drm/i915/bdw: Kill ppgtt->num_pt_pages
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51 return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55 * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 struct dentry *ent,
59 const void *key)
60 {
61 struct drm_info_node *node;
62
63 node = kmalloc(sizeof(*node), GFP_KERNEL);
64 if (node == NULL) {
65 debugfs_remove(ent);
66 return -ENOMEM;
67 }
68
69 node->minor = minor;
70 node->dent = ent;
71 node->info_ent = (void *) key;
72
73 mutex_lock(&minor->debugfs_lock);
74 list_add(&node->list, &minor->debugfs_list);
75 mutex_unlock(&minor->debugfs_lock);
76
77 return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 struct drm_info_node *node = (struct drm_info_node *) m->private;
83 struct drm_device *dev = node->minor->dev;
84 const struct intel_device_info *info = INTEL_INFO(dev);
85
86 seq_printf(m, "gen: %d\n", info->gen);
87 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94 return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 if (obj->user_pin_count > 0)
100 return "P";
101 else if (i915_gem_obj_is_pinned(obj))
102 return "p";
103 else
104 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109 switch (obj->tiling_mode) {
110 default:
111 case I915_TILING_NONE: return " ";
112 case I915_TILING_X: return "X";
113 case I915_TILING_Y: return "Y";
114 }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119 return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125 struct i915_vma *vma;
126 int pin_count = 0;
127
128 seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129 &obj->base,
130 get_pin_flag(obj),
131 get_tiling_flag(obj),
132 get_global_flag(obj),
133 obj->base.size / 1024,
134 obj->base.read_domains,
135 obj->base.write_domain,
136 obj->last_read_seqno,
137 obj->last_write_seqno,
138 obj->last_fenced_seqno,
139 i915_cache_level_str(obj->cache_level),
140 obj->dirty ? " dirty" : "",
141 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142 if (obj->base.name)
143 seq_printf(m, " (name: %d)", obj->base.name);
144 list_for_each_entry(vma, &obj->vma_list, vma_link)
145 if (vma->pin_count > 0)
146 pin_count++;
147 seq_printf(m, " (pinned x %d)", pin_count);
148 if (obj->pin_display)
149 seq_printf(m, " (display)");
150 if (obj->fence_reg != I915_FENCE_REG_NONE)
151 seq_printf(m, " (fence: %d)", obj->fence_reg);
152 list_for_each_entry(vma, &obj->vma_list, vma_link) {
153 if (!i915_is_ggtt(vma->vm))
154 seq_puts(m, " (pp");
155 else
156 seq_puts(m, " (g");
157 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158 vma->node.start, vma->node.size);
159 }
160 if (obj->stolen)
161 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162 if (obj->pin_mappable || obj->fault_mappable) {
163 char s[3], *t = s;
164 if (obj->pin_mappable)
165 *t++ = 'p';
166 if (obj->fault_mappable)
167 *t++ = 'f';
168 *t = '\0';
169 seq_printf(m, " (%s mappable)", s);
170 }
171 if (obj->ring != NULL)
172 seq_printf(m, " (%s)", obj->ring->name);
173 }
174
175 static void describe_ctx(struct seq_file *m, struct i915_hw_context *ctx)
176 {
177 seq_putc(m, ctx->is_initialized ? 'I' : 'i');
178 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
179 seq_putc(m, ' ');
180 }
181
182 static int i915_gem_object_list_info(struct seq_file *m, void *data)
183 {
184 struct drm_info_node *node = (struct drm_info_node *) m->private;
185 uintptr_t list = (uintptr_t) node->info_ent->data;
186 struct list_head *head;
187 struct drm_device *dev = node->minor->dev;
188 struct drm_i915_private *dev_priv = dev->dev_private;
189 struct i915_address_space *vm = &dev_priv->gtt.base;
190 struct i915_vma *vma;
191 size_t total_obj_size, total_gtt_size;
192 int count, ret;
193
194 ret = mutex_lock_interruptible(&dev->struct_mutex);
195 if (ret)
196 return ret;
197
198 /* FIXME: the user of this interface might want more than just GGTT */
199 switch (list) {
200 case ACTIVE_LIST:
201 seq_puts(m, "Active:\n");
202 head = &vm->active_list;
203 break;
204 case INACTIVE_LIST:
205 seq_puts(m, "Inactive:\n");
206 head = &vm->inactive_list;
207 break;
208 default:
209 mutex_unlock(&dev->struct_mutex);
210 return -EINVAL;
211 }
212
213 total_obj_size = total_gtt_size = count = 0;
214 list_for_each_entry(vma, head, mm_list) {
215 seq_printf(m, " ");
216 describe_obj(m, vma->obj);
217 seq_printf(m, "\n");
218 total_obj_size += vma->obj->base.size;
219 total_gtt_size += vma->node.size;
220 count++;
221 }
222 mutex_unlock(&dev->struct_mutex);
223
224 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
225 count, total_obj_size, total_gtt_size);
226 return 0;
227 }
228
229 static int obj_rank_by_stolen(void *priv,
230 struct list_head *A, struct list_head *B)
231 {
232 struct drm_i915_gem_object *a =
233 container_of(A, struct drm_i915_gem_object, obj_exec_link);
234 struct drm_i915_gem_object *b =
235 container_of(B, struct drm_i915_gem_object, obj_exec_link);
236
237 return a->stolen->start - b->stolen->start;
238 }
239
240 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
241 {
242 struct drm_info_node *node = (struct drm_info_node *) m->private;
243 struct drm_device *dev = node->minor->dev;
244 struct drm_i915_private *dev_priv = dev->dev_private;
245 struct drm_i915_gem_object *obj;
246 size_t total_obj_size, total_gtt_size;
247 LIST_HEAD(stolen);
248 int count, ret;
249
250 ret = mutex_lock_interruptible(&dev->struct_mutex);
251 if (ret)
252 return ret;
253
254 total_obj_size = total_gtt_size = count = 0;
255 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
256 if (obj->stolen == NULL)
257 continue;
258
259 list_add(&obj->obj_exec_link, &stolen);
260
261 total_obj_size += obj->base.size;
262 total_gtt_size += i915_gem_obj_ggtt_size(obj);
263 count++;
264 }
265 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
266 if (obj->stolen == NULL)
267 continue;
268
269 list_add(&obj->obj_exec_link, &stolen);
270
271 total_obj_size += obj->base.size;
272 count++;
273 }
274 list_sort(NULL, &stolen, obj_rank_by_stolen);
275 seq_puts(m, "Stolen:\n");
276 while (!list_empty(&stolen)) {
277 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
278 seq_puts(m, " ");
279 describe_obj(m, obj);
280 seq_putc(m, '\n');
281 list_del_init(&obj->obj_exec_link);
282 }
283 mutex_unlock(&dev->struct_mutex);
284
285 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
286 count, total_obj_size, total_gtt_size);
287 return 0;
288 }
289
290 #define count_objects(list, member) do { \
291 list_for_each_entry(obj, list, member) { \
292 size += i915_gem_obj_ggtt_size(obj); \
293 ++count; \
294 if (obj->map_and_fenceable) { \
295 mappable_size += i915_gem_obj_ggtt_size(obj); \
296 ++mappable_count; \
297 } \
298 } \
299 } while (0)
300
301 struct file_stats {
302 int count;
303 size_t total, active, inactive, unbound;
304 };
305
306 static int per_file_stats(int id, void *ptr, void *data)
307 {
308 struct drm_i915_gem_object *obj = ptr;
309 struct file_stats *stats = data;
310
311 stats->count++;
312 stats->total += obj->base.size;
313
314 if (i915_gem_obj_ggtt_bound(obj)) {
315 if (!list_empty(&obj->ring_list))
316 stats->active += obj->base.size;
317 else
318 stats->inactive += obj->base.size;
319 } else {
320 if (!list_empty(&obj->global_list))
321 stats->unbound += obj->base.size;
322 }
323
324 return 0;
325 }
326
327 #define count_vmas(list, member) do { \
328 list_for_each_entry(vma, list, member) { \
329 size += i915_gem_obj_ggtt_size(vma->obj); \
330 ++count; \
331 if (vma->obj->map_and_fenceable) { \
332 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
333 ++mappable_count; \
334 } \
335 } \
336 } while (0)
337
338 static int i915_gem_object_info(struct seq_file *m, void* data)
339 {
340 struct drm_info_node *node = (struct drm_info_node *) m->private;
341 struct drm_device *dev = node->minor->dev;
342 struct drm_i915_private *dev_priv = dev->dev_private;
343 u32 count, mappable_count, purgeable_count;
344 size_t size, mappable_size, purgeable_size;
345 struct drm_i915_gem_object *obj;
346 struct i915_address_space *vm = &dev_priv->gtt.base;
347 struct drm_file *file;
348 struct i915_vma *vma;
349 int ret;
350
351 ret = mutex_lock_interruptible(&dev->struct_mutex);
352 if (ret)
353 return ret;
354
355 seq_printf(m, "%u objects, %zu bytes\n",
356 dev_priv->mm.object_count,
357 dev_priv->mm.object_memory);
358
359 size = count = mappable_size = mappable_count = 0;
360 count_objects(&dev_priv->mm.bound_list, global_list);
361 seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
362 count, mappable_count, size, mappable_size);
363
364 size = count = mappable_size = mappable_count = 0;
365 count_vmas(&vm->active_list, mm_list);
366 seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
367 count, mappable_count, size, mappable_size);
368
369 size = count = mappable_size = mappable_count = 0;
370 count_vmas(&vm->inactive_list, mm_list);
371 seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
372 count, mappable_count, size, mappable_size);
373
374 size = count = purgeable_size = purgeable_count = 0;
375 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
376 size += obj->base.size, ++count;
377 if (obj->madv == I915_MADV_DONTNEED)
378 purgeable_size += obj->base.size, ++purgeable_count;
379 }
380 seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
381
382 size = count = mappable_size = mappable_count = 0;
383 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
384 if (obj->fault_mappable) {
385 size += i915_gem_obj_ggtt_size(obj);
386 ++count;
387 }
388 if (obj->pin_mappable) {
389 mappable_size += i915_gem_obj_ggtt_size(obj);
390 ++mappable_count;
391 }
392 if (obj->madv == I915_MADV_DONTNEED) {
393 purgeable_size += obj->base.size;
394 ++purgeable_count;
395 }
396 }
397 seq_printf(m, "%u purgeable objects, %zu bytes\n",
398 purgeable_count, purgeable_size);
399 seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
400 mappable_count, mappable_size);
401 seq_printf(m, "%u fault mappable objects, %zu bytes\n",
402 count, size);
403
404 seq_printf(m, "%zu [%lu] gtt total\n",
405 dev_priv->gtt.base.total,
406 dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
407
408 seq_putc(m, '\n');
409 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
410 struct file_stats stats;
411 struct task_struct *task;
412
413 memset(&stats, 0, sizeof(stats));
414 idr_for_each(&file->object_idr, per_file_stats, &stats);
415 /*
416 * Although we have a valid reference on file->pid, that does
417 * not guarantee that the task_struct who called get_pid() is
418 * still alive (e.g. get_pid(current) => fork() => exit()).
419 * Therefore, we need to protect this ->comm access using RCU.
