Merge tag 'ecryptfs-3.6-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include "drmP.h"
34 #include "drm.h"
35 #include "intel_drv.h"
36 #include "intel_ringbuffer.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39
40 #define DRM_I915_RING_DEBUG 1
41
42
43 #if defined(CONFIG_DEBUG_FS)
44
45 enum {
46 ACTIVE_LIST,
47 FLUSHING_LIST,
48 INACTIVE_LIST,
49 PINNED_LIST,
50 };
51
52 static const char *yesno(int v)
53 {
54 return v ? "yes" : "no";
55 }
56
57 static int i915_capabilities(struct seq_file *m, void *data)
58 {
59 struct drm_info_node *node = (struct drm_info_node *) m->private;
60 struct drm_device *dev = node->minor->dev;
61 const struct intel_device_info *info = INTEL_INFO(dev);
62
63 seq_printf(m, "gen: %d\n", info->gen);
64 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
65 #define B(x) seq_printf(m, #x ": %s\n", yesno(info->x))
66 B(is_mobile);
67 B(is_i85x);
68 B(is_i915g);
69 B(is_i945gm);
70 B(is_g33);
71 B(need_gfx_hws);
72 B(is_g4x);
73 B(is_pineview);
74 B(is_broadwater);
75 B(is_crestline);
76 B(has_fbc);
77 B(has_pipe_cxsr);
78 B(has_hotplug);
79 B(cursor_needs_physical);
80 B(has_overlay);
81 B(overlay_needs_physical);
82 B(supports_tv);
83 B(has_bsd_ring);
84 B(has_blt_ring);
85 B(has_llc);
86 #undef B
87
88 return 0;
89 }
90
91 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
92 {
93 if (obj->user_pin_count > 0)
94 return "P";
95 else if (obj->pin_count > 0)
96 return "p";
97 else
98 return " ";
99 }
100
101 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
102 {
103 switch (obj->tiling_mode) {
104 default:
105 case I915_TILING_NONE: return " ";
106 case I915_TILING_X: return "X";
107 case I915_TILING_Y: return "Y";
108 }
109 }
110
111 static const char *cache_level_str(int type)
112 {
113 switch (type) {
114 case I915_CACHE_NONE: return " uncached";
115 case I915_CACHE_LLC: return " snooped (LLC)";
116 case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)";
117 default: return "";
118 }
119 }
120
121 static void
122 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
123 {
124 seq_printf(m, "%p: %s%s %8zdKiB %04x %04x %d %d%s%s%s",
125 &obj->base,
126 get_pin_flag(obj),
127 get_tiling_flag(obj),
128 obj->base.size / 1024,
129 obj->base.read_domains,
130 obj->base.write_domain,
131 obj->last_rendering_seqno,
132 obj->last_fenced_seqno,
133 cache_level_str(obj->cache_level),
134 obj->dirty ? " dirty" : "",
135 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
136 if (obj->base.name)
137 seq_printf(m, " (name: %d)", obj->base.name);
138 if (obj->fence_reg != I915_FENCE_REG_NONE)
139 seq_printf(m, " (fence: %d)", obj->fence_reg);
140 if (obj->gtt_space != NULL)
141 seq_printf(m, " (gtt offset: %08x, size: %08x)",
142 obj->gtt_offset, (unsigned int)obj->gtt_space->size);
143 if (obj->pin_mappable || obj->fault_mappable) {
144 char s[3], *t = s;
145 if (obj->pin_mappable)
146 *t++ = 'p';
147 if (obj->fault_mappable)
148 *t++ = 'f';
149 *t = '\0';
150 seq_printf(m, " (%s mappable)", s);
151 }
152 if (obj->ring != NULL)
153 seq_printf(m, " (%s)", obj->ring->name);
154 }
155
156 static int i915_gem_object_list_info(struct seq_file *m, void *data)
157 {
158 struct drm_info_node *node = (struct drm_info_node *) m->private;
159 uintptr_t list = (uintptr_t) node->info_ent->data;
160 struct list_head *head;
161 struct drm_device *dev = node->minor->dev;
162 drm_i915_private_t *dev_priv = dev->dev_private;
163 struct drm_i915_gem_object *obj;
164 size_t total_obj_size, total_gtt_size;
165 int count, ret;
166
167 ret = mutex_lock_interruptible(&dev->struct_mutex);
168 if (ret)
169 return ret;
170
171 switch (list) {
172 case ACTIVE_LIST:
173 seq_printf(m, "Active:\n");
174 head = &dev_priv->mm.active_list;
175 break;
176 case INACTIVE_LIST:
177 seq_printf(m, "Inactive:\n");
178 head = &dev_priv->mm.inactive_list;
179 break;
180 case FLUSHING_LIST:
181 seq_printf(m, "Flushing:\n");
182 head = &dev_priv->mm.flushing_list;
183 break;
184 default:
185 mutex_unlock(&dev->struct_mutex);
186 return -EINVAL;
187 }
188
189 total_obj_size = total_gtt_size = count = 0;
190 list_for_each_entry(obj, head, mm_list) {
191 seq_printf(m, " ");
192 describe_obj(m, obj);
193 seq_printf(m, "\n");
194 total_obj_size += obj->base.size;
195 total_gtt_size += obj->gtt_space->size;
196 count++;
197 }
198 mutex_unlock(&dev->struct_mutex);
199
200 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
201 count, total_obj_size, total_gtt_size);
202 return 0;
203 }
204
205 #define count_objects(list, member) do { \
206 list_for_each_entry(obj, list, member) { \
207 size += obj->gtt_space->size; \
208 ++count; \
209 if (obj->map_and_fenceable) { \
210 mappable_size += obj->gtt_space->size; \
211 ++mappable_count; \
212 } \
213 } \
214 } while (0)
215
216 static int i915_gem_object_info(struct seq_file *m, void* data)
217 {
218 struct drm_info_node *node = (struct drm_info_node *) m->private;
219 struct drm_device *dev = node->minor->dev;
220 struct drm_i915_private *dev_priv = dev->dev_private;
221 u32 count, mappable_count;
222 size_t size, mappable_size;
223 struct drm_i915_gem_object *obj;
224 int ret;
225
226 ret = mutex_lock_interruptible(&dev->struct_mutex);
227 if (ret)
228 return ret;
229
230 seq_printf(m, "%u objects, %zu bytes\n",
231 dev_priv->mm.object_count,
232 dev_priv->mm.object_memory);
233
234 size = count = mappable_size = mappable_count = 0;
235 count_objects(&dev_priv->mm.gtt_list, gtt_list);
236 seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
237 count, mappable_count, size, mappable_size);
238
239 size = count = mappable_size = mappable_count = 0;
240 count_objects(&dev_priv->mm.active_list, mm_list);
241 count_objects(&dev_priv->mm.flushing_list, mm_list);
242 seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
243 count, mappable_count, size, mappable_size);
244
245 size = count = mappable_size = mappable_count = 0;
246 count_objects(&dev_priv->mm.inactive_list, mm_list);
247 seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
248 count, mappable_count, size, mappable_size);
249
250 size = count = mappable_size = mappable_count = 0;
251 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
252 if (obj->fault_mappable) {
253 size += obj->gtt_space->size;
254 ++count;
255 }
256 if (obj->pin_mappable) {
257 mappable_size += obj->gtt_space->size;
258 ++mappable_count;
259 }
260 }
261 seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
262 mappable_count, mappable_size);
263 seq_printf(m, "%u fault mappable objects, %zu bytes\n",
264 count, size);
265
266 seq_printf(m, "%zu [%zu] gtt total\n",
267 dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total);
268
269 mutex_unlock(&dev->struct_mutex);
270
271 return 0;
272 }
273
274 static int i915_gem_gtt_info(struct seq_file *m, void* data)
275 {
276 struct drm_info_node *node = (struct drm_info_node *) m->private;
277 struct drm_device *dev = node->minor->dev;
278 uintptr_t list = (uintptr_t) node->info_ent->data;
279 struct drm_i915_private *dev_priv = dev->dev_private;
280 struct drm_i915_gem_object *obj;
281 size_t total_obj_size, total_gtt_size;
282 int count, ret;
283
284 ret = mutex_lock_interruptible(&dev->struct_mutex);
285 if (ret)
286 return ret;
287
288 total_obj_size = total_gtt_size = count = 0;
289 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
290 if (list == PINNED_LIST && obj->pin_count == 0)
291 continue;
292
293 seq_printf(m, " ");
294 describe_obj(m, obj);
295 seq_printf(m, "\n");
296 total_obj_size += obj->base.size;
