drm/i915/opregion: make VBT pointer a const
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50 * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 struct dentry *ent,
54 const void *key)
55 {
56 struct drm_info_node *node;
57
58 node = kmalloc(sizeof(*node), GFP_KERNEL);
59 if (node == NULL) {
60 debugfs_remove(ent);
61 return -ENOMEM;
62 }
63
64 node->minor = minor;
65 node->dent = ent;
66 node->info_ent = (void *) key;
67
68 mutex_lock(&minor->debugfs_lock);
69 list_add(&node->list, &minor->debugfs_list);
70 mutex_unlock(&minor->debugfs_lock);
71
72 return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 struct drm_info_node *node = m->private;
78 struct drm_device *dev = node->minor->dev;
79 const struct intel_device_info *info = INTEL_INFO(dev);
80
81 seq_printf(m, "gen: %d\n", info->gen);
82 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89 return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94 if (obj->pin_display)
95 return "p";
96 else
97 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102 switch (obj->tiling_mode) {
103 default:
104 case I915_TILING_NONE: return " ";
105 case I915_TILING_X: return "X";
106 case I915_TILING_Y: return "Y";
107 }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112 return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117 u64 size = 0;
118 struct i915_vma *vma;
119
120 list_for_each_entry(vma, &obj->vma_list, vma_link) {
121 if (i915_is_ggtt(vma->vm) &&
122 drm_mm_node_allocated(&vma->node))
123 size += vma->node.size;
124 }
125
126 return size;
127 }
128
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133 struct intel_engine_cs *ring;
134 struct i915_vma *vma;
135 int pin_count = 0;
136 int i;
137
138 seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139 &obj->base,
140 obj->active ? "*" : " ",
141 get_pin_flag(obj),
142 get_tiling_flag(obj),
143 get_global_flag(obj),
144 obj->base.size / 1024,
145 obj->base.read_domains,
146 obj->base.write_domain);
147 for_each_ring(ring, dev_priv, i)
148 seq_printf(m, "%x ",
149 i915_gem_request_get_seqno(obj->last_read_req[i]));
150 seq_printf(m, "] %x %x%s%s%s",
151 i915_gem_request_get_seqno(obj->last_write_req),
152 i915_gem_request_get_seqno(obj->last_fenced_req),
153 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154 obj->dirty ? " dirty" : "",
155 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156 if (obj->base.name)
157 seq_printf(m, " (name: %d)", obj->base.name);
158 list_for_each_entry(vma, &obj->vma_list, vma_link) {
159 if (vma->pin_count > 0)
160 pin_count++;
161 }
162 seq_printf(m, " (pinned x %d)", pin_count);
163 if (obj->pin_display)
164 seq_printf(m, " (display)");
165 if (obj->fence_reg != I915_FENCE_REG_NONE)
166 seq_printf(m, " (fence: %d)", obj->fence_reg);
167 list_for_each_entry(vma, &obj->vma_list, vma_link) {
168 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169 i915_is_ggtt(vma->vm) ? "g" : "pp",
170 vma->node.start, vma->node.size);
171 if (i915_is_ggtt(vma->vm))
172 seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173 else
174 seq_puts(m, ")");
175 }
176 if (obj->stolen)
177 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178 if (obj->pin_display || obj->fault_mappable) {
179 char s[3], *t = s;
180 if (obj->pin_display)
181 *t++ = 'p';
182 if (obj->fault_mappable)
183 *t++ = 'f';
184 *t = '\0';
185 seq_printf(m, " (%s mappable)", s);
186 }
187 if (obj->last_write_req != NULL)
188 seq_printf(m, " (%s)",
189 i915_gem_request_get_ring(obj->last_write_req)->name);
190 if (obj->frontbuffer_bits)
191 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198 seq_putc(m, ' ');
199 }
200
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203 struct drm_info_node *node = m->private;
204 uintptr_t list = (uintptr_t) node->info_ent->data;
205 struct list_head *head;
206 struct drm_device *dev = node->minor->dev;
207 struct drm_i915_private *dev_priv = dev->dev_private;
208 struct i915_address_space *vm = &dev_priv->gtt.base;
209 struct i915_vma *vma;
210 u64 total_obj_size, total_gtt_size;
211 int count, ret;
212
213 ret = mutex_lock_interruptible(&dev->struct_mutex);
214 if (ret)
215 return ret;
216
217 /* FIXME: the user of this interface might want more than just GGTT */
218 switch (list) {
219 case ACTIVE_LIST:
220 seq_puts(m, "Active:\n");
221 head = &vm->active_list;
222 break;
223 case INACTIVE_LIST:
224 seq_puts(m, "Inactive:\n");
225 head = &vm->inactive_list;
226 break;
227 default:
228 mutex_unlock(&dev->struct_mutex);
229 return -EINVAL;
230 }
231
232 total_obj_size = total_gtt_size = count = 0;
233 list_for_each_entry(vma, head, mm_list) {
234 seq_printf(m, " ");
235 describe_obj(m, vma->obj);
236 seq_printf(m, "\n");
237 total_obj_size += vma->obj->base.size;
238 total_gtt_size += vma->node.size;
239 count++;
240 }
241 mutex_unlock(&dev->struct_mutex);
242
243 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244 count, total_obj_size, total_gtt_size);
245 return 0;
246 }
247
248 static int obj_rank_by_stolen(void *priv,
249 struct list_head *A, struct list_head *B)
250 {
251 struct drm_i915_gem_object *a =
252 container_of(A, struct drm_i915_gem_object, obj_exec_link);
253 struct drm_i915_gem_object *b =
254 container_of(B, struct drm_i915_gem_object, obj_exec_link);
255
256 if (a->stolen->start < b->stolen->start)
257 return -1;
258 if (a->stolen->start > b->stolen->start)
259 return 1;
260 return 0;
261 }
262
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265 struct drm_info_node *node = m->private;
266 struct drm_device *dev = node->minor->dev;
267 struct drm_i915_private *dev_priv = dev->dev_private;
268 struct drm_i915_gem_object *obj;
269 u64 total_obj_size, total_gtt_size;
270 LIST_HEAD(stolen);
271 int count, ret;
272
273 ret = mutex_lock_interruptible(&dev->struct_mutex);
274 if (ret)
275 return ret;
276
277 total_obj_size = total_gtt_size = count = 0;
278 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279 if (obj->stolen == NULL)
280 continue;
281
282 list_add(&obj->obj_exec_link, &stolen);
283
284 total_obj_size += obj->base.size;
285 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286 count++;
287 }
288 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289 if (obj->stolen == NULL)
290 continue;
291
292 list_add(&obj->obj_exec_link, &stolen);
293
294 total_obj_size += obj->base.size;
295 count++;
296 }
297 list_sort(NULL, &stolen, obj_rank_by_stolen);
298 seq_puts(m, "Stolen:\n");
299 while (!list_empty(&stolen)) {
300 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301 seq_puts(m, " ");
302 describe_obj(m, obj);
303 seq_putc(m, '\n');
304 list_del_init(&obj->obj_exec_link);
305 }
306 mutex_unlock(&dev->struct_mutex);
307
308 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309 count, total_obj_size, total_gtt_size);
310 return 0;
311 }
312
313 #define count_objects(list, member) do { \
314 list_for_each_entry(obj, list, member) { \
315 size += i915_gem_obj_total_ggtt_size(obj); \
316 ++count; \
317 if (obj->map_and_fenceable) { \
318 mappable_size += i915_gem_obj_ggtt_size(obj); \
319 ++mappable_count; \
320 } \
321 } \
322 } while (0)
323
324 struct file_stats {
325 struct drm_i915_file_private *file_priv;
326 unsigned long count;
327 u64 total, unbound;
328 u64 global, shared;
329 u64 active, inactive;
330 };
331
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334 struct drm_i915_gem_object *obj = ptr;
335 struct file_stats *stats = data;
336 struct i915_vma *vma;
337
338 stats->count++;
339 stats->total += obj->base.size;
340
341 if (obj->base.name || obj->base.dma_buf)
342 stats->shared += obj->base.size;
343
344 if (USES_FULL_PPGTT(obj->base.dev)) {
345 list_for_each_entry(vma, &obj->vma_list, vma_link) {
346 struct i915_hw_ppgtt *ppgtt;
347
348 if (!drm_mm_node_allocated(&vma->node))
349 continue;
350
351 if (i915_is_ggtt(vma->vm)) {
352 stats->global += obj->base.size;
353 continue;
354 }
355
356 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357 if (ppgtt->file_priv != stats->file_priv)
358 continue;
359
360 if (obj->active) /* XXX per-vma statistic */
361 stats->active += obj->base.size;
362 else
363 stats->inactive += obj->base.size;
364
365 return 0;
366 }
367 } else {
368 if (i915_gem_obj_ggtt_bound(obj)) {
369 stats->global += obj->base.size;
370 if (obj->active)
371 stats->active += obj->base.size;
372 else
373 stats->inactive += obj->base.size;
374 return 0;
375 }
376 }
377
378 if (!list_empty(&obj->global_list))
379 stats->unbound += obj->base.size;
380
381 return 0;
382 }
383
384 #define print_file_stats(m, name, stats) do { \
385 if (stats.count) \
386 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387 name, \
388 stats.count, \
389 stats.total, \
390 stats.active, \
391 stats.inactive, \
392 stats.global, \
393 stats.shared, \
394 stats.unbound); \
395 } while (0)
396
397 static void print_batch_pool_stats(struct seq_file *m,
398 struct drm_i915_private *dev_priv)
399 {
400 struct drm_i915_gem_object *obj;
401 struct file_stats stats;
402 struct intel_engine_cs *ring;
403 int i, j;
404
405 memset(&stats, 0, sizeof(stats));
406
407 for_each_ring(ring, dev_priv, i) {
408 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409 list_for_each_entry(obj,
410 &ring->batch_pool.cache_list[j],
411 batch_pool_link)
412 per_file_stats(0, obj, &stats);
413 }
414 }
415
416 print_file_stats(m, "[k]batch pool", stats);
417 }
418
419 #define count_vmas(list, member) do { \
420 list_for_each_entry(vma, list, member) { \
421 size += i915_gem_obj_total_ggtt_size(vma->obj); \
422 ++count; \
423 if (vma->obj->map_and_fenceable) { \
424 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425 ++mappable_count; \
426 } \
427 } \
428 } while (0)
429
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432 struct drm_info_node *node = m->private;
433 struct drm_device *dev = node->minor->dev;
434 struct drm_i915_private *dev_priv = dev->dev_private;
435 u32 count, mappable_count, purgeable_count;
436 u64 size, mappable_size, purgeable_size;
437 struct drm_i915_gem_object *obj;
438 struct i915_address_space *vm = &dev_priv->gtt.base;
439 struct drm_file *file;
440 struct i915_vma *vma;
441 int ret;
442
443 ret = mutex_lock_interruptible(&dev->struct_mutex);
444 if (ret)
445 return ret;
446
447 seq_printf(m, "%u objects, %zu bytes\n",
448 dev_priv->mm.object_count,
449 dev_priv->mm.object_memory);
450
451 size = count = mappable_size = mappable_count = 0;
452 count_objects(&dev_priv->mm.bound_list, global_list);
453 seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454 count, mappable_count, size, mappable_size);
455
456 size = count = mappable_size = mappable_count = 0;
457 count_vmas(&vm->active_list, mm_list);
458 seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
459 count, mappable_count, size, mappable_size);
460
461 size = count = mappable_size = mappable_count = 0;
462 count_vmas(&vm->inactive_list, mm_list);
463 seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
464 count, mappable_count, size, mappable_size);
465
466 size = count = purgeable_size = purgeable_count = 0;
467 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468 size += obj->base.size, ++count;
469 if (obj->madv == I915_MADV_DONTNEED)
470 purgeable_size += obj->base.size, ++purgeable_count;
471 }
472 seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473
474 size = count = mappable_size = mappable_count = 0;
475 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476 if (obj->fault_mappable) {
477 size += i915_gem_obj_ggtt_size(obj);
478 ++count;
479 }
480 if (obj->pin_display) {
481 mappable_size += i915_gem_obj_ggtt_size(obj);
482 ++mappable_count;
483 }
484 if (obj->madv == I915_MADV_DONTNEED) {
485 purgeable_size += obj->base.size;
486 ++purgeable_count;
487 }
488 }
489 seq_printf(m, "%u purgeable objects, %llu bytes\n",
490 purgeable_count, purgeable_size);
491 seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492 mappable_count, mappable_size);
493 seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494 count, size);
495
496 seq_printf(m, "%llu [%llu] gtt total\n",
497 dev_priv->gtt.base.total,
498 (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499
500 seq_putc(m, '\n');
501 print_batch_pool_stats(m, dev_priv);
502 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503 struct file_stats stats;
504 struct task_struct *task;
505
506 memset(&stats, 0, sizeof(stats));
507 stats.file_priv = file->driver_priv;
508 spin_lock(&file->table_lock);
509 idr_for_each(&file->object_idr, per_file_stats, &stats);
510 spin_unlock(&file->table_lock);
511 /*
512 * Although we have a valid reference on file->pid, that does
513 * not guarantee that the task_struct who called get_pid() is
514 * still alive (e.g. get_pid(current) => fork() => exit()).
515 * Therefore, we need to protect this ->comm access using RCU.
516 */
517 rcu_read_lock();
518 task = pid_task(file->pid, PIDTYPE_PID);
519 print_file_stats(m, task ? task->comm : "<unknown>", stats);
520 rcu_read_unlock();
521 }
522
523 mutex_unlock(&dev->struct_mutex);
524
525 return 0;
526 }
527
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530 struct drm_info_node *node = m->private;
531 struct drm_device *dev = node->minor->dev;
532 uintptr_t list = (uintptr_t) node->info_ent->data;
533 struct drm_i915_private *dev_priv = dev->dev_private;
534 struct drm_i915_gem_object *obj;
535 u64 total_obj_size, total_gtt_size;
536 int count, ret;
537
538 ret = mutex_lock_interruptible(&dev->struct_mutex);
539 if (ret)
540 return ret;
541
542 total_obj_size = total_gtt_size = count = 0;
543 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545 continue;
546
547 seq_puts(m, " ");
548 describe_obj(m, obj);
549 seq_putc(m, '\n');
550 total_obj_size += obj->base.size;
551 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552 count++;
553 }
554
555 mutex_unlock(&dev->struct_mutex);
556
557 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558 count, total_obj_size, total_gtt_size);
559
560 return 0;
561 }
562
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565 struct drm_info_node *node = m->private;
566 struct drm_device *dev = node->minor->dev;
567 struct drm_i915_private *dev_priv = dev->dev_private;
568 struct intel_crtc *crtc;
569 int ret;
570
571 ret = mutex_lock_interruptible(&dev->struct_mutex);
572 if (ret)
573 return ret;
574
575 for_each_intel_crtc(dev, crtc) {
576 const char pipe = pipe_name(crtc->pipe);
577 const char plane = plane_name(crtc->plane);
578 struct intel_unpin_work *work;
579
580 spin_lock_irq(&dev->event_lock);
581 work = crtc->unpin_work;
582 if (work == NULL) {
583 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584 pipe, plane);
585 } else {
586 u32 addr;
587
588 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590 pipe, plane);
591 } else {
592 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593 pipe, plane);
594 }
595 if (work->flip_queued_req) {
596 struct intel_engine_cs *ring =
597 i915_gem_request_get_ring(work->flip_queued_req);
598
599 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600 ring->name,
601 i915_gem_request_get_seqno(work->flip_queued_req),
602 dev_priv->next_seqno,
603 ring->get_seqno(ring, true),
604 i915_gem_request_completed(work->flip_queued_req, true));
605 } else
606 seq_printf(m, "Flip not associated with any ring\n");
607 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608 work->flip_queued_vblank,
609 work->flip_ready_vblank,
610 drm_crtc_vblank_count(&crtc->base));
611 if (work->enable_stall_check)
612 seq_puts(m, "Stall check enabled, ");
613 else
614 seq_puts(m, "Stall check waiting for page flip ioctl, ");
615 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616
617 if (INTEL_INFO(dev)->gen >= 4)
618 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619 else
620 addr = I915_READ(DSPADDR(crtc->plane));
621 seq_printf(m, "Current scanout address 0x%08x\n", addr);
622
623 if (work->pending_flip_obj) {
624 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
626 }
627 }
628 spin_unlock_irq(&dev->event_lock);
629 }
630
631 mutex_unlock(&dev->struct_mutex);
632
633 return 0;
634 }
635
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638 struct drm_info_node *node = m->private;
639 struct drm_device *dev = node->minor->dev;
640 struct drm_i915_private *dev_priv = dev->dev_private;
641 struct drm_i915_gem_object *obj;
642 struct intel_engine_cs *ring;
643 int total = 0;
644 int ret, i, j;
645
646 ret = mutex_lock_interruptible(&dev->struct_mutex);
647 if (ret)
648 return ret;
649
650 for_each_ring(ring, dev_priv, i) {
651 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652 int count;
653
654 count = 0;
655 list_for_each_entry(obj,
656 &ring->batch_pool.cache_list[j],
657 batch_pool_link)
658 count++;
659 seq_printf(m, "%s cache[%d]: %d objects\n",
660 ring->name, j, count);
661
662 list_for_each_entry(obj,
663 &ring->batch_pool.cache_list[j],
664 batch_pool_link) {
665 seq_puts(m, " ");
666 describe_obj(m, obj);
667 seq_putc(m, '\n');
668 }
669
670 total += count;
671 }
672 }
673
674 seq_printf(m, "total: %d\n", total);
675
676 mutex_unlock(&dev->struct_mutex);
677
678 return 0;
679 }
680
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683 struct drm_info_node *node = m->private;
684 struct drm_device *dev = node->minor->dev;
685 struct drm_i915_private *dev_priv = dev->dev_private;
686 struct intel_engine_cs *ring;
687 struct drm_i915_gem_request *req;
688 int ret, any, i;
689
690 ret = mutex_lock_interruptible(&dev->struct_mutex);
691 if (ret)
692 return ret;
693
694 any = 0;
695 for_each_ring(ring, dev_priv, i) {
696 int count;
697
698 count = 0;
699 list_for_each_entry(req, &ring->request_list, list)
700 count++;
701 if (count == 0)
702 continue;
703
704 seq_printf(m, "%s requests: %d\n", ring->name, count);
705 list_for_each_entry(req, &ring->request_list, list) {
706 struct task_struct *task;
707
708 rcu_read_lock();
709 task = NULL;
710 if (req->pid)
711 task = pid_task(req->pid, PIDTYPE_PID);
712 seq_printf(m, " %x @ %d: %s [%d]\n",
713 req->seqno,
714 (int) (jiffies - req->emitted_jiffies),
715 task ? task->comm : "<unknown>",
716 task ? task->pid : -1);
717 rcu_read_unlock();
718 }
719
720 any++;
721 }
722 mutex_unlock(&dev->struct_mutex);
723
724 if (any == 0)
725 seq_puts(m, "No requests\n");
726
727 return 0;
728 }
729
730 static void i915_ring_seqno_info(struct seq_file *m,
731 struct intel_engine_cs *ring)
732 {
733 if (ring->get_seqno) {
734 seq_printf(m, "Current sequence (%s): %x\n",
735 ring->name, ring->get_seqno(ring, false));
736 }
737 }
738
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741 struct drm_info_node *node = m->private;
742 struct drm_device *dev = node->minor->dev;
743 struct drm_i915_private *dev_priv = dev->dev_private;
744 struct intel_engine_cs *ring;
745 int ret, i;
746
747 ret = mutex_lock_interruptible(&dev->struct_mutex);
748 if (ret)
749 return ret;
750 intel_runtime_pm_get(dev_priv);
751
752 for_each_ring(ring, dev_priv, i)
753 i915_ring_seqno_info(m, ring);
754
755 intel_runtime_pm_put(dev_priv);
756 mutex_unlock(&dev->struct_mutex);
757
758 return 0;
759 }
760
761
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764 struct drm_info_node *node = m->private;
765 struct drm_device *dev = node->minor->dev;
766 struct drm_i915_private *dev_priv = dev->dev_private;
767 struct intel_engine_cs *ring;
768 int ret, i, pipe;
769
770 ret = mutex_lock_interruptible(&dev->struct_mutex);
771 if (ret)
772 return ret;
773 intel_runtime_pm_get(dev_priv);
774
775 if (IS_CHERRYVIEW(dev)) {
776 seq_printf(m, "Master Interrupt Control:\t%08x\n",
777 I915_READ(GEN8_MASTER_IRQ));
778
779 seq_printf(m, "Display IER:\t%08x\n",
780 I915_READ(VLV_IER));
781 seq_printf(m, "Display IIR:\t%08x\n",
782 I915_READ(VLV_IIR));
783 seq_printf(m, "Display IIR_RW:\t%08x\n",
784 I915_READ(VLV_IIR_RW));
785 seq_printf(m, "Display IMR:\t%08x\n",
786 I915_READ(VLV_IMR));
787 for_each_pipe(dev_priv, pipe)
788 seq_printf(m, "Pipe %c stat:\t%08x\n",
789 pipe_name(pipe),
790 I915_READ(PIPESTAT(pipe)));
791
792 seq_printf(m, "Port hotplug:\t%08x\n",
793 I915_READ(PORT_HOTPLUG_EN));
794 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795 I915_READ(VLV_DPFLIPSTAT));
796 seq_printf(m, "DPINVGTT:\t%08x\n",
797 I915_READ(DPINVGTT));
798
799 for (i = 0; i < 4; i++) {
800 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801 i, I915_READ(GEN8_GT_IMR(i)));
802 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803 i, I915_READ(GEN8_GT_IIR(i)));
804 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805 i, I915_READ(GEN8_GT_IER(i)));
806 }
807
808 seq_printf(m, "PCU interrupt mask:\t%08x\n",
809 I915_READ(GEN8_PCU_IMR));
810 seq_printf(m, "PCU interrupt identity:\t%08x\n",
811 I915_READ(GEN8_PCU_IIR));
812 seq_printf(m, "PCU interrupt enable:\t%08x\n",
813 I915_READ(GEN8_PCU_IER));
814 } else if (INTEL_INFO(dev)->gen >= 8) {
815 seq_printf(m, "Master Interrupt Control:\t%08x\n",