420 */
421 rcu_read_lock();
422 task = pid_task(file->pid, PIDTYPE_PID);
423 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu unbound)\n",
424 task ? task->comm : "<unknown>",
425 stats.count,
426 stats.total,
427 stats.active,
428 stats.inactive,
429 stats.unbound);
430 rcu_read_unlock();
431 }
432
433 mutex_unlock(&dev->struct_mutex);
434
435 return 0;
436 }
437
438 static int i915_gem_gtt_info(struct seq_file *m, void *data)
439 {
440 struct drm_info_node *node = (struct drm_info_node *) m->private;
441 struct drm_device *dev = node->minor->dev;
442 uintptr_t list = (uintptr_t) node->info_ent->data;
443 struct drm_i915_private *dev_priv = dev->dev_private;
444 struct drm_i915_gem_object *obj;
445 size_t total_obj_size, total_gtt_size;
446 int count, ret;
447
448 ret = mutex_lock_interruptible(&dev->struct_mutex);
449 if (ret)
450 return ret;
451
452 total_obj_size = total_gtt_size = count = 0;
453 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
454 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
455 continue;
456
457 seq_puts(m, " ");
458 describe_obj(m, obj);
459 seq_putc(m, '\n');
460 total_obj_size += obj->base.size;
461 total_gtt_size += i915_gem_obj_ggtt_size(obj);
462 count++;
463 }
464
465 mutex_unlock(&dev->struct_mutex);
466
467 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
468 count, total_obj_size, total_gtt_size);
469
470 return 0;
471 }
472
473 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
474 {
475 struct drm_info_node *node = (struct drm_info_node *) m->private;
476 struct drm_device *dev = node->minor->dev;
477 unsigned long flags;
478 struct intel_crtc *crtc;
479
480 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
481 const char pipe = pipe_name(crtc->pipe);
482 const char plane = plane_name(crtc->plane);
483 struct intel_unpin_work *work;
484
485 spin_lock_irqsave(&dev->event_lock, flags);
486 work = crtc->unpin_work;
487 if (work == NULL) {
488 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
489 pipe, plane);
490 } else {
491 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
492 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
493 pipe, plane);
494 } else {
495 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
496 pipe, plane);
497 }
498 if (work->enable_stall_check)
499 seq_puts(m, "Stall check enabled, ");
500 else
501 seq_puts(m, "Stall check waiting for page flip ioctl, ");
502 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
503
504 if (work->old_fb_obj) {
505 struct drm_i915_gem_object *obj = work->old_fb_obj;
506 if (obj)
507 seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
508 i915_gem_obj_ggtt_offset(obj));
509 }
510 if (work->pending_flip_obj) {
511 struct drm_i915_gem_object *obj = work->pending_flip_obj;
512 if (obj)
513 seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
514 i915_gem_obj_ggtt_offset(obj));
515 }
516 }
517 spin_unlock_irqrestore(&dev->event_lock, flags);
518 }
519
520 return 0;
521 }
522
523 static int i915_gem_request_info(struct seq_file *m, void *data)
524 {
525 struct drm_info_node *node = (struct drm_info_node *) m->private;
526 struct drm_device *dev = node->minor->dev;
527 drm_i915_private_t *dev_priv = dev->dev_private;
528 struct intel_ring_buffer *ring;
529 struct drm_i915_gem_request *gem_request;
530 int ret, count, i;
531
532 ret = mutex_lock_interruptible(&dev->struct_mutex);
533 if (ret)
534 return ret;
535
536 count = 0;
537 for_each_ring(ring, dev_priv, i) {
538 if (list_empty(&ring->request_list))
539 continue;
540
541 seq_printf(m, "%s requests:\n", ring->name);
542 list_for_each_entry(gem_request,
543 &ring->request_list,
544 list) {
545 seq_printf(m, " %d @ %d\n",
546 gem_request->seqno,
547 (int) (jiffies - gem_request->emitted_jiffies));
548 }
549 count++;
550 }
551 mutex_unlock(&dev->struct_mutex);
552
553 if (count == 0)
554 seq_puts(m, "No requests\n");
555
556 return 0;
557 }
558
559 static void i915_ring_seqno_info(struct seq_file *m,
560 struct intel_ring_buffer *ring)
561 {
562 if (ring->get_seqno) {
563 seq_printf(m, "Current sequence (%s): %u\n",
564 ring->name, ring->get_seqno(ring, false));
565 }
566 }
567
568 static int i915_gem_seqno_info(struct seq_file *m, void *data)
569 {
570 struct drm_info_node *node = (struct drm_info_node *) m->private;
571 struct drm_device *dev = node->minor->dev;
572 drm_i915_private_t *dev_priv = dev->dev_private;
573 struct intel_ring_buffer *ring;
574 int ret, i;
575
576 ret = mutex_lock_interruptible(&dev->struct_mutex);
577 if (ret)
578 return ret;
579 intel_runtime_pm_get(dev_priv);
580
581 for_each_ring(ring, dev_priv, i)
582 i915_ring_seqno_info(m, ring);
583
584 intel_runtime_pm_put(dev_priv);
585 mutex_unlock(&dev->struct_mutex);
586
587 return 0;
588 }
589
590
591 static int i915_interrupt_info(struct seq_file *m, void *data)
592 {
593 struct drm_info_node *node = (struct drm_info_node *) m->private;
594 struct drm_device *dev = node->minor->dev;
595 drm_i915_private_t *dev_priv = dev->dev_private;
596 struct intel_ring_buffer *ring;
597 int ret, i, pipe;
598
599 ret = mutex_lock_interruptible(&dev->struct_mutex);
600 if (ret)
601 return ret;
602 intel_runtime_pm_get(dev_priv);
603
604 if (INTEL_INFO(dev)->gen >= 8) {
605 int i;
606 seq_printf(m, "Master Interrupt Control:\t%08x\n",
607 I915_READ(GEN8_MASTER_IRQ));
608
609 for (i = 0; i < 4; i++) {
610 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
611 i, I915_READ(GEN8_GT_IMR(i)));
612 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
613 i, I915_READ(GEN8_GT_IIR(i)));
614 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
615 i, I915_READ(GEN8_GT_IER(i)));
616 }
617
618 for_each_pipe(i) {
619 seq_printf(m, "Pipe %c IMR:\t%08x\n",
620 pipe_name(i),
621 I915_READ(GEN8_DE_PIPE_IMR(i)));
622 seq_printf(m, "Pipe %c IIR:\t%08x\n",
623 pipe_name(i),
624 I915_READ(GEN8_DE_PIPE_IIR(i)));
625 seq_printf(m, "Pipe %c IER:\t%08x\n",
626 pipe_name(i),
627 I915_READ(GEN8_DE_PIPE_IER(i)));
628 }
629
630 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
631 I915_READ(GEN8_DE_PORT_IMR));
632 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
633 I915_READ(GEN8_DE_PORT_IIR));
634 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
635 I915_READ(GEN8_DE_PORT_IER));
636
637 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
638 I915_READ(GEN8_DE_MISC_IMR));
639 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
640 I915_READ(GEN8_DE_MISC_IIR));
641 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
642 I915_READ(GEN8_DE_MISC_IER));
643
644 seq_printf(m, "PCU interrupt mask:\t%08x\n",
645 I915_READ(GEN8_PCU_IMR));
646 seq_printf(m, "PCU interrupt identity:\t%08x\n",
647 I915_READ(GEN8_PCU_IIR));
648 seq_printf(m, "PCU interrupt enable:\t%08x\n",
649 I915_READ(GEN8_PCU_IER));
650 } else if (IS_VALLEYVIEW(dev)) {
651 seq_printf(m, "Display IER:\t%08x\n",
652 I915_READ(VLV_IER));
653 seq_printf(m, "Display IIR:\t%08x\n",
654 I915_READ(VLV_IIR));
655 seq_printf(m, "Display IIR_RW:\t%08x\n",
656 I915_READ(VLV_IIR_RW));
657 seq_printf(m, "Display IMR:\t%08x\n",
658 I915_READ(VLV_IMR));
659 for_each_pipe(pipe)
660 seq_printf(m, "Pipe %c stat:\t%08x\n",
661 pipe_name(pipe),
662 I915_READ(PIPESTAT(pipe)));
663
664 seq_printf(m, "Master IER:\t%08x\n",
665 I915_READ(VLV_MASTER_IER));
666
667 seq_printf(m, "Render IER:\t%08x\n",
668 I915_READ(GTIER));
669 seq_printf(m, "Render IIR:\t%08x\n",
670 I915_READ(GTIIR));
671 seq_printf(m, "Render IMR:\t%08x\n",
672 I915_READ(GTIMR));
673
674 seq_printf(m, "PM IER:\t\t%08x\n",
675 I915_READ(GEN6_PMIER));
676 seq_printf(m, "PM IIR:\t\t%08x\n",
677 I915_READ(GEN6_PMIIR));
678 seq_printf(m, "PM IMR:\t\t%08x\n",
679 I915_READ(GEN6_PMIMR));
680
681 seq_printf(m, "Port hotplug:\t%08x\n",
682 I915_READ(PORT_HOTPLUG_EN));
683 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
684 I915_READ(VLV_DPFLIPSTAT));
685 seq_printf(m, "DPINVGTT:\t%08x\n",
686 I915_READ(DPINVGTT));
687
688 } else if (!HAS_PCH_SPLIT(dev)) {
689 seq_printf(m, "Interrupt enable: %08x\n",
690 I915_READ(IER));
691 seq_printf(m, "Interrupt identity: %08x\n",
692 I915_READ(IIR));
693 seq_printf(m, "Interrupt mask: %08x\n",
694 I915_READ(IMR));
695 for_each_pipe(pipe)
696 seq_printf(m, "Pipe %c stat: %08x\n",
697 pipe_name(pipe),
698 I915_READ(PIPESTAT(pipe)));
699 } else {
700 seq_printf(m, "North Display Interrupt enable: %08x\n",
701 I915_READ(DEIER));
702 seq_printf(m, "North Display Interrupt identity: %08x\n",
703 I915_READ(DEIIR));
704 seq_printf(m, "North Display Interrupt mask: %08x\n",
705 I915_READ(DEIMR));
706 seq_printf(m, "South Display Interrupt enable: %08x\n",
707 I915_READ(SDEIER));
708 seq_printf(m, "South Display Interrupt identity: %08x\n",
709 I915_READ(SDEIIR));
710 seq_printf(m, "South Display Interrupt mask: %08x\n",
711 I915_READ(SDEIMR));
712 seq_printf(m, "Graphics Interrupt enable: %08x\n",
713 I915_READ(GTIER));
714 seq_printf(m, "Graphics Interrupt identity: %08x\n",
715 I915_READ(GTIIR));
716 seq_printf(m, "Graphics Interrupt mask: %08x\n",
717 I915_READ(GTIMR));
718 }
719 for_each_ring(ring, dev_priv, i) {
720 if (INTEL_INFO(dev)->gen >= 6) {
721 seq_printf(m,
722 "Graphics Interrupt mask (%s): %08x\n",
723 ring->name, I915_READ_IMR(ring));
724 }
725 i915_ring_seqno_info(m, ring);
726 }
727 intel_runtime_pm_put(dev_priv);
728 mutex_unlock(&dev->struct_mutex);
729
730 return 0;
731 }
732
733 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
734 {
735 struct drm_info_node *node = (struct drm_info_node *) m->private;
736 struct drm_device *dev = node->minor->dev;
737 drm_i915_private_t *dev_priv = dev->dev_private;
738 int i, ret;
739
740 ret = mutex_lock_interruptible(&dev->struct_mutex);
741 if (ret)
742 return ret;
743
744 seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
745 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
746 for (i = 0; i < dev_priv->num_fence_regs; i++) {
747 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
748
749 seq_printf(m, "Fence %d, pin count = %d, object = ",
750 i, dev_priv->fence_regs[i].pin_count);
751 if (obj == NULL)
752 seq_puts(m, "unused");
753 else
754 describe_obj(m, obj);
755 seq_putc(m, '\n');
756 }
757
758 mutex_unlock(&dev->struct_mutex);
759 return 0;
760 }
761
762 static int i915_hws_info(struct seq_file *m, void *data)
763 {
764 struct drm_info_node *node = (struct drm_info_node *) m->private;
765 struct drm_device *dev = node->minor->dev;
766 drm_i915_private_t *dev_priv = dev->dev_private;
767 struct intel_ring_buffer *ring;
768 const u32 *hws;
769 int i;
770
771 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
772 hws = ring->status_page.page_addr;
773 if (hws == NULL)
774 return 0;
775
776 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
777 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
778 i * 4,
779 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
780 }
781 return 0;
782 }
783
784 static ssize_t
785 i915_error_state_write(struct file *filp,
786 const char __user *ubuf,
787 size_t cnt,
788 loff_t *ppos)
789 {
790 struct i915_error_state_file_priv *error_priv = filp->private_data;
791 struct drm_device *dev = error_priv->dev;
792 int ret;
793
794 DRM_DEBUG_DRIVER("Resetting error state\n");
795
796 ret = mutex_lock_interruptible(&dev->struct_mutex);
797 if (ret)
798 return ret;
799
800 i915_destroy_error_state(dev);
801 mutex_unlock(&dev->struct_mutex);
802
803 return cnt;
804 }
805
806 static int i915_error_state_open(struct inode *inode, struct file *file)
807 {
808 struct drm_device *dev = inode->i_private;
809 struct i915_error_state_file_priv *error_priv;
810
811 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
812 if (!error_priv)
813 return -ENOMEM;
814
815 error_priv->dev = dev;
816
817 i915_error_state_get(dev, error_priv);
818
819 file->private_data = error_priv;
820
821 return 0;
822 }
823
824 static int i915_error_state_release(struct inode *inode, struct file *file)
825 {
826 struct i915_error_state_file_priv *error_priv = file->private_data;
827
828 i915_error_state_put(error_priv);
829 kfree(error_priv);
830
831 return 0;
832 }
833
834 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
835 size_t count, loff_t *pos)
836 {
837 struct i915_error_state_file_priv *error_priv = file->private_data;
838 struct drm_i915_error_state_buf error_str;
839 loff_t tmp_pos = 0;
840 ssize_t ret_count = 0;
841 int ret;
842
843 ret = i915_error_state_buf_init(&error_str, count, *pos);
844 if (ret)
845 return ret;
846
847 ret = i915_error_state_to_str(&error_str, error_priv);
848 if (ret)
849 goto out;
850
851 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
852 error_str.buf,
853 error_str.bytes);
854
855 if (ret_count < 0)
856 ret = ret_count;
857 else
858 *pos = error_str.start + ret_count;
859 out:
860 i915_error_state_buf_release(&error_str);
861 return ret ?: ret_count;
862 }
863
864 static const struct file_operations i915_error_state_fops = {
865 .owner = THIS_MODULE,
866 .open = i915_error_state_open,
867 .read = i915_error_state_read,
868 .write = i915_error_state_write,
869 .llseek = default_llseek,
870 .release = i915_error_state_release,
871 };
872
873 static int
874 i915_next_seqno_get(void *data, u64 *val)
875 {
876 struct drm_device *dev = data;
877 drm_i915_private_t *dev_priv = dev->dev_private;
878 int ret;
879
880 ret = mutex_lock_interruptible(&dev->struct_mutex);
881 if (ret)
882 return ret;
883
884 *val = dev_priv->next_seqno;
885 mutex_unlock(&dev->struct_mutex);
886
887 return 0;
888 }
889
890 static int
891 i915_next_seqno_set(void *data, u64 val)
892 {
893 struct drm_device *dev = data;
894 int ret;
895
896 ret = mutex_lock_interruptible(&dev->struct_mutex);
897 if (ret)
898 return ret;
899
900 ret = i915_gem_set_seqno(dev, val);
901 mutex_unlock(&dev->struct_mutex);
902
903 return ret;
904 }
905
906 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
907 i915_next_seqno_get, i915_next_seqno_set,
908 "0x%llx\n");
909
910 static int i915_rstdby_delays(struct seq_file *m, void *unused)
911 {
912 struct drm_info_node *node = (struct drm_info_node *) m->private;
913 struct drm_device *dev = node->minor->dev;
914 drm_i915_private_t *dev_priv = dev->dev_private;
915 u16 crstanddelay;
916 int ret;
917
918 ret = mutex_lock_interruptible(&dev->struct_mutex);
919 if (ret)
920 return ret;
921 intel_runtime_pm_get(dev_priv);
922
923 crstanddelay = I915_READ16(CRSTANDVID);
924
925 intel_runtime_pm_put(dev_priv);
926 mutex_unlock(&dev->struct_mutex);
927
928 seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
929
930 return 0;
931 }
932
933 static int i915_cur_delayinfo(struct seq_file *m, void *unused)
934 {
935 struct drm_info_node *node = (struct drm_info_node *) m->private;
