Merge tag 'drm-vc4-fixes-2016-03-03' of github.com:anholt/linux into drm-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50 * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 struct dentry *ent,
54 const void *key)
55 {
56 struct drm_info_node *node;
57
58 node = kmalloc(sizeof(*node), GFP_KERNEL);
59 if (node == NULL) {
60 debugfs_remove(ent);
61 return -ENOMEM;
62 }
63
64 node->minor = minor;
65 node->dent = ent;
66 node->info_ent = (void *) key;
67
68 mutex_lock(&minor->debugfs_lock);
69 list_add(&node->list, &minor->debugfs_list);
70 mutex_unlock(&minor->debugfs_lock);
71
72 return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 struct drm_info_node *node = m->private;
78 struct drm_device *dev = node->minor->dev;
79 const struct intel_device_info *info = INTEL_INFO(dev);
80
81 seq_printf(m, "gen: %d\n", info->gen);
82 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89 return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94 if (obj->pin_display)
95 return "p";
96 else
97 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102 switch (obj->tiling_mode) {
103 default:
104 case I915_TILING_NONE: return " ";
105 case I915_TILING_X: return "X";
106 case I915_TILING_Y: return "Y";
107 }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112 return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117 u64 size = 0;
118 struct i915_vma *vma;
119
120 list_for_each_entry(vma, &obj->vma_list, obj_link) {
121 if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
122 size += vma->node.size;
123 }
124
125 return size;
126 }
127
128 static void
129 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
130 {
131 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
132 struct intel_engine_cs *ring;
133 struct i915_vma *vma;
134 int pin_count = 0;
135 int i;
136
137 seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
138 &obj->base,
139 obj->active ? "*" : " ",
140 get_pin_flag(obj),
141 get_tiling_flag(obj),
142 get_global_flag(obj),
143 obj->base.size / 1024,
144 obj->base.read_domains,
145 obj->base.write_domain);
146 for_each_ring(ring, dev_priv, i)
147 seq_printf(m, "%x ",
148 i915_gem_request_get_seqno(obj->last_read_req[i]));
149 seq_printf(m, "] %x %x%s%s%s",
150 i915_gem_request_get_seqno(obj->last_write_req),
151 i915_gem_request_get_seqno(obj->last_fenced_req),
152 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
153 obj->dirty ? " dirty" : "",
154 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
155 if (obj->base.name)
156 seq_printf(m, " (name: %d)", obj->base.name);
157 list_for_each_entry(vma, &obj->vma_list, obj_link) {
158 if (vma->pin_count > 0)
159 pin_count++;
160 }
161 seq_printf(m, " (pinned x %d)", pin_count);
162 if (obj->pin_display)
163 seq_printf(m, " (display)");
164 if (obj->fence_reg != I915_FENCE_REG_NONE)
165 seq_printf(m, " (fence: %d)", obj->fence_reg);
166 list_for_each_entry(vma, &obj->vma_list, obj_link) {
167 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
168 vma->is_ggtt ? "g" : "pp",
169 vma->node.start, vma->node.size);
170 if (vma->is_ggtt)
171 seq_printf(m, ", type: %u", vma->ggtt_view.type);
172 seq_puts(m, ")");
173 }
174 if (obj->stolen)
175 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
176 if (obj->pin_display || obj->fault_mappable) {
177 char s[3], *t = s;
178 if (obj->pin_display)
179 *t++ = 'p';
180 if (obj->fault_mappable)
181 *t++ = 'f';
182 *t = '\0';
183 seq_printf(m, " (%s mappable)", s);
184 }
185 if (obj->last_write_req != NULL)
186 seq_printf(m, " (%s)",
187 i915_gem_request_get_ring(obj->last_write_req)->name);
188 if (obj->frontbuffer_bits)
189 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
190 }
191
192 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
193 {
194 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
195 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
196 seq_putc(m, ' ');
197 }
198
199 static int i915_gem_object_list_info(struct seq_file *m, void *data)
200 {
201 struct drm_info_node *node = m->private;
202 uintptr_t list = (uintptr_t) node->info_ent->data;
203 struct list_head *head;
204 struct drm_device *dev = node->minor->dev;
205 struct drm_i915_private *dev_priv = dev->dev_private;
206 struct i915_address_space *vm = &dev_priv->gtt.base;
207 struct i915_vma *vma;
208 u64 total_obj_size, total_gtt_size;
209 int count, ret;
210
211 ret = mutex_lock_interruptible(&dev->struct_mutex);
212 if (ret)
213 return ret;
214
215 /* FIXME: the user of this interface might want more than just GGTT */
216 switch (list) {
217 case ACTIVE_LIST:
218 seq_puts(m, "Active:\n");
219 head = &vm->active_list;
220 break;
221 case INACTIVE_LIST:
222 seq_puts(m, "Inactive:\n");
223 head = &vm->inactive_list;
224 break;
225 default:
226 mutex_unlock(&dev->struct_mutex);
227 return -EINVAL;
228 }
229
230 total_obj_size = total_gtt_size = count = 0;
231 list_for_each_entry(vma, head, vm_link) {
232 seq_printf(m, " ");
233 describe_obj(m, vma->obj);
234 seq_printf(m, "\n");
235 total_obj_size += vma->obj->base.size;
236 total_gtt_size += vma->node.size;
237 count++;
238 }
239 mutex_unlock(&dev->struct_mutex);
240
241 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
242 count, total_obj_size, total_gtt_size);
243 return 0;
244 }
245
246 static int obj_rank_by_stolen(void *priv,
247 struct list_head *A, struct list_head *B)
248 {
249 struct drm_i915_gem_object *a =
250 container_of(A, struct drm_i915_gem_object, obj_exec_link);
251 struct drm_i915_gem_object *b =
252 container_of(B, struct drm_i915_gem_object, obj_exec_link);
253
254 if (a->stolen->start < b->stolen->start)
255 return -1;
256 if (a->stolen->start > b->stolen->start)
257 return 1;
258 return 0;
259 }
260
261 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
262 {
263 struct drm_info_node *node = m->private;
264 struct drm_device *dev = node->minor->dev;
265 struct drm_i915_private *dev_priv = dev->dev_private;
266 struct drm_i915_gem_object *obj;
267 u64 total_obj_size, total_gtt_size;
268 LIST_HEAD(stolen);
269 int count, ret;
270
271 ret = mutex_lock_interruptible(&dev->struct_mutex);
272 if (ret)
273 return ret;
274
275 total_obj_size = total_gtt_size = count = 0;
276 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
277 if (obj->stolen == NULL)
278 continue;
279
280 list_add(&obj->obj_exec_link, &stolen);
281
282 total_obj_size += obj->base.size;
283 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
284 count++;
285 }
286 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
287 if (obj->stolen == NULL)
288 continue;
289
290 list_add(&obj->obj_exec_link, &stolen);
291
292 total_obj_size += obj->base.size;
293 count++;
294 }
295 list_sort(NULL, &stolen, obj_rank_by_stolen);
296 seq_puts(m, "Stolen:\n");
297 while (!list_empty(&stolen)) {
298 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
299 seq_puts(m, " ");
300 describe_obj(m, obj);
301 seq_putc(m, '\n');
302 list_del_init(&obj->obj_exec_link);
303 }
304 mutex_unlock(&dev->struct_mutex);
305
306 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
307 count, total_obj_size, total_gtt_size);
308 return 0;
309 }
310
311 #define count_objects(list, member) do { \
312 list_for_each_entry(obj, list, member) { \
313 size += i915_gem_obj_total_ggtt_size(obj); \
314 ++count; \
315 if (obj->map_and_fenceable) { \
316 mappable_size += i915_gem_obj_ggtt_size(obj); \
317 ++mappable_count; \
318 } \
319 } \
320 } while (0)
321
322 struct file_stats {
323 struct drm_i915_file_private *file_priv;
324 unsigned long count;
325 u64 total, unbound;
326 u64 global, shared;
327 u64 active, inactive;
328 };
329
330 static int per_file_stats(int id, void *ptr, void *data)
331 {
332 struct drm_i915_gem_object *obj = ptr;
333 struct file_stats *stats = data;
334 struct i915_vma *vma;
335
336 stats->count++;
337 stats->total += obj->base.size;
338
339 if (obj->base.name || obj->base.dma_buf)
340 stats->shared += obj->base.size;
341
342 if (USES_FULL_PPGTT(obj->base.dev)) {
343 list_for_each_entry(vma, &obj->vma_list, obj_link) {
344 struct i915_hw_ppgtt *ppgtt;
345
346 if (!drm_mm_node_allocated(&vma->node))
347 continue;
348
349 if (vma->is_ggtt) {
350 stats->global += obj->base.size;
351 continue;
352 }
353
354 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
355 if (ppgtt->file_priv != stats->file_priv)
356 continue;
357
358 if (obj->active) /* XXX per-vma statistic */
359 stats->active += obj->base.size;
360 else
361 stats->inactive += obj->base.size;
362
363 return 0;
364 }
365 } else {
366 if (i915_gem_obj_ggtt_bound(obj)) {
367 stats->global += obj->base.size;
368 if (obj->active)
369 stats->active += obj->base.size;
370 else
371 stats->inactive += obj->base.size;
372 return 0;
373 }
374 }
375
376 if (!list_empty(&obj->global_list))
377 stats->unbound += obj->base.size;
378
379 return 0;
380 }
381
382 #define print_file_stats(m, name, stats) do { \
383 if (stats.count) \
384 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
385 name, \
386 stats.count, \
387 stats.total, \
388 stats.active, \
389 stats.inactive, \
390 stats.global, \
391 stats.shared, \
392 stats.unbound); \
393 } while (0)
394
395 static void print_batch_pool_stats(struct seq_file *m,
396 struct drm_i915_private *dev_priv)
397 {
398 struct drm_i915_gem_object *obj;
399 struct file_stats stats;
400 struct intel_engine_cs *ring;
401 int i, j;
402
403 memset(&stats, 0, sizeof(stats));
404
405 for_each_ring(ring, dev_priv, i) {
406 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
407 list_for_each_entry(obj,
408 &ring->batch_pool.cache_list[j],
409 batch_pool_link)
410 per_file_stats(0, obj, &stats);
411 }
412 }
413
414 print_file_stats(m, "[k]batch pool", stats);
415 }
416
417 #define count_vmas(list, member) do { \
418 list_for_each_entry(vma, list, member) { \
419 size += i915_gem_obj_total_ggtt_size(vma->obj); \
420 ++count; \
421 if (vma->obj->map_and_fenceable) { \
422 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
423 ++mappable_count; \
424 } \
425 } \
426 } while (0)
427
428 static int i915_gem_object_info(struct seq_file *m, void* data)
429 {
430 struct drm_info_node *node = m->private;
431 struct drm_device *dev = node->minor->dev;
432 struct drm_i915_private *dev_priv = dev->dev_private;
433 u32 count, mappable_count, purgeable_count;
434 u64 size, mappable_size, purgeable_size;
435 struct drm_i915_gem_object *obj;
436 struct i915_address_space *vm = &dev_priv->gtt.base;
437 struct drm_file *file;
438 struct i915_vma *vma;
439 int ret;
440
441 ret = mutex_lock_interruptible(&dev->struct_mutex);
442 if (ret)
443 return ret;
444
445 seq_printf(m, "%u objects, %zu bytes\n",
446 dev_priv->mm.object_count,
447 dev_priv->mm.object_memory);
448
449 size = count = mappable_size = mappable_count = 0;
450 count_objects(&dev_priv->mm.bound_list, global_list);
451 seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
452 count, mappable_count, size, mappable_size);
453
454 size = count = mappable_size = mappable_count = 0;
455 count_vmas(&vm->active_list, vm_link);
456 seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
457 count, mappable_count, size, mappable_size);
458
459 size = count = mappable_size = mappable_count = 0;
460 count_vmas(&vm->inactive_list, vm_link);
461 seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
462 count, mappable_count, size, mappable_size);
463
464 size = count = purgeable_size = purgeable_count = 0;
465 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
466 size += obj->base.size, ++count;
467 if (obj->madv == I915_MADV_DONTNEED)
468 purgeable_size += obj->base.size, ++purgeable_count;
469 }
470 seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
471
472 size = count = mappable_size = mappable_count = 0;
473 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
474 if (obj->fault_mappable) {
475 size += i915_gem_obj_ggtt_size(obj);
476 ++count;
477 }
478 if (obj->pin_display) {
479 mappable_size += i915_gem_obj_ggtt_size(obj);
480 ++mappable_count;
481 }
482 if (obj->madv == I915_MADV_DONTNEED) {
483 purgeable_size += obj->base.size;
484 ++purgeable_count;
485 }
486 }
487 seq_printf(m, "%u purgeable objects, %llu bytes\n",
488 purgeable_count, purgeable_size);
489 seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
490 mappable_count, mappable_size);
491 seq_printf(m, "%u fault mappable objects, %llu bytes\n",
492 count, size);
493
494 seq_printf(m, "%llu [%llu] gtt total\n",
495 dev_priv->gtt.base.total,
496 (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
497
498 seq_putc(m, '\n');
499 print_batch_pool_stats(m, dev_priv);
500 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
501 struct file_stats stats;
502 struct task_struct *task;
503
504 memset(&stats, 0, sizeof(stats));
505 stats.file_priv = file->driver_priv;
506 spin_lock(&file->table_lock);
507 idr_for_each(&file->object_idr, per_file_stats, &stats);
508 spin_unlock(&file->table_lock);
509 /*
510 * Although we have a valid reference on file->pid, that does
511 * not guarantee that the task_struct who called get_pid() is
512 * still alive (e.g. get_pid(current) => fork() => exit()).
513 * Therefore, we need to protect this ->comm access using RCU.
514 */
515 rcu_read_lock();
516 task = pid_task(file->pid, PIDTYPE_PID);
517 print_file_stats(m, task ? task->comm : "<unknown>", stats);
518 rcu_read_unlock();
519 }
520
521 mutex_unlock(&dev->struct_mutex);
522
523 return 0;
524 }
525
526 static int i915_gem_gtt_info(struct seq_file *m, void *data)
527 {
528 struct drm_info_node *node = m->private;
529 struct drm_device *dev = node->minor->dev;
530 uintptr_t list = (uintptr_t) node->info_ent->data;
531 struct drm_i915_private *dev_priv = dev->dev_private;
532 struct drm_i915_gem_object *obj;
533 u64 total_obj_size, total_gtt_size;
534 int count, ret;
535
536 ret = mutex_lock_interruptible(&dev->struct_mutex);
537 if (ret)
538 return ret;
539
540 total_obj_size = total_gtt_size = count = 0;
541 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
542 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
543 continue;
544
545 seq_puts(m, " ");
546 describe_obj(m, obj);
547 seq_putc(m, '\n');
548 total_obj_size += obj->base.size;
549 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
550 count++;
551 }
552
553 mutex_unlock(&dev->struct_mutex);
554
555 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
556 count, total_obj_size, total_gtt_size);
557
558 return 0;
559 }
560
561 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
562 {
563 struct drm_info_node *node = m->private;
564 struct drm_device *dev = node->minor->dev;
565 struct drm_i915_private *dev_priv = dev->dev_private;
566 struct intel_crtc *crtc;
567 int ret;
568
569 ret = mutex_lock_interruptible(&dev->struct_mutex);
570 if (ret)
571 return ret;
572
573 for_each_intel_crtc(dev, crtc) {
574 const char pipe = pipe_name(crtc->pipe);
575 const char plane = plane_name(crtc->plane);
576 struct intel_unpin_work *work;
577
578 spin_lock_irq(&dev->event_lock);
579 work = crtc->unpin_work;
580 if (work == NULL) {
581 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
582 pipe, plane);
583 } else {
584 u32 addr;
585
586 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
587 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
588 pipe, plane);
589 } else {
590 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
591 pipe, plane);
592 }
593 if (work->flip_queued_req) {
594 struct intel_engine_cs *ring =
595 i915_gem_request_get_ring(work->flip_queued_req);
596
597 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
598 ring->name,
599 i915_gem_request_get_seqno(work->flip_queued_req),
600 dev_priv->next_seqno,
601 ring->get_seqno(ring, true),
602 i915_gem_request_completed(work->flip_queued_req, true));
603 } else
604 seq_printf(m, "Flip not associated with any ring\n");
605 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
606 work->flip_queued_vblank,
607 work->flip_ready_vblank,
608 drm_crtc_vblank_count(&crtc->base));
609 if (work->enable_stall_check)
610 seq_puts(m, "Stall check enabled, ");
611 else
612 seq_puts(m, "Stall check waiting for page flip ioctl, ");
613 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
614
615 if (INTEL_INFO(dev)->gen >= 4)
616 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
617 else
618 addr = I915_READ(DSPADDR(crtc->plane));
619 seq_printf(m, "Current scanout address 0x%08x\n", addr);
620
621 if (work->pending_flip_obj) {
622 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
623 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
624 }
625 }
626 spin_unlock_irq(&dev->event_lock);
627 }
628
629 mutex_unlock(&dev->struct_mutex);
630
631 return 0;
632 }
633
634 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
635 {
636 struct drm_info_node *node = m->private;
637 struct drm_device *dev = node->minor->dev;
638 struct drm_i915_private *dev_priv = dev->dev_private;
639 struct drm_i915_gem_object *obj;
640 struct intel_engine_cs *ring;
641 int total = 0;
642 int ret, i, j;
643
644 ret = mutex_lock_interruptible(&dev->struct_mutex);
645 if (ret)
646 return ret;
647
648 for_each_ring(ring, dev_priv, i) {
649 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
650 int count;
651
652 count = 0;
653 list_for_each_entry(obj,
654 &ring->batch_pool.cache_list[j],
655 batch_pool_link)
656 count++;
657 seq_printf(m, "%s cache[%d]: %d objects\n",
658 ring->name, j, count);
659
660 list_for_each_entry(obj,
661 &ring->batch_pool.cache_list[j],
662 batch_pool_link) {
663 seq_puts(m, " ");
664 describe_obj(m, obj);
665 seq_putc(m, '\n');
666 }
667
668 total += count;
669 }
670 }
671
672 seq_printf(m, "total: %d\n", total);
673
674 mutex_unlock(&dev->struct_mutex);
675
676 return 0;
677 }
678
679 static int i915_gem_request_info(struct seq_file *m, void *data)
680 {
681 struct drm_info_node *node = m->private;
682 struct drm_device *dev = node->minor->dev;
683 struct drm_i915_private *dev_priv = dev->dev_private;
684 struct intel_engine_cs *ring;
685 struct drm_i915_gem_request *req;
686 int ret, any, i;
687
688 ret = mutex_lock_interruptible(&dev->struct_mutex);
689 if (ret)
690 return ret;
691
692 any = 0;
693 for_each_ring(ring, dev_priv, i) {
694 int count;
695
696 count = 0;
697 list_for_each_entry(req, &ring->request_list, list)
698 count++;
699 if (count == 0)
700 continue;
701
702 seq_printf(m, "%s requests: %d\n", ring->name, count);
703 list_for_each_entry(req, &ring->request_list, list) {
704 struct task_struct *task;
705
706 rcu_read_lock();
707 task = NULL;
708 if (req->pid)
709 task = pid_task(req->pid, PIDTYPE_PID);
710 seq_printf(m, " %x @ %d: %s [%d]\n",
711 req->seqno,
712 (int) (jiffies - req->emitted_jiffies),
713 task ? task->comm : "<unknown>",
714 task ? task->pid : -1);
715 rcu_read_unlock();
716 }
717
718 any++;
719 }
720 mutex_unlock(&dev->struct_mutex);
721
722 if (any == 0)
723 seq_puts(m, "No requests\n");
724
725 return 0;
726 }
727
728 static void i915_ring_seqno_info(struct seq_file *m,
729 struct intel_engine_cs *ring)
730 {
731 if (ring->get_seqno) {
732 seq_printf(m, "Current sequence (%s): %x\n",
733 ring->name, ring->get_seqno(ring, false));
734 }
735 }
736
737 static int i915_gem_seqno_info(struct seq_file *m, void *data)
738 {
739 struct drm_info_node *node = m->private;
740 struct drm_device *dev = node->minor->dev;
741 struct drm_i915_private *dev_priv = dev->dev_private;
742 struct intel_engine_cs *ring;
743 int ret, i;
744
745 ret = mutex_lock_interruptible(&dev->struct_mutex);
746 if (ret)
747 return ret;
748 intel_runtime_pm_get(dev_priv);
749
750 for_each_ring(ring, dev_priv, i)
751 i915_ring_seqno_info(m, ring);
752
753 intel_runtime_pm_put(dev_priv);
754 mutex_unlock(&dev->struct_mutex);
755
756 return 0;
757 }
758
759
760 static int i915_interrupt_info(struct seq_file *m, void *data)
761 {
762 struct drm_info_node *node = m->private;
763 struct drm_device *dev = node->minor->dev;
764 struct drm_i915_private *dev_priv = dev->dev_private;
765 struct intel_engine_cs *ring;
766 int ret, i, pipe;
767
768 ret = mutex_lock_interruptible(&dev->struct_mutex);
769 if (ret)
770 return ret;
771 intel_runtime_pm_get(dev_priv);
772
773 if (IS_CHERRYVIEW(dev)) {
774 seq_printf(m, "Master Interrupt Control:\t%08x\n",
775 I915_READ(GEN8_MASTER_IRQ));
776
777 seq_printf(m, "Display IER:\t%08x\n",
778 I915_READ(VLV_IER));
779 seq_printf(m, "Display IIR:\t%08x\n",
780 I915_READ(VLV_IIR));
781 seq_printf(m, "Display IIR_RW:\t%08x\n",
782 I915_READ(VLV_IIR_RW));
783 seq_printf(m, "Display IMR:\t%08x\n",
784 I915_READ(VLV_IMR));
785 for_each_pipe(dev_priv, pipe)
786 seq_printf(m, "Pipe %c stat:\t%08x\n",
787 pipe_name(pipe),
788 I915_READ(PIPESTAT(pipe)));
789
790 seq_printf(m, "Port hotplug:\t%08x\n",
791 I915_READ(PORT_HOTPLUG_EN));
792 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
793 I915_READ(VLV_DPFLIPSTAT));
794 seq_printf(m, "DPINVGTT:\t%08x\n",
795 I915_READ(DPINVGTT));
796
797 for (i = 0; i < 4; i++) {
798 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
799 i, I915_READ(GEN8_GT_IMR(i)));
800 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
801 i, I915_READ(GEN8_GT_IIR(i)));
802 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
803 i, I915_READ(GEN8_GT_IER(i)));
804 }
805
806 seq_printf(m, "PCU interrupt mask:\t%08x\n",
807 I915_READ(GEN8_PCU_IMR));
