Merge branch 'topic-arcpgu-updates' of https://github.com/foss-for-synopsys-dwc-arc...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50 * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 struct dentry *ent,
54 const void *key)
55 {
56 struct drm_info_node *node;
57
58 node = kmalloc(sizeof(*node), GFP_KERNEL);
59 if (node == NULL) {
60 debugfs_remove(ent);
61 return -ENOMEM;
62 }
63
64 node->minor = minor;
65 node->dent = ent;
66 node->info_ent = (void *) key;
67
68 mutex_lock(&minor->debugfs_lock);
69 list_add(&node->list, &minor->debugfs_list);
70 mutex_unlock(&minor->debugfs_lock);
71
72 return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 struct drm_info_node *node = m->private;
78 struct drm_device *dev = node->minor->dev;
79 const struct intel_device_info *info = INTEL_INFO(dev);
80
81 seq_printf(m, "gen: %d\n", info->gen);
82 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89 return 0;
90 }
91
92 static const char get_active_flag(struct drm_i915_gem_object *obj)
93 {
94 return obj->active ? '*' : ' ';
95 }
96
97 static const char get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 return obj->pin_display ? 'p' : ' ';
100 }
101
102 static const char get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104 switch (obj->tiling_mode) {
105 default:
106 case I915_TILING_NONE: return ' ';
107 case I915_TILING_X: return 'X';
108 case I915_TILING_Y: return 'Y';
109 }
110 }
111
112 static inline const char get_global_flag(struct drm_i915_gem_object *obj)
113 {
114 return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
115 }
116
117 static inline const char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
118 {
119 return obj->mapping ? 'M' : ' ';
120 }
121
122 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
123 {
124 u64 size = 0;
125 struct i915_vma *vma;
126
127 list_for_each_entry(vma, &obj->vma_list, obj_link) {
128 if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
129 size += vma->node.size;
130 }
131
132 return size;
133 }
134
135 static void
136 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
137 {
138 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
139 struct intel_engine_cs *engine;
140 struct i915_vma *vma;
141 int pin_count = 0;
142 enum intel_engine_id id;
143
144 lockdep_assert_held(&obj->base.dev->struct_mutex);
145
146 seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
147 &obj->base,
148 get_active_flag(obj),
149 get_pin_flag(obj),
150 get_tiling_flag(obj),
151 get_global_flag(obj),
152 get_pin_mapped_flag(obj),
153 obj->base.size / 1024,
154 obj->base.read_domains,
155 obj->base.write_domain);
156 for_each_engine_id(engine, dev_priv, id)
157 seq_printf(m, "%x ",
158 i915_gem_request_get_seqno(obj->last_read_req[id]));
159 seq_printf(m, "] %x %x%s%s%s",
160 i915_gem_request_get_seqno(obj->last_write_req),
161 i915_gem_request_get_seqno(obj->last_fenced_req),
162 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
163 obj->dirty ? " dirty" : "",
164 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
165 if (obj->base.name)
166 seq_printf(m, " (name: %d)", obj->base.name);
167 list_for_each_entry(vma, &obj->vma_list, obj_link) {
168 if (vma->pin_count > 0)
169 pin_count++;
170 }
171 seq_printf(m, " (pinned x %d)", pin_count);
172 if (obj->pin_display)
173 seq_printf(m, " (display)");
174 if (obj->fence_reg != I915_FENCE_REG_NONE)
175 seq_printf(m, " (fence: %d)", obj->fence_reg);
176 list_for_each_entry(vma, &obj->vma_list, obj_link) {
177 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
178 vma->is_ggtt ? "g" : "pp",
179 vma->node.start, vma->node.size);
180 if (vma->is_ggtt)
181 seq_printf(m, ", type: %u", vma->ggtt_view.type);
182 seq_puts(m, ")");
183 }
184 if (obj->stolen)
185 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
186 if (obj->pin_display || obj->fault_mappable) {
187 char s[3], *t = s;
188 if (obj->pin_display)
189 *t++ = 'p';
190 if (obj->fault_mappable)
191 *t++ = 'f';
192 *t = '\0';
193 seq_printf(m, " (%s mappable)", s);
194 }
195 if (obj->last_write_req != NULL)
196 seq_printf(m, " (%s)",
197 i915_gem_request_get_engine(obj->last_write_req)->name);
198 if (obj->frontbuffer_bits)
199 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
200 }
201
202 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
203 {
204 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
205 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
206 seq_putc(m, ' ');
207 }
208
209 static int i915_gem_object_list_info(struct seq_file *m, void *data)
210 {
211 struct drm_info_node *node = m->private;
212 uintptr_t list = (uintptr_t) node->info_ent->data;
213 struct list_head *head;
214 struct drm_device *dev = node->minor->dev;
215 struct drm_i915_private *dev_priv = to_i915(dev);
216 struct i915_ggtt *ggtt = &dev_priv->ggtt;
217 struct i915_vma *vma;
218 u64 total_obj_size, total_gtt_size;
219 int count, ret;
220
221 ret = mutex_lock_interruptible(&dev->struct_mutex);
222 if (ret)
223 return ret;
224
225 /* FIXME: the user of this interface might want more than just GGTT */
226 switch (list) {
227 case ACTIVE_LIST:
228 seq_puts(m, "Active:\n");
229 head = &ggtt->base.active_list;
230 break;
231 case INACTIVE_LIST:
232 seq_puts(m, "Inactive:\n");
233 head = &ggtt->base.inactive_list;
234 break;
235 default:
236 mutex_unlock(&dev->struct_mutex);
237 return -EINVAL;
238 }
239
240 total_obj_size = total_gtt_size = count = 0;
241 list_for_each_entry(vma, head, vm_link) {
242 seq_printf(m, " ");
243 describe_obj(m, vma->obj);
244 seq_printf(m, "\n");
245 total_obj_size += vma->obj->base.size;
246 total_gtt_size += vma->node.size;
247 count++;
248 }
249 mutex_unlock(&dev->struct_mutex);
250
251 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
252 count, total_obj_size, total_gtt_size);
253 return 0;
254 }
255
256 static int obj_rank_by_stolen(void *priv,
257 struct list_head *A, struct list_head *B)
258 {
259 struct drm_i915_gem_object *a =
260 container_of(A, struct drm_i915_gem_object, obj_exec_link);
261 struct drm_i915_gem_object *b =
262 container_of(B, struct drm_i915_gem_object, obj_exec_link);
263
264 if (a->stolen->start < b->stolen->start)
265 return -1;
266 if (a->stolen->start > b->stolen->start)
267 return 1;
268 return 0;
269 }
270
271 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
272 {
273 struct drm_info_node *node = m->private;
274 struct drm_device *dev = node->minor->dev;
275 struct drm_i915_private *dev_priv = dev->dev_private;
276 struct drm_i915_gem_object *obj;
277 u64 total_obj_size, total_gtt_size;
278 LIST_HEAD(stolen);
279 int count, ret;
280
281 ret = mutex_lock_interruptible(&dev->struct_mutex);
282 if (ret)
283 return ret;
284
285 total_obj_size = total_gtt_size = count = 0;
286 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
287 if (obj->stolen == NULL)
288 continue;
289
290 list_add(&obj->obj_exec_link, &stolen);
291
292 total_obj_size += obj->base.size;
293 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
294 count++;
295 }
296 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
297 if (obj->stolen == NULL)
298 continue;
299
300 list_add(&obj->obj_exec_link, &stolen);
301
302 total_obj_size += obj->base.size;
303 count++;
304 }
305 list_sort(NULL, &stolen, obj_rank_by_stolen);
306 seq_puts(m, "Stolen:\n");
307 while (!list_empty(&stolen)) {
308 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
309 seq_puts(m, " ");
310 describe_obj(m, obj);
311 seq_putc(m, '\n');
312 list_del_init(&obj->obj_exec_link);
313 }
314 mutex_unlock(&dev->struct_mutex);
315
316 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
317 count, total_obj_size, total_gtt_size);
318 return 0;
319 }
320
321 #define count_objects(list, member) do { \
322 list_for_each_entry(obj, list, member) { \
323 size += i915_gem_obj_total_ggtt_size(obj); \
324 ++count; \
325 if (obj->map_and_fenceable) { \
326 mappable_size += i915_gem_obj_ggtt_size(obj); \
327 ++mappable_count; \
328 } \
329 } \
330 } while (0)
331
332 struct file_stats {
333 struct drm_i915_file_private *file_priv;
334 unsigned long count;
335 u64 total, unbound;
336 u64 global, shared;
337 u64 active, inactive;
338 };
339
340 static int per_file_stats(int id, void *ptr, void *data)
341 {
342 struct drm_i915_gem_object *obj = ptr;
343 struct file_stats *stats = data;
344 struct i915_vma *vma;
345
346 stats->count++;
347 stats->total += obj->base.size;
348
349 if (obj->base.name || obj->base.dma_buf)
350 stats->shared += obj->base.size;
351
352 if (USES_FULL_PPGTT(obj->base.dev)) {
353 list_for_each_entry(vma, &obj->vma_list, obj_link) {
354 struct i915_hw_ppgtt *ppgtt;
355
356 if (!drm_mm_node_allocated(&vma->node))
357 continue;
358
359 if (vma->is_ggtt) {
360 stats->global += obj->base.size;
361 continue;
362 }
363
364 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
365 if (ppgtt->file_priv != stats->file_priv)
366 continue;
367
368 if (obj->active) /* XXX per-vma statistic */
369 stats->active += obj->base.size;
370 else
371 stats->inactive += obj->base.size;
372
373 return 0;
374 }
375 } else {
376 if (i915_gem_obj_ggtt_bound(obj)) {
377 stats->global += obj->base.size;
378 if (obj->active)
379 stats->active += obj->base.size;
380 else
381 stats->inactive += obj->base.size;
382 return 0;
383 }
384 }
385
386 if (!list_empty(&obj->global_list))
387 stats->unbound += obj->base.size;
388
389 return 0;
390 }
391
392 #define print_file_stats(m, name, stats) do { \
393 if (stats.count) \
394 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
395 name, \
396 stats.count, \
397 stats.total, \
398 stats.active, \
399 stats.inactive, \
400 stats.global, \
401 stats.shared, \
402 stats.unbound); \
403 } while (0)
404
405 static void print_batch_pool_stats(struct seq_file *m,
406 struct drm_i915_private *dev_priv)
407 {
408 struct drm_i915_gem_object *obj;
409 struct file_stats stats;
410 struct intel_engine_cs *engine;
411 int j;
412
413 memset(&stats, 0, sizeof(stats));
414
415 for_each_engine(engine, dev_priv) {
416 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
417 list_for_each_entry(obj,
418 &engine->batch_pool.cache_list[j],
419 batch_pool_link)
420 per_file_stats(0, obj, &stats);
421 }
422 }
423
424 print_file_stats(m, "[k]batch pool", stats);
425 }
426
427 #define count_vmas(list, member) do { \
428 list_for_each_entry(vma, list, member) { \
429 size += i915_gem_obj_total_ggtt_size(vma->obj); \
430 ++count; \
431 if (vma->obj->map_and_fenceable) { \
432 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
433 ++mappable_count; \
434 } \
435 } \
436 } while (0)
437
438 static int i915_gem_object_info(struct seq_file *m, void* data)
439 {
440 struct drm_info_node *node = m->private;
441 struct drm_device *dev = node->minor->dev;
442 struct drm_i915_private *dev_priv = to_i915(dev);
443 struct i915_ggtt *ggtt = &dev_priv->ggtt;
444 u32 count, mappable_count, purgeable_count;
445 u64 size, mappable_size, purgeable_size;
446 unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
447 u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
448 struct drm_i915_gem_object *obj;
449 struct drm_file *file;
450 struct i915_vma *vma;
451 int ret;
452
453 ret = mutex_lock_interruptible(&dev->struct_mutex);
454 if (ret)
455 return ret;
456
457 seq_printf(m, "%u objects, %zu bytes\n",
458 dev_priv->mm.object_count,
459 dev_priv->mm.object_memory);
460
461 size = count = mappable_size = mappable_count = 0;
462 count_objects(&dev_priv->mm.bound_list, global_list);
463 seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
464 count, mappable_count, size, mappable_size);
465
466 size = count = mappable_size = mappable_count = 0;
467 count_vmas(&ggtt->base.active_list, vm_link);
468 seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
469 count, mappable_count, size, mappable_size);
470
471 size = count = mappable_size = mappable_count = 0;
472 count_vmas(&ggtt->base.inactive_list, vm_link);
473 seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
474 count, mappable_count, size, mappable_size);
475
476 size = count = purgeable_size = purgeable_count = 0;
477 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
478 size += obj->base.size, ++count;
479 if (obj->madv == I915_MADV_DONTNEED)
480 purgeable_size += obj->base.size, ++purgeable_count;
481 if (obj->mapping) {
482 pin_mapped_count++;
483 pin_mapped_size += obj->base.size;
484 if (obj->pages_pin_count == 0) {
485 pin_mapped_purgeable_count++;
486 pin_mapped_purgeable_size += obj->base.size;
487 }
488 }
489 }
490 seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
491
492 size = count = mappable_size = mappable_count = 0;
493 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
494 if (obj->fault_mappable) {
495 size += i915_gem_obj_ggtt_size(obj);
496 ++count;
497 }
498 if (obj->pin_display) {
499 mappable_size += i915_gem_obj_ggtt_size(obj);
500 ++mappable_count;
501 }
502 if (obj->madv == I915_MADV_DONTNEED) {
503 purgeable_size += obj->base.size;
504 ++purgeable_count;
505 }
506 if (obj->mapping) {
507 pin_mapped_count++;
508 pin_mapped_size += obj->base.size;
509 if (obj->pages_pin_count == 0) {
510 pin_mapped_purgeable_count++;
511 pin_mapped_purgeable_size += obj->base.size;
512 }
513 }
514 }
515 seq_printf(m, "%u purgeable objects, %llu bytes\n",
516 purgeable_count, purgeable_size);
517 seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
518 mappable_count, mappable_size);
519 seq_printf(m, "%u fault mappable objects, %llu bytes\n",
520 count, size);
521 seq_printf(m,
522 "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
523 pin_mapped_count, pin_mapped_purgeable_count,
524 pin_mapped_size, pin_mapped_purgeable_size);
525
526 seq_printf(m, "%llu [%llu] gtt total\n",
527 ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
528
529 seq_putc(m, '\n');
530 print_batch_pool_stats(m, dev_priv);
531
532 mutex_unlock(&dev->struct_mutex);
533
534 mutex_lock(&dev->filelist_mutex);
535 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
536 struct file_stats stats;
537 struct task_struct *task;
538
539 memset(&stats, 0, sizeof(stats));
540 stats.file_priv = file->driver_priv;
541 spin_lock(&file->table_lock);
542 idr_for_each(&file->object_idr, per_file_stats, &stats);
543 spin_unlock(&file->table_lock);
544 /*
545 * Although we have a valid reference on file->pid, that does
546 * not guarantee that the task_struct who called get_pid() is
547 * still alive (e.g. get_pid(current) => fork() => exit()).
548 * Therefore, we need to protect this ->comm access using RCU.
549 */
550 rcu_read_lock();
551 task = pid_task(file->pid, PIDTYPE_PID);
552 print_file_stats(m, task ? task->comm : "<unknown>", stats);
553 rcu_read_unlock();
554 }
555 mutex_unlock(&dev->filelist_mutex);
556
557 return 0;
558 }
559
560 static int i915_gem_gtt_info(struct seq_file *m, void *data)
561 {
562 struct drm_info_node *node = m->private;
563 struct drm_device *dev = node->minor->dev;
564 uintptr_t list = (uintptr_t) node->info_ent->data;
565 struct drm_i915_private *dev_priv = dev->dev_private;
566 struct drm_i915_gem_object *obj;
567 u64 total_obj_size, total_gtt_size;
568 int count, ret;
569
570 ret = mutex_lock_interruptible(&dev->struct_mutex);
571 if (ret)
572 return ret;
573
574 total_obj_size = total_gtt_size = count = 0;
575 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
576 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
577 continue;
578
579 seq_puts(m, " ");
580 describe_obj(m, obj);
581 seq_putc(m, '\n');
582 total_obj_size += obj->base.size;
583 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
584 count++;
585 }
586
587 mutex_unlock(&dev->struct_mutex);
588
589 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
590 count, total_obj_size, total_gtt_size);
591
592 return 0;
593 }
594
595 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
596 {
597 struct drm_info_node *node = m->private;
598 struct drm_device *dev = node->minor->dev;
599 struct drm_i915_private *dev_priv = dev->dev_private;
600 struct intel_crtc *crtc;
601 int ret;
602
603 ret = mutex_lock_interruptible(&dev->struct_mutex);
604 if (ret)
605 return ret;
606
607 for_each_intel_crtc(dev, crtc) {
608 const char pipe = pipe_name(crtc->pipe);
609 const char plane = plane_name(crtc->plane);
610 struct intel_unpin_work *work;
611
612 spin_lock_irq(&dev->event_lock);
613 work = crtc->unpin_work;
614 if (work == NULL) {
615 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
616 pipe, plane);
617 } else {
618 u32 addr;
619
620 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
621 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
622 pipe, plane);
623 } else {
624 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
625 pipe, plane);
626 }
627 if (work->flip_queued_req) {
628 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
629
630 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
631 engine->name,
632 i915_gem_request_get_seqno(work->flip_queued_req),
633 dev_priv->next_seqno,
634 engine->get_seqno(engine),
635 i915_gem_request_completed(work->flip_queued_req, true));
636 } else
637 seq_printf(m, "Flip not associated with any ring\n");
638 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
639 work->flip_queued_vblank,
640 work->flip_ready_vblank,
641 drm_crtc_vblank_count(&crtc->base));
642 if (work->enable_stall_check)
643 seq_puts(m, "Stall check enabled, ");
644 else
645 seq_puts(m, "Stall check waiting for page flip ioctl, ");
646 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
647
648 if (INTEL_INFO(dev)->gen >= 4)
649 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
650 else
651 addr = I915_READ(DSPADDR(crtc->plane));
652 seq_printf(m, "Current scanout address 0x%08x\n", addr);
653
654 if (work->pending_flip_obj) {
655 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
656 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
657 }
658 }
659 spin_unlock_irq(&dev->event_lock);
660 }
661
662 mutex_unlock(&dev->struct_mutex);
663
664 return 0;
665 }
666
667 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
668 {
669 struct drm_info_node *node = m->private;
670 struct drm_device *dev = node->minor->dev;
671 struct drm_i915_private *dev_priv = dev->dev_private;
672 struct drm_i915_gem_object *obj;
673 struct intel_engine_cs *engine;
674 int total = 0;
675 int ret, j;
676
677 ret = mutex_lock_interruptible(&dev->struct_mutex);
678 if (ret)
679 return ret;
680
681 for_each_engine(engine, dev_priv) {
682 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
683 int count;
684
685 count = 0;
686 list_for_each_entry(obj,
687 &engine->batch_pool.cache_list[j],
688 batch_pool_link)
689 count++;
690 seq_printf(m, "%s cache[%d]: %d objects\n",
691 engine->name, j, count);
692
693 list_for_each_entry(obj,
694 &engine->batch_pool.cache_list[j],
695 batch_pool_link) {
696 seq_puts(m, " ");
697 describe_obj(m, obj);
698 seq_putc(m, '\n');
699 }
700
701 total += count;
702 }
703 }
704
705 seq_printf(m, "total: %d\n", total);
706
707 mutex_unlock(&dev->struct_mutex);
708
709 return 0;
710 }
711
712 static int i915_gem_request_info(struct seq_file *m, void *data)
713 {
714 struct drm_info_node *node = m->private;
715 struct drm_device *dev = node->minor->dev;
716 struct drm_i915_private *dev_priv = dev->dev_private;
717 struct intel_engine_cs *engine;
718 struct drm_i915_gem_request *req;
719 int ret, any;
720
721 ret = mutex_lock_interruptible(&dev->struct_mutex);
722 if (ret)
723 return ret;
724
725 any = 0;
726 for_each_engine(engine, dev_priv) {
727 int count;
728
729 count = 0;
730 list_for_each_entry(req, &engine->request_list, list)
731 count++;
732 if (count == 0)
733 continue;
734
735 seq_printf(m, "%s requests: %d\n", engine->name, count);
736 list_for_each_entry(req, &engine->request_list, list) {
737 struct task_struct *task;
738
739 rcu_read_lock();
740 task = NULL;
741 if (req->pid)
742 task = pid_task(req->pid, PIDTYPE_PID);
743 seq_printf(m, " %x @ %d: %s [%d]\n",
744 req->seqno,
745 (int) (jiffies - req->emitted_jiffies),
746 task ? task->comm : "<unknown>",
747 task ? task->pid : -1);
748 rcu_read_unlock();
749 }
750
751 any++;
752 }
753 mutex_unlock(&dev->struct_mutex);
754
755 if (any == 0)
756 seq_puts(m, "No requests\n");
757
758 return 0;
759 }
760
761 static void i915_ring_seqno_info(struct seq_file *m,
762 struct intel_engine_cs *engine)
763 {
764 seq_printf(m, "Current sequence (%s): %x\n",
765 engine->name, engine->get_seqno(engine));
766 seq_printf(m, "Current user interrupts (%s): %x\n",
767 engine->name, READ_ONCE(engine->user_interrupts));
768 }
769
770 static int i915_gem_seqno_info(struct seq_file *m, void *data)
771 {
772 struct drm_info_node *node = m->private;
773 struct drm_device *dev = node->minor->dev;
774 struct drm_i915_private *dev_priv = dev->dev_private;
775 struct intel_engine_cs *engine;
776 int ret;
777
778 ret = mutex_lock_interruptible(&dev->struct_mutex);
779 if (ret)
780 return ret;
781 intel_runtime_pm_get(dev_priv);
782
783 for_each_engine(engine, dev_priv)
784 i915_ring_seqno_info(m, engine);
785
786 intel_runtime_pm_put(dev_priv);
787 mutex_unlock(&dev->struct_mutex);
788
789 return 0;
790 }
791
792
793 static int i915_interrupt_info(struct seq_file *m, void *data)
794 {
795 struct drm_info_node *node = m->private;
796 struct drm_device *dev = node->minor->dev;
797 struct drm_i915_private *dev_priv = dev->dev_private;
798 struct intel_engine_cs *engine;
799 int ret, i, pipe;
800
801 ret = mutex_lock_interruptible(&dev->struct_mutex);
802 if (ret)
803 return ret;
804 intel_runtime_pm_get(dev_priv);
805
806 if (IS_CHERRYVIEW(dev)) {
807 seq_printf(m, "Master Interrupt Control:\t%08x\n",
808 I915_READ(GEN8_MASTER_IRQ));
809
810 seq_printf(m, "Display IER:\t%08x\n",
811 I915_READ(VLV_IER));
812 seq_printf(m, "Display IIR:\t%08x\n",
813 I915_READ(VLV_IIR));