297 total_gtt_size += obj->gtt_space->size;
298 count++;
299 }
300
301 mutex_unlock(&dev->struct_mutex);
302
303 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
304 count, total_obj_size, total_gtt_size);
305
306 return 0;
307 }
308
309 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
310 {
311 struct drm_info_node *node = (struct drm_info_node *) m->private;
312 struct drm_device *dev = node->minor->dev;
313 unsigned long flags;
314 struct intel_crtc *crtc;
315
316 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
317 const char pipe = pipe_name(crtc->pipe);
318 const char plane = plane_name(crtc->plane);
319 struct intel_unpin_work *work;
320
321 spin_lock_irqsave(&dev->event_lock, flags);
322 work = crtc->unpin_work;
323 if (work == NULL) {
324 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
325 pipe, plane);
326 } else {
327 if (!work->pending) {
328 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
329 pipe, plane);
330 } else {
331 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
332 pipe, plane);
333 }
334 if (work->enable_stall_check)
335 seq_printf(m, "Stall check enabled, ");
336 else
337 seq_printf(m, "Stall check waiting for page flip ioctl, ");
338 seq_printf(m, "%d prepares\n", work->pending);
339
340 if (work->old_fb_obj) {
341 struct drm_i915_gem_object *obj = work->old_fb_obj;
342 if (obj)
343 seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
344 }
345 if (work->pending_flip_obj) {
346 struct drm_i915_gem_object *obj = work->pending_flip_obj;
347 if (obj)
348 seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
349 }
350 }
351 spin_unlock_irqrestore(&dev->event_lock, flags);
352 }
353
354 return 0;
355 }
356
357 static int i915_gem_request_info(struct seq_file *m, void *data)
358 {
359 struct drm_info_node *node = (struct drm_info_node *) m->private;
360 struct drm_device *dev = node->minor->dev;
361 drm_i915_private_t *dev_priv = dev->dev_private;
362 struct drm_i915_gem_request *gem_request;
363 int ret, count;
364
365 ret = mutex_lock_interruptible(&dev->struct_mutex);
366 if (ret)
367 return ret;
368
369 count = 0;
370 if (!list_empty(&dev_priv->ring[RCS].request_list)) {
371 seq_printf(m, "Render requests:\n");
372 list_for_each_entry(gem_request,
373 &dev_priv->ring[RCS].request_list,
374 list) {
375 seq_printf(m, " %d @ %d\n",
376 gem_request->seqno,
377 (int) (jiffies - gem_request->emitted_jiffies));
378 }
379 count++;
380 }
381 if (!list_empty(&dev_priv->ring[VCS].request_list)) {
382 seq_printf(m, "BSD requests:\n");
383 list_for_each_entry(gem_request,
384 &dev_priv->ring[VCS].request_list,
385 list) {
386 seq_printf(m, " %d @ %d\n",
387 gem_request->seqno,
388 (int) (jiffies - gem_request->emitted_jiffies));
389 }
390 count++;
391 }
392 if (!list_empty(&dev_priv->ring[BCS].request_list)) {
393 seq_printf(m, "BLT requests:\n");
394 list_for_each_entry(gem_request,
395 &dev_priv->ring[BCS].request_list,
396 list) {
397 seq_printf(m, " %d @ %d\n",
398 gem_request->seqno,
399 (int) (jiffies - gem_request->emitted_jiffies));
400 }
401 count++;
402 }
403 mutex_unlock(&dev->struct_mutex);
404
405 if (count == 0)
406 seq_printf(m, "No requests\n");
407
408 return 0;
409 }
410
411 static void i915_ring_seqno_info(struct seq_file *m,
412 struct intel_ring_buffer *ring)
413 {
414 if (ring->get_seqno) {
415 seq_printf(m, "Current sequence (%s): %d\n",
416 ring->name, ring->get_seqno(ring));
417 }
418 }
419
420 static int i915_gem_seqno_info(struct seq_file *m, void *data)
421 {
422 struct drm_info_node *node = (struct drm_info_node *) m->private;
423 struct drm_device *dev = node->minor->dev;
424 drm_i915_private_t *dev_priv = dev->dev_private;
425 int ret, i;
426
427 ret = mutex_lock_interruptible(&dev->struct_mutex);
428 if (ret)
429 return ret;
430
431 for (i = 0; i < I915_NUM_RINGS; i++)
432 i915_ring_seqno_info(m, &dev_priv->ring[i]);
433
434 mutex_unlock(&dev->struct_mutex);
435
436 return 0;
437 }
438
439
440 static int i915_interrupt_info(struct seq_file *m, void *data)
441 {
442 struct drm_info_node *node = (struct drm_info_node *) m->private;
443 struct drm_device *dev = node->minor->dev;
444 drm_i915_private_t *dev_priv = dev->dev_private;
445 int ret, i, pipe;
446
447 ret = mutex_lock_interruptible(&dev->struct_mutex);
448 if (ret)
449 return ret;
450
451 if (IS_VALLEYVIEW(dev)) {
452 seq_printf(m, "Display IER:\t%08x\n",
453 I915_READ(VLV_IER));
454 seq_printf(m, "Display IIR:\t%08x\n",
455 I915_READ(VLV_IIR));
456 seq_printf(m, "Display IIR_RW:\t%08x\n",
457 I915_READ(VLV_IIR_RW));
458 seq_printf(m, "Display IMR:\t%08x\n",
459 I915_READ(VLV_IMR));
460 for_each_pipe(pipe)
461 seq_printf(m, "Pipe %c stat:\t%08x\n",
462 pipe_name(pipe),
463 I915_READ(PIPESTAT(pipe)));
464
465 seq_printf(m, "Master IER:\t%08x\n",
466 I915_READ(VLV_MASTER_IER));
467
468 seq_printf(m, "Render IER:\t%08x\n",
469 I915_READ(GTIER));
470 seq_printf(m, "Render IIR:\t%08x\n",
471 I915_READ(GTIIR));
472 seq_printf(m, "Render IMR:\t%08x\n",
473 I915_READ(GTIMR));
474
475 seq_printf(m, "PM IER:\t\t%08x\n",
476 I915_READ(GEN6_PMIER));
477 seq_printf(m, "PM IIR:\t\t%08x\n",
478 I915_READ(GEN6_PMIIR));
479 seq_printf(m, "PM IMR:\t\t%08x\n",
480 I915_READ(GEN6_PMIMR));
481
482 seq_printf(m, "Port hotplug:\t%08x\n",
483 I915_READ(PORT_HOTPLUG_EN));
484 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
485 I915_READ(VLV_DPFLIPSTAT));
486 seq_printf(m, "DPINVGTT:\t%08x\n",
487 I915_READ(DPINVGTT));
488
489 } else if (!HAS_PCH_SPLIT(dev)) {
490 seq_printf(m, "Interrupt enable: %08x\n",
491 I915_READ(IER));
492 seq_printf(m, "Interrupt identity: %08x\n",
493 I915_READ(IIR));
494 seq_printf(m, "Interrupt mask: %08x\n",
495 I915_READ(IMR));
496 for_each_pipe(pipe)
497 seq_printf(m, "Pipe %c stat: %08x\n",
498 pipe_name(pipe),
499 I915_READ(PIPESTAT(pipe)));
500 } else {
501 seq_printf(m, "North Display Interrupt enable: %08x\n",
502 I915_READ(DEIER));
503 seq_printf(m, "North Display Interrupt identity: %08x\n",
504 I915_READ(DEIIR));
505 seq_printf(m, "North Display Interrupt mask: %08x\n",
506 I915_READ(DEIMR));
507 seq_printf(m, "South Display Interrupt enable: %08x\n",
508 I915_READ(SDEIER));
509 seq_printf(m, "South Display Interrupt identity: %08x\n",
510 I915_READ(SDEIIR));
511 seq_printf(m, "South Display Interrupt mask: %08x\n",
512 I915_READ(SDEIMR));
513 seq_printf(m, "Graphics Interrupt enable: %08x\n",
514 I915_READ(GTIER));
515 seq_printf(m, "Graphics Interrupt identity: %08x\n",
516 I915_READ(GTIIR));
517 seq_printf(m, "Graphics Interrupt mask: %08x\n",
518 I915_READ(GTIMR));
519 }
520 seq_printf(m, "Interrupts received: %d\n",
521 atomic_read(&dev_priv->irq_received));
522 for (i = 0; i < I915_NUM_RINGS; i++) {
523 if (IS_GEN6(dev) || IS_GEN7(dev)) {
524 seq_printf(m, "Graphics Interrupt mask (%s): %08x\n",
525 dev_priv->ring[i].name,
526 I915_READ_IMR(&dev_priv->ring[i]));
527 }
528 i915_ring_seqno_info(m, &dev_priv->ring[i]);
529 }
530 mutex_unlock(&dev->struct_mutex);
531
532 return 0;
533 }
534
535 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
536 {
537 struct drm_info_node *node = (struct drm_info_node *) m->private;
538 struct drm_device *dev = node->minor->dev;
539 drm_i915_private_t *dev_priv = dev->dev_private;
540 int i, ret;
541
542 ret = mutex_lock_interruptible(&dev->struct_mutex);
543 if (ret)
544 return ret;
545
546 seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
547 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
548 for (i = 0; i < dev_priv->num_fence_regs; i++) {