936 struct drm_device *dev = node->minor->dev;
937 drm_i915_private_t *dev_priv = dev->dev_private;
938 int ret = 0;
939
940 intel_runtime_pm_get(dev_priv);
941
942 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
943
944 if (IS_GEN5(dev)) {
945 u16 rgvswctl = I915_READ16(MEMSWCTL);
946 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
947
948 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
949 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
950 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
951 MEMSTAT_VID_SHIFT);
952 seq_printf(m, "Current P-state: %d\n",
953 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
954 } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
955 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
956 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
957 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
958 u32 rpstat, cagf, reqf;
959 u32 rpupei, rpcurup, rpprevup;
960 u32 rpdownei, rpcurdown, rpprevdown;
961 int max_freq;
962
963 /* RPSTAT1 is in the GT power well */
964 ret = mutex_lock_interruptible(&dev->struct_mutex);
965 if (ret)
966 goto out;
967
968 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
969
970 reqf = I915_READ(GEN6_RPNSWREQ);
971 reqf &= ~GEN6_TURBO_DISABLE;
972 if (IS_HASWELL(dev))
973 reqf >>= 24;
974 else
975 reqf >>= 25;
976 reqf *= GT_FREQUENCY_MULTIPLIER;
977
978 rpstat = I915_READ(GEN6_RPSTAT1);
979 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
980 rpcurup = I915_READ(GEN6_RP_CUR_UP);
981 rpprevup = I915_READ(GEN6_RP_PREV_UP);
982 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
983 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
984 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
985 if (IS_HASWELL(dev))
986 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
987 else
988 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
989 cagf *= GT_FREQUENCY_MULTIPLIER;
990
991 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
992 mutex_unlock(&dev->struct_mutex);
993
994 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
995 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
996 seq_printf(m, "Render p-state ratio: %d\n",
997 (gt_perf_status & 0xff00) >> 8);
998 seq_printf(m, "Render p-state VID: %d\n",
999 gt_perf_status & 0xff);
1000 seq_printf(m, "Render p-state limit: %d\n",
1001 rp_state_limits & 0xff);
1002 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1003 seq_printf(m, "CAGF: %dMHz\n", cagf);
1004 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1005 GEN6_CURICONT_MASK);
1006 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1007 GEN6_CURBSYTAVG_MASK);
1008 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1009 GEN6_CURBSYTAVG_MASK);
1010 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1011 GEN6_CURIAVG_MASK);
1012 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1013 GEN6_CURBSYTAVG_MASK);
1014 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1015 GEN6_CURBSYTAVG_MASK);
1016
1017 max_freq = (rp_state_cap & 0xff0000) >> 16;
1018 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1019 max_freq * GT_FREQUENCY_MULTIPLIER);
1020
1021 max_freq = (rp_state_cap & 0xff00) >> 8;
1022 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1023 max_freq * GT_FREQUENCY_MULTIPLIER);
1024
1025 max_freq = rp_state_cap & 0xff;
1026 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1027 max_freq * GT_FREQUENCY_MULTIPLIER);
1028
1029 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1030 dev_priv->rps.hw_max * GT_FREQUENCY_MULTIPLIER);
1031 } else if (IS_VALLEYVIEW(dev)) {
1032 u32 freq_sts, val;
1033
1034 mutex_lock(&dev_priv->rps.hw_lock);
1035 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1036 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1037 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1038
1039 val = valleyview_rps_max_freq(dev_priv);
1040 seq_printf(m, "max GPU freq: %d MHz\n",
1041 vlv_gpu_freq(dev_priv, val));
1042
1043 val = valleyview_rps_min_freq(dev_priv);
1044 seq_printf(m, "min GPU freq: %d MHz\n",
1045 vlv_gpu_freq(dev_priv, val));
1046
1047 seq_printf(m, "current GPU freq: %d MHz\n",
1048 vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1049 mutex_unlock(&dev_priv->rps.hw_lock);
1050 } else {
1051 seq_puts(m, "no P-state info available\n");
1052 }
1053
1054 out:
1055 intel_runtime_pm_put(dev_priv);
1056 return ret;
1057 }
1058
1059 static int i915_delayfreq_table(struct seq_file *m, void *unused)
1060 {
1061 struct drm_info_node *node = (struct drm_info_node *) m->private;
1062 struct drm_device *dev = node->minor->dev;
1063 drm_i915_private_t *dev_priv = dev->dev_private;
1064 u32 delayfreq;
1065 int ret, i;
1066
1067 ret = mutex_lock_interruptible(&dev->struct_mutex);
1068 if (ret)
1069 return ret;
1070 intel_runtime_pm_get(dev_priv);
1071
1072 for (i = 0; i < 16; i++) {
1073 delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
1074 seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
1075 (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
1076 }
1077
1078 intel_runtime_pm_put(dev_priv);
1079
1080 mutex_unlock(&dev->struct_mutex);
1081
1082 return 0;
1083 }
1084
1085 static inline int MAP_TO_MV(int map)
1086 {
1087 return 1250 - (map * 25);
1088 }
1089
1090 static int i915_inttoext_table(struct seq_file *m, void *unused)
1091 {
1092 struct drm_info_node *node = (struct drm_info_node *) m->private;
1093 struct drm_device *dev = node->minor->dev;
1094 drm_i915_private_t *dev_priv = dev->dev_private;
1095 u32 inttoext;
1096 int ret, i;
1097
1098 ret = mutex_lock_interruptible(&dev->struct_mutex);
1099 if (ret)
1100 return ret;
1101 intel_runtime_pm_get(dev_priv);
1102
1103 for (i = 1; i <= 32; i++) {
1104 inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
1105 seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
1106 }
1107
1108 intel_runtime_pm_put(dev_priv);
1109 mutex_unlock(&dev->struct_mutex);
1110
1111 return 0;
1112 }
1113
1114 static int ironlake_drpc_info(struct seq_file *m)
1115 {
1116 struct drm_info_node *node = (struct drm_info_node *) m->private;
1117 struct drm_device *dev = node->minor->dev;
1118 drm_i915_private_t *dev_priv = dev->dev_private;
1119 u32 rgvmodectl, rstdbyctl;
1120 u16 crstandvid;
1121 int ret;
1122
1123 ret = mutex_lock_interruptible(&dev->struct_mutex);
1124 if (ret)
1125 return ret;
1126 intel_runtime_pm_get(dev_priv);
1127
1128 rgvmodectl = I915_READ(MEMMODECTL);
1129 rstdbyctl = I915_READ(RSTDBYCTL);
1130 crstandvid = I915_READ16(CRSTANDVID);
1131
1132 intel_runtime_pm_put(dev_priv);
1133 mutex_unlock(&dev->struct_mutex);
1134
1135 seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1136 "yes" : "no");
1137 seq_printf(m, "Boost freq: %d\n",
1138 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1139 MEMMODE_BOOST_FREQ_SHIFT);
1140 seq_printf(m, "HW control enabled: %s\n",
1141 rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1142 seq_printf(m, "SW control enabled: %s\n",
1143 rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1144 seq_printf(m, "Gated voltage change: %s\n",
1145 rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1146 seq_printf(m, "Starting frequency: P%d\n",
1147 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1148 seq_printf(m, "Max P-state: P%d\n",
1149 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1150 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1151 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1152 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1153 seq_printf(m, "Render standby enabled: %s\n",
1154 (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1155 seq_puts(m, "Current RS state: ");
1156 switch (rstdbyctl & RSX_STATUS_MASK) {
1157 case RSX_STATUS_ON:
1158 seq_puts(m, "on\n");
1159 break;
1160 case RSX_STATUS_RC1:
1161 seq_puts(m, "RC1\n");
1162 break;
1163 case RSX_STATUS_RC1E:
1164 seq_puts(m, "RC1E\n");
1165 break;
1166 case RSX_STATUS_RS1:
1167 seq_puts(m, "RS1\n");
1168 break;
1169 case RSX_STATUS_RS2:
1170 seq_puts(m, "RS2 (RC6)\n");
1171 break;
1172 case RSX_STATUS_RS3:
1173 seq_puts(m, "RC3 (RC6+)\n");
1174 break;
1175 default:
1176 seq_puts(m, "unknown\n");
1177 break;
1178 }
1179
1180 return 0;
1181 }
1182
1183 static int vlv_drpc_info(struct seq_file *m)
1184 {
1185
1186 struct drm_info_node *node = (struct drm_info_node *) m->private;
1187 struct drm_device *dev = node->minor->dev;
1188 struct drm_i915_private *dev_priv = dev->dev_private;
1189 u32 rpmodectl1, rcctl1;
1190 unsigned fw_rendercount = 0, fw_mediacount = 0;
1191
1192 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1193 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1194
1195 seq_printf(m, "Video Turbo Mode: %s\n",
1196 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1197 seq_printf(m, "Turbo enabled: %s\n",
1198 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1199 seq_printf(m, "HW control enabled: %s\n",
1200 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1201 seq_printf(m, "SW control enabled: %s\n",
1202 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1203 GEN6_RP_MEDIA_SW_MODE));
1204 seq_printf(m, "RC6 Enabled: %s\n",
1205 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1206 GEN6_RC_CTL_EI_MODE(1))));
1207 seq_printf(m, "Render Power Well: %s\n",
1208 (I915_READ(VLV_GTLC_PW_STATUS) &
1209 VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1210 seq_printf(m, "Media Power Well: %s\n",
1211 (I915_READ(VLV_GTLC_PW_STATUS) &
1212 VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1213
1214 spin_lock_irq(&dev_priv->uncore.lock);
1215 fw_rendercount = dev_priv->uncore.fw_rendercount;
1216 fw_mediacount = dev_priv->uncore.fw_mediacount;
1217 spin_unlock_irq(&dev_priv->uncore.lock);
1218
1219 seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1220 seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1221
1222
1223 return 0;
1224 }
1225
1226
1227 static int gen6_drpc_info(struct seq_file *m)
1228 {
1229
1230 struct drm_info_node *node = (struct drm_info_node *) m->private;
1231 struct drm_device *dev = node->minor->dev;
1232 struct drm_i915_private *dev_priv = dev->dev_private;
1233 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1234 unsigned forcewake_count;
1235 int count = 0, ret;
1236
1237 ret = mutex_lock_interruptible(&dev->struct_mutex);
1238 if (ret)
1239 return ret;
1240 intel_runtime_pm_get(dev_priv);
1241
1242 spin_lock_irq(&dev_priv->uncore.lock);
1243 forcewake_count = dev_priv->uncore.forcewake_count;
1244 spin_unlock_irq(&dev_priv->uncore.lock);
1245
1246 if (forcewake_count) {
1247 seq_puts(m, "RC information inaccurate because somebody "
1248 "holds a forcewake reference \n");
1249 } else {
1250 /* NB: we cannot use forcewake, else we read the wrong values */
1251 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1252 udelay(10);
1253 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1254 }
1255
1256 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1257 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1258
1259 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1260 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1261 mutex_unlock(&dev->struct_mutex);
1262 mutex_lock(&dev_priv->rps.hw_lock);
1263 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1264 mutex_unlock(&dev_priv->rps.hw_lock);
1265
1266 intel_runtime_pm_put(dev_priv);
1267
1268 seq_printf(m, "Video Turbo Mode: %s\n",
1269 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1270 seq_printf(m, "HW control enabled: %s\n",
1271 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1272 seq_printf(m, "SW control enabled: %s\n",
1273 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1274 GEN6_RP_MEDIA_SW_MODE));
1275 seq_printf(m, "RC1e Enabled: %s\n",
1276 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1277 seq_printf(m, "RC6 Enabled: %s\n",
1278 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1279 seq_printf(m, "Deep RC6 Enabled: %s\n",
1280 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1281 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1282 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1283 seq_puts(m, "Current RC state: ");
1284 switch (gt_core_status & GEN6_RCn_MASK) {
1285 case GEN6_RC0:
1286 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1287 seq_puts(m, "Core Power Down\n");
1288 else
1289 seq_puts(m, "on\n");
1290 break;
1291 case GEN6_RC3:
1292 seq_puts(m, "RC3\n");
1293 break;
1294 case GEN6_RC6:
1295 seq_puts(m, "RC6\n");
1296 break;
1297 case GEN6_RC7:
1298 seq_puts(m, "RC7\n");
1299 break;
1300 default:
1301 seq_puts(m, "Unknown\n");
1302 break;
1303 }
1304
1305 seq_printf(m, "Core Power Down: %s\n",
1306 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1307
1308 /* Not exactly sure what this is */
1309 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1310 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1311 seq_printf(m, "RC6 residency since boot: %u\n",
1312 I915_READ(GEN6_GT_GFX_RC6));
1313 seq_printf(m, "RC6+ residency since boot: %u\n",
1314 I915_READ(GEN6_GT_GFX_RC6p));
1315 seq_printf(m, "RC6++ residency since boot: %u\n",
1316 I915_READ(GEN6_GT_GFX_RC6pp));
1317
1318 seq_printf(m, "RC6 voltage: %dmV\n",
1319 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1320 seq_printf(m, "RC6+ voltage: %dmV\n",
1321 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1322 seq_printf(m, "RC6++ voltage: %dmV\n",
1323 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1324 return 0;
1325 }
1326
1327 static int i915_drpc_info(struct seq_file *m, void *unused)
1328 {
1329 struct drm_info_node *node = (struct drm_info_node *) m->private;
1330 struct drm_device *dev = node->minor->dev;
1331
1332 if (IS_VALLEYVIEW(dev))
1333 return vlv_drpc_info(m);
1334 else if (IS_GEN6(dev) || IS_GEN7(dev))
1335 return gen6_drpc_info(m);
1336 else
1337 return ironlake_drpc_info(m);
1338 }
1339
1340 static int i915_fbc_status(struct seq_file *m, void *unused)
1341 {
1342 struct drm_info_node *node = (struct drm_info_node *) m->private;
1343 struct drm_device *dev = node->minor->dev;
1344 drm_i915_private_t *dev_priv = dev->dev_private;
1345
1346 if (!HAS_FBC(dev)) {
1347 seq_puts(m, "FBC unsupported on this chipset\n");
1348 return 0;
1349 }
1350
1351 if (intel_fbc_enabled(dev)) {
1352 seq_puts(m, "FBC enabled\n");
1353 } else {
1354 seq_puts(m, "FBC disabled: ");
1355 switch (dev_priv->fbc.no_fbc_reason) {
1356 case FBC_OK:
1357 seq_puts(m, "FBC actived, but currently disabled in hardware");
1358 break;
1359 case FBC_UNSUPPORTED:
1360 seq_puts(m, "unsupported by this chipset");
1361 break;
1362 case FBC_NO_OUTPUT:
1363 seq_puts(m, "no outputs");
1364 break;
1365 case FBC_STOLEN_TOO_SMALL:
1366 seq_puts(m, "not enough stolen memory");
1367 break;
1368 case FBC_UNSUPPORTED_MODE:
1369 seq_puts(m, "mode not supported");
1370 break;
1371 case FBC_MODE_TOO_LARGE:
1372 seq_puts(m, "mode too large");
1373 break;
1374 case FBC_BAD_PLANE:
1375 seq_puts(m, "FBC unsupported on plane");
1376 break;
1377 case FBC_NOT_TILED:
1378 seq_puts(m, "scanout buffer not tiled");
1379 break;
1380 case FBC_MULTIPLE_PIPES:
1381 seq_puts(m, "multiple pipes are enabled");
1382 break;
1383 case FBC_MODULE_PARAM:
1384 seq_puts(m, "disabled per module param (default off)");
1385 break;
1386 case FBC_CHIP_DEFAULT:
1387 seq_puts(m, "disabled per chip default");
1388 break;
1389 default:
1390 seq_puts(m, "unknown reason");
1391 }
1392 seq_putc(m, '\n');
1393 }
1394 return 0;
1395 }
1396
1397 static int i915_ips_status(struct seq_file *m, void *unused)
1398 {
1399 struct drm_info_node *node = (struct drm_info_node *) m->private;
1400 struct drm_device *dev = node->minor->dev;
1401 struct drm_i915_private *dev_priv = dev->dev_private;
1402
1403 if (!HAS_IPS(dev)) {
1404 seq_puts(m, "not supported\n");
1405 return 0;
1406 }
1407
1408 if (IS_BROADWELL(dev) || I915_READ(IPS_CTL) & IPS_ENABLE)
1409 seq_puts(m, "enabled\n");
1410 else
1411 seq_puts(m, "disabled\n");
1412
1413 return 0;
1414 }
1415
1416 static int i915_sr_status(struct seq_file *m, void *unused)
1417 {
1418 struct drm_info_node *node = (struct drm_info_node *) m->private;
1419 struct drm_device *dev = node->minor->dev;
1420 drm_i915_private_t *dev_priv = dev->dev_private;
1421 bool sr_enabled = false;
1422
1423 if (HAS_PCH_SPLIT(dev))
1424 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1425 else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1426 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1427 else if (IS_I915GM(dev))
1428 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1429 else if (IS_PINEVIEW(dev))
1430 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1431
1432 seq_printf(m, "self-refresh: %s\n",
1433 sr_enabled ? "enabled" : "disabled");
1434
1435 return 0;
1436 }
1437
1438 static int i915_emon_status(struct seq_file *m, void *unused)
1439 {
1440 struct drm_info_node *node = (struct drm_info_node *) m->private;
1441 struct drm_device *dev = node->minor->dev;
1442 drm_i915_private_t *dev_priv = dev->dev_private;
1443 unsigned long temp, chipset, gfx;
1444 int ret;
1445
1446 if (!IS_GEN5(dev))
1447 return -ENODEV;
1448
1449 ret = mutex_lock_interruptible(&dev->struct_mutex);
1450 if (ret)
1451 return ret;
1452
1453 temp = i915_mch_val(dev_priv);
1454 chipset = i915_chipset_val(dev_priv);
1455 gfx = i915_gfx_val(dev_priv);
1456 mutex_unlock(&dev->struct_mutex);
1457
1458 seq_printf(m, "GMCH temp: %ld\n", temp);
1459 seq_printf(m, "Chipset power: %ld\n", chipset);
1460 seq_printf(m, "GFX power: %ld\n", gfx);
1461 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1462
1463 return 0;
1464 }
1465
1466 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1467 {
1468 struct drm_info_node *node = (struct drm_info_node *) m->private;
1469 struct drm_device *dev = node->minor->dev;
1470 drm_i915_private_t *dev_priv = dev->dev_private;
1471 int ret = 0;
1472 int gpu_freq, ia_freq;
1473
1474 if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1475 seq_puts(m, "unsupported on this chipset\n");
1476 return 0;
1477 }
1478
1479 intel_runtime_pm_get(dev_priv);
1480
1481 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1482
1483 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1484 if (ret)
1485 goto out;
1486
1487 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1488
1489 for (gpu_freq = dev_priv->rps.min_delay;
1490 gpu_freq <= dev_priv->rps.max_delay;
1491 gpu_freq++) {
1492 ia_freq = gpu_freq;
1493 sandybridge_pcode_read(dev_priv,
1494 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1495 &ia_freq);
1496 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1497 gpu_freq * GT_FREQUENCY_MULTIPLIER,
1498 ((ia_freq >> 0) & 0xff) * 100,
1499 ((ia_freq >> 8) & 0xff) * 100);
1500 }
1501
1502 mutex_unlock(&dev_priv->rps.hw_lock);
1503
1504 out:
1505 intel_runtime_pm_put(dev_priv);
1506 return ret;
1507 }
1508
1509 static int i915_gfxec(struct seq_file *m, void *unused)
1510 {
1511 struct drm_info_node *node = (struct drm_info_node *) m->private;
1512 struct drm_device *dev = node->minor->dev;
1513 drm_i915_private_t *dev_priv = dev->dev_private;
1514 int ret;
1515
1516 ret = mutex_lock_interruptible(&dev->struct_mutex);
1517 if (ret)
1518 return ret;
1519 intel_runtime_pm_get(dev_priv);
1520
1521 seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1522 intel_runtime_pm_put(dev_priv);
1523
1524 mutex_unlock(&dev->struct_mutex);
1525
1526 return 0;
1527 }
1528
1529 static int i915_opregion(struct seq_file *m, void *unused)
1530 {
1531 struct drm_info_node *node = (struct drm_info_node *) m->private;
1532 struct drm_device *dev = node->minor->dev;
1533 drm_i915_private_t *dev_priv = dev->dev_private;
1534 struct intel_opregion *opregion = &dev_priv->opregion;
1535 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1536 int ret;
1537
1538 if (data == NULL)
1539 return -ENOMEM;
1540
1541 ret = mutex_lock_interruptible(&dev->struct_mutex);
1542 if (ret)
1543 goto out;
1544
1545 if (opregion->header) {
1546 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1547 seq_write(m, data, OPREGION_SIZE);
1548 }
1549
1550 mutex_unlock(&dev->struct_mutex);
1551
1552 out:
1553 kfree(data);
1554 return 0;
1555 }
1556
1557 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1558 {
1559 struct drm_info_node *node = (struct drm_info_node *) m->private;
1560 struct drm_device *dev = node->minor->dev;
1561 struct intel_fbdev *ifbdev = NULL;
1562 struct intel_framebuffer *fb;
1563
1564 #ifdef CONFIG_DRM_I915_FBDEV
1565 struct drm_i915_private *dev_priv = dev->dev_private;
1566 int ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1567 if (ret)
1568 return ret;
1569
1570 ifbdev = dev_priv->fbdev;
1571 fb = to_intel_framebuffer(ifbdev->helper.fb);
1572
1573 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1574 fb->base.width,
1575 fb->base.height,
1576 fb->base.depth,
1577 fb->base.bits_per_pixel,
1578 atomic_read(&fb->base.refcount.refcount));
1579 describe_obj(m, fb->obj);
1580 seq_putc(m, '\n');
1581 mutex_unlock(&dev->mode_config.mutex);
1582 #endif
1583
1584 mutex_lock(&dev->mode_config.fb_lock);
1585 list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1586 if (ifbdev && &fb->base == ifbdev->helper.fb)
1587 continue;
1588
1589 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1590 fb->base.width,
1591 fb->base.height,
1592 fb->base.depth,
1593 fb->base.bits_per_pixel,
1594 atomic_read(&fb->base.refcount.refcount));
1595 describe_obj(m, fb->obj);
1596 seq_putc(m, '\n');
1597 }
1598 mutex_unlock(&dev->mode_config.fb_lock);
1599
1600 return 0;
1601 }
1602
1603 static int i915_context_status(struct seq_file *m, void *unused)
1604 {
1605 struct drm_info_node *node = (struct drm_info_node *) m->private;
1606 struct drm_device *dev = node->minor->dev;
1607 drm_i915_private_t *dev_priv = dev->dev_private;
1608 struct intel_ring_buffer *ring;
1609 struct i915_hw_context *ctx;
1610 int ret, i;
1611
1612 ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1613 if (ret)
1614 return ret;
1615
1616 if (dev_priv->ips.pwrctx) {
1617 seq_puts(m, "power context ");
1618 describe_obj(m, dev_priv->ips.pwrctx);
1619 seq_putc(m, '\n');
1620 }
1621
1622 if (dev_priv->ips.renderctx) {
1623 seq_puts(m, "render context ");
1624 describe_obj(m, dev_priv->ips.renderctx);
1625 seq_putc(m, '\n');
1626 }
1627
1628 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1629 seq_puts(m, "HW context ");
1630 describe_ctx(m, ctx);
1631 for_each_ring(ring, dev_priv, i)
1632 if (ring->default_context == ctx)
1633 seq_printf(m, "(default context %s) ", ring->name);
1634
1635 describe_obj(m, ctx->obj);
1636 seq_putc(m, '\n');
1637 }
1638
1639 mutex_unlock(&dev->mode_config.mutex);
1640
1641 return 0;
1642 }
1643
1644 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1645 {
1646 struct drm_info_node *node = (struct drm_info_node *) m->private;
1647 struct drm_device *dev = node->minor->dev;
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1650
1651 spin_lock_irq(&dev_priv->uncore.lock);
1652 if (IS_VALLEYVIEW(dev)) {
1653 fw_rendercount = dev_priv->uncore.fw_rendercount;
1654 fw_mediacount = dev_priv->uncore.fw_mediacount;
1655 } else
1656 forcewake_count = dev_priv->uncore.forcewake_count;
1657 spin_unlock_irq(&dev_priv->uncore.lock);
1658
1659 if (IS_VALLEYVIEW(dev)) {
1660 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1661 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1662 } else
1663 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1664
1665 return 0;
1666 }
1667
1668 static const char *swizzle_string(unsigned swizzle)
1669 {
1670 switch (swizzle) {
1671 case I915_BIT_6_SWIZZLE_NONE:
1672 return "none";
1673 case I915_BIT_6_SWIZZLE_9:
1674 return "bit9";
1675 case I915_BIT_6_SWIZZLE_9_10:
1676 return "bit9/bit10";
1677 case I915_BIT_6_SWIZZLE_9_11:
1678 return "bit9/bit11";
1679 case I915_BIT_6_SWIZZLE_9_10_11:
1680 return "bit9/bit10/bit11";
1681 case I915_BIT_6_SWIZZLE_9_17:
1682 return "bit9/bit17";
1683 case I915_BIT_6_SWIZZLE_9_10_17:
1684 return "bit9/bit10/bit17";
1685 case I915_BIT_6_SWIZZLE_UNKNOWN:
1686 return "unknown";
1687 }
1688
1689 return "bug";
1690 }
1691
1692 static int i915_swizzle_info(struct seq_file *m, void *data)
1693 {
1694 struct drm_info_node *node = (struct drm_info_node *) m->private;
1695 struct drm_device *dev = node->minor->dev;
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697 int ret;
1698
1699 ret = mutex_lock_interruptible(&dev->struct_mutex);
1700 if (ret)
1701 return ret;
1702 intel_runtime_pm_get(dev_priv);
1703
1704 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1705 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1706 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1707 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1708
1709 if (IS_GEN3(dev) || IS_GEN4(dev)) {
1710 seq_printf(m, "DDC = 0x%08x\n",
1711 I915_READ(DCC));
1712 seq_printf(m, "C0DRB3 = 0x%04x\n",
1713 I915_READ16(C0DRB3));
1714 seq_printf(m, "C1DRB3 = 0x%04x\n",
1715 I915_READ16(C1DRB3));
1716 } else if (INTEL_INFO(dev)->gen >= 6) {
1717 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1718 I915_READ(MAD_DIMM_C0));
1719 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1720 I915_READ(MAD_DIMM_C1));
1721 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1722 I915_READ(MAD_DIMM_C2));
1723 seq_printf(m, "TILECTL = 0x%08x\n",
1724 I915_READ(TILECTL));
1725 if (IS_GEN8(dev))
1726 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1727 I915_READ(GAMTARBMODE));
1728 else
1729 seq_printf(m, "ARB_MODE = 0x%08x\n",
1730 I915_READ(ARB_MODE));
1731 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1732 I915_READ(DISP_ARB_CTL));
1733 }
1734 intel_runtime_pm_put(dev_priv);
1735 mutex_unlock(&dev->struct_mutex);
1736
1737 return 0;
1738 }
1739
1740 static int per_file_ctx(int id, void *ptr, void *data)
1741 {
1742 struct i915_hw_context *ctx = ptr;
1743 struct seq_file *m = data;
1744 struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
1745
1746 ppgtt->debug_dump(ppgtt, m);
1747
1748 return 0;
1749 }
1750
1751 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1752 {
1753 struct drm_i915_private *dev_priv = dev->dev_private;
1754 struct intel_ring_buffer *ring;
1755 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1756 int unused, i;
1757
1758 if (!ppgtt)
1759 return;
1760
1761 seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
1762 seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
1763 for_each_ring(ring, dev_priv, unused) {
1764 seq_printf(m, "%s\n", ring->name);
1765 for (i = 0; i < 4; i++) {
1766 u32 offset = 0x270 + i * 8;
1767 u64 pdp = I915_READ(ring->mmio_base + offset + 4);
1768 pdp <<= 32;
1769 pdp |= I915_READ(ring->mmio_base + offset);
1770 for (i = 0; i < 4; i++)
1771 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
1772 }
1773 }
1774 }
1775
1776 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1777 {
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 struct intel_ring_buffer *ring;
1780 struct drm_file *file;
1781 int i;
1782
1783 if (INTEL_INFO(dev)->gen == 6)
1784 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1785
1786 for_each_ring(ring, dev_priv, i) {
1787 seq_printf(m, "%s\n", ring->name);
1788 if (INTEL_INFO(dev)->gen == 7)
1789 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1790 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1791 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1792 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1793 }
1794 if (dev_priv->mm.aliasing_ppgtt) {
1795 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1796
1797 seq_puts(m, "aliasing PPGTT:\n");
1798 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1799
1800 ppgtt->debug_dump(ppgtt, m);
1801 } else
1802 return;
1803
1804 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
1805 struct drm_i915_file_private *file_priv = file->driver_priv;
1806 struct i915_hw_ppgtt *pvt_ppgtt;
1807
1808 pvt_ppgtt = ctx_to_ppgtt(file_priv->private_default_ctx);
1809 seq_printf(m, "proc: %s\n",
1810 get_pid_task(file->pid, PIDTYPE_PID)->comm);
1811 seq_puts(m, " default context:\n");
1812 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
1813 }
1814 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1815 }
1816
1817 static int i915_ppgtt_info(struct seq_file *m, void *data)
1818 {
1819 struct drm_info_node *node = (struct drm_info_node *) m->private;
1820 struct drm_device *dev = node->minor->dev;
1821 struct drm_i915_private *dev_priv = dev->dev_private;
1822
1823 int ret = mutex_lock_interruptible(&dev->struct_mutex);
1824 if (ret)
1825 return ret;
1826 intel_runtime_pm_get(dev_priv);
1827
1828 if (INTEL_INFO(dev)->gen >= 8)
1829 gen8_ppgtt_info(m, dev);
1830 else if (INTEL_INFO(dev)->gen >= 6)
1831 gen6_ppgtt_info(m, dev);
1832
1833 intel_runtime_pm_put(dev_priv);
1834 mutex_unlock(&dev->struct_mutex);
1835
1836 return 0;
1837 }
1838
1839 static int i915_dpio_info(struct seq_file *m, void *data)
1840 {
1841 struct drm_info_node *node = (struct drm_info_node *) m->private;
1842 struct drm_device *dev = node->minor->dev;
1843 struct drm_i915_private *dev_priv = dev->dev_private;
1844 int ret;
1845
1846
1847 if (!IS_VALLEYVIEW(dev)) {
1848 seq_puts(m, "unsupported\n");
1849 return 0;
1850 }
1851
1852 ret = mutex_lock_interruptible(&dev_priv->dpio_lock);
1853 if (ret)
1854 return ret;
1855
1856 seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
