct drm_i915_private *dev_priv = dev->dev_private;
2611 u32 state;
2612
2613 if (IS_845G(dev) || IS_I865G(dev))
2614 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2615 else
2616 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2617
2618 return state;
2619 }
2620
2621 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2622 {
2623 struct drm_i915_private *dev_priv = dev->dev_private;
2624 u32 pos;
2625
2626 pos = I915_READ(CURPOS(pipe));
2627
2628 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2629 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2630 *x = -*x;
2631
2632 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2633 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2634 *y = -*y;
2635
2636 return cursor_active(dev, pipe);
2637 }
2638
2639 static int i915_display_info(struct seq_file *m, void *unused)
2640 {
2641 struct drm_info_node *node = m->private;
2642 struct drm_device *dev = node->minor->dev;
2643 struct drm_i915_private *dev_priv = dev->dev_private;
2644 struct intel_crtc *crtc;
2645 struct drm_connector *connector;
2646
2647 intel_runtime_pm_get(dev_priv);
2648 drm_modeset_lock_all(dev);
2649 seq_printf(m, "CRTC info\n");
2650 seq_printf(m, "---------\n");
2651 for_each_intel_crtc(dev, crtc) {
2652 bool active;
2653 int x, y;
2654
2655 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2656 crtc->base.base.id, pipe_name(crtc->pipe),
2657 yesno(crtc->active), crtc->config->pipe_src_w,
2658 crtc->config->pipe_src_h);
2659 if (crtc->active) {
2660 intel_crtc_info(m, crtc);
2661
2662 active = cursor_position(dev, crtc->pipe, &x, &y);
2663 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2664 yesno(crtc->cursor_base),
2665 x, y, crtc->cursor_width, crtc->cursor_height,
2666 crtc->cursor_addr, yesno(active));
2667 }
2668
2669 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2670 yesno(!crtc->cpu_fifo_underrun_disabled),
2671 yesno(!crtc->pch_fifo_underrun_disabled));
2672 }
2673
2674 seq_printf(m, "\n");
2675 seq_printf(m, "Connector info\n");
2676 seq_printf(m, "--------------\n");
2677 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2678 intel_connector_info(m, connector);
2679 }
2680 drm_modeset_unlock_all(dev);
2681 intel_runtime_pm_put(dev_priv);
2682
2683 return 0;
2684 }
2685
2686 static int i915_semaphore_status(struct seq_file *m, void *unused)
2687 {
2688 struct drm_info_node *node = (struct drm_info_node *) m->private;
2689 struct drm_device *dev = node->minor->dev;
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 struct intel_engine_cs *ring;
2692 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2693 int i, j, ret;
2694
2695 if (!i915_semaphore_is_enabled(dev)) {
2696 seq_puts(m, "Semaphores are disabled\n");
2697 return 0;
2698 }
2699
2700 ret = mutex_lock_interruptible(&dev->struct_mutex);
2701 if (ret)
2702 return ret;
2703 intel_runtime_pm_get(dev_priv);
2704
2705 if (IS_BROADWELL(dev)) {
2706 struct page *page;
2707 uint64_t *seqno;
2708
2709 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2710
2711 seqno = (uint64_t *)kmap_atomic(page);
2712 for_each_ring(ring, dev_priv, i) {
2713 uint64_t offset;
2714
2715 seq_printf(m, "%s\n", ring->name);
2716
2717 seq_puts(m, " Last signal:");
2718 for (j = 0; j < num_rings; j++) {
2719 offset = i * I915_NUM_RINGS + j;
2720 seq_printf(m, "0x%08llx (0x%02llx) ",
2721 seqno[offset], offset * 8);
2722 }
2723 seq_putc(m, '\n');
2724
2725 seq_puts(m, " Last wait: ");
2726 for (j = 0; j < num_rings; j++) {
2727 offset = i + (j * I915_NUM_RINGS);
2728 seq_printf(m, "0x%08llx (0x%02llx) ",
2729 seqno[offset], offset * 8);
2730 }
2731 seq_putc(m, '\n');
2732
2733 }
2734 kunmap_atomic(seqno);
2735 } else {
2736 seq_puts(m, " Last signal:");
2737 for_each_ring(ring, dev_priv, i)
2738 for (j = 0; j < num_rings; j++)
2739 seq_printf(m, "0x%08x\n",
2740 I915_READ(ring->semaphore.mbox.signal[j]));
2741 seq_putc(m, '\n');
2742 }
2743
2744 seq_puts(m, "\nSync seqno:\n");
2745 for_each_ring(ring, dev_priv, i) {
2746 for (j = 0; j < num_rings; j++) {
2747 seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
2748 }
2749 seq_putc(m, '\n');
2750 }
2751 seq_putc(m, '\n');
2752
2753 intel_runtime_pm_put(dev_priv);
2754 mutex_unlock(&dev->struct_mutex);
2755 return 0;
2756 }
2757
2758 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2759 {
2760 struct drm_info_node *node = (struct drm_info_node *) m->private;
2761 struct drm_device *dev = node->minor->dev;
2762 struct drm_i915_private *dev_priv = dev->dev_private;
2763 int i;
2764
2765 drm_modeset_lock_all(dev);
2766 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2767 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2768
2769 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2770 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2771 pll->config.crtc_mask, pll->active, yesno(pll->on));
2772 seq_printf(m, " tracked hardware state:\n");
2773 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
2774 seq_printf(m, " dpll_md: 0x%08x\n",
2775 pll->config.hw_state.dpll_md);
2776 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
2777 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
2778 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
2779 }
2780 drm_modeset_unlock_all(dev);
2781
2782 return 0;
2783 }
2784
2785 static int i915_wa_registers(struct seq_file *m, void *unused)
2786 {
2787 int i;
2788 int ret;
2789 struct drm_info_node *node = (struct drm_info_node *) m->private;
2790 struct drm_device *dev = node->minor->dev;
2791 struct drm_i915_private *dev_priv = dev->dev_private;
2792
2793 ret = mutex_lock_interruptible(&dev->struct_mutex);
2794 if (ret)
2795 return ret;
2796
2797 intel_runtime_pm_get(dev_priv);
2798
2799 seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2800 for (i = 0; i < dev_priv->workarounds.count; ++i) {
2801 u32 addr, mask, value, read;
2802 bool ok;
2803
2804 addr = dev_priv->workarounds.reg[i].addr;
2805 mask = dev_priv->workarounds.reg[i].mask;
2806 value = dev_priv->workarounds.reg[i].value;
2807 read = I915_READ(addr);
2808 ok = (value & mask) == (read & mask);
2809 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2810 addr, value, mask, read, ok ? "OK" : "FAIL");
2811 }
2812
2813 intel_runtime_pm_put(dev_priv);
2814 mutex_unlock(&dev->struct_mutex);
2815
2816 return 0;
2817 }
2818
2819 static int i915_ddb_info(struct seq_file *m, void *unused)
2820 {
2821 struct drm_info_node *node = m->private;
2822 struct drm_device *dev = node->minor->dev;
2823 struct drm_i915_private *dev_priv = dev->dev_private;
2824 struct skl_ddb_allocation *ddb;
2825 struct skl_ddb_entry *entry;
2826 enum pipe pipe;
2827 int plane;
2828
2829 if (INTEL_INFO(dev)->gen < 9)
2830 return 0;
2831
2832 drm_modeset_lock_all(dev);
2833
2834 ddb = &dev_priv->wm.skl_hw.ddb;
2835
2836 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2837
2838 for_each_pipe(dev_priv, pipe) {
2839 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2840
2841 for_each_plane(pipe, plane) {
2842 entry = &ddb->plane[pipe][plane];
2843 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
2844 entry->start, entry->end,
2845 skl_ddb_entry_size(entry));
2846 }
2847
2848 entry = &ddb->cursor[pipe];
2849 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
2850 entry->end, skl_ddb_entry_size(entry));
2851 }
2852
2853 drm_modeset_unlock_all(dev);
2854
2855 return 0;
2856 }
2857