549 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
550
551 seq_printf(m, "Fenced object[%2d] = ", i);
552 if (obj == NULL)
553 seq_printf(m, "unused");
554 else
555 describe_obj(m, obj);
556 seq_printf(m, "\n");
557 }
558
559 mutex_unlock(&dev->struct_mutex);
560 return 0;
561 }
562
563 static int i915_hws_info(struct seq_file *m, void *data)
564 {
565 struct drm_info_node *node = (struct drm_info_node *) m->private;
566 struct drm_device *dev = node->minor->dev;
567 drm_i915_private_t *dev_priv = dev->dev_private;
568 struct intel_ring_buffer *ring;
569 const volatile u32 __iomem *hws;
570 int i;
571
572 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
573 hws = (volatile u32 __iomem *)ring->status_page.page_addr;
574 if (hws == NULL)
575 return 0;
576
577 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
578 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
579 i * 4,
580 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
581 }
582 return 0;
583 }
584
585 static const char *ring_str(int ring)
586 {
587 switch (ring) {
588 case RCS: return "render";
589 case VCS: return "bsd";
590 case BCS: return "blt";
591 default: return "";
592 }
593 }
594
595 static const char *pin_flag(int pinned)
596 {
597 if (pinned > 0)
598 return " P";
599 else if (pinned < 0)
600 return " p";
601 else
602 return "";
603 }
604
605 static const char *tiling_flag(int tiling)
606 {
607 switch (tiling) {
608 default:
609 case I915_TILING_NONE: return "";
610 case I915_TILING_X: return " X";
611 case I915_TILING_Y: return " Y";
612 }
613 }
614
615 static const char *dirty_flag(int dirty)
616 {
617 return dirty ? " dirty" : "";
618 }
619
620 static const char *purgeable_flag(int purgeable)
621 {
622 return purgeable ? " purgeable" : "";
623 }
624
625 static void print_error_buffers(struct seq_file *m,
626 const char *name,
627 struct drm_i915_error_buffer *err,
628 int count)
629 {
630 seq_printf(m, "%s [%d]:\n", name, count);
631
632 while (count--) {
633 seq_printf(m, " %08x %8u %04x %04x %08x%s%s%s%s%s%s%s",
634 err->gtt_offset,
635 err->size,
636 err->read_domains,
637 err->write_domain,
638 err->seqno,
639 pin_flag(err->pinned),
640 tiling_flag(err->tiling),
641 dirty_flag(err->dirty),
642 purgeable_flag(err->purgeable),
643 err->ring != -1 ? " " : "",
644 ring_str(err->ring),
645 cache_level_str(err->cache_level));
646
647 if (err->name)
648 seq_printf(m, " (name: %d)", err->name);
649 if (err->fence_reg != I915_FENCE_REG_NONE)
650 seq_printf(m, " (fence: %d)", err->fence_reg);
651
652 seq_printf(m, "\n");
653 err++;
654 }
655 }
656
657 static void i915_ring_error_state(struct seq_file *m,
658 struct drm_device *dev,
659 struct drm_i915_error_state *error,
660 unsigned ring)
661 {
662 BUG_ON(ring >= I915_NUM_RINGS); /* shut up confused gcc */
663 seq_printf(m, "%s command stream:\n", ring_str(ring));
664 seq_printf(m, " HEAD: 0x%08x\n", error->head[ring]);
665 seq_printf(m, " TAIL: 0x%08x\n", error->tail[ring]);
666 seq_printf(m, " ACTHD: 0x%08x\n", error->acthd[ring]);
667 seq_printf(m, " IPEIR: 0x%08x\n", error->ipeir[ring]);
668 seq_printf(m, " IPEHR: 0x%08x\n", error->ipehr[ring]);
669 seq_printf(m, " INSTDONE: 0x%08x\n", error->instdone[ring]);
670 if (ring == RCS && INTEL_INFO(dev)->gen >= 4) {
671 seq_printf(m, " INSTDONE1: 0x%08x\n", error->instdone1);
672 seq_printf(m, " BBADDR: 0x%08llx\n", error->bbaddr);
673 }
674 if (INTEL_INFO(dev)->gen >= 4)
675 seq_printf(m, " INSTPS: 0x%08x\n", error->instps[ring]);
676 seq_printf(m, " INSTPM: 0x%08x\n", error->instpm[ring]);
677 seq_printf(m, " FADDR: 0x%08x\n", error->faddr[ring]);
678 if (INTEL_INFO(dev)->gen >= 6) {
679 seq_printf(m, " RC PSMI: 0x%08x\n", error->rc_psmi[ring]);
680 seq_printf(m, " FAULT_REG: 0x%08x\n", error->fault_reg[ring]);
681 seq_printf(m, " SYNC_0: 0x%08x\n",
682 error->semaphore_mboxes[ring][0]);
683 seq_printf(m, " SYNC_1: 0x%08x\n",
684 error->semaphore_mboxes[ring][1]);
685 }
686 seq_printf(m, " seqno: 0x%08x\n", error->seqno[ring]);
687 seq_printf(m, " waiting: %s\n", yesno(error->waiting[ring]));
688 seq_printf(m, " ring->head: 0x%08x\n", error->cpu_ring_head[ring]);
689 seq_printf(m, " ring->tail: 0x%08x\n", error->cpu_ring_tail[ring]);
690 }
691
692 struct i915_error_state_file_priv {
693 struct drm_device *dev;
694 struct drm_i915_error_state *error;
695 };
696
697 static int i915_error_state(struct seq_file *m, void *unused)
698 {
699 struct i915_error_state_file_priv *error_priv = m->private;
700 struct drm_device *dev = error_priv->dev;
701 drm_i915_private_t *dev_priv = dev->dev_private;
702 struct drm_i915_error_state *error = error_priv->error;
703 struct intel_ring_buffer *ring;
704 int i, j, page, offset, elt;
705
706 if (!error) {
707 seq_printf(m, "no error state collected\n");
708 return 0;
709 }
710
711 seq_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec,
712 error->time.tv_usec);
713 seq_printf(m, "PCI ID: 0x%04x\n", dev->pci_device);
714 seq_printf(m, "EIR: 0x%08x\n", error->eir);
715 seq_printf(m, "IER: 0x%08x\n", error->ier);
716 seq_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er);
717 seq_printf(m, "CCID: 0x%08x\n", error->ccid);
718
719 for (i = 0; i < dev_priv->num_fence_regs; i++)
720 seq_printf(m, " fence[%d] = %08llx\n", i, error->fence[i]);
721
722 if (INTEL_INFO(dev)->gen >= 6) {
723 seq_printf(m, "ERROR: 0x%08x\n", error->error);
724 seq_printf(m, "DONE_REG: 0x%08x\n", error->done_reg);
725 }
726
727 for_each_ring(ring, dev_priv, i)
728 i915_ring_error_state(m, dev, error, i);
729
730 if (error->active_bo)
731 print_error_buffers(m, "Active",
732 error->active_bo,
733 error->active_bo_count);
734
735 if (error->pinned_bo)
736 print_error_buffers(m, "Pinned",
737 error->pinned_bo,
738 error->pinned_bo_count);
739
740 for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
741 struct drm_i915_error_object *obj;
742
743 if ((obj = error->ring[i].batchbuffer)) {
744 seq_printf(m, "%s --- gtt_offset = 0x%08x\n",
745 dev_priv->ring[i].name,
746 obj->gtt_offset);
747 offset = 0;
748 for (page = 0; page < obj->page_count; page++) {
749 for (elt = 0; elt < PAGE_SIZE/4; elt++) {
750 seq_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]);
751 offset += 4;
752 }
753 }
754 }
755
756 if (error->ring[i].num_requests) {
757 seq_printf(m, "%s --- %d requests\n",
758 dev_priv->ring[i].name,
759 error->ring[i].num_requests);
760 for (j = 0; j < error->ring[i].num_requests; j++) {
761 seq_printf(m, " seqno 0x%08x, emitted %ld, tail 0x%08x\n",
762 error->ring[i].requests[j].seqno,
763 error->ring[i].requests[j].jiffies,
764 error->ring[i].requests[j].tail);
765 }
766 }
767
768 if ((obj = error->ring[i].ringbuffer)) {
769 seq_printf(m, "%s --- ringbuffer = 0x%08x\n",
770 dev_priv->ring[i].name,
771 obj->gtt_offset);
772 offset = 0;
773 for (page = 0; page < obj->page_count; page++) {
774 for (elt = 0; elt < PAGE_SIZE/4; elt++) {
775 seq_printf(m, "%08x : %08x\n",
776 offset,
777 obj->pages[page][elt]);
778 offset += 4;
779 }
780 }
781 }
782 }
783
784 if (error->overlay)
785 intel_overlay_print_error_state(m, error->overlay);
786
787 if (error->display)
788 intel_display_print_error_state(m, dev, error->display);
789
790 return 0;
791 }
792
793 static ssize_t
794 i915_error_state_write(struct file *filp,
795 const char __user *ubuf,
796 size_t cnt,
797 loff_t *ppos)
798 {
799 struct seq_file *m = filp->private_data;
800 struct i915_error_state_file_priv *error_priv = m->private;
801 struct drm_device *dev = error_priv->dev;
802
803 DRM_DEBUG_DRIVER("Resetting error state\n");