816 I915_READ(GEN8_MASTER_IRQ));
817
818 for (i = 0; i < 4; i++) {
819 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820 i, I915_READ(GEN8_GT_IMR(i)));
821 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822 i, I915_READ(GEN8_GT_IIR(i)));
823 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824 i, I915_READ(GEN8_GT_IER(i)));
825 }
826
827 for_each_pipe(dev_priv, pipe) {
828 if (!intel_display_power_is_enabled(dev_priv,
829 POWER_DOMAIN_PIPE(pipe))) {
830 seq_printf(m, "Pipe %c power disabled\n",
831 pipe_name(pipe));
832 continue;
833 }
834 seq_printf(m, "Pipe %c IMR:\t%08x\n",
835 pipe_name(pipe),
836 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
837 seq_printf(m, "Pipe %c IIR:\t%08x\n",
838 pipe_name(pipe),
839 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
840 seq_printf(m, "Pipe %c IER:\t%08x\n",
841 pipe_name(pipe),
842 I915_READ(GEN8_DE_PIPE_IER(pipe)));
843 }
844
845 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
846 I915_READ(GEN8_DE_PORT_IMR));
847 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
848 I915_READ(GEN8_DE_PORT_IIR));
849 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
850 I915_READ(GEN8_DE_PORT_IER));
851
852 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
853 I915_READ(GEN8_DE_MISC_IMR));
854 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
855 I915_READ(GEN8_DE_MISC_IIR));
856 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
857 I915_READ(GEN8_DE_MISC_IER));
858
859 seq_printf(m, "PCU interrupt mask:\t%08x\n",
860 I915_READ(GEN8_PCU_IMR));
861 seq_printf(m, "PCU interrupt identity:\t%08x\n",
862 I915_READ(GEN8_PCU_IIR));
863 seq_printf(m, "PCU interrupt enable:\t%08x\n",
864 I915_READ(GEN8_PCU_IER));
865 } else if (IS_VALLEYVIEW(dev)) {
866 seq_printf(m, "Display IER:\t%08x\n",
867 I915_READ(VLV_IER));
868 seq_printf(m, "Display IIR:\t%08x\n",
869 I915_READ(VLV_IIR));
870 seq_printf(m, "Display IIR_RW:\t%08x\n",
871 I915_READ(VLV_IIR_RW));
872 seq_printf(m, "Display IMR:\t%08x\n",
873 I915_READ(VLV_IMR));
874 for_each_pipe(dev_priv, pipe)
875 seq_printf(m, "Pipe %c stat:\t%08x\n",
876 pipe_name(pipe),
877 I915_READ(PIPESTAT(pipe)));
878
879 seq_printf(m, "Master IER:\t%08x\n",
880 I915_READ(VLV_MASTER_IER));
881
882 seq_printf(m, "Render IER:\t%08x\n",
883 I915_READ(GTIER));
884 seq_printf(m, "Render IIR:\t%08x\n",
885 I915_READ(GTIIR));
886 seq_printf(m, "Render IMR:\t%08x\n",
887 I915_READ(GTIMR));
888
889 seq_printf(m, "PM IER:\t\t%08x\n",
890 I915_READ(GEN6_PMIER));
891 seq_printf(m, "PM IIR:\t\t%08x\n",
892 I915_READ(GEN6_PMIIR));
893 seq_printf(m, "PM IMR:\t\t%08x\n",
894 I915_READ(GEN6_PMIMR));
895
896 seq_printf(m, "Port hotplug:\t%08x\n",
897 I915_READ(PORT_HOTPLUG_EN));
898 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
899 I915_READ(VLV_DPFLIPSTAT));
900 seq_printf(m, "DPINVGTT:\t%08x\n",
901 I915_READ(DPINVGTT));
902
903 } else if (!HAS_PCH_SPLIT(dev)) {
904 seq_printf(m, "Interrupt enable: %08x\n",
905 I915_READ(IER));
906 seq_printf(m, "Interrupt identity: %08x\n",
907 I915_READ(IIR));
908 seq_printf(m, "Interrupt mask: %08x\n",
909 I915_READ(IMR));
910 for_each_pipe(dev_priv, pipe)
911 seq_printf(m, "Pipe %c stat: %08x\n",
912 pipe_name(pipe),
913 I915_READ(PIPESTAT(pipe)));
914 } else {
915 seq_printf(m, "North Display Interrupt enable: %08x\n",
916 I915_READ(DEIER));
917 seq_printf(m, "North Display Interrupt identity: %08x\n",
918 I915_READ(DEIIR));
919 seq_printf(m, "North Display Interrupt mask: %08x\n",
920 I915_READ(DEIMR));
921 seq_printf(m, "South Display Interrupt enable: %08x\n",
922 I915_READ(SDEIER));
923 seq_printf(m, "South Display Interrupt identity: %08x\n",
924 I915_READ(SDEIIR));
925 seq_printf(m, "South Display Interrupt mask: %08x\n",
926 I915_READ(SDEIMR));
927 seq_printf(m, "Graphics Interrupt enable: %08x\n",
928 I915_READ(GTIER));
929 seq_printf(m, "Graphics Interrupt identity: %08x\n",
930 I915_READ(GTIIR));
931 seq_printf(m, "Graphics Interrupt mask: %08x\n",
932 I915_READ(GTIMR));
933 }
934 for_each_ring(ring, dev_priv, i) {
935 if (INTEL_INFO(dev)->gen >= 6) {
936 seq_printf(m,
937 "Graphics Interrupt mask (%s): %08x\n",
938 ring->name, I915_READ_IMR(ring));
939 }
940 i915_ring_seqno_info(m, ring);
941 }
942 intel_runtime_pm_put(dev_priv);
943 mutex_unlock(&dev->struct_mutex);
944
945 return 0;
946 }
947
948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
949 {
950 struct drm_info_node *node = m->private;
951 struct drm_device *dev = node->minor->dev;
952 struct drm_i915_private *dev_priv = dev->dev_private;
953 int i, ret;
954
955 ret = mutex_lock_interruptible(&dev->struct_mutex);
956 if (ret)
957 return ret;
958
959 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960 for (i = 0; i < dev_priv->num_fence_regs; i++) {
961 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
962
963 seq_printf(m, "Fence %d, pin count = %d, object = ",
964 i, dev_priv->fence_regs[i].pin_count);
965 if (obj == NULL)
966 seq_puts(m, "unused");
967 else
968 describe_obj(m, obj);
969 seq_putc(m, '\n');
970 }
971
972 mutex_unlock(&dev->struct_mutex);
973 return 0;
974 }
975
976 static int i915_hws_info(struct seq_file *m, void *data)
977 {
978 struct drm_info_node *node = m->private;
979 struct drm_device *dev = node->minor->dev;
980 struct drm_i915_private *dev_priv = dev->dev_private;
981 struct intel_engine_cs *ring;
982 const u32 *hws;
983 int i;
984
985 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
986 hws = ring->status_page.page_addr;
987 if (hws == NULL)
988 return 0;
989
990 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
991 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
992 i * 4,
993 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
994 }
995 return 0;
996 }
997
998 static ssize_t
999 i915_error_state_write(struct file *filp,
1000 const char __user *ubuf,
1001 size_t cnt,
1002 loff_t *ppos)
1003 {
1004 struct i915_error_state_file_priv *error_priv = filp->private_data;
1005 struct drm_device *dev = error_priv->dev;
1006 int ret;
1007
1008 DRM_DEBUG_DRIVER("Resetting error state\n");
1009
1010 ret = mutex_lock_interruptible(&dev->struct_mutex);
1011 if (ret)
1012 return ret;
1013
1014 i915_destroy_error_state(dev);
1015 mutex_unlock(&dev->struct_mutex);
1016
1017 return cnt;
1018 }
1019
1020 static int i915_error_state_open(struct inode *inode, struct file *file)
1021 {
1022 struct drm_device *dev = inode->i_private;
1023 struct i915_error_state_file_priv *error_priv;
1024
1025 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1026 if (!error_priv)
1027 return -ENOMEM;
1028
1029 error_priv->dev = dev;
1030
1031 i915_error_state_get(dev, error_priv);
1032
1033 file->private_data = error_priv;
1034
1035 return 0;
1036 }
1037
1038 static int i915_error_state_release(struct inode *inode, struct file *file)
1039 {
1040 struct i915_error_state_file_priv *error_priv = file->private_data;
1041
1042 i915_error_state_put(error_priv);
1043 kfree(error_priv);
1044
1045 return 0;
1046 }
1047
1048 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1049 size_t count, loff_t *pos)
1050 {
1051 struct i915_error_state_file_priv *error_priv = file->private_data;
1052 struct drm_i915_error_state_buf error_str;
1053 loff_t tmp_pos = 0;
1054 ssize_t ret_count = 0;
1055 int ret;
1056
1057 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1058 if (ret)
1059 return ret;
1060
1061 ret = i915_error_state_to_str(&error_str, error_priv);
1062 if (ret)
1063 goto out;
1064
1065 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1066 error_str.buf,
1067 error_str.bytes);
1068
1069 if (ret_count < 0)
1070 ret = ret_count;
1071 else
1072 *pos = error_str.start + ret_count;
1073 out:
1074 i915_error_state_buf_release(&error_str);
1075 return ret ?: ret_count;
1076 }
1077
1078 static const struct file_operations i915_error_state_fops = {
1079 .owner = THIS_MODULE,
1080 .open = i915_error_state_open,
1081 .read = i915_error_state_read,
1082 .write = i915_error_state_write,
1083 .llseek = default_llseek,
1084 .release = i915_error_state_release,
1085 };
1086
1087 static int
1088 i915_next_seqno_get(void *data, u64 *val)
1089 {
1090 struct drm_device *dev = data;
1091 struct drm_i915_private *dev_priv = dev->dev_private;
1092 int ret;
1093
1094 ret = mutex_lock_interruptible(&dev->struct_mutex);
1095 if (ret)
1096 return ret;
1097
1098 *val = dev_priv->next_seqno;
1099 mutex_unlock(&dev->struct_mutex);
1100
1101 return 0;
1102 }
1103
1104 static int
1105 i915_next_seqno_set(void *data, u64 val)
1106 {
1107 struct drm_device *dev = data;
1108 int ret;
1109
1110 ret = mutex_lock_interruptible(&dev->struct_mutex);
1111 if (ret)
1112 return ret;
1113
1114 ret = i915_gem_set_seqno(dev, val);
1115 mutex_unlock(&dev->struct_mutex);
1116
1117 return ret;
1118 }
1119
1120 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1121 i915_next_seqno_get, i915_next_seqno_set,
1122 "0x%llx\n");
1123
1124 static int i915_frequency_info(struct seq_file *m, void *unused)
1125 {
1126 struct drm_info_node *node = m->private;
1127 struct drm_device *dev = node->minor->dev;
1128 struct drm_i915_private *dev_priv = dev->dev_private;
1129 int ret = 0;
1130
1131 intel_runtime_pm_get(dev_priv);
1132
1133 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1134
1135 if (IS_GEN5(dev)) {
1136 u16 rgvswctl = I915_READ16(MEMSWCTL);
1137 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1138
1139 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1140 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1141 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1142 MEMSTAT_VID_SHIFT);
1143 seq_printf(m, "Current P-state: %d\n",
1144 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1145 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1146 u32 freq_sts;
1147
1148 mutex_lock(&dev_priv->rps.hw_lock);
1149 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1150 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1151 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1152
1153 seq_printf(m, "actual GPU freq: %d MHz\n",
1154 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1155
1156 seq_printf(m, "current GPU freq: %d MHz\n",
1157 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1158
1159 seq_printf(m, "max GPU freq: %d MHz\n",
1160 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1161
1162 seq_printf(m, "min GPU freq: %d MHz\n",
1163 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1164
1165 seq_printf(m, "idle GPU freq: %d MHz\n",
1166 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1167
1168 seq_printf(m,
1169 "efficient (RPe) frequency: %d MHz\n",
1170 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1171 mutex_unlock(&dev_priv->rps.hw_lock);
1172 } else if (INTEL_INFO(dev)->gen >= 6) {
1173 u32 rp_state_limits;
1174 u32 gt_perf_status;
1175 u32 rp_state_cap;
1176 u32 rpmodectl, rpinclimit, rpdeclimit;
1177 u32 rpstat, cagf, reqf;
1178 u32 rpupei, rpcurup, rpprevup;
1179 u32 rpdownei, rpcurdown, rpprevdown;
1180 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1181 int max_freq;
1182
1183 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1184 if (IS_BROXTON(dev)) {
1185 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1186 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1187 } else {
1188 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1189 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1190 }
1191
1192 /* RPSTAT1 is in the GT power well */
1193 ret = mutex_lock_interruptible(&dev->struct_mutex);
1194 if (ret)
1195 goto out;
1196
1197 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1198
1199 reqf = I915_READ(GEN6_RPNSWREQ);
1200 if (IS_GEN9(dev))
1201 reqf >>= 23;
1202 else {
1203 reqf &= ~GEN6_TURBO_DISABLE;
1204 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1205 reqf >>= 24;
1206 else
1207 reqf >>= 25;
1208 }
1209 reqf = intel_gpu_freq(dev_priv, reqf);
1210
1211 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1212 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1213 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1214
1215 rpstat = I915_READ(GEN6_RPSTAT1);
1216 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1217 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1218 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1219 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1220 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1221 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1222 if (IS_GEN9(dev))
1223 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1224 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1225 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1226 else
1227 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1228 cagf = intel_gpu_freq(dev_priv, cagf);
1229
1230 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1231 mutex_unlock(&dev->struct_mutex);
1232
1233 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1234 pm_ier = I915_READ(GEN6_PMIER);
1235 pm_imr = I915_READ(GEN6_PMIMR);
1236 pm_isr = I915_READ(GEN6_PMISR);
1237 pm_iir = I915_READ(GEN6_PMIIR);
1238 pm_mask = I915_READ(GEN6_PMINTRMSK);
1239 } else {
1240 pm_ier = I915_READ(GEN8_GT_IER(2));
1241 pm_imr = I915_READ(GEN8_GT_IMR(2));
1242 pm_isr = I915_READ(GEN8_GT_ISR(2));
1243 pm_iir = I915_READ(GEN8_GT_IIR(2));
1244 pm_mask = I915_READ(GEN6_PMINTRMSK);
1245 }
1246 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1247 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1248 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1249 seq_printf(m, "Render p-state ratio: %d\n",
1250 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1251 seq_printf(m, "Render p-state VID: %d\n",
1252 gt_perf_status & 0xff);
1253 seq_printf(m, "Render p-state limit: %d\n",
1254 rp_state_limits & 0xff);
1255 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1256 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1257 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1258 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1259 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1260 seq_printf(m, "CAGF: %dMHz\n", cagf);
1261 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1262 GEN6_CURICONT_MASK);
1263 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1264 GEN6_CURBSYTAVG_MASK);
1265 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1266 GEN6_CURBSYTAVG_MASK);
1267 seq_printf(m, "Up threshold: %d%%\n",
1268 dev_priv->rps.up_threshold);
1269
1270 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1271 GEN6_CURIAVG_MASK);
1272 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1273 GEN6_CURBSYTAVG_MASK);
1274 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1275 GEN6_CURBSYTAVG_MASK);
1276 seq_printf(m, "Down threshold: %d%%\n",
1277 dev_priv->rps.down_threshold);
1278
1279 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1280 rp_state_cap >> 16) & 0xff;
1281 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1282 GEN9_FREQ_SCALER : 1);
1283 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1284 intel_gpu_freq(dev_priv, max_freq));
1285
1286 max_freq = (rp_state_cap & 0xff00) >> 8;
1287 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1288 GEN9_FREQ_SCALER : 1);
1289 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1290 intel_gpu_freq(dev_priv, max_freq));
1291
1292 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1293 rp_state_cap >> 0) & 0xff;
1294 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1295 GEN9_FREQ_SCALER : 1);
1296 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1297 intel_gpu_freq(dev_priv, max_freq));
1298 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1299 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1300
1301 seq_printf(m, "Current freq: %d MHz\n",
1302 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1303 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1304 seq_printf(m, "Idle freq: %d MHz\n",
1305 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1306 seq_printf(m, "Min freq: %d MHz\n",
1307 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1308 seq_printf(m, "Max freq: %d MHz\n",
1309 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1310 seq_printf(m,
1311 "efficient (RPe) frequency: %d MHz\n",
1312 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1313 } else {
1314 seq_puts(m, "no P-state info available\n");
1315 }
1316
1317 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1318 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1319 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1320
1321 out:
1322 intel_runtime_pm_put(dev_priv);
1323 return ret;
1324 }
1325
1326 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1327 {
1328 struct drm_info_node *node = m->private;
1329 struct drm_device *dev = node->minor->dev;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
1331 struct intel_engine_cs *ring;
1332 u64 acthd[I915_NUM_RINGS];
1333 u32 seqno[I915_NUM_RINGS];
1334 int i;
1335
1336 if (!i915.enable_hangcheck) {
1337 seq_printf(m, "Hangcheck disabled\n");
1338 return 0;
1339 }
1340
1341 intel_runtime_pm_get(dev_priv);
1342
1343 for_each_ring(ring, dev_priv, i) {
1344 seqno[i] = ring->get_seqno(ring, false);
1345 acthd[i] = intel_ring_get_active_head(ring);
1346 }
1347
1348 intel_runtime_pm_put(dev_priv);
1349
1350 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1351 seq_printf(m, "Hangcheck active, fires in %dms\n",
1352 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1353 jiffies));
1354 } else
1355 seq_printf(m, "Hangcheck inactive\n");
1356
1357 for_each_ring(ring, dev_priv, i) {
1358 seq_printf(m, "%s:\n", ring->name);
1359 seq_printf(m, "\tseqno = %x [current %x]\n",
1360 ring->hangcheck.seqno, seqno[i]);
1361 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1362 (long long)ring->hangcheck.acthd,
1363 (long long)acthd[i]);
1364 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1365 (long long)ring->hangcheck.max_acthd);
1366 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1367 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1368 }
1369
1370 return 0;
1371 }
1372
1373 static int ironlake_drpc_info(struct seq_file *m)
1374 {
1375 struct drm_info_node *node = m->private;
1376 struct drm_device *dev = node->minor->dev;
1377 struct drm_i915_private *dev_priv = dev->dev_private;
1378 u32 rgvmodectl, rstdbyctl;
1379 u16 crstandvid;
1380 int ret;
1381
1382 ret = mutex_lock_interruptible(&dev->struct_mutex);
1383 if (ret)
1384 return ret;
1385 intel_runtime_pm_get(dev_priv);
1386
1387 rgvmodectl = I915_READ(MEMMODECTL);
1388 rstdbyctl = I915_READ(RSTDBYCTL);
1389 crstandvid = I915_READ16(CRSTANDVID);
1390
1391 intel_runtime_pm_put(dev_priv);
1392 mutex_unlock(&dev->struct_mutex);
1393
1394 seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1395 seq_printf(m, "Boost freq: %d\n",
1396 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1397 MEMMODE_BOOST_FREQ_SHIFT);
1398 seq_printf(m, "HW control enabled: %s\n",
1399 yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1400 seq_printf(m, "SW control enabled: %s\n",
1401 yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1402 seq_printf(m, "Gated voltage change: %s\n",
1403 yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1404 seq_printf(m, "Starting frequency: P%d\n",
1405 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1406 seq_printf(m, "Max P-state: P%d\n",
1407 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1408 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1409 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1410 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1411 seq_printf(m, "Render standby enabled: %s\n",
1412 yesno(!(rstdbyctl & RCX_SW_EXIT)));
1413 seq_puts(m, "Current RS state: ");
1414 switch (rstdbyctl & RSX_STATUS_MASK) {
1415 case RSX_STATUS_ON:
1416 seq_puts(m, "on\n");
1417 break;
1418 case RSX_STATUS_RC1:
1419 seq_puts(m, "RC1\n");
1420 break;
1421 case RSX_STATUS_RC1E:
1422 seq_puts(m, "RC1E\n");
1423 break;
1424 case RSX_STATUS_RS1:
1425 seq_puts(m, "RS1\n");
1426 break;
1427 case RSX_STATUS_RS2:
1428 seq_puts(m, "RS2 (RC6)\n");
1429 break;
1430 case RSX_STATUS_RS3:
1431 seq_puts(m, "RC3 (RC6+)\n");
1432 break;
1433 default:
1434 seq_puts(m, "unknown\n");
1435 break;
1436 }
1437
1438 return 0;
1439 }
1440
1441 static int i915_forcewake_domains(struct seq_file *m, void *data)
1442 {
1443 struct drm_info_node *node = m->private;
1444 struct drm_device *dev = node->minor->dev;
1445 struct drm_i915_private *dev_priv = dev->dev_private;
1446 struct intel_uncore_forcewake_domain *fw_domain;
1447 int i;
1448
1449 spin_lock_irq(&dev_priv->uncore.lock);
1450 for_each_fw_domain(fw_domain, dev_priv, i) {
1451 seq_printf(m, "%s.wake_count = %u\n",
1452 intel_uncore_forcewake_domain_to_str(i),
1453 fw_domain->wake_count);
1454 }
1455 spin_unlock_irq(&dev_priv->uncore.lock);
1456
1457 return 0;
1458 }
1459