2858 struct pipe_crc_info {
2859 const char *name;
2860 struct drm_device *dev;
2861 enum pipe pipe;
2862 };
2863
2864 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2865 {
2866 struct drm_info_node *node = (struct drm_info_node *) m->private;
2867 struct drm_device *dev = node->minor->dev;
2868 struct drm_encoder *encoder;
2869 struct intel_encoder *intel_encoder;
2870 struct intel_digital_port *intel_dig_port;
2871 drm_modeset_lock_all(dev);
2872 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2873 intel_encoder = to_intel_encoder(encoder);
2874 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2875 continue;
2876 intel_dig_port = enc_to_dig_port(encoder);
2877 if (!intel_dig_port->dp.can_mst)
2878 continue;
2879
2880 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2881 }
2882 drm_modeset_unlock_all(dev);
2883 return 0;
2884 }
2885
2886 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2887 {
2888 struct pipe_crc_info *info = inode->i_private;
2889 struct drm_i915_private *dev_priv = info->dev->dev_private;
2890 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2891
2892 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2893 return -ENODEV;
2894
2895 spin_lock_irq(&pipe_crc->lock);
2896
2897 if (pipe_crc->opened) {
2898 spin_unlock_irq(&pipe_crc->lock);
2899 return -EBUSY; /* already open */
2900 }
2901
2902 pipe_crc->opened = true;
2903 filep->private_data = inode->i_private;
2904
2905 spin_unlock_irq(&pipe_crc->lock);
2906
2907 return 0;
2908 }
2909
2910 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2911 {
2912 struct pipe_crc_info *info = inode->i_private;
2913 struct drm_i915_private *dev_priv = info->dev->dev_private;
2914 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2915
2916 spin_lock_irq(&pipe_crc->lock);
2917 pipe_crc->opened = false;
2918 spin_unlock_irq(&pipe_crc->lock);
2919
2920 return 0;
2921 }
2922
2923 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2924 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
2925 /* account for \'0' */
2926 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
2927
2928 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2929 {
2930 assert_spin_locked(&pipe_crc->lock);
2931 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2932 INTEL_PIPE_CRC_ENTRIES_NR);
2933 }
2934
2935 static ssize_t
2936 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2937 loff_t *pos)
2938 {
2939 struct pipe_crc_info *info = filep->private_data;
2940 struct drm_device *dev = info->dev;
2941 struct drm_i915_private *dev_priv = dev->dev_private;
2942 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2943 char buf[PIPE_CRC_BUFFER_LEN];
2944 int n_entries;
2945 ssize_t bytes_read;
2946
2947 /*
2948 * Don't allow user space to provide buffers not big enough to hold
2949 * a line of data.
2950 */
2951 if (count < PIPE_CRC_LINE_LEN)
2952 return -EINVAL;
2953
2954 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2955 return 0;
2956
2957 /* nothing to read */
2958 spin_lock_irq(&pipe_crc->lock);
2959 while (pipe_crc_data_count(pipe_crc) == 0) {
2960 int ret;
2961
2962 if (filep->f_flags & O_NONBLOCK) {
2963 spin_unlock_irq(&pipe_crc->lock);
2964 return -EAGAIN;
2965 }
2966
2967 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2968 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2969 if (ret) {
2970 spin_unlock_irq(&pipe_crc->lock);
2971 return ret;
2972 }
2973 }
2974
2975 /* We now have one or more entries to read */
2976 n_entries = count / PIPE_CRC_LINE_LEN;
2977
2978 bytes_read = 0;
2979 while (n_entries > 0) {
2980 struct intel_pipe_crc_entry *entry =
2981 &pipe_crc->entries[pipe_crc->tail];
2982 int ret;
2983
2984 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2985 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
2986 break;
2987
2988 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2989 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2990
2991 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2992 "%8u %8x %8x %8x %8x %8x\n",
2993 entry->frame, entry->crc[0],
2994 entry->crc[1], entry->crc[2],
2995 entry->crc[3], entry->crc[4]);
2996
2997 spin_unlock_irq(&pipe_crc->lock);
2998
2999 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3000 if (ret == PIPE_CRC_LINE_LEN)
3001 return -EFAULT;
3002
3003 user_buf += PIPE_CRC_LINE_LEN;
3004 n_entries--;
3005
3006 spin_lock_irq(&pipe_crc->lock);
3007 }
3008
3009 spin_unlock_irq(&pipe_crc->lock);
3010
3011 return bytes_read;
3012 }
3013
3014 static const struct file_operations i915_pipe_crc_fops = {
3015 .owner = THIS_MODULE,
3016 .open = i915_pipe_crc_open,
3017 .read = i915_pipe_crc_read,
3018 .release = i915_pipe_crc_release,
3019 };
3020
3021 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3022 {
3023 .name = "i915_pipe_A_crc",
3024 .pipe = PIPE_A,
3025 },
3026 {
3027 .name = "i915_pipe_B_crc",
3028 .pipe = PIPE_B,
3029 },
3030 {
3031 .name = "i915_pipe_C_crc",
3032 .pipe = PIPE_C,
3033 },
3034 };
3035
3036 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3037 enum pipe pipe)
3038 {
3039 struct drm_device *dev = minor->dev;
3040 struct dentry *ent;
3041 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3042
3043 info->dev = dev;
3044 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3045 &i915_pipe_crc_fops);
3046 if (!ent)
3047 return -ENOMEM;
3048
3049 return drm_add_fake_info_node(minor, ent, info);
3050 }
3051
3052 static const char * const pipe_crc_sources[] = {
3053 "none",
3054 "plane1",
3055 "plane2",
3056 "pf",
3057 "pipe",
3058 "TV",
3059 "DP-B",
3060 "DP-C",
3061 "DP-D",
3062 "auto",
3063 };
3064
3065 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3066 {
3067 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3068 return pipe_crc_sources[source];
3069 }
3070
3071 static int display_crc_ctl_show(struct seq_file *m, void *data)
3072 {
3073 struct drm_device *dev = m->private;
3074 struct drm_i915_private *dev_priv = dev->dev_private;
3075 int i;
3076
3077 for (i = 0; i < I915_MAX_PIPES; i++)
3078 seq_printf(m, "%c %s\n", pipe_name(i),
3079 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3080
3081 return 0;
3082 }
3083
3084 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3085 {
3086 struct drm_device *dev = inode->i_private;
3087
3088 return single_open(file, display_crc_ctl_show, dev);
3089 }
3090
3091 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3092 uint32_t *val)
3093 {
3094 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3095 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3096
3097 switch (*source) {
3098 case INTEL_PIPE_CRC_SOURCE_PIPE:
3099 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3100 break;
3101 case INTEL_PIPE_CRC_SOURCE_NONE:
3102 *val = 0;
3103 break;
3104 default:
3105 return -EINVAL;
3106 }
3107
3108 return 0;
3109 }
3110
3111 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3112 enum intel_pipe_crc_source *source)
3113 {
3114 struct intel_encoder *encoder;
3115 struct intel_crtc *crtc;
3116 struct intel_digital_port *dig_port;
3117 int ret = 0;
3118
3119 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3120
3121 drm_modeset_lock_all(dev);
3122 for_each_intel_encoder(dev, encoder) {
3123 if (!encoder->base.crtc)
3124 continue;
3125
3126 crtc = to_intel_crtc(encoder->base.crtc);
3127
3128 if (crtc->pipe != pipe)
3129 continue;
3130
3131 switch (encoder->type) {
3132 case INTEL_OUTPUT_TVOUT:
3133 *source = INTEL_PIPE_CRC_SOURCE_TV;
3134 break;
3135 case INTEL_OUTPUT_DISPLAYPORT:
3136 case INTEL_OUTPUT_EDP:
3137 dig_port = enc_to_dig_port(&encoder->base);
3138 switch (dig_port->port) {
3139 case PORT_B:
3140 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3141 break;
3142 case PORT_C:
3143 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3144 break;
3145 case PORT_D:
3146 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3147 break;
3148 default:
3149 WARN(1, "nonexisting DP port %c\n",
3150 port_name(dig_port->port));
3151 break;
3152 }
3153 break;
3154 default:
3155 break;
3156 }
3157 }
3158 drm_modeset_unlock_all(dev);
3159
3160 return ret;
3161 }
3162
3163 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3164 enum pipe pipe,
3165 enum intel_pipe_crc_source *source,
3166 uint32_t *val)
3167 {
3168 struct drm_i915_private *dev_priv = dev->dev_private;
3169 bool need_stable_symbols = false;
3170
3171 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3172 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3173 if (ret)
3174 return ret;
3175 }
3176
3177 switch (*source) {
3178 case INTEL_PIPE_CRC_SOURCE_PIPE:
3179 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3180 break;
3181 case INTEL_PIPE_CRC_SOURCE_DP_B:
3182 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3183 need_stable_symbols = true;
3184 break;
3185 case INTEL_PIPE_CRC_SOURCE_DP_C:
3186 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3187 need_stable_symbols = true;
3188 break;
3189 case INTEL_PIPE_CRC_SOURCE_DP_D:
3190 if (!IS_CHERRYVIEW(dev))
3191 return -EINVAL;
3192 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3193 need_stable_symbols = true;
3194 break;
3195 case INTEL_PIPE_CRC_SOURCE_NONE:
3196 *val = 0;
3197 break;
3198 default:
3199 return -EINVAL;
3200 }
3201
3202 /*
3203 * When the pipe CRC tap point is after the transcoders we need
3204 * to tweak symbol-level features to produce a deterministic series of
3205 * symbols for a given frame. We need to reset those features only once
3206 * a frame (instead of every nth symbol):
3207 * - DC-balance: used to ensure a better clock recovery from the data
3208 * link (SDVO)
3209 * - DisplayPort scrambling: used for EMI reduction
3210 */
3211 if (need_stable_symbols) {
3212 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3213
3214 tmp |= DC_BALANCE_RESET_VLV;
3215 switch (pipe) {
3216 case PIPE_A:
3217 tmp |= PIPE_A_SCRAMBLE_RESET;
3218 break;
3219 case PIPE_B:
3220 tmp |= PIPE_B_SCRAMBLE_RESET;
3221 break;
3222 case PIPE_C:
3223 tmp |= PIPE_C_SCRAMBLE_RESET;
3224 break;
3225 default:
3226 return -EINVAL;
3227 }
3228 I915_WRITE(PORT_DFT2_G4X, tmp);
3229 }
3230
3231 return 0;
3232 }
3233
3234 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3235 enum pipe pipe,
3236 enum intel_pipe_crc_source *source,
3237 uint32_t *val)
3238 {
3239 struct drm_i915_private *dev_priv = dev->dev_private;
3240 bool need_stable_symbols = false;
3241
3242 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3243 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3244 if (ret)
3245 return ret;
3246 }
3247
3248 switch (*source) {
3249 case INTEL_PIPE_CRC_SOURCE_PIPE:
3250 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3251 break;
3252 case INTEL_PIPE_CRC_SOURCE_TV:
3253 if (!SUPPORTS_TV(dev))
3254 return -EINVAL;
3255 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3256 break;
3257 case INTEL_PIPE_CRC_SOURCE_DP_B:
3258 if (!IS_G4X(dev))
3259 return -EINVAL;
3260 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3261 need_stable_symbols = true;
3262 break;
3263 case INTEL_PIPE_CRC_SOURCE_DP_C:
3264 if (!IS_G4X(dev))
3265 return -EINVAL;
3266 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3267 need_stable_symbols = true;
3268 break;
3269 case INTEL_PIPE_CRC_SOURCE_DP_D:
3270 if (!IS_G4X(dev))
3271 return -EINVAL;
3272 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3273 need_stable_symbols = true;
3274 break;
3275 case INTEL_PIPE_CRC_SOURCE_NONE:
3276 *val = 0;
3277 break;
3278 default:
3279 return -EINVAL;
3280 }
3281
3282 /*
3283 * When the pipe CRC tap point is after the transcoders we need
3284 * to tweak symbol-level features to produce a deterministic series of
3285 * symbols for a given frame. We need to reset those features only once
3286 * a frame (instead of every nth symbol):
3287 * - DC-balance: used to ensure a better clock recovery from the data
3288 * link (SDVO)
3289 * - DisplayPort scrambling: used for EMI reduction
3290 */
3291 if (need_stable_symbols) {
3292 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3293
3294 WARN_ON(!IS_G4X(dev));
3295
3296 I915_WRITE(PORT_DFT_I9XX,
3297 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3298
3299 if (pipe == PIPE_A)
3300 tmp |= PIPE_A_SCRAMBLE_RESET;
3301 else
3302 tmp |= PIPE_B_SCRAMBLE_RESET;
3303
3304 I915_WRITE(PORT_DFT2_G4X, tmp);
3305 }
3306
3307 return 0;
3308 }
3309
3310 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3311 enum pipe pipe)
3312 {
3313 struct drm_i915_private *dev_priv = dev->dev_private;
3314 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3315
3316 switch (pipe) {
3317 case PIPE_A:
3318 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3319 break;
3320 case PIPE_B:
3321 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3322 break;
3323 case PIPE_C:
3324 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3325 break;
3326 default:
3327 return;
3328 }
3329 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3330 tmp &= ~DC_BALANCE_RESET_VLV;
3331 I915_WRITE(PORT_DFT2_G4X, tmp);
3332
3333 }
3334
3335 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3336 enum pipe pipe)
3337 {
3338 struct drm_i915_private *dev_priv = dev->dev_private;
3339 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3340
3341 if (pipe == PIPE_A)
3342 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3343 else
3344 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3345 I915_WRITE(PORT_DFT2_G4X, tmp);
3346
3347 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3348 I915_WRITE(PORT_DFT_I9XX,
3349 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3350 }
3351 }
3352
3353 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3354 uint32_t *val)
3355 {
3356 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3357 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3358
3359 switch (*source) {
3360 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3361 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3362 break;
3363 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3364 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3365 break;
3366 case INTEL_PIPE_CRC_SOURCE_PIPE:
3367 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3368 break;
3369 case INTEL_PIPE_CRC_SOURCE_NONE:
3370 *val = 0;
3371 break;
3372 default:
3373 return -EINVAL;
3374 }
3375
3376 return 0;
3377 }
3378
3379 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3380 {
3381 struct drm_i915_private *dev_priv = dev->dev_private;
3382 struct intel_crtc *crtc =
3383 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3384
3385 drm_modeset_lock_all(dev);
3386 /*
3387 * If we use the eDP transcoder we need to make sure that we don't
3388 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3389 * relevant on hsw with pipe A when using the always-on power well
3390 * routing.