804
805 mutex_lock(&dev->struct_mutex);
806 i915_destroy_error_state(dev);
807 mutex_unlock(&dev->struct_mutex);
808
809 return cnt;
810 }
811
812 static int i915_error_state_open(struct inode *inode, struct file *file)
813 {
814 struct drm_device *dev = inode->i_private;
815 drm_i915_private_t *dev_priv = dev->dev_private;
816 struct i915_error_state_file_priv *error_priv;
817 unsigned long flags;
818
819 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
820 if (!error_priv)
821 return -ENOMEM;
822
823 error_priv->dev = dev;
824
825 spin_lock_irqsave(&dev_priv->error_lock, flags);
826 error_priv->error = dev_priv->first_error;
827 if (error_priv->error)
828 kref_get(&error_priv->error->ref);
829 spin_unlock_irqrestore(&dev_priv->error_lock, flags);
830
831 return single_open(file, i915_error_state, error_priv);
832 }
833
834 static int i915_error_state_release(struct inode *inode, struct file *file)
835 {
836 struct seq_file *m = file->private_data;
837 struct i915_error_state_file_priv *error_priv = m->private;
838
839 if (error_priv->error)
840 kref_put(&error_priv->error->ref, i915_error_state_free);
841 kfree(error_priv);
842
843 return single_release(inode, file);
844 }
845
846 static const struct file_operations i915_error_state_fops = {
847 .owner = THIS_MODULE,
848 .open = i915_error_state_open,
849 .read = seq_read,
850 .write = i915_error_state_write,
851 .llseek = default_llseek,
852 .release = i915_error_state_release,
853 };
854
855 static int i915_rstdby_delays(struct seq_file *m, void *unused)
856 {
857 struct drm_info_node *node = (struct drm_info_node *) m->private;
858 struct drm_device *dev = node->minor->dev;
859 drm_i915_private_t *dev_priv = dev->dev_private;
860 u16 crstanddelay;
861 int ret;
862
863 ret = mutex_lock_interruptible(&dev->struct_mutex);
864 if (ret)
865 return ret;
866
867 crstanddelay = I915_READ16(CRSTANDVID);
868
869 mutex_unlock(&dev->struct_mutex);
870
871 seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
872
873 return 0;
874 }
875
876 static int i915_cur_delayinfo(struct seq_file *m, void *unused)
877 {
878 struct drm_info_node *node = (struct drm_info_node *) m->private;
879 struct drm_device *dev = node->minor->dev;
880 drm_i915_private_t *dev_priv = dev->dev_private;
881 int ret;
882
883 if (IS_GEN5(dev)) {
884 u16 rgvswctl = I915_READ16(MEMSWCTL);
885 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
886
887 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
888 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
889 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
890 MEMSTAT_VID_SHIFT);
891 seq_printf(m, "Current P-state: %d\n",
892 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
893 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
894 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
895 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
896 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
897 u32 rpstat;
898 u32 rpupei, rpcurup, rpprevup;
899 u32 rpdownei, rpcurdown, rpprevdown;
900 int max_freq;
901
902 /* RPSTAT1 is in the GT power well */
903 ret = mutex_lock_interruptible(&dev->struct_mutex);
904 if (ret)
905 return ret;
906
907 gen6_gt_force_wake_get(dev_priv);
908
909 rpstat = I915_READ(GEN6_RPSTAT1);
910 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
911 rpcurup = I915_READ(GEN6_RP_CUR_UP);
912 rpprevup = I915_READ(GEN6_RP_PREV_UP);
913 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
914 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
915 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
916
917 gen6_gt_force_wake_put(dev_priv);
918 mutex_unlock(&dev->struct_mutex);
919
920 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
921 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
922 seq_printf(m, "Render p-state ratio: %d\n",
923 (gt_perf_status & 0xff00) >> 8);
924 seq_printf(m, "Render p-state VID: %d\n",
925 gt_perf_status & 0xff);
926 seq_printf(m, "Render p-state limit: %d\n",
927 rp_state_limits & 0xff);
928 seq_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >>
929 GEN6_CAGF_SHIFT) * 50);
930 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
931 GEN6_CURICONT_MASK);
932 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
933 GEN6_CURBSYTAVG_MASK);
934 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
935 GEN6_CURBSYTAVG_MASK);
936 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
937 GEN6_CURIAVG_MASK);
938 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
939 GEN6_CURBSYTAVG_MASK);
940 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
941 GEN6_CURBSYTAVG_MASK);
942
943 max_freq = (rp_state_cap & 0xff0000) >> 16;
944 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
945 max_freq * 50);
946
947 max_freq = (rp_state_cap & 0xff00) >> 8;
948 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
949 max_freq * 50);
950
951 max_freq = rp_state_cap & 0xff;
952 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
953 max_freq * 50);
954 } else {
955 seq_printf(m, "no P-state info available\n");
956 }
957
958 return 0;
959 }
960
961 static int i915_delayfreq_table(struct seq_file *m, void *unused)
962 {
963 struct drm_info_node *node = (struct drm_info_node *) m->private;
964 struct drm_device *dev = node->minor->dev;
965 drm_i915_private_t *dev_priv = dev->dev_private;
966 u32 delayfreq;
967 int ret, i;
968
969 ret = mutex_lock_interruptible(&dev->struct_mutex);
970 if (ret)
971 return ret;
972
973 for (i = 0; i < 16; i++) {
974 delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
975 seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
976 (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
977 }
978
979 mutex_unlock(&dev->struct_mutex);
980
981 return 0;
982 }
983
984 static inline int MAP_TO_MV(int map)
985 {
986 return 1250 - (map * 25);
987 }
988
989 static int i915_inttoext_table(struct seq_file *m, void *unused)
990 {
991 struct drm_info_node *node = (struct drm_info_node *) m->private;
992 struct drm_device *dev = node->minor->dev;
993 drm_i915_private_t *dev_priv = dev->dev_private;
994 u32 inttoext;
995 int ret, i;
996
997 ret = mutex_lock_interruptible(&dev->struct_mutex);
998 if (ret)
999 return ret;
1000
1001 for (i = 1; i <= 32; i++) {
1002 inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
1003 seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
1004 }
1005
1006 mutex_unlock(&dev->struct_mutex);
1007
1008 return 0;
1009 }
1010
1011 static int ironlake_drpc_info(struct seq_file *m)
1012 {
1013 struct drm_info_node *node = (struct drm_info_node *) m->private;
1014 struct drm_device *dev = node->minor->dev;
1015 drm_i915_private_t *dev_priv = dev->dev_private;
1016 u32 rgvmodectl, rstdbyctl;
1017 u16 crstandvid;
1018 int ret;
1019
1020 ret = mutex_lock_interruptible(&dev->struct_mutex);
1021 if (ret)
1022 return ret;
1023
1024 rgvmodectl = I915_READ(MEMMODECTL);
1025 rstdbyctl = I915_READ(RSTDBYCTL);
1026 crstandvid = I915_READ16(CRSTANDVID);
1027
1028 mutex_unlock(&dev->struct_mutex);
1029
1030 seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1031 "yes" : "no");
1032 seq_printf(m, "Boost freq: %d\n",
1033 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1034 MEMMODE_BOOST_FREQ_SHIFT);
1035 seq_printf(m, "HW control enabled: %s\n",
1036 rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1037 seq_printf(m, "SW control enabled: %s\n",
1038 rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1039 seq_printf(m, "Gated voltage change: %s\n",