1460 static int vlv_drpc_info(struct seq_file *m)
1461 {
1462 struct drm_info_node *node = m->private;
1463 struct drm_device *dev = node->minor->dev;
1464 struct drm_i915_private *dev_priv = dev->dev_private;
1465 u32 rpmodectl1, rcctl1, pw_status;
1466
1467 intel_runtime_pm_get(dev_priv);
1468
1469 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1470 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1471 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1472
1473 intel_runtime_pm_put(dev_priv);
1474
1475 seq_printf(m, "Video Turbo Mode: %s\n",
1476 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1477 seq_printf(m, "Turbo enabled: %s\n",
1478 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1479 seq_printf(m, "HW control enabled: %s\n",
1480 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1481 seq_printf(m, "SW control enabled: %s\n",
1482 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1483 GEN6_RP_MEDIA_SW_MODE));
1484 seq_printf(m, "RC6 Enabled: %s\n",
1485 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1486 GEN6_RC_CTL_EI_MODE(1))));
1487 seq_printf(m, "Render Power Well: %s\n",
1488 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1489 seq_printf(m, "Media Power Well: %s\n",
1490 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1491
1492 seq_printf(m, "Render RC6 residency since boot: %u\n",
1493 I915_READ(VLV_GT_RENDER_RC6));
1494 seq_printf(m, "Media RC6 residency since boot: %u\n",
1495 I915_READ(VLV_GT_MEDIA_RC6));
1496
1497 return i915_forcewake_domains(m, NULL);
1498 }
1499
1500 static int gen6_drpc_info(struct seq_file *m)
1501 {
1502 struct drm_info_node *node = m->private;
1503 struct drm_device *dev = node->minor->dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1506 unsigned forcewake_count;
1507 int count = 0, ret;
1508
1509 ret = mutex_lock_interruptible(&dev->struct_mutex);
1510 if (ret)
1511 return ret;
1512 intel_runtime_pm_get(dev_priv);
1513
1514 spin_lock_irq(&dev_priv->uncore.lock);
1515 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1516 spin_unlock_irq(&dev_priv->uncore.lock);
1517
1518 if (forcewake_count) {
1519 seq_puts(m, "RC information inaccurate because somebody "
1520 "holds a forcewake reference \n");
1521 } else {
1522 /* NB: we cannot use forcewake, else we read the wrong values */
1523 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1524 udelay(10);
1525 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1526 }
1527
1528 gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1529 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1530
1531 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1532 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1533 mutex_unlock(&dev->struct_mutex);
1534 mutex_lock(&dev_priv->rps.hw_lock);
1535 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1536 mutex_unlock(&dev_priv->rps.hw_lock);
1537
1538 intel_runtime_pm_put(dev_priv);
1539
1540 seq_printf(m, "Video Turbo Mode: %s\n",
1541 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1542 seq_printf(m, "HW control enabled: %s\n",
1543 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1544 seq_printf(m, "SW control enabled: %s\n",
1545 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1546 GEN6_RP_MEDIA_SW_MODE));
1547 seq_printf(m, "RC1e Enabled: %s\n",
1548 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1549 seq_printf(m, "RC6 Enabled: %s\n",
1550 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1551 seq_printf(m, "Deep RC6 Enabled: %s\n",
1552 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1553 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1554 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1555 seq_puts(m, "Current RC state: ");
1556 switch (gt_core_status & GEN6_RCn_MASK) {
1557 case GEN6_RC0:
1558 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1559 seq_puts(m, "Core Power Down\n");
1560 else
1561 seq_puts(m, "on\n");
1562 break;
1563 case GEN6_RC3:
1564 seq_puts(m, "RC3\n");
1565 break;
1566 case GEN6_RC6:
1567 seq_puts(m, "RC6\n");
1568 break;
1569 case GEN6_RC7:
1570 seq_puts(m, "RC7\n");
1571 break;
1572 default:
1573 seq_puts(m, "Unknown\n");
1574 break;
1575 }
1576
1577 seq_printf(m, "Core Power Down: %s\n",
1578 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1579
1580 /* Not exactly sure what this is */
1581 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1582 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1583 seq_printf(m, "RC6 residency since boot: %u\n",
1584 I915_READ(GEN6_GT_GFX_RC6));
1585 seq_printf(m, "RC6+ residency since boot: %u\n",
1586 I915_READ(GEN6_GT_GFX_RC6p));
1587 seq_printf(m, "RC6++ residency since boot: %u\n",
1588 I915_READ(GEN6_GT_GFX_RC6pp));
1589
1590 seq_printf(m, "RC6 voltage: %dmV\n",
1591 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1592 seq_printf(m, "RC6+ voltage: %dmV\n",
1593 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1594 seq_printf(m, "RC6++ voltage: %dmV\n",
1595 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1596 return 0;
1597 }
1598
1599 static int i915_drpc_info(struct seq_file *m, void *unused)
1600 {
1601 struct drm_info_node *node = m->private;
1602 struct drm_device *dev = node->minor->dev;
1603
1604 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1605 return vlv_drpc_info(m);
1606 else if (INTEL_INFO(dev)->gen >= 6)
1607 return gen6_drpc_info(m);
1608 else
1609 return ironlake_drpc_info(m);
1610 }
1611
1612 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1613 {
1614 struct drm_info_node *node = m->private;
1615 struct drm_device *dev = node->minor->dev;
1616 struct drm_i915_private *dev_priv = dev->dev_private;
1617
1618 seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1619 dev_priv->fb_tracking.busy_bits);
1620
1621 seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1622 dev_priv->fb_tracking.flip_bits);
1623
1624 return 0;
1625 }
1626
1627 static int i915_fbc_status(struct seq_file *m, void *unused)
1628 {
1629 struct drm_info_node *node = m->private;
1630 struct drm_device *dev = node->minor->dev;
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1632
1633 if (!HAS_FBC(dev)) {
1634 seq_puts(m, "FBC unsupported on this chipset\n");
1635 return 0;
1636 }
1637
1638 intel_runtime_pm_get(dev_priv);
1639 mutex_lock(&dev_priv->fbc.lock);
1640
1641 if (intel_fbc_is_active(dev_priv))
1642 seq_puts(m, "FBC enabled\n");
1643 else
1644 seq_printf(m, "FBC disabled: %s\n",
1645 dev_priv->fbc.no_fbc_reason);
1646
1647 if (INTEL_INFO(dev_priv)->gen >= 7)
1648 seq_printf(m, "Compressing: %s\n",
1649 yesno(I915_READ(FBC_STATUS2) &
1650 FBC_COMPRESSION_MASK));
1651
1652 mutex_unlock(&dev_priv->fbc.lock);
1653 intel_runtime_pm_put(dev_priv);
1654
1655 return 0;
1656 }
1657
1658 static int i915_fbc_fc_get(void *data, u64 *val)
1659 {
1660 struct drm_device *dev = data;
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662
1663 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1664 return -ENODEV;
1665
1666 *val = dev_priv->fbc.false_color;
1667
1668 return 0;
1669 }
1670
1671 static int i915_fbc_fc_set(void *data, u64 val)
1672 {
1673 struct drm_device *dev = data;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 u32 reg;
1676
1677 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1678 return -ENODEV;
1679
1680 mutex_lock(&dev_priv->fbc.lock);
1681
1682 reg = I915_READ(ILK_DPFC_CONTROL);
1683 dev_priv->fbc.false_color = val;
1684
1685 I915_WRITE(ILK_DPFC_CONTROL, val ?
1686 (reg | FBC_CTL_FALSE_COLOR) :
1687 (reg & ~FBC_CTL_FALSE_COLOR));
1688
1689 mutex_unlock(&dev_priv->fbc.lock);
1690 return 0;
1691 }
1692
1693 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1694 i915_fbc_fc_get, i915_fbc_fc_set,
1695 "%llu\n");
1696
1697 static int i915_ips_status(struct seq_file *m, void *unused)
1698 {
1699 struct drm_info_node *node = m->private;
1700 struct drm_device *dev = node->minor->dev;
1701 struct drm_i915_private *dev_priv = dev->dev_private;
1702
1703 if (!HAS_IPS(dev)) {
1704 seq_puts(m, "not supported\n");
1705 return 0;
1706 }
1707
1708 intel_runtime_pm_get(dev_priv);
1709
1710 seq_printf(m, "Enabled by kernel parameter: %s\n",
1711 yesno(i915.enable_ips));
1712
1713 if (INTEL_INFO(dev)->gen >= 8) {
1714 seq_puts(m, "Currently: unknown\n");
1715 } else {
1716 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1717 seq_puts(m, "Currently: enabled\n");
1718 else
1719 seq_puts(m, "Currently: disabled\n");
1720 }
1721
1722 intel_runtime_pm_put(dev_priv);
1723
1724 return 0;
1725 }
1726
1727 static int i915_sr_status(struct seq_file *m, void *unused)
1728 {
1729 struct drm_info_node *node = m->private;
1730 struct drm_device *dev = node->minor->dev;
1731 struct drm_i915_private *dev_priv = dev->dev_private;
1732 bool sr_enabled = false;
1733
1734 intel_runtime_pm_get(dev_priv);
1735
1736 if (HAS_PCH_SPLIT(dev))
1737 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1738 else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1739 IS_I945G(dev) || IS_I945GM(dev))
1740 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1741 else if (IS_I915GM(dev))
1742 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1743 else if (IS_PINEVIEW(dev))
1744 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1745 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1746 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1747
1748 intel_runtime_pm_put(dev_priv);
1749
1750 seq_printf(m, "self-refresh: %s\n",
1751 sr_enabled ? "enabled" : "disabled");
1752
1753 return 0;
1754 }
1755
1756 static int i915_emon_status(struct seq_file *m, void *unused)
1757 {
1758 struct drm_info_node *node = m->private;
1759 struct drm_device *dev = node->minor->dev;
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 unsigned long temp, chipset, gfx;
1762 int ret;
1763
1764 if (!IS_GEN5(dev))
1765 return -ENODEV;
1766
1767 ret = mutex_lock_interruptible(&dev->struct_mutex);
1768 if (ret)
1769 return ret;
1770
1771 temp = i915_mch_val(dev_priv);
1772 chipset = i915_chipset_val(dev_priv);
1773 gfx = i915_gfx_val(dev_priv);
1774 mutex_unlock(&dev->struct_mutex);
1775
1776 seq_printf(m, "GMCH temp: %ld\n", temp);
1777 seq_printf(m, "Chipset power: %ld\n", chipset);
1778 seq_printf(m, "GFX power: %ld\n", gfx);
1779 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1780
1781 return 0;
1782 }
1783
1784 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1785 {
1786 struct drm_info_node *node = m->private;
1787 struct drm_device *dev = node->minor->dev;
1788 struct drm_i915_private *dev_priv = dev->dev_private;
1789 int ret = 0;
1790 int gpu_freq, ia_freq;
1791 unsigned int max_gpu_freq, min_gpu_freq;
1792
1793 if (!HAS_CORE_RING_FREQ(dev)) {
1794 seq_puts(m, "unsupported on this chipset\n");
1795 return 0;
1796 }
1797
1798 intel_runtime_pm_get(dev_priv);
1799
1800 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1801
1802 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1803 if (ret)
1804 goto out;
1805
1806 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1807 /* Convert GT frequency to 50 HZ units */
1808 min_gpu_freq =
1809 dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1810 max_gpu_freq =
1811 dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1812 } else {
1813 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1814 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1815 }
1816
1817 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1818
1819 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1820 ia_freq = gpu_freq;
1821 sandybridge_pcode_read(dev_priv,
1822 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1823 &ia_freq);
1824 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1825 intel_gpu_freq(dev_priv, (gpu_freq *
1826 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1827 GEN9_FREQ_SCALER : 1))),
1828 ((ia_freq >> 0) & 0xff) * 100,
1829 ((ia_freq >> 8) & 0xff) * 100);
1830 }
1831
1832 mutex_unlock(&dev_priv->rps.hw_lock);
1833
1834 out:
1835 intel_runtime_pm_put(dev_priv);
1836 return ret;
1837 }
1838
1839 static int i915_opregion(struct seq_file *m, void *unused)
1840 {
1841 struct drm_info_node *node = m->private;
1842 struct drm_device *dev = node->minor->dev;
1843 struct drm_i915_private *dev_priv = dev->dev_private;
1844 struct intel_opregion *opregion = &dev_priv->opregion;
1845 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1846 int ret;
1847
1848 if (data == NULL)
1849 return -ENOMEM;
1850
1851 ret = mutex_lock_interruptible(&dev->struct_mutex);
1852 if (ret)
1853 goto out;
1854
1855 if (opregion->header) {
1856 memcpy(data, opregion->header, OPREGION_SIZE);
1857 seq_write(m, data, OPREGION_SIZE);
1858 }
1859
1860 mutex_unlock(&dev->struct_mutex);
1861
1862 out:
1863 kfree(data);
1864 return 0;
1865 }
1866
1867 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1868 {
1869 struct drm_info_node *node = m->private;
1870 struct drm_device *dev = node->minor->dev;
1871 struct intel_framebuffer *fbdev_fb = NULL;
1872 struct drm_framebuffer *drm_fb;
1873
1874 #ifdef CONFIG_DRM_FBDEV_EMULATION
1875 if (to_i915(dev)->fbdev) {
1876 fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1877
1878 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1879 fbdev_fb->base.width,
1880 fbdev_fb->base.height,
1881 fbdev_fb->base.depth,
1882 fbdev_fb->base.bits_per_pixel,
1883 fbdev_fb->base.modifier[0],
1884 atomic_read(&fbdev_fb->base.refcount.refcount));
1885 describe_obj(m, fbdev_fb->obj);
1886 seq_putc(m, '\n');
1887 }
1888 #endif
1889
1890 mutex_lock(&dev->mode_config.fb_lock);
1891 drm_for_each_fb(drm_fb, dev) {
1892 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1893 if (fb == fbdev_fb)
1894 continue;
1895
1896 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1897 fb->base.width,
1898 fb->base.height,
1899 fb->base.depth,
1900 fb->base.bits_per_pixel,
1901 fb->base.modifier[0],
1902 atomic_read(&fb->base.refcount.refcount));
1903 describe_obj(m, fb->obj);
1904 seq_putc(m, '\n');
1905 }
1906 mutex_unlock(&dev->mode_config.fb_lock);
1907
1908 return 0;
1909 }
1910
1911 static void describe_ctx_ringbuf(struct seq_file *m,
1912 struct intel_ringbuffer *ringbuf)
1913 {
1914 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1915 ringbuf->space, ringbuf->head, ringbuf->tail,
1916 ringbuf->last_retired_head);
1917 }
1918
1919 static int i915_context_status(struct seq_file *m, void *unused)
1920 {
1921 struct drm_info_node *node = m->private;
1922 struct drm_device *dev = node->minor->dev;
1923 struct drm_i915_private *dev_priv = dev->dev_private;
1924 struct intel_engine_cs *ring;
1925 struct intel_context *ctx;
1926 int ret, i;
1927
1928 ret = mutex_lock_interruptible(&dev->struct_mutex);
1929 if (ret)
1930 return ret;
1931
1932 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1933 if (!i915.enable_execlists &&
1934 ctx->legacy_hw_ctx.rcs_state == NULL)
1935 continue;
1936
1937 seq_puts(m, "HW context ");
1938 describe_ctx(m, ctx);
1939 for_each_ring(ring, dev_priv, i) {
1940 if (ring->default_context == ctx)
1941 seq_printf(m, "(default context %s) ",
1942 ring->name);
1943 }
1944
1945 if (i915.enable_execlists) {
1946 seq_putc(m, '\n');
1947 for_each_ring(ring, dev_priv, i) {
1948 struct drm_i915_gem_object *ctx_obj =
1949 ctx->engine[i].state;
1950 struct intel_ringbuffer *ringbuf =
1951 ctx->engine[i].ringbuf;
1952
1953 seq_printf(m, "%s: ", ring->name);
1954 if (ctx_obj)
1955 describe_obj(m, ctx_obj);
1956 if (ringbuf)
1957 describe_ctx_ringbuf(m, ringbuf);
1958 seq_putc(m, '\n');
1959 }
1960 } else {
1961 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1962 }
1963
1964 seq_putc(m, '\n');
1965 }
1966
1967 mutex_unlock(&dev->struct_mutex);
1968
1969 return 0;
1970 }
1971
1972 static void i915_dump_lrc_obj(struct seq_file *m,
1973 struct intel_engine_cs *ring,
1974 struct drm_i915_gem_object *ctx_obj)
1975 {
1976 struct page *page;
1977 uint32_t *reg_state;
1978 int j;
1979 unsigned long ggtt_offset = 0;
1980
1981 if (ctx_obj == NULL) {
1982 seq_printf(m, "Context on %s with no gem object\n",
1983 ring->name);
1984 return;
1985 }
1986
1987 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1988 intel_execlists_ctx_id(ctx_obj));
1989
1990 if (!i915_gem_obj_ggtt_bound(ctx_obj))
1991 seq_puts(m, "\tNot bound in GGTT\n");
1992 else
1993 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1994
1995 if (i915_gem_object_get_pages(ctx_obj)) {
1996 seq_puts(m, "\tFailed to get pages for context object\n");
1997 return;
1998 }
1999
2000 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2001 if (!WARN_ON(page == NULL)) {
2002 reg_state = kmap_atomic(page);
2003
2004 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2005 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2006 ggtt_offset + 4096 + (j * 4),
2007 reg_state[j], reg_state[j + 1],
2008 reg_state[j + 2], reg_state[j + 3]);
2009 }
2010 kunmap_atomic(reg_state);
2011 }
2012
2013 seq_putc(m, '\n');
2014 }
2015
2016 static int i915_dump_lrc(struct seq_file *m, void *unused)
2017 {
2018 struct drm_info_node *node = (struct drm_info_node *) m->private;
2019 struct drm_device *dev = node->minor->dev;
2020 struct drm_i915_private *dev_priv = dev->dev_private;
2021 struct intel_engine_cs *ring;
2022 struct intel_context *ctx;
2023 int ret, i;
2024
2025 if (!i915.enable_execlists) {
2026 seq_printf(m, "Logical Ring Contexts are disabled\n");
2027 return 0;
2028 }
2029
2030 ret = mutex_lock_interruptible(&dev->struct_mutex);
2031 if (ret)
2032 return ret;
2033
2034 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2035 for_each_ring(ring, dev_priv, i) {
2036 if (ring->default_context != ctx)
2037 i915_dump_lrc_obj(m, ring,
2038 ctx->engine[i].state);
2039 }
2040 }
2041
2042 mutex_unlock(&dev->struct_mutex);
2043
2044 return 0;
2045 }
2046
2047 static int i915_execlists(struct seq_file *m, void *data)
2048 {
2049 struct drm_info_node *node = (struct drm_info_node *)m->private;
2050 struct drm_device *dev = node->minor->dev;
2051 struct drm_i915_private *dev_priv = dev->dev_private;
2052 struct intel_engine_cs *ring;
2053 u32 status_pointer;
2054 u8 read_pointer;
2055 u8 write_pointer;
2056 u32 status;
2057 u32 ctx_id;
2058 struct list_head *cursor;
2059 int ring_id, i;
2060 int ret;
2061
2062 if (!i915.enable_execlists) {
2063 seq_puts(m, "Logical Ring Contexts are disabled\n");
2064 return 0;
2065 }
2066
2067 ret = mutex_lock_interruptible(&dev->struct_mutex);
2068 if (ret)
2069 return ret;
2070
2071 intel_runtime_pm_get(dev_priv);
2072
2073 for_each_ring(ring, dev_priv, ring_id) {
2074 struct drm_i915_gem_request *head_req = NULL;
2075 int count = 0;
2076 unsigned long flags;
2077
2078 seq_printf(m, "%s\n", ring->name);
2079
2080 status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2081 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2082 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2083 status, ctx_id);
2084
2085 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2086 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2087
2088 read_pointer = ring->next_context_status_buffer;
2089 write_pointer = status_pointer & 0x07;
2090 if (read_pointer > write_pointer)
2091 write_pointer += 6;
2092 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2093 read_pointer, write_pointer);
2094
2095 for (i = 0; i < 6; i++) {
2096 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2097 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2098
2099 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2100 i, status, ctx_id);
2101 }
2102
2103 spin_lock_irqsave(&ring->execlist_lock, flags);
2104 list_for_each(cursor, &ring->execlist_queue)
2105 count++;
2106 head_req = list_first_entry_or_null(&ring->execlist_queue,
2107 struct drm_i915_gem_request, execlist_link);
2108 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2109
2110 seq_printf(m, "\t%d requests in queue\n", count);
2111 if (head_req) {
2112 struct drm_i915_gem_object *ctx_obj;
2113
2114 ctx_obj = head_req->ctx->engine[ring_id].state;
2115 seq_printf(m, "\tHead request id: %u\n",
2116 intel_execlists_ctx_id(ctx_obj));
2117 seq_printf(m, "\tHead request tail: %u\n",
2118 head_req->tail);
2119 }
2120
2121 seq_putc(m, '\n');
2122 }
2123
2124 intel_runtime_pm_put(dev_priv);
2125 mutex_unlock(&dev->struct_mutex);
2126
2127 return 0;
2128 }
2129
2130 static const char *swizzle_string(unsigned swizzle)
2131 {
2132 switch (swizzle) {
2133 case I915_BIT_6_SWIZZLE_NONE:
2134 return "none";
2135 case I915_BIT_6_SWIZZLE_9:
2136 return "bit9";
2137 case I915_BIT_6_SWIZZLE_9_10:
2138 return "bit9/bit10";
2139 case I915_BIT_6_SWIZZLE_9_11:
2140 return "bit9/bit11";
2141 case I915_BIT_6_SWIZZLE_9_10_11:
2142 return "bit9/bit10/bit11";
2143 case I915_BIT_6_SWIZZLE_9_17:
2144 return "bit9/bit17";
2145 case I915_BIT_6_SWIZZLE_9_10_17:
2146 return "bit9/bit10/bit17";
2147 case I915_BIT_6_SWIZZLE_UNKNOWN:
2148 return "unknown";
2149 }
2150
2151 return "bug";
2152 }
2153