814 seq_printf(m, "Display IIR_RW:\t%08x\n",
815 I915_READ(VLV_IIR_RW));
816 seq_printf(m, "Display IMR:\t%08x\n",
817 I915_READ(VLV_IMR));
818 for_each_pipe(dev_priv, pipe)
819 seq_printf(m, "Pipe %c stat:\t%08x\n",
820 pipe_name(pipe),
821 I915_READ(PIPESTAT(pipe)));
822
823 seq_printf(m, "Port hotplug:\t%08x\n",
824 I915_READ(PORT_HOTPLUG_EN));
825 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
826 I915_READ(VLV_DPFLIPSTAT));
827 seq_printf(m, "DPINVGTT:\t%08x\n",
828 I915_READ(DPINVGTT));
829
830 for (i = 0; i < 4; i++) {
831 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
832 i, I915_READ(GEN8_GT_IMR(i)));
833 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
834 i, I915_READ(GEN8_GT_IIR(i)));
835 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
836 i, I915_READ(GEN8_GT_IER(i)));
837 }
838
839 seq_printf(m, "PCU interrupt mask:\t%08x\n",
840 I915_READ(GEN8_PCU_IMR));
841 seq_printf(m, "PCU interrupt identity:\t%08x\n",
842 I915_READ(GEN8_PCU_IIR));
843 seq_printf(m, "PCU interrupt enable:\t%08x\n",
844 I915_READ(GEN8_PCU_IER));
845 } else if (INTEL_INFO(dev)->gen >= 8) {
846 seq_printf(m, "Master Interrupt Control:\t%08x\n",
847 I915_READ(GEN8_MASTER_IRQ));
848
849 for (i = 0; i < 4; i++) {
850 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
851 i, I915_READ(GEN8_GT_IMR(i)));
852 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
853 i, I915_READ(GEN8_GT_IIR(i)));
854 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
855 i, I915_READ(GEN8_GT_IER(i)));
856 }
857
858 for_each_pipe(dev_priv, pipe) {
859 enum intel_display_power_domain power_domain;
860
861 power_domain = POWER_DOMAIN_PIPE(pipe);
862 if (!intel_display_power_get_if_enabled(dev_priv,
863 power_domain)) {
864 seq_printf(m, "Pipe %c power disabled\n",
865 pipe_name(pipe));
866 continue;
867 }
868 seq_printf(m, "Pipe %c IMR:\t%08x\n",
869 pipe_name(pipe),
870 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
871 seq_printf(m, "Pipe %c IIR:\t%08x\n",
872 pipe_name(pipe),
873 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
874 seq_printf(m, "Pipe %c IER:\t%08x\n",
875 pipe_name(pipe),
876 I915_READ(GEN8_DE_PIPE_IER(pipe)));
877
878 intel_display_power_put(dev_priv, power_domain);
879 }
880
881 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
882 I915_READ(GEN8_DE_PORT_IMR));
883 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
884 I915_READ(GEN8_DE_PORT_IIR));
885 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
886 I915_READ(GEN8_DE_PORT_IER));
887
888 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
889 I915_READ(GEN8_DE_MISC_IMR));
890 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
891 I915_READ(GEN8_DE_MISC_IIR));
892 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
893 I915_READ(GEN8_DE_MISC_IER));
894
895 seq_printf(m, "PCU interrupt mask:\t%08x\n",
896 I915_READ(GEN8_PCU_IMR));
897 seq_printf(m, "PCU interrupt identity:\t%08x\n",
898 I915_READ(GEN8_PCU_IIR));
899 seq_printf(m, "PCU interrupt enable:\t%08x\n",
900 I915_READ(GEN8_PCU_IER));
901 } else if (IS_VALLEYVIEW(dev)) {
902 seq_printf(m, "Display IER:\t%08x\n",
903 I915_READ(VLV_IER));
904 seq_printf(m, "Display IIR:\t%08x\n",
905 I915_READ(VLV_IIR));
906 seq_printf(m, "Display IIR_RW:\t%08x\n",
907 I915_READ(VLV_IIR_RW));
908 seq_printf(m, "Display IMR:\t%08x\n",
909 I915_READ(VLV_IMR));
910 for_each_pipe(dev_priv, pipe)
911 seq_printf(m, "Pipe %c stat:\t%08x\n",
912 pipe_name(pipe),
913 I915_READ(PIPESTAT(pipe)));
914
915 seq_printf(m, "Master IER:\t%08x\n",
916 I915_READ(VLV_MASTER_IER));
917
918 seq_printf(m, "Render IER:\t%08x\n",
919 I915_READ(GTIER));
920 seq_printf(m, "Render IIR:\t%08x\n",
921 I915_READ(GTIIR));
922 seq_printf(m, "Render IMR:\t%08x\n",
923 I915_READ(GTIMR));
924
925 seq_printf(m, "PM IER:\t\t%08x\n",
926 I915_READ(GEN6_PMIER));
927 seq_printf(m, "PM IIR:\t\t%08x\n",
928 I915_READ(GEN6_PMIIR));
929 seq_printf(m, "PM IMR:\t\t%08x\n",
930 I915_READ(GEN6_PMIMR));
931
932 seq_printf(m, "Port hotplug:\t%08x\n",
933 I915_READ(PORT_HOTPLUG_EN));
934 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
935 I915_READ(VLV_DPFLIPSTAT));
936 seq_printf(m, "DPINVGTT:\t%08x\n",
937 I915_READ(DPINVGTT));
938
939 } else if (!HAS_PCH_SPLIT(dev)) {
940 seq_printf(m, "Interrupt enable: %08x\n",
941 I915_READ(IER));
942 seq_printf(m, "Interrupt identity: %08x\n",
943 I915_READ(IIR));
944 seq_printf(m, "Interrupt mask: %08x\n",
945 I915_READ(IMR));
946 for_each_pipe(dev_priv, pipe)
947 seq_printf(m, "Pipe %c stat: %08x\n",
948 pipe_name(pipe),
949 I915_READ(PIPESTAT(pipe)));
950 } else {
951 seq_printf(m, "North Display Interrupt enable: %08x\n",
952 I915_READ(DEIER));
953 seq_printf(m, "North Display Interrupt identity: %08x\n",
954 I915_READ(DEIIR));
955 seq_printf(m, "North Display Interrupt mask: %08x\n",
956 I915_READ(DEIMR));
957 seq_printf(m, "South Display Interrupt enable: %08x\n",
958 I915_READ(SDEIER));
959 seq_printf(m, "South Display Interrupt identity: %08x\n",
960 I915_READ(SDEIIR));
961 seq_printf(m, "South Display Interrupt mask: %08x\n",
962 I915_READ(SDEIMR));
963 seq_printf(m, "Graphics Interrupt enable: %08x\n",
964 I915_READ(GTIER));
965 seq_printf(m, "Graphics Interrupt identity: %08x\n",
966 I915_READ(GTIIR));
967 seq_printf(m, "Graphics Interrupt mask: %08x\n",
968 I915_READ(GTIMR));
969 }
970 for_each_engine(engine, dev_priv) {
971 if (INTEL_INFO(dev)->gen >= 6) {
972 seq_printf(m,
973 "Graphics Interrupt mask (%s): %08x\n",
974 engine->name, I915_READ_IMR(engine));
975 }
976 i915_ring_seqno_info(m, engine);
977 }
978 intel_runtime_pm_put(dev_priv);
979 mutex_unlock(&dev->struct_mutex);
980
981 return 0;
982 }
983
984 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
985 {
986 struct drm_info_node *node = m->private;
987 struct drm_device *dev = node->minor->dev;
988 struct drm_i915_private *dev_priv = dev->dev_private;
989 int i, ret;
990
991 ret = mutex_lock_interruptible(&dev->struct_mutex);
992 if (ret)
993 return ret;
994
995 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
996 for (i = 0; i < dev_priv->num_fence_regs; i++) {
997 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
998
999 seq_printf(m, "Fence %d, pin count = %d, object = ",
1000 i, dev_priv->fence_regs[i].pin_count);
1001 if (obj == NULL)
1002 seq_puts(m, "unused");
1003 else
1004 describe_obj(m, obj);
1005 seq_putc(m, '\n');
1006 }
1007
1008 mutex_unlock(&dev->struct_mutex);
1009 return 0;
1010 }
1011
1012 static int i915_hws_info(struct seq_file *m, void *data)
1013 {
1014 struct drm_info_node *node = m->private;
1015 struct drm_device *dev = node->minor->dev;
1016 struct drm_i915_private *dev_priv = dev->dev_private;
1017 struct intel_engine_cs *engine;
1018 const u32 *hws;
1019 int i;
1020
1021 engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
1022 hws = engine->status_page.page_addr;
1023 if (hws == NULL)
1024 return 0;
1025
1026 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
1027 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1028 i * 4,
1029 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
1030 }
1031 return 0;
1032 }
1033
1034 static ssize_t
1035 i915_error_state_write(struct file *filp,
1036 const char __user *ubuf,
1037 size_t cnt,
1038 loff_t *ppos)
1039 {
1040 struct i915_error_state_file_priv *error_priv = filp->private_data;
1041 struct drm_device *dev = error_priv->dev;
1042 int ret;
1043
1044 DRM_DEBUG_DRIVER("Resetting error state\n");
1045
1046 ret = mutex_lock_interruptible(&dev->struct_mutex);
1047 if (ret)
1048 return ret;
1049
1050 i915_destroy_error_state(dev);
1051 mutex_unlock(&dev->struct_mutex);
1052
1053 return cnt;
1054 }
1055
1056 static int i915_error_state_open(struct inode *inode, struct file *file)
1057 {
1058 struct drm_device *dev = inode->i_private;
1059 struct i915_error_state_file_priv *error_priv;
1060
1061 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1062 if (!error_priv)
1063 return -ENOMEM;
1064
1065 error_priv->dev = dev;
1066
1067 i915_error_state_get(dev, error_priv);
1068
1069 file->private_data = error_priv;
1070
1071 return 0;
1072 }
1073
1074 static int i915_error_state_release(struct inode *inode, struct file *file)
1075 {
1076 struct i915_error_state_file_priv *error_priv = file->private_data;
1077
1078 i915_error_state_put(error_priv);
1079 kfree(error_priv);
1080
1081 return 0;
1082 }
1083
1084 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1085 size_t count, loff_t *pos)
1086 {
1087 struct i915_error_state_file_priv *error_priv = file->private_data;
1088 struct drm_i915_error_state_buf error_str;
1089 loff_t tmp_pos = 0;
1090 ssize_t ret_count = 0;
1091 int ret;
1092
1093 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1094 if (ret)
1095 return ret;
1096
1097 ret = i915_error_state_to_str(&error_str, error_priv);
1098 if (ret)
1099 goto out;
1100
1101 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1102 error_str.buf,
1103 error_str.bytes);
1104
1105 if (ret_count < 0)
1106 ret = ret_count;
1107 else
1108 *pos = error_str.start + ret_count;
1109 out:
1110 i915_error_state_buf_release(&error_str);
1111 return ret ?: ret_count;
1112 }
1113
1114 static const struct file_operations i915_error_state_fops = {
1115 .owner = THIS_MODULE,
1116 .open = i915_error_state_open,
1117 .read = i915_error_state_read,
1118 .write = i915_error_state_write,
1119 .llseek = default_llseek,
1120 .release = i915_error_state_release,
1121 };
1122
1123 static int
1124 i915_next_seqno_get(void *data, u64 *val)
1125 {
1126 struct drm_device *dev = data;
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1128 int ret;
1129
1130 ret = mutex_lock_interruptible(&dev->struct_mutex);
1131 if (ret)
1132 return ret;
1133
1134 *val = dev_priv->next_seqno;
1135 mutex_unlock(&dev->struct_mutex);
1136
1137 return 0;
1138 }
1139
1140 static int
1141 i915_next_seqno_set(void *data, u64 val)
1142 {
1143 struct drm_device *dev = data;
1144 int ret;
1145
1146 ret = mutex_lock_interruptible(&dev->struct_mutex);
1147 if (ret)
1148 return ret;
1149
1150 ret = i915_gem_set_seqno(dev, val);
1151 mutex_unlock(&dev->struct_mutex);
1152
1153 return ret;
1154 }
1155
1156 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1157 i915_next_seqno_get, i915_next_seqno_set,
1158 "0x%llx\n");
1159
1160 static int i915_frequency_info(struct seq_file *m, void *unused)
1161 {
1162 struct drm_info_node *node = m->private;
1163 struct drm_device *dev = node->minor->dev;
1164 struct drm_i915_private *dev_priv = dev->dev_private;
1165 int ret = 0;
1166
1167 intel_runtime_pm_get(dev_priv);
1168
1169 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1170
1171 if (IS_GEN5(dev)) {
1172 u16 rgvswctl = I915_READ16(MEMSWCTL);
1173 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1174
1175 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1176 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1177 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1178 MEMSTAT_VID_SHIFT);
1179 seq_printf(m, "Current P-state: %d\n",
1180 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1181 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1182 u32 freq_sts;
1183
1184 mutex_lock(&dev_priv->rps.hw_lock);
1185 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1186 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1187 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1188
1189 seq_printf(m, "actual GPU freq: %d MHz\n",
1190 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1191
1192 seq_printf(m, "current GPU freq: %d MHz\n",
1193 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1194
1195 seq_printf(m, "max GPU freq: %d MHz\n",
1196 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1197
1198 seq_printf(m, "min GPU freq: %d MHz\n",
1199 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1200
1201 seq_printf(m, "idle GPU freq: %d MHz\n",
1202 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1203
1204 seq_printf(m,
1205 "efficient (RPe) frequency: %d MHz\n",
1206 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1207 mutex_unlock(&dev_priv->rps.hw_lock);
1208 } else if (INTEL_INFO(dev)->gen >= 6) {
1209 u32 rp_state_limits;
1210 u32 gt_perf_status;
1211 u32 rp_state_cap;
1212 u32 rpmodectl, rpinclimit, rpdeclimit;
1213 u32 rpstat, cagf, reqf;
1214 u32 rpupei, rpcurup, rpprevup;
1215 u32 rpdownei, rpcurdown, rpprevdown;
1216 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1217 int max_freq;
1218
1219 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1220 if (IS_BROXTON(dev)) {
1221 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1222 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1223 } else {
1224 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1225 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1226 }
1227
1228 /* RPSTAT1 is in the GT power well */
1229 ret = mutex_lock_interruptible(&dev->struct_mutex);
1230 if (ret)
1231 goto out;
1232
1233 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1234
1235 reqf = I915_READ(GEN6_RPNSWREQ);
1236 if (IS_GEN9(dev))
1237 reqf >>= 23;
1238 else {
1239 reqf &= ~GEN6_TURBO_DISABLE;
1240 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1241 reqf >>= 24;
1242 else
1243 reqf >>= 25;
1244 }
1245 reqf = intel_gpu_freq(dev_priv, reqf);
1246
1247 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1248 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1249 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1250
1251 rpstat = I915_READ(GEN6_RPSTAT1);
1252 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1253 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1254 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1255 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1256 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1257 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1258 if (IS_GEN9(dev))
1259 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1260 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1261 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1262 else
1263 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1264 cagf = intel_gpu_freq(dev_priv, cagf);
1265
1266 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1267 mutex_unlock(&dev->struct_mutex);
1268
1269 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1270 pm_ier = I915_READ(GEN6_PMIER);
1271 pm_imr = I915_READ(GEN6_PMIMR);
1272 pm_isr = I915_READ(GEN6_PMISR);
1273 pm_iir = I915_READ(GEN6_PMIIR);
1274 pm_mask = I915_READ(GEN6_PMINTRMSK);
1275 } else {
1276 pm_ier = I915_READ(GEN8_GT_IER(2));
1277 pm_imr = I915_READ(GEN8_GT_IMR(2));
1278 pm_isr = I915_READ(GEN8_GT_ISR(2));
1279 pm_iir = I915_READ(GEN8_GT_IIR(2));
1280 pm_mask = I915_READ(GEN6_PMINTRMSK);
1281 }
1282 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1283 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1284 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1285 seq_printf(m, "Render p-state ratio: %d\n",
1286 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1287 seq_printf(m, "Render p-state VID: %d\n",
1288 gt_perf_status & 0xff);
1289 seq_printf(m, "Render p-state limit: %d\n",
1290 rp_state_limits & 0xff);
1291 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1292 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1293 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1294 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1295 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1296 seq_printf(m, "CAGF: %dMHz\n", cagf);
1297 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1298 rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1299 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1300 rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1301 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1302 rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1303 seq_printf(m, "Up threshold: %d%%\n",
1304 dev_priv->rps.up_threshold);
1305
1306 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1307 rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1308 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1309 rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1310 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1311 rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1312 seq_printf(m, "Down threshold: %d%%\n",
1313 dev_priv->rps.down_threshold);
1314
1315 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1316 rp_state_cap >> 16) & 0xff;
1317 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1318 GEN9_FREQ_SCALER : 1);
1319 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1320 intel_gpu_freq(dev_priv, max_freq));
1321
1322 max_freq = (rp_state_cap & 0xff00) >> 8;
1323 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1324 GEN9_FREQ_SCALER : 1);
1325 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1326 intel_gpu_freq(dev_priv, max_freq));
1327
1328 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1329 rp_state_cap >> 0) & 0xff;
1330 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1331 GEN9_FREQ_SCALER : 1);
1332 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1333 intel_gpu_freq(dev_priv, max_freq));
1334 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1335 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1336
1337 seq_printf(m, "Current freq: %d MHz\n",
1338 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1339 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1340 seq_printf(m, "Idle freq: %d MHz\n",
1341 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1342 seq_printf(m, "Min freq: %d MHz\n",
1343 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1344 seq_printf(m, "Max freq: %d MHz\n",
1345 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1346 seq_printf(m,
1347 "efficient (RPe) frequency: %d MHz\n",
1348 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1349 } else {
1350 seq_puts(m, "no P-state info available\n");
1351 }
1352
1353 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1354 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1355 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1356
1357 out:
1358 intel_runtime_pm_put(dev_priv);
1359 return ret;
1360 }
1361
1362 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1363 {
1364 struct drm_info_node *node = m->private;
1365 struct drm_device *dev = node->minor->dev;
1366 struct drm_i915_private *dev_priv = dev->dev_private;
1367 struct intel_engine_cs *engine;
1368 u64 acthd[I915_NUM_ENGINES];
1369 u32 seqno[I915_NUM_ENGINES];
1370 u32 instdone[I915_NUM_INSTDONE_REG];
1371 enum intel_engine_id id;
1372 int j;
1373
1374 if (!i915.enable_hangcheck) {
1375 seq_printf(m, "Hangcheck disabled\n");
1376 return 0;
1377 }
1378
1379 intel_runtime_pm_get(dev_priv);
1380
1381 for_each_engine_id(engine, dev_priv, id) {
1382 acthd[id] = intel_ring_get_active_head(engine);
1383 seqno[id] = engine->get_seqno(engine);
1384 }
1385
1386 i915_get_extra_instdone(dev, instdone);
1387
1388 intel_runtime_pm_put(dev_priv);
1389
1390 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1391 seq_printf(m, "Hangcheck active, fires in %dms\n",
1392 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1393 jiffies));
1394 } else
1395 seq_printf(m, "Hangcheck inactive\n");
1396
1397 for_each_engine_id(engine, dev_priv, id) {
1398 seq_printf(m, "%s:\n", engine->name);
1399 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1400 engine->hangcheck.seqno,
1401 seqno[id],
1402 engine->last_submitted_seqno);
1403 seq_printf(m, "\tuser interrupts = %x [current %x]\n",
1404 engine->hangcheck.user_interrupts,
1405 READ_ONCE(engine->user_interrupts));
1406 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1407 (long long)engine->hangcheck.acthd,
1408 (long long)acthd[id]);
1409 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1410 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1411
1412 if (engine->id == RCS) {
1413 seq_puts(m, "\tinstdone read =");
1414
1415 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1416 seq_printf(m, " 0x%08x", instdone[j]);
1417
1418 seq_puts(m, "\n\tinstdone accu =");
1419
1420 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1421 seq_printf(m, " 0x%08x",
1422 engine->hangcheck.instdone[j]);
1423
1424 seq_puts(m, "\n");
1425 }
1426 }
1427
1428 return 0;
1429 }
1430
1431 static int ironlake_drpc_info(struct seq_file *m)
1432 {
1433 struct drm_info_node *node = m->private;
1434 struct drm_device *dev = node->minor->dev;
1435 struct drm_i915_private *dev_priv = dev->dev_private;
1436 u32 rgvmodectl, rstdbyctl;
1437 u16 crstandvid;
1438 int ret;
1439
1440 ret = mutex_lock_interruptible(&dev->struct_mutex);
1441 if (ret)
1442 return ret;
1443 intel_runtime_pm_get(dev_priv);
1444
1445 rgvmodectl = I915_READ(MEMMODECTL);
1446 rstdbyctl = I915_READ(RSTDBYCTL);
1447 crstandvid = I915_READ16(CRSTANDVID);
1448
1449 intel_runtime_pm_put(dev_priv);
1450 mutex_unlock(&dev->struct_mutex);
1451
1452 seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1453 seq_printf(m, "Boost freq: %d\n",
1454 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1455 MEMMODE_BOOST_FREQ_SHIFT);
1456 seq_printf(m, "HW control enabled: %s\n",
1457 yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1458 seq_printf(m, "SW control enabled: %s\n",
1459 yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1460 seq_printf(m, "Gated voltage change: %s\n",
1461 yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1462 seq_printf(m, "Starting frequency: P%d\n",
1463 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1464 seq_printf(m, "Max P-state: P%d\n",
1465 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1466 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1467 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1468 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1469 seq_printf(m, "Render standby enabled: %s\n",