808 seq_printf(m, "PCU interrupt identity:\t%08x\n",
809 I915_READ(GEN8_PCU_IIR));
810 seq_printf(m, "PCU interrupt enable:\t%08x\n",
811 I915_READ(GEN8_PCU_IER));
812 } else if (INTEL_INFO(dev)->gen >= 8) {
813 seq_printf(m, "Master Interrupt Control:\t%08x\n",
814 I915_READ(GEN8_MASTER_IRQ));
815
816 for (i = 0; i < 4; i++) {
817 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
818 i, I915_READ(GEN8_GT_IMR(i)));
819 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
820 i, I915_READ(GEN8_GT_IIR(i)));
821 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
822 i, I915_READ(GEN8_GT_IER(i)));
823 }
824
825 for_each_pipe(dev_priv, pipe) {
826 enum intel_display_power_domain power_domain;
827
828 power_domain = POWER_DOMAIN_PIPE(pipe);
829 if (!intel_display_power_get_if_enabled(dev_priv,
830 power_domain)) {
831 seq_printf(m, "Pipe %c power disabled\n",
832 pipe_name(pipe));
833 continue;
834 }
835 seq_printf(m, "Pipe %c IMR:\t%08x\n",
836 pipe_name(pipe),
837 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
838 seq_printf(m, "Pipe %c IIR:\t%08x\n",
839 pipe_name(pipe),
840 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
841 seq_printf(m, "Pipe %c IER:\t%08x\n",
842 pipe_name(pipe),
843 I915_READ(GEN8_DE_PIPE_IER(pipe)));
844
845 intel_display_power_put(dev_priv, power_domain);
846 }
847
848 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
849 I915_READ(GEN8_DE_PORT_IMR));
850 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
851 I915_READ(GEN8_DE_PORT_IIR));
852 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
853 I915_READ(GEN8_DE_PORT_IER));
854
855 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
856 I915_READ(GEN8_DE_MISC_IMR));
857 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
858 I915_READ(GEN8_DE_MISC_IIR));
859 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
860 I915_READ(GEN8_DE_MISC_IER));
861
862 seq_printf(m, "PCU interrupt mask:\t%08x\n",
863 I915_READ(GEN8_PCU_IMR));
864 seq_printf(m, "PCU interrupt identity:\t%08x\n",
865 I915_READ(GEN8_PCU_IIR));
866 seq_printf(m, "PCU interrupt enable:\t%08x\n",
867 I915_READ(GEN8_PCU_IER));
868 } else if (IS_VALLEYVIEW(dev)) {
869 seq_printf(m, "Display IER:\t%08x\n",
870 I915_READ(VLV_IER));
871 seq_printf(m, "Display IIR:\t%08x\n",
872 I915_READ(VLV_IIR));
873 seq_printf(m, "Display IIR_RW:\t%08x\n",
874 I915_READ(VLV_IIR_RW));
875 seq_printf(m, "Display IMR:\t%08x\n",
876 I915_READ(VLV_IMR));
877 for_each_pipe(dev_priv, pipe)
878 seq_printf(m, "Pipe %c stat:\t%08x\n",
879 pipe_name(pipe),
880 I915_READ(PIPESTAT(pipe)));
881
882 seq_printf(m, "Master IER:\t%08x\n",
883 I915_READ(VLV_MASTER_IER));
884
885 seq_printf(m, "Render IER:\t%08x\n",
886 I915_READ(GTIER));
887 seq_printf(m, "Render IIR:\t%08x\n",
888 I915_READ(GTIIR));
889 seq_printf(m, "Render IMR:\t%08x\n",
890 I915_READ(GTIMR));
891
892 seq_printf(m, "PM IER:\t\t%08x\n",
893 I915_READ(GEN6_PMIER));
894 seq_printf(m, "PM IIR:\t\t%08x\n",
895 I915_READ(GEN6_PMIIR));
896 seq_printf(m, "PM IMR:\t\t%08x\n",
897 I915_READ(GEN6_PMIMR));
898
899 seq_printf(m, "Port hotplug:\t%08x\n",
900 I915_READ(PORT_HOTPLUG_EN));
901 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
902 I915_READ(VLV_DPFLIPSTAT));
903 seq_printf(m, "DPINVGTT:\t%08x\n",
904 I915_READ(DPINVGTT));
905
906 } else if (!HAS_PCH_SPLIT(dev)) {
907 seq_printf(m, "Interrupt enable: %08x\n",
908 I915_READ(IER));
909 seq_printf(m, "Interrupt identity: %08x\n",
910 I915_READ(IIR));
911 seq_printf(m, "Interrupt mask: %08x\n",
912 I915_READ(IMR));
913 for_each_pipe(dev_priv, pipe)
914 seq_printf(m, "Pipe %c stat: %08x\n",
915 pipe_name(pipe),
916 I915_READ(PIPESTAT(pipe)));
917 } else {
918 seq_printf(m, "North Display Interrupt enable: %08x\n",
919 I915_READ(DEIER));
920 seq_printf(m, "North Display Interrupt identity: %08x\n",
921 I915_READ(DEIIR));
922 seq_printf(m, "North Display Interrupt mask: %08x\n",
923 I915_READ(DEIMR));
924 seq_printf(m, "South Display Interrupt enable: %08x\n",
925 I915_READ(SDEIER));
926 seq_printf(m, "South Display Interrupt identity: %08x\n",
927 I915_READ(SDEIIR));
928 seq_printf(m, "South Display Interrupt mask: %08x\n",
929 I915_READ(SDEIMR));
930 seq_printf(m, "Graphics Interrupt enable: %08x\n",
931 I915_READ(GTIER));
932 seq_printf(m, "Graphics Interrupt identity: %08x\n",
933 I915_READ(GTIIR));
934 seq_printf(m, "Graphics Interrupt mask: %08x\n",
935 I915_READ(GTIMR));
936 }
937 for_each_ring(ring, dev_priv, i) {
938 if (INTEL_INFO(dev)->gen >= 6) {
939 seq_printf(m,
940 "Graphics Interrupt mask (%s): %08x\n",
941 ring->name, I915_READ_IMR(ring));
942 }
943 i915_ring_seqno_info(m, ring);
944 }
945 intel_runtime_pm_put(dev_priv);
946 mutex_unlock(&dev->struct_mutex);
947
948 return 0;
949 }
950
951 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
952 {
953 struct drm_info_node *node = m->private;
954 struct drm_device *dev = node->minor->dev;
955 struct drm_i915_private *dev_priv = dev->dev_private;
956 int i, ret;
957
958 ret = mutex_lock_interruptible(&dev->struct_mutex);
959 if (ret)
960 return ret;
961
962 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
963 for (i = 0; i < dev_priv->num_fence_regs; i++) {
964 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
965
966 seq_printf(m, "Fence %d, pin count = %d, object = ",
967 i, dev_priv->fence_regs[i].pin_count);
968 if (obj == NULL)
969 seq_puts(m, "unused");
970 else
971 describe_obj(m, obj);
972 seq_putc(m, '\n');
973 }
974
975 mutex_unlock(&dev->struct_mutex);
976 return 0;
977 }
978
979 static int i915_hws_info(struct seq_file *m, void *data)
980 {
981 struct drm_info_node *node = m->private;
982 struct drm_device *dev = node->minor->dev;
983 struct drm_i915_private *dev_priv = dev->dev_private;
984 struct intel_engine_cs *ring;
985 const u32 *hws;
986 int i;
987
988 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
989 hws = ring->status_page.page_addr;
990 if (hws == NULL)
991 return 0;
992
993 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
994 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
995 i * 4,
996 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
997 }
998 return 0;
999 }
1000
1001 static ssize_t
1002 i915_error_state_write(struct file *filp,
1003 const char __user *ubuf,
1004 size_t cnt,
1005 loff_t *ppos)
1006 {
1007 struct i915_error_state_file_priv *error_priv = filp->private_data;
1008 struct drm_device *dev = error_priv->dev;
1009 int ret;
1010
1011 DRM_DEBUG_DRIVER("Resetting error state\n");
1012
1013 ret = mutex_lock_interruptible(&dev->struct_mutex);
1014 if (ret)
1015 return ret;
1016
1017 i915_destroy_error_state(dev);
1018 mutex_unlock(&dev->struct_mutex);
1019
1020 return cnt;
1021 }
1022
1023 static int i915_error_state_open(struct inode *inode, struct file *file)
1024 {
1025 struct drm_device *dev = inode->i_private;
1026 struct i915_error_state_file_priv *error_priv;
1027
1028 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1029 if (!error_priv)
1030 return -ENOMEM;
1031
1032 error_priv->dev = dev;
1033
1034 i915_error_state_get(dev, error_priv);
1035
1036 file->private_data = error_priv;
1037
1038 return 0;
1039 }
1040
1041 static int i915_error_state_release(struct inode *inode, struct file *file)
1042 {
1043 struct i915_error_state_file_priv *error_priv = file->private_data;
1044
1045 i915_error_state_put(error_priv);
1046 kfree(error_priv);
1047
1048 return 0;
1049 }
1050
1051 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1052 size_t count, loff_t *pos)
1053 {
1054 struct i915_error_state_file_priv *error_priv = file->private_data;
1055 struct drm_i915_error_state_buf error_str;
1056 loff_t tmp_pos = 0;
1057 ssize_t ret_count = 0;
1058 int ret;
1059
1060 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1061 if (ret)
1062 return ret;
1063
1064 ret = i915_error_state_to_str(&error_str, error_priv);
1065 if (ret)
1066 goto out;
1067
1068 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1069 error_str.buf,
1070 error_str.bytes);
1071
1072 if (ret_count < 0)
1073 ret = ret_count;
1074 else
1075 *pos = error_str.start + ret_count;
1076 out:
1077 i915_error_state_buf_release(&error_str);
1078 return ret ?: ret_count;
1079 }
1080
1081 static const struct file_operations i915_error_state_fops = {
1082 .owner = THIS_MODULE,
1083 .open = i915_error_state_open,
1084 .read = i915_error_state_read,
1085 .write = i915_error_state_write,
1086 .llseek = default_llseek,
1087 .release = i915_error_state_release,
1088 };
1089
1090 static int
1091 i915_next_seqno_get(void *data, u64 *val)
1092 {
1093 struct drm_device *dev = data;
1094 struct drm_i915_private *dev_priv = dev->dev_private;
1095 int ret;
1096
1097 ret = mutex_lock_interruptible(&dev->struct_mutex);
1098 if (ret)
1099 return ret;
1100
1101 *val = dev_priv->next_seqno;
1102 mutex_unlock(&dev->struct_mutex);
1103
1104 return 0;
1105 }
1106
1107 static int
1108 i915_next_seqno_set(void *data, u64 val)
1109 {
1110 struct drm_device *dev = data;
1111 int ret;
1112
1113 ret = mutex_lock_interruptible(&dev->struct_mutex);
1114 if (ret)
1115 return ret;
1116
1117 ret = i915_gem_set_seqno(dev, val);
1118 mutex_unlock(&dev->struct_mutex);
1119
1120 return ret;
1121 }
1122
1123 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1124 i915_next_seqno_get, i915_next_seqno_set,
1125 "0x%llx\n");
1126
1127 static int i915_frequency_info(struct seq_file *m, void *unused)
1128 {
1129 struct drm_info_node *node = m->private;
1130 struct drm_device *dev = node->minor->dev;
1131 struct drm_i915_private *dev_priv = dev->dev_private;
1132 int ret = 0;
1133
1134 intel_runtime_pm_get(dev_priv);
1135
1136 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1137
1138 if (IS_GEN5(dev)) {
1139 u16 rgvswctl = I915_READ16(MEMSWCTL);
1140 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1141
1142 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1143 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1144 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1145 MEMSTAT_VID_SHIFT);
1146 seq_printf(m, "Current P-state: %d\n",
1147 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1148 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1149 u32 freq_sts;
1150
1151 mutex_lock(&dev_priv->rps.hw_lock);
1152 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1153 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1154 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1155
1156 seq_printf(m, "actual GPU freq: %d MHz\n",
1157 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1158
1159 seq_printf(m, "current GPU freq: %d MHz\n",
1160 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1161
1162 seq_printf(m, "max GPU freq: %d MHz\n",
1163 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1164
1165 seq_printf(m, "min GPU freq: %d MHz\n",
1166 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1167
1168 seq_printf(m, "idle GPU freq: %d MHz\n",
1169 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1170
1171 seq_printf(m,
1172 "efficient (RPe) frequency: %d MHz\n",
1173 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1174 mutex_unlock(&dev_priv->rps.hw_lock);
1175 } else if (INTEL_INFO(dev)->gen >= 6) {
1176 u32 rp_state_limits;
1177 u32 gt_perf_status;
1178 u32 rp_state_cap;
1179 u32 rpmodectl, rpinclimit, rpdeclimit;
1180 u32 rpstat, cagf, reqf;
1181 u32 rpupei, rpcurup, rpprevup;
1182 u32 rpdownei, rpcurdown, rpprevdown;
1183 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1184 int max_freq;
1185
1186 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1187 if (IS_BROXTON(dev)) {
1188 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1189 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1190 } else {
1191 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1192 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1193 }
1194
1195 /* RPSTAT1 is in the GT power well */
1196 ret = mutex_lock_interruptible(&dev->struct_mutex);
1197 if (ret)
1198 goto out;
1199
1200 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1201
1202 reqf = I915_READ(GEN6_RPNSWREQ);
1203 if (IS_GEN9(dev))
1204 reqf >>= 23;
1205 else {
1206 reqf &= ~GEN6_TURBO_DISABLE;
1207 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1208 reqf >>= 24;
1209 else
1210 reqf >>= 25;
1211 }
1212 reqf = intel_gpu_freq(dev_priv, reqf);
1213
1214 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1215 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1216 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1217
1218 rpstat = I915_READ(GEN6_RPSTAT1);
1219 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1220 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1221 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1222 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1223 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1224 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1225 if (IS_GEN9(dev))
1226 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1227 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1228 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1229 else
1230 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1231 cagf = intel_gpu_freq(dev_priv, cagf);
1232
1233 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1234 mutex_unlock(&dev->struct_mutex);
1235
1236 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1237 pm_ier = I915_READ(GEN6_PMIER);
1238 pm_imr = I915_READ(GEN6_PMIMR);
1239 pm_isr = I915_READ(GEN6_PMISR);
1240 pm_iir = I915_READ(GEN6_PMIIR);
1241 pm_mask = I915_READ(GEN6_PMINTRMSK);
1242 } else {
1243 pm_ier = I915_READ(GEN8_GT_IER(2));
1244 pm_imr = I915_READ(GEN8_GT_IMR(2));
1245 pm_isr = I915_READ(GEN8_GT_ISR(2));
1246 pm_iir = I915_READ(GEN8_GT_IIR(2));
1247 pm_mask = I915_READ(GEN6_PMINTRMSK);
1248 }
1249 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1250 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1251 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1252 seq_printf(m, "Render p-state ratio: %d\n",
1253 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1254 seq_printf(m, "Render p-state VID: %d\n",
1255 gt_perf_status & 0xff);
1256 seq_printf(m, "Render p-state limit: %d\n",
1257 rp_state_limits & 0xff);
1258 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1259 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1260 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1261 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1262 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1263 seq_printf(m, "CAGF: %dMHz\n", cagf);
1264 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1265 GEN6_CURICONT_MASK);
1266 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1267 GEN6_CURBSYTAVG_MASK);
1268 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1269 GEN6_CURBSYTAVG_MASK);
1270 seq_printf(m, "Up threshold: %d%%\n",
1271 dev_priv->rps.up_threshold);
1272
1273 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1274 GEN6_CURIAVG_MASK);
1275 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1276 GEN6_CURBSYTAVG_MASK);
1277 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1278 GEN6_CURBSYTAVG_MASK);
1279 seq_printf(m, "Down threshold: %d%%\n",
1280 dev_priv->rps.down_threshold);
1281
1282 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1283 rp_state_cap >> 16) & 0xff;
1284 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1285 GEN9_FREQ_SCALER : 1);
1286 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1287 intel_gpu_freq(dev_priv, max_freq));
1288
1289 max_freq = (rp_state_cap & 0xff00) >> 8;
1290 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1291 GEN9_FREQ_SCALER : 1);
1292 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1293 intel_gpu_freq(dev_priv, max_freq));
1294
1295 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1296 rp_state_cap >> 0) & 0xff;
1297 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1298 GEN9_FREQ_SCALER : 1);
1299 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1300 intel_gpu_freq(dev_priv, max_freq));
1301 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1302 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1303
1304 seq_printf(m, "Current freq: %d MHz\n",
1305 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1306 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1307 seq_printf(m, "Idle freq: %d MHz\n",
1308 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1309 seq_printf(m, "Min freq: %d MHz\n",
1310 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1311 seq_printf(m, "Max freq: %d MHz\n",
1312 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1313 seq_printf(m,
1314 "efficient (RPe) frequency: %d MHz\n",
1315 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1316 } else {
1317 seq_puts(m, "no P-state info available\n");
1318 }
1319
1320 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1321 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1322 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1323
1324 out:
1325 intel_runtime_pm_put(dev_priv);
1326 return ret;
1327 }
1328
1329 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1330 {
1331 struct drm_info_node *node = m->private;
1332 struct drm_device *dev = node->minor->dev;
1333 struct drm_i915_private *dev_priv = dev->dev_private;
1334 struct intel_engine_cs *ring;
1335 u64 acthd[I915_NUM_RINGS];
1336 u32 seqno[I915_NUM_RINGS];
1337 u32 instdone[I915_NUM_INSTDONE_REG];
1338 int i, j;
1339
1340 if (!i915.enable_hangcheck) {
1341 seq_printf(m, "Hangcheck disabled\n");
1342 return 0;
1343 }
1344
1345 intel_runtime_pm_get(dev_priv);
1346
1347 for_each_ring(ring, dev_priv, i) {
1348 seqno[i] = ring->get_seqno(ring, false);
1349 acthd[i] = intel_ring_get_active_head(ring);
1350 }
1351
1352 i915_get_extra_instdone(dev, instdone);
1353
1354 intel_runtime_pm_put(dev_priv);
1355
1356 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1357 seq_printf(m, "Hangcheck active, fires in %dms\n",
1358 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1359 jiffies));
1360 } else
1361 seq_printf(m, "Hangcheck inactive\n");
1362
1363 for_each_ring(ring, dev_priv, i) {
1364 seq_printf(m, "%s:\n", ring->name);
1365 seq_printf(m, "\tseqno = %x [current %x]\n",
1366 ring->hangcheck.seqno, seqno[i]);
1367 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1368 (long long)ring->hangcheck.acthd,
1369 (long long)acthd[i]);
1370 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1371 (long long)ring->hangcheck.max_acthd);
1372 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1373 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1374
1375 if (ring->id == RCS) {
1376 seq_puts(m, "\tinstdone read =");
1377
1378 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1379 seq_printf(m, " 0x%08x", instdone[j]);
1380
1381 seq_puts(m, "\n\tinstdone accu =");
1382
1383 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1384 seq_printf(m, " 0x%08x",
1385 ring->hangcheck.instdone[j]);
1386
1387 seq_puts(m, "\n");
1388 }
1389 }
1390
1391 return 0;
1392 }
1393
1394 static int ironlake_drpc_info(struct seq_file *m)
1395 {
1396 struct drm_info_node *node = m->private;
1397 struct drm_device *dev = node->minor->dev;
1398 struct drm_i915_private *dev_priv = dev->dev_private;
1399 u32 rgvmodectl, rstdbyctl;
1400 u16 crstandvid;
1401 int ret;
1402
1403 ret = mutex_lock_interruptible(&dev->struct_mutex);
1404 if (ret)
1405 return ret;
1406 intel_runtime_pm_get(dev_priv);
1407
1408 rgvmodectl = I915_READ(MEMMODECTL);
1409 rstdbyctl = I915_READ(RSTDBYCTL);
1410 crstandvid = I915_READ16(CRSTANDVID);
1411
1412 intel_runtime_pm_put(dev_priv);
1413 mutex_unlock(&dev->struct_mutex);
1414
1415 seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1416 seq_printf(m, "Boost freq: %d\n",
1417 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1418 MEMMODE_BOOST_FREQ_SHIFT);
1419 seq_printf(m, "HW control enabled: %s\n",
1420 yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1421 seq_printf(m, "SW control enabled: %s\n",
1422 yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1423 seq_printf(m, "Gated voltage change: %s\n",
1424 yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1425 seq_printf(m, "Starting frequency: P%d\n",
1426 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1427 seq_printf(m, "Max P-state: P%d\n",
1428 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1429 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1430 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1431 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1432 seq_printf(m, "Render standby enabled: %s\n",
1433 yesno(!(rstdbyctl & RCX_SW_EXIT)));
1434 seq_puts(m, "Current RS state: ");
1435 switch (rstdbyctl & RSX_STATUS_MASK) {
1436 case RSX_STATUS_ON:
1437 seq_puts(m, "on\n");
1438 break;
1439 case RSX_STATUS_RC1:
1440 seq_puts(m, "RC1\n");
1441 break;
1442 case RSX_STATUS_RC1E:
1443 seq_puts(m, "RC1E\n");
1444 break;
1445 case RSX_STATUS_RS1:
1446 seq_puts(m, "RS1\n");
1447 break;
1448 case RSX_STATUS_RS2:
1449 seq_puts(m, "RS2 (RC6)\n");
1450 break;
1451 case RSX_STATUS_RS3:
1452 seq_puts(m, "RC3 (RC6+)\n");
1453 break;
1454 default:
1455 seq_puts(m, "unknown\n");
1456 break;
1457 }
1458
1459 return 0;
1460 }
1461
1462 static int i915_forcewake_domains(struct seq_file *m, void *data)
1463 {
1464 struct drm_info_node *node = m->private;