3391 */
3392 if (crtc->config->cpu_transcoder == TRANSCODER_EDP &&
3393 !crtc->config->pch_pfit.enabled) {
3394 crtc->config->pch_pfit.force_thru = true;
3395
3396 intel_display_power_get(dev_priv,
3397 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3398
3399 dev_priv->display.crtc_disable(&crtc->base);
3400 dev_priv->display.crtc_enable(&crtc->base);
3401 }
3402 drm_modeset_unlock_all(dev);
3403 }
3404
3405 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3406 {
3407 struct drm_i915_private *dev_priv = dev->dev_private;
3408 struct intel_crtc *crtc =
3409 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3410
3411 drm_modeset_lock_all(dev);
3412 /*
3413 * If we use the eDP transcoder we need to make sure that we don't
3414 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3415 * relevant on hsw with pipe A when using the always-on power well
3416 * routing.
3417 */
3418 if (crtc->config->pch_pfit.force_thru) {
3419 crtc->config->pch_pfit.force_thru = false;
3420
3421 dev_priv->display.crtc_disable(&crtc->base);
3422 dev_priv->display.crtc_enable(&crtc->base);
3423
3424 intel_display_power_put(dev_priv,
3425 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3426 }
3427 drm_modeset_unlock_all(dev);
3428 }
3429
3430 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3431 enum pipe pipe,
3432 enum intel_pipe_crc_source *source,
3433 uint32_t *val)
3434 {
3435 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3436 *source = INTEL_PIPE_CRC_SOURCE_PF;
3437
3438 switch (*source) {
3439 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3440 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3441 break;
3442 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3443 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3444 break;
3445 case INTEL_PIPE_CRC_SOURCE_PF:
3446 if (IS_HASWELL(dev) && pipe == PIPE_A)
3447 hsw_trans_edp_pipe_A_crc_wa(dev);
3448
3449 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3450 break;
3451 case INTEL_PIPE_CRC_SOURCE_NONE:
3452 *val = 0;
3453 break;
3454 default:
3455 return -EINVAL;
3456 }
3457
3458 return 0;
3459 }
3460
3461 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3462 enum intel_pipe_crc_source source)
3463 {
3464 struct drm_i915_private *dev_priv = dev->dev_private;
3465 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3466 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3467 pipe));
3468 u32 val = 0; /* shut up gcc */
3469 int ret;
3470
3471 if (pipe_crc->source == source)
3472 return 0;
3473
3474 /* forbid changing the source without going back to 'none' */
3475 if (pipe_crc->source && source)
3476 return -EINVAL;
3477
3478 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3479 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3480 return -EIO;
3481 }
3482
3483 if (IS_GEN2(dev))
3484 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3485 else if (INTEL_INFO(dev)->gen < 5)
3486 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3487 else if (IS_VALLEYVIEW(dev))
3488 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3489 else if (IS_GEN5(dev) || IS_GEN6(dev))
3490 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3491 else
3492 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3493
3494 if (ret != 0)
3495 return ret;
3496
3497 /* none -> real source transition */
3498 if (source) {
3499 struct intel_pipe_crc_entry *entries;
3500
3501 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3502 pipe_name(pipe), pipe_crc_source_name(source));
3503
3504 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3505 sizeof(pipe_crc->entries[0]),
3506 GFP_KERNEL);
3507 if (!entries)
3508 return -ENOMEM;
3509
3510 /*
3511 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3512 * enabled and disabled dynamically based on package C states,
3513 * user space can't make reliable use of the CRCs, so let's just
3514 * completely disable it.
3515 */
3516 hsw_disable_ips(crtc);
3517
3518 spin_lock_irq(&pipe_crc->lock);
3519 kfree(pipe_crc->entries);
3520 pipe_crc->entries = entries;
3521 pipe_crc->head = 0;
3522 pipe_crc->tail = 0;
3523 spin_unlock_irq(&pipe_crc->lock);
3524 }
3525
3526 pipe_crc->source = source;
3527
3528 I915_WRITE(PIPE_CRC_CTL(pipe), val);
3529 POSTING_READ(PIPE_CRC_CTL(pipe));
3530
3531 /* real source -> none transition */
3532 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3533 struct intel_pipe_crc_entry *entries;
3534 struct intel_crtc *crtc =
3535 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3536
3537 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3538 pipe_name(pipe));
3539
3540 drm_modeset_lock(&crtc->base.mutex, NULL);
3541 if (crtc->active)
3542 intel_wait_for_vblank(dev, pipe);
3543 drm_modeset_unlock(&crtc->base.mutex);
3544
3545 spin_lock_irq(&pipe_crc->lock);
3546 entries = pipe_crc->entries;
3547 pipe_crc->entries = NULL;
3548 pipe_crc->head = 0;
3549 pipe_crc->tail = 0;
3550 spin_unlock_irq(&pipe_crc->lock);
3551
3552 kfree(entries);
3553
3554 if (IS_G4X(dev))
3555 g4x_undo_pipe_scramble_reset(dev, pipe);
3556 else if (IS_VALLEYVIEW(dev))
3557 vlv_undo_pipe_scramble_reset(dev, pipe);
3558 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3559 hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3560
3561 hsw_enable_ips(crtc);
3562 }
3563
3564 return 0;
3565 }
3566
3567 /*
3568 * Parse pipe CRC command strings:
3569 * command: wsp* object wsp+ name wsp+ source wsp*
3570 * object: 'pipe'
3571 * name: (A | B | C)
3572 * source: (none | plane1 | plane2 | pf)
3573 * wsp: (#0x20 | #0x9 | #0xA)+
3574 *
3575 * eg.:
3576 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
3577 * "pipe A none" -> Stop CRC
3578 */
3579 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3580 {
3581 int n_words = 0;
3582
3583 while (*buf) {
3584 char *end;
3585
3586 /* skip leading white space */
3587 buf = skip_spaces(buf);
3588 if (!*buf)
3589 break; /* end of buffer */
3590
3591 /* find end of word */
3592 for (end = buf; *end && !isspace(*end); end++)
3593 ;
3594
3595 if (n_words == max_words) {
3596 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3597 max_words);
3598 return -EINVAL; /* ran out of words[] before bytes */
3599 }
3600
3601 if (*end)
3602 *end++ = '\0';
3603 words[n_words++] = buf;
3604 buf = end;
3605 }
3606
3607 return n_words;
3608 }
3609
3610 enum intel_pipe_crc_object {
3611 PIPE_CRC_OBJECT_PIPE,
3612 };
3613
3614 static const char * const pipe_crc_objects[] = {
3615 "pipe",