1470 yesno(!(rstdbyctl & RCX_SW_EXIT)));
1471 seq_puts(m, "Current RS state: ");
1472 switch (rstdbyctl & RSX_STATUS_MASK) {
1473 case RSX_STATUS_ON:
1474 seq_puts(m, "on\n");
1475 break;
1476 case RSX_STATUS_RC1:
1477 seq_puts(m, "RC1\n");
1478 break;
1479 case RSX_STATUS_RC1E:
1480 seq_puts(m, "RC1E\n");
1481 break;
1482 case RSX_STATUS_RS1:
1483 seq_puts(m, "RS1\n");
1484 break;
1485 case RSX_STATUS_RS2:
1486 seq_puts(m, "RS2 (RC6)\n");
1487 break;
1488 case RSX_STATUS_RS3:
1489 seq_puts(m, "RC3 (RC6+)\n");
1490 break;
1491 default:
1492 seq_puts(m, "unknown\n");
1493 break;
1494 }
1495
1496 return 0;
1497 }
1498
1499 static int i915_forcewake_domains(struct seq_file *m, void *data)
1500 {
1501 struct drm_info_node *node = m->private;
1502 struct drm_device *dev = node->minor->dev;
1503 struct drm_i915_private *dev_priv = dev->dev_private;
1504 struct intel_uncore_forcewake_domain *fw_domain;
1505
1506 spin_lock_irq(&dev_priv->uncore.lock);
1507 for_each_fw_domain(fw_domain, dev_priv) {
1508 seq_printf(m, "%s.wake_count = %u\n",
1509 intel_uncore_forcewake_domain_to_str(fw_domain->id),
1510 fw_domain->wake_count);
1511 }
1512 spin_unlock_irq(&dev_priv->uncore.lock);
1513
1514 return 0;
1515 }
1516
1517 static int vlv_drpc_info(struct seq_file *m)
1518 {
1519 struct drm_info_node *node = m->private;
1520 struct drm_device *dev = node->minor->dev;
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522 u32 rpmodectl1, rcctl1, pw_status;
1523
1524 intel_runtime_pm_get(dev_priv);
1525
1526 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1527 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1528 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1529
1530 intel_runtime_pm_put(dev_priv);
1531
1532 seq_printf(m, "Video Turbo Mode: %s\n",
1533 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1534 seq_printf(m, "Turbo enabled: %s\n",
1535 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1536 seq_printf(m, "HW control enabled: %s\n",
1537 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1538 seq_printf(m, "SW control enabled: %s\n",
1539 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1540 GEN6_RP_MEDIA_SW_MODE));
1541 seq_printf(m, "RC6 Enabled: %s\n",
1542 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1543 GEN6_RC_CTL_EI_MODE(1))));
1544 seq_printf(m, "Render Power Well: %s\n",
1545 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1546 seq_printf(m, "Media Power Well: %s\n",
1547 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1548
1549 seq_printf(m, "Render RC6 residency since boot: %u\n",
1550 I915_READ(VLV_GT_RENDER_RC6));
1551 seq_printf(m, "Media RC6 residency since boot: %u\n",
1552 I915_READ(VLV_GT_MEDIA_RC6));
1553
1554 return i915_forcewake_domains(m, NULL);
1555 }
1556
1557 static int gen6_drpc_info(struct seq_file *m)
1558 {
1559 struct drm_info_node *node = m->private;
1560 struct drm_device *dev = node->minor->dev;
1561 struct drm_i915_private *dev_priv = dev->dev_private;
1562 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1563 unsigned forcewake_count;
1564 int count = 0, ret;
1565
1566 ret = mutex_lock_interruptible(&dev->struct_mutex);
1567 if (ret)
1568 return ret;
1569 intel_runtime_pm_get(dev_priv);
1570
1571 spin_lock_irq(&dev_priv->uncore.lock);
1572 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1573 spin_unlock_irq(&dev_priv->uncore.lock);
1574
1575 if (forcewake_count) {
1576 seq_puts(m, "RC information inaccurate because somebody "
1577 "holds a forcewake reference \n");
1578 } else {
1579 /* NB: we cannot use forcewake, else we read the wrong values */
1580 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1581 udelay(10);
1582 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1583 }
1584
1585 gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1586 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1587
1588 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1589 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1590 mutex_unlock(&dev->struct_mutex);
1591 mutex_lock(&dev_priv->rps.hw_lock);
1592 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1593 mutex_unlock(&dev_priv->rps.hw_lock);
1594
1595 intel_runtime_pm_put(dev_priv);
1596
1597 seq_printf(m, "Video Turbo Mode: %s\n",
1598 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1599 seq_printf(m, "HW control enabled: %s\n",
1600 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1601 seq_printf(m, "SW control enabled: %s\n",
1602 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1603 GEN6_RP_MEDIA_SW_MODE));
1604 seq_printf(m, "RC1e Enabled: %s\n",
1605 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1606 seq_printf(m, "RC6 Enabled: %s\n",
1607 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1608 seq_printf(m, "Deep RC6 Enabled: %s\n",
1609 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1610 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1611 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1612 seq_puts(m, "Current RC state: ");
1613 switch (gt_core_status & GEN6_RCn_MASK) {
1614 case GEN6_RC0:
1615 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1616 seq_puts(m, "Core Power Down\n");
1617 else
1618 seq_puts(m, "on\n");
1619 break;
1620 case GEN6_RC3:
1621 seq_puts(m, "RC3\n");
1622 break;
1623 case GEN6_RC6:
1624 seq_puts(m, "RC6\n");
1625 break;
1626 case GEN6_RC7:
1627 seq_puts(m, "RC7\n");
1628 break;
1629 default:
1630 seq_puts(m, "Unknown\n");
1631 break;
1632 }
1633
1634 seq_printf(m, "Core Power Down: %s\n",
1635 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1636
1637 /* Not exactly sure what this is */
1638 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1639 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1640 seq_printf(m, "RC6 residency since boot: %u\n",
1641 I915_READ(GEN6_GT_GFX_RC6));
1642 seq_printf(m, "RC6+ residency since boot: %u\n",
1643 I915_READ(GEN6_GT_GFX_RC6p));
1644 seq_printf(m, "RC6++ residency since boot: %u\n",
1645 I915_READ(GEN6_GT_GFX_RC6pp));
1646
1647 seq_printf(m, "RC6 voltage: %dmV\n",
1648 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1649 seq_printf(m, "RC6+ voltage: %dmV\n",
1650 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1651 seq_printf(m, "RC6++ voltage: %dmV\n",
1652 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1653 return 0;
1654 }
1655
1656 static int i915_drpc_info(struct seq_file *m, void *unused)
1657 {
1658 struct drm_info_node *node = m->private;
1659 struct drm_device *dev = node->minor->dev;
1660
1661 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1662 return vlv_drpc_info(m);
1663 else if (INTEL_INFO(dev)->gen >= 6)
1664 return gen6_drpc_info(m);
1665 else
1666 return ironlake_drpc_info(m);
1667 }
1668
1669 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1670 {
1671 struct drm_info_node *node = m->private;
1672 struct drm_device *dev = node->minor->dev;
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674
1675 seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1676 dev_priv->fb_tracking.busy_bits);
1677
1678 seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1679 dev_priv->fb_tracking.flip_bits);
1680
1681 return 0;
1682 }
1683
1684 static int i915_fbc_status(struct seq_file *m, void *unused)
1685 {
1686 struct drm_info_node *node = m->private;
1687 struct drm_device *dev = node->minor->dev;
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689
1690 if (!HAS_FBC(dev)) {
1691 seq_puts(m, "FBC unsupported on this chipset\n");
1692 return 0;
1693 }
1694
1695 intel_runtime_pm_get(dev_priv);
1696 mutex_lock(&dev_priv->fbc.lock);
1697
1698 if (intel_fbc_is_active(dev_priv))
1699 seq_puts(m, "FBC enabled\n");
1700 else
1701 seq_printf(m, "FBC disabled: %s\n",
1702 dev_priv->fbc.no_fbc_reason);
1703
1704 if (INTEL_INFO(dev_priv)->gen >= 7)
1705 seq_printf(m, "Compressing: %s\n",
1706 yesno(I915_READ(FBC_STATUS2) &
1707 FBC_COMPRESSION_MASK));
1708
1709 mutex_unlock(&dev_priv->fbc.lock);
1710 intel_runtime_pm_put(dev_priv);
1711
1712 return 0;
1713 }
1714
1715 static int i915_fbc_fc_get(void *data, u64 *val)
1716 {
1717 struct drm_device *dev = data;
1718 struct drm_i915_private *dev_priv = dev->dev_private;
1719
1720 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1721 return -ENODEV;
1722
1723 *val = dev_priv->fbc.false_color;
1724
1725 return 0;
1726 }
1727
1728 static int i915_fbc_fc_set(void *data, u64 val)
1729 {
1730 struct drm_device *dev = data;
1731 struct drm_i915_private *dev_priv = dev->dev_private;
1732 u32 reg;
1733
1734 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1735 return -ENODEV;
1736
1737 mutex_lock(&dev_priv->fbc.lock);
1738
1739 reg = I915_READ(ILK_DPFC_CONTROL);
1740 dev_priv->fbc.false_color = val;
1741
1742 I915_WRITE(ILK_DPFC_CONTROL, val ?
1743 (reg | FBC_CTL_FALSE_COLOR) :
1744 (reg & ~FBC_CTL_FALSE_COLOR));
1745
1746 mutex_unlock(&dev_priv->fbc.lock);
1747 return 0;
1748 }
1749
1750 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1751 i915_fbc_fc_get, i915_fbc_fc_set,
1752 "%llu\n");
1753
1754 static int i915_ips_status(struct seq_file *m, void *unused)
1755 {
1756 struct drm_info_node *node = m->private;
1757 struct drm_device *dev = node->minor->dev;
1758 struct drm_i915_private *dev_priv = dev->dev_private;
1759
1760 if (!HAS_IPS(dev)) {
1761 seq_puts(m, "not supported\n");
1762 return 0;
1763 }
1764
1765 intel_runtime_pm_get(dev_priv);
1766
1767 seq_printf(m, "Enabled by kernel parameter: %s\n",
1768 yesno(i915.enable_ips));
1769
1770 if (INTEL_INFO(dev)->gen >= 8) {
1771 seq_puts(m, "Currently: unknown\n");
1772 } else {
1773 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1774 seq_puts(m, "Currently: enabled\n");
1775 else
1776 seq_puts(m, "Currently: disabled\n");
1777 }
1778
1779 intel_runtime_pm_put(dev_priv);
1780
1781 return 0;
1782 }
1783
1784 static int i915_sr_status(struct seq_file *m, void *unused)
1785 {
1786 struct drm_info_node *node = m->private;
1787 struct drm_device *dev = node->minor->dev;
1788 struct drm_i915_private *dev_priv = dev->dev_private;
1789 bool sr_enabled = false;
1790
1791 intel_runtime_pm_get(dev_priv);
1792
1793 if (HAS_PCH_SPLIT(dev))
1794 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1795 else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1796 IS_I945G(dev) || IS_I945GM(dev))
1797 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1798 else if (IS_I915GM(dev))
1799 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1800 else if (IS_PINEVIEW(dev))
1801 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1802 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1803 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1804
1805 intel_runtime_pm_put(dev_priv);
1806
1807 seq_printf(m, "self-refresh: %s\n",
1808 sr_enabled ? "enabled" : "disabled");
1809
1810 return 0;
1811 }
1812
1813 static int i915_emon_status(struct seq_file *m, void *unused)
1814 {
1815 struct drm_info_node *node = m->private;
1816 struct drm_device *dev = node->minor->dev;
1817 struct drm_i915_private *dev_priv = dev->dev_private;
1818 unsigned long temp, chipset, gfx;
1819 int ret;
1820
1821 if (!IS_GEN5(dev))
1822 return -ENODEV;
1823
1824 ret = mutex_lock_interruptible(&dev->struct_mutex);
1825 if (ret)
1826 return ret;
1827
1828 temp = i915_mch_val(dev_priv);
1829 chipset = i915_chipset_val(dev_priv);
1830 gfx = i915_gfx_val(dev_priv);
1831 mutex_unlock(&dev->struct_mutex);
1832
1833 seq_printf(m, "GMCH temp: %ld\n", temp);
1834 seq_printf(m, "Chipset power: %ld\n", chipset);
1835 seq_printf(m, "GFX power: %ld\n", gfx);
1836 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1837
1838 return 0;
1839 }
1840
1841 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1842 {
1843 struct drm_info_node *node = m->private;
1844 struct drm_device *dev = node->minor->dev;
1845 struct drm_i915_private *dev_priv = dev->dev_private;
1846 int ret = 0;
1847 int gpu_freq, ia_freq;
1848 unsigned int max_gpu_freq, min_gpu_freq;
1849
1850 if (!HAS_CORE_RING_FREQ(dev)) {
1851 seq_puts(m, "unsupported on this chipset\n");
1852 return 0;
1853 }
1854
1855 intel_runtime_pm_get(dev_priv);
1856
1857 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1858
1859 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1860 if (ret)
1861 goto out;
1862
1863 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1864 /* Convert GT frequency to 50 HZ units */
1865 min_gpu_freq =
1866 dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1867 max_gpu_freq =
1868 dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1869 } else {
1870 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1871 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1872 }
1873
1874 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1875
1876 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1877 ia_freq = gpu_freq;
1878 sandybridge_pcode_read(dev_priv,
1879 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1880 &ia_freq);
1881 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1882 intel_gpu_freq(dev_priv, (gpu_freq *
1883 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1884 GEN9_FREQ_SCALER : 1))),
1885 ((ia_freq >> 0) & 0xff) * 100,
1886 ((ia_freq >> 8) & 0xff) * 100);
1887 }
1888
1889 mutex_unlock(&dev_priv->rps.hw_lock);
1890
1891 out:
1892 intel_runtime_pm_put(dev_priv);
1893 return ret;
1894 }
1895
1896 static int i915_opregion(struct seq_file *m, void *unused)
1897 {
1898 struct drm_info_node *node = m->private;
1899 struct drm_device *dev = node->minor->dev;
1900 struct drm_i915_private *dev_priv = dev->dev_private;
1901 struct intel_opregion *opregion = &dev_priv->opregion;
1902 int ret;
1903
1904 ret = mutex_lock_interruptible(&dev->struct_mutex);
1905 if (ret)
1906 goto out;
1907
1908 if (opregion->header)
1909 seq_write(m, opregion->header, OPREGION_SIZE);
1910
1911 mutex_unlock(&dev->struct_mutex);
1912
1913 out:
1914 return 0;
1915 }
1916
1917 static int i915_vbt(struct seq_file *m, void *unused)
1918 {
1919 struct drm_info_node *node = m->private;
1920 struct drm_device *dev = node->minor->dev;
1921 struct drm_i915_private *dev_priv = dev->dev_private;
1922 struct intel_opregion *opregion = &dev_priv->opregion;
1923
1924 if (opregion->vbt)
1925 seq_write(m, opregion->vbt, opregion->vbt_size);
1926
1927 return 0;
1928 }
1929
1930 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1931 {
1932 struct drm_info_node *node = m->private;
1933 struct drm_device *dev = node->minor->dev;
1934 struct intel_framebuffer *fbdev_fb = NULL;
1935 struct drm_framebuffer *drm_fb;
1936 int ret;
1937
1938 ret = mutex_lock_interruptible(&dev->struct_mutex);
1939 if (ret)
1940 return ret;
1941
1942 #ifdef CONFIG_DRM_FBDEV_EMULATION
1943 if (to_i915(dev)->fbdev) {
1944 fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1945
1946 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1947 fbdev_fb->base.width,
1948 fbdev_fb->base.height,
1949 fbdev_fb->base.depth,
1950 fbdev_fb->base.bits_per_pixel,
1951 fbdev_fb->base.modifier[0],
1952 drm_framebuffer_read_refcount(&fbdev_fb->base));
1953 describe_obj(m, fbdev_fb->obj);
1954 seq_putc(m, '\n');
1955 }
1956 #endif
1957
1958 mutex_lock(&dev->mode_config.fb_lock);
1959 drm_for_each_fb(drm_fb, dev) {
1960 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1961 if (fb == fbdev_fb)
1962 continue;
1963
1964 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1965 fb->base.width,
1966 fb->base.height,
1967 fb->base.depth,
1968 fb->base.bits_per_pixel,
1969 fb->base.modifier[0],
1970 drm_framebuffer_read_refcount(&fb->base));
1971 describe_obj(m, fb->obj);
1972 seq_putc(m, '\n');
1973 }
1974 mutex_unlock(&dev->mode_config.fb_lock);
1975 mutex_unlock(&dev->struct_mutex);
1976
1977 return 0;
1978 }
1979
1980 static void describe_ctx_ringbuf(struct seq_file *m,
1981 struct intel_ringbuffer *ringbuf)
1982 {
1983 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1984 ringbuf->space, ringbuf->head, ringbuf->tail,
1985 ringbuf->last_retired_head);
1986 }
1987
1988 static int i915_context_status(struct seq_file *m, void *unused)
1989 {
1990 struct drm_info_node *node = m->private;
1991 struct drm_device *dev = node->minor->dev;
1992 struct drm_i915_private *dev_priv = dev->dev_private;
1993 struct intel_engine_cs *engine;
1994 struct intel_context *ctx;
1995 enum intel_engine_id id;
1996 int ret;
1997
1998 ret = mutex_lock_interruptible(&dev->struct_mutex);
1999 if (ret)
2000 return ret;
2001
2002 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2003 if (!i915.enable_execlists &&
2004 ctx->legacy_hw_ctx.rcs_state == NULL)
2005 continue;
2006
2007 seq_puts(m, "HW context ");
2008 describe_ctx(m, ctx);
2009 if (ctx == dev_priv->kernel_context)
2010 seq_printf(m, "(kernel context) ");
2011
2012 if (i915.enable_execlists) {
2013 seq_putc(m, '\n');
2014 for_each_engine_id(engine, dev_priv, id) {
2015 struct drm_i915_gem_object *ctx_obj =
2016 ctx->engine[id].state;
2017 struct intel_ringbuffer *ringbuf =
2018 ctx->engine[id].ringbuf;
2019
2020 seq_printf(m, "%s: ", engine->name);
2021 if (ctx_obj)
2022 describe_obj(m, ctx_obj);
2023 if (ringbuf)
2024 describe_ctx_ringbuf(m, ringbuf);
2025 seq_putc(m, '\n');
2026 }
2027 } else {
2028 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
2029 }
2030
2031 seq_putc(m, '\n');
2032 }
2033
2034 mutex_unlock(&dev->struct_mutex);
2035
2036 return 0;
2037 }
2038
2039 static void i915_dump_lrc_obj(struct seq_file *m,
2040 struct intel_context *ctx,
2041 struct intel_engine_cs *engine)
2042 {
2043 struct page *page;
2044 uint32_t *reg_state;
2045 int j;
2046 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2047 unsigned long ggtt_offset = 0;
2048
2049 if (ctx_obj == NULL) {
2050 seq_printf(m, "Context on %s with no gem object\n",
2051 engine->name);
2052 return;
2053 }
2054
2055 seq_printf(m, "CONTEXT: %s %u\n", engine->name,
2056 intel_execlists_ctx_id(ctx, engine));
2057
2058 if (!i915_gem_obj_ggtt_bound(ctx_obj))
2059 seq_puts(m, "\tNot bound in GGTT\n");
2060 else
2061 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2062
2063 if (i915_gem_object_get_pages(ctx_obj)) {
2064 seq_puts(m, "\tFailed to get pages for context object\n");
2065 return;
2066 }
2067
2068 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2069 if (!WARN_ON(page == NULL)) {
2070 reg_state = kmap_atomic(page);
2071
2072 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2073 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2074 ggtt_offset + 4096 + (j * 4),
2075 reg_state[j], reg_state[j + 1],
2076 reg_state[j + 2], reg_state[j + 3]);
2077 }
2078 kunmap_atomic(reg_state);
2079 }
2080
2081 seq_putc(m, '\n');
2082 }
2083
2084 static int i915_dump_lrc(struct seq_file *m, void *unused)
2085 {
2086 struct drm_info_node *node = (struct drm_info_node *) m->private;
2087 struct drm_device *dev = node->minor->dev;
2088 struct drm_i915_private *dev_priv = dev->dev_private;
2089 struct intel_engine_cs *engine;
2090 struct intel_context *ctx;
2091 int ret;
2092
2093 if (!i915.enable_execlists) {
2094 seq_printf(m, "Logical Ring Contexts are disabled\n");
2095 return 0;
2096 }
2097
2098 ret = mutex_lock_interruptible(&dev->struct_mutex);
2099 if (ret)
2100 return ret;
2101
2102 list_for_each_entry(ctx, &dev_priv->context_list, link)
2103 if (ctx != dev_priv->kernel_context)
2104 for_each_engine(engine, dev_priv)
2105 i915_dump_lrc_obj(m, ctx, engine);
2106
2107 mutex_unlock(&dev->struct_mutex);
2108
2109 return 0;
2110 }
2111
2112 static int i915_execlists(struct seq_file *m, void *data)
2113 {
2114 struct drm_info_node *node = (struct drm_info_node *)m->private;
2115 struct drm_device *dev = node->minor->dev;
2116 struct drm_i915_private *dev_priv = dev->dev_private;
2117 struct intel_engine_cs *engine;
2118 u32 status_pointer;
2119 u8 read_pointer;
2120 u8 write_pointer;
2121 u32 status;
2122 u32 ctx_id;
2123 struct list_head *cursor;
2124 int i, ret;
2125
2126 if (!i915.enable_execlists) {
2127 seq_puts(m, "Logical Ring Contexts are disabled\n");
2128 return 0;
2129 }
2130
2131 ret = mutex_lock_interruptible(&dev->struct_mutex);
2132 if (ret)
2133 return ret;
2134
2135 intel_runtime_pm_get(dev_priv);
2136
2137 for_each_engine(engine, dev_priv) {
2138 struct drm_i915_gem_request *head_req = NULL;
2139 int count = 0;
2140
2141 seq_printf(m, "%s\n", engine->name);
2142
2143 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2144 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2145 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2146 status, ctx_id);
2147
2148 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2149 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2150
2151 read_pointer = engine->next_context_status_buffer;
2152 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2153 if (read_pointer > write_pointer)
2154 write_pointer += GEN8_CSB_ENTRIES;
2155 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2156 read_pointer, write_pointer);
2157
2158 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2159 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2160 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2161
2162 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2163 i, status, ctx_id);
2164 }
2165
2166 spin_lock_bh(&engine->execlist_lock);
2167 list_for_each(cursor, &engine->execlist_queue)
2168 count++;
2169 head_req = list_first_entry_or_null(&engine->execlist_queue,
2170 struct drm_i915_gem_request,
2171 execlist_link);
2172 spin_unlock_bh(&engine->execlist_lock);
2173
2174 seq_printf(m, "\t%d requests in queue\n", count);
2175 if (head_req) {
2176 seq_printf(m, "\tHead request id: %u\n",
2177 intel_execlists_ctx_id(head_req->ctx, engine));
2178 seq_printf(m, "\tHead request tail: %u\n",
2179 head_req->tail);
2180 }
2181
2182 seq_putc(m, '\n');
2183 }
2184