1857
1858 seq_printf(m, "DPIO PLL DW3 CH0 : 0x%08x\n",
1859 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW3(0)));
1860 seq_printf(m, "DPIO PLL DW3 CH1: 0x%08x\n",
1861 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW3(1)));
1862
1863 seq_printf(m, "DPIO PLL DW5 CH0: 0x%08x\n",
1864 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW5(0)));
1865 seq_printf(m, "DPIO PLL DW5 CH1: 0x%08x\n",
1866 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW5(1)));
1867
1868 seq_printf(m, "DPIO PLL DW7 CH0: 0x%08x\n",
1869 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW7(0)));
1870 seq_printf(m, "DPIO PLL DW7 CH1: 0x%08x\n",
1871 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW7(1)));
1872
1873 seq_printf(m, "DPIO PLL DW10 CH0: 0x%08x\n",
1874 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW10(0)));
1875 seq_printf(m, "DPIO PLL DW10 CH1: 0x%08x\n",
1876 vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW10(1)));
1877
1878 seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
1879 vlv_dpio_read(dev_priv, PIPE_A, VLV_CMN_DW0));
1880
1881 mutex_unlock(&dev_priv->dpio_lock);
1882
1883 return 0;
1884 }
1885
1886 static int i915_llc(struct seq_file *m, void *data)
1887 {
1888 struct drm_info_node *node = (struct drm_info_node *) m->private;
1889 struct drm_device *dev = node->minor->dev;
1890 struct drm_i915_private *dev_priv = dev->dev_private;
1891
1892 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
1893 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
1894 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
1895
1896 return 0;
1897 }
1898
1899 static int i915_edp_psr_status(struct seq_file *m, void *data)
1900 {
1901 struct drm_info_node *node = m->private;
1902 struct drm_device *dev = node->minor->dev;
1903 struct drm_i915_private *dev_priv = dev->dev_private;
1904 u32 psrperf = 0;
1905 bool enabled = false;
1906
1907 intel_runtime_pm_get(dev_priv);
1908
1909 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
1910 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
1911
1912 enabled = HAS_PSR(dev) &&
1913 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1914 seq_printf(m, "Enabled: %s\n", yesno(enabled));
1915
1916 if (HAS_PSR(dev))
1917 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
1918 EDP_PSR_PERF_CNT_MASK;
1919 seq_printf(m, "Performance_Counter: %u\n", psrperf);
1920
1921 intel_runtime_pm_put(dev_priv);
1922 return 0;
1923 }
1924
1925 static int i915_sink_crc(struct seq_file *m, void *data)
1926 {
1927 struct drm_info_node *node = m->private;
1928 struct drm_device *dev = node->minor->dev;
1929 struct intel_encoder *encoder;
1930 struct intel_connector *connector;
1931 struct intel_dp *intel_dp = NULL;
1932 int ret;
1933 u8 crc[6];
1934
1935 drm_modeset_lock_all(dev);
1936 list_for_each_entry(connector, &dev->mode_config.connector_list,
1937 base.head) {
1938
1939 if (connector->base.dpms != DRM_MODE_DPMS_ON)
1940 continue;
1941
1942 if (!connector->base.encoder)
1943 continue;
1944
1945 encoder = to_intel_encoder(connector->base.encoder);
1946 if (encoder->type != INTEL_OUTPUT_EDP)
1947 continue;
1948
1949 intel_dp = enc_to_intel_dp(&encoder->base);
1950
1951 ret = intel_dp_sink_crc(intel_dp, crc);
1952 if (ret)
1953 goto out;
1954
1955 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
1956 crc[0], crc[1], crc[2],
1957 crc[3], crc[4], crc[5]);
1958 goto out;
1959 }
1960 ret = -ENODEV;
1961 out:
1962 drm_modeset_unlock_all(dev);
1963 return ret;
1964 }
1965
1966 static int i915_energy_uJ(struct seq_file *m, void *data)
1967 {
1968 struct drm_info_node *node = m->private;
1969 struct drm_device *dev = node->minor->dev;
1970 struct drm_i915_private *dev_priv = dev->dev_private;
1971 u64 power;
1972 u32 units;
1973
1974 if (INTEL_INFO(dev)->gen < 6)
1975 return -ENODEV;
1976
1977 rdmsrl(MSR_RAPL_POWER_UNIT, power);
1978 power = (power & 0x1f00) >> 8;
1979 units = 1000000 / (1 << power); /* convert to uJ */
1980 power = I915_READ(MCH_SECP_NRG_STTS);
1981 power *= units;
1982
1983 seq_printf(m, "%llu", (long long unsigned)power);
1984
1985 return 0;
1986 }
1987
1988 static int i915_pc8_status(struct seq_file *m, void *unused)
1989 {
1990 struct drm_info_node *node = (struct drm_info_node *) m->private;
1991 struct drm_device *dev = node->minor->dev;
1992 struct drm_i915_private *dev_priv = dev->dev_private;
1993
1994 if (!IS_HASWELL(dev)) {
1995 seq_puts(m, "not supported\n");
1996 return 0;
1997 }
1998
1999 mutex_lock(&dev_priv->pc8.lock);
2000 seq_printf(m, "Requirements met: %s\n",
2001 yesno(dev_priv->pc8.requirements_met));
2002 seq_printf(m, "GPU idle: %s\n", yesno(dev_priv->pc8.gpu_idle));
2003 seq_printf(m, "Disable count: %d\n", dev_priv->pc8.disable_count);
2004 seq_printf(m, "IRQs disabled: %s\n",
2005 yesno(dev_priv->pc8.irqs_disabled));
2006 seq_printf(m, "Enabled: %s\n", yesno(dev_priv->pc8.enabled));
2007 mutex_unlock(&dev_priv->pc8.lock);
2008
2009 return 0;
2010 }
2011
2012 static const char *power_domain_str(enum intel_display_power_domain domain)
2013 {
2014 switch (domain) {
2015 case POWER_DOMAIN_PIPE_A:
2016 return "PIPE_A";
2017 case POWER_DOMAIN_PIPE_B:
2018 return "PIPE_B";
2019 case POWER_DOMAIN_PIPE_C:
2020 return "PIPE_C";
2021 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2022 return "PIPE_A_PANEL_FITTER";
2023 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2024 return "PIPE_B_PANEL_FITTER";
2025 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2026 return "PIPE_C_PANEL_FITTER";
2027 case POWER_DOMAIN_TRANSCODER_A:
2028 return "TRANSCODER_A";
2029 case POWER_DOMAIN_TRANSCODER_B:
2030 return "TRANSCODER_B";
2031 case POWER_DOMAIN_TRANSCODER_C:
2032 return "TRANSCODER_C";
2033 case POWER_DOMAIN_TRANSCODER_EDP:
2034 return "TRANSCODER_EDP";
2035 case POWER_DOMAIN_VGA:
2036 return "VGA";
2037 case POWER_DOMAIN_AUDIO:
2038 return "AUDIO";
2039 case POWER_DOMAIN_INIT:
2040 return "INIT";
2041 default:
2042 WARN_ON(1);
2043 return "?";
2044 }
2045 }
2046
2047 static int i915_power_domain_info(struct seq_file *m, void *unused)
2048 {
2049 struct drm_info_node *node = (struct drm_info_node *) m->private;
2050 struct drm_device *dev = node->minor->dev;
2051 struct drm_i915_private *dev_priv = dev->dev_private;
2052 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2053 int i;
2054
2055 mutex_lock(&power_domains->lock);
2056
2057 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2058 for (i = 0; i < power_domains->power_well_count; i++) {
2059 struct i915_power_well *power_well;
2060 enum intel_display_power_domain power_domain;
2061
2062 power_well = &power_domains->power_wells[i];
2063 seq_printf(m, "%-25s %d\n", power_well->name,
2064 power_well->count);
2065
2066 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2067 power_domain++) {
2068 if (!(BIT(power_domain) & power_well->domains))
2069 continue;
2070
2071 seq_printf(m, " %-23s %d\n",
2072 power_domain_str(power_domain),
2073 power_domains->domain_use_count[power_domain]);
2074 }
2075 }
2076
2077 mutex_unlock(&power_domains->lock);
2078
2079 return 0;
2080 }
2081
2082 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2083 struct drm_display_mode *mode)
2084 {
2085 int i;
2086
2087 for (i = 0; i < tabs; i++)
2088 seq_putc(m, '\t');
2089
2090 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2091 mode->base.id, mode->name,
2092 mode->vrefresh, mode->clock,
2093 mode->hdisplay, mode->hsync_start,
2094 mode->hsync_end, mode->htotal,
2095 mode->vdisplay, mode->vsync_start,
2096 mode->vsync_end, mode->vtotal,
2097 mode->type, mode->flags);
2098 }
2099
2100 static void intel_encoder_info(struct seq_file *m,
2101 struct intel_crtc *intel_crtc,
2102 struct intel_encoder *intel_encoder)
2103 {
2104 struct drm_info_node *node = (struct drm_info_node *) m->private;
2105 struct drm_device *dev = node->minor->dev;
2106 struct drm_crtc *crtc = &intel_crtc->base;
2107 struct intel_connector *intel_connector;
2108 struct drm_encoder *encoder;
2109
2110 encoder = &intel_encoder->base;
2111 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2112 encoder->base.id, drm_get_encoder_name(encoder));
2113 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2114 struct drm_connector *connector = &intel_connector->base;
2115 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2116 connector->base.id,
2117 drm_get_connector_name(connector),
2118 drm_get_connector_status_name(connector->status));
2119 if (connector->status == connector_status_connected) {
2120 struct drm_display_mode *mode = &crtc->mode;
2121 seq_printf(m, ", mode:\n");
2122 intel_seq_print_mode(m, 2, mode);
2123 } else {
2124 seq_putc(m, '\n');
2125 }
2126 }
2127 }
2128
2129 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2130 {
2131 struct drm_info_node *node = (struct drm_info_node *) m->private;
2132 struct drm_device *dev = node->minor->dev;
2133 struct drm_crtc *crtc = &intel_crtc->base;
2134 struct intel_encoder *intel_encoder;
2135
2136 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2137 crtc->fb->base.id, crtc->x, crtc->y,
2138 crtc->fb->width, crtc->fb->height);
2139 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2140 intel_encoder_info(m, intel_crtc, intel_encoder);
2141 }
2142
2143 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2144 {
2145 struct drm_display_mode *mode = panel->fixed_mode;
2146
2147 seq_printf(m, "\tfixed mode:\n");
2148 intel_seq_print_mode(m, 2, mode);
2149 }
2150
2151 static void intel_dp_info(struct seq_file *m,
2152 struct intel_connector *intel_connector)
2153 {
2154 struct intel_encoder *intel_encoder = intel_connector->encoder;
2155 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2156
2157 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2158 seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2159 "no");
2160 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2161 intel_panel_info(m, &intel_connector->panel);
2162 }
2163
2164 static void intel_hdmi_info(struct seq_file *m,
2165 struct intel_connector *intel_connector)
2166 {
2167 struct intel_encoder *intel_encoder = intel_connector->encoder;
2168 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2169
2170 seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2171 "no");
2172 }
2173
2174 static void intel_lvds_info(struct seq_file *m,
2175 struct intel_connector *intel_connector)
2176 {
2177 intel_panel_info(m, &intel_connector->panel);
2178 }
2179
2180 static void intel_connector_info(struct seq_file *m,
2181 struct drm_connector *connector)
2182 {
2183 struct intel_connector *intel_connector = to_intel_connector(connector);
2184 struct intel_encoder *intel_encoder = intel_connector->encoder;
2185
2186 seq_printf(m, "connector %d: type %s, status: %s\n",
2187 connector->base.id, drm_get_connector_name(connector),
2188 drm_get_connector_status_name(connector->status));
2189 if (connector->status == connector_status_connected) {
2190 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2191 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2192 connector->display_info.width_mm,
2193 connector->display_info.height_mm);
2194 seq_printf(m, "\tsubpixel order: %s\n",
2195 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2196 seq_printf(m, "\tCEA rev: %d\n",
2197 connector->display_info.cea_rev);
2198 }
2199 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2200 intel_encoder->type == INTEL_OUTPUT_EDP)
2201 intel_dp_info(m, intel_connector);
2202 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2203 intel_hdmi_info(m, intel_connector);
2204 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2205 intel_lvds_info(m, intel_connector);
2206
2207 }
2208
2209 static int i915_display_info(struct seq_file *m, void *unused)
2210 {
2211 struct drm_info_node *node = (struct drm_info_node *) m->private;
2212 struct drm_device *dev = node->minor->dev;
2213 struct drm_crtc *crtc;
2214 struct drm_connector *connector;
2215
2216 drm_modeset_lock_all(dev);
2217 seq_printf(m, "CRTC info\n");
2218 seq_printf(m, "---------\n");
2219 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2221
2222 seq_printf(m, "CRTC %d: pipe: %c, active: %s\n",
2223 crtc->base.id, pipe_name(intel_crtc->pipe),
2224 intel_crtc->active ? "yes" : "no");
2225 if (intel_crtc->active)
2226 intel_crtc_info(m, intel_crtc);
2227 }
2228
2229 seq_printf(m, "\n");
2230 seq_printf(m, "Connector info\n");
2231 seq_printf(m, "--------------\n");
2232 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2233 intel_connector_info(m, connector);
2234 }
2235 drm_modeset_unlock_all(dev);
2236
2237 return 0;
2238 }
2239
2240 struct pipe_crc_info {
2241 const char *name;
2242 struct drm_device *dev;
2243 enum pipe pipe;
2244 };
2245
2246 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2247 {
2248 struct pipe_crc_info *info = inode->i_private;
2249 struct drm_i915_private *dev_priv = info->dev->dev_private;
2250 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2251
2252 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2253 return -ENODEV;
2254
2255 spin_lock_irq(&pipe_crc->lock);
2256
2257 if (pipe_crc->opened) {
2258 spin_unlock_irq(&pipe_crc->lock);
2259 return -EBUSY; /* already open */
2260 }
2261
2262 pipe_crc->opened = true;
2263 filep->private_data = inode->i_private;
2264
2265 spin_unlock_irq(&pipe_crc->lock);
2266
2267 return 0;
2268 }
2269
2270 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2271 {
2272 struct pipe_crc_info *info = inode->i_private;
2273 struct drm_i915_private *dev_priv = info->dev->dev_private;
2274 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2275
2276 spin_lock_irq(&pipe_crc->lock);
2277 pipe_crc->opened = false;
2278 spin_unlock_irq(&pipe_crc->lock);
2279
2280 return 0;
2281 }
2282
2283 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2284 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
2285 /* account for \'0' */
2286 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
2287
2288 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2289 {
2290 assert_spin_locked(&pipe_crc->lock);
2291 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2292 INTEL_PIPE_CRC_ENTRIES_NR);
2293 }
2294
2295 static ssize_t
2296 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2297 loff_t *pos)
2298 {
2299 struct pipe_crc_info *info = filep->private_data;
2300 struct drm_device *dev = info->dev;
2301 struct drm_i915_private *dev_priv = dev->dev_private;
2302 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2303 char buf[PIPE_CRC_BUFFER_LEN];
2304 int head, tail, n_entries, n;
2305 ssize_t bytes_read;
2306
2307 /*
2308 * Don't allow user space to provide buffers not big enough to hold
2309 * a line of data.