2154 static int i915_swizzle_info(struct seq_file *m, void *data)
2155 {
2156 struct drm_info_node *node = m->private;
2157 struct drm_device *dev = node->minor->dev;
2158 struct drm_i915_private *dev_priv = dev->dev_private;
2159 int ret;
2160
2161 ret = mutex_lock_interruptible(&dev->struct_mutex);
2162 if (ret)
2163 return ret;
2164 intel_runtime_pm_get(dev_priv);
2165
2166 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2167 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2168 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2169 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2170
2171 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2172 seq_printf(m, "DDC = 0x%08x\n",
2173 I915_READ(DCC));
2174 seq_printf(m, "DDC2 = 0x%08x\n",
2175 I915_READ(DCC2));
2176 seq_printf(m, "C0DRB3 = 0x%04x\n",
2177 I915_READ16(C0DRB3));
2178 seq_printf(m, "C1DRB3 = 0x%04x\n",
2179 I915_READ16(C1DRB3));
2180 } else if (INTEL_INFO(dev)->gen >= 6) {
2181 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2182 I915_READ(MAD_DIMM_C0));
2183 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2184 I915_READ(MAD_DIMM_C1));
2185 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2186 I915_READ(MAD_DIMM_C2));
2187 seq_printf(m, "TILECTL = 0x%08x\n",
2188 I915_READ(TILECTL));
2189 if (INTEL_INFO(dev)->gen >= 8)
2190 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2191 I915_READ(GAMTARBMODE));
2192 else
2193 seq_printf(m, "ARB_MODE = 0x%08x\n",
2194 I915_READ(ARB_MODE));
2195 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2196 I915_READ(DISP_ARB_CTL));
2197 }
2198
2199 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2200 seq_puts(m, "L-shaped memory detected\n");
2201
2202 intel_runtime_pm_put(dev_priv);
2203 mutex_unlock(&dev->struct_mutex);
2204
2205 return 0;
2206 }
2207
2208 static int per_file_ctx(int id, void *ptr, void *data)
2209 {
2210 struct intel_context *ctx = ptr;
2211 struct seq_file *m = data;
2212 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2213
2214 if (!ppgtt) {
2215 seq_printf(m, " no ppgtt for context %d\n",
2216 ctx->user_handle);
2217 return 0;
2218 }
2219
2220 if (i915_gem_context_is_default(ctx))
2221 seq_puts(m, " default context:\n");
2222 else
2223 seq_printf(m, " context %d:\n", ctx->user_handle);
2224 ppgtt->debug_dump(ppgtt, m);
2225
2226 return 0;
2227 }
2228
2229 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2230 {
2231 struct drm_i915_private *dev_priv = dev->dev_private;
2232 struct intel_engine_cs *ring;
2233 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2234 int unused, i;
2235
2236 if (!ppgtt)
2237 return;
2238
2239 for_each_ring(ring, dev_priv, unused) {
2240 seq_printf(m, "%s\n", ring->name);
2241 for (i = 0; i < 4; i++) {
2242 u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2243 pdp <<= 32;
2244 pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2245 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2246 }
2247 }
2248 }
2249
2250 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2251 {
2252 struct drm_i915_private *dev_priv = dev->dev_private;
2253 struct intel_engine_cs *ring;
2254 int i;
2255
2256 if (INTEL_INFO(dev)->gen == 6)
2257 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2258
2259 for_each_ring(ring, dev_priv, i) {
2260 seq_printf(m, "%s\n", ring->name);
2261 if (INTEL_INFO(dev)->gen == 7)
2262 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2263 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2264 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2265 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2266 }
2267 if (dev_priv->mm.aliasing_ppgtt) {
2268 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2269
2270 seq_puts(m, "aliasing PPGTT:\n");
2271 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2272
2273 ppgtt->debug_dump(ppgtt, m);
2274 }
2275
2276 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2277 }
2278
2279 static int i915_ppgtt_info(struct seq_file *m, void *data)
2280 {
2281 struct drm_info_node *node = m->private;
2282 struct drm_device *dev = node->minor->dev;
2283 struct drm_i915_private *dev_priv = dev->dev_private;
2284 struct drm_file *file;
2285
2286 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2287 if (ret)
2288 return ret;
2289 intel_runtime_pm_get(dev_priv);
2290
2291 if (INTEL_INFO(dev)->gen >= 8)
2292 gen8_ppgtt_info(m, dev);
2293 else if (INTEL_INFO(dev)->gen >= 6)
2294 gen6_ppgtt_info(m, dev);
2295
2296 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2297 struct drm_i915_file_private *file_priv = file->driver_priv;
2298 struct task_struct *task;
2299
2300 task = get_pid_task(file->pid, PIDTYPE_PID);
2301 if (!task) {
2302 ret = -ESRCH;
2303 goto out_put;
2304 }
2305 seq_printf(m, "\nproc: %s\n", task->comm);
2306 put_task_struct(task);
2307 idr_for_each(&file_priv->context_idr, per_file_ctx,
2308 (void *)(unsigned long)m);
2309 }
2310
2311 out_put:
2312 intel_runtime_pm_put(dev_priv);
2313 mutex_unlock(&dev->struct_mutex);
2314
2315 return ret;
2316 }
2317
2318 static int count_irq_waiters(struct drm_i915_private *i915)
2319 {
2320 struct intel_engine_cs *ring;
2321 int count = 0;
2322 int i;
2323
2324 for_each_ring(ring, i915, i)
2325 count += ring->irq_refcount;
2326
2327 return count;
2328 }
2329
2330 static int i915_rps_boost_info(struct seq_file *m, void *data)
2331 {
2332 struct drm_info_node *node = m->private;
2333 struct drm_device *dev = node->minor->dev;
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 struct drm_file *file;
2336
2337 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2338 seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2339 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2340 seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2341 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2342 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2343 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2344 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2345 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2346 spin_lock(&dev_priv->rps.client_lock);
2347 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2348 struct drm_i915_file_private *file_priv = file->driver_priv;
2349 struct task_struct *task;
2350
2351 rcu_read_lock();
2352 task = pid_task(file->pid, PIDTYPE_PID);
2353 seq_printf(m, "%s [%d]: %d boosts%s\n",
2354 task ? task->comm : "<unknown>",
2355 task ? task->pid : -1,
2356 file_priv->rps.boosts,
2357 list_empty(&file_priv->rps.link) ? "" : ", active");
2358 rcu_read_unlock();
2359 }
2360 seq_printf(m, "Semaphore boosts: %d%s\n",
2361 dev_priv->rps.semaphores.boosts,
2362 list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2363 seq_printf(m, "MMIO flip boosts: %d%s\n",
2364 dev_priv->rps.mmioflips.boosts,
2365 list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2366 seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2367 spin_unlock(&dev_priv->rps.client_lock);
2368
2369 return 0;
2370 }
2371
2372 static int i915_llc(struct seq_file *m, void *data)
2373 {
2374 struct drm_info_node *node = m->private;
2375 struct drm_device *dev = node->minor->dev;
2376 struct drm_i915_private *dev_priv = dev->dev_private;
2377
2378 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2379 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2380 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2381
2382 return 0;
2383 }
2384
2385 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2386 {
2387 struct drm_info_node *node = m->private;
2388 struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2389 struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2390 u32 tmp, i;
2391
2392 if (!HAS_GUC_UCODE(dev_priv->dev))
2393 return 0;
2394
2395 seq_printf(m, "GuC firmware status:\n");
2396 seq_printf(m, "\tpath: %s\n",
2397 guc_fw->guc_fw_path);
2398 seq_printf(m, "\tfetch: %s\n",
2399 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2400 seq_printf(m, "\tload: %s\n",
2401 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2402 seq_printf(m, "\tversion wanted: %d.%d\n",
2403 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2404 seq_printf(m, "\tversion found: %d.%d\n",
2405 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2406 seq_printf(m, "\theader: offset is %d; size = %d\n",
2407 guc_fw->header_offset, guc_fw->header_size);
2408 seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2409 guc_fw->ucode_offset, guc_fw->ucode_size);
2410 seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2411 guc_fw->rsa_offset, guc_fw->rsa_size);
2412
2413 tmp = I915_READ(GUC_STATUS);
2414
2415 seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2416 seq_printf(m, "\tBootrom status = 0x%x\n",
2417 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2418 seq_printf(m, "\tuKernel status = 0x%x\n",
2419 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2420 seq_printf(m, "\tMIA Core status = 0x%x\n",
2421 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2422 seq_puts(m, "\nScratch registers:\n");
2423 for (i = 0; i < 16; i++)
2424 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2425
2426 return 0;
2427 }
2428
2429 static void i915_guc_client_info(struct seq_file *m,
2430 struct drm_i915_private *dev_priv,
2431 struct i915_guc_client *client)
2432 {
2433 struct intel_engine_cs *ring;
2434 uint64_t tot = 0;
2435 uint32_t i;
2436
2437 seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2438 client->priority, client->ctx_index, client->proc_desc_offset);
2439 seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2440 client->doorbell_id, client->doorbell_offset, client->cookie);
2441 seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2442 client->wq_size, client->wq_offset, client->wq_tail);
2443
2444 seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2445 seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2446 seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2447
2448 for_each_ring(ring, dev_priv, i) {
2449 seq_printf(m, "\tSubmissions: %llu %s\n",
2450 client->submissions[i],
2451 ring->name);
2452 tot += client->submissions[i];
2453 }
2454 seq_printf(m, "\tTotal: %llu\n", tot);
2455 }
2456
2457 static int i915_guc_info(struct seq_file *m, void *data)
2458 {
2459 struct drm_info_node *node = m->private;
2460 struct drm_device *dev = node->minor->dev;
2461 struct drm_i915_private *dev_priv = dev->dev_private;
2462 struct intel_guc guc;
2463 struct i915_guc_client client = {};
2464 struct intel_engine_cs *ring;
2465 enum intel_ring_id i;
2466 u64 total = 0;
2467
2468 if (!HAS_GUC_SCHED(dev_priv->dev))
2469 return 0;
2470
2471 if (mutex_lock_interruptible(&dev->struct_mutex))
2472 return 0;
2473
2474 /* Take a local copy of the GuC data, so we can dump it at leisure */
2475 guc = dev_priv->guc;
2476 if (guc.execbuf_client)
2477 client = *guc.execbuf_client;
2478
2479 mutex_unlock(&dev->struct_mutex);
2480
2481 seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2482 seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2483 seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2484 seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2485 seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2486
2487 seq_printf(m, "\nGuC submissions:\n");
2488 for_each_ring(ring, dev_priv, i) {
2489 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
2490 ring->name, guc.submissions[i],
2491 guc.last_seqno[i], guc.last_seqno[i]);
2492 total += guc.submissions[i];
2493 }
2494 seq_printf(m, "\t%s: %llu\n", "Total", total);
2495
2496 seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2497 i915_guc_client_info(m, dev_priv, &client);
2498
2499 /* Add more as required ... */
2500
2501 return 0;
2502 }
2503
2504 static int i915_guc_log_dump(struct seq_file *m, void *data)
2505 {
2506 struct drm_info_node *node = m->private;
2507 struct drm_device *dev = node->minor->dev;
2508 struct drm_i915_private *dev_priv = dev->dev_private;
2509 struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2510 u32 *log;
2511 int i = 0, pg;
2512
2513 if (!log_obj)
2514 return 0;
2515
2516 for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2517 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2518
2519 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2520 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2521 *(log + i), *(log + i + 1),
2522 *(log + i + 2), *(log + i + 3));
2523
2524 kunmap_atomic(log);
2525 }
2526
2527 seq_putc(m, '\n');
2528
2529 return 0;
2530 }
2531
2532 static int i915_edp_psr_status(struct seq_file *m, void *data)
2533 {
2534 struct drm_info_node *node = m->private;
2535 struct drm_device *dev = node->minor->dev;
2536 struct drm_i915_private *dev_priv = dev->dev_private;
2537 u32 psrperf = 0;
2538 u32 stat[3];
2539 enum pipe pipe;
2540 bool enabled = false;
2541
2542 if (!HAS_PSR(dev)) {
2543 seq_puts(m, "PSR not supported\n");
2544 return 0;
2545 }
2546
2547 intel_runtime_pm_get(dev_priv);
2548
2549 mutex_lock(&dev_priv->psr.lock);
2550 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2551 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2552 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2553 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2554 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2555 dev_priv->psr.busy_frontbuffer_bits);
2556 seq_printf(m, "Re-enable work scheduled: %s\n",
2557 yesno(work_busy(&dev_priv->psr.work.work)));
2558
2559 if (HAS_DDI(dev))
2560 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2561 else {
2562 for_each_pipe(dev_priv, pipe) {
2563 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2564 VLV_EDP_PSR_CURR_STATE_MASK;
2565 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2566 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2567 enabled = true;
2568 }
2569 }
2570 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2571
2572 if (!HAS_DDI(dev))
2573 for_each_pipe(dev_priv, pipe) {
2574 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2575 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2576 seq_printf(m, " pipe %c", pipe_name(pipe));
2577 }
2578 seq_puts(m, "\n");
2579
2580 /*
2581 * VLV/CHV PSR has no kind of performance counter
2582 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2583 */
2584 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2585 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2586 EDP_PSR_PERF_CNT_MASK;
2587
2588 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2589 }
2590 mutex_unlock(&dev_priv->psr.lock);
2591
2592 intel_runtime_pm_put(dev_priv);
2593 return 0;
2594 }
2595
2596 static int i915_sink_crc(struct seq_file *m, void *data)
2597 {
2598 struct drm_info_node *node = m->private;
2599 struct drm_device *dev = node->minor->dev;
2600 struct intel_encoder *encoder;
2601 struct intel_connector *connector;
2602 struct intel_dp *intel_dp = NULL;
2603 int ret;
2604 u8 crc[6];
2605
2606 drm_modeset_lock_all(dev);
2607 for_each_intel_connector(dev, connector) {
2608
2609 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2610 continue;
2611
2612 if (!connector->base.encoder)
2613 continue;
2614
2615 encoder = to_intel_encoder(connector->base.encoder);
2616 if (encoder->type != INTEL_OUTPUT_EDP)
2617 continue;
2618
2619 intel_dp = enc_to_intel_dp(&encoder->base);
2620
2621 ret = intel_dp_sink_crc(intel_dp, crc);
2622 if (ret)
2623 goto out;
2624
2625 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2626 crc[0], crc[1], crc[2],
2627 crc[3], crc[4], crc[5]);
2628 goto out;
2629 }
2630 ret = -ENODEV;
2631 out:
2632 drm_modeset_unlock_all(dev);
2633 return ret;
2634 }
2635
2636 static int i915_energy_uJ(struct seq_file *m, void *data)
2637 {
2638 struct drm_info_node *node = m->private;
2639 struct drm_device *dev = node->minor->dev;
2640 struct drm_i915_private *dev_priv = dev->dev_private;
2641 u64 power;
2642 u32 units;
2643
2644 if (INTEL_INFO(dev)->gen < 6)
2645 return -ENODEV;
2646
2647 intel_runtime_pm_get(dev_priv);
2648
2649 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2650 power = (power & 0x1f00) >> 8;
2651 units = 1000000 / (1 << power); /* convert to uJ */
2652 power = I915_READ(MCH_SECP_NRG_STTS);
2653 power *= units;
2654
2655 intel_runtime_pm_put(dev_priv);
2656
2657 seq_printf(m, "%llu", (long long unsigned)power);
2658
2659 return 0;
2660 }
2661
2662 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2663 {
2664 struct drm_info_node *node = m->private;
2665 struct drm_device *dev = node->minor->dev;
2666 struct drm_i915_private *dev_priv = dev->dev_private;
2667
2668 if (!HAS_RUNTIME_PM(dev)) {
2669 seq_puts(m, "not supported\n");
2670 return 0;
2671 }
2672
2673 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2674 seq_printf(m, "IRQs disabled: %s\n",
2675 yesno(!intel_irqs_enabled(dev_priv)));
2676 #ifdef CONFIG_PM
2677 seq_printf(m, "Usage count: %d\n",
2678 atomic_read(&dev->dev->power.usage_count));
2679 #else
2680 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2681 #endif
2682
2683 return 0;
2684 }
2685
2686 static int i915_power_domain_info(struct seq_file *m, void *unused)
2687 {
2688 struct drm_info_node *node = m->private;
2689 struct drm_device *dev = node->minor->dev;
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2692 int i;
2693
2694 mutex_lock(&power_domains->lock);
2695
2696 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2697 for (i = 0; i < power_domains->power_well_count; i++) {
2698 struct i915_power_well *power_well;
2699 enum intel_display_power_domain power_domain;
2700
2701 power_well = &power_domains->power_wells[i];
2702 seq_printf(m, "%-25s %d\n", power_well->name,
2703 power_well->count);
2704
2705 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2706 power_domain++) {
2707 if (!(BIT(power_domain) & power_well->domains))
2708 continue;
2709
2710 seq_printf(m, " %-23s %d\n",
2711 intel_display_power_domain_str(power_domain),
2712 power_domains->domain_use_count[power_domain]);
2713 }
2714 }
2715
2716 mutex_unlock(&power_domains->lock);
2717
2718 return 0;
2719 }
2720
2721 static int i915_dmc_info(struct seq_file *m, void *unused)
2722 {
2723 struct drm_info_node *node = m->private;
2724 struct drm_device *dev = node->minor->dev;
2725 struct drm_i915_private *dev_priv = dev->dev_private;
2726 struct intel_csr *csr;
2727
2728 if (!HAS_CSR(dev)) {
2729 seq_puts(m, "not supported\n");
2730 return 0;
2731 }
2732
2733 csr = &dev_priv->csr;
2734
2735 intel_runtime_pm_get(dev_priv);
2736
2737 seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2738 seq_printf(m, "path: %s\n", csr->fw_path);
2739
2740 if (!csr->dmc_payload)
2741 goto out;
2742
2743 seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2744 CSR_VERSION_MINOR(csr->version));
2745
2746 if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2747 seq_printf(m, "DC3 -> DC5 count: %d\n",
2748 I915_READ(SKL_CSR_DC3_DC5_COUNT));
2749 seq_printf(m, "DC5 -> DC6 count: %d\n",
2750 I915_READ(SKL_CSR_DC5_DC6_COUNT));
2751 } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2752 seq_printf(m, "DC3 -> DC5 count: %d\n",
2753 I915_READ(BXT_CSR_DC3_DC5_COUNT));
2754 }
2755
2756 out:
2757 seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2758 seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2759 seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2760
2761 intel_runtime_pm_put(dev_priv);
2762
2763 return 0;
2764 }
2765
2766 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2767 struct drm_display_mode *mode)
2768 {
2769 int i;
2770
2771 for (i = 0; i < tabs; i++)
2772 seq_putc(m, '\t');
2773
2774 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2775 mode->base.id, mode->name,
2776 mode->vrefresh, mode->clock,
2777 mode->hdisplay, mode->hsync_start,
2778 mode->hsync_end, mode->htotal,
2779 mode->vdisplay, mode->vsync_start,
2780 mode->vsync_end, mode->vtotal,
2781 mode->type, mode->flags);
2782 }
2783
2784 static void intel_encoder_info(struct seq_file *m,
2785 struct intel_crtc *intel_crtc,
2786 struct intel_encoder *intel_encoder)
2787 {
2788 struct drm_info_node *node = m->private;
2789 struct drm_device *dev = node->minor->dev;
2790 struct drm_crtc *crtc = &intel_crtc->base;
2791 struct intel_connector *intel_connector;
2792 struct drm_encoder *encoder;
2793
2794 encoder = &intel_encoder->base;
2795 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2796 encoder->base.id, encoder->name);
2797 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2798 struct drm_connector *connector = &intel_connector->base;
2799 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2800 connector->base.id,
2801 connector->name,
2802 drm_get_connector_status_name(connector->status));
2803 if (connector->status == connector_status_connected) {
2804 struct drm_display_mode *mode = &crtc->mode;
2805 seq_printf(m, ", mode:\n");
2806 intel_seq_print_mode(m, 2, mode);
2807 } else {
2808 seq_putc(m, '\n');
2809 }
2810 }
2811 }
2812
2813 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2814 {