2185 intel_runtime_pm_put(dev_priv);
2186 mutex_unlock(&dev->struct_mutex);
2187
2188 return 0;
2189 }
2190
2191 static const char *swizzle_string(unsigned swizzle)
2192 {
2193 switch (swizzle) {
2194 case I915_BIT_6_SWIZZLE_NONE:
2195 return "none";
2196 case I915_BIT_6_SWIZZLE_9:
2197 return "bit9";
2198 case I915_BIT_6_SWIZZLE_9_10:
2199 return "bit9/bit10";
2200 case I915_BIT_6_SWIZZLE_9_11:
2201 return "bit9/bit11";
2202 case I915_BIT_6_SWIZZLE_9_10_11:
2203 return "bit9/bit10/bit11";
2204 case I915_BIT_6_SWIZZLE_9_17:
2205 return "bit9/bit17";
2206 case I915_BIT_6_SWIZZLE_9_10_17:
2207 return "bit9/bit10/bit17";
2208 case I915_BIT_6_SWIZZLE_UNKNOWN:
2209 return "unknown";
2210 }
2211
2212 return "bug";
2213 }
2214
2215 static int i915_swizzle_info(struct seq_file *m, void *data)
2216 {
2217 struct drm_info_node *node = m->private;
2218 struct drm_device *dev = node->minor->dev;
2219 struct drm_i915_private *dev_priv = dev->dev_private;
2220 int ret;
2221
2222 ret = mutex_lock_interruptible(&dev->struct_mutex);
2223 if (ret)
2224 return ret;
2225 intel_runtime_pm_get(dev_priv);
2226
2227 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2228 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2229 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2230 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2231
2232 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2233 seq_printf(m, "DDC = 0x%08x\n",
2234 I915_READ(DCC));
2235 seq_printf(m, "DDC2 = 0x%08x\n",
2236 I915_READ(DCC2));
2237 seq_printf(m, "C0DRB3 = 0x%04x\n",
2238 I915_READ16(C0DRB3));
2239 seq_printf(m, "C1DRB3 = 0x%04x\n",
2240 I915_READ16(C1DRB3));
2241 } else if (INTEL_INFO(dev)->gen >= 6) {
2242 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2243 I915_READ(MAD_DIMM_C0));
2244 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2245 I915_READ(MAD_DIMM_C1));
2246 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2247 I915_READ(MAD_DIMM_C2));
2248 seq_printf(m, "TILECTL = 0x%08x\n",
2249 I915_READ(TILECTL));
2250 if (INTEL_INFO(dev)->gen >= 8)
2251 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2252 I915_READ(GAMTARBMODE));
2253 else
2254 seq_printf(m, "ARB_MODE = 0x%08x\n",
2255 I915_READ(ARB_MODE));
2256 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2257 I915_READ(DISP_ARB_CTL));
2258 }
2259
2260 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2261 seq_puts(m, "L-shaped memory detected\n");
2262
2263 intel_runtime_pm_put(dev_priv);
2264 mutex_unlock(&dev->struct_mutex);
2265
2266 return 0;
2267 }
2268
2269 static int per_file_ctx(int id, void *ptr, void *data)
2270 {
2271 struct intel_context *ctx = ptr;
2272 struct seq_file *m = data;
2273 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2274
2275 if (!ppgtt) {
2276 seq_printf(m, " no ppgtt for context %d\n",
2277 ctx->user_handle);
2278 return 0;
2279 }
2280
2281 if (i915_gem_context_is_default(ctx))
2282 seq_puts(m, " default context:\n");
2283 else
2284 seq_printf(m, " context %d:\n", ctx->user_handle);
2285 ppgtt->debug_dump(ppgtt, m);
2286
2287 return 0;
2288 }
2289
2290 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2291 {
2292 struct drm_i915_private *dev_priv = dev->dev_private;
2293 struct intel_engine_cs *engine;
2294 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2295 int i;
2296
2297 if (!ppgtt)
2298 return;
2299
2300 for_each_engine(engine, dev_priv) {
2301 seq_printf(m, "%s\n", engine->name);
2302 for (i = 0; i < 4; i++) {
2303 u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2304 pdp <<= 32;
2305 pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2306 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2307 }
2308 }
2309 }
2310
2311 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2312 {
2313 struct drm_i915_private *dev_priv = dev->dev_private;
2314 struct intel_engine_cs *engine;
2315
2316 if (INTEL_INFO(dev)->gen == 6)
2317 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2318
2319 for_each_engine(engine, dev_priv) {
2320 seq_printf(m, "%s\n", engine->name);
2321 if (INTEL_INFO(dev)->gen == 7)
2322 seq_printf(m, "GFX_MODE: 0x%08x\n",
2323 I915_READ(RING_MODE_GEN7(engine)));
2324 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2325 I915_READ(RING_PP_DIR_BASE(engine)));
2326 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2327 I915_READ(RING_PP_DIR_BASE_READ(engine)));
2328 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2329 I915_READ(RING_PP_DIR_DCLV(engine)));
2330 }
2331 if (dev_priv->mm.aliasing_ppgtt) {
2332 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2333
2334 seq_puts(m, "aliasing PPGTT:\n");
2335 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2336
2337 ppgtt->debug_dump(ppgtt, m);
2338 }
2339
2340 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2341 }
2342
2343 static int i915_ppgtt_info(struct seq_file *m, void *data)
2344 {
2345 struct drm_info_node *node = m->private;
2346 struct drm_device *dev = node->minor->dev;
2347 struct drm_i915_private *dev_priv = dev->dev_private;
2348 struct drm_file *file;
2349
2350 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2351 if (ret)
2352 return ret;
2353 intel_runtime_pm_get(dev_priv);
2354
2355 if (INTEL_INFO(dev)->gen >= 8)
2356 gen8_ppgtt_info(m, dev);
2357 else if (INTEL_INFO(dev)->gen >= 6)
2358 gen6_ppgtt_info(m, dev);
2359
2360 mutex_lock(&dev->filelist_mutex);
2361 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2362 struct drm_i915_file_private *file_priv = file->driver_priv;
2363 struct task_struct *task;
2364
2365 task = get_pid_task(file->pid, PIDTYPE_PID);
2366 if (!task) {
2367 ret = -ESRCH;
2368 goto out_put;
2369 }
2370 seq_printf(m, "\nproc: %s\n", task->comm);
2371 put_task_struct(task);
2372 idr_for_each(&file_priv->context_idr, per_file_ctx,
2373 (void *)(unsigned long)m);
2374 }
2375 mutex_unlock(&dev->filelist_mutex);
2376
2377 out_put:
2378 intel_runtime_pm_put(dev_priv);
2379 mutex_unlock(&dev->struct_mutex);
2380
2381 return ret;
2382 }
2383
2384 static int count_irq_waiters(struct drm_i915_private *i915)
2385 {
2386 struct intel_engine_cs *engine;
2387 int count = 0;
2388
2389 for_each_engine(engine, i915)
2390 count += engine->irq_refcount;
2391
2392 return count;
2393 }
2394
2395 static int i915_rps_boost_info(struct seq_file *m, void *data)
2396 {
2397 struct drm_info_node *node = m->private;
2398 struct drm_device *dev = node->minor->dev;
2399 struct drm_i915_private *dev_priv = dev->dev_private;
2400 struct drm_file *file;
2401
2402 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2403 seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2404 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2405 seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2406 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2407 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2408 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2409 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2410 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2411
2412 mutex_lock(&dev->filelist_mutex);
2413 spin_lock(&dev_priv->rps.client_lock);
2414 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2415 struct drm_i915_file_private *file_priv = file->driver_priv;
2416 struct task_struct *task;
2417
2418 rcu_read_lock();
2419 task = pid_task(file->pid, PIDTYPE_PID);
2420 seq_printf(m, "%s [%d]: %d boosts%s\n",
2421 task ? task->comm : "<unknown>",
2422 task ? task->pid : -1,
2423 file_priv->rps.boosts,
2424 list_empty(&file_priv->rps.link) ? "" : ", active");
2425 rcu_read_unlock();
2426 }
2427 seq_printf(m, "Semaphore boosts: %d%s\n",
2428 dev_priv->rps.semaphores.boosts,
2429 list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2430 seq_printf(m, "MMIO flip boosts: %d%s\n",
2431 dev_priv->rps.mmioflips.boosts,
2432 list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2433 seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2434 spin_unlock(&dev_priv->rps.client_lock);
2435 mutex_unlock(&dev->filelist_mutex);
2436
2437 return 0;
2438 }
2439
2440 static int i915_llc(struct seq_file *m, void *data)
2441 {
2442 struct drm_info_node *node = m->private;
2443 struct drm_device *dev = node->minor->dev;
2444 struct drm_i915_private *dev_priv = dev->dev_private;
2445 const bool edram = INTEL_GEN(dev_priv) > 8;
2446
2447 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2448 seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2449 intel_uncore_edram_size(dev_priv)/1024/1024);
2450
2451 return 0;
2452 }
2453
2454 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2455 {
2456 struct drm_info_node *node = m->private;
2457 struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2458 struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2459 u32 tmp, i;
2460
2461 if (!HAS_GUC_UCODE(dev_priv))
2462 return 0;
2463
2464 seq_printf(m, "GuC firmware status:\n");
2465 seq_printf(m, "\tpath: %s\n",
2466 guc_fw->guc_fw_path);
2467 seq_printf(m, "\tfetch: %s\n",
2468 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2469 seq_printf(m, "\tload: %s\n",
2470 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2471 seq_printf(m, "\tversion wanted: %d.%d\n",
2472 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2473 seq_printf(m, "\tversion found: %d.%d\n",
2474 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2475 seq_printf(m, "\theader: offset is %d; size = %d\n",
2476 guc_fw->header_offset, guc_fw->header_size);
2477 seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2478 guc_fw->ucode_offset, guc_fw->ucode_size);
2479 seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2480 guc_fw->rsa_offset, guc_fw->rsa_size);
2481
2482 tmp = I915_READ(GUC_STATUS);
2483
2484 seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2485 seq_printf(m, "\tBootrom status = 0x%x\n",
2486 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2487 seq_printf(m, "\tuKernel status = 0x%x\n",
2488 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2489 seq_printf(m, "\tMIA Core status = 0x%x\n",
2490 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2491 seq_puts(m, "\nScratch registers:\n");
2492 for (i = 0; i < 16; i++)
2493 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2494
2495 return 0;
2496 }
2497
2498 static void i915_guc_client_info(struct seq_file *m,
2499 struct drm_i915_private *dev_priv,
2500 struct i915_guc_client *client)
2501 {
2502 struct intel_engine_cs *engine;
2503 uint64_t tot = 0;
2504
2505 seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2506 client->priority, client->ctx_index, client->proc_desc_offset);
2507 seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2508 client->doorbell_id, client->doorbell_offset, client->cookie);
2509 seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2510 client->wq_size, client->wq_offset, client->wq_tail);
2511
2512 seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2513 seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2514 seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2515
2516 for_each_engine(engine, dev_priv) {
2517 seq_printf(m, "\tSubmissions: %llu %s\n",
2518 client->submissions[engine->guc_id],
2519 engine->name);
2520 tot += client->submissions[engine->guc_id];
2521 }
2522 seq_printf(m, "\tTotal: %llu\n", tot);
2523 }
2524
2525 static int i915_guc_info(struct seq_file *m, void *data)
2526 {
2527 struct drm_info_node *node = m->private;
2528 struct drm_device *dev = node->minor->dev;
2529 struct drm_i915_private *dev_priv = dev->dev_private;
2530 struct intel_guc guc;
2531 struct i915_guc_client client = {};
2532 struct intel_engine_cs *engine;
2533 u64 total = 0;
2534
2535 if (!HAS_GUC_SCHED(dev_priv))
2536 return 0;
2537
2538 if (mutex_lock_interruptible(&dev->struct_mutex))
2539 return 0;
2540
2541 /* Take a local copy of the GuC data, so we can dump it at leisure */
2542 guc = dev_priv->guc;
2543 if (guc.execbuf_client)
2544 client = *guc.execbuf_client;
2545
2546 mutex_unlock(&dev->struct_mutex);
2547
2548 seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2549 seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2550 seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2551 seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2552 seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2553
2554 seq_printf(m, "\nGuC submissions:\n");
2555 for_each_engine(engine, dev_priv) {
2556 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2557 engine->name, guc.submissions[engine->guc_id],
2558 guc.last_seqno[engine->guc_id]);
2559 total += guc.submissions[engine->guc_id];
2560 }
2561 seq_printf(m, "\t%s: %llu\n", "Total", total);
2562
2563 seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2564 i915_guc_client_info(m, dev_priv, &client);
2565
2566 /* Add more as required ... */
2567
2568 return 0;
2569 }
2570
2571 static int i915_guc_log_dump(struct seq_file *m, void *data)
2572 {
2573 struct drm_info_node *node = m->private;
2574 struct drm_device *dev = node->minor->dev;
2575 struct drm_i915_private *dev_priv = dev->dev_private;
2576 struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2577 u32 *log;
2578 int i = 0, pg;
2579
2580 if (!log_obj)
2581 return 0;
2582
2583 for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2584 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2585
2586 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2587 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2588 *(log + i), *(log + i + 1),
2589 *(log + i + 2), *(log + i + 3));
2590
2591 kunmap_atomic(log);
2592 }
2593
2594 seq_putc(m, '\n');
2595
2596 return 0;
2597 }
2598
2599 static int i915_edp_psr_status(struct seq_file *m, void *data)
2600 {
2601 struct drm_info_node *node = m->private;
2602 struct drm_device *dev = node->minor->dev;
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 u32 psrperf = 0;
2605 u32 stat[3];
2606 enum pipe pipe;
2607 bool enabled = false;
2608
2609 if (!HAS_PSR(dev)) {
2610 seq_puts(m, "PSR not supported\n");
2611 return 0;
2612 }
2613
2614 intel_runtime_pm_get(dev_priv);
2615
2616 mutex_lock(&dev_priv->psr.lock);
2617 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2618 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2619 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2620 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2621 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2622 dev_priv->psr.busy_frontbuffer_bits);
2623 seq_printf(m, "Re-enable work scheduled: %s\n",
2624 yesno(work_busy(&dev_priv->psr.work.work)));
2625
2626 if (HAS_DDI(dev))
2627 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2628 else {
2629 for_each_pipe(dev_priv, pipe) {
2630 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2631 VLV_EDP_PSR_CURR_STATE_MASK;
2632 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2633 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2634 enabled = true;
2635 }
2636 }
2637
2638 seq_printf(m, "Main link in standby mode: %s\n",
2639 yesno(dev_priv->psr.link_standby));
2640
2641 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2642
2643 if (!HAS_DDI(dev))
2644 for_each_pipe(dev_priv, pipe) {
2645 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2646 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2647 seq_printf(m, " pipe %c", pipe_name(pipe));
2648 }
2649 seq_puts(m, "\n");
2650
2651 /*
2652 * VLV/CHV PSR has no kind of performance counter
2653 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2654 */
2655 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2656 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2657 EDP_PSR_PERF_CNT_MASK;
2658
2659 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2660 }
2661 mutex_unlock(&dev_priv->psr.lock);
2662
2663 intel_runtime_pm_put(dev_priv);
2664 return 0;
2665 }
2666
2667 static int i915_sink_crc(struct seq_file *m, void *data)
2668 {
2669 struct drm_info_node *node = m->private;
2670 struct drm_device *dev = node->minor->dev;
2671 struct intel_encoder *encoder;
2672 struct intel_connector *connector;
2673 struct intel_dp *intel_dp = NULL;
2674 int ret;
2675 u8 crc[6];
2676
2677 drm_modeset_lock_all(dev);
2678 for_each_intel_connector(dev, connector) {
2679
2680 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2681 continue;
2682
2683 if (!connector->base.encoder)
2684 continue;
2685
2686 encoder = to_intel_encoder(connector->base.encoder);
2687 if (encoder->type != INTEL_OUTPUT_EDP)
2688 continue;
2689
2690 intel_dp = enc_to_intel_dp(&encoder->base);
2691
2692 ret = intel_dp_sink_crc(intel_dp, crc);
2693 if (ret)
2694 goto out;
2695
2696 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2697 crc[0], crc[1], crc[2],
2698 crc[3], crc[4], crc[5]);
2699 goto out;
2700 }
2701 ret = -ENODEV;
2702 out:
2703 drm_modeset_unlock_all(dev);
2704 return ret;
2705 }
2706
2707 static int i915_energy_uJ(struct seq_file *m, void *data)
2708 {
2709 struct drm_info_node *node = m->private;
2710 struct drm_device *dev = node->minor->dev;
2711 struct drm_i915_private *dev_priv = dev->dev_private;
2712 u64 power;
2713 u32 units;
2714
2715 if (INTEL_INFO(dev)->gen < 6)
2716 return -ENODEV;
2717
2718 intel_runtime_pm_get(dev_priv);
2719
2720 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2721 power = (power & 0x1f00) >> 8;
2722 units = 1000000 / (1 << power); /* convert to uJ */
2723 power = I915_READ(MCH_SECP_NRG_STTS);
2724 power *= units;
2725
2726 intel_runtime_pm_put(dev_priv);
2727
2728 seq_printf(m, "%llu", (long long unsigned)power);
2729
2730 return 0;
2731 }
2732
2733 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2734 {
2735 struct drm_info_node *node = m->private;
2736 struct drm_device *dev = node->minor->dev;
2737 struct drm_i915_private *dev_priv = dev->dev_private;
2738
2739 if (!HAS_RUNTIME_PM(dev_priv))
2740 seq_puts(m, "Runtime power management not supported\n");
2741
2742 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2743 seq_printf(m, "IRQs disabled: %s\n",
2744 yesno(!intel_irqs_enabled(dev_priv)));
2745 #ifdef CONFIG_PM
2746 seq_printf(m, "Usage count: %d\n",
2747 atomic_read(&dev->dev->power.usage_count));
2748 #else
2749 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2750 #endif
2751 seq_printf(m, "PCI device power state: %s [%d]\n",
2752 pci_power_name(dev_priv->dev->pdev->current_state),
2753 dev_priv->dev->pdev->current_state);
2754
2755 return 0;
2756 }
2757
2758 static int i915_power_domain_info(struct seq_file *m, void *unused)
2759 {
2760 struct drm_info_node *node = m->private;
2761 struct drm_device *dev = node->minor->dev;
2762 struct drm_i915_private *dev_priv = dev->dev_private;
2763 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2764 int i;
2765
2766 mutex_lock(&power_domains->lock);
2767
2768 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2769 for (i = 0; i < power_domains->power_well_count; i++) {
2770 struct i915_power_well *power_well;
2771 enum intel_display_power_domain power_domain;
2772
2773 power_well = &power_domains->power_wells[i];
2774 seq_printf(m, "%-25s %d\n", power_well->name,
2775 power_well->count);
2776
2777 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2778 power_domain++) {
2779 if (!(BIT(power_domain) & power_well->domains))
2780 continue;
2781
2782 seq_printf(m, " %-23s %d\n",
2783 intel_display_power_domain_str(power_domain),
2784 power_domains->domain_use_count[power_domain]);
2785 }
2786 }
2787
2788 mutex_unlock(&power_domains->lock);
2789
2790 return 0;
2791 }
2792
2793 static int i915_dmc_info(struct seq_file *m, void *unused)
2794 {
2795 struct drm_info_node *node = m->private;
2796 struct drm_device *dev = node->minor->dev;
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 struct intel_csr *csr;
2799
2800 if (!HAS_CSR(dev)) {
2801 seq_puts(m, "not supported\n");
2802 return 0;
2803 }
2804
2805 csr = &dev_priv->csr;
2806
2807 intel_runtime_pm_get(dev_priv);
2808
2809 seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2810 seq_printf(m, "path: %s\n", csr->fw_path);
2811
2812 if (!csr->dmc_payload)
2813 goto out;
2814
2815 seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2816 CSR_VERSION_MINOR(csr->version));
2817
2818 if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2819 seq_printf(m, "DC3 -> DC5 count: %d\n",
2820 I915_READ(SKL_CSR_DC3_DC5_COUNT));
2821 seq_printf(m, "DC5 -> DC6 count: %d\n",
2822 I915_READ(SKL_CSR_DC5_DC6_COUNT));
2823 } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2824 seq_printf(m, "DC3 -> DC5 count: %d\n",
2825 I915_READ(BXT_CSR_DC3_DC5_COUNT));
2826 }
2827
2828 out:
2829 seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2830 seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2831 seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2832
2833 intel_runtime_pm_put(dev_priv);
2834
2835 return 0;
2836 }
2837
2838 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2839 struct drm_display_mode *mode)
2840 {
2841 int i;
2842
2843 for (i = 0; i < tabs; i++)
2844 seq_putc(m, '\t');
2845
2846 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2847 mode->base.id, mode->name,
2848 mode->vrefresh, mode->clock,
2849 mode->hdisplay, mode->hsync_start,
2850 mode->hsync_end, mode->htotal,
2851 mode->vdisplay, mode->vsync_start,
2852 mode->vsync_end, mode->vtotal,
2853 mode->type, mode->flags);
2854 }
2855
2856 static void intel_encoder_info(struct seq_file *m,
2857 struct intel_crtc *intel_crtc,
2858 struct intel_encoder *intel_encoder)
2859 {
2860 struct drm_info_node *node = m->private;
2861 struct drm_device *dev = node->minor->dev;
2862 struct drm_crtc *crtc = &intel_crtc->base;
2863 struct intel_connector *intel_connector;
2864 struct drm_encoder *encoder;
2865
2866 encoder = &intel_encoder->base;
2867 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2868 encoder->base.id, encoder->name);