2310 */
2311 if (count < PIPE_CRC_LINE_LEN)
2312 return -EINVAL;
2313
2314 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2315 return 0;
2316
2317 /* nothing to read */
2318 spin_lock_irq(&pipe_crc->lock);
2319 while (pipe_crc_data_count(pipe_crc) == 0) {
2320 int ret;
2321
2322 if (filep->f_flags & O_NONBLOCK) {
2323 spin_unlock_irq(&pipe_crc->lock);
2324 return -EAGAIN;
2325 }
2326
2327 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2328 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2329 if (ret) {
2330 spin_unlock_irq(&pipe_crc->lock);
2331 return ret;
2332 }
2333 }
2334
2335 /* We now have one or more entries to read */
2336 head = pipe_crc->head;
2337 tail = pipe_crc->tail;
2338 n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2339 count / PIPE_CRC_LINE_LEN);
2340 spin_unlock_irq(&pipe_crc->lock);
2341
2342 bytes_read = 0;
2343 n = 0;
2344 do {
2345 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2346 int ret;
2347
2348 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2349 "%8u %8x %8x %8x %8x %8x\n",
2350 entry->frame, entry->crc[0],
2351 entry->crc[1], entry->crc[2],
2352 entry->crc[3], entry->crc[4]);
2353
2354 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2355 buf, PIPE_CRC_LINE_LEN);
2356 if (ret == PIPE_CRC_LINE_LEN)
2357 return -EFAULT;
2358
2359 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2360 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2361 n++;
2362 } while (--n_entries);
2363
2364 spin_lock_irq(&pipe_crc->lock);
2365 pipe_crc->tail = tail;
2366 spin_unlock_irq(&pipe_crc->lock);
2367
2368 return bytes_read;
2369 }
2370
2371 static const struct file_operations i915_pipe_crc_fops = {
2372 .owner = THIS_MODULE,
2373 .open = i915_pipe_crc_open,
2374 .read = i915_pipe_crc_read,
2375 .release = i915_pipe_crc_release,
2376 };
2377
2378 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2379 {
2380 .name = "i915_pipe_A_crc",
2381 .pipe = PIPE_A,
2382 },
2383 {
2384 .name = "i915_pipe_B_crc",
2385 .pipe = PIPE_B,
2386 },
2387 {
2388 .name = "i915_pipe_C_crc",
2389 .pipe = PIPE_C,
2390 },
2391 };
2392
2393 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2394 enum pipe pipe)
2395 {
2396 struct drm_device *dev = minor->dev;
2397 struct dentry *ent;
2398 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2399
2400 info->dev = dev;
2401 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2402 &i915_pipe_crc_fops);
2403 if (!ent)
2404 return -ENOMEM;
2405
2406 return drm_add_fake_info_node(minor, ent, info);
2407 }
2408
2409 static const char * const pipe_crc_sources[] = {
2410 "none",
2411 "plane1",
2412 "plane2",
2413 "pf",
2414 "pipe",
2415 "TV",
2416 "DP-B",
2417 "DP-C",
2418 "DP-D",
2419 "auto",
2420 };
2421
2422 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2423 {
2424 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2425 return pipe_crc_sources[source];
2426 }
2427
2428 static int display_crc_ctl_show(struct seq_file *m, void *data)
2429 {
2430 struct drm_device *dev = m->private;
2431 struct drm_i915_private *dev_priv = dev->dev_private;
2432 int i;
2433
2434 for (i = 0; i < I915_MAX_PIPES; i++)
2435 seq_printf(m, "%c %s\n", pipe_name(i),
2436 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2437
2438 return 0;
2439 }
2440
2441 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2442 {
2443 struct drm_device *dev = inode->i_private;
2444
2445 return single_open(file, display_crc_ctl_show, dev);
2446 }
2447
2448 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2449 uint32_t *val)
2450 {
2451 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2452 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2453
2454 switch (*source) {
2455 case INTEL_PIPE_CRC_SOURCE_PIPE:
2456 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2457 break;
2458 case INTEL_PIPE_CRC_SOURCE_NONE:
2459 *val = 0;
2460 break;
2461 default:
2462 return -EINVAL;
2463 }
2464
2465 return 0;
2466 }
2467
2468 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2469 enum intel_pipe_crc_source *source)
2470 {
2471 struct intel_encoder *encoder;
2472 struct intel_crtc *crtc;
2473 struct intel_digital_port *dig_port;
2474 int ret = 0;
2475
2476 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2477
2478 mutex_lock(&dev->mode_config.mutex);
2479 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2480 base.head) {
2481 if (!encoder->base.crtc)
2482 continue;
2483
2484 crtc = to_intel_crtc(encoder->base.crtc);
2485
2486 if (crtc->pipe != pipe)
2487 continue;
2488
2489 switch (encoder->type) {
2490 case INTEL_OUTPUT_TVOUT:
2491 *source = INTEL_PIPE_CRC_SOURCE_TV;
2492 break;
2493 case INTEL_OUTPUT_DISPLAYPORT:
2494 case INTEL_OUTPUT_EDP:
2495 dig_port = enc_to_dig_port(&encoder->base);
2496 switch (dig_port->port) {
2497 case PORT_B:
2498 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
2499 break;
2500 case PORT_C:
2501 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
2502 break;
2503 case PORT_D:
2504 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
2505 break;
2506 default:
2507 WARN(1, "nonexisting DP port %c\n",
2508 port_name(dig_port->port));
2509 break;
2510 }
2511 break;
2512 }
2513 }
2514 mutex_unlock(&dev->mode_config.mutex);
2515
2516 return ret;
2517 }
2518
2519 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2520 enum pipe pipe,
2521 enum intel_pipe_crc_source *source,
2522 uint32_t *val)
2523 {
2524 struct drm_i915_private *dev_priv = dev->dev_private;
2525 bool need_stable_symbols = false;
2526
2527 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2528 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2529 if (ret)
2530 return ret;
2531 }
2532
2533 switch (*source) {
2534 case INTEL_PIPE_CRC_SOURCE_PIPE:
2535 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2536 break;
2537 case INTEL_PIPE_CRC_SOURCE_DP_B:
2538 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2539 need_stable_symbols = true;
2540 break;
2541 case INTEL_PIPE_CRC_SOURCE_DP_C:
2542 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
2543 need_stable_symbols = true;
2544 break;
2545 case INTEL_PIPE_CRC_SOURCE_NONE:
2546 *val = 0;
2547 break;
2548 default:
2549 return -EINVAL;
2550 }
2551
2552 /*
2553 * When the pipe CRC tap point is after the transcoders we need
2554 * to tweak symbol-level features to produce a deterministic series of
2555 * symbols for a given frame. We need to reset those features only once
2556 * a frame (instead of every nth symbol):
2557 * - DC-balance: used to ensure a better clock recovery from the data
2558 * link (SDVO)
2559 * - DisplayPort scrambling: used for EMI reduction
2560 */
2561 if (need_stable_symbols) {
2562 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2563
2564 WARN_ON(!IS_G4X(dev));
2565
2566 tmp |= DC_BALANCE_RESET_VLV;
2567 if (pipe == PIPE_A)
2568 tmp |= PIPE_A_SCRAMBLE_RESET;
2569 else
2570 tmp |= PIPE_B_SCRAMBLE_RESET;
2571
2572 I915_WRITE(PORT_DFT2_G4X, tmp);
2573 }
2574
2575 return 0;
2576 }
2577
2578 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
2579 enum pipe pipe,
2580 enum intel_pipe_crc_source *source,
2581 uint32_t *val)
2582 {
2583 struct drm_i915_private *dev_priv = dev->dev_private;
2584 bool need_stable_symbols = false;
2585
2586 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2587 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2588 if (ret)
2589 return ret;
2590 }
2591
2592 switch (*source) {
2593 case INTEL_PIPE_CRC_SOURCE_PIPE:
2594 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
2595 break;
2596 case INTEL_PIPE_CRC_SOURCE_TV:
2597 if (!SUPPORTS_TV(dev))
2598 return -EINVAL;
2599 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
2600 break;
2601 case INTEL_PIPE_CRC_SOURCE_DP_B:
2602 if (!IS_G4X(dev))
2603 return -EINVAL;
2604 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
2605 need_stable_symbols = true;
2606 break;
2607 case INTEL_PIPE_CRC_SOURCE_DP_C:
2608 if (!IS_G4X(dev))
2609 return -EINVAL;
2610 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
2611 need_stable_symbols = true;
2612 break;
2613 case INTEL_PIPE_CRC_SOURCE_DP_D:
2614 if (!IS_G4X(dev))
2615 return -EINVAL;
2616 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
2617 need_stable_symbols = true;
2618 break;
2619 case INTEL_PIPE_CRC_SOURCE_NONE:
2620 *val = 0;
2621 break;
2622 default:
2623 return -EINVAL;
2624 }
2625
2626 /*
2627 * When the pipe CRC tap point is after the transcoders we need
2628 * to tweak symbol-level features to produce a deterministic series of
2629 * symbols for a given frame. We need to reset those features only once
2630 * a frame (instead of every nth symbol):
2631 * - DC-balance: used to ensure a better clock recovery from the data
2632 * link (SDVO)
2633 * - DisplayPort scrambling: used for EMI reduction
2634 */
2635 if (need_stable_symbols) {
2636 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2637
2638 WARN_ON(!IS_G4X(dev));
2639
2640 I915_WRITE(PORT_DFT_I9XX,
2641 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
2642
2643 if (pipe == PIPE_A)
2644 tmp |= PIPE_A_SCRAMBLE_RESET;
2645 else
2646 tmp |= PIPE_B_SCRAMBLE_RESET;
2647
2648 I915_WRITE(PORT_DFT2_G4X, tmp);
2649 }
2650
2651 return 0;
2652 }
2653
2654 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
2655 enum pipe pipe)
2656 {
2657 struct drm_i915_private *dev_priv = dev->dev_private;
2658 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2659
2660 if (pipe == PIPE_A)
2661 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2662 else
2663 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2664 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
2665 tmp &= ~DC_BALANCE_RESET_VLV;
2666 I915_WRITE(PORT_DFT2_G4X, tmp);
2667
2668 }
2669
2670 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
2671 enum pipe pipe)
2672 {
2673 struct drm_i915_private *dev_priv = dev->dev_private;
2674 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2675
2676 if (pipe == PIPE_A)
2677 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2678 else
2679 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2680 I915_WRITE(PORT_DFT2_G4X, tmp);
2681
2682 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
2683 I915_WRITE(PORT_DFT_I9XX,
2684 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
2685 }
2686 }
2687
2688 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2689 uint32_t *val)
2690 {
2691 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2692 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2693
2694 switch (*source) {
2695 case INTEL_PIPE_CRC_SOURCE_PLANE1:
2696 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
2697 break;
2698 case INTEL_PIPE_CRC_SOURCE_PLANE2:
2699 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
2700 break;
2701 case INTEL_PIPE_CRC_SOURCE_PIPE:
2702 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
2703 break;
2704 case INTEL_PIPE_CRC_SOURCE_NONE:
2705 *val = 0;
2706 break;
2707 default:
2708 return -EINVAL;
2709 }
2710
2711 return 0;
2712 }
2713
2714 static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2715 uint32_t *val)
2716 {
2717 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2718 *source = INTEL_PIPE_CRC_SOURCE_PF;
2719
2720 switch (*source) {
2721 case INTEL_PIPE_CRC_SOURCE_PLANE1:
2722 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
2723 break;
2724 case INTEL_PIPE_CRC_SOURCE_PLANE2:
2725 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
2726 break;
2727 case INTEL_PIPE_CRC_SOURCE_PF:
2728 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
2729 break;
2730 case INTEL_PIPE_CRC_SOURCE_NONE:
2731 *val = 0;
2732 break;
2733 default:
2734 return -EINVAL;
2735 }
2736
2737 return 0;
2738 }
2739
2740 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
2741 enum intel_pipe_crc_source source)
2742 {
2743 struct drm_i915_private *dev_priv = dev->dev_private;
2744 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
2745 u32 val = 0; /* shut up gcc */
2746 int ret;
2747
2748 if (pipe_crc->source == source)
2749 return 0;
2750
2751 /* forbid changing the source without going back to 'none' */
2752 if (pipe_crc->source && source)
2753 return -EINVAL;
2754
2755 if (IS_GEN2(dev))
2756 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
2757 else if (INTEL_INFO(dev)->gen < 5)
2758 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
2759 else if (IS_VALLEYVIEW(dev))
2760 ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val);
2761 else if (IS_GEN5(dev) || IS_GEN6(dev))
2762 ret = ilk_pipe_crc_ctl_reg(&source, &val);
2763 else
2764 ret = ivb_pipe_crc_ctl_reg(&source, &val);
2765
2766 if (ret != 0)
2767 return ret;
2768
2769 /* none -> real source transition */
2770 if (source) {
2771 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
2772 pipe_name(pipe), pipe_crc_source_name(source));
2773
2774 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
2775 INTEL_PIPE_CRC_ENTRIES_NR,
2776 GFP_KERNEL);
2777 if (!pipe_crc->entries)
2778 return -ENOMEM;
2779
2780 spin_lock_irq(&pipe_crc->lock);
2781 pipe_crc->head = 0;
2782 pipe_crc->tail = 0;
2783 spin_unlock_irq(&pipe_crc->lock);
2784 }
2785
2786 pipe_crc->source = source;
2787
2788 I915_WRITE(PIPE_CRC_CTL(pipe), val);
2789 POSTING_READ(PIPE_CRC_CTL(pipe));
2790
2791 /* real source -> none transition */
2792 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
2793 struct intel_pipe_crc_entry *entries;
2794
2795 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
2796 pipe_name(pipe));
2797
2798 intel_wait_for_vblank(dev, pipe);
2799
2800 spin_lock_irq(&pipe_crc->lock);
2801 entries = pipe_crc->entries;
2802 pipe_crc->entries = NULL;
2803 spin_unlock_irq(&pipe_crc->lock);
2804
2805 kfree(entries);
2806
2807 if (IS_G4X(dev))
2808 g4x_undo_pipe_scramble_reset(dev, pipe);
2809 else if (IS_VALLEYVIEW(dev))
2810 vlv_undo_pipe_scramble_reset(dev, pipe);
2811 }
2812
2813 return 0;
2814 }
2815
2816 /*
2817 * Parse pipe CRC command strings:
2818 * command: wsp* object wsp+ name wsp+ source wsp*
2819 * object: 'pipe'
2820 * name: (A | B | C)
2821 * source: (none | plane1 | plane2 | pf)
2822 * wsp: (#0x20 | #0x9 | #0xA)+
2823 *
2824 * eg.:
2825 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
2826 * "pipe A none" -> Stop CRC
2827 */
2828 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
