Merge branch 'exynos-drm-next' of git://git.kernel.org/pub/scm/linux/kernel/git/daein...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51 return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55 * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 struct dentry *ent,
59 const void *key)
60 {
61 struct drm_info_node *node;
62
63 node = kmalloc(sizeof(*node), GFP_KERNEL);
64 if (node == NULL) {
65 debugfs_remove(ent);
66 return -ENOMEM;
67 }
68
69 node->minor = minor;
70 node->dent = ent;
71 node->info_ent = (void *) key;
72
73 mutex_lock(&minor->debugfs_lock);
74 list_add(&node->list, &minor->debugfs_list);
75 mutex_unlock(&minor->debugfs_lock);
76
77 return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 struct drm_info_node *node = m->private;
83 struct drm_device *dev = node->minor->dev;
84 const struct intel_device_info *info = INTEL_INFO(dev);
85
86 seq_printf(m, "gen: %d\n", info->gen);
87 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94 return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 if (i915_gem_obj_is_pinned(obj))
100 return "p";
101 else
102 return " ";
103 }
104
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107 switch (obj->tiling_mode) {
108 default:
109 case I915_TILING_NONE: return " ";
110 case I915_TILING_X: return "X";
111 case I915_TILING_Y: return "Y";
112 }
113 }
114
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117 return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123 struct i915_vma *vma;
124 int pin_count = 0;
125
126 seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
127 &obj->base,
128 get_pin_flag(obj),
129 get_tiling_flag(obj),
130 get_global_flag(obj),
131 obj->base.size / 1024,
132 obj->base.read_domains,
133 obj->base.write_domain,
134 i915_gem_request_get_seqno(obj->last_read_req),
135 i915_gem_request_get_seqno(obj->last_write_req),
136 i915_gem_request_get_seqno(obj->last_fenced_req),
137 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
138 obj->dirty ? " dirty" : "",
139 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
140 if (obj->base.name)
141 seq_printf(m, " (name: %d)", obj->base.name);
142 list_for_each_entry(vma, &obj->vma_list, vma_link)
143 if (vma->pin_count > 0)
144 pin_count++;
145 seq_printf(m, " (pinned x %d)", pin_count);
146 if (obj->pin_display)
147 seq_printf(m, " (display)");
148 if (obj->fence_reg != I915_FENCE_REG_NONE)
149 seq_printf(m, " (fence: %d)", obj->fence_reg);
150 list_for_each_entry(vma, &obj->vma_list, vma_link) {
151 if (!i915_is_ggtt(vma->vm))
152 seq_puts(m, " (pp");
153 else
154 seq_puts(m, " (g");
155 seq_printf(m, "gtt offset: %08lx, size: %08lx, type: %u)",
156 vma->node.start, vma->node.size,
157 vma->ggtt_view.type);
158 }
159 if (obj->stolen)
160 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
161 if (obj->pin_mappable || obj->fault_mappable) {
162 char s[3], *t = s;
163 if (obj->pin_mappable)
164 *t++ = 'p';
165 if (obj->fault_mappable)
166 *t++ = 'f';
167 *t = '\0';
168 seq_printf(m, " (%s mappable)", s);
169 }
170 if (obj->last_read_req != NULL)
171 seq_printf(m, " (%s)",
172 i915_gem_request_get_ring(obj->last_read_req)->name);
173 if (obj->frontbuffer_bits)
174 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
175 }
176
177 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
178 {
179 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
180 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
181 seq_putc(m, ' ');
182 }
183
184 static int i915_gem_object_list_info(struct seq_file *m, void *data)
185 {
186 struct drm_info_node *node = m->private;
187 uintptr_t list = (uintptr_t) node->info_ent->data;
188 struct list_head *head;
189 struct drm_device *dev = node->minor->dev;
190 struct drm_i915_private *dev_priv = dev->dev_private;
191 struct i915_address_space *vm = &dev_priv->gtt.base;
192 struct i915_vma *vma;
193 size_t total_obj_size, total_gtt_size;
194 int count, ret;
195
196 ret = mutex_lock_interruptible(&dev->struct_mutex);