2869 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2870 struct drm_connector *connector = &intel_connector->base;
2871 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2872 connector->base.id,
2873 connector->name,
2874 drm_get_connector_status_name(connector->status));
2875 if (connector->status == connector_status_connected) {
2876 struct drm_display_mode *mode = &crtc->mode;
2877 seq_printf(m, ", mode:\n");
2878 intel_seq_print_mode(m, 2, mode);
2879 } else {
2880 seq_putc(m, '\n');
2881 }
2882 }
2883 }
2884
2885 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2886 {
2887 struct drm_info_node *node = m->private;
2888 struct drm_device *dev = node->minor->dev;
2889 struct drm_crtc *crtc = &intel_crtc->base;
2890 struct intel_encoder *intel_encoder;
2891 struct drm_plane_state *plane_state = crtc->primary->state;
2892 struct drm_framebuffer *fb = plane_state->fb;
2893
2894 if (fb)
2895 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2896 fb->base.id, plane_state->src_x >> 16,
2897 plane_state->src_y >> 16, fb->width, fb->height);
2898 else
2899 seq_puts(m, "\tprimary plane disabled\n");
2900 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2901 intel_encoder_info(m, intel_crtc, intel_encoder);
2902 }
2903
2904 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2905 {
2906 struct drm_display_mode *mode = panel->fixed_mode;
2907
2908 seq_printf(m, "\tfixed mode:\n");
2909 intel_seq_print_mode(m, 2, mode);
2910 }
2911
2912 static void intel_dp_info(struct seq_file *m,
2913 struct intel_connector *intel_connector)
2914 {
2915 struct intel_encoder *intel_encoder = intel_connector->encoder;
2916 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2917
2918 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2919 seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2920 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2921 intel_panel_info(m, &intel_connector->panel);
2922 }
2923
2924 static void intel_dp_mst_info(struct seq_file *m,
2925 struct intel_connector *intel_connector)
2926 {
2927 struct intel_encoder *intel_encoder = intel_connector->encoder;
2928 struct intel_dp_mst_encoder *intel_mst =
2929 enc_to_mst(&intel_encoder->base);
2930 struct intel_digital_port *intel_dig_port = intel_mst->primary;
2931 struct intel_dp *intel_dp = &intel_dig_port->dp;
2932 bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2933 intel_connector->port);
2934
2935 seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2936 }
2937
2938 static void intel_hdmi_info(struct seq_file *m,
2939 struct intel_connector *intel_connector)
2940 {
2941 struct intel_encoder *intel_encoder = intel_connector->encoder;
2942 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2943
2944 seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2945 }
2946
2947 static void intel_lvds_info(struct seq_file *m,
2948 struct intel_connector *intel_connector)
2949 {
2950 intel_panel_info(m, &intel_connector->panel);
2951 }
2952
2953 static void intel_connector_info(struct seq_file *m,
2954 struct drm_connector *connector)
2955 {
2956 struct intel_connector *intel_connector = to_intel_connector(connector);
2957 struct intel_encoder *intel_encoder = intel_connector->encoder;
2958 struct drm_display_mode *mode;
2959
2960 seq_printf(m, "connector %d: type %s, status: %s\n",
2961 connector->base.id, connector->name,
2962 drm_get_connector_status_name(connector->status));
2963 if (connector->status == connector_status_connected) {
2964 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2965 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2966 connector->display_info.width_mm,
2967 connector->display_info.height_mm);
2968 seq_printf(m, "\tsubpixel order: %s\n",
2969 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2970 seq_printf(m, "\tCEA rev: %d\n",
2971 connector->display_info.cea_rev);
2972 }
2973 if (intel_encoder) {
2974 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2975 intel_encoder->type == INTEL_OUTPUT_EDP)
2976 intel_dp_info(m, intel_connector);
2977 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2978 intel_hdmi_info(m, intel_connector);
2979 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2980 intel_lvds_info(m, intel_connector);
2981 else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2982 intel_dp_mst_info(m, intel_connector);
2983 }
2984
2985 seq_printf(m, "\tmodes:\n");
2986 list_for_each_entry(mode, &connector->modes, head)
2987 intel_seq_print_mode(m, 2, mode);
2988 }
2989
2990 static bool cursor_active(struct drm_device *dev, int pipe)
2991 {
2992 struct drm_i915_private *dev_priv = dev->dev_private;
2993 u32 state;
2994
2995 if (IS_845G(dev) || IS_I865G(dev))
2996 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2997 else
2998 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2999
3000 return state;
3001 }
3002
3003 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
3004 {
3005 struct drm_i915_private *dev_priv = dev->dev_private;
3006 u32 pos;
3007
3008 pos = I915_READ(CURPOS(pipe));
3009
3010 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
3011 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
3012 *x = -*x;
3013
3014 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
3015 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3016 *y = -*y;
3017
3018 return cursor_active(dev, pipe);
3019 }
3020
3021 static const char *plane_type(enum drm_plane_type type)
3022 {
3023 switch (type) {
3024 case DRM_PLANE_TYPE_OVERLAY:
3025 return "OVL";
3026 case DRM_PLANE_TYPE_PRIMARY:
3027 return "PRI";
3028 case DRM_PLANE_TYPE_CURSOR:
3029 return "CUR";
3030 /*
3031 * Deliberately omitting default: to generate compiler warnings
3032 * when a new drm_plane_type gets added.
3033 */
3034 }
3035
3036 return "unknown";
3037 }
3038
3039 static const char *plane_rotation(unsigned int rotation)
3040 {
3041 static char buf[48];
3042 /*
3043 * According to doc only one DRM_ROTATE_ is allowed but this
3044 * will print them all to visualize if the values are misused
3045 */
3046 snprintf(buf, sizeof(buf),
3047 "%s%s%s%s%s%s(0x%08x)",
3048 (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3049 (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3050 (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3051 (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3052 (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3053 (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3054 rotation);
3055
3056 return buf;
3057 }
3058
3059 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3060 {
3061 struct drm_info_node *node = m->private;
3062 struct drm_device *dev = node->minor->dev;
3063 struct intel_plane *intel_plane;
3064
3065 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3066 struct drm_plane_state *state;
3067 struct drm_plane *plane = &intel_plane->base;
3068
3069 if (!plane->state) {
3070 seq_puts(m, "plane->state is NULL!\n");
3071 continue;
3072 }
3073
3074 state = plane->state;
3075
3076 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3077 plane->base.id,
3078 plane_type(intel_plane->base.type),
3079 state->crtc_x, state->crtc_y,
3080 state->crtc_w, state->crtc_h,
3081 (state->src_x >> 16),
3082 ((state->src_x & 0xffff) * 15625) >> 10,
3083 (state->src_y >> 16),
3084 ((state->src_y & 0xffff) * 15625) >> 10,
3085 (state->src_w >> 16),
3086 ((state->src_w & 0xffff) * 15625) >> 10,
3087 (state->src_h >> 16),
3088 ((state->src_h & 0xffff) * 15625) >> 10,
3089 state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3090 plane_rotation(state->rotation));
3091 }
3092 }
3093
3094 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3095 {
3096 struct intel_crtc_state *pipe_config;
3097 int num_scalers = intel_crtc->num_scalers;
3098 int i;
3099
3100 pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3101
3102 /* Not all platformas have a scaler */
3103 if (num_scalers) {
3104 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3105 num_scalers,
3106 pipe_config->scaler_state.scaler_users,
3107 pipe_config->scaler_state.scaler_id);
3108
3109 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3110 struct intel_scaler *sc =
3111 &pipe_config->scaler_state.scalers[i];
3112
3113 seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3114 i, yesno(sc->in_use), sc->mode);
3115 }
3116 seq_puts(m, "\n");
3117 } else {
3118 seq_puts(m, "\tNo scalers available on this platform\n");
3119 }
3120 }
3121
3122 static int i915_display_info(struct seq_file *m, void *unused)
3123 {
3124 struct drm_info_node *node = m->private;
3125 struct drm_device *dev = node->minor->dev;
3126 struct drm_i915_private *dev_priv = dev->dev_private;
3127 struct intel_crtc *crtc;
3128 struct drm_connector *connector;
3129
3130 intel_runtime_pm_get(dev_priv);
3131 drm_modeset_lock_all(dev);
3132 seq_printf(m, "CRTC info\n");
3133 seq_printf(m, "---------\n");
3134 for_each_intel_crtc(dev, crtc) {
3135 bool active;
3136 struct intel_crtc_state *pipe_config;
3137 int x, y;
3138
3139 pipe_config = to_intel_crtc_state(crtc->base.state);
3140
3141 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3142 crtc->base.base.id, pipe_name(crtc->pipe),
3143 yesno(pipe_config->base.active),
3144 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3145 yesno(pipe_config->dither), pipe_config->pipe_bpp);
3146
3147 if (pipe_config->base.active) {
3148 intel_crtc_info(m, crtc);
3149
3150 active = cursor_position(dev, crtc->pipe, &x, &y);
3151 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3152 yesno(crtc->cursor_base),
3153 x, y, crtc->base.cursor->state->crtc_w,
3154 crtc->base.cursor->state->crtc_h,
3155 crtc->cursor_addr, yesno(active));
3156 intel_scaler_info(m, crtc);
3157 intel_plane_info(m, crtc);
3158 }
3159
3160 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3161 yesno(!crtc->cpu_fifo_underrun_disabled),
3162 yesno(!crtc->pch_fifo_underrun_disabled));
3163 }
3164
3165 seq_printf(m, "\n");
3166 seq_printf(m, "Connector info\n");
3167 seq_printf(m, "--------------\n");
3168 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3169 intel_connector_info(m, connector);
3170 }
3171 drm_modeset_unlock_all(dev);
3172 intel_runtime_pm_put(dev_priv);
3173
3174 return 0;
3175 }
3176
3177 static int i915_semaphore_status(struct seq_file *m, void *unused)
3178 {
3179 struct drm_info_node *node = (struct drm_info_node *) m->private;
3180 struct drm_device *dev = node->minor->dev;
3181 struct drm_i915_private *dev_priv = dev->dev_private;
3182 struct intel_engine_cs *engine;
3183 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3184 enum intel_engine_id id;
3185 int j, ret;
3186
3187 if (!i915_semaphore_is_enabled(dev)) {
3188 seq_puts(m, "Semaphores are disabled\n");
3189 return 0;
3190 }
3191
3192 ret = mutex_lock_interruptible(&dev->struct_mutex);
3193 if (ret)
3194 return ret;
3195 intel_runtime_pm_get(dev_priv);
3196
3197 if (IS_BROADWELL(dev)) {
3198 struct page *page;
3199 uint64_t *seqno;
3200
3201 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3202
3203 seqno = (uint64_t *)kmap_atomic(page);
3204 for_each_engine_id(engine, dev_priv, id) {
3205 uint64_t offset;
3206
3207 seq_printf(m, "%s\n", engine->name);
3208
3209 seq_puts(m, " Last signal:");
3210 for (j = 0; j < num_rings; j++) {
3211 offset = id * I915_NUM_ENGINES + j;
3212 seq_printf(m, "0x%08llx (0x%02llx) ",
3213 seqno[offset], offset * 8);
3214 }
3215 seq_putc(m, '\n');
3216
3217 seq_puts(m, " Last wait: ");
3218 for (j = 0; j < num_rings; j++) {
3219 offset = id + (j * I915_NUM_ENGINES);
3220 seq_printf(m, "0x%08llx (0x%02llx) ",
3221 seqno[offset], offset * 8);
3222 }
3223 seq_putc(m, '\n');
3224
3225 }
3226 kunmap_atomic(seqno);
3227 } else {
3228 seq_puts(m, " Last signal:");
3229 for_each_engine(engine, dev_priv)
3230 for (j = 0; j < num_rings; j++)
3231 seq_printf(m, "0x%08x\n",
3232 I915_READ(engine->semaphore.mbox.signal[j]));
3233 seq_putc(m, '\n');
3234 }
3235
3236 seq_puts(m, "\nSync seqno:\n");
3237 for_each_engine(engine, dev_priv) {
3238 for (j = 0; j < num_rings; j++)
3239 seq_printf(m, " 0x%08x ",
3240 engine->semaphore.sync_seqno[j]);
3241 seq_putc(m, '\n');
3242 }
3243 seq_putc(m, '\n');
3244
3245 intel_runtime_pm_put(dev_priv);
3246 mutex_unlock(&dev->struct_mutex);
3247 return 0;
3248 }
3249
3250 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3251 {
3252 struct drm_info_node *node = (struct drm_info_node *) m->private;
3253 struct drm_device *dev = node->minor->dev;
3254 struct drm_i915_private *dev_priv = dev->dev_private;
3255 int i;
3256
3257 drm_modeset_lock_all(dev);
3258 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3259 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3260
3261 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3262 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3263 pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3264 seq_printf(m, " tracked hardware state:\n");
3265 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
3266 seq_printf(m, " dpll_md: 0x%08x\n",
3267 pll->config.hw_state.dpll_md);
3268 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
3269 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
3270 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
3271 }
3272 drm_modeset_unlock_all(dev);
3273
3274 return 0;
3275 }
3276
3277 static int i915_wa_registers(struct seq_file *m, void *unused)
3278 {
3279 int i;
3280 int ret;
3281 struct intel_engine_cs *engine;
3282 struct drm_info_node *node = (struct drm_info_node *) m->private;
3283 struct drm_device *dev = node->minor->dev;
3284 struct drm_i915_private *dev_priv = dev->dev_private;
3285 struct i915_workarounds *workarounds = &dev_priv->workarounds;
3286 enum intel_engine_id id;
3287
3288 ret = mutex_lock_interruptible(&dev->struct_mutex);
3289 if (ret)
3290 return ret;
3291
3292 intel_runtime_pm_get(dev_priv);
3293
3294 seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3295 for_each_engine_id(engine, dev_priv, id)
3296 seq_printf(m, "HW whitelist count for %s: %d\n",
3297 engine->name, workarounds->hw_whitelist_count[id]);
3298 for (i = 0; i < workarounds->count; ++i) {
3299 i915_reg_t addr;
3300 u32 mask, value, read;
3301 bool ok;
3302
3303 addr = workarounds->reg[i].addr;
3304 mask = workarounds->reg[i].mask;
3305 value = workarounds->reg[i].value;
3306 read = I915_READ(addr);
3307 ok = (value & mask) == (read & mask);
3308 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3309 i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3310 }
3311
3312 intel_runtime_pm_put(dev_priv);
3313 mutex_unlock(&dev->struct_mutex);
3314
3315 return 0;
3316 }
3317
3318 static int i915_ddb_info(struct seq_file *m, void *unused)
3319 {
3320 struct drm_info_node *node = m->private;
3321 struct drm_device *dev = node->minor->dev;
3322 struct drm_i915_private *dev_priv = dev->dev_private;
3323 struct skl_ddb_allocation *ddb;
3324 struct skl_ddb_entry *entry;
3325 enum pipe pipe;
3326 int plane;
3327
3328 if (INTEL_INFO(dev)->gen < 9)
3329 return 0;
3330
3331 drm_modeset_lock_all(dev);
3332
3333 ddb = &dev_priv->wm.skl_hw.ddb;
3334
3335 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3336
3337 for_each_pipe(dev_priv, pipe) {
3338 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3339
3340 for_each_plane(dev_priv, pipe, plane) {
3341 entry = &ddb->plane[pipe][plane];
3342 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
3343 entry->start, entry->end,
3344 skl_ddb_entry_size(entry));
3345 }
3346
3347 entry = &ddb->plane[pipe][PLANE_CURSOR];
3348 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
3349 entry->end, skl_ddb_entry_size(entry));
3350 }
3351
3352 drm_modeset_unlock_all(dev);
3353
3354 return 0;
3355 }
3356
3357 static void drrs_status_per_crtc(struct seq_file *m,
3358 struct drm_device *dev, struct intel_crtc *intel_crtc)
3359 {
3360 struct intel_encoder *intel_encoder;
3361 struct drm_i915_private *dev_priv = dev->dev_private;
3362 struct i915_drrs *drrs = &dev_priv->drrs;
3363 int vrefresh = 0;
3364
3365 for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3366 /* Encoder connected on this CRTC */
3367 switch (intel_encoder->type) {
3368 case INTEL_OUTPUT_EDP:
3369 seq_puts(m, "eDP:\n");
3370 break;
3371 case INTEL_OUTPUT_DSI:
3372 seq_puts(m, "DSI:\n");
3373 break;
3374 case INTEL_OUTPUT_HDMI:
3375 seq_puts(m, "HDMI:\n");
3376 break;
3377 case INTEL_OUTPUT_DISPLAYPORT:
3378 seq_puts(m, "DP:\n");
3379 break;
3380 default:
3381 seq_printf(m, "Other encoder (id=%d).\n",
3382 intel_encoder->type);
3383 return;
3384 }
3385 }
3386
3387 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3388 seq_puts(m, "\tVBT: DRRS_type: Static");
3389 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3390 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3391 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3392 seq_puts(m, "\tVBT: DRRS_type: None");
3393 else
3394 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3395
3396 seq_puts(m, "\n\n");
3397
3398 if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3399 struct intel_panel *panel;
3400
3401 mutex_lock(&drrs->mutex);
3402 /* DRRS Supported */
3403 seq_puts(m, "\tDRRS Supported: Yes\n");
3404
3405 /* disable_drrs() will make drrs->dp NULL */
3406 if (!drrs->dp) {
3407 seq_puts(m, "Idleness DRRS: Disabled");
3408 mutex_unlock(&drrs->mutex);
3409 return;
3410 }
3411
3412 panel = &drrs->dp->attached_connector->panel;
3413 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3414 drrs->busy_frontbuffer_bits);
3415
3416 seq_puts(m, "\n\t\t");
3417 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3418 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3419 vrefresh = panel->fixed_mode->vrefresh;
3420 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3421 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3422 vrefresh = panel->downclock_mode->vrefresh;
3423 } else {
3424 seq_printf(m, "DRRS_State: Unknown(%d)\n",
3425 drrs->refresh_rate_type);
3426 mutex_unlock(&drrs->mutex);
3427 return;
3428 }
3429 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3430
3431 seq_puts(m, "\n\t\t");
3432 mutex_unlock(&drrs->mutex);
3433 } else {
3434 /* DRRS not supported. Print the VBT parameter*/
3435 seq_puts(m, "\tDRRS Supported : No");
3436 }
3437 seq_puts(m, "\n");
3438 }
3439
3440 static int i915_drrs_status(struct seq_file *m, void *unused)
3441 {
3442 struct drm_info_node *node = m->private;
3443 struct drm_device *dev = node->minor->dev;
3444 struct intel_crtc *intel_crtc;
3445 int active_crtc_cnt = 0;
3446
3447 for_each_intel_crtc(dev, intel_crtc) {
3448 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3449
3450 if (intel_crtc->base.state->active) {
3451 active_crtc_cnt++;
3452 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
3453
3454 drrs_status_per_crtc(m, dev, intel_crtc);
3455 }
3456
3457 drm_modeset_unlock(&intel_crtc->base.mutex);
3458 }
3459
3460 if (!active_crtc_cnt)
3461 seq_puts(m, "No active crtc found\n");
3462
3463 return 0;
3464 }
3465
3466 struct pipe_crc_info {
3467 const char *name;
3468 struct drm_device *dev;
3469 enum pipe pipe;
3470 };
3471
3472 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3473 {
3474 struct drm_info_node *node = (struct drm_info_node *) m->private;
3475 struct drm_device *dev = node->minor->dev;
3476 struct drm_encoder *encoder;
3477 struct intel_encoder *intel_encoder;
3478 struct intel_digital_port *intel_dig_port;
3479 drm_modeset_lock_all(dev);
3480 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3481 intel_encoder = to_intel_encoder(encoder);
3482 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3483 continue;
3484 intel_dig_port = enc_to_dig_port(encoder);
3485 if (!intel_dig_port->dp.can_mst)
3486 continue;
3487 seq_printf(m, "MST Source Port %c\n",
3488 port_name(intel_dig_port->port));
3489 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3490 }
3491 drm_modeset_unlock_all(dev);
3492 return 0;
3493 }
3494
3495 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3496 {
3497 struct pipe_crc_info *info = inode->i_private;
3498 struct drm_i915_private *dev_priv = info->dev->dev_private;
3499 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3500
3501 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3502 return -ENODEV;
3503
3504 spin_lock_irq(&pipe_crc->lock);
3505
3506 if (pipe_crc->opened) {
3507 spin_unlock_irq(&pipe_crc->lock);
3508 return -EBUSY; /* already open */
3509 }
3510
3511 pipe_crc->opened = true;
3512 filep->private_data = inode->i_private;
3513
3514 spin_unlock_irq(&pipe_crc->lock);
3515
3516 return 0;
3517 }
3518
3519 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3520 {
3521 struct pipe_crc_info *info = inode->i_private;
3522 struct drm_i915_private *dev_priv = info->dev->dev_private;
3523 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3524
3525 spin_lock_irq(&pipe_crc->lock);
3526 pipe_crc->opened = false;
3527 spin_unlock_irq(&pipe_crc->lock);
3528
3529 return 0;
3530 }
3531
3532 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3533 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
3534 /* account for \'0' */
3535 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
3536
3537 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3538 {
3539 assert_spin_locked(&pipe_crc->lock);
3540 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3541 INTEL_PIPE_CRC_ENTRIES_NR);
3542 }
3543
3544 static ssize_t
3545 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3546 loff_t *pos)
3547 {
3548 struct pipe_crc_info *info = filep->private_data;
3549 struct drm_device *dev = info->dev;
3550 struct drm_i915_private *dev_priv = dev->dev_private;
3551 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3552 char buf[PIPE_CRC_BUFFER_LEN];
3553 int n_entries;
3554 ssize_t bytes_read;
3555
3556 /*
3557 * Don't allow user space to provide buffers not big enough to hold
3558 * a line of data.