3616 };
3617
3618 static int
3619 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3620 {
3621 int i;
3622
3623 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3624 if (!strcmp(buf, pipe_crc_objects[i])) {
3625 *o = i;
3626 return 0;
3627 }
3628
3629 return -EINVAL;
3630 }
3631
3632 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3633 {
3634 const char name = buf[0];
3635
3636 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3637 return -EINVAL;
3638
3639 *pipe = name - 'A';
3640
3641 return 0;
3642 }
3643
3644 static int
3645 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3646 {
3647 int i;
3648
3649 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3650 if (!strcmp(buf, pipe_crc_sources[i])) {
3651 *s = i;
3652 return 0;
3653 }
3654
3655 return -EINVAL;
3656 }
3657
3658 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3659 {
3660 #define N_WORDS 3
3661 int n_words;
3662 char *words[N_WORDS];
3663 enum pipe pipe;
3664 enum intel_pipe_crc_object object;
3665 enum intel_pipe_crc_source source;
3666
3667 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3668 if (n_words != N_WORDS) {
3669 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3670 N_WORDS);
3671 return -EINVAL;
3672 }
3673
3674 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3675 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3676 return -EINVAL;
3677 }
3678
3679 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3680 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3681 return -EINVAL;
3682 }
3683
3684 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3685 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3686 return -EINVAL;
3687 }
3688
3689 return pipe_crc_set_source(dev, pipe, source);
3690 }
3691
3692 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3693 size_t len, loff_t *offp)
3694 {
3695 struct seq_file *m = file->private_data;
3696 struct drm_device *dev = m->private;
3697 char *tmpbuf;
3698 int ret;
3699
3700 if (len == 0)
3701 return 0;
3702
3703 if (len > PAGE_SIZE - 1) {
3704 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3705 PAGE_SIZE);
3706 return -E2BIG;
3707 }
3708
3709 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3710 if (!tmpbuf)
3711 return -ENOMEM;
3712
3713 if (copy_from_user(tmpbuf, ubuf, len)) {
3714 ret = -EFAULT;
3715 goto out;
3716 }
3717 tmpbuf[len] = '\0';
3718
3719 ret = display_crc_ctl_parse(dev, tmpbuf, len);
3720
3721 out:
3722 kfree(tmpbuf);
3723 if (ret < 0)
3724 return ret;
3725
3726 *offp += len;
3727 return len;
3728 }
3729
3730 static const struct file_operations i915_display_crc_ctl_fops = {
3731 .owner = THIS_MODULE,
3732 .open = display_crc_ctl_open,
3733 .read = seq_read,
3734 .llseek = seq_lseek,
3735 .release = single_release,
3736 .write = display_crc_ctl_write
3737 };
3738
3739 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3740 {
3741 struct drm_device *dev = m->private;
3742 int num_levels = ilk_wm_max_level(dev) + 1;
3743 int level;
3744
3745 drm_modeset_lock_all(dev);
3746
3747 for (level = 0; level < num_levels; level++) {
3748 unsigned int latency = wm[level];
3749
3750 /*
3751 * - WM1+ latency values in 0.5us units
3752 * - latencies are in us on gen9
3753 */
3754 if (INTEL_INFO(dev)->gen >= 9)
3755 latency *= 10;
3756 else if (level > 0)
3757 latency *= 5;
3758
3759 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3760 level, wm[level], latency / 10, latency % 10);
3761 }
3762
3763 drm_modeset_unlock_all(dev);
3764 }
3765
3766 static int pri_wm_latency_show(struct seq_file *m, void *data)
3767 {
3768 struct drm_device *dev = m->private;
3769 struct drm_i915_private *dev_priv = dev->dev_private;
3770 const uint16_t *latencies;
3771
3772 if (INTEL_INFO(dev)->gen >= 9)
3773 latencies = dev_priv->wm.skl_latency;
3774 else
3775 latencies = to_i915(dev)->wm.pri_latency;
3776
3777 wm_latency_show(m, latencies);
3778
3779 return 0;
3780 }
3781
3782 static int spr_wm_latency_show(struct seq_file *m, void *data)
3783 {
3784 struct drm_device *dev = m->private;
3785 struct drm_i915_private *dev_priv = dev->dev_private;
3786 const uint16_t *latencies;
3787
3788 if (INTEL_INFO(dev)->gen >= 9)
3789 latencies = dev_priv->wm.skl_latency;
3790 else
3791 latencies = to_i915(dev)->wm.spr_latency;
3792
3793 wm_latency_show(m, latencies);
3794
3795 return 0;
3796 }
3797
3798 static int cur_wm_latency_show(struct seq_file *m, void *data)
3799 {
3800 struct drm_device *dev = m->private;
3801 struct drm_i915_private *dev_priv = dev->dev_private;
3802 const uint16_t *latencies;
3803
3804 if (INTEL_INFO(dev)->gen >= 9)
3805 latencies = dev_priv->wm.skl_latency;
3806 else
3807 latencies = to_i915(dev)->wm.cur_latency;
3808
3809 wm_latency_show(m, latencies);
3810
3811 return 0;
3812 }
3813
3814 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3815 {
3816 struct drm_device *dev = inode->i_private;
3817
3818 if (HAS_GMCH_DISPLAY(dev))
3819 return -ENODEV;
3820
3821 return single_open(file, pri_wm_latency_show, dev);
3822 }
3823
3824 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3825 {
3826 struct drm_device *dev = inode->i_private;
3827
3828 if (HAS_GMCH_DISPLAY(dev))
3829 return -ENODEV;
3830
3831 return single_open(file, spr_wm_latency_show, dev);
3832 }
3833
3834 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3835 {
3836 struct drm_device *dev = inode->i_private;
3837
3838 if (HAS_GMCH_DISPLAY(dev))
3839 return -ENODEV;
3840
3841 return single_open(file, cur_wm_latency_show, dev);
3842 }
3843
3844 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3845 size_t len, loff_t *offp, uint16_t wm[8])
3846 {
3847 struct seq_file *m = file->private_data;
3848 struct drm_device *dev = m->private;
3849 uint16_t new[8] = { 0 };
3850 int num_levels = ilk_wm_max_level(dev) + 1;
3851 int level;
3852 int ret;
3853 char tmp[32];
3854
3855 if (len >= sizeof(tmp))
3856 return -EINVAL;
3857
3858 if (copy_from_user(tmp, ubuf, len))
3859 return -EFAULT;
3860
3861 tmp[len] = '\0';
3862
3863 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3864 &new[0], &new[1], &new[2], &new[3],
3865 &new[4], &new[5], &new[6], &new[7]);
3866 if (ret != num_levels)
3867 return -EINVAL;
3868
3869 drm_modeset_lock_all(dev);
3870
3871 for (level = 0; level < num_levels; level++)
3872 wm[level] = new[level];
3873
3874 drm_modeset_unlock_all(dev);
3875
3876 return len;
3877 }
3878
3879
3880 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3881 size_t len, loff_t *offp)