1465 struct drm_device *dev = node->minor->dev;
1466 struct drm_i915_private *dev_priv = dev->dev_private;
1467 struct intel_uncore_forcewake_domain *fw_domain;
1468 int i;
1469
1470 spin_lock_irq(&dev_priv->uncore.lock);
1471 for_each_fw_domain(fw_domain, dev_priv, i) {
1472 seq_printf(m, "%s.wake_count = %u\n",
1473 intel_uncore_forcewake_domain_to_str(i),
1474 fw_domain->wake_count);
1475 }
1476 spin_unlock_irq(&dev_priv->uncore.lock);
1477
1478 return 0;
1479 }
1480
1481 static int vlv_drpc_info(struct seq_file *m)
1482 {
1483 struct drm_info_node *node = m->private;
1484 struct drm_device *dev = node->minor->dev;
1485 struct drm_i915_private *dev_priv = dev->dev_private;
1486 u32 rpmodectl1, rcctl1, pw_status;
1487
1488 intel_runtime_pm_get(dev_priv);
1489
1490 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1491 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1492 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1493
1494 intel_runtime_pm_put(dev_priv);
1495
1496 seq_printf(m, "Video Turbo Mode: %s\n",
1497 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1498 seq_printf(m, "Turbo enabled: %s\n",
1499 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1500 seq_printf(m, "HW control enabled: %s\n",
1501 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1502 seq_printf(m, "SW control enabled: %s\n",
1503 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1504 GEN6_RP_MEDIA_SW_MODE));
1505 seq_printf(m, "RC6 Enabled: %s\n",
1506 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1507 GEN6_RC_CTL_EI_MODE(1))));
1508 seq_printf(m, "Render Power Well: %s\n",
1509 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1510 seq_printf(m, "Media Power Well: %s\n",
1511 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1512
1513 seq_printf(m, "Render RC6 residency since boot: %u\n",
1514 I915_READ(VLV_GT_RENDER_RC6));
1515 seq_printf(m, "Media RC6 residency since boot: %u\n",
1516 I915_READ(VLV_GT_MEDIA_RC6));
1517
1518 return i915_forcewake_domains(m, NULL);
1519 }
1520
1521 static int gen6_drpc_info(struct seq_file *m)
1522 {
1523 struct drm_info_node *node = m->private;
1524 struct drm_device *dev = node->minor->dev;
1525 struct drm_i915_private *dev_priv = dev->dev_private;
1526 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1527 unsigned forcewake_count;
1528 int count = 0, ret;
1529
1530 ret = mutex_lock_interruptible(&dev->struct_mutex);
1531 if (ret)
1532 return ret;
1533 intel_runtime_pm_get(dev_priv);
1534
1535 spin_lock_irq(&dev_priv->uncore.lock);
1536 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1537 spin_unlock_irq(&dev_priv->uncore.lock);
1538
1539 if (forcewake_count) {
1540 seq_puts(m, "RC information inaccurate because somebody "
1541 "holds a forcewake reference \n");
1542 } else {
1543 /* NB: we cannot use forcewake, else we read the wrong values */
1544 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1545 udelay(10);
1546 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1547 }
1548
1549 gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1550 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1551
1552 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1553 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1554 mutex_unlock(&dev->struct_mutex);
1555 mutex_lock(&dev_priv->rps.hw_lock);
1556 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1557 mutex_unlock(&dev_priv->rps.hw_lock);
1558
1559 intel_runtime_pm_put(dev_priv);
1560
1561 seq_printf(m, "Video Turbo Mode: %s\n",
1562 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1563 seq_printf(m, "HW control enabled: %s\n",
1564 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1565 seq_printf(m, "SW control enabled: %s\n",
1566 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1567 GEN6_RP_MEDIA_SW_MODE));
1568 seq_printf(m, "RC1e Enabled: %s\n",
1569 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1570 seq_printf(m, "RC6 Enabled: %s\n",
1571 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1572 seq_printf(m, "Deep RC6 Enabled: %s\n",
1573 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1574 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1575 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1576 seq_puts(m, "Current RC state: ");
1577 switch (gt_core_status & GEN6_RCn_MASK) {
1578 case GEN6_RC0:
1579 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1580 seq_puts(m, "Core Power Down\n");
1581 else
1582 seq_puts(m, "on\n");
1583 break;
1584 case GEN6_RC3:
1585 seq_puts(m, "RC3\n");
1586 break;
1587 case GEN6_RC6:
1588 seq_puts(m, "RC6\n");
1589 break;
1590 case GEN6_RC7:
1591 seq_puts(m, "RC7\n");
1592 break;
1593 default:
1594 seq_puts(m, "Unknown\n");
1595 break;
1596 }
1597
1598 seq_printf(m, "Core Power Down: %s\n",
1599 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1600
1601 /* Not exactly sure what this is */
1602 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1603 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1604 seq_printf(m, "RC6 residency since boot: %u\n",
1605 I915_READ(GEN6_GT_GFX_RC6));
1606 seq_printf(m, "RC6+ residency since boot: %u\n",
1607 I915_READ(GEN6_GT_GFX_RC6p));
1608 seq_printf(m, "RC6++ residency since boot: %u\n",
1609 I915_READ(GEN6_GT_GFX_RC6pp));
1610
1611 seq_printf(m, "RC6 voltage: %dmV\n",
1612 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1613 seq_printf(m, "RC6+ voltage: %dmV\n",
1614 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1615 seq_printf(m, "RC6++ voltage: %dmV\n",
1616 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1617 return 0;
1618 }
1619
1620 static int i915_drpc_info(struct seq_file *m, void *unused)
1621 {
1622 struct drm_info_node *node = m->private;
1623 struct drm_device *dev = node->minor->dev;
1624
1625 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1626 return vlv_drpc_info(m);
1627 else if (INTEL_INFO(dev)->gen >= 6)
1628 return gen6_drpc_info(m);
1629 else
1630 return ironlake_drpc_info(m);
1631 }
1632
1633 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1634 {
1635 struct drm_info_node *node = m->private;
1636 struct drm_device *dev = node->minor->dev;
1637 struct drm_i915_private *dev_priv = dev->dev_private;
1638
1639 seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1640 dev_priv->fb_tracking.busy_bits);
1641
1642 seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1643 dev_priv->fb_tracking.flip_bits);
1644
1645 return 0;
1646 }
1647
1648 static int i915_fbc_status(struct seq_file *m, void *unused)
1649 {
1650 struct drm_info_node *node = m->private;
1651 struct drm_device *dev = node->minor->dev;
1652 struct drm_i915_private *dev_priv = dev->dev_private;
1653
1654 if (!HAS_FBC(dev)) {
1655 seq_puts(m, "FBC unsupported on this chipset\n");
1656 return 0;
1657 }
1658
1659 intel_runtime_pm_get(dev_priv);
1660 mutex_lock(&dev_priv->fbc.lock);
1661
1662 if (intel_fbc_is_active(dev_priv))
1663 seq_puts(m, "FBC enabled\n");
1664 else
1665 seq_printf(m, "FBC disabled: %s\n",
1666 dev_priv->fbc.no_fbc_reason);
1667
1668 if (INTEL_INFO(dev_priv)->gen >= 7)
1669 seq_printf(m, "Compressing: %s\n",
1670 yesno(I915_READ(FBC_STATUS2) &
1671 FBC_COMPRESSION_MASK));
1672
1673 mutex_unlock(&dev_priv->fbc.lock);
1674 intel_runtime_pm_put(dev_priv);
1675
1676 return 0;
1677 }
1678
1679 static int i915_fbc_fc_get(void *data, u64 *val)
1680 {
1681 struct drm_device *dev = data;
1682 struct drm_i915_private *dev_priv = dev->dev_private;
1683
1684 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1685 return -ENODEV;
1686
1687 *val = dev_priv->fbc.false_color;
1688
1689 return 0;
1690 }
1691
1692 static int i915_fbc_fc_set(void *data, u64 val)
1693 {
1694 struct drm_device *dev = data;
1695 struct drm_i915_private *dev_priv = dev->dev_private;
1696 u32 reg;
1697
1698 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1699 return -ENODEV;
1700
1701 mutex_lock(&dev_priv->fbc.lock);
1702
1703 reg = I915_READ(ILK_DPFC_CONTROL);
1704 dev_priv->fbc.false_color = val;
1705
1706 I915_WRITE(ILK_DPFC_CONTROL, val ?
1707 (reg | FBC_CTL_FALSE_COLOR) :
1708 (reg & ~FBC_CTL_FALSE_COLOR));
1709
1710 mutex_unlock(&dev_priv->fbc.lock);
1711 return 0;
1712 }
1713
1714 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1715 i915_fbc_fc_get, i915_fbc_fc_set,
1716 "%llu\n");
1717
1718 static int i915_ips_status(struct seq_file *m, void *unused)
1719 {
1720 struct drm_info_node *node = m->private;
1721 struct drm_device *dev = node->minor->dev;
1722 struct drm_i915_private *dev_priv = dev->dev_private;
1723
1724 if (!HAS_IPS(dev)) {
1725 seq_puts(m, "not supported\n");
1726 return 0;
1727 }
1728
1729 intel_runtime_pm_get(dev_priv);
1730
1731 seq_printf(m, "Enabled by kernel parameter: %s\n",
1732 yesno(i915.enable_ips));
1733
1734 if (INTEL_INFO(dev)->gen >= 8) {
1735 seq_puts(m, "Currently: unknown\n");
1736 } else {
1737 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1738 seq_puts(m, "Currently: enabled\n");
1739 else
1740 seq_puts(m, "Currently: disabled\n");
1741 }
1742
1743 intel_runtime_pm_put(dev_priv);
1744
1745 return 0;
1746 }
1747
1748 static int i915_sr_status(struct seq_file *m, void *unused)
1749 {
1750 struct drm_info_node *node = m->private;
1751 struct drm_device *dev = node->minor->dev;
1752 struct drm_i915_private *dev_priv = dev->dev_private;
1753 bool sr_enabled = false;
1754
1755 intel_runtime_pm_get(dev_priv);
1756
1757 if (HAS_PCH_SPLIT(dev))
1758 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1759 else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1760 IS_I945G(dev) || IS_I945GM(dev))
1761 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1762 else if (IS_I915GM(dev))
1763 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1764 else if (IS_PINEVIEW(dev))
1765 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1766 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1767 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1768
1769 intel_runtime_pm_put(dev_priv);
1770
1771 seq_printf(m, "self-refresh: %s\n",
1772 sr_enabled ? "enabled" : "disabled");
1773
1774 return 0;
1775 }
1776
1777 static int i915_emon_status(struct seq_file *m, void *unused)
1778 {
1779 struct drm_info_node *node = m->private;
1780 struct drm_device *dev = node->minor->dev;
1781 struct drm_i915_private *dev_priv = dev->dev_private;
1782 unsigned long temp, chipset, gfx;
1783 int ret;
1784
1785 if (!IS_GEN5(dev))
1786 return -ENODEV;
1787
1788 ret = mutex_lock_interruptible(&dev->struct_mutex);
1789 if (ret)
1790 return ret;
1791
1792 temp = i915_mch_val(dev_priv);
1793 chipset = i915_chipset_val(dev_priv);
1794 gfx = i915_gfx_val(dev_priv);
1795 mutex_unlock(&dev->struct_mutex);
1796
1797 seq_printf(m, "GMCH temp: %ld\n", temp);
1798 seq_printf(m, "Chipset power: %ld\n", chipset);
1799 seq_printf(m, "GFX power: %ld\n", gfx);
1800 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1801
1802 return 0;
1803 }
1804
1805 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1806 {
1807 struct drm_info_node *node = m->private;
1808 struct drm_device *dev = node->minor->dev;
1809 struct drm_i915_private *dev_priv = dev->dev_private;
1810 int ret = 0;
1811 int gpu_freq, ia_freq;
1812 unsigned int max_gpu_freq, min_gpu_freq;
1813
1814 if (!HAS_CORE_RING_FREQ(dev)) {
1815 seq_puts(m, "unsupported on this chipset\n");
1816 return 0;
1817 }
1818
1819 intel_runtime_pm_get(dev_priv);
1820
1821 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1822
1823 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1824 if (ret)
1825 goto out;
1826
1827 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1828 /* Convert GT frequency to 50 HZ units */
1829 min_gpu_freq =
1830 dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1831 max_gpu_freq =
1832 dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1833 } else {
1834 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1835 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1836 }
1837
1838 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1839
1840 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1841 ia_freq = gpu_freq;
1842 sandybridge_pcode_read(dev_priv,
1843 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1844 &ia_freq);
1845 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1846 intel_gpu_freq(dev_priv, (gpu_freq *
1847 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1848 GEN9_FREQ_SCALER : 1))),
1849 ((ia_freq >> 0) & 0xff) * 100,
1850 ((ia_freq >> 8) & 0xff) * 100);
1851 }
1852
1853 mutex_unlock(&dev_priv->rps.hw_lock);
1854
1855 out:
1856 intel_runtime_pm_put(dev_priv);
1857 return ret;
1858 }
1859
1860 static int i915_opregion(struct seq_file *m, void *unused)
1861 {
1862 struct drm_info_node *node = m->private;
1863 struct drm_device *dev = node->minor->dev;
1864 struct drm_i915_private *dev_priv = dev->dev_private;
1865 struct intel_opregion *opregion = &dev_priv->opregion;
1866 int ret;
1867
1868 ret = mutex_lock_interruptible(&dev->struct_mutex);
1869 if (ret)
1870 goto out;
1871
1872 if (opregion->header)
1873 seq_write(m, opregion->header, OPREGION_SIZE);
1874
1875 mutex_unlock(&dev->struct_mutex);
1876
1877 out:
1878 return 0;
1879 }
1880
1881 static int i915_vbt(struct seq_file *m, void *unused)
1882 {
1883 struct drm_info_node *node = m->private;
1884 struct drm_device *dev = node->minor->dev;
1885 struct drm_i915_private *dev_priv = dev->dev_private;
1886 struct intel_opregion *opregion = &dev_priv->opregion;
1887
1888 if (opregion->vbt)
1889 seq_write(m, opregion->vbt, opregion->vbt_size);
1890
1891 return 0;
1892 }
1893
1894 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1895 {
1896 struct drm_info_node *node = m->private;
1897 struct drm_device *dev = node->minor->dev;
1898 struct intel_framebuffer *fbdev_fb = NULL;
1899 struct drm_framebuffer *drm_fb;
1900
1901 #ifdef CONFIG_DRM_FBDEV_EMULATION
1902 if (to_i915(dev)->fbdev) {
1903 fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1904
1905 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1906 fbdev_fb->base.width,
1907 fbdev_fb->base.height,
1908 fbdev_fb->base.depth,
1909 fbdev_fb->base.bits_per_pixel,
1910 fbdev_fb->base.modifier[0],
1911 atomic_read(&fbdev_fb->base.refcount.refcount));
1912 describe_obj(m, fbdev_fb->obj);
1913 seq_putc(m, '\n');
1914 }
1915 #endif
1916
1917 mutex_lock(&dev->mode_config.fb_lock);
1918 drm_for_each_fb(drm_fb, dev) {
1919 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1920 if (fb == fbdev_fb)
1921 continue;
1922
1923 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1924 fb->base.width,
1925 fb->base.height,
1926 fb->base.depth,
1927 fb->base.bits_per_pixel,
1928 fb->base.modifier[0],
1929 atomic_read(&fb->base.refcount.refcount));
1930 describe_obj(m, fb->obj);
1931 seq_putc(m, '\n');
1932 }
1933 mutex_unlock(&dev->mode_config.fb_lock);
1934
1935 return 0;
1936 }
1937
1938 static void describe_ctx_ringbuf(struct seq_file *m,
1939 struct intel_ringbuffer *ringbuf)
1940 {
1941 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1942 ringbuf->space, ringbuf->head, ringbuf->tail,
1943 ringbuf->last_retired_head);
1944 }
1945
1946 static int i915_context_status(struct seq_file *m, void *unused)
1947 {
1948 struct drm_info_node *node = m->private;
1949 struct drm_device *dev = node->minor->dev;
1950 struct drm_i915_private *dev_priv = dev->dev_private;
1951 struct intel_engine_cs *ring;
1952 struct intel_context *ctx;
1953 int ret, i;
1954
1955 ret = mutex_lock_interruptible(&dev->struct_mutex);
1956 if (ret)
1957 return ret;
1958
1959 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1960 if (!i915.enable_execlists &&
1961 ctx->legacy_hw_ctx.rcs_state == NULL)
1962 continue;
1963
1964 seq_puts(m, "HW context ");
1965 describe_ctx(m, ctx);
1966 if (ctx == dev_priv->kernel_context)
1967 seq_printf(m, "(kernel context) ");
1968
1969 if (i915.enable_execlists) {
1970 seq_putc(m, '\n');
1971 for_each_ring(ring, dev_priv, i) {
1972 struct drm_i915_gem_object *ctx_obj =
1973 ctx->engine[i].state;
1974 struct intel_ringbuffer *ringbuf =
1975 ctx->engine[i].ringbuf;
1976
1977 seq_printf(m, "%s: ", ring->name);
1978 if (ctx_obj)
1979 describe_obj(m, ctx_obj);
1980 if (ringbuf)
1981 describe_ctx_ringbuf(m, ringbuf);
1982 seq_putc(m, '\n');
1983 }
1984 } else {
1985 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1986 }
1987
1988 seq_putc(m, '\n');
1989 }
1990
1991 mutex_unlock(&dev->struct_mutex);
1992
1993 return 0;
1994 }
1995
1996 static void i915_dump_lrc_obj(struct seq_file *m,
1997 struct intel_context *ctx,
1998 struct intel_engine_cs *ring)
1999 {
2000 struct page *page;
2001 uint32_t *reg_state;
2002 int j;
2003 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
2004 unsigned long ggtt_offset = 0;
2005
2006 if (ctx_obj == NULL) {
2007 seq_printf(m, "Context on %s with no gem object\n",
2008 ring->name);
2009 return;
2010 }
2011
2012 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
2013 intel_execlists_ctx_id(ctx, ring));
2014
2015 if (!i915_gem_obj_ggtt_bound(ctx_obj))
2016 seq_puts(m, "\tNot bound in GGTT\n");
2017 else
2018 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2019
2020 if (i915_gem_object_get_pages(ctx_obj)) {
2021 seq_puts(m, "\tFailed to get pages for context object\n");
2022 return;
2023 }
2024
2025 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2026 if (!WARN_ON(page == NULL)) {
2027 reg_state = kmap_atomic(page);
2028
2029 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2030 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2031 ggtt_offset + 4096 + (j * 4),
2032 reg_state[j], reg_state[j + 1],
2033 reg_state[j + 2], reg_state[j + 3]);
2034 }
2035 kunmap_atomic(reg_state);
2036 }
2037
2038 seq_putc(m, '\n');
2039 }
2040
2041 static int i915_dump_lrc(struct seq_file *m, void *unused)
2042 {
2043 struct drm_info_node *node = (struct drm_info_node *) m->private;
2044 struct drm_device *dev = node->minor->dev;
2045 struct drm_i915_private *dev_priv = dev->dev_private;
2046 struct intel_engine_cs *ring;
2047 struct intel_context *ctx;
2048 int ret, i;
2049
2050 if (!i915.enable_execlists) {
2051 seq_printf(m, "Logical Ring Contexts are disabled\n");
2052 return 0;
2053 }
2054
2055 ret = mutex_lock_interruptible(&dev->struct_mutex);
2056 if (ret)
2057 return ret;
2058
2059 list_for_each_entry(ctx, &dev_priv->context_list, link)
2060 if (ctx != dev_priv->kernel_context)
2061 for_each_ring(ring, dev_priv, i)
2062 i915_dump_lrc_obj(m, ctx, ring);
2063
2064 mutex_unlock(&dev->struct_mutex);
2065
2066 return 0;
2067 }
2068
2069 static int i915_execlists(struct seq_file *m, void *data)
2070 {
2071 struct drm_info_node *node = (struct drm_info_node *)m->private;
2072 struct drm_device *dev = node->minor->dev;
2073 struct drm_i915_private *dev_priv = dev->dev_private;
2074 struct intel_engine_cs *ring;
2075 u32 status_pointer;
2076 u8 read_pointer;
2077 u8 write_pointer;
2078 u32 status;
2079 u32 ctx_id;
2080 struct list_head *cursor;
2081 int ring_id, i;
2082 int ret;
2083
2084 if (!i915.enable_execlists) {
2085 seq_puts(m, "Logical Ring Contexts are disabled\n");
2086 return 0;
2087 }
2088
2089 ret = mutex_lock_interruptible(&dev->struct_mutex);
2090 if (ret)
2091 return ret;
2092
2093 intel_runtime_pm_get(dev_priv);
2094
2095 for_each_ring(ring, dev_priv, ring_id) {
2096 struct drm_i915_gem_request *head_req = NULL;
2097 int count = 0;
2098 unsigned long flags;
2099
2100 seq_printf(m, "%s\n", ring->name);
2101
2102 status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2103 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2104 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2105 status, ctx_id);
2106
2107 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2108 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2109
2110 read_pointer = ring->next_context_status_buffer;
2111 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2112 if (read_pointer > write_pointer)
2113 write_pointer += GEN8_CSB_ENTRIES;
2114 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2115 read_pointer, write_pointer);
2116
2117 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2118 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2119 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2120
2121 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2122 i, status, ctx_id);
2123 }
2124
2125 spin_lock_irqsave(&ring->execlist_lock, flags);
2126 list_for_each(cursor, &ring->execlist_queue)
2127 count++;
2128 head_req = list_first_entry_or_null(&ring->execlist_queue,
2129 struct drm_i915_gem_request, execlist_link);
2130 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2131
2132 seq_printf(m, "\t%d requests in queue\n", count);
2133 if (head_req) {
2134 seq_printf(m, "\tHead request id: %u\n",
2135 intel_execlists_ctx_id(head_req->ctx, ring));
2136 seq_printf(m, "\tHead request tail: %u\n",
2137 head_req->tail);
2138 }
2139
2140 seq_putc(m, '\n');
2141 }
2142
2143 intel_runtime_pm_put(dev_priv);
2144 mutex_unlock(&dev->struct_mutex);
2145
2146 return 0;
2147 }
2148
2149 static const char *swizzle_string(unsigned swizzle)
2150 {
2151 switch (swizzle) {
2152 case I915_BIT_6_SWIZZLE_NONE:
2153 return "none";
2154 case I915_BIT_6_SWIZZLE_9:
2155 return "bit9";
2156 case I915_BIT_6_SWIZZLE_9_10:
2157 return "bit9/bit10";
2158 case I915_BIT_6_SWIZZLE_9_11:
2159 return "bit9/bit11";
2160 case I915_BIT_6_SWIZZLE_9_10_11:
2161 return "bit9/bit10/bit11";
2162 case I915_BIT_6_SWIZZLE_9_17:
2163 return "bit9/bit17";
2164 case I915_BIT_6_SWIZZLE_9_10_17:
2165 return "bit9/bit10/bit17";
2166 case I915_BIT_6_SWIZZLE_UNKNOWN:
2167 return "unknown";
2168 }
2169
2170 return "bug";
2171 }
2172
2173 static int i915_swizzle_info(struct seq_file *m, void *data)
2174 {
2175 struct drm_info_node *node = m->private;
2176 struct drm_device *dev = node->minor->dev;
2177 struct drm_i915_private *dev_priv = dev->dev_private;
2178 int ret;
2179
2180 ret = mutex_lock_interruptible(&dev->struct_mutex);
2181 if (ret)
2182 return ret;
2183 intel_runtime_pm_get(dev_priv);
2184
2185 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2186 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2187 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2188 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2189
2190 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2191 seq_printf(m, "DDC = 0x%08x\n",
2192 I915_READ(DCC));
2193 seq_printf(m, "DDC2 = 0x%08x\n",
2194 I915_READ(DCC2));
2195 seq_printf(m, "C0DRB3 = 0x%04x\n",
2196 I915_READ16(C0DRB3));
2197 seq_printf(m, "C1DRB3 = 0x%04x\n",
2198 I915_READ16(C1DRB3));
2199 } else if (INTEL_INFO(dev)->gen >= 6) {
2200 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2201 I915_READ(MAD_DIMM_C0));
2202 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2203 I915_READ(MAD_DIMM_C1));
2204 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2205 I915_READ(MAD_DIMM_C2));
2206 seq_printf(m, "TILECTL = 0x%08x\n",
2207 I915_READ(TILECTL));
2208 if (INTEL_INFO(dev)->gen >= 8)
2209 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2210 I915_READ(GAMTARBMODE));
2211 else
2212 seq_printf(m, "ARB_MODE = 0x%08x\n",
2213 I915_READ(ARB_MODE));
2214 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2215 I915_READ(DISP_ARB_CTL));
2216 }
2217
2218 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2219 seq_puts(m, "L-shaped memory detected\n");
2220
2221 intel_runtime_pm_put(dev_priv);
2222 mutex_unlock(&dev->struct_mutex);
2223
2224 return 0;
2225 }
2226
2227 static int per_file_ctx(int id, void *ptr, void *data)
2228 {
2229 struct intel_context *ctx = ptr;
2230 struct seq_file *m = data;
2231 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2232
2233 if (!ppgtt) {
2234 seq_printf(m, " no ppgtt for context %d\n",
2235 ctx->user_handle);
2236 return 0;
2237 }
2238
2239 if (i915_gem_context_is_default(ctx))
2240 seq_puts(m, " default context:\n");
2241 else
2242 seq_printf(m, " context %d:\n", ctx->user_handle);
2243 ppgtt->debug_dump(ppgtt, m);
2244
2245 return 0;
2246 }
2247
2248 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2249 {
2250 struct drm_i915_private *dev_priv = dev->dev_private;
2251 struct intel_engine_cs *ring;
2252 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2253 int unused, i;
2254
2255 if (!ppgtt)
2256 return;
2257
2258 for_each_ring(ring, dev_priv, unused) {
2259 seq_printf(m, "%s\n", ring->name);
2260 for (i = 0; i < 4; i++) {
2261 u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2262 pdp <<= 32;
2263 pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2264 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2265 }
2266 }
2267 }
2268
2269 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2270 {
2271 struct drm_i915_private *dev_priv = dev->dev_private;
2272 struct intel_engine_cs *ring;
2273 int i;
2274
2275 if (INTEL_INFO(dev)->gen == 6)
2276 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2277
2278 for_each_ring(ring, dev_priv, i) {
2279 seq_printf(m, "%s\n", ring->name);
2280 if (INTEL_INFO(dev)->gen == 7)
2281 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2282 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2283 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2284 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2285 }
2286 if (dev_priv->mm.aliasing_ppgtt) {
2287 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2288
2289 seq_puts(m, "aliasing PPGTT:\n");
2290 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2291
2292 ppgtt->debug_dump(ppgtt, m);
2293 }
2294
2295 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2296 }
2297
2298 static int i915_ppgtt_info(struct seq_file *m, void *data)
2299 {
2300 struct drm_info_node *node = m->private;
2301 struct drm_device *dev = node->minor->dev;
2302 struct drm_i915_private *dev_priv = dev->dev_private;
2303 struct drm_file *file;
2304
2305 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2306 if (ret)
2307 return ret;
2308 intel_runtime_pm_get(dev_priv);
2309
2310 if (INTEL_INFO(dev)->gen >= 8)
2311 gen8_ppgtt_info(m, dev);
2312 else if (INTEL_INFO(dev)->gen >= 6)
2313 gen6_ppgtt_info(m, dev);
2314
2315 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2316 struct drm_i915_file_private *file_priv = file->driver_priv;
2317 struct task_struct *task;
2318
2319 task = get_pid_task(file->pid, PIDTYPE_PID);
2320 if (!task) {
2321 ret = -ESRCH;
2322 goto out_put;
2323 }
2324 seq_printf(m, "\nproc: %s\n", task->comm);
2325 put_task_struct(task);
2326 idr_for_each(&file_priv->context_idr, per_file_ctx,
2327 (void *)(unsigned long)m);
2328 }
2329
2330 out_put:
2331 intel_runtime_pm_put(dev_priv);
2332 mutex_unlock(&dev->struct_mutex);
2333
2334 return ret;
2335 }
2336
2337 static int count_irq_waiters(struct drm_i915_private *i915)
2338 {
2339 struct intel_engine_cs *ring;
2340 int count = 0;
2341 int i;
2342
2343 for_each_ring(ring, i915, i)
2344 count += ring->irq_refcount;
2345
2346 return count;
2347 }
2348
2349 static int i915_rps_boost_info(struct seq_file *m, void *data)
2350 {
2351 struct drm_info_node *node = m->private;
2352 struct drm_device *dev = node->minor->dev;
2353 struct drm_i915_private *dev_priv = dev->dev_private;
2354 struct drm_file *file;
2355
2356 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2357 seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2358 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2359 seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2360 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2361 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2362 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2363 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2364 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2365 spin_lock(&dev_priv->rps.client_lock);
2366 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2367 struct drm_i915_file_private *file_priv = file->driver_priv;
2368 struct task_struct *task;
2369
2370 rcu_read_lock();
2371 task = pid_task(file->pid, PIDTYPE_PID);
2372 seq_printf(m, "%s [%d]: %d boosts%s\n",
2373 task ? task->comm : "<unknown>",
2374 task ? task->pid : -1,
2375 file_priv->rps.boosts,
2376 list_empty(&file_priv->rps.link) ? "" : ", active");
2377 rcu_read_unlock();
2378 }
2379 seq_printf(m, "Semaphore boosts: %d%s\n",
2380 dev_priv->rps.semaphores.boosts,
2381 list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2382 seq_printf(m, "MMIO flip boosts: %d%s\n",
2383 dev_priv->rps.mmioflips.boosts,
2384 list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2385 seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2386 spin_unlock(&dev_priv->rps.client_lock);
2387
2388 return 0;
2389 }
2390
2391 static int i915_llc(struct seq_file *m, void *data)
2392 {
2393 struct drm_info_node *node = m->private;
2394 struct drm_device *dev = node->minor->dev;
2395 struct drm_i915_private *dev_priv = dev->dev_private;
2396
2397 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2398 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2399 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2400
2401 return 0;
2402 }
2403
2404 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2405 {
2406 struct drm_info_node *node = m->private;
2407 struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2408 struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2409 u32 tmp, i;
2410
2411 if (!HAS_GUC_UCODE(dev_priv->dev))
2412 return 0;
2413
2414 seq_printf(m, "GuC firmware status:\n");
2415 seq_printf(m, "\tpath: %s\n",
2416 guc_fw->guc_fw_path);
2417 seq_printf(m, "\tfetch: %s\n",
2418 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2419 seq_printf(m, "\tload: %s\n",
2420 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2421 seq_printf(m, "\tversion wanted: %d.%d\n",
2422 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2423 seq_printf(m, "\tversion found: %d.%d\n",
2424 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2425 seq_printf(m, "\theader: offset is %d; size = %d\n",
2426 guc_fw->header_offset, guc_fw->header_size);
2427 seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2428 guc_fw->ucode_offset, guc_fw->ucode_size);
2429 seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2430 guc_fw->rsa_offset, guc_fw->rsa_size);
2431
2432 tmp = I915_READ(GUC_STATUS);
2433
2434 seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2435 seq_printf(m, "\tBootrom status = 0x%x\n",
2436 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2437 seq_printf(m, "\tuKernel status = 0x%x\n",
2438 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2439 seq_printf(m, "\tMIA Core status = 0x%x\n",
2440 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2441 seq_puts(m, "\nScratch registers:\n");
2442 for (i = 0; i < 16; i++)
2443 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2444
2445 return 0;
2446 }
2447
2448 static void i915_guc_client_info(struct seq_file *m,
2449 struct drm_i915_private *dev_priv,
2450 struct i915_guc_client *client)
2451 {
2452 struct intel_engine_cs *ring;
2453 uint64_t tot = 0;
2454 uint32_t i;
2455
2456 seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2457 client->priority, client->ctx_index, client->proc_desc_offset);
2458 seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2459 client->doorbell_id, client->doorbell_offset, client->cookie);
2460 seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2461 client->wq_size, client->wq_offset, client->wq_tail);
2462
2463 seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2464 seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2465 seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2466
2467 for_each_ring(ring, dev_priv, i) {
2468 seq_printf(m, "\tSubmissions: %llu %s\n",
2469 client->submissions[ring->guc_id],
2470 ring->name);
2471 tot += client->submissions[ring->guc_id];
2472 }
2473 seq_printf(m, "\tTotal: %llu\n", tot);
2474 }
2475
2476 static int i915_guc_info(struct seq_file *m, void *data)
2477 {
2478 struct drm_info_node *node = m->private;
2479 struct drm_device *dev = node->minor->dev;
2480 struct drm_i915_private *dev_priv = dev->dev_private;
2481 struct intel_guc guc;
2482 struct i915_guc_client client = {};
2483 struct intel_engine_cs *ring;
2484 enum intel_ring_id i;
2485 u64 total = 0;
2486
2487 if (!HAS_GUC_SCHED(dev_priv->dev))
2488 return 0;
2489
2490 if (mutex_lock_interruptible(&dev->struct_mutex))
2491 return 0;
2492
2493 /* Take a local copy of the GuC data, so we can dump it at leisure */
2494 guc = dev_priv->guc;
2495 if (guc.execbuf_client)
2496 client = *guc.execbuf_client;
2497
2498 mutex_unlock(&dev->struct_mutex);
2499
2500 seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2501 seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2502 seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2503 seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2504 seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2505
2506 seq_printf(m, "\nGuC submissions:\n");
2507 for_each_ring(ring, dev_priv, i) {
2508 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2509 ring->name, guc.submissions[ring->guc_id],
2510 guc.last_seqno[ring->guc_id]);
2511 total += guc.submissions[ring->guc_id];
2512 }
2513 seq_printf(m, "\t%s: %llu\n", "Total", total);
2514
2515 seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2516 i915_guc_client_info(m, dev_priv, &client);
2517
2518 /* Add more as required ... */
2519
2520 return 0;
2521 }
2522
2523 static int i915_guc_log_dump(struct seq_file *m, void *data)
2524 {
2525 struct drm_info_node *node = m->private;
2526 struct drm_device *dev = node->minor->dev;
2527 struct drm_i915_private *dev_priv = dev->dev_private;
2528 struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2529 u32 *log;
2530 int i = 0, pg;
2531
2532 if (!log_obj)
2533 return 0;
2534
2535 for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2536 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2537
2538 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2539 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2540 *(log + i), *(log + i + 1),
2541 *(log + i + 2), *(log + i + 3));
2542
2543 kunmap_atomic(log);
2544 }
2545
2546 seq_putc(m, '\n');
2547
2548 return 0;
2549 }
2550
2551 static int i915_edp_psr_status(struct seq_file *m, void *data)
2552 {
2553 struct drm_info_node *node = m->private;
2554 struct drm_device *dev = node->minor->dev;
2555 struct drm_i915_private *dev_priv = dev->dev_private;
2556 u32 psrperf = 0;
2557 u32 stat[3];
2558 enum pipe pipe;
2559 bool enabled = false;
2560
2561 if (!HAS_PSR(dev)) {
2562 seq_puts(m, "PSR not supported\n");
2563 return 0;
2564 }
2565
2566 intel_runtime_pm_get(dev_priv);
2567
2568 mutex_lock(&dev_priv->psr.lock);
2569 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2570 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2571 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2572 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2573 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2574 dev_priv->psr.busy_frontbuffer_bits);
2575 seq_printf(m, "Re-enable work scheduled: %s\n",
2576 yesno(work_busy(&dev_priv->psr.work.work)));
2577
2578 if (HAS_DDI(dev))
2579 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2580 else {
2581 for_each_pipe(dev_priv, pipe) {
2582 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2583 VLV_EDP_PSR_CURR_STATE_MASK;
2584 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2585 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2586 enabled = true;
2587 }
2588 }
2589
2590 seq_printf(m, "Main link in standby mode: %s\n",
2591 yesno(dev_priv->psr.link_standby));
2592
2593 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2594
2595 if (!HAS_DDI(dev))
2596 for_each_pipe(dev_priv, pipe) {
2597 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2598 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2599 seq_printf(m, " pipe %c", pipe_name(pipe));
2600 }
2601 seq_puts(m, "\n");
2602
2603 /*
2604 * VLV/CHV PSR has no kind of performance counter
2605 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2606 */
2607 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2608 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2609 EDP_PSR_PERF_CNT_MASK;
2610
2611 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2612 }
2613 mutex_unlock(&dev_priv->psr.lock);
2614
2615 intel_runtime_pm_put(dev_priv);
2616 return 0;
2617 }
2618
2619 static int i915_sink_crc(struct seq_file *m, void *data)
2620 {
2621 struct drm_info_node *node = m->private;
2622 struct drm_device *dev = node->minor->dev;
2623 struct intel_encoder *encoder;
2624 struct intel_connector *connector;
2625 struct intel_dp *intel_dp = NULL;
2626 int ret;
2627 u8 crc[6];
2628
2629 drm_modeset_lock_all(dev);
2630 for_each_intel_connector(dev, connector) {
2631
2632 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2633 continue;
2634
2635 if (!connector->base.encoder)
2636 continue;
2637
2638 encoder = to_intel_encoder(connector->base.encoder);
2639 if (encoder->type != INTEL_OUTPUT_EDP)
2640 continue;
2641
2642 intel_dp = enc_to_intel_dp(&encoder->base);
2643
2644 ret = intel_dp_sink_crc(intel_dp, crc);
2645 if (ret)
2646 goto out;
2647
2648 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2649 crc[0], crc[1], crc[2],
2650 crc[3], crc[4], crc[5]);
2651 goto out;
2652 }
2653 ret = -ENODEV;
2654 out:
2655 drm_modeset_unlock_all(dev);
2656 return ret;
2657 }
2658
2659 static int i915_energy_uJ(struct seq_file *m, void *data)
2660 {
2661 struct drm_info_node *node = m->private;
2662 struct drm_device *dev = node->minor->dev;
2663 struct drm_i915_private *dev_priv = dev->dev_private;
2664 u64 power;
2665 u32 units;
2666
2667 if (INTEL_INFO(dev)->gen < 6)
2668 return -ENODEV;
2669
2670 intel_runtime_pm_get(dev_priv);
2671
2672 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2673 power = (power & 0x1f00) >> 8;
2674 units = 1000000 / (1 << power); /* convert to uJ */
2675 power = I915_READ(MCH_SECP_NRG_STTS);
2676 power *= units;
2677
2678 intel_runtime_pm_put(dev_priv);
2679
2680 seq_printf(m, "%llu", (long long unsigned)power);
2681
2682 return 0;
2683 }
2684
2685 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2686 {
2687 struct drm_info_node *node = m->private;
2688 struct drm_device *dev = node->minor->dev;
2689 struct drm_i915_private *dev_priv = dev->dev_private;
2690
2691 if (!HAS_RUNTIME_PM(dev)) {
2692 seq_puts(m, "not supported\n");
2693 return 0;
2694 }
2695
2696 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2697 seq_printf(m, "IRQs disabled: %s\n",
2698 yesno(!intel_irqs_enabled(dev_priv)));
2699 #ifdef CONFIG_PM
2700 seq_printf(m, "Usage count: %d\n",
2701 atomic_read(&dev->dev->power.usage_count));
2702 #else
2703 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2704 #endif
2705
2706 return 0;
2707 }
2708
2709 static int i915_power_domain_info(struct seq_file *m, void *unused)
2710 {
2711 struct drm_info_node *node = m->private;
2712 struct drm_device *dev = node->minor->dev;
2713 struct drm_i915_private *dev_priv = dev->dev_private;
2714 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2715 int i;
2716
2717 mutex_lock(&power_domains->lock);
2718
2719 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2720 for (i = 0; i < power_domains->power_well_count; i++) {
2721 struct i915_power_well *power_well;
2722 enum intel_display_power_domain power_domain;
2723
2724 power_well = &power_domains->power_wells[i];
2725 seq_printf(m, "%-25s %d\n", power_well->name,
2726 power_well->count);
2727
2728 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2729 power_domain++) {
2730 if (!(BIT(power_domain) & power_well->domains))
2731 continue;
2732
2733 seq_printf(m, " %-23s %d\n",
2734 intel_display_power_domain_str(power_domain),
2735 power_domains->domain_use_count[power_domain]);
2736 }
2737 }
2738
2739 mutex_unlock(&power_domains->lock);
2740
2741 return 0;
2742 }
2743
2744 static int i915_dmc_info(struct seq_file *m, void *unused)
2745 {
2746 struct drm_info_node *node = m->private;
2747 struct drm_device *dev = node->minor->dev;
2748 struct drm_i915_private *dev_priv = dev->dev_private;
2749 struct intel_csr *csr;
2750
2751 if (!HAS_CSR(dev)) {
2752 seq_puts(m, "not supported\n");
2753 return 0;
2754 }
2755
2756 csr = &dev_priv->csr;
2757
2758 intel_runtime_pm_get(dev_priv);
2759
2760 seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2761 seq_printf(m, "path: %s\n", csr->fw_path);
2762
2763 if (!csr->dmc_payload)
2764 goto out;
2765
2766 seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2767 CSR_VERSION_MINOR(csr->version));
2768
2769 if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2770 seq_printf(m, "DC3 -> DC5 count: %d\n",
2771 I915_READ(SKL_CSR_DC3_DC5_COUNT));
2772 seq_printf(m, "DC5 -> DC6 count: %d\n",
2773 I915_READ(SKL_CSR_DC5_DC6_COUNT));
2774 } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2775 seq_printf(m, "DC3 -> DC5 count: %d\n",
2776 I915_READ(BXT_CSR_DC3_DC5_COUNT));
2777 }
2778
2779 out:
2780 seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2781 seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2782 seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2783
2784 intel_runtime_pm_put(dev_priv);
2785
2786 return 0;
2787 }
2788
2789 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2790 struct drm_display_mode *mode)
2791 {
2792 int i;
2793
2794 for (i = 0; i < tabs; i++)
2795 seq_putc(m, '\t');
2796
2797 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2798 mode->base.id, mode->name,
2799 mode->vrefresh, mode->clock,
2800 mode->hdisplay, mode->hsync_start,
2801 mode->hsync_end, mode->htotal,
2802 mode->vdisplay, mode->vsync_start,
2803 mode->vsync_end, mode->vtotal,
2804 mode->type, mode->flags);
2805 }
2806
2807 static void intel_encoder_info(struct seq_file *m,
2808 struct intel_crtc *intel_crtc,
2809 struct intel_encoder *intel_encoder)
2810 {
2811 struct drm_info_node *node = m->private;
2812 struct drm_device *dev = node->minor->dev;
2813 struct drm_crtc *crtc = &intel_crtc->base;
2814 struct intel_connector *intel_connector;
2815 struct drm_encoder *encoder;
2816
2817 encoder = &intel_encoder->base;
2818 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2819 encoder->base.id, encoder->name);
2820 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2821 struct drm_connector *connector = &intel_connector->base;
2822 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2823 connector->base.id,
2824 connector->name,
2825 drm_get_connector_status_name(connector->status));
2826 if (connector->status == connector_status_connected) {
2827 struct drm_display_mode *mode = &crtc->mode;