3559 */
3560 if (count < PIPE_CRC_LINE_LEN)
3561 return -EINVAL;
3562
3563 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3564 return 0;
3565
3566 /* nothing to read */
3567 spin_lock_irq(&pipe_crc->lock);
3568 while (pipe_crc_data_count(pipe_crc) == 0) {
3569 int ret;
3570
3571 if (filep->f_flags & O_NONBLOCK) {
3572 spin_unlock_irq(&pipe_crc->lock);
3573 return -EAGAIN;
3574 }
3575
3576 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3577 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3578 if (ret) {
3579 spin_unlock_irq(&pipe_crc->lock);
3580 return ret;
3581 }
3582 }
3583
3584 /* We now have one or more entries to read */
3585 n_entries = count / PIPE_CRC_LINE_LEN;
3586
3587 bytes_read = 0;
3588 while (n_entries > 0) {
3589 struct intel_pipe_crc_entry *entry =
3590 &pipe_crc->entries[pipe_crc->tail];
3591 int ret;
3592
3593 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3594 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3595 break;
3596
3597 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3598 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3599
3600 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3601 "%8u %8x %8x %8x %8x %8x\n",
3602 entry->frame, entry->crc[0],
3603 entry->crc[1], entry->crc[2],
3604 entry->crc[3], entry->crc[4]);
3605
3606 spin_unlock_irq(&pipe_crc->lock);
3607
3608 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3609 if (ret == PIPE_CRC_LINE_LEN)
3610 return -EFAULT;
3611
3612 user_buf += PIPE_CRC_LINE_LEN;
3613 n_entries--;
3614
3615 spin_lock_irq(&pipe_crc->lock);
3616 }
3617
3618 spin_unlock_irq(&pipe_crc->lock);
3619
3620 return bytes_read;
3621 }
3622
3623 static const struct file_operations i915_pipe_crc_fops = {
3624 .owner = THIS_MODULE,
3625 .open = i915_pipe_crc_open,
3626 .read = i915_pipe_crc_read,
3627 .release = i915_pipe_crc_release,
3628 };
3629
3630 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3631 {
3632 .name = "i915_pipe_A_crc",
3633 .pipe = PIPE_A,
3634 },
3635 {
3636 .name = "i915_pipe_B_crc",
3637 .pipe = PIPE_B,
3638 },
3639 {
3640 .name = "i915_pipe_C_crc",
3641 .pipe = PIPE_C,
3642 },
3643 };
3644
3645 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3646 enum pipe pipe)
3647 {
3648 struct drm_device *dev = minor->dev;
3649 struct dentry *ent;
3650 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3651
3652 info->dev = dev;
3653 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3654 &i915_pipe_crc_fops);
3655 if (!ent)
3656 return -ENOMEM;
3657
3658 return drm_add_fake_info_node(minor, ent, info);
3659 }
3660
3661 static const char * const pipe_crc_sources[] = {
3662 "none",
3663 "plane1",
3664 "plane2",
3665 "pf",
3666 "pipe",
3667 "TV",
3668 "DP-B",
3669 "DP-C",
3670 "DP-D",
3671 "auto",
3672 };
3673
3674 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3675 {
3676 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3677 return pipe_crc_sources[source];
3678 }
3679
3680 static int display_crc_ctl_show(struct seq_file *m, void *data)
3681 {
3682 struct drm_device *dev = m->private;
3683 struct drm_i915_private *dev_priv = dev->dev_private;
3684 int i;
3685
3686 for (i = 0; i < I915_MAX_PIPES; i++)
3687 seq_printf(m, "%c %s\n", pipe_name(i),
3688 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3689
3690 return 0;
3691 }
3692
3693 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3694 {
3695 struct drm_device *dev = inode->i_private;
3696
3697 return single_open(file, display_crc_ctl_show, dev);
3698 }
3699
3700 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3701 uint32_t *val)
3702 {
3703 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3704 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3705
3706 switch (*source) {
3707 case INTEL_PIPE_CRC_SOURCE_PIPE:
3708 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3709 break;
3710 case INTEL_PIPE_CRC_SOURCE_NONE:
3711 *val = 0;
3712 break;
3713 default:
3714 return -EINVAL;
3715 }
3716
3717 return 0;
3718 }
3719
3720 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3721 enum intel_pipe_crc_source *source)
3722 {
3723 struct intel_encoder *encoder;
3724 struct intel_crtc *crtc;
3725 struct intel_digital_port *dig_port;
3726 int ret = 0;
3727
3728 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3729
3730 drm_modeset_lock_all(dev);
3731 for_each_intel_encoder(dev, encoder) {
3732 if (!encoder->base.crtc)
3733 continue;
3734
3735 crtc = to_intel_crtc(encoder->base.crtc);
3736
3737 if (crtc->pipe != pipe)
3738 continue;
3739
3740 switch (encoder->type) {
3741 case INTEL_OUTPUT_TVOUT:
3742 *source = INTEL_PIPE_CRC_SOURCE_TV;
3743 break;
3744 case INTEL_OUTPUT_DISPLAYPORT:
3745 case INTEL_OUTPUT_EDP:
3746 dig_port = enc_to_dig_port(&encoder->base);
3747 switch (dig_port->port) {
3748 case PORT_B:
3749 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3750 break;
3751 case PORT_C:
3752 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3753 break;
3754 case PORT_D:
3755 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3756 break;
3757 default:
3758 WARN(1, "nonexisting DP port %c\n",
3759 port_name(dig_port->port));
3760 break;
3761 }
3762 break;
3763 default:
3764 break;
3765 }
3766 }
3767 drm_modeset_unlock_all(dev);
3768
3769 return ret;
3770 }
3771
3772 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3773 enum pipe pipe,
3774 enum intel_pipe_crc_source *source,
3775 uint32_t *val)
3776 {
3777 struct drm_i915_private *dev_priv = dev->dev_private;
3778 bool need_stable_symbols = false;
3779
3780 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3781 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3782 if (ret)
3783 return ret;
3784 }
3785
3786 switch (*source) {
3787 case INTEL_PIPE_CRC_SOURCE_PIPE:
3788 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3789 break;
3790 case INTEL_PIPE_CRC_SOURCE_DP_B:
3791 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3792 need_stable_symbols = true;
3793 break;
3794 case INTEL_PIPE_CRC_SOURCE_DP_C:
3795 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3796 need_stable_symbols = true;
3797 break;
3798 case INTEL_PIPE_CRC_SOURCE_DP_D:
3799 if (!IS_CHERRYVIEW(dev))
3800 return -EINVAL;
3801 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3802 need_stable_symbols = true;
3803 break;
3804 case INTEL_PIPE_CRC_SOURCE_NONE:
3805 *val = 0;
3806 break;
3807 default:
3808 return -EINVAL;
3809 }
3810
3811 /*
3812 * When the pipe CRC tap point is after the transcoders we need
3813 * to tweak symbol-level features to produce a deterministic series of
3814 * symbols for a given frame. We need to reset those features only once
3815 * a frame (instead of every nth symbol):
3816 * - DC-balance: used to ensure a better clock recovery from the data
3817 * link (SDVO)
3818 * - DisplayPort scrambling: used for EMI reduction
3819 */
3820 if (need_stable_symbols) {
3821 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3822
3823 tmp |= DC_BALANCE_RESET_VLV;
3824 switch (pipe) {
3825 case PIPE_A:
3826 tmp |= PIPE_A_SCRAMBLE_RESET;
3827 break;
3828 case PIPE_B:
3829 tmp |= PIPE_B_SCRAMBLE_RESET;
3830 break;
3831 case PIPE_C:
3832 tmp |= PIPE_C_SCRAMBLE_RESET;
3833 break;
3834 default:
3835 return -EINVAL;
3836 }
3837 I915_WRITE(PORT_DFT2_G4X, tmp);
3838 }
3839
3840 return 0;
3841 }
3842
3843 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3844 enum pipe pipe,
3845 enum intel_pipe_crc_source *source,
3846 uint32_t *val)
3847 {
3848 struct drm_i915_private *dev_priv = dev->dev_private;
3849 bool need_stable_symbols = false;
3850
3851 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3852 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3853 if (ret)
3854 return ret;
3855 }
3856
3857 switch (*source) {
3858 case INTEL_PIPE_CRC_SOURCE_PIPE:
3859 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3860 break;
3861 case INTEL_PIPE_CRC_SOURCE_TV:
3862 if (!SUPPORTS_TV(dev))
3863 return -EINVAL;
3864 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3865 break;
3866 case INTEL_PIPE_CRC_SOURCE_DP_B:
3867 if (!IS_G4X(dev))
3868 return -EINVAL;
3869 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3870 need_stable_symbols = true;
3871 break;
3872 case INTEL_PIPE_CRC_SOURCE_DP_C:
3873 if (!IS_G4X(dev))
3874 return -EINVAL;
3875 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3876 need_stable_symbols = true;
3877 break;
3878 case INTEL_PIPE_CRC_SOURCE_DP_D:
3879 if (!IS_G4X(dev))
3880 return -EINVAL;
3881 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3882 need_stable_symbols = true;
3883 break;
3884 case INTEL_PIPE_CRC_SOURCE_NONE:
3885 *val = 0;
3886 break;
3887 default:
3888 return -EINVAL;
3889 }
3890
3891 /*
3892 * When the pipe CRC tap point is after the transcoders we need
3893 * to tweak symbol-level features to produce a deterministic series of
3894 * symbols for a given frame. We need to reset those features only once
3895 * a frame (instead of every nth symbol):
3896 * - DC-balance: used to ensure a better clock recovery from the data
3897 * link (SDVO)
3898 * - DisplayPort scrambling: used for EMI reduction
3899 */
3900 if (need_stable_symbols) {
3901 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3902
3903 WARN_ON(!IS_G4X(dev));
3904
3905 I915_WRITE(PORT_DFT_I9XX,
3906 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3907
3908 if (pipe == PIPE_A)
3909 tmp |= PIPE_A_SCRAMBLE_RESET;
3910 else
3911 tmp |= PIPE_B_SCRAMBLE_RESET;
3912
3913 I915_WRITE(PORT_DFT2_G4X, tmp);
3914 }
3915
3916 return 0;
3917 }
3918
3919 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3920 enum pipe pipe)
3921 {
3922 struct drm_i915_private *dev_priv = dev->dev_private;
3923 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3924
3925 switch (pipe) {
3926 case PIPE_A:
3927 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3928 break;
3929 case PIPE_B:
3930 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3931 break;
3932 case PIPE_C:
3933 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3934 break;
3935 default:
3936 return;
3937 }
3938 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3939 tmp &= ~DC_BALANCE_RESET_VLV;
3940 I915_WRITE(PORT_DFT2_G4X, tmp);
3941
3942 }
3943
3944 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3945 enum pipe pipe)
3946 {
3947 struct drm_i915_private *dev_priv = dev->dev_private;
3948 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3949
3950 if (pipe == PIPE_A)
3951 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3952 else
3953 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3954 I915_WRITE(PORT_DFT2_G4X, tmp);
3955
3956 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3957 I915_WRITE(PORT_DFT_I9XX,
3958 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3959 }
3960 }
3961
3962 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3963 uint32_t *val)
3964 {
3965 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3966 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3967
3968 switch (*source) {
3969 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3970 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3971 break;
3972 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3973 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3974 break;
3975 case INTEL_PIPE_CRC_SOURCE_PIPE:
3976 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3977 break;
3978 case INTEL_PIPE_CRC_SOURCE_NONE:
3979 *val = 0;
3980 break;
3981 default:
3982 return -EINVAL;
3983 }
3984
3985 return 0;
3986 }
3987
3988 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3989 {
3990 struct drm_i915_private *dev_priv = dev->dev_private;
3991 struct intel_crtc *crtc =
3992 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3993 struct intel_crtc_state *pipe_config;
3994 struct drm_atomic_state *state;
3995 int ret = 0;
3996
3997 drm_modeset_lock_all(dev);
3998 state = drm_atomic_state_alloc(dev);
3999 if (!state) {
4000 ret = -ENOMEM;
4001 goto out;
4002 }
4003
4004 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4005 pipe_config = intel_atomic_get_crtc_state(state, crtc);
4006 if (IS_ERR(pipe_config)) {
4007 ret = PTR_ERR(pipe_config);
4008 goto out;
4009 }
4010
4011 pipe_config->pch_pfit.force_thru = enable;
4012 if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4013 pipe_config->pch_pfit.enabled != enable)
4014 pipe_config->base.connectors_changed = true;
4015
4016 ret = drm_atomic_commit(state);
4017 out:
4018 drm_modeset_unlock_all(dev);
4019 WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4020 if (ret)
4021 drm_atomic_state_free(state);
4022 }
4023
4024 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
4025 enum pipe pipe,
4026 enum intel_pipe_crc_source *source,
4027 uint32_t *val)
4028 {
4029 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4030 *source = INTEL_PIPE_CRC_SOURCE_PF;
4031
4032 switch (*source) {
4033 case INTEL_PIPE_CRC_SOURCE_PLANE1:
4034 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4035 break;
4036 case INTEL_PIPE_CRC_SOURCE_PLANE2:
4037 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4038 break;
4039 case INTEL_PIPE_CRC_SOURCE_PF:
4040 if (IS_HASWELL(dev) && pipe == PIPE_A)
4041 hsw_trans_edp_pipe_A_crc_wa(dev, true);
4042
4043 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4044 break;
4045 case INTEL_PIPE_CRC_SOURCE_NONE:
4046 *val = 0;
4047 break;
4048 default:
4049 return -EINVAL;
4050 }
4051
4052 return 0;
4053 }
4054
4055 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4056 enum intel_pipe_crc_source source)
4057 {
4058 struct drm_i915_private *dev_priv = dev->dev_private;
4059 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4060 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4061 pipe));
4062 enum intel_display_power_domain power_domain;
4063 u32 val = 0; /* shut up gcc */
4064 int ret;
4065
4066 if (pipe_crc->source == source)
4067 return 0;
4068
4069 /* forbid changing the source without going back to 'none' */
4070 if (pipe_crc->source && source)
4071 return -EINVAL;
4072
4073 power_domain = POWER_DOMAIN_PIPE(pipe);
4074 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4075 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4076 return -EIO;
4077 }
4078
4079 if (IS_GEN2(dev))
4080 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4081 else if (INTEL_INFO(dev)->gen < 5)
4082 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4083 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4084 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4085 else if (IS_GEN5(dev) || IS_GEN6(dev))
4086 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4087 else
4088 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4089
4090 if (ret != 0)
4091 goto out;
4092
4093 /* none -> real source transition */
4094 if (source) {
4095 struct intel_pipe_crc_entry *entries;
4096
4097 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4098 pipe_name(pipe), pipe_crc_source_name(source));
4099
4100 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4101 sizeof(pipe_crc->entries[0]),
4102 GFP_KERNEL);
4103 if (!entries) {
4104 ret = -ENOMEM;
4105 goto out;
4106 }
4107
4108 /*
4109 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4110 * enabled and disabled dynamically based on package C states,
4111 * user space can't make reliable use of the CRCs, so let's just
4112 * completely disable it.