3882 {
3883 struct seq_file *m = file->private_data;
3884 struct drm_device *dev = m->private;
3885 struct drm_i915_private *dev_priv = dev->dev_private;
3886 uint16_t *latencies;
3887
3888 if (INTEL_INFO(dev)->gen >= 9)
3889 latencies = dev_priv->wm.skl_latency;
3890 else
3891 latencies = to_i915(dev)->wm.pri_latency;
3892
3893 return wm_latency_write(file, ubuf, len, offp, latencies);
3894 }
3895
3896 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3897 size_t len, loff_t *offp)
3898 {
3899 struct seq_file *m = file->private_data;
3900 struct drm_device *dev = m->private;
3901 struct drm_i915_private *dev_priv = dev->dev_private;
3902 uint16_t *latencies;
3903
3904 if (INTEL_INFO(dev)->gen >= 9)
3905 latencies = dev_priv->wm.skl_latency;
3906 else
3907 latencies = to_i915(dev)->wm.spr_latency;
3908
3909 return wm_latency_write(file, ubuf, len, offp, latencies);
3910 }
3911
3912 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3913 size_t len, loff_t *offp)
3914 {
3915 struct seq_file *m = file->private_data;
3916 struct drm_device *dev = m->private;
3917 struct drm_i915_private *dev_priv = dev->dev_private;
3918 uint16_t *latencies;
3919
3920 if (INTEL_INFO(dev)->gen >= 9)
3921 latencies = dev_priv->wm.skl_latency;
3922 else
3923 latencies = to_i915(dev)->wm.cur_latency;
3924
3925 return wm_latency_write(file, ubuf, len, offp, latencies);
3926 }
3927
3928 static const struct file_operations i915_pri_wm_latency_fops = {
3929 .owner = THIS_MODULE,
3930 .open = pri_wm_latency_open,
3931 .read = seq_read,
3932 .llseek = seq_lseek,
3933 .release = single_release,
3934 .write = pri_wm_latency_write
3935 };
3936
3937 static const struct file_operations i915_spr_wm_latency_fops = {
3938 .owner = THIS_MODULE,
3939 .open = spr_wm_latency_open,
3940 .read = seq_read,
3941 .llseek = seq_lseek,
3942 .release = single_release,
3943 .write = spr_wm_latency_write
3944 };
3945
3946 static const struct file_operations i915_cur_wm_latency_fops = {
3947 .owner = THIS_MODULE,
3948 .open = cur_wm_latency_open,
3949 .read = seq_read,
3950 .llseek = seq_lseek,
3951 .release = single_release,
3952 .write = cur_wm_latency_write
3953 };
3954
3955 static int
3956 i915_wedged_get(void *data, u64 *val)
3957 {
3958 struct drm_device *dev = data;
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960
3961 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3962
3963 return 0;
3964 }
3965
3966 static int
3967 i915_wedged_set(void *data, u64 val)
3968 {
3969 struct drm_device *dev = data;
3970 struct drm_i915_private *dev_priv = dev->dev_private;
3971
3972 intel_runtime_pm_get(dev_priv);
3973
3974 i915_handle_error(dev, val,
3975 "Manually setting wedged to %llu", val);
3976
3977 intel_runtime_pm_put(dev_priv);
3978
3979 return 0;
3980 }
3981
3982 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3983 i915_wedged_get, i915_wedged_set,
3984 "%llu\n");
3985
3986 static int
3987 i915_ring_stop_get(void *data, u64 *val)
3988 {
3989 struct drm_device *dev = data;
3990 struct drm_i915_private *dev_priv = dev->dev_private;
3991
3992 *val = dev_priv->gpu_error.stop_rings;
3993
3994 return 0;
3995 }
3996
3997 static int
3998 i915_ring_stop_set(void *data, u64 val)
3999 {
4000 struct drm_device *dev = data;
4001 struct drm_i915_private *dev_priv = dev->dev_private;
4002 int ret;
4003
4004 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4005
4006 ret = mutex_lock_interruptible(&dev->struct_mutex);
4007 if (ret)
4008 return ret;
4009
4010 dev_priv->gpu_error.stop_rings = val;
4011 mutex_unlock(&dev->struct_mutex);
4012
4013 return 0;
4014 }
4015
4016 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4017 i915_ring_stop_get, i915_ring_stop_set,
4018 "0x%08llx\n");
4019
4020 static int
4021 i915_ring_missed_irq_get(void *data, u64 *val)
4022 {
4023 struct drm_device *dev = data;
4024 struct drm_i915_private *dev_priv = dev->dev_private;
4025
4026 *val = dev_priv->gpu_error.missed_irq_rings;
4027 return 0;
4028 }
4029
4030 static int
4031 i915_ring_missed_irq_set(void *data, u64 val)
4032 {
4033 struct drm_device *dev = data;
4034 struct drm_i915_private *dev_priv = dev->dev_private;
4035 int ret;
4036
4037 /* Lock against concurrent debugfs callers */
4038 ret = mutex_lock_interruptible(&dev->struct_mutex);
4039 if (ret)
4040 return ret;
4041 dev_priv->gpu_error.missed_irq_rings = val;
4042 mutex_unlock(&dev->struct_mutex);
4043
4044 return 0;
4045 }
4046
4047 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4048 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4049 "0x%08llx\n");
4050
4051 static int
4052 i915_ring_test_irq_get(void *data, u64 *val)
4053 {
4054 struct drm_device *dev = data;
4055 struct drm_i915_private *dev_priv = dev->dev_private;
4056
4057 *val = dev_priv->gpu_error.test_irq_rings;
4058
4059 return 0;
4060 }
4061
4062 static int
4063 i915_ring_test_irq_set(void *data, u64 val)
4064 {
4065 struct drm_device *dev = data;
4066 struct drm_i915_private *dev_priv = dev->dev_private;
4067 int ret;
4068
4069 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4070
4071 /* Lock against concurrent debugfs callers */
4072 ret = mutex_lock_interruptible(&dev->struct_mutex);
4073 if (ret)
4074 return ret;
4075
4076 dev_priv->gpu_error.test_irq_rings = val;
4077 mutex_unlock(&dev->struct_mutex);
4078
4079 return 0;
4080 }
4081
4082 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4083 i915_ring_test_irq_get, i915_ring_test_irq_set,
4084 "0x%08llx\n");
4085
4086 #define DROP_UNBOUND 0x1
4087 #define DROP_BOUND 0x2
4088 #define DROP_RETIRE 0x4
4089 #define DROP_ACTIVE 0x8
4090 #define DROP_ALL (DROP_UNBOUND | \
4091 DROP_BOUND | \
4092 DROP_RETIRE | \
4093 DROP_ACTIVE)
4094 static int
4095 i915_drop_caches_get(void *data, u64 *val)
4096 {
4097 *val = DROP_ALL;
4098
4099 return 0;
4100 }
4101
4102 static int
4103 i915_drop_caches_set(void *data, u64 val)
4104 {
4105 struct drm_device *dev = data;
4106 struct drm_i915_private *dev_priv = dev->dev_private;
4107 int ret;
4108
4109 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4110
4111 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4112 * on ioctls on -EAGAIN. */
4113 ret = mutex_lock_interruptible(&dev->struct_mutex);
4114 if (ret)
4115 return ret;
4116
4117 if (val & DROP_ACTIVE) {
4118 ret = i915_gpu_idle(dev);
4119 if (ret)
4120 goto unlock;
4121 }
4122
4123 if (val & (DROP_RETIRE | DROP_ACTIVE))
4124 i915_gem_retire_requests(dev);
4125