2829 {
2830 int n_words = 0;
2831
2832 while (*buf) {
2833 char *end;
2834
2835 /* skip leading white space */
2836 buf = skip_spaces(buf);
2837 if (!*buf)
2838 break; /* end of buffer */
2839
2840 /* find end of word */
2841 for (end = buf; *end && !isspace(*end); end++)
2842 ;
2843
2844 if (n_words == max_words) {
2845 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
2846 max_words);
2847 return -EINVAL; /* ran out of words[] before bytes */
2848 }
2849
2850 if (*end)
2851 *end++ = '\0';
2852 words[n_words++] = buf;
2853 buf = end;
2854 }
2855
2856 return n_words;
2857 }
2858
2859 enum intel_pipe_crc_object {
2860 PIPE_CRC_OBJECT_PIPE,
2861 };
2862
2863 static const char * const pipe_crc_objects[] = {
2864 "pipe",
2865 };
2866
2867 static int
2868 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
2869 {
2870 int i;
2871
2872 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
2873 if (!strcmp(buf, pipe_crc_objects[i])) {
2874 *o = i;
2875 return 0;
2876 }
2877
2878 return -EINVAL;
2879 }
2880
2881 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
2882 {
2883 const char name = buf[0];
2884
2885 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
2886 return -EINVAL;
2887
2888 *pipe = name - 'A';
2889
2890 return 0;
2891 }
2892
2893 static int
2894 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
2895 {
2896 int i;
2897
2898 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
2899 if (!strcmp(buf, pipe_crc_sources[i])) {
2900 *s = i;
2901 return 0;
2902 }
2903
2904 return -EINVAL;
2905 }
2906
2907 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
2908 {
2909 #define N_WORDS 3
2910 int n_words;
2911 char *words[N_WORDS];
2912 enum pipe pipe;
2913 enum intel_pipe_crc_object object;
2914 enum intel_pipe_crc_source source;
2915
2916 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
2917 if (n_words != N_WORDS) {
2918 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
2919 N_WORDS);
2920 return -EINVAL;
2921 }
2922
2923 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
2924 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
2925 return -EINVAL;
2926 }
2927
2928 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
2929 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
2930 return -EINVAL;
2931 }
2932
2933 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
2934 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
2935 return -EINVAL;
2936 }
2937
2938 return pipe_crc_set_source(dev, pipe, source);
2939 }
2940
2941 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
2942 size_t len, loff_t *offp)
2943 {
2944 struct seq_file *m = file->private_data;
2945 struct drm_device *dev = m->private;
2946 char *tmpbuf;
2947 int ret;
2948
2949 if (len == 0)
2950 return 0;
2951
2952 if (len > PAGE_SIZE - 1) {
2953 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
2954 PAGE_SIZE);
2955 return -E2BIG;
2956 }
2957
2958 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
2959 if (!tmpbuf)
2960 return -ENOMEM;
2961
2962 if (copy_from_user(tmpbuf, ubuf, len)) {
2963 ret = -EFAULT;
2964 goto out;
2965 }
2966 tmpbuf[len] = '\0';
2967
2968 ret = display_crc_ctl_parse(dev, tmpbuf, len);
2969
2970 out:
2971 kfree(tmpbuf);
2972 if (ret < 0)
2973 return ret;
2974
2975 *offp += len;
2976 return len;
2977 }
2978
2979 static const struct file_operations i915_display_crc_ctl_fops = {
2980 .owner = THIS_MODULE,
2981 .open = display_crc_ctl_open,
2982 .read = seq_read,
2983 .llseek = seq_lseek,
2984 .release = single_release,
2985 .write = display_crc_ctl_write
2986 };
2987
2988 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
2989 {
2990 struct drm_device *dev = m->private;
2991 int num_levels = IS_HASWELL(dev) || IS_BROADWELL(dev) ? 5 : 4;
2992 int level;
2993
2994 drm_modeset_lock_all(dev);
2995
2996 for (level = 0; level < num_levels; level++) {
2997 unsigned int latency = wm[level];
2998
2999 /* WM1+ latency values in 0.5us units */
3000 if (level > 0)
3001 latency *= 5;
3002
3003 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3004 level, wm[level],
3005 latency / 10, latency % 10);
3006 }
3007
3008 drm_modeset_unlock_all(dev);
3009 }
3010
3011 static int pri_wm_latency_show(struct seq_file *m, void *data)
3012 {
3013 struct drm_device *dev = m->private;
3014
3015 wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3016
3017 return 0;
3018 }
3019
3020 static int spr_wm_latency_show(struct seq_file *m, void *data)
3021 {
3022 struct drm_device *dev = m->private;
3023
3024 wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3025
3026 return 0;
3027 }
3028
3029 static int cur_wm_latency_show(struct seq_file *m, void *data)
3030 {
3031 struct drm_device *dev = m->private;
3032
3033 wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3034
3035 return 0;
3036 }
3037
3038 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3039 {
3040 struct drm_device *dev = inode->i_private;
3041
3042 if (!HAS_PCH_SPLIT(dev))
3043 return -ENODEV;
3044
3045 return single_open(file, pri_wm_latency_show, dev);
3046 }
3047
3048 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3049 {
3050 struct drm_device *dev = inode->i_private;
3051
3052 if (!HAS_PCH_SPLIT(dev))
3053 return -ENODEV;
3054
3055 return single_open(file, spr_wm_latency_show, dev);
3056 }
3057
3058 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3059 {
3060 struct drm_device *dev = inode->i_private;
3061
3062 if (!HAS_PCH_SPLIT(dev))
3063 return -ENODEV;
3064
3065 return single_open(file, cur_wm_latency_show, dev);
3066 }
3067
3068 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3069 size_t len, loff_t *offp, uint16_t wm[5])
3070 {
3071 struct seq_file *m = file->private_data;
3072 struct drm_device *dev = m->private;
3073 uint16_t new[5] = { 0 };
3074 int num_levels = IS_HASWELL(dev) || IS_BROADWELL(dev) ? 5 : 4;
3075 int level;
3076 int ret;
3077 char tmp[32];
3078
3079 if (len >= sizeof(tmp))
3080 return -EINVAL;
3081
3082 if (copy_from_user(tmp, ubuf, len))
3083 return -EFAULT;
3084
3085 tmp[len] = '\0';
3086
3087 ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3088 if (ret != num_levels)
3089 return -EINVAL;
3090
3091 drm_modeset_lock_all(dev);
3092
3093 for (level = 0; level < num_levels; level++)
3094 wm[level] = new[level];
3095
3096 drm_modeset_unlock_all(dev);
3097
3098 return len;
3099 }
3100
3101
3102 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3103 size_t len, loff_t *offp)
3104 {
3105 struct seq_file *m = file->private_data;
3106 struct drm_device *dev = m->private;
3107
3108 return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3109 }
3110
3111 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3112 size_t len, loff_t *offp)
3113 {
3114 struct seq_file *m = file->private_data;
3115 struct drm_device *dev = m->private;
3116
3117 return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3118 }
3119
3120 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3121 size_t len, loff_t *offp)
3122 {
3123 struct seq_file *m = file->private_data;
3124 struct drm_device *dev = m->private;
3125
3126 return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3127 }
3128
3129 static const struct file_operations i915_pri_wm_latency_fops = {
3130 .owner = THIS_MODULE,
3131 .open = pri_wm_latency_open,
3132 .read = seq_read,
3133 .llseek = seq_lseek,
3134 .release = single_release,
3135 .write = pri_wm_latency_write
3136 };
3137
3138 static const struct file_operations i915_spr_wm_latency_fops = {
3139 .owner = THIS_MODULE,
3140 .open = spr_wm_latency_open,
3141 .read = seq_read,
3142 .llseek = seq_lseek,
3143 .release = single_release,
3144 .write = spr_wm_latency_write
3145 };
3146
3147 static const struct file_operations i915_cur_wm_latency_fops = {
3148 .owner = THIS_MODULE,
3149 .open = cur_wm_latency_open,
3150 .read = seq_read,
3151 .llseek = seq_lseek,
3152 .release = single_release,
3153 .write = cur_wm_latency_write
3154 };
3155
3156 static int
3157 i915_wedged_get(void *data, u64 *val)
3158 {
3159 struct drm_device *dev = data;
3160 drm_i915_private_t *dev_priv = dev->dev_private;
3161
3162 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3163
3164 return 0;
3165 }
3166
3167 static int
3168 i915_wedged_set(void *data, u64 val)
3169 {
3170 struct drm_device *dev = data;
3171
3172 DRM_INFO("Manually setting wedged to %llu\n", val);
3173 i915_handle_error(dev, val);
3174
3175 return 0;
3176 }
3177
3178 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3179 i915_wedged_get, i915_wedged_set,
3180 "%llu\n");
3181
3182 static int
3183 i915_ring_stop_get(void *data, u64 *val)
3184 {
3185 struct drm_device *dev = data;
3186 drm_i915_private_t *dev_priv = dev->dev_private;
3187
3188 *val = dev_priv->gpu_error.stop_rings;
3189
3190 return 0;
3191 }
3192
3193 static int
3194 i915_ring_stop_set(void *data, u64 val)
3195 {
3196 struct drm_device *dev = data;
3197 struct drm_i915_private *dev_priv = dev->dev_private;
3198 int ret;
3199
3200 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3201
3202 ret = mutex_lock_interruptible(&dev->struct_mutex);
3203 if (ret)
3204 return ret;
3205
3206 dev_priv->gpu_error.stop_rings = val;
3207 mutex_unlock(&dev->struct_mutex);
3208
3209 return 0;
3210 }
3211
3212 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3213 i915_ring_stop_get, i915_ring_stop_set,
3214 "0x%08llx\n");
3215
3216 static int
3217 i915_ring_missed_irq_get(void *data, u64 *val)
3218 {
3219 struct drm_device *dev = data;
3220 struct drm_i915_private *dev_priv = dev->dev_private;
3221
3222 *val = dev_priv->gpu_error.missed_irq_rings;
3223 return 0;
3224 }
3225
3226 static int
3227 i915_ring_missed_irq_set(void *data, u64 val)
3228 {
3229 struct drm_device *dev = data;
3230 struct drm_i915_private *dev_priv = dev->dev_private;
3231 int ret;
3232
3233 /* Lock against concurrent debugfs callers */
3234 ret = mutex_lock_interruptible(&dev->struct_mutex);
3235 if (ret)
3236 return ret;
3237 dev_priv->gpu_error.missed_irq_rings = val;
3238 mutex_unlock(&dev->struct_mutex);
3239
3240 return 0;
3241 }
3242
3243 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3244 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3245 "0x%08llx\n");
3246
3247 static int
3248 i915_ring_test_irq_get(void *data, u64 *val)
3249 {
3250 struct drm_device *dev = data;
3251 struct drm_i915_private *dev_priv = dev->dev_private;
3252
3253 *val = dev_priv->gpu_error.test_irq_rings;
3254
3255 return 0;
3256 }
3257
3258 static int
3259 i915_ring_test_irq_set(void *data, u64 val)
3260 {
3261 struct drm_device *dev = data;
3262 struct drm_i915_private *dev_priv = dev->dev_private;
3263 int ret;
3264
3265 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3266
3267 /* Lock against concurrent debugfs callers */
3268 ret = mutex_lock_interruptible(&dev->struct_mutex);
3269 if (ret)
3270 return ret;
3271
3272 dev_priv->gpu_error.test_irq_rings = val;
3273 mutex_unlock(&dev->struct_mutex);
3274
3275 return 0;
3276 }
3277
3278 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3279 i915_ring_test_irq_get, i915_ring_test_irq_set,
3280 "0x%08llx\n");
3281
3282 #define DROP_UNBOUND 0x1
3283 #define DROP_BOUND 0x2
3284 #define DROP_RETIRE 0x4
3285 #define DROP_ACTIVE 0x8
3286 #define DROP_ALL (DROP_UNBOUND | \
3287 DROP_BOUND | \
3288 DROP_RETIRE | \
3289 DROP_ACTIVE)
3290 static int
3291 i915_drop_caches_get(void *data, u64 *val)
3292 {
3293 *val = DROP_ALL;
3294
3295 return 0;
3296 }
3297
3298 static int
3299 i915_drop_caches_set(void *data, u64 val)
3300 {
3301 struct drm_device *dev = data;
3302 struct drm_i915_private *dev_priv = dev->dev_private;
3303 struct drm_i915_gem_object *obj, *next;
3304 struct i915_address_space *vm;
3305 struct i915_vma *vma, *x;
3306 int ret;
3307
3308 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3309
3310 /* No need to check and wait for gpu resets, only libdrm auto-restarts
3311 * on ioctls on -EAGAIN. */
3312 ret = mutex_lock_interruptible(&dev->struct_mutex);
3313 if (ret)
3314 return ret;
3315
3316 if (val & DROP_ACTIVE) {
3317 ret = i915_gpu_idle(dev);
3318 if (ret)
3319 goto unlock;
3320 }
3321
3322 if (val & (DROP_RETIRE | DROP_ACTIVE))
3323 i915_gem_retire_requests(dev);
3324
3325 if (val & DROP_BOUND) {
3326 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3327 list_for_each_entry_safe(vma, x, &vm->inactive_list,
3328 mm_list) {
3329 if (vma->pin_count)
3330 continue;
3331
3332 ret = i915_vma_unbind(vma);
3333 if (ret)
3334 goto unlock;
3335 }
3336 }
3337 }
3338
3339 if (val & DROP_UNBOUND) {
3340 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
3341 global_list)
3342 if (obj->pages_pin_count == 0) {
3343 ret = i915_gem_object_put_pages(obj);
3344 if (ret)
3345 goto unlock;
3346 }
3347 }
3348
3349 unlock:
3350 mutex_unlock(&dev->struct_mutex);
3351
3352 return ret;
3353 }
3354
3355 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3356 i915_drop_caches_get, i915_drop_caches_set,
3357 "0x%08llx\n");
3358
3359 static int
3360 i915_max_freq_get(void *data, u64 *val)
3361 {
3362 struct drm_device *dev = data;
3363 drm_i915_private_t *dev_priv = dev->dev_private;
3364 int ret;
3365
3366 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3367 return -ENODEV;
3368
3369 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3370
3371 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3372 if (ret)
3373 return ret;
3374
3375 if (IS_VALLEYVIEW(dev))
3376 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay);
3377 else
3378 *val = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
3379 mutex_unlock(&dev_priv->rps.hw_lock);
3380
3381 return 0;
3382 }
3383
3384 static int
3385 i915_max_freq_set(void *data, u64 val)
3386 {
3387 struct drm_device *dev = data;
3388 struct drm_i915_private *dev_priv = dev->dev_private;
3389 u32 rp_state_cap, hw_max, hw_min;
3390 int ret;
3391
3392 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3393 return -ENODEV;
3394
3395 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3396
3397 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3398
3399 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3400 if (ret)
3401 return ret;
3402
3403 /*
3404 * Turbo will still be enabled, but won't go above the set value.