1040 rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1041 seq_printf(m, "Starting frequency: P%d\n",
1042 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1043 seq_printf(m, "Max P-state: P%d\n",
1044 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1045 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1046 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1047 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1048 seq_printf(m, "Render standby enabled: %s\n",
1049 (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1050 seq_printf(m, "Current RS state: ");
1051 switch (rstdbyctl & RSX_STATUS_MASK) {
1052 case RSX_STATUS_ON:
1053 seq_printf(m, "on\n");
1054 break;
1055 case RSX_STATUS_RC1:
1056 seq_printf(m, "RC1\n");
1057 break;
1058 case RSX_STATUS_RC1E:
1059 seq_printf(m, "RC1E\n");
1060 break;
1061 case RSX_STATUS_RS1:
1062 seq_printf(m, "RS1\n");
1063 break;
1064 case RSX_STATUS_RS2:
1065 seq_printf(m, "RS2 (RC6)\n");
1066 break;
1067 case RSX_STATUS_RS3:
1068 seq_printf(m, "RC3 (RC6+)\n");
1069 break;
1070 default:
1071 seq_printf(m, "unknown\n");
1072 break;
1073 }
1074
1075 return 0;
1076 }
1077
1078 static int gen6_drpc_info(struct seq_file *m)
1079 {
1080
1081 struct drm_info_node *node = (struct drm_info_node *) m->private;
1082 struct drm_device *dev = node->minor->dev;
1083 struct drm_i915_private *dev_priv = dev->dev_private;
1084 u32 rpmodectl1, gt_core_status, rcctl1;
1085 unsigned forcewake_count;
1086 int count=0, ret;
1087
1088
1089 ret = mutex_lock_interruptible(&dev->struct_mutex);
1090 if (ret)
1091 return ret;
1092
1093 spin_lock_irq(&dev_priv->gt_lock);
1094 forcewake_count = dev_priv->forcewake_count;
1095 spin_unlock_irq(&dev_priv->gt_lock);
1096
1097 if (forcewake_count) {
1098 seq_printf(m, "RC information inaccurate because somebody "
1099 "holds a forcewake reference \n");
1100 } else {
1101 /* NB: we cannot use forcewake, else we read the wrong values */
1102 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1103 udelay(10);
1104 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1105 }
1106
1107 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1108 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4);
1109
1110 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1111 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1112 mutex_unlock(&dev->struct_mutex);
1113
1114 seq_printf(m, "Video Turbo Mode: %s\n",
1115 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1116 seq_printf(m, "HW control enabled: %s\n",
1117 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1118 seq_printf(m, "SW control enabled: %s\n",
1119 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1120 GEN6_RP_MEDIA_SW_MODE));
1121 seq_printf(m, "RC1e Enabled: %s\n",
1122 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1123 seq_printf(m, "RC6 Enabled: %s\n",
1124 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1125 seq_printf(m, "Deep RC6 Enabled: %s\n",
1126 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1127 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1128 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1129 seq_printf(m, "Current RC state: ");
1130 switch (gt_core_status & GEN6_RCn_MASK) {
1131 case GEN6_RC0:
1132 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1133 seq_printf(m, "Core Power Down\n");
1134 else
1135 seq_printf(m, "on\n");
1136 break;
1137 case GEN6_RC3:
1138 seq_printf(m, "RC3\n");
1139 break;
1140 case GEN6_RC6:
1141 seq_printf(m, "RC6\n");
1142 break;
1143 case GEN6_RC7:
1144 seq_printf(m, "RC7\n");
1145 break;
1146 default:
1147 seq_printf(m, "Unknown\n");
1148 break;
1149 }
1150
1151 seq_printf(m, "Core Power Down: %s\n",
1152 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1153
1154 /* Not exactly sure what this is */
1155 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1156 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1157 seq_printf(m, "RC6 residency since boot: %u\n",
1158 I915_READ(GEN6_GT_GFX_RC6));
1159 seq_printf(m, "RC6+ residency since boot: %u\n",
1160 I915_READ(GEN6_GT_GFX_RC6p));
1161 seq_printf(m, "RC6++ residency since boot: %u\n",
1162 I915_READ(GEN6_GT_GFX_RC6pp));
1163
1164 return 0;
1165 }
1166
1167 static int i915_drpc_info(struct seq_file *m, void *unused)
1168 {
1169 struct drm_info_node *node = (struct drm_info_node *) m->private;
1170 struct drm_device *dev = node->minor->dev;
1171
1172 if (IS_GEN6(dev) || IS_GEN7(dev))
1173 return gen6_drpc_info(m);
1174 else
1175 return ironlake_drpc_info(m);
1176 }
1177
1178 static int i915_fbc_status(struct seq_file *m, void *unused)
1179 {
1180 struct drm_info_node *node = (struct drm_info_node *) m->private;
1181 struct drm_device *dev = node->minor->dev;
1182 drm_i915_private_t *dev_priv = dev->dev_private;
1183
1184 if (!I915_HAS_FBC(dev)) {
1185 seq_printf(m, "FBC unsupported on this chipset\n");
1186 return 0;
1187 }
1188
1189 if (intel_fbc_enabled(dev)) {
1190 seq_printf(m, "FBC enabled\n");
1191 } else {
1192 seq_printf(m, "FBC disabled: ");
1193 switch (dev_priv->no_fbc_reason) {
1194 case FBC_NO_OUTPUT:
1195 seq_printf(m, "no outputs");
1196 break;
1197 case FBC_STOLEN_TOO_SMALL:
1198 seq_printf(m, "not enough stolen memory");
1199 break;
1200 case FBC_UNSUPPORTED_MODE:
1201 seq_printf(m, "mode not supported");
1202 break;
1203 case FBC_MODE_TOO_LARGE:
1204 seq_printf(m, "mode too large");
1205 break;
1206 case FBC_BAD_PLANE:
1207 seq_printf(m, "FBC unsupported on plane");
1208 break;
1209 case FBC_NOT_TILED:
1210 seq_printf(m, "scanout buffer not tiled");
1211 break;
1212 case FBC_MULTIPLE_PIPES:
1213 seq_printf(m, "multiple pipes are enabled");
1214 break;
1215 case FBC_MODULE_PARAM:
1216 seq_printf(m, "disabled per module param (default off)");
1217 break;
1218 default:
1219 seq_printf(m, "unknown reason");
1220 }
1221 seq_printf(m, "\n");
1222 }
1223 return 0;
1224 }
1225
1226 static int i915_sr_status(struct seq_file *m, void *unused)
1227 {
1228 struct drm_info_node *node = (struct drm_info_node *) m->private;
1229 struct drm_device *dev = node->minor->dev;
1230 drm_i915_private_t *dev_priv = dev->dev_private;
1231 bool sr_enabled = false;
1232
1233 if (HAS_PCH_SPLIT(dev))
1234 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1235 else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1236 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1237 else if (IS_I915GM(dev))
1238 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1239 else if (IS_PINEVIEW(dev))
1240 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1241
1242 seq_printf(m, "self-refresh: %s\n",
1243 sr_enabled ? "enabled" : "disabled");
1244
1245 return 0;
1246 }
1247
1248 static int i915_emon_status(struct seq_file *m, void *unused)
1249 {
1250 struct drm_info_node *node = (struct drm_info_node *) m->private;
1251 struct drm_device *dev = node->minor->dev;
1252 drm_i915_private_t *dev_priv = dev->dev_private;
1253 unsigned long temp, chipset, gfx;
1254 int ret;
1255
1256 if (!IS_GEN5(dev))
1257 return -ENODEV;
1258
1259 ret = mutex_lock_interruptible(&dev->struct_mutex);
1260 if (ret)
1261 return ret;
1262
1263 temp = i915_mch_val(dev_priv);
1264 chipset = i915_chipset_val(dev_priv);
1265 gfx = i915_gfx_val(dev_priv);
1266 mutex_unlock(&dev->struct_mutex);
1267
1268 seq_printf(m, "GMCH temp: %ld\n", temp);
1269 seq_printf(m, "Chipset power: %ld\n", chipset);
1270 seq_printf(m, "GFX power: %ld\n", gfx);
1271 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1272