4113 */
4114 hsw_disable_ips(crtc);
4115
4116 spin_lock_irq(&pipe_crc->lock);
4117 kfree(pipe_crc->entries);
4118 pipe_crc->entries = entries;
4119 pipe_crc->head = 0;
4120 pipe_crc->tail = 0;
4121 spin_unlock_irq(&pipe_crc->lock);
4122 }
4123
4124 pipe_crc->source = source;
4125
4126 I915_WRITE(PIPE_CRC_CTL(pipe), val);
4127 POSTING_READ(PIPE_CRC_CTL(pipe));
4128
4129 /* real source -> none transition */
4130 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4131 struct intel_pipe_crc_entry *entries;
4132 struct intel_crtc *crtc =
4133 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4134
4135 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4136 pipe_name(pipe));
4137
4138 drm_modeset_lock(&crtc->base.mutex, NULL);
4139 if (crtc->base.state->active)
4140 intel_wait_for_vblank(dev, pipe);
4141 drm_modeset_unlock(&crtc->base.mutex);
4142
4143 spin_lock_irq(&pipe_crc->lock);
4144 entries = pipe_crc->entries;
4145 pipe_crc->entries = NULL;
4146 pipe_crc->head = 0;
4147 pipe_crc->tail = 0;
4148 spin_unlock_irq(&pipe_crc->lock);
4149
4150 kfree(entries);
4151
4152 if (IS_G4X(dev))
4153 g4x_undo_pipe_scramble_reset(dev, pipe);
4154 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4155 vlv_undo_pipe_scramble_reset(dev, pipe);
4156 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4157 hsw_trans_edp_pipe_A_crc_wa(dev, false);
4158
4159 hsw_enable_ips(crtc);
4160 }
4161
4162 ret = 0;
4163
4164 out:
4165 intel_display_power_put(dev_priv, power_domain);
4166
4167 return ret;
4168 }
4169
4170 /*
4171 * Parse pipe CRC command strings:
4172 * command: wsp* object wsp+ name wsp+ source wsp*
4173 * object: 'pipe'
4174 * name: (A | B | C)
4175 * source: (none | plane1 | plane2 | pf)
4176 * wsp: (#0x20 | #0x9 | #0xA)+
4177 *
4178 * eg.:
4179 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
4180 * "pipe A none" -> Stop CRC
4181 */
4182 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4183 {
4184 int n_words = 0;
4185
4186 while (*buf) {
4187 char *end;
4188
4189 /* skip leading white space */
4190 buf = skip_spaces(buf);
4191 if (!*buf)
4192 break; /* end of buffer */
4193
4194 /* find end of word */
4195 for (end = buf; *end && !isspace(*end); end++)
4196 ;
4197
4198 if (n_words == max_words) {
4199 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4200 max_words);
4201 return -EINVAL; /* ran out of words[] before bytes */
4202 }
4203
4204 if (*end)
4205 *end++ = '\0';
4206 words[n_words++] = buf;
4207 buf = end;
4208 }
4209
4210 return n_words;
4211 }
4212
4213 enum intel_pipe_crc_object {
4214 PIPE_CRC_OBJECT_PIPE,
4215 };
4216
4217 static const char * const pipe_crc_objects[] = {
4218 "pipe",
4219 };
4220
4221 static int
4222 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4223 {
4224 int i;
4225
4226 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4227 if (!strcmp(buf, pipe_crc_objects[i])) {
4228 *o = i;
4229 return 0;
4230 }
4231
4232 return -EINVAL;
4233 }
4234
4235 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4236 {
4237 const char name = buf[0];
4238
4239 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4240 return -EINVAL;
4241
4242 *pipe = name - 'A';
4243
4244 return 0;
4245 }
4246
4247 static int
4248 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4249 {
4250 int i;
4251
4252 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4253 if (!strcmp(buf, pipe_crc_sources[i])) {
4254 *s = i;
4255 return 0;
4256 }
4257
4258 return -EINVAL;
4259 }
4260
4261 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4262 {
4263 #define N_WORDS 3
4264 int n_words;
4265 char *words[N_WORDS];
4266 enum pipe pipe;
4267 enum intel_pipe_crc_object object;
4268 enum intel_pipe_crc_source source;
4269
4270 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4271 if (n_words != N_WORDS) {
4272 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4273 N_WORDS);
4274 return -EINVAL;
4275 }
4276
4277 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4278 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4279 return -EINVAL;
4280 }
4281
4282 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4283 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4284 return -EINVAL;
4285 }
4286
4287 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4288 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4289 return -EINVAL;
4290 }
4291
4292 return pipe_crc_set_source(dev, pipe, source);
4293 }
4294
4295 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4296 size_t len, loff_t *offp)
4297 {
4298 struct seq_file *m = file->private_data;
4299 struct drm_device *dev = m->private;
4300 char *tmpbuf;
4301 int ret;
4302
4303 if (len == 0)
4304 return 0;
4305
4306 if (len > PAGE_SIZE - 1) {
4307 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4308 PAGE_SIZE);
4309 return -E2BIG;
4310 }
4311
4312 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4313 if (!tmpbuf)
4314 return -ENOMEM;
4315
4316 if (copy_from_user(tmpbuf, ubuf, len)) {
4317 ret = -EFAULT;
4318 goto out;
4319 }
4320 tmpbuf[len] = '\0';
4321
4322 ret = display_crc_ctl_parse(dev, tmpbuf, len);
4323
4324 out:
4325 kfree(tmpbuf);
4326 if (ret < 0)
4327 return ret;
4328
4329 *offp += len;
4330 return len;
4331 }
4332
4333 static const struct file_operations i915_display_crc_ctl_fops = {
4334 .owner = THIS_MODULE,
4335 .open = display_crc_ctl_open,
4336 .read = seq_read,
4337 .llseek = seq_lseek,
4338 .release = single_release,
4339 .write = display_crc_ctl_write
4340 };
4341
4342 static ssize_t i915_displayport_test_active_write(struct file *file,
4343 const char __user *ubuf,
4344 size_t len, loff_t *offp)
4345 {
4346 char *input_buffer;
4347 int status = 0;
4348 struct drm_device *dev;
4349 struct drm_connector *connector;
4350 struct list_head *connector_list;
4351 struct intel_dp *intel_dp;
4352 int val = 0;
4353
4354 dev = ((struct seq_file *)file->private_data)->private;
4355
4356 connector_list = &dev->mode_config.connector_list;
4357
4358 if (len == 0)
4359 return 0;
4360
4361 input_buffer = kmalloc(len + 1, GFP_KERNEL);
4362 if (!input_buffer)
4363 return -ENOMEM;
4364
4365 if (copy_from_user(input_buffer, ubuf, len)) {
4366 status = -EFAULT;
4367 goto out;
4368 }
4369
4370 input_buffer[len] = '\0';
4371 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4372
4373 list_for_each_entry(connector, connector_list, head) {
4374
4375 if (connector->connector_type !=
4376 DRM_MODE_CONNECTOR_DisplayPort)
4377 continue;
4378
4379 if (connector->status == connector_status_connected &&
4380 connector->encoder != NULL) {
4381 intel_dp = enc_to_intel_dp(connector->encoder);
4382 status = kstrtoint(input_buffer, 10, &val);
4383 if (status < 0)
4384 goto out;
4385 DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4386 /* To prevent erroneous activation of the compliance
4387 * testing code, only accept an actual value of 1 here
4388 */
4389 if (val == 1)
4390 intel_dp->compliance_test_active = 1;
4391 else
4392 intel_dp->compliance_test_active = 0;
4393 }
4394 }
4395 out:
4396 kfree(input_buffer);
4397 if (status < 0)
4398 return status;
4399
4400 *offp += len;
4401 return len;
4402 }
4403
4404 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4405 {
4406 struct drm_device *dev = m->private;
4407 struct drm_connector *connector;
4408 struct list_head *connector_list = &dev->mode_config.connector_list;
4409 struct intel_dp *intel_dp;
4410
4411 list_for_each_entry(connector, connector_list, head) {
4412
4413 if (connector->connector_type !=
4414 DRM_MODE_CONNECTOR_DisplayPort)
4415 continue;
4416
4417 if (connector->status == connector_status_connected &&
4418 connector->encoder != NULL) {
4419 intel_dp = enc_to_intel_dp(connector->encoder);
4420 if (intel_dp->compliance_test_active)
4421 seq_puts(m, "1");
4422 else
4423 seq_puts(m, "0");
4424 } else
4425 seq_puts(m, "0");
4426 }
4427
4428 return 0;
4429 }
4430
4431 static int i915_displayport_test_active_open(struct inode *inode,
4432 struct file *file)
4433 {
4434 struct drm_device *dev = inode->i_private;
4435
4436 return single_open(file, i915_displayport_test_active_show, dev);
4437 }
4438
4439 static const struct file_operations i915_displayport_test_active_fops = {
4440 .owner = THIS_MODULE,
4441 .open = i915_displayport_test_active_open,
4442 .read = seq_read,
4443 .llseek = seq_lseek,
4444 .release = single_release,
4445 .write = i915_displayport_test_active_write
4446 };
4447
4448 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4449 {
4450 struct drm_device *dev = m->private;
4451 struct drm_connector *connector;
4452 struct list_head *connector_list = &dev->mode_config.connector_list;
4453 struct intel_dp *intel_dp;
4454
4455 list_for_each_entry(connector, connector_list, head) {
4456
4457 if (connector->connector_type !=
4458 DRM_MODE_CONNECTOR_DisplayPort)
4459 continue;
4460
4461 if (connector->status == connector_status_connected &&
4462 connector->encoder != NULL) {
4463 intel_dp = enc_to_intel_dp(connector->encoder);
4464 seq_printf(m, "%lx", intel_dp->compliance_test_data);
4465 } else
4466 seq_puts(m, "0");
4467 }
4468
4469 return 0;
4470 }
4471 static int i915_displayport_test_data_open(struct inode *inode,
4472 struct file *file)
4473 {
4474 struct drm_device *dev = inode->i_private;
4475
4476 return single_open(file, i915_displayport_test_data_show, dev);
4477 }
4478
4479 static const struct file_operations i915_displayport_test_data_fops = {
4480 .owner = THIS_MODULE,
4481 .open = i915_displayport_test_data_open,
4482 .read = seq_read,
4483 .llseek = seq_lseek,
4484 .release = single_release
4485 };
4486
4487 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4488 {
4489 struct drm_device *dev = m->private;
4490 struct drm_connector *connector;
4491 struct list_head *connector_list = &dev->mode_config.connector_list;
4492 struct intel_dp *intel_dp;
4493
4494 list_for_each_entry(connector, connector_list, head) {
4495
4496 if (connector->connector_type !=
4497 DRM_MODE_CONNECTOR_DisplayPort)
4498 continue;
4499
4500 if (connector->status == connector_status_connected &&
4501 connector->encoder != NULL) {
4502 intel_dp = enc_to_intel_dp(connector->encoder);
4503 seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4504 } else
4505 seq_puts(m, "0");
4506 }
4507
4508 return 0;
4509 }
4510
4511 static int i915_displayport_test_type_open(struct inode *inode,
4512 struct file *file)
4513 {
4514 struct drm_device *dev = inode->i_private;
4515
4516 return single_open(file, i915_displayport_test_type_show, dev);
4517 }
4518
4519 static const struct file_operations i915_displayport_test_type_fops = {
4520 .owner = THIS_MODULE,
4521 .open = i915_displayport_test_type_open,
4522 .read = seq_read,
4523 .llseek = seq_lseek,
4524 .release = single_release
4525 };
4526
4527 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4528 {
4529 struct drm_device *dev = m->private;
4530 int level;
4531 int num_levels;
4532
4533 if (IS_CHERRYVIEW(dev))
4534 num_levels = 3;
4535 else if (IS_VALLEYVIEW(dev))
4536 num_levels = 1;
4537 else
4538 num_levels = ilk_wm_max_level(dev) + 1;
4539
4540 drm_modeset_lock_all(dev);
4541
4542 for (level = 0; level < num_levels; level++) {
4543 unsigned int latency = wm[level];
4544
4545 /*
4546 * - WM1+ latency values in 0.5us units
4547 * - latencies are in us on gen9/vlv/chv
4548 */
4549 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4550 IS_CHERRYVIEW(dev))
4551 latency *= 10;
4552 else if (level > 0)
4553 latency *= 5;
4554
4555 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4556 level, wm[level], latency / 10, latency % 10);
4557 }
4558
4559 drm_modeset_unlock_all(dev);
4560 }
4561
4562 static int pri_wm_latency_show(struct seq_file *m, void *data)
4563 {
4564 struct drm_device *dev = m->private;
4565 struct drm_i915_private *dev_priv = dev->dev_private;
4566 const uint16_t *latencies;
4567
4568 if (INTEL_INFO(dev)->gen >= 9)
4569 latencies = dev_priv->wm.skl_latency;
4570 else
4571 latencies = to_i915(dev)->wm.pri_latency;
4572
4573 wm_latency_show(m, latencies);
4574
4575 return 0;
4576 }
4577
4578 static int spr_wm_latency_show(struct seq_file *m, void *data)
4579 {
4580 struct drm_device *dev = m->private;
4581 struct drm_i915_private *dev_priv = dev->dev_private;
4582 const uint16_t *latencies;
4583
4584 if (INTEL_INFO(dev)->gen >= 9)
4585 latencies = dev_priv->wm.skl_latency;
4586 else
4587 latencies = to_i915(dev)->wm.spr_latency;
4588
4589 wm_latency_show(m, latencies);
4590
4591 return 0;
4592 }
4593
4594 static int cur_wm_latency_show(struct seq_file *m, void *data)
4595 {
4596 struct drm_device *dev = m->private;
4597 struct drm_i915_private *dev_priv = dev->dev_private;
4598 const uint16_t *latencies;
4599
4600 if (INTEL_INFO(dev)->gen >= 9)
4601 latencies = dev_priv->wm.skl_latency;
4602 else
4603 latencies = to_i915(dev)->wm.cur_latency;
4604
4605 wm_latency_show(m, latencies);
4606
4607 return 0;
4608 }
4609
4610 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4611 {
4612 struct drm_device *dev = inode->i_private;
4613
4614 if (INTEL_INFO(dev)->gen < 5)
4615 return -ENODEV;
4616
4617 return single_open(file, pri_wm_latency_show, dev);
4618 }
4619
4620 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4621 {
4622 struct drm_device *dev = inode->i_private;
4623
4624 if (HAS_GMCH_DISPLAY(dev))
4625 return -ENODEV;
4626
4627 return single_open(file, spr_wm_latency_show, dev);
4628 }
4629
4630 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4631 {
4632 struct drm_device *dev = inode->i_private;
4633
4634 if (HAS_GMCH_DISPLAY(dev))
4635 return -ENODEV;
4636
4637 return single_open(file, cur_wm_latency_show, dev);
4638 }
4639
4640 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4641 size_t len, loff_t *offp, uint16_t wm[8])
4642 {
4643 struct seq_file *m = file->private_data;
4644 struct drm_device *dev = m->private;
4645 uint16_t new[8] = { 0 };
4646 int num_levels;
4647 int level;
4648 int ret;
4649 char tmp[32];
4650
4651 if (IS_CHERRYVIEW(dev))
4652 num_levels = 3;
4653 else if (IS_VALLEYVIEW(dev))
4654 num_levels = 1;
4655 else
4656 num_levels = ilk_wm_max_level(dev) + 1;
4657
4658 if (len >= sizeof(tmp))
4659 return -EINVAL;
4660
4661 if (copy_from_user(tmp, ubuf, len))
4662 return -EFAULT;
4663
4664 tmp[len] = '\0';
4665
4666 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4667 &new[0], &new[1], &new[2], &new[3],
4668 &new[4], &new[5], &new[6], &new[7]);
4669 if (ret != num_levels)
4670 return -EINVAL;
4671
4672 drm_modeset_lock_all(dev);
4673
4674 for (level = 0; level < num_levels; level++)
4675 wm[level] = new[level];
4676
4677 drm_modeset_unlock_all(dev);
4678
4679 return len;
4680 }
4681
4682
4683 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4684 size_t len, loff_t *offp)
4685 {
4686 struct seq_file *m = file->private_data;
4687 struct drm_device *dev = m->private;
4688 struct drm_i915_private *dev_priv = dev->dev_private;
4689 uint16_t *latencies;
4690
4691 if (INTEL_INFO(dev)->gen >= 9)
4692 latencies = dev_priv->wm.skl_latency;
4693 else
4694 latencies = to_i915(dev)->wm.pri_latency;
4695
4696 return wm_latency_write(file, ubuf, len, offp, latencies);
4697 }
4698
4699 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4700 size_t len, loff_t *offp)
4701 {
4702 struct seq_file *m = file->private_data;
4703 struct drm_device *dev = m->private;
4704 struct drm_i915_private *dev_priv = dev->dev_private;
4705 uint16_t *latencies;
4706
4707 if (INTEL_INFO(dev)->gen >= 9)
4708 latencies = dev_priv->wm.skl_latency;
4709 else
4710 latencies = to_i915(dev)->wm.spr_latency;
4711
4712 return wm_latency_write(file, ubuf, len, offp, latencies);
4713 }
4714
4715 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4716 size_t len, loff_t *offp)
4717 {
4718 struct seq_file *m = file->private_data;
4719 struct drm_device *dev = m->private;
4720 struct drm_i915_private *dev_priv = dev->dev_private;
4721 uint16_t *latencies;
4722
4723 if (INTEL_INFO(dev)->gen >= 9)
4724 latencies = dev_priv->wm.skl_latency;
4725 else
4726 latencies = to_i915(dev)->wm.cur_latency;
4727
4728 return wm_latency_write(file, ubuf, len, offp, latencies);
4729 }
4730
4731 static const struct file_operations i915_pri_wm_latency_fops = {
4732 .owner = THIS_MODULE,
4733 .open = pri_wm_latency_open,
4734 .read = seq_read,
4735 .llseek = seq_lseek,
4736 .release = single_release,
4737 .write = pri_wm_latency_write
4738 };
4739
4740 static const struct file_operations i915_spr_wm_latency_fops = {
4741 .owner = THIS_MODULE,
4742 .open = spr_wm_latency_open,
4743 .read = seq_read,
4744 .llseek = seq_lseek,
4745 .release = single_release,
4746 .write = spr_wm_latency_write
4747 };
4748
4749 static const struct file_operations i915_cur_wm_latency_fops = {
4750 .owner = THIS_MODULE,
4751 .open = cur_wm_latency_open,
4752 .read = seq_read,
4753 .llseek = seq_lseek,
4754 .release = single_release,
4755 .write = cur_wm_latency_write
4756 };
4757
4758 static int
4759 i915_wedged_get(void *data, u64 *val)
4760 {
4761 struct drm_device *dev = data;
4762 struct drm_i915_private *dev_priv = dev->dev_private;
4763
4764 *val = i915_terminally_wedged(&dev_priv->gpu_error);
4765
4766 return 0;
4767 }
4768
4769 static int
4770 i915_wedged_set(void *data, u64 val)
4771 {
4772 struct drm_device *dev = data;
4773 struct drm_i915_private *dev_priv = dev->dev_private;
4774
4775 /*
4776 * There is no safeguard against this debugfs entry colliding
4777 * with the hangcheck calling same i915_handle_error() in
4778 * parallel, causing an explosion. For now we assume that the
4779 * test harness is responsible enough not to inject gpu hangs
4780 * while it is writing to 'i915_wedged'
4781 */
4782
4783 if (i915_reset_in_progress(&dev_priv->gpu_error))
4784 return -EAGAIN;
4785
4786 intel_runtime_pm_get(dev_priv);
4787
4788 i915_handle_error(dev, val,
4789 "Manually setting wedged to %llu", val);
4790
4791 intel_runtime_pm_put(dev_priv);
4792
4793 return 0;
4794 }
4795
4796 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4797 i915_wedged_get, i915_wedged_set,
4798 "%llu\n");
4799
4800 static int
4801 i915_ring_stop_get(void *data, u64 *val)
4802 {
4803 struct drm_device *dev = data;
4804 struct drm_i915_private *dev_priv = dev->dev_private;
4805
4806 *val = dev_priv->gpu_error.stop_rings;
4807
4808 return 0;
4809 }
4810
4811 static int
4812 i915_ring_stop_set(void *data, u64 val)
4813 {
4814 struct drm_device *dev = data;
4815 struct drm_i915_private *dev_priv = dev->dev_private;
4816 int ret;
4817
4818 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4819
4820 ret = mutex_lock_interruptible(&dev->struct_mutex);
4821 if (ret)
4822 return ret;
4823
4824 dev_priv->gpu_error.stop_rings = val;
4825 mutex_unlock(&dev->struct_mutex);
4826
4827 return 0;
4828 }
4829
4830 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4831 i915_ring_stop_get, i915_ring_stop_set,
4832 "0x%08llx\n");
4833
4834 static int
4835 i915_ring_missed_irq_get(void *data, u64 *val)
4836 {
4837 struct drm_device *dev = data;
4838 struct drm_i915_private *dev_priv = dev->dev_private;
4839
4840 *val = dev_priv->gpu_error.missed_irq_rings;
4841 return 0;
4842 }
4843
4844 static int
4845 i915_ring_missed_irq_set(void *data, u64 val)
4846 {
4847 struct drm_device *dev = data;
4848 struct drm_i915_private *dev_priv = dev->dev_private;
4849 int ret;
4850
4851 /* Lock against concurrent debugfs callers */
4852 ret = mutex_lock_interruptible(&dev->struct_mutex);
4853 if (ret)
4854 return ret;
4855 dev_priv->gpu_error.missed_irq_rings = val;
4856 mutex_unlock(&dev->struct_mutex);
4857
4858 return 0;
4859 }
4860
4861 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4862 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4863 "0x%08llx\n");
4864
4865 static int
4866 i915_ring_test_irq_get(void *data, u64 *val)
4867 {
4868 struct drm_device *dev = data;
4869 struct drm_i915_private *dev_priv = dev->dev_private;
4870
4871 *val = dev_priv->gpu_error.test_irq_rings;
4872
4873 return 0;
4874 }
4875
4876 static int
4877 i915_ring_test_irq_set(void *data, u64 val)
4878 {
4879 struct drm_device *dev = data;
4880 struct drm_i915_private *dev_priv = dev->dev_private;
4881 int ret;
4882
4883 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4884
4885 /* Lock against concurrent debugfs callers */
4886 ret = mutex_lock_interruptible(&dev->struct_mutex);
4887 if (ret)
4888 return ret;
4889
4890 dev_priv->gpu_error.test_irq_rings = val;
4891 mutex_unlock(&dev->struct_mutex);
4892
4893 return 0;
4894 }
4895
4896 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4897 i915_ring_test_irq_get, i915_ring_test_irq_set,
4898 "0x%08llx\n");
4899
4900 #define DROP_UNBOUND 0x1
4901 #define DROP_BOUND 0x2
4902 #define DROP_RETIRE 0x4
4903 #define DROP_ACTIVE 0x8
4904 #define DROP_ALL (DROP_UNBOUND | \
4905 DROP_BOUND | \
4906 DROP_RETIRE | \
4907 DROP_ACTIVE)
4908 static int
4909 i915_drop_caches_get(void *data, u64 *val)
4910 {
4911 *val = DROP_ALL;
4912
4913 return 0;
4914 }
4915
4916 static int
4917 i915_drop_caches_set(void *data, u64 val)
4918 {
4919 struct drm_device *dev = data;
4920 struct drm_i915_private *dev_priv = dev->dev_private;
4921 int ret;
4922
4923 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4924
4925 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4926 * on ioctls on -EAGAIN. */
4927 ret = mutex_lock_interruptible(&dev->struct_mutex);
4928 if (ret)
4929 return ret;
4930
4931 if (val & DROP_ACTIVE) {
4932 ret = i915_gpu_idle(dev);
4933 if (ret)
4934 goto unlock;
4935 }
4936
4937 if (val & (DROP_RETIRE | DROP_ACTIVE))
4938 i915_gem_retire_requests(dev);
4939
4940 if (val & DROP_BOUND)
4941 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4942
4943 if (val & DROP_UNBOUND)
4944 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4945
4946 unlock:
4947 mutex_unlock(&dev->struct_mutex);
4948
4949 return ret;
4950 }
4951
4952 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4953 i915_drop_caches_get, i915_drop_caches_set,
4954 "0x%08llx\n");
4955
4956 static int
4957 i915_max_freq_get(void *data, u64 *val)
4958 {
4959 struct drm_device *dev = data;
4960 struct drm_i915_private *dev_priv = dev->dev_private;
4961 int ret;
4962
4963 if (INTEL_INFO(dev)->gen < 6)
4964 return -ENODEV;
4965
4966 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4967
4968 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4969 if (ret)
4970 return ret;
4971
4972 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4973 mutex_unlock(&dev_priv->rps.hw_lock);
4974
4975 return 0;
4976 }
4977
4978 static int
4979 i915_max_freq_set(void *data, u64 val)
4980 {
4981 struct drm_device *dev = data;
4982 struct drm_i915_private *dev_priv = dev->dev_private;
4983 u32 hw_max, hw_min;
4984 int ret;
4985
4986 if (INTEL_INFO(dev)->gen < 6)
4987 return -ENODEV;
4988
4989 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4990
4991 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4992
4993 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4994 if (ret)
4995 return ret;
4996
4997 /*
4998 * Turbo will still be enabled, but won't go above the set value.