4126 if (val & DROP_BOUND)
4127 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4128
4129 if (val & DROP_UNBOUND)
4130 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4131
4132 unlock:
4133 mutex_unlock(&dev->struct_mutex);
4134
4135 return ret;
4136 }
4137
4138 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4139 i915_drop_caches_get, i915_drop_caches_set,
4140 "0x%08llx\n");
4141
4142 static int
4143 i915_max_freq_get(void *data, u64 *val)
4144 {
4145 struct drm_device *dev = data;
4146 struct drm_i915_private *dev_priv = dev->dev_private;
4147 int ret;
4148
4149 if (INTEL_INFO(dev)->gen < 6)
4150 return -ENODEV;
4151
4152 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4153
4154 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4155 if (ret)
4156 return ret;
4157
4158 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4159 mutex_unlock(&dev_priv->rps.hw_lock);
4160
4161 return 0;
4162 }
4163
4164 static int
4165 i915_max_freq_set(void *data, u64 val)
4166 {
4167 struct drm_device *dev = data;
4168 struct drm_i915_private *dev_priv = dev->dev_private;
4169 u32 rp_state_cap, hw_max, hw_min;
4170 int ret;
4171
4172 if (INTEL_INFO(dev)->gen < 6)
4173 return -ENODEV;
4174
4175 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4176
4177 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4178
4179 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4180 if (ret)
4181 return ret;
4182
4183 /*
4184 * Turbo will still be enabled, but won't go above the set value.
4185 */
4186 if (IS_VALLEYVIEW(dev)) {
4187 val = intel_freq_opcode(dev_priv, val);
4188
4189 hw_max = dev_priv->rps.max_freq;
4190 hw_min = dev_priv->rps.min_freq;
4191 } else {
4192 val = intel_freq_opcode(dev_priv, val);
4193
4194 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4195 hw_max = dev_priv->rps.max_freq;
4196 hw_min = (rp_state_cap >> 16) & 0xff;
4197 }
4198
4199 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4200 mutex_unlock(&dev_priv->rps.hw_lock);
4201 return -EINVAL;
4202 }
4203
4204 dev_priv->rps.max_freq_softlimit = val;
4205
4206 if (IS_VALLEYVIEW(dev))
4207 valleyview_set_rps(dev, val);
4208 else
4209 gen6_set_rps(dev, val);
4210
4211 mutex_unlock(&dev_priv->rps.hw_lock);
4212
4213 return 0;
4214 }
4215
4216 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4217 i915_max_freq_get, i915_max_freq_set,
4218 "%llu\n");
4219
4220 static int
4221 i915_min_freq_get(void *data, u64 *val)
4222 {
4223 struct drm_device *dev = data;
4224 struct drm_i915_private *dev_priv = dev->dev_private;
4225 int ret;
4226
4227 if (INTEL_INFO(dev)->gen < 6)
4228 return -ENODEV;
4229
4230 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4231
4232 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4233 if (ret)
4234 return ret;
4235
4236 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4237 mutex_unlock(&dev_priv->rps.hw_lock);
4238
4239 return 0;
4240 }
4241
4242 static int
4243 i915_min_freq_set(void *data, u64 val)
4244 {
4245 struct drm_device *dev = data;
4246 struct drm_i915_private *dev_priv = dev->dev_private;
4247 u32 rp_state_cap, hw_max, hw_min;
4248 int ret;
4249
4250 if (INTEL_INFO(dev)->gen < 6)
4251 return -ENODEV;
4252
4253 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4254
4255 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4256
4257 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4258 if (ret)
4259 return ret;
4260
4261 /*
4262 * Turbo will still be enabled, but won't go below the set value.
4263 */
4264 if (IS_VALLEYVIEW(dev)) {
4265 val = intel_freq_opcode(dev_priv, val);
4266
4267 hw_max = dev_priv->rps.max_freq;
4268 hw_min = dev_priv->rps.min_freq;
4269 } else {
4270 val = intel_freq_opcode(dev_priv, val);
4271
4272 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4273 hw_max = dev_priv->rps.max_freq;
4274 hw_min = (rp_state_cap >> 16) & 0xff;
4275 }
4276
4277 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4278 mutex_unlock(&dev_priv->rps.hw_lock);
4279 return -EINVAL;
4280 }
4281
4282 dev_priv->rps.min_freq_softlimit = val;
4283
4284 if (IS_VALLEYVIEW(dev))
4285 valleyview_set_rps(dev, val);
4286 else
4287 gen6_set_rps(dev, val);
4288
4289 mutex_unlock(&dev_priv->rps.hw_lock);
4290
4291 return 0;
4292 }
4293
4294 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4295 i915_min_freq_get, i915_min_freq_set,
4296 "%llu\n");
4297
4298 static int
4299 i915_cache_sharing_get(void *data, u64 *val)
4300 {
4301 struct drm_device *dev = data;
4302 struct drm_i915_private *dev_priv = dev->dev_private;
4303 u32 snpcr;
4304 int ret;
4305
4306 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4307 return -ENODEV;
4308
4309 ret = mutex_lock_interruptible(&dev->struct_mutex);
4310 if (ret)
4311 return ret;
4312 intel_runtime_pm_get(dev_priv);
4313
4314 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4315
4316 intel_runtime_pm_put(dev_priv);
4317 mutex_unlock(&dev_priv->dev->struct_mutex);
4318
4319 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4320
4321 return 0;
4322 }
4323
4324 static int
4325 i915_cache_sharing_set(void *data, u64 val)
4326 {
4327 struct drm_device *dev = data;
4328 struct drm_i915_private *dev_priv = dev->dev_private;
4329 u32 snpcr;
4330
4331 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4332 return -ENODEV;
4333
4334 if (val > 3)
4335 return -EINVAL;
4336
4337 intel_runtime_pm_get(dev_priv);
4338 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4339
4340 /* Update the cache sharing policy here as well */
4341 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4342 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4343 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4344 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4345
4346 intel_runtime_pm_put(dev_priv);
4347 return 0;
4348 }
4349
4350 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4351 i915_cache_sharing_get, i915_cache_sharing_set,
4352 "%llu\n");
4353
4354 static int i915_forcewake_open(struct inode *inode, struct file *file)
4355 {
4356 struct drm_device *dev = inode->i_private;
4357 struct drm_i915_private *dev_priv = dev->dev_private;
4358
4359 if (INTEL_INFO(dev)->gen < 6)
4360 return 0;
4361
4362 intel_runtime_pm_get(dev_priv);
4363 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4364
4365 return 0;
4366 }
4367
4368 static int i915_forcewake_release(struct inode *inode, struct file *file)
4369 {
4370 struct drm_device *dev = inode->i_private;