1273 return 0;
1274 }
1275
1276 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1277 {
1278 struct drm_info_node *node = (struct drm_info_node *) m->private;
1279 struct drm_device *dev = node->minor->dev;
1280 drm_i915_private_t *dev_priv = dev->dev_private;
1281 int ret;
1282 int gpu_freq, ia_freq;
1283
1284 if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1285 seq_printf(m, "unsupported on this chipset\n");
1286 return 0;
1287 }
1288
1289 ret = mutex_lock_interruptible(&dev->struct_mutex);
1290 if (ret)
1291 return ret;
1292
1293 seq_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n");
1294
1295 for (gpu_freq = dev_priv->min_delay; gpu_freq <= dev_priv->max_delay;
1296 gpu_freq++) {
1297 I915_WRITE(GEN6_PCODE_DATA, gpu_freq);
1298 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
1299 GEN6_PCODE_READ_MIN_FREQ_TABLE);
1300 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
1301 GEN6_PCODE_READY) == 0, 10)) {
1302 DRM_ERROR("pcode read of freq table timed out\n");
1303 continue;
1304 }
1305 ia_freq = I915_READ(GEN6_PCODE_DATA);
1306 seq_printf(m, "%d\t\t%d\n", gpu_freq * 50, ia_freq * 100);
1307 }
1308
1309 mutex_unlock(&dev->struct_mutex);
1310
1311 return 0;
1312 }
1313
1314 static int i915_gfxec(struct seq_file *m, void *unused)
1315 {
1316 struct drm_info_node *node = (struct drm_info_node *) m->private;
1317 struct drm_device *dev = node->minor->dev;
1318 drm_i915_private_t *dev_priv = dev->dev_private;
1319 int ret;
1320
1321 ret = mutex_lock_interruptible(&dev->struct_mutex);
1322 if (ret)
1323 return ret;
1324
1325 seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1326
1327 mutex_unlock(&dev->struct_mutex);
1328
1329 return 0;
1330 }
1331
1332 static int i915_opregion(struct seq_file *m, void *unused)
1333 {
1334 struct drm_info_node *node = (struct drm_info_node *) m->private;
1335 struct drm_device *dev = node->minor->dev;
1336 drm_i915_private_t *dev_priv = dev->dev_private;
1337 struct intel_opregion *opregion = &dev_priv->opregion;
1338 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1339 int ret;
1340
1341 if (data == NULL)
1342 return -ENOMEM;
1343
1344 ret = mutex_lock_interruptible(&dev->struct_mutex);
1345 if (ret)
1346 goto out;
1347
1348 if (opregion->header) {
1349 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1350 seq_write(m, data, OPREGION_SIZE);
1351 }
1352
1353 mutex_unlock(&dev->struct_mutex);
1354
1355 out:
1356 kfree(data);
1357 return 0;
1358 }
1359
1360 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1361 {
1362 struct drm_info_node *node = (struct drm_info_node *) m->private;
1363 struct drm_device *dev = node->minor->dev;
1364 drm_i915_private_t *dev_priv = dev->dev_private;
1365 struct intel_fbdev *ifbdev;
1366 struct intel_framebuffer *fb;
1367 int ret;
1368
1369 ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1370 if (ret)
1371 return ret;
1372
1373 ifbdev = dev_priv->fbdev;
1374 fb = to_intel_framebuffer(ifbdev->helper.fb);
1375
1376 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ",
1377 fb->base.width,
1378 fb->base.height,
1379 fb->base.depth,
1380 fb->base.bits_per_pixel);
1381 describe_obj(m, fb->obj);
1382 seq_printf(m, "\n");
1383
1384 list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1385 if (&fb->base == ifbdev->helper.fb)
1386 continue;
1387
1388 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ",
1389 fb->base.width,
1390 fb->base.height,
1391 fb->base.depth,
1392 fb->base.bits_per_pixel);
1393 describe_obj(m, fb->obj);
1394 seq_printf(m, "\n");
1395 }
1396
1397 mutex_unlock(&dev->mode_config.mutex);
1398
1399 return 0;
1400 }
1401
1402 static int i915_context_status(struct seq_file *m, void *unused)
1403 {
1404 struct drm_info_node *node = (struct drm_info_node *) m->private;
1405 struct drm_device *dev = node->minor->dev;
1406 drm_i915_private_t *dev_priv = dev->dev_private;
1407 int ret;
1408
1409 ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1410 if (ret)
1411 return ret;
1412
1413 if (dev_priv->pwrctx) {
1414 seq_printf(m, "power context ");
1415 describe_obj(m, dev_priv->pwrctx);
1416 seq_printf(m, "\n");
1417 }
1418
1419 if (dev_priv->renderctx) {
1420 seq_printf(m, "render context ");
1421 describe_obj(m, dev_priv->renderctx);
1422 seq_printf(m, "\n");
1423 }
1424
1425 mutex_unlock(&dev->mode_config.mutex);
1426
1427 return 0;
1428 }
1429
1430 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1431 {
1432 struct drm_info_node *node = (struct drm_info_node *) m->private;
1433 struct drm_device *dev = node->minor->dev;
1434 struct drm_i915_private *dev_priv = dev->dev_private;
1435 unsigned forcewake_count;
1436
1437 spin_lock_irq(&dev_priv->gt_lock);
1438 forcewake_count = dev_priv->forcewake_count;
1439 spin_unlock_irq(&dev_priv->gt_lock);
1440
1441 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1442
1443 return 0;
1444 }
1445
1446 static const char *swizzle_string(unsigned swizzle)
1447 {
1448 switch(swizzle) {
1449 case I915_BIT_6_SWIZZLE_NONE:
1450 return "none";
1451 case I915_BIT_6_SWIZZLE_9:
1452 return "bit9";
1453 case I915_BIT_6_SWIZZLE_9_10:
1454 return "bit9/bit10";
1455 case I915_BIT_6_SWIZZLE_9_11:
1456 return "bit9/bit11";
1457 case I915_BIT_6_SWIZZLE_9_10_11:
1458 return "bit9/bit10/bit11";
1459 case I915_BIT_6_SWIZZLE_9_17:
1460 return "bit9/bit17";
1461 case I915_BIT_6_SWIZZLE_9_10_17:
1462 return "bit9/bit10/bit17";
1463 case I915_BIT_6_SWIZZLE_UNKNOWN:
1464 return "unkown";
1465 }
1466
1467 return "bug";
1468 }
1469
1470 static int i915_swizzle_info(struct seq_file *m, void *data)
1471 {
1472 struct drm_info_node *node = (struct drm_info_node *) m->private;
1473 struct drm_device *dev = node->minor->dev;
1474 struct drm_i915_private *dev_priv = dev->dev_private;
1475
1476 mutex_lock(&dev->struct_mutex);
1477 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1478 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1479 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1480 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1481
1482 if (IS_GEN3(dev) || IS_GEN4(dev)) {
1483 seq_printf(m, "DDC = 0x%08x\n",
1484 I915_READ(DCC));
1485 seq_printf(m, "C0DRB3 = 0x%04x\n",
1486 I915_READ16(C0DRB3));
1487 seq_printf(m, "C1DRB3 = 0x%04x\n",
1488 I915_READ16(C1DRB3));
1489 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
1490 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1491 I915_READ(MAD_DIMM_C0));
1492 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1493 I915_READ(MAD_DIMM_C1));
1494 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1495 I915_READ(MAD_DIMM_C2));
1496 seq_printf(m, "TILECTL = 0x%08x\n",
1497 I915_READ(TILECTL));
1498 seq_printf(m, "ARB_MODE = 0x%08x\n",
1499 I915_READ(ARB_MODE));
1500 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1501 I915_READ(DISP_ARB_CTL));
1502 }
1503 mutex_unlock(&dev->struct_mutex);
1504
1505 return 0;
1506 }
1507
1508 static int i915_ppgtt_info(struct seq_file *m, void *data)
1509 {
1510 struct drm_info_node *node = (struct drm_info_node *) m->private;
1511 struct drm_device *dev = node->minor->dev;
1512 struct drm_i915_private *dev_priv = dev->dev_private;
1513 struct intel_ring_buffer *ring;
1514 int i, ret;
1515
1516
1517 ret = mutex_lock_interruptible(&dev->struct_mutex);
1518 if (ret)
1519 return ret;
1520 if (INTEL_INFO(dev)->gen == 6)
1521 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1522
1523 for (i = 0; i < I915_NUM_RINGS; i++) {
1524 ring = &dev_priv->ring[i];
1525
1526 seq_printf(m, "%s\n", ring->name);
1527 if (INTEL_INFO(dev)->gen == 7)