2815 struct drm_info_node *node = m->private;
2816 struct drm_device *dev = node->minor->dev;
2817 struct drm_crtc *crtc = &intel_crtc->base;
2818 struct intel_encoder *intel_encoder;
2819 struct drm_plane_state *plane_state = crtc->primary->state;
2820 struct drm_framebuffer *fb = plane_state->fb;
2821
2822 if (fb)
2823 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2824 fb->base.id, plane_state->src_x >> 16,
2825 plane_state->src_y >> 16, fb->width, fb->height);
2826 else
2827 seq_puts(m, "\tprimary plane disabled\n");
2828 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2829 intel_encoder_info(m, intel_crtc, intel_encoder);
2830 }
2831
2832 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2833 {
2834 struct drm_display_mode *mode = panel->fixed_mode;
2835
2836 seq_printf(m, "\tfixed mode:\n");
2837 intel_seq_print_mode(m, 2, mode);
2838 }
2839
2840 static void intel_dp_info(struct seq_file *m,
2841 struct intel_connector *intel_connector)
2842 {
2843 struct intel_encoder *intel_encoder = intel_connector->encoder;
2844 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2845
2846 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2847 seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2848 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2849 intel_panel_info(m, &intel_connector->panel);
2850 }
2851
2852 static void intel_dp_mst_info(struct seq_file *m,
2853 struct intel_connector *intel_connector)
2854 {
2855 struct intel_encoder *intel_encoder = intel_connector->encoder;
2856 struct intel_dp_mst_encoder *intel_mst =
2857 enc_to_mst(&intel_encoder->base);
2858 struct intel_digital_port *intel_dig_port = intel_mst->primary;
2859 struct intel_dp *intel_dp = &intel_dig_port->dp;
2860 bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2861 intel_connector->port);
2862
2863 seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2864 }
2865
2866 static void intel_hdmi_info(struct seq_file *m,
2867 struct intel_connector *intel_connector)
2868 {
2869 struct intel_encoder *intel_encoder = intel_connector->encoder;
2870 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2871
2872 seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2873 }
2874
2875 static void intel_lvds_info(struct seq_file *m,
2876 struct intel_connector *intel_connector)
2877 {
2878 intel_panel_info(m, &intel_connector->panel);
2879 }
2880
2881 static void intel_connector_info(struct seq_file *m,
2882 struct drm_connector *connector)
2883 {
2884 struct intel_connector *intel_connector = to_intel_connector(connector);
2885 struct intel_encoder *intel_encoder = intel_connector->encoder;
2886 struct drm_display_mode *mode;
2887
2888 seq_printf(m, "connector %d: type %s, status: %s\n",
2889 connector->base.id, connector->name,
2890 drm_get_connector_status_name(connector->status));
2891 if (connector->status == connector_status_connected) {
2892 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2893 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2894 connector->display_info.width_mm,
2895 connector->display_info.height_mm);
2896 seq_printf(m, "\tsubpixel order: %s\n",
2897 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2898 seq_printf(m, "\tCEA rev: %d\n",
2899 connector->display_info.cea_rev);
2900 }
2901 if (intel_encoder) {
2902 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2903 intel_encoder->type == INTEL_OUTPUT_EDP)
2904 intel_dp_info(m, intel_connector);
2905 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2906 intel_hdmi_info(m, intel_connector);
2907 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2908 intel_lvds_info(m, intel_connector);
2909 else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2910 intel_dp_mst_info(m, intel_connector);
2911 }
2912
2913 seq_printf(m, "\tmodes:\n");
2914 list_for_each_entry(mode, &connector->modes, head)
2915 intel_seq_print_mode(m, 2, mode);
2916 }
2917
2918 static bool cursor_active(struct drm_device *dev, int pipe)
2919 {
2920 struct drm_i915_private *dev_priv = dev->dev_private;
2921 u32 state;
2922
2923 if (IS_845G(dev) || IS_I865G(dev))
2924 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2925 else
2926 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2927
2928 return state;
2929 }
2930
2931 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2932 {
2933 struct drm_i915_private *dev_priv = dev->dev_private;
2934 u32 pos;
2935
2936 pos = I915_READ(CURPOS(pipe));
2937
2938 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2939 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2940 *x = -*x;
2941
2942 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2943 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2944 *y = -*y;
2945
2946 return cursor_active(dev, pipe);
2947 }
2948
2949 static const char *plane_type(enum drm_plane_type type)
2950 {
2951 switch (type) {
2952 case DRM_PLANE_TYPE_OVERLAY:
2953 return "OVL";
2954 case DRM_PLANE_TYPE_PRIMARY:
2955 return "PRI";
2956 case DRM_PLANE_TYPE_CURSOR:
2957 return "CUR";
2958 /*
2959 * Deliberately omitting default: to generate compiler warnings
2960 * when a new drm_plane_type gets added.
2961 */
2962 }
2963
2964 return "unknown";
2965 }
2966
2967 static const char *plane_rotation(unsigned int rotation)
2968 {
2969 static char buf[48];
2970 /*
2971 * According to doc only one DRM_ROTATE_ is allowed but this
2972 * will print them all to visualize if the values are misused
2973 */
2974 snprintf(buf, sizeof(buf),
2975 "%s%s%s%s%s%s(0x%08x)",
2976 (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
2977 (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
2978 (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
2979 (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
2980 (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
2981 (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
2982 rotation);
2983
2984 return buf;
2985 }
2986
2987 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2988 {
2989 struct drm_info_node *node = m->private;
2990 struct drm_device *dev = node->minor->dev;
2991 struct intel_plane *intel_plane;
2992
2993 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2994 struct drm_plane_state *state;
2995 struct drm_plane *plane = &intel_plane->base;
2996
2997 if (!plane->state) {
2998 seq_puts(m, "plane->state is NULL!\n");
2999 continue;
3000 }
3001
3002 state = plane->state;
3003
3004 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3005 plane->base.id,
3006 plane_type(intel_plane->base.type),
3007 state->crtc_x, state->crtc_y,
3008 state->crtc_w, state->crtc_h,
3009 (state->src_x >> 16),
3010 ((state->src_x & 0xffff) * 15625) >> 10,
3011 (state->src_y >> 16),
3012 ((state->src_y & 0xffff) * 15625) >> 10,
3013 (state->src_w >> 16),
3014 ((state->src_w & 0xffff) * 15625) >> 10,
3015 (state->src_h >> 16),
3016 ((state->src_h & 0xffff) * 15625) >> 10,
3017 state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3018 plane_rotation(state->rotation));
3019 }
3020 }
3021
3022 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3023 {
3024 struct intel_crtc_state *pipe_config;
3025 int num_scalers = intel_crtc->num_scalers;
3026 int i;
3027
3028 pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3029
3030 /* Not all platformas have a scaler */
3031 if (num_scalers) {
3032 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3033 num_scalers,
3034 pipe_config->scaler_state.scaler_users,
3035 pipe_config->scaler_state.scaler_id);
3036
3037 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3038 struct intel_scaler *sc =
3039 &pipe_config->scaler_state.scalers[i];
3040
3041 seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3042 i, yesno(sc->in_use), sc->mode);
3043 }
3044 seq_puts(m, "\n");
3045 } else {
3046 seq_puts(m, "\tNo scalers available on this platform\n");
3047 }
3048 }
3049
3050 static int i915_display_info(struct seq_file *m, void *unused)
3051 {
3052 struct drm_info_node *node = m->private;
3053 struct drm_device *dev = node->minor->dev;
3054 struct drm_i915_private *dev_priv = dev->dev_private;
3055 struct intel_crtc *crtc;
3056 struct drm_connector *connector;
3057
3058 intel_runtime_pm_get(dev_priv);
3059 drm_modeset_lock_all(dev);
3060 seq_printf(m, "CRTC info\n");
3061 seq_printf(m, "---------\n");
3062 for_each_intel_crtc(dev, crtc) {
3063 bool active;
3064 struct intel_crtc_state *pipe_config;
3065 int x, y;
3066
3067 pipe_config = to_intel_crtc_state(crtc->base.state);
3068
3069 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3070 crtc->base.base.id, pipe_name(crtc->pipe),
3071 yesno(pipe_config->base.active),
3072 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3073 yesno(pipe_config->dither), pipe_config->pipe_bpp);
3074
3075 if (pipe_config->base.active) {
3076 intel_crtc_info(m, crtc);
3077
3078 active = cursor_position(dev, crtc->pipe, &x, &y);
3079 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3080 yesno(crtc->cursor_base),
3081 x, y, crtc->base.cursor->state->crtc_w,
3082 crtc->base.cursor->state->crtc_h,
3083 crtc->cursor_addr, yesno(active));
3084 intel_scaler_info(m, crtc);
3085 intel_plane_info(m, crtc);
3086 }
3087
3088 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3089 yesno(!crtc->cpu_fifo_underrun_disabled),
3090 yesno(!crtc->pch_fifo_underrun_disabled));
3091 }
3092
3093 seq_printf(m, "\n");
3094 seq_printf(m, "Connector info\n");
3095 seq_printf(m, "--------------\n");
3096 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3097 intel_connector_info(m, connector);
3098 }
3099 drm_modeset_unlock_all(dev);
3100 intel_runtime_pm_put(dev_priv);
3101
3102 return 0;
3103 }
3104
3105 static int i915_semaphore_status(struct seq_file *m, void *unused)
3106 {
3107 struct drm_info_node *node = (struct drm_info_node *) m->private;
3108 struct drm_device *dev = node->minor->dev;
3109 struct drm_i915_private *dev_priv = dev->dev_private;
3110 struct intel_engine_cs *ring;
3111 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3112 int i, j, ret;
3113
3114 if (!i915_semaphore_is_enabled(dev)) {
3115 seq_puts(m, "Semaphores are disabled\n");
3116 return 0;
3117 }
3118
3119 ret = mutex_lock_interruptible(&dev->struct_mutex);
3120 if (ret)
3121 return ret;
3122 intel_runtime_pm_get(dev_priv);
3123
3124 if (IS_BROADWELL(dev)) {
3125 struct page *page;
3126 uint64_t *seqno;
3127
3128 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3129
3130 seqno = (uint64_t *)kmap_atomic(page);
3131 for_each_ring(ring, dev_priv, i) {
3132 uint64_t offset;
3133
3134 seq_printf(m, "%s\n", ring->name);
3135
3136 seq_puts(m, " Last signal:");
3137 for (j = 0; j < num_rings; j++) {
3138 offset = i * I915_NUM_RINGS + j;
3139 seq_printf(m, "0x%08llx (0x%02llx) ",
3140 seqno[offset], offset * 8);
3141 }
3142 seq_putc(m, '\n');
3143
3144 seq_puts(m, " Last wait: ");
3145 for (j = 0; j < num_rings; j++) {
3146 offset = i + (j * I915_NUM_RINGS);
3147 seq_printf(m, "0x%08llx (0x%02llx) ",
3148 seqno[offset], offset * 8);
3149 }
3150 seq_putc(m, '\n');
3151
3152 }
3153 kunmap_atomic(seqno);
3154 } else {
3155 seq_puts(m, " Last signal:");
3156 for_each_ring(ring, dev_priv, i)
3157 for (j = 0; j < num_rings; j++)
3158 seq_printf(m, "0x%08x\n",
3159 I915_READ(ring->semaphore.mbox.signal[j]));
3160 seq_putc(m, '\n');
3161 }
3162
3163 seq_puts(m, "\nSync seqno:\n");
3164 for_each_ring(ring, dev_priv, i) {
3165 for (j = 0; j < num_rings; j++) {
3166 seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
3167 }
3168 seq_putc(m, '\n');
3169 }
3170 seq_putc(m, '\n');
3171
3172 intel_runtime_pm_put(dev_priv);
3173 mutex_unlock(&dev->struct_mutex);
3174 return 0;
3175 }
3176
3177 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3178 {
3179 struct drm_info_node *node = (struct drm_info_node *) m->private;
3180 struct drm_device *dev = node->minor->dev;
3181 struct drm_i915_private *dev_priv = dev->dev_private;
3182 int i;
3183
3184 drm_modeset_lock_all(dev);
3185 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3186 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3187
3188 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3189 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3190 pll->config.crtc_mask, pll->active, yesno(pll->on));
3191 seq_printf(m, " tracked hardware state:\n");
3192 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
3193 seq_printf(m, " dpll_md: 0x%08x\n",
3194 pll->config.hw_state.dpll_md);
3195 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
3196 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
3197 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
3198 }
3199 drm_modeset_unlock_all(dev);
3200
3201 return 0;
3202 }
3203
3204 static int i915_wa_registers(struct seq_file *m, void *unused)
3205 {
3206 int i;
3207 int ret;
3208 struct drm_info_node *node = (struct drm_info_node *) m->private;
3209 struct drm_device *dev = node->minor->dev;
3210 struct drm_i915_private *dev_priv = dev->dev_private;
3211
3212 ret = mutex_lock_interruptible(&dev->struct_mutex);
3213 if (ret)
3214 return ret;
3215
3216 intel_runtime_pm_get(dev_priv);
3217
3218 seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
3219 for (i = 0; i < dev_priv->workarounds.count; ++i) {
3220 i915_reg_t addr;
3221 u32 mask, value, read;
3222 bool ok;
3223
3224 addr = dev_priv->workarounds.reg[i].addr;
3225 mask = dev_priv->workarounds.reg[i].mask;
3226 value = dev_priv->workarounds.reg[i].value;
3227 read = I915_READ(addr);
3228 ok = (value & mask) == (read & mask);
3229 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3230 i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3231 }
3232
3233 intel_runtime_pm_put(dev_priv);
3234 mutex_unlock(&dev->struct_mutex);
3235
3236 return 0;
3237 }
3238
3239 static int i915_ddb_info(struct seq_file *m, void *unused)
3240 {
3241 struct drm_info_node *node = m->private;
3242 struct drm_device *dev = node->minor->dev;
3243 struct drm_i915_private *dev_priv = dev->dev_private;
3244 struct skl_ddb_allocation *ddb;
3245 struct skl_ddb_entry *entry;
3246 enum pipe pipe;
3247 int plane;
3248
3249 if (INTEL_INFO(dev)->gen < 9)
3250 return 0;
3251
3252 drm_modeset_lock_all(dev);
3253
3254 ddb = &dev_priv->wm.skl_hw.ddb;
3255
3256 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3257
3258 for_each_pipe(dev_priv, pipe) {
3259 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3260
3261 for_each_plane(dev_priv, pipe, plane) {
3262 entry = &ddb->plane[pipe][plane];
3263 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
3264 entry->start, entry->end,
3265 skl_ddb_entry_size(entry));
3266 }
3267
3268 entry = &ddb->plane[pipe][PLANE_CURSOR];
3269 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
3270 entry->end, skl_ddb_entry_size(entry));
3271 }
3272
3273 drm_modeset_unlock_all(dev);
3274
3275 return 0;
3276 }
3277
3278 static void drrs_status_per_crtc(struct seq_file *m,
3279 struct drm_device *dev, struct intel_crtc *intel_crtc)
3280 {
3281 struct intel_encoder *intel_encoder;
3282 struct drm_i915_private *dev_priv = dev->dev_private;
3283 struct i915_drrs *drrs = &dev_priv->drrs;
3284 int vrefresh = 0;
3285
3286 for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3287 /* Encoder connected on this CRTC */
3288 switch (intel_encoder->type) {
3289 case INTEL_OUTPUT_EDP:
3290 seq_puts(m, "eDP:\n");
3291 break;
3292 case INTEL_OUTPUT_DSI:
3293 seq_puts(m, "DSI:\n");
3294 break;
3295 case INTEL_OUTPUT_HDMI:
3296 seq_puts(m, "HDMI:\n");
3297 break;
3298 case INTEL_OUTPUT_DISPLAYPORT:
3299 seq_puts(m, "DP:\n");
3300 break;
3301 default:
3302 seq_printf(m, "Other encoder (id=%d).\n",
3303 intel_encoder->type);
3304 return;
3305 }
3306 }
3307
3308 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3309 seq_puts(m, "\tVBT: DRRS_type: Static");
3310 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3311 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3312 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3313 seq_puts(m, "\tVBT: DRRS_type: None");
3314 else
3315 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3316
3317 seq_puts(m, "\n\n");
3318
3319 if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3320 struct intel_panel *panel;
3321
3322 mutex_lock(&drrs->mutex);
3323 /* DRRS Supported */
3324 seq_puts(m, "\tDRRS Supported: Yes\n");
3325
3326 /* disable_drrs() will make drrs->dp NULL */
3327 if (!drrs->dp) {
3328 seq_puts(m, "Idleness DRRS: Disabled");
3329 mutex_unlock(&drrs->mutex);
3330 return;
3331 }
3332
3333 panel = &drrs->dp->attached_connector->panel;
3334 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3335 drrs->busy_frontbuffer_bits);
3336
3337 seq_puts(m, "\n\t\t");
3338 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3339 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3340 vrefresh = panel->fixed_mode->vrefresh;
3341 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3342 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3343 vrefresh = panel->downclock_mode->vrefresh;
3344 } else {
3345 seq_printf(m, "DRRS_State: Unknown(%d)\n",
3346 drrs->refresh_rate_type);
3347 mutex_unlock(&drrs->mutex);
3348 return;
3349 }
3350 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3351
3352 seq_puts(m, "\n\t\t");
3353 mutex_unlock(&drrs->mutex);
3354 } else {
3355 /* DRRS not supported. Print the VBT parameter*/
3356 seq_puts(m, "\tDRRS Supported : No");
3357 }
3358 seq_puts(m, "\n");
3359 }
3360
3361 static int i915_drrs_status(struct seq_file *m, void *unused)
3362 {
3363 struct drm_info_node *node = m->private;
3364 struct drm_device *dev = node->minor->dev;
3365 struct intel_crtc *intel_crtc;
3366 int active_crtc_cnt = 0;
3367
3368 for_each_intel_crtc(dev, intel_crtc) {
3369 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3370
3371 if (intel_crtc->base.state->active) {
3372 active_crtc_cnt++;
3373 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
3374
3375 drrs_status_per_crtc(m, dev, intel_crtc);
3376 }
3377
3378 drm_modeset_unlock(&intel_crtc->base.mutex);
3379 }
3380
3381 if (!active_crtc_cnt)
3382 seq_puts(m, "No active crtc found\n");
3383
3384 return 0;
3385 }
3386
3387 struct pipe_crc_info {
3388 const char *name;
3389 struct drm_device *dev;
3390 enum pipe pipe;
3391 };
3392
3393 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3394 {
3395 struct drm_info_node *node = (struct drm_info_node *) m->private;
3396 struct drm_device *dev = node->minor->dev;
3397 struct drm_encoder *encoder;
3398 struct intel_encoder *intel_encoder;
3399 struct intel_digital_port *intel_dig_port;
3400 drm_modeset_lock_all(dev);
3401 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3402 intel_encoder = to_intel_encoder(encoder);
3403 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3404 continue;
3405 intel_dig_port = enc_to_dig_port(encoder);
3406 if (!intel_dig_port->dp.can_mst)
3407 continue;
3408
3409 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3410 }
3411 drm_modeset_unlock_all(dev);
3412 return 0;
3413 }
3414
3415 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3416 {
3417 struct pipe_crc_info *info = inode->i_private;
3418 struct drm_i915_private *dev_priv = info->dev->dev_private;
3419 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3420
3421 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3422 return -ENODEV;
3423
3424 spin_lock_irq(&pipe_crc->lock);
3425
3426 if (pipe_crc->opened) {
3427 spin_unlock_irq(&pipe_crc->lock);
3428 return -EBUSY; /* already open */
3429 }
3430
3431 pipe_crc->opened = true;
3432 filep->private_data = inode->i_private;
3433
3434 spin_unlock_irq(&pipe_crc->lock);
3435
3436 return 0;
3437 }
3438
3439 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3440 {
3441 struct pipe_crc_info *info = inode->i_private;
3442 struct drm_i915_private *dev_priv = info->dev->dev_private;
3443 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3444
3445 spin_lock_irq(&pipe_crc->lock);
3446 pipe_crc->opened = false;
3447 spin_unlock_irq(&pipe_crc->lock);
3448
3449 return 0;
3450 }
3451
3452 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3453 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
3454 /* account for \'0' */
3455 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
3456
3457 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3458 {
3459 assert_spin_locked(&pipe_crc->lock);
3460 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3461 INTEL_PIPE_CRC_ENTRIES_NR);
3462 }
3463
3464 static ssize_t
3465 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3466 loff_t *pos)
3467 {
3468 struct pipe_crc_info *info = filep->private_data;
3469 struct drm_device *dev = info->dev;
3470 struct drm_i915_private *dev_priv = dev->dev_private;
3471 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3472 char buf[PIPE_CRC_BUFFER_LEN];
3473 int n_entries;
3474 ssize_t bytes_read;
3475
3476 /*
3477 * Don't allow user space to provide buffers not big enough to hold
3478 * a line of data.