3405 */
3406 if (IS_VALLEYVIEW(dev)) {
3407 val = vlv_freq_opcode(dev_priv, val);
3408
3409 hw_max = valleyview_rps_max_freq(dev_priv);
3410 hw_min = valleyview_rps_min_freq(dev_priv);
3411 } else {
3412 do_div(val, GT_FREQUENCY_MULTIPLIER);
3413
3414 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3415 hw_max = dev_priv->rps.hw_max;
3416 hw_min = (rp_state_cap >> 16) & 0xff;
3417 }
3418
3419 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_delay) {
3420 mutex_unlock(&dev_priv->rps.hw_lock);
3421 return -EINVAL;
3422 }
3423
3424 dev_priv->rps.max_delay = val;
3425
3426 if (IS_VALLEYVIEW(dev))
3427 valleyview_set_rps(dev, val);
3428 else
3429 gen6_set_rps(dev, val);
3430
3431 mutex_unlock(&dev_priv->rps.hw_lock);
3432
3433 return 0;
3434 }
3435
3436 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3437 i915_max_freq_get, i915_max_freq_set,
3438 "%llu\n");
3439
3440 static int
3441 i915_min_freq_get(void *data, u64 *val)
3442 {
3443 struct drm_device *dev = data;
3444 drm_i915_private_t *dev_priv = dev->dev_private;
3445 int ret;
3446
3447 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3448 return -ENODEV;
3449
3450 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3451
3452 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3453 if (ret)
3454 return ret;
3455
3456 if (IS_VALLEYVIEW(dev))
3457 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay);
3458 else
3459 *val = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
3460 mutex_unlock(&dev_priv->rps.hw_lock);
3461
3462 return 0;
3463 }
3464
3465 static int
3466 i915_min_freq_set(void *data, u64 val)
3467 {
3468 struct drm_device *dev = data;
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 u32 rp_state_cap, hw_max, hw_min;
3471 int ret;
3472
3473 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3474 return -ENODEV;
3475
3476 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3477
3478 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3479
3480 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3481 if (ret)
3482 return ret;
3483
3484 /*
3485 * Turbo will still be enabled, but won't go below the set value.
3486 */
3487 if (IS_VALLEYVIEW(dev)) {
3488 val = vlv_freq_opcode(dev_priv, val);
3489
3490 hw_max = valleyview_rps_max_freq(dev_priv);
3491 hw_min = valleyview_rps_min_freq(dev_priv);
3492 } else {
3493 do_div(val, GT_FREQUENCY_MULTIPLIER);
3494
3495 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3496 hw_max = dev_priv->rps.hw_max;
3497 hw_min = (rp_state_cap >> 16) & 0xff;
3498 }
3499
3500 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) {
3501 mutex_unlock(&dev_priv->rps.hw_lock);
3502 return -EINVAL;
3503 }
3504
3505 dev_priv->rps.min_delay = val;
3506
3507 if (IS_VALLEYVIEW(dev))
3508 valleyview_set_rps(dev, val);
3509 else
3510 gen6_set_rps(dev, val);
3511
3512 mutex_unlock(&dev_priv->rps.hw_lock);
3513
3514 return 0;
3515 }
3516
3517 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
3518 i915_min_freq_get, i915_min_freq_set,
3519 "%llu\n");
3520
3521 static int
3522 i915_cache_sharing_get(void *data, u64 *val)
3523 {
3524 struct drm_device *dev = data;
3525 drm_i915_private_t *dev_priv = dev->dev_private;
3526 u32 snpcr;
3527 int ret;
3528
3529 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3530 return -ENODEV;
3531
3532 ret = mutex_lock_interruptible(&dev->struct_mutex);
3533 if (ret)
3534 return ret;
3535 intel_runtime_pm_get(dev_priv);
3536
3537 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3538
3539 intel_runtime_pm_put(dev_priv);
3540 mutex_unlock(&dev_priv->dev->struct_mutex);
3541
3542 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
3543
3544 return 0;
3545 }
3546
3547 static int
3548 i915_cache_sharing_set(void *data, u64 val)
3549 {
3550 struct drm_device *dev = data;
3551 struct drm_i915_private *dev_priv = dev->dev_private;
3552 u32 snpcr;
3553
3554 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3555 return -ENODEV;
3556
3557 if (val > 3)
3558 return -EINVAL;
3559
3560 intel_runtime_pm_get(dev_priv);
3561 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
3562
3563 /* Update the cache sharing policy here as well */
3564 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3565 snpcr &= ~GEN6_MBC_SNPCR_MASK;
3566 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
3567 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3568
3569 intel_runtime_pm_put(dev_priv);
3570 return 0;
3571 }
3572
3573 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
3574 i915_cache_sharing_get, i915_cache_sharing_set,
3575 "%llu\n");
3576
3577 static int i915_forcewake_open(struct inode *inode, struct file *file)
3578 {
3579 struct drm_device *dev = inode->i_private;
3580 struct drm_i915_private *dev_priv = dev->dev_private;
3581
3582 if (INTEL_INFO(dev)->gen < 6)
3583 return 0;
3584
3585 intel_runtime_pm_get(dev_priv);
3586 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3587
3588 return 0;
3589 }
3590
3591 static int i915_forcewake_release(struct inode *inode, struct file *file)
3592 {
3593 struct drm_device *dev = inode->i_private;
3594 struct drm_i915_private *dev_priv = dev->dev_private;
3595
3596 if (INTEL_INFO(dev)->gen < 6)
3597 return 0;
3598
3599 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3600 intel_runtime_pm_put(dev_priv);
3601
3602 return 0;
3603 }
3604
3605 static const struct file_operations i915_forcewake_fops = {
3606 .owner = THIS_MODULE,
3607 .open = i915_forcewake_open,
3608 .release = i915_forcewake_release,
3609 };
3610
3611 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
3612 {
3613 struct drm_device *dev = minor->dev;
3614 struct dentry *ent;
3615
3616 ent = debugfs_create_file("i915_forcewake_user",
3617 S_IRUSR,
3618 root, dev,
3619 &i915_forcewake_fops);
3620 if (!ent)
3621 return -ENOMEM;
3622
3623 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
3624 }
3625
3626 static int i915_debugfs_create(struct dentry *root,
3627 struct drm_minor *minor,
3628 const char *name,
3629 const struct file_operations *fops)
3630 {
3631 struct drm_device *dev = minor->dev;
3632 struct dentry *ent;
3633
3634 ent = debugfs_create_file(name,
3635 S_IRUGO | S_IWUSR,
3636 root, dev,
3637 fops);
3638 if (!ent)
3639 return -ENOMEM;
3640
3641 return drm_add_fake_info_node(minor, ent, fops);
3642 }
3643
3644 static const struct drm_info_list i915_debugfs_list[] = {
3645 {"i915_capabilities", i915_capabilities, 0},
3646 {"i915_gem_objects", i915_gem_object_info, 0},
3647 {"i915_gem_gtt", i915_gem_gtt_info, 0},
3648 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
3649 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
3650 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
3651 {"i915_gem_stolen", i915_gem_stolen_list_info },
3652 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
3653 {"i915_gem_request", i915_gem_request_info, 0},
3654 {"i915_gem_seqno", i915_gem_seqno_info, 0},
3655 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
3656 {"i915_gem_interrupt", i915_interrupt_info, 0},
3657 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
3658 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
3659 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
3660 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
3661 {"i915_rstdby_delays", i915_rstdby_delays, 0},
3662 {"i915_cur_delayinfo", i915_cur_delayinfo, 0},
3663 {"i915_delayfreq_table", i915_delayfreq_table, 0},
3664 {"i915_inttoext_table", i915_inttoext_table, 0},
3665 {"i915_drpc_info", i915_drpc_info, 0},
3666 {"i915_emon_status", i915_emon_status, 0},
3667 {"i915_ring_freq_table", i915_ring_freq_table, 0},
3668 {"i915_gfxec", i915_gfxec, 0},
3669 {"i915_fbc_status", i915_fbc_status, 0},
3670 {"i915_ips_status", i915_ips_status, 0},
3671 {"i915_sr_status", i915_sr_status, 0},
3672 {"i915_opregion", i915_opregion, 0},
3673 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
3674 {"i915_context_status", i915_context_status, 0},
3675 {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
3676 {"i915_swizzle_info", i915_swizzle_info, 0},
3677 {"i915_ppgtt_info", i915_ppgtt_info, 0},
3678 {"i915_dpio", i915_dpio_info, 0},
3679 {"i915_llc", i915_llc, 0},
3680 {"i915_edp_psr_status", i915_edp_psr_status, 0},
3681 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
3682 {"i915_energy_uJ", i915_energy_uJ, 0},
3683 {"i915_pc8_status", i915_pc8_status, 0},
3684 {"i915_power_domain_info", i915_power_domain_info, 0},
3685 {"i915_display_info", i915_display_info, 0},
3686 };
3687 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
3688
3689 static const struct i915_debugfs_files {
3690 const char *name;
3691 const struct file_operations *fops;
3692 } i915_debugfs_files[] = {
3693 {"i915_wedged", &i915_wedged_fops},
3694 {"i915_max_freq", &i915_max_freq_fops},
3695 {"i915_min_freq", &i915_min_freq_fops},
3696 {"i915_cache_sharing", &i915_cache_sharing_fops},
3697 {"i915_ring_stop", &i915_ring_stop_fops},
3698 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
3699 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
3700 {"i915_gem_drop_caches", &i915_drop_caches_fops},
3701 {"i915_error_state", &i915_error_state_fops},
3702 {"i915_next_seqno", &i915_next_seqno_fops},
3703 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
3704 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
3705 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
3706 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
3707 };
3708
3709 void intel_display_crc_init(struct drm_device *dev)
3710 {
3711 struct drm_i915_private *dev_priv = dev->dev_private;
3712 enum pipe pipe;
3713
3714 for_each_pipe(pipe) {
3715 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3716
3717 pipe_crc->opened = false;
3718 spin_lock_init(&pipe_crc->lock);
3719 init_waitqueue_head(&pipe_crc->wq);
3720 }
3721 }
3722
3723 int i915_debugfs_init(struct drm_minor *minor)
3724 {
3725 int ret, i;
3726
3727 ret = i915_forcewake_create(minor->debugfs_root, minor);
3728 if (ret)
3729 return ret;
3730
3731 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3732 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
3733 if (ret)
3734 return ret;
3735 }
3736
3737 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3738 ret = i915_debugfs_create(minor->debugfs_root, minor,
3739 i915_debugfs_files[i].name,
3740 i915_debugfs_files[i].fops);
3741 if (ret)
3742 return ret;
3743 }
3744
3745 return drm_debugfs_create_files(i915_debugfs_list,
3746 I915_DEBUGFS_ENTRIES,
3747 minor->debugfs_root, minor);
3748 }
3749
3750 void i915_debugfs_cleanup(struct drm_minor *minor)
3751 {
3752 int i;
3753
3754 drm_debugfs_remove_files(i915_debugfs_list,
3755 I915_DEBUGFS_ENTRIES, minor);
3756
3757 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
3758 1, minor);
3759
3760 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3761 struct drm_info_list *info_list =
3762 (struct drm_info_list *)&i915_pipe_crc_data[i];
3763
3764 drm_debugfs_remove_files(info_list, 1, minor);
3765 }
3766
3767 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3768 struct drm_info_list *info_list =
3769 (struct drm_info_list *) i915_debugfs_files[i].fops;
3770
3771 drm_debugfs_remove_files(info_list, 1, minor);
3772 }
3773 }
This page took 0.111241 seconds and 6 git commands to generate.