1528 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1529 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1530 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1531 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1532 }
1533 if (dev_priv->mm.aliasing_ppgtt) {
1534 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1535
1536 seq_printf(m, "aliasing PPGTT:\n");
1537 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1538 }
1539 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1540 mutex_unlock(&dev->struct_mutex);
1541
1542 return 0;
1543 }
1544
1545 static int i915_dpio_info(struct seq_file *m, void *data)
1546 {
1547 struct drm_info_node *node = (struct drm_info_node *) m->private;
1548 struct drm_device *dev = node->minor->dev;
1549 struct drm_i915_private *dev_priv = dev->dev_private;
1550 int ret;
1551
1552
1553 if (!IS_VALLEYVIEW(dev)) {
1554 seq_printf(m, "unsupported\n");
1555 return 0;
1556 }
1557
1558 ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1559 if (ret)
1560 return ret;
1561
1562 seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
1563
1564 seq_printf(m, "DPIO_DIV_A: 0x%08x\n",
1565 intel_dpio_read(dev_priv, _DPIO_DIV_A));
1566 seq_printf(m, "DPIO_DIV_B: 0x%08x\n",
1567 intel_dpio_read(dev_priv, _DPIO_DIV_B));
1568
1569 seq_printf(m, "DPIO_REFSFR_A: 0x%08x\n",
1570 intel_dpio_read(dev_priv, _DPIO_REFSFR_A));
1571 seq_printf(m, "DPIO_REFSFR_B: 0x%08x\n",
1572 intel_dpio_read(dev_priv, _DPIO_REFSFR_B));
1573
1574 seq_printf(m, "DPIO_CORE_CLK_A: 0x%08x\n",
1575 intel_dpio_read(dev_priv, _DPIO_CORE_CLK_A));
1576 seq_printf(m, "DPIO_CORE_CLK_B: 0x%08x\n",
1577 intel_dpio_read(dev_priv, _DPIO_CORE_CLK_B));
1578
1579 seq_printf(m, "DPIO_LFP_COEFF_A: 0x%08x\n",
1580 intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_A));
1581 seq_printf(m, "DPIO_LFP_COEFF_B: 0x%08x\n",
1582 intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_B));
1583
1584 seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
1585 intel_dpio_read(dev_priv, DPIO_FASTCLK_DISABLE));
1586
1587 mutex_unlock(&dev->mode_config.mutex);
1588
1589 return 0;
1590 }
1591
1592 static ssize_t
1593 i915_wedged_read(struct file *filp,
1594 char __user *ubuf,
1595 size_t max,
1596 loff_t *ppos)
1597 {
1598 struct drm_device *dev = filp->private_data;
1599 drm_i915_private_t *dev_priv = dev->dev_private;
1600 char buf[80];
1601 int len;
1602
1603 len = snprintf(buf, sizeof(buf),
1604 "wedged : %d\n",
1605 atomic_read(&dev_priv->mm.wedged));
1606
1607 if (len > sizeof(buf))
1608 len = sizeof(buf);
1609
1610 return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1611 }
1612
1613 static ssize_t
1614 i915_wedged_write(struct file *filp,
1615 const char __user *ubuf,
1616 size_t cnt,
1617 loff_t *ppos)
1618 {
1619 struct drm_device *dev = filp->private_data;
1620 char buf[20];
1621 int val = 1;
1622
1623 if (cnt > 0) {
1624 if (cnt > sizeof(buf) - 1)
1625 return -EINVAL;
1626
1627 if (copy_from_user(buf, ubuf, cnt))
1628 return -EFAULT;
1629 buf[cnt] = 0;
1630
1631 val = simple_strtoul(buf, NULL, 0);
1632 }
1633
1634 DRM_INFO("Manually setting wedged to %d\n", val);
1635 i915_handle_error(dev, val);
1636
1637 return cnt;
1638 }
1639
1640 static const struct file_operations i915_wedged_fops = {
1641 .owner = THIS_MODULE,
1642 .open = simple_open,
1643 .read = i915_wedged_read,
1644 .write = i915_wedged_write,
1645 .llseek = default_llseek,
1646 };
1647
1648 static ssize_t
1649 i915_ring_stop_read(struct file *filp,
1650 char __user *ubuf,
1651 size_t max,
1652 loff_t *ppos)
1653 {
1654 struct drm_device *dev = filp->private_data;
1655 drm_i915_private_t *dev_priv = dev->dev_private;
1656 char buf[20];
1657 int len;
1658
1659 len = snprintf(buf, sizeof(buf),
1660 "0x%08x\n", dev_priv->stop_rings);
1661
1662 if (len > sizeof(buf))
1663 len = sizeof(buf);
1664
1665 return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1666 }
1667
1668 static ssize_t
1669 i915_ring_stop_write(struct file *filp,
1670 const char __user *ubuf,
1671 size_t cnt,
1672 loff_t *ppos)
1673 {
1674 struct drm_device *dev = filp->private_data;
1675 struct drm_i915_private *dev_priv = dev->dev_private;
1676 char buf[20];
1677 int val = 0;
1678
1679 if (cnt > 0) {
1680 if (cnt > sizeof(buf) - 1)
1681 return -EINVAL;
1682
1683 if (copy_from_user(buf, ubuf, cnt))
1684 return -EFAULT;
1685 buf[cnt] = 0;
1686
1687 val = simple_strtoul(buf, NULL, 0);
1688 }
1689
1690 DRM_DEBUG_DRIVER("Stopping rings 0x%08x\n", val);
1691
1692 mutex_lock(&dev->struct_mutex);
1693 dev_priv->stop_rings = val;
1694 mutex_unlock(&dev->struct_mutex);
1695
1696 return cnt;
1697 }
1698
1699 static const struct file_operations i915_ring_stop_fops = {
1700 .owner = THIS_MODULE,
1701 .open = simple_open,
1702 .read = i915_ring_stop_read,
1703 .write = i915_ring_stop_write,
1704 .llseek = default_llseek,
1705 };
1706
1707 static ssize_t
1708 i915_max_freq_read(struct file *filp,
1709 char __user *ubuf,
1710 size_t max,
1711 loff_t *ppos)
1712 {
1713 struct drm_device *dev = filp->private_data;
1714 drm_i915_private_t *dev_priv = dev->dev_private;
1715 char buf[80];
1716 int len;
1717
1718 len = snprintf(buf, sizeof(buf),
1719 "max freq: %d\n", dev_priv->max_delay * 50);
1720
1721 if (len > sizeof(buf))
1722 len = sizeof(buf);
1723
1724 return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1725 }
1726
1727 static ssize_t
1728 i915_max_freq_write(struct file *filp,
1729 const char __user *ubuf,
1730 size_t cnt,
1731 loff_t *ppos)
1732 {
1733 struct drm_device *dev = filp->private_data;
1734 struct drm_i915_private *dev_priv = dev->dev_private;
1735 char buf[20];
1736 int val = 1;
1737
1738 if (cnt > 0) {
1739 if (cnt > sizeof(buf) - 1)
1740 return -EINVAL;
1741
1742 if (copy_from_user(buf, ubuf, cnt))
1743 return -EFAULT;
1744 buf[cnt] = 0;
1745
1746 val = simple_strtoul(buf, NULL, 0);
1747 }
1748
1749 DRM_DEBUG_DRIVER("Manually setting max freq to %d\n", val);
1750
1751 /*
1752 * Turbo will still be enabled, but won't go above the set value.
1753 */
1754 dev_priv->max_delay = val / 50;
1755
1756 gen6_set_rps(dev, val / 50);
1757
1758 return cnt;
1759 }
1760
1761 static const struct file_operations i915_max_freq_fops = {
1762 .owner = THIS_MODULE,
1763 .open = simple_open,
1764 .read = i915_max_freq_read,
1765 .write = i915_max_freq_write,
1766 .llseek = default_llseek,
1767 };
1768
1769 static ssize_t
1770 i915_min_freq_read(struct file *filp, char __user *ubuf, size_t max,
1771 loff_t *ppos)
1772 {
1773 struct drm_device *dev = filp->private_data;
1774 drm_i915_private_t *dev_priv = dev->dev_private;
1775 char buf[80];
1776 int len;
1777
1778 len = snprintf(buf, sizeof(buf),
1779 "min freq: %d\n", dev_priv->min_delay * 50);
1780
1781 if (len > sizeof(buf))
1782 len = sizeof(buf);
1783
1784 return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1785 }
1786
1787 static ssize_t
1788 i915_min_freq_write(struct file *filp, const char __user *ubuf, size_t cnt,
1789 loff_t *ppos)
1790 {
1791 struct drm_device *dev = filp->private_data;
1792 struct drm_i915_private *dev_priv = dev->dev_private;
1793 char buf[20];
1794 int val = 1;
1795
1796 if (cnt > 0) {
1797 if (cnt > sizeof(buf) - 1)
1798 return -EINVAL;
1799
1800 if (copy_from_user(buf, ubuf, cnt))
1801 return -EFAULT;
1802 buf[cnt] = 0;
1803
1804 val = simple_strtoul(buf, NULL, 0);
1805 }
1806
1807 DRM_DEBUG_DRIVER("Manually setting min freq to %d\n", val);
1808
1809 /*
1810 * Turbo will still be enabled, but won't go below the set value.