4999 */
5000 val = intel_freq_opcode(dev_priv, val);
5001
5002 hw_max = dev_priv->rps.max_freq;
5003 hw_min = dev_priv->rps.min_freq;
5004
5005 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
5006 mutex_unlock(&dev_priv->rps.hw_lock);
5007 return -EINVAL;
5008 }
5009
5010 dev_priv->rps.max_freq_softlimit = val;
5011
5012 intel_set_rps(dev, val);
5013
5014 mutex_unlock(&dev_priv->rps.hw_lock);
5015
5016 return 0;
5017 }
5018
5019 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
5020 i915_max_freq_get, i915_max_freq_set,
5021 "%llu\n");
5022
5023 static int
5024 i915_min_freq_get(void *data, u64 *val)
5025 {
5026 struct drm_device *dev = data;
5027 struct drm_i915_private *dev_priv = dev->dev_private;
5028 int ret;
5029
5030 if (INTEL_INFO(dev)->gen < 6)
5031 return -ENODEV;
5032
5033 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5034
5035 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5036 if (ret)
5037 return ret;
5038
5039 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5040 mutex_unlock(&dev_priv->rps.hw_lock);
5041
5042 return 0;
5043 }
5044
5045 static int
5046 i915_min_freq_set(void *data, u64 val)
5047 {
5048 struct drm_device *dev = data;
5049 struct drm_i915_private *dev_priv = dev->dev_private;
5050 u32 hw_max, hw_min;
5051 int ret;
5052
5053 if (INTEL_INFO(dev)->gen < 6)
5054 return -ENODEV;
5055
5056 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5057
5058 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5059
5060 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5061 if (ret)
5062 return ret;
5063
5064 /*
5065 * Turbo will still be enabled, but won't go below the set value.
5066 */
5067 val = intel_freq_opcode(dev_priv, val);
5068
5069 hw_max = dev_priv->rps.max_freq;
5070 hw_min = dev_priv->rps.min_freq;
5071
5072 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5073 mutex_unlock(&dev_priv->rps.hw_lock);
5074 return -EINVAL;
5075 }
5076
5077 dev_priv->rps.min_freq_softlimit = val;
5078
5079 intel_set_rps(dev, val);
5080
5081 mutex_unlock(&dev_priv->rps.hw_lock);
5082
5083 return 0;
5084 }
5085
5086 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5087 i915_min_freq_get, i915_min_freq_set,
5088 "%llu\n");
5089
5090 static int
5091 i915_cache_sharing_get(void *data, u64 *val)
5092 {
5093 struct drm_device *dev = data;
5094 struct drm_i915_private *dev_priv = dev->dev_private;
5095 u32 snpcr;
5096 int ret;
5097
5098 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5099 return -ENODEV;
5100
5101 ret = mutex_lock_interruptible(&dev->struct_mutex);
5102 if (ret)
5103 return ret;
5104 intel_runtime_pm_get(dev_priv);
5105
5106 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5107
5108 intel_runtime_pm_put(dev_priv);
5109 mutex_unlock(&dev_priv->dev->struct_mutex);
5110
5111 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5112
5113 return 0;
5114 }
5115
5116 static int
5117 i915_cache_sharing_set(void *data, u64 val)
5118 {
5119 struct drm_device *dev = data;
5120 struct drm_i915_private *dev_priv = dev->dev_private;
5121 u32 snpcr;
5122
5123 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5124 return -ENODEV;
5125
5126 if (val > 3)
5127 return -EINVAL;
5128
5129 intel_runtime_pm_get(dev_priv);
5130 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5131
5132 /* Update the cache sharing policy here as well */
5133 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5134 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5135 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5136 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5137
5138 intel_runtime_pm_put(dev_priv);
5139 return 0;
5140 }
5141
5142 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5143 i915_cache_sharing_get, i915_cache_sharing_set,
5144 "%llu\n");
5145
5146 struct sseu_dev_status {
5147 unsigned int slice_total;
5148 unsigned int subslice_total;
5149 unsigned int subslice_per_slice;
5150 unsigned int eu_total;
5151 unsigned int eu_per_subslice;
5152 };
5153
5154 static void cherryview_sseu_device_status(struct drm_device *dev,
5155 struct sseu_dev_status *stat)
5156 {
5157 struct drm_i915_private *dev_priv = dev->dev_private;
5158 int ss_max = 2;
5159 int ss;
5160 u32 sig1[ss_max], sig2[ss_max];
5161
5162 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5163 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5164 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5165 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5166
5167 for (ss = 0; ss < ss_max; ss++) {
5168 unsigned int eu_cnt;
5169
5170 if (sig1[ss] & CHV_SS_PG_ENABLE)
5171 /* skip disabled subslice */
5172 continue;
5173
5174 stat->slice_total = 1;
5175 stat->subslice_per_slice++;
5176 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5177 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5178 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5179 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5180 stat->eu_total += eu_cnt;
5181 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5182 }
5183 stat->subslice_total = stat->subslice_per_slice;
5184 }
5185
5186 static void gen9_sseu_device_status(struct drm_device *dev,
5187 struct sseu_dev_status *stat)
5188 {
5189 struct drm_i915_private *dev_priv = dev->dev_private;
5190 int s_max = 3, ss_max = 4;
5191 int s, ss;
5192 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5193
5194 /* BXT has a single slice and at most 3 subslices. */
5195 if (IS_BROXTON(dev)) {
5196 s_max = 1;
5197 ss_max = 3;
5198 }
5199
5200 for (s = 0; s < s_max; s++) {
5201 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5202 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5203 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5204 }
5205
5206 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5207 GEN9_PGCTL_SSA_EU19_ACK |
5208 GEN9_PGCTL_SSA_EU210_ACK |
5209 GEN9_PGCTL_SSA_EU311_ACK;
5210 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5211 GEN9_PGCTL_SSB_EU19_ACK |
5212 GEN9_PGCTL_SSB_EU210_ACK |
5213 GEN9_PGCTL_SSB_EU311_ACK;
5214
5215 for (s = 0; s < s_max; s++) {
5216 unsigned int ss_cnt = 0;
5217
5218 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5219 /* skip disabled slice */
5220 continue;
5221
5222 stat->slice_total++;
5223
5224 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5225 ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5226
5227 for (ss = 0; ss < ss_max; ss++) {
5228 unsigned int eu_cnt;
5229
5230 if (IS_BROXTON(dev) &&
5231 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5232 /* skip disabled subslice */
5233 continue;
5234
5235 if (IS_BROXTON(dev))
5236 ss_cnt++;
5237
5238 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5239 eu_mask[ss%2]);
5240 stat->eu_total += eu_cnt;
5241 stat->eu_per_subslice = max(stat->eu_per_subslice,
5242 eu_cnt);
5243 }
5244
5245 stat->subslice_total += ss_cnt;
5246 stat->subslice_per_slice = max(stat->subslice_per_slice,
5247 ss_cnt);
5248 }
5249 }
5250
5251 static void broadwell_sseu_device_status(struct drm_device *dev,
5252 struct sseu_dev_status *stat)
5253 {
5254 struct drm_i915_private *dev_priv = dev->dev_private;
5255 int s;
5256 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5257
5258 stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5259
5260 if (stat->slice_total) {
5261 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5262 stat->subslice_total = stat->slice_total *
5263 stat->subslice_per_slice;
5264 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5265 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5266
5267 /* subtract fused off EU(s) from enabled slice(s) */
5268 for (s = 0; s < stat->slice_total; s++) {
5269 u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5270
5271 stat->eu_total -= hweight8(subslice_7eu);
5272 }
5273 }
5274 }
5275
5276 static int i915_sseu_status(struct seq_file *m, void *unused)
5277 {
5278 struct drm_info_node *node = (struct drm_info_node *) m->private;
5279 struct drm_device *dev = node->minor->dev;
5280 struct sseu_dev_status stat;
5281
5282 if (INTEL_INFO(dev)->gen < 8)
5283 return -ENODEV;
5284
5285 seq_puts(m, "SSEU Device Info\n");
5286 seq_printf(m, " Available Slice Total: %u\n",
5287 INTEL_INFO(dev)->slice_total);
5288 seq_printf(m, " Available Subslice Total: %u\n",
5289 INTEL_INFO(dev)->subslice_total);
5290 seq_printf(m, " Available Subslice Per Slice: %u\n",
5291 INTEL_INFO(dev)->subslice_per_slice);
5292 seq_printf(m, " Available EU Total: %u\n",
5293 INTEL_INFO(dev)->eu_total);
5294 seq_printf(m, " Available EU Per Subslice: %u\n",
5295 INTEL_INFO(dev)->eu_per_subslice);
5296 seq_printf(m, " Has Slice Power Gating: %s\n",
5297 yesno(INTEL_INFO(dev)->has_slice_pg));
5298 seq_printf(m, " Has Subslice Power Gating: %s\n",
5299 yesno(INTEL_INFO(dev)->has_subslice_pg));
5300 seq_printf(m, " Has EU Power Gating: %s\n",
5301 yesno(INTEL_INFO(dev)->has_eu_pg));
5302
5303 seq_puts(m, "SSEU Device Status\n");
5304 memset(&stat, 0, sizeof(stat));
5305 if (IS_CHERRYVIEW(dev)) {
5306 cherryview_sseu_device_status(dev, &stat);
5307 } else if (IS_BROADWELL(dev)) {
5308 broadwell_sseu_device_status(dev, &stat);
5309 } else if (INTEL_INFO(dev)->gen >= 9) {
5310 gen9_sseu_device_status(dev, &stat);
5311 }
5312 seq_printf(m, " Enabled Slice Total: %u\n",
5313 stat.slice_total);
5314 seq_printf(m, " Enabled Subslice Total: %u\n",
5315 stat.subslice_total);
5316 seq_printf(m, " Enabled Subslice Per Slice: %u\n",
5317 stat.subslice_per_slice);
5318 seq_printf(m, " Enabled EU Total: %u\n",
5319 stat.eu_total);
5320 seq_printf(m, " Enabled EU Per Subslice: %u\n",
5321 stat.eu_per_subslice);
5322
5323 return 0;
5324 }
5325
5326 static int i915_forcewake_open(struct inode *inode, struct file *file)
5327 {
5328 struct drm_device *dev = inode->i_private;
5329 struct drm_i915_private *dev_priv = dev->dev_private;
5330
5331 if (INTEL_INFO(dev)->gen < 6)
5332 return 0;
5333
5334 intel_runtime_pm_get(dev_priv);
5335 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5336
5337 return 0;
5338 }
5339
5340 static int i915_forcewake_release(struct inode *inode, struct file *file)
5341 {
5342 struct drm_device *dev = inode->i_private;
5343 struct drm_i915_private *dev_priv = dev->dev_private;
5344
5345 if (INTEL_INFO(dev)->gen < 6)
5346 return 0;
5347
5348 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5349 intel_runtime_pm_put(dev_priv);
5350
5351 return 0;
5352 }
5353
5354 static const struct file_operations i915_forcewake_fops = {
5355 .owner = THIS_MODULE,
5356 .open = i915_forcewake_open,
5357 .release = i915_forcewake_release,
5358 };
5359
5360 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5361 {
5362 struct drm_device *dev = minor->dev;
5363 struct dentry *ent;
5364
5365 ent = debugfs_create_file("i915_forcewake_user",
5366 S_IRUSR,
5367 root, dev,
5368 &i915_forcewake_fops);
5369 if (!ent)
5370 return -ENOMEM;
5371
5372 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5373 }
5374
5375 static int i915_debugfs_create(struct dentry *root,
5376 struct drm_minor *minor,
5377 const char *name,
5378 const struct file_operations *fops)
5379 {
5380 struct drm_device *dev = minor->dev;
5381 struct dentry *ent;
5382
5383 ent = debugfs_create_file(name,
5384 S_IRUGO | S_IWUSR,
5385 root, dev,
5386 fops);
5387 if (!ent)
5388 return -ENOMEM;
5389
5390 return drm_add_fake_info_node(minor, ent, fops);
5391 }
5392
5393 static const struct drm_info_list i915_debugfs_list[] = {
5394 {"i915_capabilities", i915_capabilities, 0},
5395 {"i915_gem_objects", i915_gem_object_info, 0},
5396 {"i915_gem_gtt", i915_gem_gtt_info, 0},
5397 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5398 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5399 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5400 {"i915_gem_stolen", i915_gem_stolen_list_info },
5401 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5402 {"i915_gem_request", i915_gem_request_info, 0},
5403 {"i915_gem_seqno", i915_gem_seqno_info, 0},
5404 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5405 {"i915_gem_interrupt", i915_interrupt_info, 0},
5406 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5407 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5408 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5409 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5410 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5411 {"i915_guc_info", i915_guc_info, 0},
5412 {"i915_guc_load_status", i915_guc_load_status_info, 0},
5413 {"i915_guc_log_dump", i915_guc_log_dump, 0},
5414 {"i915_frequency_info", i915_frequency_info, 0},
5415 {"i915_hangcheck_info", i915_hangcheck_info, 0},
5416 {"i915_drpc_info", i915_drpc_info, 0},
5417 {"i915_emon_status", i915_emon_status, 0},
5418 {"i915_ring_freq_table", i915_ring_freq_table, 0},
5419 {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5420 {"i915_fbc_status", i915_fbc_status, 0},
5421 {"i915_ips_status", i915_ips_status, 0},
5422 {"i915_sr_status", i915_sr_status, 0},
5423 {"i915_opregion", i915_opregion, 0},
5424 {"i915_vbt", i915_vbt, 0},
5425 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5426 {"i915_context_status", i915_context_status, 0},
5427 {"i915_dump_lrc", i915_dump_lrc, 0},
5428 {"i915_execlists", i915_execlists, 0},
5429 {"i915_forcewake_domains", i915_forcewake_domains, 0},
5430 {"i915_swizzle_info", i915_swizzle_info, 0},
5431 {"i915_ppgtt_info", i915_ppgtt_info, 0},
5432 {"i915_llc", i915_llc, 0},
5433 {"i915_edp_psr_status", i915_edp_psr_status, 0},
5434 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5435 {"i915_energy_uJ", i915_energy_uJ, 0},
5436 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5437 {"i915_power_domain_info", i915_power_domain_info, 0},
5438 {"i915_dmc_info", i915_dmc_info, 0},
5439 {"i915_display_info", i915_display_info, 0},
5440 {"i915_semaphore_status", i915_semaphore_status, 0},
5441 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5442 {"i915_dp_mst_info", i915_dp_mst_info, 0},
5443 {"i915_wa_registers", i915_wa_registers, 0},
5444 {"i915_ddb_info", i915_ddb_info, 0},
5445 {"i915_sseu_status", i915_sseu_status, 0},
5446 {"i915_drrs_status", i915_drrs_status, 0},
5447 {"i915_rps_boost_info", i915_rps_boost_info, 0},
5448 };
5449 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5450
5451 static const struct i915_debugfs_files {
5452 const char *name;
5453 const struct file_operations *fops;
5454 } i915_debugfs_files[] = {
5455 {"i915_wedged", &i915_wedged_fops},
5456 {"i915_max_freq", &i915_max_freq_fops},
5457 {"i915_min_freq", &i915_min_freq_fops},
5458 {"i915_cache_sharing", &i915_cache_sharing_fops},
5459 {"i915_ring_stop", &i915_ring_stop_fops},
5460 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5461 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5462 {"i915_gem_drop_caches", &i915_drop_caches_fops},
5463 {"i915_error_state", &i915_error_state_fops},
5464 {"i915_next_seqno", &i915_next_seqno_fops},
5465 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5466 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5467 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5468 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5469 {"i915_fbc_false_color", &i915_fbc_fc_fops},
5470 {"i915_dp_test_data", &i915_displayport_test_data_fops},
5471 {"i915_dp_test_type", &i915_displayport_test_type_fops},
5472 {"i915_dp_test_active", &i915_displayport_test_active_fops}
5473 };
5474
5475 void intel_display_crc_init(struct drm_device *dev)
5476 {
5477 struct drm_i915_private *dev_priv = dev->dev_private;
5478 enum pipe pipe;
5479
5480 for_each_pipe(dev_priv, pipe) {
5481 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5482
5483 pipe_crc->opened = false;
5484 spin_lock_init(&pipe_crc->lock);
5485 init_waitqueue_head(&pipe_crc->wq);
5486 }
5487 }
5488
5489 int i915_debugfs_init(struct drm_minor *minor)
5490 {
5491 int ret, i;
5492
5493 ret = i915_forcewake_create(minor->debugfs_root, minor);
5494 if (ret)
5495 return ret;
5496
5497 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5498 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5499 if (ret)
5500 return ret;
5501 }
5502
5503 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5504 ret = i915_debugfs_create(minor->debugfs_root, minor,
5505 i915_debugfs_files[i].name,
5506 i915_debugfs_files[i].fops);
5507 if (ret)
5508 return ret;
5509 }
5510
5511 return drm_debugfs_create_files(i915_debugfs_list,
5512 I915_DEBUGFS_ENTRIES,
5513 minor->debugfs_root, minor);
5514 }
5515
5516 void i915_debugfs_cleanup(struct drm_minor *minor)
5517 {
5518 int i;
5519
5520 drm_debugfs_remove_files(i915_debugfs_list,
5521 I915_DEBUGFS_ENTRIES, minor);
5522
5523 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5524 1, minor);
5525
5526 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5527 struct drm_info_list *info_list =
5528 (struct drm_info_list *)&i915_pipe_crc_data[i];
5529
5530 drm_debugfs_remove_files(info_list, 1, minor);
5531 }
5532
5533 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5534 struct drm_info_list *info_list =
5535 (struct drm_info_list *) i915_debugfs_files[i].fops;
5536
5537 drm_debugfs_remove_files(info_list, 1, minor);
5538 }
5539 }
5540
5541 struct dpcd_block {
5542 /* DPCD dump start address. */
5543 unsigned int offset;
5544 /* DPCD dump end address, inclusive. If unset, .size will be used. */
5545 unsigned int end;
5546 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5547 size_t size;
5548 /* Only valid for eDP. */
5549 bool edp;
5550 };
5551
5552 static const struct dpcd_block i915_dpcd_debug[] = {
5553 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5554 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5555 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5556 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5557 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5558 { .offset = DP_SET_POWER },
5559 { .offset = DP_EDP_DPCD_REV },
5560 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5561 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5562 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5563 };
5564
5565 static int i915_dpcd_show(struct seq_file *m, void *data)
5566 {
5567 struct drm_connector *connector = m->private;
5568 struct intel_dp *intel_dp =
5569 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5570 uint8_t buf[16];
5571 ssize_t err;
5572 int i;
5573
5574 if (connector->status != connector_status_connected)
5575 return -ENODEV;
5576
5577 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5578 const struct dpcd_block *b = &i915_dpcd_debug[i];
5579 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5580
5581 if (b->edp &&
5582 connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5583 continue;
5584
5585 /* low tech for now */
5586 if (WARN_ON(size > sizeof(buf)))
5587 continue;
5588
5589 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5590 if (err <= 0) {
5591 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5592 size, b->offset, err);
5593 continue;
5594 }
5595
5596 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5597 }
5598
5599 return 0;
5600 }
5601
5602 static int i915_dpcd_open(struct inode *inode, struct file *file)
5603 {
5604 return single_open(file, i915_dpcd_show, inode->i_private);
5605 }
5606
5607 static const struct file_operations i915_dpcd_fops = {
5608 .owner = THIS_MODULE,
5609 .open = i915_dpcd_open,
5610 .read = seq_read,
5611 .llseek = seq_lseek,
5612 .release = single_release,
5613 };
5614
5615 /**
5616 * i915_debugfs_connector_add - add i915 specific connector debugfs files
5617 * @connector: pointer to a registered drm_connector
5618 *
5619 * Cleanup will be done by drm_connector_unregister() through a call to
5620 * drm_debugfs_connector_remove().
5621 *
5622 * Returns 0 on success, negative error codes on error.
5623 */
5624 int i915_debugfs_connector_add(struct drm_connector *connector)
5625 {
5626 struct dentry *root = connector->debugfs_entry;
5627
5628 /* The connector must have been registered beforehands. */
5629 if (!root)
5630 return -ENODEV;
5631
5632 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5633 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5634 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5635 &i915_dpcd_fops);
5636
5637 return 0;
5638 }
This page took 0.171152 seconds and 6 git commands to generate.