2828 seq_printf(m, ", mode:\n");
2829 intel_seq_print_mode(m, 2, mode);
2830 } else {
2831 seq_putc(m, '\n');
2832 }
2833 }
2834 }
2835
2836 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2837 {
2838 struct drm_info_node *node = m->private;
2839 struct drm_device *dev = node->minor->dev;
2840 struct drm_crtc *crtc = &intel_crtc->base;
2841 struct intel_encoder *intel_encoder;
2842 struct drm_plane_state *plane_state = crtc->primary->state;
2843 struct drm_framebuffer *fb = plane_state->fb;
2844
2845 if (fb)
2846 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2847 fb->base.id, plane_state->src_x >> 16,
2848 plane_state->src_y >> 16, fb->width, fb->height);
2849 else
2850 seq_puts(m, "\tprimary plane disabled\n");
2851 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2852 intel_encoder_info(m, intel_crtc, intel_encoder);
2853 }
2854
2855 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2856 {
2857 struct drm_display_mode *mode = panel->fixed_mode;
2858
2859 seq_printf(m, "\tfixed mode:\n");
2860 intel_seq_print_mode(m, 2, mode);
2861 }
2862
2863 static void intel_dp_info(struct seq_file *m,
2864 struct intel_connector *intel_connector)
2865 {
2866 struct intel_encoder *intel_encoder = intel_connector->encoder;
2867 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2868
2869 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2870 seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2871 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2872 intel_panel_info(m, &intel_connector->panel);
2873 }
2874
2875 static void intel_dp_mst_info(struct seq_file *m,
2876 struct intel_connector *intel_connector)
2877 {
2878 struct intel_encoder *intel_encoder = intel_connector->encoder;
2879 struct intel_dp_mst_encoder *intel_mst =
2880 enc_to_mst(&intel_encoder->base);
2881 struct intel_digital_port *intel_dig_port = intel_mst->primary;
2882 struct intel_dp *intel_dp = &intel_dig_port->dp;
2883 bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2884 intel_connector->port);
2885
2886 seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2887 }
2888
2889 static void intel_hdmi_info(struct seq_file *m,
2890 struct intel_connector *intel_connector)
2891 {
2892 struct intel_encoder *intel_encoder = intel_connector->encoder;
2893 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2894
2895 seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2896 }
2897
2898 static void intel_lvds_info(struct seq_file *m,
2899 struct intel_connector *intel_connector)
2900 {
2901 intel_panel_info(m, &intel_connector->panel);
2902 }
2903
2904 static void intel_connector_info(struct seq_file *m,
2905 struct drm_connector *connector)
2906 {
2907 struct intel_connector *intel_connector = to_intel_connector(connector);
2908 struct intel_encoder *intel_encoder = intel_connector->encoder;
2909 struct drm_display_mode *mode;
2910
2911 seq_printf(m, "connector %d: type %s, status: %s\n",
2912 connector->base.id, connector->name,
2913 drm_get_connector_status_name(connector->status));
2914 if (connector->status == connector_status_connected) {
2915 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2916 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2917 connector->display_info.width_mm,
2918 connector->display_info.height_mm);
2919 seq_printf(m, "\tsubpixel order: %s\n",
2920 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2921 seq_printf(m, "\tCEA rev: %d\n",
2922 connector->display_info.cea_rev);
2923 }
2924 if (intel_encoder) {
2925 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2926 intel_encoder->type == INTEL_OUTPUT_EDP)
2927 intel_dp_info(m, intel_connector);
2928 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2929 intel_hdmi_info(m, intel_connector);
2930 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2931 intel_lvds_info(m, intel_connector);
2932 else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2933 intel_dp_mst_info(m, intel_connector);
2934 }
2935
2936 seq_printf(m, "\tmodes:\n");
2937 list_for_each_entry(mode, &connector->modes, head)
2938 intel_seq_print_mode(m, 2, mode);
2939 }
2940
2941 static bool cursor_active(struct drm_device *dev, int pipe)
2942 {
2943 struct drm_i915_private *dev_priv = dev->dev_private;
2944 u32 state;
2945
2946 if (IS_845G(dev) || IS_I865G(dev))
2947 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2948 else
2949 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2950
2951 return state;
2952 }
2953
2954 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2955 {
2956 struct drm_i915_private *dev_priv = dev->dev_private;
2957 u32 pos;
2958
2959 pos = I915_READ(CURPOS(pipe));
2960
2961 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2962 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2963 *x = -*x;
2964
2965 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2966 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2967 *y = -*y;
2968
2969 return cursor_active(dev, pipe);
2970 }
2971
2972 static const char *plane_type(enum drm_plane_type type)
2973 {
2974 switch (type) {
2975 case DRM_PLANE_TYPE_OVERLAY:
2976 return "OVL";
2977 case DRM_PLANE_TYPE_PRIMARY:
2978 return "PRI";
2979 case DRM_PLANE_TYPE_CURSOR:
2980 return "CUR";
2981 /*
2982 * Deliberately omitting default: to generate compiler warnings
2983 * when a new drm_plane_type gets added.
2984 */
2985 }
2986
2987 return "unknown";
2988 }
2989
2990 static const char *plane_rotation(unsigned int rotation)
2991 {
2992 static char buf[48];
2993 /*
2994 * According to doc only one DRM_ROTATE_ is allowed but this
2995 * will print them all to visualize if the values are misused
2996 */
2997 snprintf(buf, sizeof(buf),
2998 "%s%s%s%s%s%s(0x%08x)",
2999 (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3000 (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3001 (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3002 (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3003 (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3004 (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3005 rotation);
3006
3007 return buf;
3008 }
3009
3010 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3011 {
3012 struct drm_info_node *node = m->private;
3013 struct drm_device *dev = node->minor->dev;
3014 struct intel_plane *intel_plane;
3015
3016 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3017 struct drm_plane_state *state;
3018 struct drm_plane *plane = &intel_plane->base;
3019
3020 if (!plane->state) {
3021 seq_puts(m, "plane->state is NULL!\n");
3022 continue;
3023 }
3024
3025 state = plane->state;
3026
3027 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3028 plane->base.id,
3029 plane_type(intel_plane->base.type),
3030 state->crtc_x, state->crtc_y,
3031 state->crtc_w, state->crtc_h,
3032 (state->src_x >> 16),
3033 ((state->src_x & 0xffff) * 15625) >> 10,
3034 (state->src_y >> 16),
3035 ((state->src_y & 0xffff) * 15625) >> 10,
3036 (state->src_w >> 16),
3037 ((state->src_w & 0xffff) * 15625) >> 10,
3038 (state->src_h >> 16),
3039 ((state->src_h & 0xffff) * 15625) >> 10,
3040 state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3041 plane_rotation(state->rotation));
3042 }
3043 }
3044
3045 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3046 {
3047 struct intel_crtc_state *pipe_config;
3048 int num_scalers = intel_crtc->num_scalers;
3049 int i;
3050
3051 pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3052
3053 /* Not all platformas have a scaler */
3054 if (num_scalers) {
3055 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3056 num_scalers,
3057 pipe_config->scaler_state.scaler_users,
3058 pipe_config->scaler_state.scaler_id);
3059
3060 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3061 struct intel_scaler *sc =
3062 &pipe_config->scaler_state.scalers[i];
3063
3064 seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3065 i, yesno(sc->in_use), sc->mode);
3066 }
3067 seq_puts(m, "\n");
3068 } else {
3069 seq_puts(m, "\tNo scalers available on this platform\n");
3070 }
3071 }
3072
3073 static int i915_display_info(struct seq_file *m, void *unused)
3074 {
3075 struct drm_info_node *node = m->private;
3076 struct drm_device *dev = node->minor->dev;
3077 struct drm_i915_private *dev_priv = dev->dev_private;
3078 struct intel_crtc *crtc;
3079 struct drm_connector *connector;
3080
3081 intel_runtime_pm_get(dev_priv);
3082 drm_modeset_lock_all(dev);
3083 seq_printf(m, "CRTC info\n");
3084 seq_printf(m, "---------\n");
3085 for_each_intel_crtc(dev, crtc) {
3086 bool active;
3087 struct intel_crtc_state *pipe_config;
3088 int x, y;
3089
3090 pipe_config = to_intel_crtc_state(crtc->base.state);
3091
3092 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3093 crtc->base.base.id, pipe_name(crtc->pipe),
3094 yesno(pipe_config->base.active),
3095 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3096 yesno(pipe_config->dither), pipe_config->pipe_bpp);
3097
3098 if (pipe_config->base.active) {
3099 intel_crtc_info(m, crtc);
3100
3101 active = cursor_position(dev, crtc->pipe, &x, &y);
3102 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3103 yesno(crtc->cursor_base),
3104 x, y, crtc->base.cursor->state->crtc_w,
3105 crtc->base.cursor->state->crtc_h,
3106 crtc->cursor_addr, yesno(active));
3107 intel_scaler_info(m, crtc);
3108 intel_plane_info(m, crtc);
3109 }
3110
3111 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3112 yesno(!crtc->cpu_fifo_underrun_disabled),
3113 yesno(!crtc->pch_fifo_underrun_disabled));
3114 }
3115
3116 seq_printf(m, "\n");
3117 seq_printf(m, "Connector info\n");
3118 seq_printf(m, "--------------\n");
3119 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3120 intel_connector_info(m, connector);
3121 }
3122 drm_modeset_unlock_all(dev);
3123 intel_runtime_pm_put(dev_priv);
3124
3125 return 0;
3126 }
3127
3128 static int i915_semaphore_status(struct seq_file *m, void *unused)
3129 {
3130 struct drm_info_node *node = (struct drm_info_node *) m->private;
3131 struct drm_device *dev = node->minor->dev;
3132 struct drm_i915_private *dev_priv = dev->dev_private;
3133 struct intel_engine_cs *ring;
3134 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3135 int i, j, ret;
3136
3137 if (!i915_semaphore_is_enabled(dev)) {
3138 seq_puts(m, "Semaphores are disabled\n");
3139 return 0;
3140 }
3141
3142 ret = mutex_lock_interruptible(&dev->struct_mutex);
3143 if (ret)
3144 return ret;
3145 intel_runtime_pm_get(dev_priv);
3146
3147 if (IS_BROADWELL(dev)) {
3148 struct page *page;
3149 uint64_t *seqno;
3150
3151 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3152
3153 seqno = (uint64_t *)kmap_atomic(page);
3154 for_each_ring(ring, dev_priv, i) {
3155 uint64_t offset;
3156
3157 seq_printf(m, "%s\n", ring->name);
3158
3159 seq_puts(m, " Last signal:");
3160 for (j = 0; j < num_rings; j++) {
3161 offset = i * I915_NUM_RINGS + j;
3162 seq_printf(m, "0x%08llx (0x%02llx) ",
3163 seqno[offset], offset * 8);
3164 }
3165 seq_putc(m, '\n');
3166
3167 seq_puts(m, " Last wait: ");
3168 for (j = 0; j < num_rings; j++) {
3169 offset = i + (j * I915_NUM_RINGS);
3170 seq_printf(m, "0x%08llx (0x%02llx) ",
3171 seqno[offset], offset * 8);
3172 }
3173 seq_putc(m, '\n');
3174
3175 }
3176 kunmap_atomic(seqno);
3177 } else {
3178 seq_puts(m, " Last signal:");
3179 for_each_ring(ring, dev_priv, i)
3180 for (j = 0; j < num_rings; j++)
3181 seq_printf(m, "0x%08x\n",
3182 I915_READ(ring->semaphore.mbox.signal[j]));
3183 seq_putc(m, '\n');
3184 }
3185
3186 seq_puts(m, "\nSync seqno:\n");
3187 for_each_ring(ring, dev_priv, i) {
3188 for (j = 0; j < num_rings; j++) {
3189 seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
3190 }
3191 seq_putc(m, '\n');
3192 }
3193 seq_putc(m, '\n');
3194
3195 intel_runtime_pm_put(dev_priv);
3196 mutex_unlock(&dev->struct_mutex);
3197 return 0;
3198 }
3199
3200 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3201 {
3202 struct drm_info_node *node = (struct drm_info_node *) m->private;
3203 struct drm_device *dev = node->minor->dev;
3204 struct drm_i915_private *dev_priv = dev->dev_private;
3205 int i;
3206
3207 drm_modeset_lock_all(dev);
3208 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3209 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3210
3211 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3212 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3213 pll->config.crtc_mask, pll->active, yesno(pll->on));
3214 seq_printf(m, " tracked hardware state:\n");
3215 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
3216 seq_printf(m, " dpll_md: 0x%08x\n",
3217 pll->config.hw_state.dpll_md);
3218 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
3219 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
3220 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
3221 }
3222 drm_modeset_unlock_all(dev);
3223
3224 return 0;
3225 }
3226
3227 static int i915_wa_registers(struct seq_file *m, void *unused)
3228 {
3229 int i;
3230 int ret;
3231 struct intel_engine_cs *ring;
3232 struct drm_info_node *node = (struct drm_info_node *) m->private;
3233 struct drm_device *dev = node->minor->dev;
3234 struct drm_i915_private *dev_priv = dev->dev_private;
3235 struct i915_workarounds *workarounds = &dev_priv->workarounds;
3236
3237 ret = mutex_lock_interruptible(&dev->struct_mutex);
3238 if (ret)
3239 return ret;
3240
3241 intel_runtime_pm_get(dev_priv);
3242
3243 seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3244 for_each_ring(ring, dev_priv, i)
3245 seq_printf(m, "HW whitelist count for %s: %d\n",
3246 ring->name, workarounds->hw_whitelist_count[i]);
3247 for (i = 0; i < workarounds->count; ++i) {
3248 i915_reg_t addr;
3249 u32 mask, value, read;
3250 bool ok;
3251
3252 addr = workarounds->reg[i].addr;
3253 mask = workarounds->reg[i].mask;
3254 value = workarounds->reg[i].value;
3255 read = I915_READ(addr);
3256 ok = (value & mask) == (read & mask);
3257 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3258 i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3259 }
3260
3261 intel_runtime_pm_put(dev_priv);
3262 mutex_unlock(&dev->struct_mutex);
3263
3264 return 0;
3265 }
3266
3267 static int i915_ddb_info(struct seq_file *m, void *unused)
3268 {
3269 struct drm_info_node *node = m->private;
3270 struct drm_device *dev = node->minor->dev;
3271 struct drm_i915_private *dev_priv = dev->dev_private;
3272 struct skl_ddb_allocation *ddb;
3273 struct skl_ddb_entry *entry;
3274 enum pipe pipe;
3275 int plane;
3276
3277 if (INTEL_INFO(dev)->gen < 9)
3278 return 0;
3279
3280 drm_modeset_lock_all(dev);
3281
3282 ddb = &dev_priv->wm.skl_hw.ddb;
3283
3284 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3285
3286 for_each_pipe(dev_priv, pipe) {
3287 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3288
3289 for_each_plane(dev_priv, pipe, plane) {
3290 entry = &ddb->plane[pipe][plane];
3291 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
3292 entry->start, entry->end,
3293 skl_ddb_entry_size(entry));
3294 }
3295
3296 entry = &ddb->plane[pipe][PLANE_CURSOR];
3297 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
3298 entry->end, skl_ddb_entry_size(entry));
3299 }
3300
3301 drm_modeset_unlock_all(dev);
3302
3303 return 0;
3304 }
3305
3306 static void drrs_status_per_crtc(struct seq_file *m,
3307 struct drm_device *dev, struct intel_crtc *intel_crtc)
3308 {
3309 struct intel_encoder *intel_encoder;
3310 struct drm_i915_private *dev_priv = dev->dev_private;
3311 struct i915_drrs *drrs = &dev_priv->drrs;
3312 int vrefresh = 0;
3313
3314 for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3315 /* Encoder connected on this CRTC */
3316 switch (intel_encoder->type) {
3317 case INTEL_OUTPUT_EDP:
3318 seq_puts(m, "eDP:\n");
3319 break;
3320 case INTEL_OUTPUT_DSI:
3321 seq_puts(m, "DSI:\n");
3322 break;
3323 case INTEL_OUTPUT_HDMI:
3324 seq_puts(m, "HDMI:\n");
3325 break;
3326 case INTEL_OUTPUT_DISPLAYPORT:
3327 seq_puts(m, "DP:\n");
3328 break;
3329 default:
3330 seq_printf(m, "Other encoder (id=%d).\n",
3331 intel_encoder->type);
3332 return;
3333 }
3334 }
3335
3336 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3337 seq_puts(m, "\tVBT: DRRS_type: Static");
3338 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3339 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3340 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3341 seq_puts(m, "\tVBT: DRRS_type: None");
3342 else
3343 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3344
3345 seq_puts(m, "\n\n");
3346
3347 if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3348 struct intel_panel *panel;
3349
3350 mutex_lock(&drrs->mutex);
3351 /* DRRS Supported */
3352 seq_puts(m, "\tDRRS Supported: Yes\n");
3353
3354 /* disable_drrs() will make drrs->dp NULL */
3355 if (!drrs->dp) {
3356 seq_puts(m, "Idleness DRRS: Disabled");
3357 mutex_unlock(&drrs->mutex);
3358 return;
3359 }
3360
3361 panel = &drrs->dp->attached_connector->panel;
3362 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3363 drrs->busy_frontbuffer_bits);
3364
3365 seq_puts(m, "\n\t\t");
3366 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3367 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3368 vrefresh = panel->fixed_mode->vrefresh;
3369 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3370 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3371 vrefresh = panel->downclock_mode->vrefresh;
3372 } else {
3373 seq_printf(m, "DRRS_State: Unknown(%d)\n",
3374 drrs->refresh_rate_type);
3375 mutex_unlock(&drrs->mutex);
3376 return;
3377 }
3378 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3379
3380 seq_puts(m, "\n\t\t");
3381 mutex_unlock(&drrs->mutex);
3382 } else {
3383 /* DRRS not supported. Print the VBT parameter*/
3384 seq_puts(m, "\tDRRS Supported : No");
3385 }
3386 seq_puts(m, "\n");
3387 }
3388
3389 static int i915_drrs_status(struct seq_file *m, void *unused)
3390 {
3391 struct drm_info_node *node = m->private;
3392 struct drm_device *dev = node->minor->dev;
3393 struct intel_crtc *intel_crtc;
3394 int active_crtc_cnt = 0;
3395
3396 for_each_intel_crtc(dev, intel_crtc) {
3397 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3398
3399 if (intel_crtc->base.state->active) {
3400 active_crtc_cnt++;
3401 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
3402
3403 drrs_status_per_crtc(m, dev, intel_crtc);
3404 }
3405
3406 drm_modeset_unlock(&intel_crtc->base.mutex);
3407 }
3408
3409 if (!active_crtc_cnt)
3410 seq_puts(m, "No active crtc found\n");
3411
3412 return 0;
3413 }
3414
3415 struct pipe_crc_info {
3416 const char *name;
3417 struct drm_device *dev;
3418 enum pipe pipe;
3419 };
3420
3421 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3422 {
3423 struct drm_info_node *node = (struct drm_info_node *) m->private;
3424 struct drm_device *dev = node->minor->dev;
3425 struct drm_encoder *encoder;
3426 struct intel_encoder *intel_encoder;
3427 struct intel_digital_port *intel_dig_port;
3428 drm_modeset_lock_all(dev);
3429 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3430 intel_encoder = to_intel_encoder(encoder);
3431 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3432 continue;
3433 intel_dig_port = enc_to_dig_port(encoder);
3434 if (!intel_dig_port->dp.can_mst)
3435 continue;
3436
3437 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3438 }
3439 drm_modeset_unlock_all(dev);
3440 return 0;
3441 }
3442
3443 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3444 {
3445 struct pipe_crc_info *info = inode->i_private;
3446 struct drm_i915_private *dev_priv = info->dev->dev_private;
3447 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3448
3449 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3450 return -ENODEV;
3451
3452 spin_lock_irq(&pipe_crc->lock);
3453
3454 if (pipe_crc->opened) {
3455 spin_unlock_irq(&pipe_crc->lock);
3456 return -EBUSY; /* already open */
3457 }
3458
3459 pipe_crc->opened = true;
3460 filep->private_data = inode->i_private;
3461
3462 spin_unlock_irq(&pipe_crc->lock);
3463
3464 return 0;
3465 }
3466
3467 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3468 {
3469 struct pipe_crc_info *info = inode->i_private;
3470 struct drm_i915_private *dev_priv = info->dev->dev_private;
3471 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3472
3473 spin_lock_irq(&pipe_crc->lock);
3474 pipe_crc->opened = false;
3475 spin_unlock_irq(&pipe_crc->lock);
3476
3477 return 0;
3478 }
3479
3480 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3481 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
3482 /* account for \'0' */
3483 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
3484
3485 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3486 {
3487 assert_spin_locked(&pipe_crc->lock);
3488 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3489 INTEL_PIPE_CRC_ENTRIES_NR);
3490 }
3491
3492 static ssize_t
3493 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3494 loff_t *pos)
3495 {
3496 struct pipe_crc_info *info = filep->private_data;
3497 struct drm_device *dev = info->dev;
3498 struct drm_i915_private *dev_priv = dev->dev_private;
3499 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3500 char buf[PIPE_CRC_BUFFER_LEN];
3501 int n_entries;
3502 ssize_t bytes_read;
3503
3504 /*
3505 * Don't allow user space to provide buffers not big enough to hold
3506 * a line of data.