3479 */
3480 if (count < PIPE_CRC_LINE_LEN)
3481 return -EINVAL;
3482
3483 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3484 return 0;
3485
3486 /* nothing to read */
3487 spin_lock_irq(&pipe_crc->lock);
3488 while (pipe_crc_data_count(pipe_crc) == 0) {
3489 int ret;
3490
3491 if (filep->f_flags & O_NONBLOCK) {
3492 spin_unlock_irq(&pipe_crc->lock);
3493 return -EAGAIN;
3494 }
3495
3496 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3497 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3498 if (ret) {
3499 spin_unlock_irq(&pipe_crc->lock);
3500 return ret;
3501 }
3502 }
3503
3504 /* We now have one or more entries to read */
3505 n_entries = count / PIPE_CRC_LINE_LEN;
3506
3507 bytes_read = 0;
3508 while (n_entries > 0) {
3509 struct intel_pipe_crc_entry *entry =
3510 &pipe_crc->entries[pipe_crc->tail];
3511 int ret;
3512
3513 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3514 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3515 break;
3516
3517 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3518 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3519
3520 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3521 "%8u %8x %8x %8x %8x %8x\n",
3522 entry->frame, entry->crc[0],
3523 entry->crc[1], entry->crc[2],
3524 entry->crc[3], entry->crc[4]);
3525
3526 spin_unlock_irq(&pipe_crc->lock);
3527
3528 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3529 if (ret == PIPE_CRC_LINE_LEN)
3530 return -EFAULT;
3531
3532 user_buf += PIPE_CRC_LINE_LEN;
3533 n_entries--;
3534
3535 spin_lock_irq(&pipe_crc->lock);
3536 }
3537
3538 spin_unlock_irq(&pipe_crc->lock);
3539
3540 return bytes_read;
3541 }
3542
3543 static const struct file_operations i915_pipe_crc_fops = {
3544 .owner = THIS_MODULE,
3545 .open = i915_pipe_crc_open,
3546 .read = i915_pipe_crc_read,
3547 .release = i915_pipe_crc_release,
3548 };
3549
3550 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3551 {
3552 .name = "i915_pipe_A_crc",
3553 .pipe = PIPE_A,
3554 },
3555 {
3556 .name = "i915_pipe_B_crc",
3557 .pipe = PIPE_B,
3558 },
3559 {
3560 .name = "i915_pipe_C_crc",
3561 .pipe = PIPE_C,
3562 },
3563 };
3564
3565 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3566 enum pipe pipe)
3567 {
3568 struct drm_device *dev = minor->dev;
3569 struct dentry *ent;
3570 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3571
3572 info->dev = dev;
3573 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3574 &i915_pipe_crc_fops);
3575 if (!ent)
3576 return -ENOMEM;
3577
3578 return drm_add_fake_info_node(minor, ent, info);
3579 }
3580
3581 static const char * const pipe_crc_sources[] = {
3582 "none",
3583 "plane1",
3584 "plane2",
3585 "pf",
3586 "pipe",
3587 "TV",
3588 "DP-B",
3589 "DP-C",
3590 "DP-D",
3591 "auto",
3592 };
3593
3594 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3595 {
3596 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3597 return pipe_crc_sources[source];
3598 }
3599
3600 static int display_crc_ctl_show(struct seq_file *m, void *data)
3601 {
3602 struct drm_device *dev = m->private;
3603 struct drm_i915_private *dev_priv = dev->dev_private;
3604 int i;
3605
3606 for (i = 0; i < I915_MAX_PIPES; i++)
3607 seq_printf(m, "%c %s\n", pipe_name(i),
3608 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3609
3610 return 0;
3611 }
3612
3613 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3614 {
3615 struct drm_device *dev = inode->i_private;
3616
3617 return single_open(file, display_crc_ctl_show, dev);
3618 }
3619
3620 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3621 uint32_t *val)
3622 {
3623 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3624 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3625
3626 switch (*source) {
3627 case INTEL_PIPE_CRC_SOURCE_PIPE:
3628 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3629 break;
3630 case INTEL_PIPE_CRC_SOURCE_NONE:
3631 *val = 0;
3632 break;
3633 default:
3634 return -EINVAL;
3635 }
3636
3637 return 0;
3638 }
3639
3640 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3641 enum intel_pipe_crc_source *source)
3642 {
3643 struct intel_encoder *encoder;
3644 struct intel_crtc *crtc;
3645 struct intel_digital_port *dig_port;
3646 int ret = 0;
3647
3648 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3649
3650 drm_modeset_lock_all(dev);
3651 for_each_intel_encoder(dev, encoder) {
3652 if (!encoder->base.crtc)
3653 continue;
3654
3655 crtc = to_intel_crtc(encoder->base.crtc);
3656
3657 if (crtc->pipe != pipe)
3658 continue;
3659
3660 switch (encoder->type) {
3661 case INTEL_OUTPUT_TVOUT:
3662 *source = INTEL_PIPE_CRC_SOURCE_TV;
3663 break;
3664 case INTEL_OUTPUT_DISPLAYPORT:
3665 case INTEL_OUTPUT_EDP:
3666 dig_port = enc_to_dig_port(&encoder->base);
3667 switch (dig_port->port) {
3668 case PORT_B:
3669 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3670 break;
3671 case PORT_C:
3672 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3673 break;
3674 case PORT_D:
3675 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3676 break;
3677 default:
3678 WARN(1, "nonexisting DP port %c\n",
3679 port_name(dig_port->port));
3680 break;
3681 }
3682 break;
3683 default:
3684 break;
3685 }
3686 }
3687 drm_modeset_unlock_all(dev);
3688
3689 return ret;
3690 }
3691
3692 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3693 enum pipe pipe,
3694 enum intel_pipe_crc_source *source,
3695 uint32_t *val)
3696 {
3697 struct drm_i915_private *dev_priv = dev->dev_private;
3698 bool need_stable_symbols = false;
3699
3700 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3701 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3702 if (ret)
3703 return ret;
3704 }
3705
3706 switch (*source) {
3707 case INTEL_PIPE_CRC_SOURCE_PIPE:
3708 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3709 break;
3710 case INTEL_PIPE_CRC_SOURCE_DP_B:
3711 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3712 need_stable_symbols = true;
3713 break;
3714 case INTEL_PIPE_CRC_SOURCE_DP_C:
3715 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3716 need_stable_symbols = true;
3717 break;
3718 case INTEL_PIPE_CRC_SOURCE_DP_D:
3719 if (!IS_CHERRYVIEW(dev))
3720 return -EINVAL;
3721 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3722 need_stable_symbols = true;
3723 break;
3724 case INTEL_PIPE_CRC_SOURCE_NONE:
3725 *val = 0;
3726 break;
3727 default:
3728 return -EINVAL;
3729 }
3730
3731 /*
3732 * When the pipe CRC tap point is after the transcoders we need
3733 * to tweak symbol-level features to produce a deterministic series of
3734 * symbols for a given frame. We need to reset those features only once
3735 * a frame (instead of every nth symbol):
3736 * - DC-balance: used to ensure a better clock recovery from the data
3737 * link (SDVO)
3738 * - DisplayPort scrambling: used for EMI reduction
3739 */
3740 if (need_stable_symbols) {
3741 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3742
3743 tmp |= DC_BALANCE_RESET_VLV;
3744 switch (pipe) {
3745 case PIPE_A:
3746 tmp |= PIPE_A_SCRAMBLE_RESET;
3747 break;
3748 case PIPE_B:
3749 tmp |= PIPE_B_SCRAMBLE_RESET;
3750 break;
3751 case PIPE_C:
3752 tmp |= PIPE_C_SCRAMBLE_RESET;
3753 break;
3754 default:
3755 return -EINVAL;
3756 }
3757 I915_WRITE(PORT_DFT2_G4X, tmp);
3758 }
3759
3760 return 0;
3761 }
3762
3763 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3764 enum pipe pipe,
3765 enum intel_pipe_crc_source *source,
3766 uint32_t *val)
3767 {
3768 struct drm_i915_private *dev_priv = dev->dev_private;
3769 bool need_stable_symbols = false;
3770
3771 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3772 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3773 if (ret)
3774 return ret;
3775 }
3776
3777 switch (*source) {
3778 case INTEL_PIPE_CRC_SOURCE_PIPE:
3779 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3780 break;
3781 case INTEL_PIPE_CRC_SOURCE_TV:
3782 if (!SUPPORTS_TV(dev))
3783 return -EINVAL;
3784 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3785 break;
3786 case INTEL_PIPE_CRC_SOURCE_DP_B:
3787 if (!IS_G4X(dev))
3788 return -EINVAL;
3789 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3790 need_stable_symbols = true;
3791 break;
3792 case INTEL_PIPE_CRC_SOURCE_DP_C:
3793 if (!IS_G4X(dev))
3794 return -EINVAL;
3795 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3796 need_stable_symbols = true;
3797 break;
3798 case INTEL_PIPE_CRC_SOURCE_DP_D:
3799 if (!IS_G4X(dev))
3800 return -EINVAL;
3801 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3802 need_stable_symbols = true;
3803 break;
3804 case INTEL_PIPE_CRC_SOURCE_NONE:
3805 *val = 0;
3806 break;
3807 default:
3808 return -EINVAL;
3809 }
3810
3811 /*
3812 * When the pipe CRC tap point is after the transcoders we need
3813 * to tweak symbol-level features to produce a deterministic series of
3814 * symbols for a given frame. We need to reset those features only once
3815 * a frame (instead of every nth symbol):
3816 * - DC-balance: used to ensure a better clock recovery from the data
3817 * link (SDVO)
3818 * - DisplayPort scrambling: used for EMI reduction
3819 */
3820 if (need_stable_symbols) {
3821 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3822
3823 WARN_ON(!IS_G4X(dev));
3824
3825 I915_WRITE(PORT_DFT_I9XX,
3826 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3827
3828 if (pipe == PIPE_A)
3829 tmp |= PIPE_A_SCRAMBLE_RESET;
3830 else
3831 tmp |= PIPE_B_SCRAMBLE_RESET;
3832
3833 I915_WRITE(PORT_DFT2_G4X, tmp);
3834 }
3835
3836 return 0;
3837 }
3838
3839 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3840 enum pipe pipe)
3841 {
3842 struct drm_i915_private *dev_priv = dev->dev_private;
3843 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3844
3845 switch (pipe) {
3846 case PIPE_A:
3847 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3848 break;
3849 case PIPE_B:
3850 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3851 break;
3852 case PIPE_C:
3853 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3854 break;
3855 default:
3856 return;
3857 }
3858 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3859 tmp &= ~DC_BALANCE_RESET_VLV;
3860 I915_WRITE(PORT_DFT2_G4X, tmp);
3861
3862 }
3863
3864 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3865 enum pipe pipe)
3866 {
3867 struct drm_i915_private *dev_priv = dev->dev_private;
3868 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3869
3870 if (pipe == PIPE_A)
3871 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3872 else
3873 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3874 I915_WRITE(PORT_DFT2_G4X, tmp);
3875
3876 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3877 I915_WRITE(PORT_DFT_I9XX,
3878 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3879 }
3880 }
3881
3882 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3883 uint32_t *val)
3884 {
3885 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3886 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3887
3888 switch (*source) {
3889 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3890 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3891 break;
3892 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3893 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3894 break;
3895 case INTEL_PIPE_CRC_SOURCE_PIPE:
3896 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3897 break;
3898 case INTEL_PIPE_CRC_SOURCE_NONE:
3899 *val = 0;
3900 break;
3901 default:
3902 return -EINVAL;
3903 }
3904
3905 return 0;
3906 }
3907
3908 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3909 {
3910 struct drm_i915_private *dev_priv = dev->dev_private;
3911 struct intel_crtc *crtc =
3912 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3913 struct intel_crtc_state *pipe_config;
3914 struct drm_atomic_state *state;
3915 int ret = 0;
3916
3917 drm_modeset_lock_all(dev);
3918 state = drm_atomic_state_alloc(dev);
3919 if (!state) {
3920 ret = -ENOMEM;
3921 goto out;
3922 }
3923
3924 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3925 pipe_config = intel_atomic_get_crtc_state(state, crtc);
3926 if (IS_ERR(pipe_config)) {
3927 ret = PTR_ERR(pipe_config);
3928 goto out;
3929 }
3930
3931 pipe_config->pch_pfit.force_thru = enable;
3932 if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3933 pipe_config->pch_pfit.enabled != enable)
3934 pipe_config->base.connectors_changed = true;
3935
3936 ret = drm_atomic_commit(state);
3937 out:
3938 drm_modeset_unlock_all(dev);
3939 WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3940 if (ret)
3941 drm_atomic_state_free(state);
3942 }
3943
3944 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3945 enum pipe pipe,
3946 enum intel_pipe_crc_source *source,
3947 uint32_t *val)
3948 {
3949 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3950 *source = INTEL_PIPE_CRC_SOURCE_PF;
3951
3952 switch (*source) {
3953 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3954 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3955 break;
3956 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3957 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3958 break;
3959 case INTEL_PIPE_CRC_SOURCE_PF:
3960 if (IS_HASWELL(dev) && pipe == PIPE_A)
3961 hsw_trans_edp_pipe_A_crc_wa(dev, true);
3962
3963 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3964 break;
3965 case INTEL_PIPE_CRC_SOURCE_NONE:
3966 *val = 0;
3967 break;
3968 default:
3969 return -EINVAL;
3970 }
3971
3972 return 0;
3973 }
3974
3975 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3976 enum intel_pipe_crc_source source)
3977 {
3978 struct drm_i915_private *dev_priv = dev->dev_private;
3979 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3980 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3981 pipe));
3982 u32 val = 0; /* shut up gcc */
3983 int ret;
3984
3985 if (pipe_crc->source == source)
3986 return 0;
3987
3988 /* forbid changing the source without going back to 'none' */
3989 if (pipe_crc->source && source)
3990 return -EINVAL;
3991
3992 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3993 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3994 return -EIO;
3995 }
3996
3997 if (IS_GEN2(dev))
3998 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3999 else if (INTEL_INFO(dev)->gen < 5)
4000 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4001 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4002 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4003 else if (IS_GEN5(dev) || IS_GEN6(dev))
4004 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4005 else
4006 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4007
4008 if (ret != 0)
4009 return ret;
4010
4011 /* none -> real source transition */
4012 if (source) {
4013 struct intel_pipe_crc_entry *entries;
4014
4015 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4016 pipe_name(pipe), pipe_crc_source_name(source));
4017
4018 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4019 sizeof(pipe_crc->entries[0]),
4020 GFP_KERNEL);
4021 if (!entries)
4022 return -ENOMEM;
4023
4024 /*
4025 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4026 * enabled and disabled dynamically based on package C states,
4027 * user space can't make reliable use of the CRCs, so let's just
4028 * completely disable it.