1811 */
1812 dev_priv->min_delay = val / 50;
1813
1814 gen6_set_rps(dev, val / 50);
1815
1816 return cnt;
1817 }
1818
1819 static const struct file_operations i915_min_freq_fops = {
1820 .owner = THIS_MODULE,
1821 .open = simple_open,
1822 .read = i915_min_freq_read,
1823 .write = i915_min_freq_write,
1824 .llseek = default_llseek,
1825 };
1826
1827 static ssize_t
1828 i915_cache_sharing_read(struct file *filp,
1829 char __user *ubuf,
1830 size_t max,
1831 loff_t *ppos)
1832 {
1833 struct drm_device *dev = filp->private_data;
1834 drm_i915_private_t *dev_priv = dev->dev_private;
1835 char buf[80];
1836 u32 snpcr;
1837 int len;
1838
1839 mutex_lock(&dev_priv->dev->struct_mutex);
1840 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1841 mutex_unlock(&dev_priv->dev->struct_mutex);
1842
1843 len = snprintf(buf, sizeof(buf),
1844 "%d\n", (snpcr & GEN6_MBC_SNPCR_MASK) >>
1845 GEN6_MBC_SNPCR_SHIFT);
1846
1847 if (len > sizeof(buf))
1848 len = sizeof(buf);
1849
1850 return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1851 }
1852
1853 static ssize_t
1854 i915_cache_sharing_write(struct file *filp,
1855 const char __user *ubuf,
1856 size_t cnt,
1857 loff_t *ppos)
1858 {
1859 struct drm_device *dev = filp->private_data;
1860 struct drm_i915_private *dev_priv = dev->dev_private;
1861 char buf[20];
1862 u32 snpcr;
1863 int val = 1;
1864
1865 if (cnt > 0) {
1866 if (cnt > sizeof(buf) - 1)
1867 return -EINVAL;
1868
1869 if (copy_from_user(buf, ubuf, cnt))
1870 return -EFAULT;
1871 buf[cnt] = 0;
1872
1873 val = simple_strtoul(buf, NULL, 0);
1874 }
1875
1876 if (val < 0 || val > 3)
1877 return -EINVAL;
1878
1879 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %d\n", val);
1880
1881 /* Update the cache sharing policy here as well */
1882 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1883 snpcr &= ~GEN6_MBC_SNPCR_MASK;
1884 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
1885 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
1886
1887 return cnt;
1888 }
1889
1890 static const struct file_operations i915_cache_sharing_fops = {
1891 .owner = THIS_MODULE,
1892 .open = simple_open,
1893 .read = i915_cache_sharing_read,
1894 .write = i915_cache_sharing_write,
1895 .llseek = default_llseek,
1896 };
1897
1898 /* As the drm_debugfs_init() routines are called before dev->dev_private is
1899 * allocated we need to hook into the minor for release. */
1900 static int
1901 drm_add_fake_info_node(struct drm_minor *minor,
1902 struct dentry *ent,
1903 const void *key)
1904 {
1905 struct drm_info_node *node;
1906
1907 node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL);
1908 if (node == NULL) {
1909 debugfs_remove(ent);
1910 return -ENOMEM;
1911 }
1912
1913 node->minor = minor;
1914 node->dent = ent;
1915 node->info_ent = (void *) key;
1916
1917 mutex_lock(&minor->debugfs_lock);
1918 list_add(&node->list, &minor->debugfs_list);
1919 mutex_unlock(&minor->debugfs_lock);
1920
1921 return 0;
1922 }
1923
1924 static int i915_forcewake_open(struct inode *inode, struct file *file)
1925 {
1926 struct drm_device *dev = inode->i_private;
1927 struct drm_i915_private *dev_priv = dev->dev_private;
1928 int ret;
1929
1930 if (INTEL_INFO(dev)->gen < 6)
1931 return 0;
1932
1933 ret = mutex_lock_interruptible(&dev->struct_mutex);
1934 if (ret)
1935 return ret;
1936 gen6_gt_force_wake_get(dev_priv);
1937 mutex_unlock(&dev->struct_mutex);
1938
1939 return 0;
1940 }
1941
1942 static int i915_forcewake_release(struct inode *inode, struct file *file)
1943 {
1944 struct drm_device *dev = inode->i_private;
1945 struct drm_i915_private *dev_priv = dev->dev_private;
1946
1947 if (INTEL_INFO(dev)->gen < 6)
1948 return 0;
1949
1950 /*
1951 * It's bad that we can potentially hang userspace if struct_mutex gets
1952 * forever stuck. However, if we cannot acquire this lock it means that
1953 * almost certainly the driver has hung, is not unload-able. Therefore
1954 * hanging here is probably a minor inconvenience not to be seen my
1955 * almost every user.
1956 */
1957 mutex_lock(&dev->struct_mutex);
1958 gen6_gt_force_wake_put(dev_priv);
1959 mutex_unlock(&dev->struct_mutex);
1960
1961 return 0;
1962 }
1963
1964 static const struct file_operations i915_forcewake_fops = {
1965 .owner = THIS_MODULE,
1966 .open = i915_forcewake_open,
1967 .release = i915_forcewake_release,
1968 };
1969
1970 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
1971 {
1972 struct drm_device *dev = minor->dev;
1973 struct dentry *ent;
1974
1975 ent = debugfs_create_file("i915_forcewake_user",
1976 S_IRUSR,
1977 root, dev,
1978 &i915_forcewake_fops);
1979 if (IS_ERR(ent))
1980 return PTR_ERR(ent);
1981
1982 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
1983 }
1984
1985 static int i915_debugfs_create(struct dentry *root,
1986 struct drm_minor *minor,
1987 const char *name,
1988 const struct file_operations *fops)
1989 {
1990 struct drm_device *dev = minor->dev;
1991 struct dentry *ent;
1992
1993 ent = debugfs_create_file(name,
1994 S_IRUGO | S_IWUSR,
1995 root, dev,
1996 fops);
1997 if (IS_ERR(ent))
1998 return PTR_ERR(ent);
1999
2000 return drm_add_fake_info_node(minor, ent, fops);
2001 }
2002
2003 static struct drm_info_list i915_debugfs_list[] = {
2004 {"i915_capabilities", i915_capabilities, 0},
2005 {"i915_gem_objects", i915_gem_object_info, 0},
2006 {"i915_gem_gtt", i915_gem_gtt_info, 0},
2007 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
2008 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
2009 {"i915_gem_flushing", i915_gem_object_list_info, 0, (void *) FLUSHING_LIST},
2010 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
2011 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
2012 {"i915_gem_request", i915_gem_request_info, 0},
2013 {"i915_gem_seqno", i915_gem_seqno_info, 0},
2014 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
2015 {"i915_gem_interrupt", i915_interrupt_info, 0},
2016 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
2017 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
2018 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
2019 {"i915_rstdby_delays", i915_rstdby_delays, 0},
2020 {"i915_cur_delayinfo", i915_cur_delayinfo, 0},
2021 {"i915_delayfreq_table", i915_delayfreq_table, 0},
2022 {"i915_inttoext_table", i915_inttoext_table, 0},
2023 {"i915_drpc_info", i915_drpc_info, 0},
2024 {"i915_emon_status", i915_emon_status, 0},
2025 {"i915_ring_freq_table", i915_ring_freq_table, 0},
2026 {"i915_gfxec", i915_gfxec, 0},
2027 {"i915_fbc_status", i915_fbc_status, 0},
2028 {"i915_sr_status", i915_sr_status, 0},
2029 {"i915_opregion", i915_opregion, 0},
2030 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
2031 {"i915_context_status", i915_context_status, 0},
2032 {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
2033 {"i915_swizzle_info", i915_swizzle_info, 0},
2034 {"i915_ppgtt_info", i915_ppgtt_info, 0},
2035 {"i915_dpio", i915_dpio_info, 0},
2036 };
2037 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
2038
2039 int i915_debugfs_init(struct drm_minor *minor)
2040 {
2041 int ret;
2042
2043 ret = i915_debugfs_create(minor->debugfs_root, minor,
2044 "i915_wedged",
2045 &i915_wedged_fops);
2046 if (ret)
2047 return ret;
2048
2049 ret = i915_forcewake_create(minor->debugfs_root, minor);
2050 if (ret)
2051 return ret;
2052
2053 ret = i915_debugfs_create(minor->debugfs_root, minor,
2054 "i915_max_freq",
2055 &i915_max_freq_fops);
2056 if (ret)
2057 return ret;
2058
2059 ret = i915_debugfs_create(minor->debugfs_root, minor,
2060 "i915_min_freq",
2061 &i915_min_freq_fops);
2062 if (ret)
2063 return ret;
2064
2065 ret = i915_debugfs_create(minor->debugfs_root, minor,
2066 "i915_cache_sharing",
2067 &i915_cache_sharing_fops);
2068 if (ret)
2069 return ret;
2070 ret = i915_debugfs_create(minor->debugfs_root, minor,
2071 "i915_ring_stop",
2072 &i915_ring_stop_fops);
2073 if (ret)
2074 return ret;
2075
2076 ret = i915_debugfs_create(minor->debugfs_root, minor,
2077 "i915_error_state",
2078 &i915_error_state_fops);
2079 if (ret)
2080 return ret;
2081
2082 return drm_debugfs_create_files(i915_debugfs_list,
2083 I915_DEBUGFS_ENTRIES,
2084 minor->debugfs_root, minor);
2085 }
2086
2087 void i915_debugfs_cleanup(struct drm_minor *minor)
2088 {
2089 drm_debugfs_remove_files(i915_debugfs_list,
2090 I915_DEBUGFS_ENTRIES, minor);
2091 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
2092 1, minor);
2093 drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops,
2094 1, minor);
2095 drm_debugfs_remove_files((struct drm_info_list *) &i915_max_freq_fops,
2096 1, minor);
2097 drm_debugfs_remove_files((struct drm_info_list *) &i915_min_freq_fops,
2098 1, minor);
2099 drm_debugfs_remove_files((struct drm_info_list *) &i915_cache_sharing_fops,
2100 1, minor);
2101 drm_debugfs_remove_files((struct drm_info_list *) &i915_ring_stop_fops,
2102 1, minor);
2103 drm_debugfs_remove_files((struct drm_info_list *) &i915_error_state_fops,
2104 1, minor);
2105 }
2106
2107 #endif /* CONFIG_DEBUG_FS */
This page took 0.077139 seconds and 6 git commands to generate.