3507 */
3508 if (count < PIPE_CRC_LINE_LEN)
3509 return -EINVAL;
3510
3511 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3512 return 0;
3513
3514 /* nothing to read */
3515 spin_lock_irq(&pipe_crc->lock);
3516 while (pipe_crc_data_count(pipe_crc) == 0) {
3517 int ret;
3518
3519 if (filep->f_flags & O_NONBLOCK) {
3520 spin_unlock_irq(&pipe_crc->lock);
3521 return -EAGAIN;
3522 }
3523
3524 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3525 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3526 if (ret) {
3527 spin_unlock_irq(&pipe_crc->lock);
3528 return ret;
3529 }
3530 }
3531
3532 /* We now have one or more entries to read */
3533 n_entries = count / PIPE_CRC_LINE_LEN;
3534
3535 bytes_read = 0;
3536 while (n_entries > 0) {
3537 struct intel_pipe_crc_entry *entry =
3538 &pipe_crc->entries[pipe_crc->tail];
3539 int ret;
3540
3541 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3542 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3543 break;
3544
3545 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3546 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3547
3548 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3549 "%8u %8x %8x %8x %8x %8x\n",
3550 entry->frame, entry->crc[0],
3551 entry->crc[1], entry->crc[2],
3552 entry->crc[3], entry->crc[4]);
3553
3554 spin_unlock_irq(&pipe_crc->lock);
3555
3556 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3557 if (ret == PIPE_CRC_LINE_LEN)
3558 return -EFAULT;
3559
3560 user_buf += PIPE_CRC_LINE_LEN;
3561 n_entries--;
3562
3563 spin_lock_irq(&pipe_crc->lock);
3564 }
3565
3566 spin_unlock_irq(&pipe_crc->lock);
3567
3568 return bytes_read;
3569 }
3570
3571 static const struct file_operations i915_pipe_crc_fops = {
3572 .owner = THIS_MODULE,
3573 .open = i915_pipe_crc_open,
3574 .read = i915_pipe_crc_read,
3575 .release = i915_pipe_crc_release,
3576 };
3577
3578 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3579 {
3580 .name = "i915_pipe_A_crc",
3581 .pipe = PIPE_A,
3582 },
3583 {
3584 .name = "i915_pipe_B_crc",
3585 .pipe = PIPE_B,
3586 },
3587 {
3588 .name = "i915_pipe_C_crc",
3589 .pipe = PIPE_C,
3590 },
3591 };
3592
3593 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3594 enum pipe pipe)
3595 {
3596 struct drm_device *dev = minor->dev;
3597 struct dentry *ent;
3598 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3599
3600 info->dev = dev;
3601 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3602 &i915_pipe_crc_fops);
3603 if (!ent)
3604 return -ENOMEM;
3605
3606 return drm_add_fake_info_node(minor, ent, info);
3607 }
3608
3609 static const char * const pipe_crc_sources[] = {
3610 "none",
3611 "plane1",
3612 "plane2",
3613 "pf",
3614 "pipe",
3615 "TV",
3616 "DP-B",
3617 "DP-C",
3618 "DP-D",
3619 "auto",
3620 };
3621
3622 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3623 {
3624 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3625 return pipe_crc_sources[source];
3626 }
3627
3628 static int display_crc_ctl_show(struct seq_file *m, void *data)
3629 {
3630 struct drm_device *dev = m->private;
3631 struct drm_i915_private *dev_priv = dev->dev_private;
3632 int i;
3633
3634 for (i = 0; i < I915_MAX_PIPES; i++)
3635 seq_printf(m, "%c %s\n", pipe_name(i),
3636 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3637
3638 return 0;
3639 }
3640
3641 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3642 {
3643 struct drm_device *dev = inode->i_private;
3644
3645 return single_open(file, display_crc_ctl_show, dev);
3646 }
3647
3648 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3649 uint32_t *val)
3650 {
3651 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3652 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3653
3654 switch (*source) {
3655 case INTEL_PIPE_CRC_SOURCE_PIPE:
3656 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3657 break;
3658 case INTEL_PIPE_CRC_SOURCE_NONE:
3659 *val = 0;
3660 break;
3661 default:
3662 return -EINVAL;
3663 }
3664
3665 return 0;
3666 }
3667
3668 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3669 enum intel_pipe_crc_source *source)
3670 {
3671 struct intel_encoder *encoder;
3672 struct intel_crtc *crtc;
3673 struct intel_digital_port *dig_port;
3674 int ret = 0;
3675
3676 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3677
3678 drm_modeset_lock_all(dev);
3679 for_each_intel_encoder(dev, encoder) {
3680 if (!encoder->base.crtc)
3681 continue;
3682
3683 crtc = to_intel_crtc(encoder->base.crtc);
3684
3685 if (crtc->pipe != pipe)
3686 continue;
3687
3688 switch (encoder->type) {
3689 case INTEL_OUTPUT_TVOUT:
3690 *source = INTEL_PIPE_CRC_SOURCE_TV;
3691 break;
3692 case INTEL_OUTPUT_DISPLAYPORT:
3693 case INTEL_OUTPUT_EDP:
3694 dig_port = enc_to_dig_port(&encoder->base);
3695 switch (dig_port->port) {
3696 case PORT_B:
3697 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3698 break;
3699 case PORT_C:
3700 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3701 break;
3702 case PORT_D:
3703 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3704 break;
3705 default:
3706 WARN(1, "nonexisting DP port %c\n",
3707 port_name(dig_port->port));
3708 break;
3709 }
3710 break;
3711 default:
3712 break;
3713 }
3714 }
3715 drm_modeset_unlock_all(dev);
3716
3717 return ret;
3718 }
3719
3720 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3721 enum pipe pipe,
3722 enum intel_pipe_crc_source *source,
3723 uint32_t *val)
3724 {
3725 struct drm_i915_private *dev_priv = dev->dev_private;
3726 bool need_stable_symbols = false;
3727
3728 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3729 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3730 if (ret)
3731 return ret;
3732 }
3733
3734 switch (*source) {
3735 case INTEL_PIPE_CRC_SOURCE_PIPE:
3736 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3737 break;
3738 case INTEL_PIPE_CRC_SOURCE_DP_B:
3739 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3740 need_stable_symbols = true;
3741 break;
3742 case INTEL_PIPE_CRC_SOURCE_DP_C:
3743 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3744 need_stable_symbols = true;
3745 break;
3746 case INTEL_PIPE_CRC_SOURCE_DP_D:
3747 if (!IS_CHERRYVIEW(dev))
3748 return -EINVAL;
3749 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3750 need_stable_symbols = true;
3751 break;
3752 case INTEL_PIPE_CRC_SOURCE_NONE:
3753 *val = 0;
3754 break;
3755 default:
3756 return -EINVAL;
3757 }
3758
3759 /*
3760 * When the pipe CRC tap point is after the transcoders we need
3761 * to tweak symbol-level features to produce a deterministic series of
3762 * symbols for a given frame. We need to reset those features only once
3763 * a frame (instead of every nth symbol):
3764 * - DC-balance: used to ensure a better clock recovery from the data
3765 * link (SDVO)
3766 * - DisplayPort scrambling: used for EMI reduction
3767 */
3768 if (need_stable_symbols) {
3769 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3770
3771 tmp |= DC_BALANCE_RESET_VLV;
3772 switch (pipe) {
3773 case PIPE_A:
3774 tmp |= PIPE_A_SCRAMBLE_RESET;
3775 break;
3776 case PIPE_B:
3777 tmp |= PIPE_B_SCRAMBLE_RESET;
3778 break;
3779 case PIPE_C:
3780 tmp |= PIPE_C_SCRAMBLE_RESET;
3781 break;
3782 default:
3783 return -EINVAL;
3784 }
3785 I915_WRITE(PORT_DFT2_G4X, tmp);
3786 }
3787
3788 return 0;
3789 }
3790
3791 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3792 enum pipe pipe,
3793 enum intel_pipe_crc_source *source,
3794 uint32_t *val)
3795 {
3796 struct drm_i915_private *dev_priv = dev->dev_private;
3797 bool need_stable_symbols = false;
3798
3799 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3800 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3801 if (ret)
3802 return ret;
3803 }
3804
3805 switch (*source) {
3806 case INTEL_PIPE_CRC_SOURCE_PIPE:
3807 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3808 break;
3809 case INTEL_PIPE_CRC_SOURCE_TV:
3810 if (!SUPPORTS_TV(dev))
3811 return -EINVAL;
3812 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3813 break;
3814 case INTEL_PIPE_CRC_SOURCE_DP_B:
3815 if (!IS_G4X(dev))
3816 return -EINVAL;
3817 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3818 need_stable_symbols = true;
3819 break;
3820 case INTEL_PIPE_CRC_SOURCE_DP_C:
3821 if (!IS_G4X(dev))
3822 return -EINVAL;
3823 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3824 need_stable_symbols = true;
3825 break;
3826 case INTEL_PIPE_CRC_SOURCE_DP_D:
3827 if (!IS_G4X(dev))
3828 return -EINVAL;
3829 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3830 need_stable_symbols = true;
3831 break;
3832 case INTEL_PIPE_CRC_SOURCE_NONE:
3833 *val = 0;
3834 break;
3835 default:
3836 return -EINVAL;
3837 }
3838
3839 /*
3840 * When the pipe CRC tap point is after the transcoders we need
3841 * to tweak symbol-level features to produce a deterministic series of
3842 * symbols for a given frame. We need to reset those features only once
3843 * a frame (instead of every nth symbol):
3844 * - DC-balance: used to ensure a better clock recovery from the data
3845 * link (SDVO)
3846 * - DisplayPort scrambling: used for EMI reduction
3847 */
3848 if (need_stable_symbols) {
3849 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3850
3851 WARN_ON(!IS_G4X(dev));
3852
3853 I915_WRITE(PORT_DFT_I9XX,
3854 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3855
3856 if (pipe == PIPE_A)
3857 tmp |= PIPE_A_SCRAMBLE_RESET;
3858 else
3859 tmp |= PIPE_B_SCRAMBLE_RESET;
3860
3861 I915_WRITE(PORT_DFT2_G4X, tmp);
3862 }
3863
3864 return 0;
3865 }
3866
3867 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3868 enum pipe pipe)
3869 {
3870 struct drm_i915_private *dev_priv = dev->dev_private;
3871 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3872
3873 switch (pipe) {
3874 case PIPE_A:
3875 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3876 break;
3877 case PIPE_B:
3878 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3879 break;
3880 case PIPE_C:
3881 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3882 break;
3883 default:
3884 return;
3885 }
3886 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3887 tmp &= ~DC_BALANCE_RESET_VLV;
3888 I915_WRITE(PORT_DFT2_G4X, tmp);
3889
3890 }
3891
3892 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3893 enum pipe pipe)
3894 {
3895 struct drm_i915_private *dev_priv = dev->dev_private;
3896 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3897
3898 if (pipe == PIPE_A)
3899 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3900 else
3901 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3902 I915_WRITE(PORT_DFT2_G4X, tmp);
3903
3904 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3905 I915_WRITE(PORT_DFT_I9XX,
3906 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3907 }
3908 }
3909
3910 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3911 uint32_t *val)
3912 {
3913 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3914 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3915
3916 switch (*source) {
3917 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3918 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3919 break;
3920 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3921 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3922 break;
3923 case INTEL_PIPE_CRC_SOURCE_PIPE:
3924 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3925 break;
3926 case INTEL_PIPE_CRC_SOURCE_NONE:
3927 *val = 0;
3928 break;
3929 default:
3930 return -EINVAL;
3931 }
3932
3933 return 0;
3934 }
3935
3936 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3937 {
3938 struct drm_i915_private *dev_priv = dev->dev_private;
3939 struct intel_crtc *crtc =
3940 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3941 struct intel_crtc_state *pipe_config;
3942 struct drm_atomic_state *state;
3943 int ret = 0;
3944
3945 drm_modeset_lock_all(dev);
3946 state = drm_atomic_state_alloc(dev);
3947 if (!state) {
3948 ret = -ENOMEM;
3949 goto out;
3950 }
3951
3952 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3953 pipe_config = intel_atomic_get_crtc_state(state, crtc);
3954 if (IS_ERR(pipe_config)) {
3955 ret = PTR_ERR(pipe_config);
3956 goto out;
3957 }
3958
3959 pipe_config->pch_pfit.force_thru = enable;
3960 if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3961 pipe_config->pch_pfit.enabled != enable)
3962 pipe_config->base.connectors_changed = true;
3963
3964 ret = drm_atomic_commit(state);
3965 out:
3966 drm_modeset_unlock_all(dev);
3967 WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3968 if (ret)
3969 drm_atomic_state_free(state);
3970 }
3971
3972 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3973 enum pipe pipe,
3974 enum intel_pipe_crc_source *source,
3975 uint32_t *val)
3976 {
3977 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3978 *source = INTEL_PIPE_CRC_SOURCE_PF;
3979
3980 switch (*source) {
3981 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3982 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3983 break;
3984 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3985 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3986 break;
3987 case INTEL_PIPE_CRC_SOURCE_PF:
3988 if (IS_HASWELL(dev) && pipe == PIPE_A)
3989 hsw_trans_edp_pipe_A_crc_wa(dev, true);
3990
3991 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3992 break;
3993 case INTEL_PIPE_CRC_SOURCE_NONE:
3994 *val = 0;
3995 break;
3996 default:
3997 return -EINVAL;
3998 }
3999
4000 return 0;
4001 }
4002
4003 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4004 enum intel_pipe_crc_source source)
4005 {
4006 struct drm_i915_private *dev_priv = dev->dev_private;
4007 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4008 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4009 pipe));
4010 enum intel_display_power_domain power_domain;
4011 u32 val = 0; /* shut up gcc */
4012 int ret;
4013
4014 if (pipe_crc->source == source)
4015 return 0;
4016
4017 /* forbid changing the source without going back to 'none' */
4018 if (pipe_crc->source && source)
4019 return -EINVAL;
4020
4021 power_domain = POWER_DOMAIN_PIPE(pipe);
4022 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4023 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4024 return -EIO;
4025 }
4026
4027 if (IS_GEN2(dev))
4028 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4029 else if (INTEL_INFO(dev)->gen < 5)
4030 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4031 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4032 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4033 else if (IS_GEN5(dev) || IS_GEN6(dev))
4034 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4035 else
4036 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4037
4038 if (ret != 0)
4039 goto out;
4040
4041 /* none -> real source transition */
4042 if (source) {
4043 struct intel_pipe_crc_entry *entries;
4044
4045 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4046 pipe_name(pipe), pipe_crc_source_name(source));
4047
4048 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4049 sizeof(pipe_crc->entries[0]),
4050 GFP_KERNEL);
4051 if (!entries) {
4052 ret = -ENOMEM;
4053 goto out;
4054 }
4055
4056 /*
4057 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4058 * enabled and disabled dynamically based on package C states,
4059 * user space can't make reliable use of the CRCs, so let's just
4060 * completely disable it.