4029 */
4030 hsw_disable_ips(crtc);
4031
4032 spin_lock_irq(&pipe_crc->lock);
4033 kfree(pipe_crc->entries);
4034 pipe_crc->entries = entries;
4035 pipe_crc->head = 0;
4036 pipe_crc->tail = 0;
4037 spin_unlock_irq(&pipe_crc->lock);
4038 }
4039
4040 pipe_crc->source = source;
4041
4042 I915_WRITE(PIPE_CRC_CTL(pipe), val);
4043 POSTING_READ(PIPE_CRC_CTL(pipe));
4044
4045 /* real source -> none transition */
4046 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4047 struct intel_pipe_crc_entry *entries;
4048 struct intel_crtc *crtc =
4049 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4050
4051 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4052 pipe_name(pipe));
4053
4054 drm_modeset_lock(&crtc->base.mutex, NULL);
4055 if (crtc->base.state->active)
4056 intel_wait_for_vblank(dev, pipe);
4057 drm_modeset_unlock(&crtc->base.mutex);
4058
4059 spin_lock_irq(&pipe_crc->lock);
4060 entries = pipe_crc->entries;
4061 pipe_crc->entries = NULL;
4062 pipe_crc->head = 0;
4063 pipe_crc->tail = 0;
4064 spin_unlock_irq(&pipe_crc->lock);
4065
4066 kfree(entries);
4067
4068 if (IS_G4X(dev))
4069 g4x_undo_pipe_scramble_reset(dev, pipe);
4070 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4071 vlv_undo_pipe_scramble_reset(dev, pipe);
4072 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4073 hsw_trans_edp_pipe_A_crc_wa(dev, false);
4074
4075 hsw_enable_ips(crtc);
4076 }
4077
4078 return 0;
4079 }
4080
4081 /*
4082 * Parse pipe CRC command strings:
4083 * command: wsp* object wsp+ name wsp+ source wsp*
4084 * object: 'pipe'
4085 * name: (A | B | C)
4086 * source: (none | plane1 | plane2 | pf)
4087 * wsp: (#0x20 | #0x9 | #0xA)+
4088 *
4089 * eg.:
4090 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
4091 * "pipe A none" -> Stop CRC
4092 */
4093 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4094 {
4095 int n_words = 0;
4096
4097 while (*buf) {
4098 char *end;
4099
4100 /* skip leading white space */
4101 buf = skip_spaces(buf);
4102 if (!*buf)
4103 break; /* end of buffer */
4104
4105 /* find end of word */
4106 for (end = buf; *end && !isspace(*end); end++)
4107 ;
4108
4109 if (n_words == max_words) {
4110 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4111 max_words);
4112 return -EINVAL; /* ran out of words[] before bytes */
4113 }
4114
4115 if (*end)
4116 *end++ = '\0';
4117 words[n_words++] = buf;
4118 buf = end;
4119 }
4120
4121 return n_words;
4122 }
4123
4124 enum intel_pipe_crc_object {
4125 PIPE_CRC_OBJECT_PIPE,
4126 };
4127
4128 static const char * const pipe_crc_objects[] = {
4129 "pipe",
4130 };
4131
4132 static int
4133 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4134 {
4135 int i;
4136
4137 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4138 if (!strcmp(buf, pipe_crc_objects[i])) {
4139 *o = i;
4140 return 0;
4141 }
4142
4143 return -EINVAL;
4144 }
4145
4146 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4147 {
4148 const char name = buf[0];
4149
4150 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4151 return -EINVAL;
4152
4153 *pipe = name - 'A';
4154
4155 return 0;
4156 }
4157
4158 static int
4159 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4160 {
4161 int i;
4162
4163 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4164 if (!strcmp(buf, pipe_crc_sources[i])) {
4165 *s = i;
4166 return 0;
4167 }
4168
4169 return -EINVAL;
4170 }
4171
4172 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4173 {
4174 #define N_WORDS 3
4175 int n_words;
4176 char *words[N_WORDS];
4177 enum pipe pipe;
4178 enum intel_pipe_crc_object object;
4179 enum intel_pipe_crc_source source;
4180
4181 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4182 if (n_words != N_WORDS) {
4183 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4184 N_WORDS);
4185 return -EINVAL;
4186 }
4187
4188 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4189 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4190 return -EINVAL;
4191 }
4192
4193 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4194 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4195 return -EINVAL;
4196 }
4197
4198 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4199 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4200 return -EINVAL;
4201 }
4202
4203 return pipe_crc_set_source(dev, pipe, source);
4204 }
4205
4206 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4207 size_t len, loff_t *offp)
4208 {
4209 struct seq_file *m = file->private_data;
4210 struct drm_device *dev = m->private;
4211 char *tmpbuf;
4212 int ret;
4213
4214 if (len == 0)
4215 return 0;
4216
4217 if (len > PAGE_SIZE - 1) {
4218 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4219 PAGE_SIZE);
4220 return -E2BIG;
4221 }
4222
4223 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4224 if (!tmpbuf)
4225 return -ENOMEM;
4226
4227 if (copy_from_user(tmpbuf, ubuf, len)) {
4228 ret = -EFAULT;
4229 goto out;
4230 }
4231 tmpbuf[len] = '\0';
4232
4233 ret = display_crc_ctl_parse(dev, tmpbuf, len);
4234
4235 out:
4236 kfree(tmpbuf);
4237 if (ret < 0)
4238 return ret;
4239
4240 *offp += len;
4241 return len;
4242 }
4243
4244 static const struct file_operations i915_display_crc_ctl_fops = {
4245 .owner = THIS_MODULE,
4246 .open = display_crc_ctl_open,
4247 .read = seq_read,
4248 .llseek = seq_lseek,
4249 .release = single_release,
4250 .write = display_crc_ctl_write
4251 };
4252
4253 static ssize_t i915_displayport_test_active_write(struct file *file,
4254 const char __user *ubuf,
4255 size_t len, loff_t *offp)
4256 {
4257 char *input_buffer;
4258 int status = 0;
4259 struct drm_device *dev;
4260 struct drm_connector *connector;
4261 struct list_head *connector_list;
4262 struct intel_dp *intel_dp;
4263 int val = 0;
4264
4265 dev = ((struct seq_file *)file->private_data)->private;
4266
4267 connector_list = &dev->mode_config.connector_list;
4268
4269 if (len == 0)
4270 return 0;
4271
4272 input_buffer = kmalloc(len + 1, GFP_KERNEL);
4273 if (!input_buffer)
4274 return -ENOMEM;
4275
4276 if (copy_from_user(input_buffer, ubuf, len)) {
4277 status = -EFAULT;
4278 goto out;
4279 }
4280
4281 input_buffer[len] = '\0';
4282 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4283
4284 list_for_each_entry(connector, connector_list, head) {
4285
4286 if (connector->connector_type !=
4287 DRM_MODE_CONNECTOR_DisplayPort)
4288 continue;
4289
4290 if (connector->status == connector_status_connected &&
4291 connector->encoder != NULL) {
4292 intel_dp = enc_to_intel_dp(connector->encoder);
4293 status = kstrtoint(input_buffer, 10, &val);
4294 if (status < 0)
4295 goto out;
4296 DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4297 /* To prevent erroneous activation of the compliance
4298 * testing code, only accept an actual value of 1 here
4299 */
4300 if (val == 1)
4301 intel_dp->compliance_test_active = 1;
4302 else
4303 intel_dp->compliance_test_active = 0;
4304 }
4305 }
4306 out:
4307 kfree(input_buffer);
4308 if (status < 0)
4309 return status;
4310
4311 *offp += len;
4312 return len;
4313 }
4314
4315 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4316 {
4317 struct drm_device *dev = m->private;
4318 struct drm_connector *connector;
4319 struct list_head *connector_list = &dev->mode_config.connector_list;
4320 struct intel_dp *intel_dp;
4321
4322 list_for_each_entry(connector, connector_list, head) {
4323
4324 if (connector->connector_type !=
4325 DRM_MODE_CONNECTOR_DisplayPort)
4326 continue;
4327
4328 if (connector->status == connector_status_connected &&
4329 connector->encoder != NULL) {
4330 intel_dp = enc_to_intel_dp(connector->encoder);
4331 if (intel_dp->compliance_test_active)
4332 seq_puts(m, "1");
4333 else
4334 seq_puts(m, "0");
4335 } else
4336 seq_puts(m, "0");
4337 }
4338
4339 return 0;
4340 }
4341
4342 static int i915_displayport_test_active_open(struct inode *inode,
4343 struct file *file)
4344 {
4345 struct drm_device *dev = inode->i_private;
4346
4347 return single_open(file, i915_displayport_test_active_show, dev);
4348 }
4349
4350 static const struct file_operations i915_displayport_test_active_fops = {
4351 .owner = THIS_MODULE,
4352 .open = i915_displayport_test_active_open,
4353 .read = seq_read,
4354 .llseek = seq_lseek,
4355 .release = single_release,
4356 .write = i915_displayport_test_active_write
4357 };
4358
4359 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4360 {
4361 struct drm_device *dev = m->private;
4362 struct drm_connector *connector;
4363 struct list_head *connector_list = &dev->mode_config.connector_list;
4364 struct intel_dp *intel_dp;
4365
4366 list_for_each_entry(connector, connector_list, head) {
4367
4368 if (connector->connector_type !=
4369 DRM_MODE_CONNECTOR_DisplayPort)
4370 continue;
4371
4372 if (connector->status == connector_status_connected &&
4373 connector->encoder != NULL) {
4374 intel_dp = enc_to_intel_dp(connector->encoder);
4375 seq_printf(m, "%lx", intel_dp->compliance_test_data);
4376 } else
4377 seq_puts(m, "0");
4378 }
4379
4380 return 0;
4381 }
4382 static int i915_displayport_test_data_open(struct inode *inode,
4383 struct file *file)
4384 {
4385 struct drm_device *dev = inode->i_private;
4386
4387 return single_open(file, i915_displayport_test_data_show, dev);
4388 }
4389
4390 static const struct file_operations i915_displayport_test_data_fops = {
4391 .owner = THIS_MODULE,
4392 .open = i915_displayport_test_data_open,
4393 .read = seq_read,
4394 .llseek = seq_lseek,
4395 .release = single_release
4396 };
4397
4398 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4399 {
4400 struct drm_device *dev = m->private;
4401 struct drm_connector *connector;
4402 struct list_head *connector_list = &dev->mode_config.connector_list;
4403 struct intel_dp *intel_dp;
4404
4405 list_for_each_entry(connector, connector_list, head) {
4406
4407 if (connector->connector_type !=
4408 DRM_MODE_CONNECTOR_DisplayPort)
4409 continue;
4410
4411 if (connector->status == connector_status_connected &&
4412 connector->encoder != NULL) {
4413 intel_dp = enc_to_intel_dp(connector->encoder);
4414 seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4415 } else
4416 seq_puts(m, "0");
4417 }
4418
4419 return 0;
4420 }
4421
4422 static int i915_displayport_test_type_open(struct inode *inode,
4423 struct file *file)
4424 {
4425 struct drm_device *dev = inode->i_private;
4426
4427 return single_open(file, i915_displayport_test_type_show, dev);
4428 }
4429
4430 static const struct file_operations i915_displayport_test_type_fops = {
4431 .owner = THIS_MODULE,
4432 .open = i915_displayport_test_type_open,
4433 .read = seq_read,
4434 .llseek = seq_lseek,
4435 .release = single_release
4436 };
4437
4438 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4439 {
4440 struct drm_device *dev = m->private;
4441 int level;
4442 int num_levels;
4443
4444 if (IS_CHERRYVIEW(dev))
4445 num_levels = 3;
4446 else if (IS_VALLEYVIEW(dev))
4447 num_levels = 1;
4448 else
4449 num_levels = ilk_wm_max_level(dev) + 1;
4450
4451 drm_modeset_lock_all(dev);
4452
4453 for (level = 0; level < num_levels; level++) {
4454 unsigned int latency = wm[level];
4455
4456 /*
4457 * - WM1+ latency values in 0.5us units
4458 * - latencies are in us on gen9/vlv/chv
4459 */
4460 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4461 IS_CHERRYVIEW(dev))
4462 latency *= 10;
4463 else if (level > 0)
4464 latency *= 5;
4465
4466 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4467 level, wm[level], latency / 10, latency % 10);
4468 }
4469
4470 drm_modeset_unlock_all(dev);
4471 }
4472
4473 static int pri_wm_latency_show(struct seq_file *m, void *data)
4474 {
4475 struct drm_device *dev = m->private;
4476 struct drm_i915_private *dev_priv = dev->dev_private;
4477 const uint16_t *latencies;
4478
4479 if (INTEL_INFO(dev)->gen >= 9)
4480 latencies = dev_priv->wm.skl_latency;
4481 else
4482 latencies = to_i915(dev)->wm.pri_latency;
4483
4484 wm_latency_show(m, latencies);
4485
4486 return 0;
4487 }
4488
4489 static int spr_wm_latency_show(struct seq_file *m, void *data)
4490 {
4491 struct drm_device *dev = m->private;
4492 struct drm_i915_private *dev_priv = dev->dev_private;
4493 const uint16_t *latencies;
4494
4495 if (INTEL_INFO(dev)->gen >= 9)
4496 latencies = dev_priv->wm.skl_latency;
4497 else
4498 latencies = to_i915(dev)->wm.spr_latency;
4499
4500 wm_latency_show(m, latencies);
4501
4502 return 0;
4503 }
4504
4505 static int cur_wm_latency_show(struct seq_file *m, void *data)
4506 {
4507 struct drm_device *dev = m->private;
4508 struct drm_i915_private *dev_priv = dev->dev_private;
4509 const uint16_t *latencies;
4510
4511 if (INTEL_INFO(dev)->gen >= 9)
4512 latencies = dev_priv->wm.skl_latency;
4513 else
4514 latencies = to_i915(dev)->wm.cur_latency;
4515
4516 wm_latency_show(m, latencies);
4517
4518 return 0;
4519 }
4520
4521 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4522 {
4523 struct drm_device *dev = inode->i_private;
4524
4525 if (INTEL_INFO(dev)->gen < 5)
4526 return -ENODEV;
4527
4528 return single_open(file, pri_wm_latency_show, dev);
4529 }
4530
4531 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4532 {
4533 struct drm_device *dev = inode->i_private;
4534
4535 if (HAS_GMCH_DISPLAY(dev))
4536 return -ENODEV;
4537
4538 return single_open(file, spr_wm_latency_show, dev);
4539 }
4540
4541 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4542 {
4543 struct drm_device *dev = inode->i_private;
4544
4545 if (HAS_GMCH_DISPLAY(dev))
4546 return -ENODEV;
4547
4548 return single_open(file, cur_wm_latency_show, dev);
4549 }
4550
4551 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4552 size_t len, loff_t *offp, uint16_t wm[8])
4553 {
4554 struct seq_file *m = file->private_data;
4555 struct drm_device *dev = m->private;
4556 uint16_t new[8] = { 0 };
4557 int num_levels;
4558 int level;
4559 int ret;
4560 char tmp[32];
4561
4562 if (IS_CHERRYVIEW(dev))
4563 num_levels = 3;
4564 else if (IS_VALLEYVIEW(dev))
4565 num_levels = 1;
4566 else
4567 num_levels = ilk_wm_max_level(dev) + 1;
4568
4569 if (len >= sizeof(tmp))
4570 return -EINVAL;
4571
4572 if (copy_from_user(tmp, ubuf, len))
4573 return -EFAULT;
4574
4575 tmp[len] = '\0';
4576
4577 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4578 &new[0], &new[1], &new[2], &new[3],
4579 &new[4], &new[5], &new[6], &new[7]);
4580 if (ret != num_levels)
4581 return -EINVAL;
4582
4583 drm_modeset_lock_all(dev);
4584
4585 for (level = 0; level < num_levels; level++)
4586 wm[level] = new[level];
4587
4588 drm_modeset_unlock_all(dev);
4589
4590 return len;
4591 }
4592
4593
4594 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4595 size_t len, loff_t *offp)
4596 {
4597 struct seq_file *m = file->private_data;
4598 struct drm_device *dev = m->private;
4599 struct drm_i915_private *dev_priv = dev->dev_private;
4600 uint16_t *latencies;
4601
4602 if (INTEL_INFO(dev)->gen >= 9)
4603 latencies = dev_priv->wm.skl_latency;
4604 else
4605 latencies = to_i915(dev)->wm.pri_latency;
4606
4607 return wm_latency_write(file, ubuf, len, offp, latencies);
4608 }
4609
4610 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4611 size_t len, loff_t *offp)
4612 {
4613 struct seq_file *m = file->private_data;
4614 struct drm_device *dev = m->private;
4615 struct drm_i915_private *dev_priv = dev->dev_private;
4616 uint16_t *latencies;
4617
4618 if (INTEL_INFO(dev)->gen >= 9)
4619 latencies = dev_priv->wm.skl_latency;
4620 else
4621 latencies = to_i915(dev)->wm.spr_latency;
4622
4623 return wm_latency_write(file, ubuf, len, offp, latencies);
4624 }
4625
4626 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4627 size_t len, loff_t *offp)
4628 {
4629 struct seq_file *m = file->private_data;
4630 struct drm_device *dev = m->private;
4631 struct drm_i915_private *dev_priv = dev->dev_private;
4632 uint16_t *latencies;
4633
4634 if (INTEL_INFO(dev)->gen >= 9)
4635 latencies = dev_priv->wm.skl_latency;
4636 else
4637 latencies = to_i915(dev)->wm.cur_latency;
4638
4639 return wm_latency_write(file, ubuf, len, offp, latencies);
4640 }
4641
4642 static const struct file_operations i915_pri_wm_latency_fops = {
4643 .owner = THIS_MODULE,
4644 .open = pri_wm_latency_open,
4645 .read = seq_read,
4646 .llseek = seq_lseek,
4647 .release = single_release,
4648 .write = pri_wm_latency_write
4649 };
4650
4651 static const struct file_operations i915_spr_wm_latency_fops = {
4652 .owner = THIS_MODULE,
4653 .open = spr_wm_latency_open,
4654 .read = seq_read,
4655 .llseek = seq_lseek,
4656 .release = single_release,
4657 .write = spr_wm_latency_write
4658 };
4659
4660 static const struct file_operations i915_cur_wm_latency_fops = {
4661 .owner = THIS_MODULE,
4662 .open = cur_wm_latency_open,
4663 .read = seq_read,
4664 .llseek = seq_lseek,
4665 .release = single_release,
4666 .write = cur_wm_latency_write
4667 };
4668
4669 static int
4670 i915_wedged_get(void *data, u64 *val)
4671 {
4672 struct drm_device *dev = data;
4673 struct drm_i915_private *dev_priv = dev->dev_private;
4674
4675 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4676
4677 return 0;
4678 }
4679
4680 static int
4681 i915_wedged_set(void *data, u64 val)
4682 {
4683 struct drm_device *dev = data;
4684 struct drm_i915_private *dev_priv = dev->dev_private;
4685
4686 /*
4687 * There is no safeguard against this debugfs entry colliding
4688 * with the hangcheck calling same i915_handle_error() in
4689 * parallel, causing an explosion. For now we assume that the
4690 * test harness is responsible enough not to inject gpu hangs
4691 * while it is writing to 'i915_wedged'
4692 */
4693
4694 if (i915_reset_in_progress(&dev_priv->gpu_error))
4695 return -EAGAIN;
4696
4697 intel_runtime_pm_get(dev_priv);
4698
4699 i915_handle_error(dev, val,
4700 "Manually setting wedged to %llu", val);
4701
4702 intel_runtime_pm_put(dev_priv);
4703
4704 return 0;
4705 }
4706
4707 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4708 i915_wedged_get, i915_wedged_set,
4709 "%llu\n");
4710
4711 static int
4712 i915_ring_stop_get(void *data, u64 *val)
4713 {
4714 struct drm_device *dev = data;
4715 struct drm_i915_private *dev_priv = dev->dev_private;
4716
4717 *val = dev_priv->gpu_error.stop_rings;
4718
4719 return 0;
4720 }
4721
4722 static int
4723 i915_ring_stop_set(void *data, u64 val)
4724 {
4725 struct drm_device *dev = data;
4726 struct drm_i915_private *dev_priv = dev->dev_private;
4727 int ret;
4728
4729 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4730
4731 ret = mutex_lock_interruptible(&dev->struct_mutex);
4732 if (ret)
4733 return ret;
4734
4735 dev_priv->gpu_error.stop_rings = val;
4736 mutex_unlock(&dev->struct_mutex);
4737
4738 return 0;
4739 }
4740
4741 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4742 i915_ring_stop_get, i915_ring_stop_set,
4743 "0x%08llx\n");
4744
4745 static int
4746 i915_ring_missed_irq_get(void *data, u64 *val)
4747 {
4748 struct drm_device *dev = data;
4749 struct drm_i915_private *dev_priv = dev->dev_private;
4750
4751 *val = dev_priv->gpu_error.missed_irq_rings;
4752 return 0;
4753 }
4754
4755 static int
4756 i915_ring_missed_irq_set(void *data, u64 val)
4757 {
4758 struct drm_device *dev = data;
4759 struct drm_i915_private *dev_priv = dev->dev_private;
4760 int ret;
4761
4762 /* Lock against concurrent debugfs callers */
4763 ret = mutex_lock_interruptible(&dev->struct_mutex);
4764 if (ret)
4765 return ret;
4766 dev_priv->gpu_error.missed_irq_rings = val;
4767 mutex_unlock(&dev->struct_mutex);
4768
4769 return 0;
4770 }
4771
4772 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4773 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4774 "0x%08llx\n");
4775
4776 static int
4777 i915_ring_test_irq_get(void *data, u64 *val)
4778 {
4779 struct drm_device *dev = data;
4780 struct drm_i915_private *dev_priv = dev->dev_private;
4781
4782 *val = dev_priv->gpu_error.test_irq_rings;
4783
4784 return 0;
4785 }
4786
4787 static int
4788 i915_ring_test_irq_set(void *data, u64 val)
4789 {
4790 struct drm_device *dev = data;
4791 struct drm_i915_private *dev_priv = dev->dev_private;
4792 int ret;
4793
4794 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4795
4796 /* Lock against concurrent debugfs callers */
4797 ret = mutex_lock_interruptible(&dev->struct_mutex);
4798 if (ret)
4799 return ret;
4800
4801 dev_priv->gpu_error.test_irq_rings = val;
4802 mutex_unlock(&dev->struct_mutex);
4803
4804 return 0;
4805 }
4806
4807 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4808 i915_ring_test_irq_get, i915_ring_test_irq_set,
4809 "0x%08llx\n");
4810
4811 #define DROP_UNBOUND 0x1
4812 #define DROP_BOUND 0x2
4813 #define DROP_RETIRE 0x4
4814 #define DROP_ACTIVE 0x8
4815 #define DROP_ALL (DROP_UNBOUND | \
4816 DROP_BOUND | \
4817 DROP_RETIRE | \
4818 DROP_ACTIVE)
4819 static int
4820 i915_drop_caches_get(void *data, u64 *val)
4821 {
4822 *val = DROP_ALL;
4823
4824 return 0;
4825 }
4826
4827 static int
4828 i915_drop_caches_set(void *data, u64 val)
4829 {
4830 struct drm_device *dev = data;
4831 struct drm_i915_private *dev_priv = dev->dev_private;
4832 int ret;
4833
4834 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4835
4836 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4837 * on ioctls on -EAGAIN. */
4838 ret = mutex_lock_interruptible(&dev->struct_mutex);
4839 if (ret)
4840 return ret;
4841
4842 if (val & DROP_ACTIVE) {
4843 ret = i915_gpu_idle(dev);
4844 if (ret)
4845 goto unlock;
4846 }
4847
4848 if (val & (DROP_RETIRE | DROP_ACTIVE))
4849 i915_gem_retire_requests(dev);
4850
4851 if (val & DROP_BOUND)
4852 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4853
4854 if (val & DROP_UNBOUND)
4855 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4856
4857 unlock:
4858 mutex_unlock(&dev->struct_mutex);
4859
4860 return ret;
4861 }
4862
4863 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4864 i915_drop_caches_get, i915_drop_caches_set,
4865 "0x%08llx\n");
4866
4867 static int
4868 i915_max_freq_get(void *data, u64 *val)
4869 {
4870 struct drm_device *dev = data;
4871 struct drm_i915_private *dev_priv = dev->dev_private;
4872 int ret;
4873
4874 if (INTEL_INFO(dev)->gen < 6)
4875 return -ENODEV;
4876
4877 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4878
4879 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4880 if (ret)
4881 return ret;
4882
4883 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4884 mutex_unlock(&dev_priv->rps.hw_lock);
4885
4886 return 0;
4887 }
4888
4889 static int
4890 i915_max_freq_set(void *data, u64 val)
4891 {
4892 struct drm_device *dev = data;
4893 struct drm_i915_private *dev_priv = dev->dev_private;
4894 u32 hw_max, hw_min;
4895 int ret;
4896
4897 if (INTEL_INFO(dev)->gen < 6)
4898 return -ENODEV;
4899
4900 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4901
4902 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4903
4904 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4905 if (ret)
4906 return ret;
4907
4908 /*
4909 * Turbo will still be enabled, but won't go above the set value.