4371 struct drm_i915_private *dev_priv = dev->dev_private;
4372
4373 if (INTEL_INFO(dev)->gen < 6)
4374 return 0;
4375
4376 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4377 intel_runtime_pm_put(dev_priv);
4378
4379 return 0;
4380 }
4381
4382 static const struct file_operations i915_forcewake_fops = {
4383 .owner = THIS_MODULE,
4384 .open = i915_forcewake_open,
4385 .release = i915_forcewake_release,
4386 };
4387
4388 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4389 {
4390 struct drm_device *dev = minor->dev;
4391 struct dentry *ent;
4392
4393 ent = debugfs_create_file("i915_forcewake_user",
4394 S_IRUSR,
4395 root, dev,
4396 &i915_forcewake_fops);
4397 if (!ent)
4398 return -ENOMEM;
4399
4400 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4401 }
4402
4403 static int i915_debugfs_create(struct dentry *root,
4404 struct drm_minor *minor,
4405 const char *name,
4406 const struct file_operations *fops)
4407 {
4408 struct drm_device *dev = minor->dev;
4409 struct dentry *ent;
4410
4411 ent = debugfs_create_file(name,
4412 S_IRUGO | S_IWUSR,
4413 root, dev,
4414 fops);
4415 if (!ent)
4416 return -ENOMEM;
4417
4418 return drm_add_fake_info_node(minor, ent, fops);
4419 }
4420
4421 static const struct drm_info_list i915_debugfs_list[] = {
4422 {"i915_capabilities", i915_capabilities, 0},
4423 {"i915_gem_objects", i915_gem_object_info, 0},
4424 {"i915_gem_gtt", i915_gem_gtt_info, 0},
4425 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4426 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4427 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4428 {"i915_gem_stolen", i915_gem_stolen_list_info },
4429 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4430 {"i915_gem_request", i915_gem_request_info, 0},
4431 {"i915_gem_seqno", i915_gem_seqno_info, 0},
4432 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4433 {"i915_gem_interrupt", i915_interrupt_info, 0},
4434 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4435 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4436 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4437 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4438 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4439 {"i915_frequency_info", i915_frequency_info, 0},
4440 {"i915_hangcheck_info", i915_hangcheck_info, 0},
4441 {"i915_drpc_info", i915_drpc_info, 0},
4442 {"i915_emon_status", i915_emon_status, 0},
4443 {"i915_ring_freq_table", i915_ring_freq_table, 0},
4444 {"i915_fbc_status", i915_fbc_status, 0},
4445 {"i915_ips_status", i915_ips_status, 0},
4446 {"i915_sr_status", i915_sr_status, 0},
4447 {"i915_opregion", i915_opregion, 0},
4448 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4449 {"i915_context_status", i915_context_status, 0},
4450 {"i915_dump_lrc", i915_dump_lrc, 0},
4451 {"i915_execlists", i915_execlists, 0},
4452 {"i915_forcewake_domains", i915_forcewake_domains, 0},
4453 {"i915_swizzle_info", i915_swizzle_info, 0},
4454 {"i915_ppgtt_info", i915_ppgtt_info, 0},
4455 {"i915_llc", i915_llc, 0},
4456 {"i915_edp_psr_status", i915_edp_psr_status, 0},
4457 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4458 {"i915_energy_uJ", i915_energy_uJ, 0},
4459 {"i915_pc8_status", i915_pc8_status, 0},
4460 {"i915_power_domain_info", i915_power_domain_info, 0},
4461 {"i915_display_info", i915_display_info, 0},
4462 {"i915_semaphore_status", i915_semaphore_status, 0},
4463 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4464 {"i915_dp_mst_info", i915_dp_mst_info, 0},
4465 {"i915_wa_registers", i915_wa_registers, 0},
4466 {"i915_ddb_info", i915_ddb_info, 0},
4467 };
4468 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4469
4470 static const struct i915_debugfs_files {
4471 const char *name;
4472 const struct file_operations *fops;
4473 } i915_debugfs_files[] = {
4474 {"i915_wedged", &i915_wedged_fops},
4475 {"i915_max_freq", &i915_max_freq_fops},
4476 {"i915_min_freq", &i915_min_freq_fops},
4477 {"i915_cache_sharing", &i915_cache_sharing_fops},
4478 {"i915_ring_stop", &i915_ring_stop_fops},
4479 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4480 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4481 {"i915_gem_drop_caches", &i915_drop_caches_fops},
4482 {"i915_error_state", &i915_error_state_fops},
4483 {"i915_next_seqno", &i915_next_seqno_fops},
4484 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4485 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4486 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4487 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4488 {"i915_fbc_false_color", &i915_fbc_fc_fops},
4489 };
4490
4491 void intel_display_crc_init(struct drm_device *dev)
4492 {
4493 struct drm_i915_private *dev_priv = dev->dev_private;
4494 enum pipe pipe;
4495
4496 for_each_pipe(dev_priv, pipe) {
4497 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4498
4499 pipe_crc->opened = false;
4500 spin_lock_init(&pipe_crc->lock);
4501 init_waitqueue_head(&pipe_crc->wq);
4502 }
4503 }
4504
4505 int i915_debugfs_init(struct drm_minor *minor)
4506 {
4507 int ret, i;
4508
4509 ret = i915_forcewake_create(minor->debugfs_root, minor);
4510 if (ret)
4511 return ret;
4512
4513 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4514 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4515 if (ret)
4516 return ret;
4517 }
4518
4519 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4520 ret = i915_debugfs_create(minor->debugfs_root, minor,
4521 i915_debugfs_files[i].name,
4522 i915_debugfs_files[i].fops);
4523 if (ret)
4524 return ret;
4525 }
4526
4527 return drm_debugfs_create_files(i915_debugfs_list,
4528 I915_DEBUGFS_ENTRIES,
4529 minor->debugfs_root, minor);
4530 }
4531
4532 void i915_debugfs_cleanup(struct drm_minor *minor)
4533 {
4534 int i;
4535
4536 drm_debugfs_remove_files(i915_debugfs_list,
4537 I915_DEBUGFS_ENTRIES, minor);
4538
4539 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4540 1, minor);
4541
4542 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4543 struct drm_info_list *info_list =
4544 (struct drm_info_list *)&i915_pipe_crc_data[i];
4545
4546 drm_debugfs_remove_files(info_list, 1, minor);
4547 }
4548
4549 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4550 struct drm_info_list *info_list =
4551 (struct drm_info_list *) i915_debugfs_files[i].fops;
4552
4553 drm_debugfs_remove_files(info_list, 1, minor);
4554 }
4555 }
This page took 0.308891 seconds and 6 git commands to generate.