4061 */
4062 hsw_disable_ips(crtc);
4063
4064 spin_lock_irq(&pipe_crc->lock);
4065 kfree(pipe_crc->entries);
4066 pipe_crc->entries = entries;
4067 pipe_crc->head = 0;
4068 pipe_crc->tail = 0;
4069 spin_unlock_irq(&pipe_crc->lock);
4070 }
4071
4072 pipe_crc->source = source;
4073
4074 I915_WRITE(PIPE_CRC_CTL(pipe), val);
4075 POSTING_READ(PIPE_CRC_CTL(pipe));
4076
4077 /* real source -> none transition */
4078 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4079 struct intel_pipe_crc_entry *entries;
4080 struct intel_crtc *crtc =
4081 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4082
4083 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4084 pipe_name(pipe));
4085
4086 drm_modeset_lock(&crtc->base.mutex, NULL);
4087 if (crtc->base.state->active)
4088 intel_wait_for_vblank(dev, pipe);
4089 drm_modeset_unlock(&crtc->base.mutex);
4090
4091 spin_lock_irq(&pipe_crc->lock);
4092 entries = pipe_crc->entries;
4093 pipe_crc->entries = NULL;
4094 pipe_crc->head = 0;
4095 pipe_crc->tail = 0;
4096 spin_unlock_irq(&pipe_crc->lock);
4097
4098 kfree(entries);
4099
4100 if (IS_G4X(dev))
4101 g4x_undo_pipe_scramble_reset(dev, pipe);
4102 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4103 vlv_undo_pipe_scramble_reset(dev, pipe);
4104 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4105 hsw_trans_edp_pipe_A_crc_wa(dev, false);
4106
4107 hsw_enable_ips(crtc);
4108 }
4109
4110 ret = 0;
4111
4112 out:
4113 intel_display_power_put(dev_priv, power_domain);
4114
4115 return ret;
4116 }
4117
4118 /*
4119 * Parse pipe CRC command strings:
4120 * command: wsp* object wsp+ name wsp+ source wsp*
4121 * object: 'pipe'
4122 * name: (A | B | C)
4123 * source: (none | plane1 | plane2 | pf)
4124 * wsp: (#0x20 | #0x9 | #0xA)+
4125 *
4126 * eg.:
4127 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
4128 * "pipe A none" -> Stop CRC
4129 */
4130 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4131 {
4132 int n_words = 0;
4133
4134 while (*buf) {
4135 char *end;
4136
4137 /* skip leading white space */
4138 buf = skip_spaces(buf);
4139 if (!*buf)
4140 break; /* end of buffer */
4141
4142 /* find end of word */
4143 for (end = buf; *end && !isspace(*end); end++)
4144 ;
4145
4146 if (n_words == max_words) {
4147 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4148 max_words);
4149 return -EINVAL; /* ran out of words[] before bytes */
4150 }
4151
4152 if (*end)
4153 *end++ = '\0';
4154 words[n_words++] = buf;
4155 buf = end;
4156 }
4157
4158 return n_words;
4159 }
4160
4161 enum intel_pipe_crc_object {
4162 PIPE_CRC_OBJECT_PIPE,
4163 };
4164
4165 static const char * const pipe_crc_objects[] = {
4166 "pipe",
4167 };
4168
4169 static int
4170 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4171 {
4172 int i;
4173
4174 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4175 if (!strcmp(buf, pipe_crc_objects[i])) {
4176 *o = i;
4177 return 0;
4178 }
4179
4180 return -EINVAL;
4181 }
4182
4183 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4184 {
4185 const char name = buf[0];
4186
4187 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4188 return -EINVAL;
4189
4190 *pipe = name - 'A';
4191
4192 return 0;
4193 }
4194
4195 static int
4196 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4197 {
4198 int i;
4199
4200 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4201 if (!strcmp(buf, pipe_crc_sources[i])) {
4202 *s = i;
4203 return 0;
4204 }
4205
4206 return -EINVAL;
4207 }
4208
4209 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4210 {
4211 #define N_WORDS 3
4212 int n_words;
4213 char *words[N_WORDS];
4214 enum pipe pipe;
4215 enum intel_pipe_crc_object object;
4216 enum intel_pipe_crc_source source;
4217
4218 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4219 if (n_words != N_WORDS) {
4220 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4221 N_WORDS);
4222 return -EINVAL;
4223 }
4224
4225 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4226 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4227 return -EINVAL;
4228 }
4229
4230 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4231 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4232 return -EINVAL;
4233 }
4234
4235 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4236 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4237 return -EINVAL;
4238 }
4239
4240 return pipe_crc_set_source(dev, pipe, source);
4241 }
4242
4243 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4244 size_t len, loff_t *offp)
4245 {
4246 struct seq_file *m = file->private_data;
4247 struct drm_device *dev = m->private;
4248 char *tmpbuf;
4249 int ret;
4250
4251 if (len == 0)
4252 return 0;
4253
4254 if (len > PAGE_SIZE - 1) {
4255 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4256 PAGE_SIZE);
4257 return -E2BIG;
4258 }
4259
4260 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4261 if (!tmpbuf)
4262 return -ENOMEM;
4263
4264 if (copy_from_user(tmpbuf, ubuf, len)) {
4265 ret = -EFAULT;
4266 goto out;
4267 }
4268 tmpbuf[len] = '\0';
4269
4270 ret = display_crc_ctl_parse(dev, tmpbuf, len);
4271
4272 out:
4273 kfree(tmpbuf);
4274 if (ret < 0)
4275 return ret;
4276
4277 *offp += len;
4278 return len;
4279 }
4280
4281 static const struct file_operations i915_display_crc_ctl_fops = {
4282 .owner = THIS_MODULE,
4283 .open = display_crc_ctl_open,
4284 .read = seq_read,
4285 .llseek = seq_lseek,
4286 .release = single_release,
4287 .write = display_crc_ctl_write
4288 };
4289
4290 static ssize_t i915_displayport_test_active_write(struct file *file,
4291 const char __user *ubuf,
4292 size_t len, loff_t *offp)
4293 {
4294 char *input_buffer;
4295 int status = 0;
4296 struct drm_device *dev;
4297 struct drm_connector *connector;
4298 struct list_head *connector_list;
4299 struct intel_dp *intel_dp;
4300 int val = 0;
4301
4302 dev = ((struct seq_file *)file->private_data)->private;
4303
4304 connector_list = &dev->mode_config.connector_list;
4305
4306 if (len == 0)
4307 return 0;
4308
4309 input_buffer = kmalloc(len + 1, GFP_KERNEL);
4310 if (!input_buffer)
4311 return -ENOMEM;
4312
4313 if (copy_from_user(input_buffer, ubuf, len)) {
4314 status = -EFAULT;
4315 goto out;
4316 }
4317
4318 input_buffer[len] = '\0';
4319 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4320
4321 list_for_each_entry(connector, connector_list, head) {
4322
4323 if (connector->connector_type !=
4324 DRM_MODE_CONNECTOR_DisplayPort)
4325 continue;
4326
4327 if (connector->status == connector_status_connected &&
4328 connector->encoder != NULL) {
4329 intel_dp = enc_to_intel_dp(connector->encoder);
4330 status = kstrtoint(input_buffer, 10, &val);
4331 if (status < 0)
4332 goto out;
4333 DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4334 /* To prevent erroneous activation of the compliance
4335 * testing code, only accept an actual value of 1 here
4336 */
4337 if (val == 1)
4338 intel_dp->compliance_test_active = 1;
4339 else
4340 intel_dp->compliance_test_active = 0;
4341 }
4342 }
4343 out:
4344 kfree(input_buffer);
4345 if (status < 0)
4346 return status;
4347
4348 *offp += len;
4349 return len;
4350 }
4351
4352 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4353 {
4354 struct drm_device *dev = m->private;
4355 struct drm_connector *connector;
4356 struct list_head *connector_list = &dev->mode_config.connector_list;
4357 struct intel_dp *intel_dp;
4358
4359 list_for_each_entry(connector, connector_list, head) {
4360
4361 if (connector->connector_type !=
4362 DRM_MODE_CONNECTOR_DisplayPort)
4363 continue;
4364
4365 if (connector->status == connector_status_connected &&
4366 connector->encoder != NULL) {
4367 intel_dp = enc_to_intel_dp(connector->encoder);
4368 if (intel_dp->compliance_test_active)
4369 seq_puts(m, "1");
4370 else
4371 seq_puts(m, "0");
4372 } else
4373 seq_puts(m, "0");
4374 }
4375
4376 return 0;
4377 }
4378
4379 static int i915_displayport_test_active_open(struct inode *inode,
4380 struct file *file)
4381 {
4382 struct drm_device *dev = inode->i_private;
4383
4384 return single_open(file, i915_displayport_test_active_show, dev);
4385 }
4386
4387 static const struct file_operations i915_displayport_test_active_fops = {
4388 .owner = THIS_MODULE,
4389 .open = i915_displayport_test_active_open,
4390 .read = seq_read,
4391 .llseek = seq_lseek,
4392 .release = single_release,
4393 .write = i915_displayport_test_active_write
4394 };
4395
4396 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4397 {
4398 struct drm_device *dev = m->private;
4399 struct drm_connector *connector;
4400 struct list_head *connector_list = &dev->mode_config.connector_list;
4401 struct intel_dp *intel_dp;
4402
4403 list_for_each_entry(connector, connector_list, head) {
4404
4405 if (connector->connector_type !=
4406 DRM_MODE_CONNECTOR_DisplayPort)
4407 continue;
4408
4409 if (connector->status == connector_status_connected &&
4410 connector->encoder != NULL) {
4411 intel_dp = enc_to_intel_dp(connector->encoder);
4412 seq_printf(m, "%lx", intel_dp->compliance_test_data);
4413 } else
4414 seq_puts(m, "0");
4415 }
4416
4417 return 0;
4418 }
4419 static int i915_displayport_test_data_open(struct inode *inode,
4420 struct file *file)
4421 {
4422 struct drm_device *dev = inode->i_private;
4423
4424 return single_open(file, i915_displayport_test_data_show, dev);
4425 }
4426
4427 static const struct file_operations i915_displayport_test_data_fops = {
4428 .owner = THIS_MODULE,
4429 .open = i915_displayport_test_data_open,
4430 .read = seq_read,
4431 .llseek = seq_lseek,
4432 .release = single_release
4433 };
4434
4435 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4436 {
4437 struct drm_device *dev = m->private;
4438 struct drm_connector *connector;
4439 struct list_head *connector_list = &dev->mode_config.connector_list;
4440 struct intel_dp *intel_dp;
4441
4442 list_for_each_entry(connector, connector_list, head) {
4443
4444 if (connector->connector_type !=
4445 DRM_MODE_CONNECTOR_DisplayPort)
4446 continue;
4447
4448 if (connector->status == connector_status_connected &&
4449 connector->encoder != NULL) {
4450 intel_dp = enc_to_intel_dp(connector->encoder);
4451 seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4452 } else
4453 seq_puts(m, "0");
4454 }
4455
4456 return 0;
4457 }
4458
4459 static int i915_displayport_test_type_open(struct inode *inode,
4460 struct file *file)
4461 {
4462 struct drm_device *dev = inode->i_private;
4463
4464 return single_open(file, i915_displayport_test_type_show, dev);
4465 }
4466
4467 static const struct file_operations i915_displayport_test_type_fops = {
4468 .owner = THIS_MODULE,
4469 .open = i915_displayport_test_type_open,
4470 .read = seq_read,
4471 .llseek = seq_lseek,
4472 .release = single_release
4473 };
4474
4475 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4476 {
4477 struct drm_device *dev = m->private;
4478 int level;
4479 int num_levels;
4480
4481 if (IS_CHERRYVIEW(dev))
4482 num_levels = 3;
4483 else if (IS_VALLEYVIEW(dev))
4484 num_levels = 1;
4485 else
4486 num_levels = ilk_wm_max_level(dev) + 1;
4487
4488 drm_modeset_lock_all(dev);
4489
4490 for (level = 0; level < num_levels; level++) {
4491 unsigned int latency = wm[level];
4492
4493 /*
4494 * - WM1+ latency values in 0.5us units
4495 * - latencies are in us on gen9/vlv/chv
4496 */
4497 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4498 IS_CHERRYVIEW(dev))
4499 latency *= 10;
4500 else if (level > 0)
4501 latency *= 5;
4502
4503 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4504 level, wm[level], latency / 10, latency % 10);
4505 }
4506
4507 drm_modeset_unlock_all(dev);
4508 }
4509
4510 static int pri_wm_latency_show(struct seq_file *m, void *data)
4511 {
4512 struct drm_device *dev = m->private;
4513 struct drm_i915_private *dev_priv = dev->dev_private;
4514 const uint16_t *latencies;
4515
4516 if (INTEL_INFO(dev)->gen >= 9)
4517 latencies = dev_priv->wm.skl_latency;
4518 else
4519 latencies = to_i915(dev)->wm.pri_latency;
4520
4521 wm_latency_show(m, latencies);
4522
4523 return 0;
4524 }
4525
4526 static int spr_wm_latency_show(struct seq_file *m, void *data)
4527 {
4528 struct drm_device *dev = m->private;
4529 struct drm_i915_private *dev_priv = dev->dev_private;
4530 const uint16_t *latencies;
4531
4532 if (INTEL_INFO(dev)->gen >= 9)
4533 latencies = dev_priv->wm.skl_latency;
4534 else
4535 latencies = to_i915(dev)->wm.spr_latency;
4536
4537 wm_latency_show(m, latencies);
4538
4539 return 0;
4540 }
4541
4542 static int cur_wm_latency_show(struct seq_file *m, void *data)
4543 {
4544 struct drm_device *dev = m->private;
4545 struct drm_i915_private *dev_priv = dev->dev_private;
4546 const uint16_t *latencies;
4547
4548 if (INTEL_INFO(dev)->gen >= 9)
4549 latencies = dev_priv->wm.skl_latency;
4550 else
4551 latencies = to_i915(dev)->wm.cur_latency;
4552
4553 wm_latency_show(m, latencies);
4554
4555 return 0;
4556 }
4557
4558 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4559 {
4560 struct drm_device *dev = inode->i_private;
4561
4562 if (INTEL_INFO(dev)->gen < 5)
4563 return -ENODEV;
4564
4565 return single_open(file, pri_wm_latency_show, dev);
4566 }
4567
4568 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4569 {
4570 struct drm_device *dev = inode->i_private;
4571
4572 if (HAS_GMCH_DISPLAY(dev))
4573 return -ENODEV;
4574
4575 return single_open(file, spr_wm_latency_show, dev);
4576 }
4577
4578 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4579 {
4580 struct drm_device *dev = inode->i_private;
4581
4582 if (HAS_GMCH_DISPLAY(dev))
4583 return -ENODEV;
4584
4585 return single_open(file, cur_wm_latency_show, dev);
4586 }
4587
4588 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4589 size_t len, loff_t *offp, uint16_t wm[8])
4590 {
4591 struct seq_file *m = file->private_data;
4592 struct drm_device *dev = m->private;
4593 uint16_t new[8] = { 0 };
4594 int num_levels;
4595 int level;
4596 int ret;
4597 char tmp[32];
4598
4599 if (IS_CHERRYVIEW(dev))
4600 num_levels = 3;
4601 else if (IS_VALLEYVIEW(dev))
4602 num_levels = 1;
4603 else
4604 num_levels = ilk_wm_max_level(dev) + 1;
4605
4606 if (len >= sizeof(tmp))
4607 return -EINVAL;
4608
4609 if (copy_from_user(tmp, ubuf, len))
4610 return -EFAULT;
4611
4612 tmp[len] = '\0';
4613
4614 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4615 &new[0], &new[1], &new[2], &new[3],
4616 &new[4], &new[5], &new[6], &new[7]);
4617 if (ret != num_levels)
4618 return -EINVAL;
4619
4620 drm_modeset_lock_all(dev);
4621
4622 for (level = 0; level < num_levels; level++)
4623 wm[level] = new[level];
4624
4625 drm_modeset_unlock_all(dev);
4626
4627 return len;
4628 }
4629
4630
4631 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4632 size_t len, loff_t *offp)
4633 {
4634 struct seq_file *m = file->private_data;
4635 struct drm_device *dev = m->private;
4636 struct drm_i915_private *dev_priv = dev->dev_private;
4637 uint16_t *latencies;
4638
4639 if (INTEL_INFO(dev)->gen >= 9)
4640 latencies = dev_priv->wm.skl_latency;
4641 else
4642 latencies = to_i915(dev)->wm.pri_latency;
4643
4644 return wm_latency_write(file, ubuf, len, offp, latencies);
4645 }
4646
4647 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4648 size_t len, loff_t *offp)
4649 {
4650 struct seq_file *m = file->private_data;
4651 struct drm_device *dev = m->private;
4652 struct drm_i915_private *dev_priv = dev->dev_private;
4653 uint16_t *latencies;
4654
4655 if (INTEL_INFO(dev)->gen >= 9)
4656 latencies = dev_priv->wm.skl_latency;
4657 else
4658 latencies = to_i915(dev)->wm.spr_latency;
4659
4660 return wm_latency_write(file, ubuf, len, offp, latencies);
4661 }
4662
4663 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4664 size_t len, loff_t *offp)
4665 {
4666 struct seq_file *m = file->private_data;
4667 struct drm_device *dev = m->private;
4668 struct drm_i915_private *dev_priv = dev->dev_private;
4669 uint16_t *latencies;
4670
4671 if (INTEL_INFO(dev)->gen >= 9)
4672 latencies = dev_priv->wm.skl_latency;
4673 else
4674 latencies = to_i915(dev)->wm.cur_latency;
4675
4676 return wm_latency_write(file, ubuf, len, offp, latencies);
4677 }
4678
4679 static const struct file_operations i915_pri_wm_latency_fops = {
4680 .owner = THIS_MODULE,
4681 .open = pri_wm_latency_open,
4682 .read = seq_read,
4683 .llseek = seq_lseek,
4684 .release = single_release,
4685 .write = pri_wm_latency_write
4686 };
4687
4688 static const struct file_operations i915_spr_wm_latency_fops = {
4689 .owner = THIS_MODULE,
4690 .open = spr_wm_latency_open,
4691 .read = seq_read,
4692 .llseek = seq_lseek,
4693 .release = single_release,
4694 .write = spr_wm_latency_write
4695 };
4696
4697 static const struct file_operations i915_cur_wm_latency_fops = {
4698 .owner = THIS_MODULE,
4699 .open = cur_wm_latency_open,
4700 .read = seq_read,
4701 .llseek = seq_lseek,
4702 .release = single_release,
4703 .write = cur_wm_latency_write
4704 };
4705
4706 static int
4707 i915_wedged_get(void *data, u64 *val)
4708 {
4709 struct drm_device *dev = data;
4710 struct drm_i915_private *dev_priv = dev->dev_private;
4711
4712 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4713
4714 return 0;
4715 }
4716
4717 static int
4718 i915_wedged_set(void *data, u64 val)
4719 {
4720 struct drm_device *dev = data;
4721 struct drm_i915_private *dev_priv = dev->dev_private;
4722
4723 /*
4724 * There is no safeguard against this debugfs entry colliding
4725 * with the hangcheck calling same i915_handle_error() in
4726 * parallel, causing an explosion. For now we assume that the
4727 * test harness is responsible enough not to inject gpu hangs
4728 * while it is writing to 'i915_wedged'
4729 */
4730
4731 if (i915_reset_in_progress(&dev_priv->gpu_error))
4732 return -EAGAIN;
4733
4734 intel_runtime_pm_get(dev_priv);
4735
4736 i915_handle_error(dev, val,
4737 "Manually setting wedged to %llu", val);
4738
4739 intel_runtime_pm_put(dev_priv);
4740
4741 return 0;
4742 }
4743
4744 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4745 i915_wedged_get, i915_wedged_set,
4746 "%llu\n");
4747
4748 static int
4749 i915_ring_stop_get(void *data, u64 *val)
4750 {
4751 struct drm_device *dev = data;
4752 struct drm_i915_private *dev_priv = dev->dev_private;
4753
4754 *val = dev_priv->gpu_error.stop_rings;
4755
4756 return 0;
4757 }
4758
4759 static int
4760 i915_ring_stop_set(void *data, u64 val)
4761 {
4762 struct drm_device *dev = data;
4763 struct drm_i915_private *dev_priv = dev->dev_private;
4764 int ret;
4765
4766 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4767
4768 ret = mutex_lock_interruptible(&dev->struct_mutex);
4769 if (ret)
4770 return ret;
4771
4772 dev_priv->gpu_error.stop_rings = val;
4773 mutex_unlock(&dev->struct_mutex);
4774
4775 return 0;
4776 }
4777
4778 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4779 i915_ring_stop_get, i915_ring_stop_set,
4780 "0x%08llx\n");
4781
4782 static int
4783 i915_ring_missed_irq_get(void *data, u64 *val)
4784 {
4785 struct drm_device *dev = data;
4786 struct drm_i915_private *dev_priv = dev->dev_private;
4787
4788 *val = dev_priv->gpu_error.missed_irq_rings;
4789 return 0;
4790 }
4791
4792 static int
4793 i915_ring_missed_irq_set(void *data, u64 val)
4794 {
4795 struct drm_device *dev = data;
4796 struct drm_i915_private *dev_priv = dev->dev_private;
4797 int ret;
4798
4799 /* Lock against concurrent debugfs callers */
4800 ret = mutex_lock_interruptible(&dev->struct_mutex);
4801 if (ret)
4802 return ret;
4803 dev_priv->gpu_error.missed_irq_rings = val;
4804 mutex_unlock(&dev->struct_mutex);
4805
4806 return 0;
4807 }
4808
4809 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4810 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4811 "0x%08llx\n");
4812
4813 static int
4814 i915_ring_test_irq_get(void *data, u64 *val)
4815 {
4816 struct drm_device *dev = data;
4817 struct drm_i915_private *dev_priv = dev->dev_private;
4818
4819 *val = dev_priv->gpu_error.test_irq_rings;
4820
4821 return 0;
4822 }
4823
4824 static int
4825 i915_ring_test_irq_set(void *data, u64 val)
4826 {
4827 struct drm_device *dev = data;
4828 struct drm_i915_private *dev_priv = dev->dev_private;
4829 int ret;
4830
4831 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4832
4833 /* Lock against concurrent debugfs callers */
4834 ret = mutex_lock_interruptible(&dev->struct_mutex);
4835 if (ret)
4836 return ret;
4837
4838 dev_priv->gpu_error.test_irq_rings = val;
4839 mutex_unlock(&dev->struct_mutex);
4840
4841 return 0;
4842 }
4843
4844 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4845 i915_ring_test_irq_get, i915_ring_test_irq_set,
4846 "0x%08llx\n");
4847
4848 #define DROP_UNBOUND 0x1
4849 #define DROP_BOUND 0x2
4850 #define DROP_RETIRE 0x4
4851 #define DROP_ACTIVE 0x8
4852 #define DROP_ALL (DROP_UNBOUND | \
4853 DROP_BOUND | \
4854 DROP_RETIRE | \
4855 DROP_ACTIVE)
4856 static int
4857 i915_drop_caches_get(void *data, u64 *val)
4858 {
4859 *val = DROP_ALL;
4860
4861 return 0;
4862 }
4863
4864 static int
4865 i915_drop_caches_set(void *data, u64 val)
4866 {
4867 struct drm_device *dev = data;
4868 struct drm_i915_private *dev_priv = dev->dev_private;
4869 int ret;
4870
4871 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4872
4873 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4874 * on ioctls on -EAGAIN. */
4875 ret = mutex_lock_interruptible(&dev->struct_mutex);
4876 if (ret)
4877 return ret;
4878
4879 if (val & DROP_ACTIVE) {
4880 ret = i915_gpu_idle(dev);
4881 if (ret)
4882 goto unlock;
4883 }
4884
4885 if (val & (DROP_RETIRE | DROP_ACTIVE))
4886 i915_gem_retire_requests(dev);
4887
4888 if (val & DROP_BOUND)
4889 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4890
4891 if (val & DROP_UNBOUND)
4892 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4893
4894 unlock:
4895 mutex_unlock(&dev->struct_mutex);
4896
4897 return ret;
4898 }
4899
4900 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4901 i915_drop_caches_get, i915_drop_caches_set,
4902 "0x%08llx\n");
4903
4904 static int
4905 i915_max_freq_get(void *data, u64 *val)
4906 {
4907 struct drm_device *dev = data;
4908 struct drm_i915_private *dev_priv = dev->dev_private;
4909 int ret;
4910
4911 if (INTEL_INFO(dev)->gen < 6)
4912 return -ENODEV;
4913
4914 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4915
4916 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4917 if (ret)
4918 return ret;
4919
4920 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4921 mutex_unlock(&dev_priv->rps.hw_lock);
4922
4923 return 0;
4924 }
4925
4926 static int
4927 i915_max_freq_set(void *data, u64 val)
4928 {
4929 struct drm_device *dev = data;
4930 struct drm_i915_private *dev_priv = dev->dev_private;
4931 u32 hw_max, hw_min;
4932 int ret;
4933
4934 if (INTEL_INFO(dev)->gen < 6)
4935 return -ENODEV;
4936
4937 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4938
4939 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4940
4941 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4942 if (ret)
4943 return ret;
4944
4945 /*
4946 * Turbo will still be enabled, but won't go above the set value.