4910 */
4911 val = intel_freq_opcode(dev_priv, val);
4912
4913 hw_max = dev_priv->rps.max_freq;
4914 hw_min = dev_priv->rps.min_freq;
4915
4916 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4917 mutex_unlock(&dev_priv->rps.hw_lock);
4918 return -EINVAL;
4919 }
4920
4921 dev_priv->rps.max_freq_softlimit = val;
4922
4923 intel_set_rps(dev, val);
4924
4925 mutex_unlock(&dev_priv->rps.hw_lock);
4926
4927 return 0;
4928 }
4929
4930 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4931 i915_max_freq_get, i915_max_freq_set,
4932 "%llu\n");
4933
4934 static int
4935 i915_min_freq_get(void *data, u64 *val)
4936 {
4937 struct drm_device *dev = data;
4938 struct drm_i915_private *dev_priv = dev->dev_private;
4939 int ret;
4940
4941 if (INTEL_INFO(dev)->gen < 6)
4942 return -ENODEV;
4943
4944 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4945
4946 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4947 if (ret)
4948 return ret;
4949
4950 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4951 mutex_unlock(&dev_priv->rps.hw_lock);
4952
4953 return 0;
4954 }
4955
4956 static int
4957 i915_min_freq_set(void *data, u64 val)
4958 {
4959 struct drm_device *dev = data;
4960 struct drm_i915_private *dev_priv = dev->dev_private;
4961 u32 hw_max, hw_min;
4962 int ret;
4963
4964 if (INTEL_INFO(dev)->gen < 6)
4965 return -ENODEV;
4966
4967 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4968
4969 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4970
4971 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4972 if (ret)
4973 return ret;
4974
4975 /*
4976 * Turbo will still be enabled, but won't go below the set value.
4977 */
4978 val = intel_freq_opcode(dev_priv, val);
4979
4980 hw_max = dev_priv->rps.max_freq;
4981 hw_min = dev_priv->rps.min_freq;
4982
4983 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4984 mutex_unlock(&dev_priv->rps.hw_lock);
4985 return -EINVAL;
4986 }
4987
4988 dev_priv->rps.min_freq_softlimit = val;
4989
4990 intel_set_rps(dev, val);
4991
4992 mutex_unlock(&dev_priv->rps.hw_lock);
4993
4994 return 0;
4995 }
4996
4997 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4998 i915_min_freq_get, i915_min_freq_set,
4999 "%llu\n");
5000
5001 static int
5002 i915_cache_sharing_get(void *data, u64 *val)
5003 {
5004 struct drm_device *dev = data;
5005 struct drm_i915_private *dev_priv = dev->dev_private;
5006 u32 snpcr;
5007 int ret;
5008
5009 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5010 return -ENODEV;
5011
5012 ret = mutex_lock_interruptible(&dev->struct_mutex);
5013 if (ret)
5014 return ret;
5015 intel_runtime_pm_get(dev_priv);
5016
5017 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5018
5019 intel_runtime_pm_put(dev_priv);
5020 mutex_unlock(&dev_priv->dev->struct_mutex);
5021
5022 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5023
5024 return 0;
5025 }
5026
5027 static int
5028 i915_cache_sharing_set(void *data, u64 val)
5029 {
5030 struct drm_device *dev = data;
5031 struct drm_i915_private *dev_priv = dev->dev_private;
5032 u32 snpcr;
5033
5034 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5035 return -ENODEV;
5036
5037 if (val > 3)
5038 return -EINVAL;
5039
5040 intel_runtime_pm_get(dev_priv);
5041 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5042
5043 /* Update the cache sharing policy here as well */
5044 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5045 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5046 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5047 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5048
5049 intel_runtime_pm_put(dev_priv);
5050 return 0;
5051 }
5052
5053 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5054 i915_cache_sharing_get, i915_cache_sharing_set,
5055 "%llu\n");
5056
5057 struct sseu_dev_status {
5058 unsigned int slice_total;
5059 unsigned int subslice_total;
5060 unsigned int subslice_per_slice;
5061 unsigned int eu_total;
5062 unsigned int eu_per_subslice;
5063 };
5064
5065 static void cherryview_sseu_device_status(struct drm_device *dev,
5066 struct sseu_dev_status *stat)
5067 {
5068 struct drm_i915_private *dev_priv = dev->dev_private;
5069 int ss_max = 2;
5070 int ss;
5071 u32 sig1[ss_max], sig2[ss_max];
5072
5073 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5074 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5075 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5076 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5077
5078 for (ss = 0; ss < ss_max; ss++) {
5079 unsigned int eu_cnt;
5080
5081 if (sig1[ss] & CHV_SS_PG_ENABLE)
5082 /* skip disabled subslice */
5083 continue;
5084
5085 stat->slice_total = 1;
5086 stat->subslice_per_slice++;
5087 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5088 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5089 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5090 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5091 stat->eu_total += eu_cnt;
5092 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5093 }
5094 stat->subslice_total = stat->subslice_per_slice;
5095 }
5096
5097 static void gen9_sseu_device_status(struct drm_device *dev,
5098 struct sseu_dev_status *stat)
5099 {
5100 struct drm_i915_private *dev_priv = dev->dev_private;
5101 int s_max = 3, ss_max = 4;
5102 int s, ss;
5103 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5104
5105 /* BXT has a single slice and at most 3 subslices. */
5106 if (IS_BROXTON(dev)) {
5107 s_max = 1;
5108 ss_max = 3;
5109 }
5110
5111 for (s = 0; s < s_max; s++) {
5112 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5113 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5114 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5115 }
5116
5117 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5118 GEN9_PGCTL_SSA_EU19_ACK |
5119 GEN9_PGCTL_SSA_EU210_ACK |
5120 GEN9_PGCTL_SSA_EU311_ACK;
5121 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5122 GEN9_PGCTL_SSB_EU19_ACK |
5123 GEN9_PGCTL_SSB_EU210_ACK |
5124 GEN9_PGCTL_SSB_EU311_ACK;
5125
5126 for (s = 0; s < s_max; s++) {
5127 unsigned int ss_cnt = 0;
5128
5129 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5130 /* skip disabled slice */
5131 continue;
5132
5133 stat->slice_total++;
5134
5135 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5136 ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5137
5138 for (ss = 0; ss < ss_max; ss++) {
5139 unsigned int eu_cnt;
5140
5141 if (IS_BROXTON(dev) &&
5142 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5143 /* skip disabled subslice */
5144 continue;
5145
5146 if (IS_BROXTON(dev))
5147 ss_cnt++;
5148
5149 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5150 eu_mask[ss%2]);
5151 stat->eu_total += eu_cnt;
5152 stat->eu_per_subslice = max(stat->eu_per_subslice,
5153 eu_cnt);
5154 }
5155
5156 stat->subslice_total += ss_cnt;
5157 stat->subslice_per_slice = max(stat->subslice_per_slice,
5158 ss_cnt);
5159 }
5160 }
5161
5162 static void broadwell_sseu_device_status(struct drm_device *dev,
5163 struct sseu_dev_status *stat)
5164 {
5165 struct drm_i915_private *dev_priv = dev->dev_private;
5166 int s;
5167 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5168
5169 stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5170
5171 if (stat->slice_total) {
5172 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5173 stat->subslice_total = stat->slice_total *
5174 stat->subslice_per_slice;
5175 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5176 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5177
5178 /* subtract fused off EU(s) from enabled slice(s) */
5179 for (s = 0; s < stat->slice_total; s++) {
5180 u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5181
5182 stat->eu_total -= hweight8(subslice_7eu);
5183 }
5184 }
5185 }
5186
5187 static int i915_sseu_status(struct seq_file *m, void *unused)
5188 {
5189 struct drm_info_node *node = (struct drm_info_node *) m->private;
5190 struct drm_device *dev = node->minor->dev;
5191 struct sseu_dev_status stat;
5192
5193 if (INTEL_INFO(dev)->gen < 8)
5194 return -ENODEV;
5195
5196 seq_puts(m, "SSEU Device Info\n");
5197 seq_printf(m, " Available Slice Total: %u\n",
5198 INTEL_INFO(dev)->slice_total);
5199 seq_printf(m, " Available Subslice Total: %u\n",
5200 INTEL_INFO(dev)->subslice_total);
5201 seq_printf(m, " Available Subslice Per Slice: %u\n",
5202 INTEL_INFO(dev)->subslice_per_slice);
5203 seq_printf(m, " Available EU Total: %u\n",
5204 INTEL_INFO(dev)->eu_total);
5205 seq_printf(m, " Available EU Per Subslice: %u\n",
5206 INTEL_INFO(dev)->eu_per_subslice);
5207 seq_printf(m, " Has Slice Power Gating: %s\n",
5208 yesno(INTEL_INFO(dev)->has_slice_pg));
5209 seq_printf(m, " Has Subslice Power Gating: %s\n",
5210 yesno(INTEL_INFO(dev)->has_subslice_pg));
5211 seq_printf(m, " Has EU Power Gating: %s\n",
5212 yesno(INTEL_INFO(dev)->has_eu_pg));
5213
5214 seq_puts(m, "SSEU Device Status\n");
5215 memset(&stat, 0, sizeof(stat));
5216 if (IS_CHERRYVIEW(dev)) {
5217 cherryview_sseu_device_status(dev, &stat);
5218 } else if (IS_BROADWELL(dev)) {
5219 broadwell_sseu_device_status(dev, &stat);
5220 } else if (INTEL_INFO(dev)->gen >= 9) {
5221 gen9_sseu_device_status(dev, &stat);
5222 }
5223 seq_printf(m, " Enabled Slice Total: %u\n",
5224 stat.slice_total);
5225 seq_printf(m, " Enabled Subslice Total: %u\n",
5226 stat.subslice_total);
5227 seq_printf(m, " Enabled Subslice Per Slice: %u\n",
5228 stat.subslice_per_slice);
5229 seq_printf(m, " Enabled EU Total: %u\n",
5230 stat.eu_total);
5231 seq_printf(m, " Enabled EU Per Subslice: %u\n",
5232 stat.eu_per_subslice);
5233
5234 return 0;
5235 }
5236
5237 static int i915_forcewake_open(struct inode *inode, struct file *file)
5238 {
5239 struct drm_device *dev = inode->i_private;
5240 struct drm_i915_private *dev_priv = dev->dev_private;
5241
5242 if (INTEL_INFO(dev)->gen < 6)
5243 return 0;
5244
5245 intel_runtime_pm_get(dev_priv);
5246 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5247
5248 return 0;
5249 }
5250
5251 static int i915_forcewake_release(struct inode *inode, struct file *file)
5252 {
5253 struct drm_device *dev = inode->i_private;
5254 struct drm_i915_private *dev_priv = dev->dev_private;
5255
5256 if (INTEL_INFO(dev)->gen < 6)
5257 return 0;
5258
5259 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5260 intel_runtime_pm_put(dev_priv);
5261
5262 return 0;
5263 }
5264
5265 static const struct file_operations i915_forcewake_fops = {
5266 .owner = THIS_MODULE,
5267 .open = i915_forcewake_open,
5268 .release = i915_forcewake_release,
5269 };
5270
5271 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5272 {
5273 struct drm_device *dev = minor->dev;
5274 struct dentry *ent;
5275
5276 ent = debugfs_create_file("i915_forcewake_user",
5277 S_IRUSR,
5278 root, dev,
5279 &i915_forcewake_fops);
5280 if (!ent)
5281 return -ENOMEM;
5282
5283 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5284 }
5285
5286 static int i915_debugfs_create(struct dentry *root,
5287 struct drm_minor *minor,
5288 const char *name,
5289 const struct file_operations *fops)
5290 {
5291 struct drm_device *dev = minor->dev;
5292 struct dentry *ent;
5293
5294 ent = debugfs_create_file(name,
5295 S_IRUGO | S_IWUSR,
5296 root, dev,
5297 fops);
5298 if (!ent)
5299 return -ENOMEM;
5300
5301 return drm_add_fake_info_node(minor, ent, fops);
5302 }
5303
5304 static const struct drm_info_list i915_debugfs_list[] = {
5305 {"i915_capabilities", i915_capabilities, 0},
5306 {"i915_gem_objects", i915_gem_object_info, 0},
5307 {"i915_gem_gtt", i915_gem_gtt_info, 0},
5308 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5309 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5310 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5311 {"i915_gem_stolen", i915_gem_stolen_list_info },
5312 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5313 {"i915_gem_request", i915_gem_request_info, 0},
5314 {"i915_gem_seqno", i915_gem_seqno_info, 0},
5315 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5316 {"i915_gem_interrupt", i915_interrupt_info, 0},
5317 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5318 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5319 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5320 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5321 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5322 {"i915_guc_info", i915_guc_info, 0},
5323 {"i915_guc_load_status", i915_guc_load_status_info, 0},
5324 {"i915_guc_log_dump", i915_guc_log_dump, 0},
5325 {"i915_frequency_info", i915_frequency_info, 0},
5326 {"i915_hangcheck_info", i915_hangcheck_info, 0},
5327 {"i915_drpc_info", i915_drpc_info, 0},
5328 {"i915_emon_status", i915_emon_status, 0},
5329 {"i915_ring_freq_table", i915_ring_freq_table, 0},
5330 {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5331 {"i915_fbc_status", i915_fbc_status, 0},
5332 {"i915_ips_status", i915_ips_status, 0},
5333 {"i915_sr_status", i915_sr_status, 0},
5334 {"i915_opregion", i915_opregion, 0},
5335 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5336 {"i915_context_status", i915_context_status, 0},
5337 {"i915_dump_lrc", i915_dump_lrc, 0},
5338 {"i915_execlists", i915_execlists, 0},
5339 {"i915_forcewake_domains", i915_forcewake_domains, 0},
5340 {"i915_swizzle_info", i915_swizzle_info, 0},
5341 {"i915_ppgtt_info", i915_ppgtt_info, 0},
5342 {"i915_llc", i915_llc, 0},
5343 {"i915_edp_psr_status", i915_edp_psr_status, 0},
5344 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5345 {"i915_energy_uJ", i915_energy_uJ, 0},
5346 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5347 {"i915_power_domain_info", i915_power_domain_info, 0},
5348 {"i915_dmc_info", i915_dmc_info, 0},
5349 {"i915_display_info", i915_display_info, 0},
5350 {"i915_semaphore_status", i915_semaphore_status, 0},
5351 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5352 {"i915_dp_mst_info", i915_dp_mst_info, 0},
5353 {"i915_wa_registers", i915_wa_registers, 0},
5354 {"i915_ddb_info", i915_ddb_info, 0},
5355 {"i915_sseu_status", i915_sseu_status, 0},
5356 {"i915_drrs_status", i915_drrs_status, 0},
5357 {"i915_rps_boost_info", i915_rps_boost_info, 0},
5358 };
5359 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5360
5361 static const struct i915_debugfs_files {
5362 const char *name;
5363 const struct file_operations *fops;
5364 } i915_debugfs_files[] = {
5365 {"i915_wedged", &i915_wedged_fops},
5366 {"i915_max_freq", &i915_max_freq_fops},
5367 {"i915_min_freq", &i915_min_freq_fops},
5368 {"i915_cache_sharing", &i915_cache_sharing_fops},
5369 {"i915_ring_stop", &i915_ring_stop_fops},
5370 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5371 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5372 {"i915_gem_drop_caches", &i915_drop_caches_fops},
5373 {"i915_error_state", &i915_error_state_fops},
5374 {"i915_next_seqno", &i915_next_seqno_fops},
5375 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5376 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5377 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5378 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5379 {"i915_fbc_false_color", &i915_fbc_fc_fops},
5380 {"i915_dp_test_data", &i915_displayport_test_data_fops},
5381 {"i915_dp_test_type", &i915_displayport_test_type_fops},
5382 {"i915_dp_test_active", &i915_displayport_test_active_fops}
5383 };
5384
5385 void intel_display_crc_init(struct drm_device *dev)
5386 {
5387 struct drm_i915_private *dev_priv = dev->dev_private;
5388 enum pipe pipe;
5389
5390 for_each_pipe(dev_priv, pipe) {
5391 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5392
5393 pipe_crc->opened = false;
5394 spin_lock_init(&pipe_crc->lock);
5395 init_waitqueue_head(&pipe_crc->wq);
5396 }
5397 }
5398
5399 int i915_debugfs_init(struct drm_minor *minor)
5400 {
5401 int ret, i;
5402
5403 ret = i915_forcewake_create(minor->debugfs_root, minor);
5404 if (ret)
5405 return ret;
5406
5407 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5408 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5409 if (ret)
5410 return ret;
5411 }
5412
5413 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5414 ret = i915_debugfs_create(minor->debugfs_root, minor,
5415 i915_debugfs_files[i].name,
5416 i915_debugfs_files[i].fops);
5417 if (ret)
5418 return ret;
5419 }
5420
5421 return drm_debugfs_create_files(i915_debugfs_list,
5422 I915_DEBUGFS_ENTRIES,
5423 minor->debugfs_root, minor);
5424 }
5425
5426 void i915_debugfs_cleanup(struct drm_minor *minor)
5427 {
5428 int i;
5429
5430 drm_debugfs_remove_files(i915_debugfs_list,
5431 I915_DEBUGFS_ENTRIES, minor);
5432
5433 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5434 1, minor);
5435
5436 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5437 struct drm_info_list *info_list =
5438 (struct drm_info_list *)&i915_pipe_crc_data[i];
5439
5440 drm_debugfs_remove_files(info_list, 1, minor);
5441 }
5442
5443 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5444 struct drm_info_list *info_list =
5445 (struct drm_info_list *) i915_debugfs_files[i].fops;
5446
5447 drm_debugfs_remove_files(info_list, 1, minor);
5448 }
5449 }
5450
5451 struct dpcd_block {
5452 /* DPCD dump start address. */
5453 unsigned int offset;
5454 /* DPCD dump end address, inclusive. If unset, .size will be used. */
5455 unsigned int end;
5456 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5457 size_t size;
5458 /* Only valid for eDP. */
5459 bool edp;
5460 };
5461
5462 static const struct dpcd_block i915_dpcd_debug[] = {
5463 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5464 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5465 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5466 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5467 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5468 { .offset = DP_SET_POWER },
5469 { .offset = DP_EDP_DPCD_REV },
5470 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5471 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5472 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5473 };
5474
5475 static int i915_dpcd_show(struct seq_file *m, void *data)
5476 {
5477 struct drm_connector *connector = m->private;
5478 struct intel_dp *intel_dp =
5479 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5480 uint8_t buf[16];
5481 ssize_t err;
5482 int i;
5483
5484 if (connector->status != connector_status_connected)
5485 return -ENODEV;
5486
5487 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5488 const struct dpcd_block *b = &i915_dpcd_debug[i];
5489 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5490
5491 if (b->edp &&
5492 connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5493 continue;
5494
5495 /* low tech for now */
5496 if (WARN_ON(size > sizeof(buf)))
5497 continue;
5498
5499 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5500 if (err <= 0) {
5501 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5502 size, b->offset, err);
5503 continue;
5504 }
5505
5506 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5507 }
5508
5509 return 0;
5510 }
5511
5512 static int i915_dpcd_open(struct inode *inode, struct file *file)
5513 {
5514 return single_open(file, i915_dpcd_show, inode->i_private);
5515 }
5516
5517 static const struct file_operations i915_dpcd_fops = {
5518 .owner = THIS_MODULE,
5519 .open = i915_dpcd_open,
5520 .read = seq_read,
5521 .llseek = seq_lseek,
5522 .release = single_release,
5523 };
5524
5525 /**
5526 * i915_debugfs_connector_add - add i915 specific connector debugfs files
5527 * @connector: pointer to a registered drm_connector
5528 *
5529 * Cleanup will be done by drm_connector_unregister() through a call to
5530 * drm_debugfs_connector_remove().
5531 *
5532 * Returns 0 on success, negative error codes on error.
5533 */
5534 int i915_debugfs_connector_add(struct drm_connector *connector)
5535 {
5536 struct dentry *root = connector->debugfs_entry;
5537
5538 /* The connector must have been registered beforehands. */
5539 if (!root)
5540 return -ENODEV;
5541
5542 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5543 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5544 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5545 &i915_dpcd_fops);
5546
5547 return 0;
5548 }
This page took 0.242354 seconds and 6 git commands to generate.