4947 */
4948 val = intel_freq_opcode(dev_priv, val);
4949
4950 hw_max = dev_priv->rps.max_freq;
4951 hw_min = dev_priv->rps.min_freq;
4952
4953 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4954 mutex_unlock(&dev_priv->rps.hw_lock);
4955 return -EINVAL;
4956 }
4957
4958 dev_priv->rps.max_freq_softlimit = val;
4959
4960 intel_set_rps(dev, val);
4961
4962 mutex_unlock(&dev_priv->rps.hw_lock);
4963
4964 return 0;
4965 }
4966
4967 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4968 i915_max_freq_get, i915_max_freq_set,
4969 "%llu\n");
4970
4971 static int
4972 i915_min_freq_get(void *data, u64 *val)
4973 {
4974 struct drm_device *dev = data;
4975 struct drm_i915_private *dev_priv = dev->dev_private;
4976 int ret;
4977
4978 if (INTEL_INFO(dev)->gen < 6)
4979 return -ENODEV;
4980
4981 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4982
4983 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4984 if (ret)
4985 return ret;
4986
4987 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4988 mutex_unlock(&dev_priv->rps.hw_lock);
4989
4990 return 0;
4991 }
4992
4993 static int
4994 i915_min_freq_set(void *data, u64 val)
4995 {
4996 struct drm_device *dev = data;
4997 struct drm_i915_private *dev_priv = dev->dev_private;
4998 u32 hw_max, hw_min;
4999 int ret;
5000
5001 if (INTEL_INFO(dev)->gen < 6)
5002 return -ENODEV;
5003
5004 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5005
5006 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5007
5008 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5009 if (ret)
5010 return ret;
5011
5012 /*
5013 * Turbo will still be enabled, but won't go below the set value.
5014 */
5015 val = intel_freq_opcode(dev_priv, val);
5016
5017 hw_max = dev_priv->rps.max_freq;
5018 hw_min = dev_priv->rps.min_freq;
5019
5020 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5021 mutex_unlock(&dev_priv->rps.hw_lock);
5022 return -EINVAL;
5023 }
5024
5025 dev_priv->rps.min_freq_softlimit = val;
5026
5027 intel_set_rps(dev, val);
5028
5029 mutex_unlock(&dev_priv->rps.hw_lock);
5030
5031 return 0;
5032 }
5033
5034 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5035 i915_min_freq_get, i915_min_freq_set,
5036 "%llu\n");
5037
5038 static int
5039 i915_cache_sharing_get(void *data, u64 *val)
5040 {
5041 struct drm_device *dev = data;
5042 struct drm_i915_private *dev_priv = dev->dev_private;
5043 u32 snpcr;
5044 int ret;
5045
5046 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5047 return -ENODEV;
5048
5049 ret = mutex_lock_interruptible(&dev->struct_mutex);
5050 if (ret)
5051 return ret;
5052 intel_runtime_pm_get(dev_priv);
5053
5054 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5055
5056 intel_runtime_pm_put(dev_priv);
5057 mutex_unlock(&dev_priv->dev->struct_mutex);
5058
5059 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5060
5061 return 0;
5062 }
5063
5064 static int
5065 i915_cache_sharing_set(void *data, u64 val)
5066 {
5067 struct drm_device *dev = data;
5068 struct drm_i915_private *dev_priv = dev->dev_private;
5069 u32 snpcr;
5070
5071 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5072 return -ENODEV;
5073
5074 if (val > 3)
5075 return -EINVAL;
5076
5077 intel_runtime_pm_get(dev_priv);
5078 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5079
5080 /* Update the cache sharing policy here as well */
5081 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5082 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5083 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5084 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5085
5086 intel_runtime_pm_put(dev_priv);
5087 return 0;
5088 }
5089
5090 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5091 i915_cache_sharing_get, i915_cache_sharing_set,
5092 "%llu\n");
5093
5094 struct sseu_dev_status {
5095 unsigned int slice_total;
5096 unsigned int subslice_total;
5097 unsigned int subslice_per_slice;
5098 unsigned int eu_total;
5099 unsigned int eu_per_subslice;
5100 };
5101
5102 static void cherryview_sseu_device_status(struct drm_device *dev,
5103 struct sseu_dev_status *stat)
5104 {
5105 struct drm_i915_private *dev_priv = dev->dev_private;
5106 int ss_max = 2;
5107 int ss;
5108 u32 sig1[ss_max], sig2[ss_max];
5109
5110 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5111 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5112 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5113 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5114
5115 for (ss = 0; ss < ss_max; ss++) {
5116 unsigned int eu_cnt;
5117
5118 if (sig1[ss] & CHV_SS_PG_ENABLE)
5119 /* skip disabled subslice */
5120 continue;
5121
5122 stat->slice_total = 1;
5123 stat->subslice_per_slice++;
5124 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5125 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5126 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5127 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5128 stat->eu_total += eu_cnt;
5129 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5130 }
5131 stat->subslice_total = stat->subslice_per_slice;
5132 }
5133
5134 static void gen9_sseu_device_status(struct drm_device *dev,
5135 struct sseu_dev_status *stat)
5136 {
5137 struct drm_i915_private *dev_priv = dev->dev_private;
5138 int s_max = 3, ss_max = 4;
5139 int s, ss;
5140 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5141
5142 /* BXT has a single slice and at most 3 subslices. */
5143 if (IS_BROXTON(dev)) {
5144 s_max = 1;
5145 ss_max = 3;
5146 }
5147
5148 for (s = 0; s < s_max; s++) {
5149 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5150 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5151 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5152 }
5153
5154 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5155 GEN9_PGCTL_SSA_EU19_ACK |
5156 GEN9_PGCTL_SSA_EU210_ACK |
5157 GEN9_PGCTL_SSA_EU311_ACK;
5158 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5159 GEN9_PGCTL_SSB_EU19_ACK |
5160 GEN9_PGCTL_SSB_EU210_ACK |
5161 GEN9_PGCTL_SSB_EU311_ACK;
5162
5163 for (s = 0; s < s_max; s++) {
5164 unsigned int ss_cnt = 0;
5165
5166 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5167 /* skip disabled slice */
5168 continue;
5169
5170 stat->slice_total++;
5171
5172 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5173 ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5174
5175 for (ss = 0; ss < ss_max; ss++) {
5176 unsigned int eu_cnt;
5177
5178 if (IS_BROXTON(dev) &&
5179 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5180 /* skip disabled subslice */
5181 continue;
5182
5183 if (IS_BROXTON(dev))
5184 ss_cnt++;
5185
5186 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5187 eu_mask[ss%2]);
5188 stat->eu_total += eu_cnt;
5189 stat->eu_per_subslice = max(stat->eu_per_subslice,
5190 eu_cnt);
5191 }
5192
5193 stat->subslice_total += ss_cnt;
5194 stat->subslice_per_slice = max(stat->subslice_per_slice,
5195 ss_cnt);
5196 }
5197 }
5198
5199 static void broadwell_sseu_device_status(struct drm_device *dev,
5200 struct sseu_dev_status *stat)
5201 {
5202 struct drm_i915_private *dev_priv = dev->dev_private;
5203 int s;
5204 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5205
5206 stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5207
5208 if (stat->slice_total) {
5209 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5210 stat->subslice_total = stat->slice_total *
5211 stat->subslice_per_slice;
5212 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5213 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5214
5215 /* subtract fused off EU(s) from enabled slice(s) */
5216 for (s = 0; s < stat->slice_total; s++) {
5217 u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5218
5219 stat->eu_total -= hweight8(subslice_7eu);
5220 }
5221 }
5222 }
5223
5224 static int i915_sseu_status(struct seq_file *m, void *unused)
5225 {
5226 struct drm_info_node *node = (struct drm_info_node *) m->private;
5227 struct drm_device *dev = node->minor->dev;
5228 struct sseu_dev_status stat;
5229
5230 if (INTEL_INFO(dev)->gen < 8)
5231 return -ENODEV;
5232
5233 seq_puts(m, "SSEU Device Info\n");
5234 seq_printf(m, " Available Slice Total: %u\n",
5235 INTEL_INFO(dev)->slice_total);
5236 seq_printf(m, " Available Subslice Total: %u\n",
5237 INTEL_INFO(dev)->subslice_total);
5238 seq_printf(m, " Available Subslice Per Slice: %u\n",
5239 INTEL_INFO(dev)->subslice_per_slice);
5240 seq_printf(m, " Available EU Total: %u\n",
5241 INTEL_INFO(dev)->eu_total);
5242 seq_printf(m, " Available EU Per Subslice: %u\n",
5243 INTEL_INFO(dev)->eu_per_subslice);
5244 seq_printf(m, " Has Slice Power Gating: %s\n",
5245 yesno(INTEL_INFO(dev)->has_slice_pg));
5246 seq_printf(m, " Has Subslice Power Gating: %s\n",
5247 yesno(INTEL_INFO(dev)->has_subslice_pg));
5248 seq_printf(m, " Has EU Power Gating: %s\n",
5249 yesno(INTEL_INFO(dev)->has_eu_pg));
5250
5251 seq_puts(m, "SSEU Device Status\n");
5252 memset(&stat, 0, sizeof(stat));
5253 if (IS_CHERRYVIEW(dev)) {
5254 cherryview_sseu_device_status(dev, &stat);
5255 } else if (IS_BROADWELL(dev)) {
5256 broadwell_sseu_device_status(dev, &stat);
5257 } else if (INTEL_INFO(dev)->gen >= 9) {
5258 gen9_sseu_device_status(dev, &stat);
5259 }
5260 seq_printf(m, " Enabled Slice Total: %u\n",
5261 stat.slice_total);
5262 seq_printf(m, " Enabled Subslice Total: %u\n",
5263 stat.subslice_total);
5264 seq_printf(m, " Enabled Subslice Per Slice: %u\n",
5265 stat.subslice_per_slice);
5266 seq_printf(m, " Enabled EU Total: %u\n",
5267 stat.eu_total);
5268 seq_printf(m, " Enabled EU Per Subslice: %u\n",
5269 stat.eu_per_subslice);
5270
5271 return 0;
5272 }
5273
5274 static int i915_forcewake_open(struct inode *inode, struct file *file)
5275 {
5276 struct drm_device *dev = inode->i_private;
5277 struct drm_i915_private *dev_priv = dev->dev_private;
5278
5279 if (INTEL_INFO(dev)->gen < 6)
5280 return 0;
5281
5282 intel_runtime_pm_get(dev_priv);
5283 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5284
5285 return 0;
5286 }
5287
5288 static int i915_forcewake_release(struct inode *inode, struct file *file)
5289 {
5290 struct drm_device *dev = inode->i_private;
5291 struct drm_i915_private *dev_priv = dev->dev_private;
5292
5293 if (INTEL_INFO(dev)->gen < 6)
5294 return 0;
5295
5296 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5297 intel_runtime_pm_put(dev_priv);
5298
5299 return 0;
5300 }
5301
5302 static const struct file_operations i915_forcewake_fops = {
5303 .owner = THIS_MODULE,
5304 .open = i915_forcewake_open,
5305 .release = i915_forcewake_release,
5306 };
5307
5308 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5309 {
5310 struct drm_device *dev = minor->dev;
5311 struct dentry *ent;
5312
5313 ent = debugfs_create_file("i915_forcewake_user",
5314 S_IRUSR,
5315 root, dev,
5316 &i915_forcewake_fops);
5317 if (!ent)
5318 return -ENOMEM;
5319
5320 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5321 }
5322
5323 static int i915_debugfs_create(struct dentry *root,
5324 struct drm_minor *minor,
5325 const char *name,
5326 const struct file_operations *fops)
5327 {
5328 struct drm_device *dev = minor->dev;
5329 struct dentry *ent;
5330
5331 ent = debugfs_create_file(name,
5332 S_IRUGO | S_IWUSR,
5333 root, dev,
5334 fops);
5335 if (!ent)
5336 return -ENOMEM;
5337
5338 return drm_add_fake_info_node(minor, ent, fops);
5339 }
5340
5341 static const struct drm_info_list i915_debugfs_list[] = {
5342 {"i915_capabilities", i915_capabilities, 0},
5343 {"i915_gem_objects", i915_gem_object_info, 0},
5344 {"i915_gem_gtt", i915_gem_gtt_info, 0},
5345 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5346 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5347 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5348 {"i915_gem_stolen", i915_gem_stolen_list_info },
5349 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5350 {"i915_gem_request", i915_gem_request_info, 0},
5351 {"i915_gem_seqno", i915_gem_seqno_info, 0},
5352 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5353 {"i915_gem_interrupt", i915_interrupt_info, 0},
5354 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5355 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5356 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5357 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5358 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5359 {"i915_guc_info", i915_guc_info, 0},
5360 {"i915_guc_load_status", i915_guc_load_status_info, 0},
5361 {"i915_guc_log_dump", i915_guc_log_dump, 0},
5362 {"i915_frequency_info", i915_frequency_info, 0},
5363 {"i915_hangcheck_info", i915_hangcheck_info, 0},
5364 {"i915_drpc_info", i915_drpc_info, 0},
5365 {"i915_emon_status", i915_emon_status, 0},
5366 {"i915_ring_freq_table", i915_ring_freq_table, 0},
5367 {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5368 {"i915_fbc_status", i915_fbc_status, 0},
5369 {"i915_ips_status", i915_ips_status, 0},
5370 {"i915_sr_status", i915_sr_status, 0},
5371 {"i915_opregion", i915_opregion, 0},
5372 {"i915_vbt", i915_vbt, 0},
5373 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5374 {"i915_context_status", i915_context_status, 0},
5375 {"i915_dump_lrc", i915_dump_lrc, 0},
5376 {"i915_execlists", i915_execlists, 0},
5377 {"i915_forcewake_domains", i915_forcewake_domains, 0},
5378 {"i915_swizzle_info", i915_swizzle_info, 0},
5379 {"i915_ppgtt_info", i915_ppgtt_info, 0},
5380 {"i915_llc", i915_llc, 0},
5381 {"i915_edp_psr_status", i915_edp_psr_status, 0},
5382 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5383 {"i915_energy_uJ", i915_energy_uJ, 0},
5384 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5385 {"i915_power_domain_info", i915_power_domain_info, 0},
5386 {"i915_dmc_info", i915_dmc_info, 0},
5387 {"i915_display_info", i915_display_info, 0},
5388 {"i915_semaphore_status", i915_semaphore_status, 0},
5389 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5390 {"i915_dp_mst_info", i915_dp_mst_info, 0},
5391 {"i915_wa_registers", i915_wa_registers, 0},
5392 {"i915_ddb_info", i915_ddb_info, 0},
5393 {"i915_sseu_status", i915_sseu_status, 0},
5394 {"i915_drrs_status", i915_drrs_status, 0},
5395 {"i915_rps_boost_info", i915_rps_boost_info, 0},
5396 };
5397 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5398
5399 static const struct i915_debugfs_files {
5400 const char *name;
5401 const struct file_operations *fops;
5402 } i915_debugfs_files[] = {
5403 {"i915_wedged", &i915_wedged_fops},
5404 {"i915_max_freq", &i915_max_freq_fops},
5405 {"i915_min_freq", &i915_min_freq_fops},
5406 {"i915_cache_sharing", &i915_cache_sharing_fops},
5407 {"i915_ring_stop", &i915_ring_stop_fops},
5408 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5409 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5410 {"i915_gem_drop_caches", &i915_drop_caches_fops},
5411 {"i915_error_state", &i915_error_state_fops},
5412 {"i915_next_seqno", &i915_next_seqno_fops},
5413 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5414 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5415 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5416 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5417 {"i915_fbc_false_color", &i915_fbc_fc_fops},
5418 {"i915_dp_test_data", &i915_displayport_test_data_fops},
5419 {"i915_dp_test_type", &i915_displayport_test_type_fops},
5420 {"i915_dp_test_active", &i915_displayport_test_active_fops}
5421 };
5422
5423 void intel_display_crc_init(struct drm_device *dev)
5424 {
5425 struct drm_i915_private *dev_priv = dev->dev_private;
5426 enum pipe pipe;
5427
5428 for_each_pipe(dev_priv, pipe) {
5429 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5430
5431 pipe_crc->opened = false;
5432 spin_lock_init(&pipe_crc->lock);
5433 init_waitqueue_head(&pipe_crc->wq);
5434 }
5435 }
5436
5437 int i915_debugfs_init(struct drm_minor *minor)
5438 {
5439 int ret, i;
5440
5441 ret = i915_forcewake_create(minor->debugfs_root, minor);
5442 if (ret)
5443 return ret;
5444
5445 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5446 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5447 if (ret)
5448 return ret;
5449 }
5450
5451 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5452 ret = i915_debugfs_create(minor->debugfs_root, minor,
5453 i915_debugfs_files[i].name,
5454 i915_debugfs_files[i].fops);
5455 if (ret)
5456 return ret;
5457 }
5458
5459 return drm_debugfs_create_files(i915_debugfs_list,
5460 I915_DEBUGFS_ENTRIES,
5461 minor->debugfs_root, minor);
5462 }
5463
5464 void i915_debugfs_cleanup(struct drm_minor *minor)
5465 {
5466 int i;
5467
5468 drm_debugfs_remove_files(i915_debugfs_list,
5469 I915_DEBUGFS_ENTRIES, minor);
5470
5471 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5472 1, minor);
5473
5474 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5475 struct drm_info_list *info_list =
5476 (struct drm_info_list *)&i915_pipe_crc_data[i];
5477
5478 drm_debugfs_remove_files(info_list, 1, minor);
5479 }
5480
5481 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5482 struct drm_info_list *info_list =
5483 (struct drm_info_list *) i915_debugfs_files[i].fops;
5484
5485 drm_debugfs_remove_files(info_list, 1, minor);
5486 }
5487 }
5488
5489 struct dpcd_block {
5490 /* DPCD dump start address. */
5491 unsigned int offset;
5492 /* DPCD dump end address, inclusive. If unset, .size will be used. */
5493 unsigned int end;
5494 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5495 size_t size;
5496 /* Only valid for eDP. */
5497 bool edp;
5498 };
5499
5500 static const struct dpcd_block i915_dpcd_debug[] = {
5501 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5502 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5503 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5504 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5505 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5506 { .offset = DP_SET_POWER },
5507 { .offset = DP_EDP_DPCD_REV },
5508 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5509 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5510 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5511 };
5512
5513 static int i915_dpcd_show(struct seq_file *m, void *data)
5514 {
5515 struct drm_connector *connector = m->private;
5516 struct intel_dp *intel_dp =
5517 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5518 uint8_t buf[16];
5519 ssize_t err;
5520 int i;
5521
5522 if (connector->status != connector_status_connected)
5523 return -ENODEV;
5524
5525 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5526 const struct dpcd_block *b = &i915_dpcd_debug[i];
5527 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5528
5529 if (b->edp &&
5530 connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5531 continue;
5532
5533 /* low tech for now */
5534 if (WARN_ON(size > sizeof(buf)))
5535 continue;
5536
5537 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5538 if (err <= 0) {
5539 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5540 size, b->offset, err);
5541 continue;
5542 }
5543
5544 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5545 }
5546
5547 return 0;
5548 }
5549
5550 static int i915_dpcd_open(struct inode *inode, struct file *file)
5551 {
5552 return single_open(file, i915_dpcd_show, inode->i_private);
5553 }
5554
5555 static const struct file_operations i915_dpcd_fops = {
5556 .owner = THIS_MODULE,
5557 .open = i915_dpcd_open,
5558 .read = seq_read,
5559 .llseek = seq_lseek,
5560 .release = single_release,
5561 };
5562
5563 /**
5564 * i915_debugfs_connector_add - add i915 specific connector debugfs files
5565 * @connector: pointer to a registered drm_connector
5566 *
5567 * Cleanup will be done by drm_connector_unregister() through a call to
5568 * drm_debugfs_connector_remove().
5569 *
5570 * Returns 0 on success, negative error codes on error.
5571 */
5572 int i915_debugfs_connector_add(struct drm_connector *connector)
5573 {
5574 struct dentry *root = connector->debugfs_entry;
5575
5576 /* The connector must have been registered beforehands. */
5577 if (!root)
5578 return -ENODEV;
5579
5580 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5581 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5582 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5583 &i915_dpcd_fops);
5584
5585 return 0;
5586 }
This page took 0.17478 seconds and 6 git commands to generate.