197 if (ret)
198 return ret;
199
200 /* FIXME: the user of this interface might want more than just GGTT */
201 switch (list) {
202 case ACTIVE_LIST:
203 seq_puts(m, "Active:\n");
204 head = &vm->active_list;
205 break;
206 case INACTIVE_LIST:
207 seq_puts(m, "Inactive:\n");
208 head = &vm->inactive_list;
209 break;
210 default:
211 mutex_unlock(&dev->struct_mutex);
212 return -EINVAL;
213 }
214
215 total_obj_size = total_gtt_size = count = 0;
216 list_for_each_entry(vma, head, mm_list) {
217 seq_printf(m, " ");
218 describe_obj(m, vma->obj);
219 seq_printf(m, "\n");
220 total_obj_size += vma->obj->base.size;
221 total_gtt_size += vma->node.size;
222 count++;
223 }
224 mutex_unlock(&dev->struct_mutex);
225
226 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
227 count, total_obj_size, total_gtt_size);
228 return 0;
229 }
230
231 static int obj_rank_by_stolen(void *priv,
232 struct list_head *A, struct list_head *B)
233 {
234 struct drm_i915_gem_object *a =
235 container_of(A, struct drm_i915_gem_object, obj_exec_link);
236 struct drm_i915_gem_object *b =
237 container_of(B, struct drm_i915_gem_object, obj_exec_link);
238
239 return a->stolen->start - b->stolen->start;
240 }
241
242 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
243 {
244 struct drm_info_node *node = m->private;
245 struct drm_device *dev = node->minor->dev;
246 struct drm_i915_private *dev_priv = dev->dev_private;
247 struct drm_i915_gem_object *obj;
248 size_t total_obj_size, total_gtt_size;
249 LIST_HEAD(stolen);
250 int count, ret;
251
252 ret = mutex_lock_interruptible(&dev->struct_mutex);
253 if (ret)
254 return ret;
255
256 total_obj_size = total_gtt_size = count = 0;
257 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
258 if (obj->stolen == NULL)
259 continue;
260
261 list_add(&obj->obj_exec_link, &stolen);
262
263 total_obj_size += obj->base.size;
264 total_gtt_size += i915_gem_obj_ggtt_size(obj);
265 count++;
266 }
267 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
268 if (obj->stolen == NULL)
269 continue;
270
271 list_add(&obj->obj_exec_link, &stolen);
272
273 total_obj_size += obj->base.size;
274 count++;
275 }
276 list_sort(NULL, &stolen, obj_rank_by_stolen);
277 seq_puts(m, "Stolen:\n");
278 while (!list_empty(&stolen)) {
279 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
280 seq_puts(m, " ");
281 describe_obj(m, obj);
282 seq_putc(m, '\n');
283 list_del_init(&obj->obj_exec_link);
284 }
285 mutex_unlock(&dev->struct_mutex);
286
287 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
288 count, total_obj_size, total_gtt_size);
289 return 0;
290 }
291
292 #define count_objects(list, member) do { \
293 list_for_each_entry(obj, list, member) { \
294 size += i915_gem_obj_ggtt_size(obj); \
295 ++count; \
296 if (obj->map_and_fenceable) { \
297 mappable_size += i915_gem_obj_ggtt_size(obj); \
298 ++mappable_count; \
299 } \
300 } \
301 } while (0)
302
303 struct file_stats {
304 struct drm_i915_file_private *file_priv;
305 int count;
306 size_t total, unbound;
307 size_t global, shared;
308 size_t active, inactive;
309 };
310
311 static int per_file_stats(int id, void *ptr, void *data)
312 {
313 struct drm_i915_gem_object *obj = ptr;
314 struct file_stats *stats = data;
315 struct i915_vma *vma;
316
317 stats->count++;
318 stats->total += obj->base.size;
319
320 if (obj->base.name || obj->base.dma_buf)
321 stats->shared += obj->base.size;
322
323 if (USES_FULL_PPGTT(obj->base.dev)) {
324 list_for_each_entry(vma, &obj->vma_list, vma_link) {
325 struct i915_hw_ppgtt *ppgtt;
326
327 if (!drm_mm_node_allocated(&vma->node))
328 continue;
329
330 if (i915_is_ggtt(vma->vm)) {
331 stats->global += obj->base.size;
332 continue;
333 }
334
335 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
336 if (ppgtt->file_priv != stats->file_priv)
337 continue;
338
339 if (obj->active) /* XXX per-vma statistic */
340 stats->active += obj->base.size;
341 else
342 stats->inactive += obj->base.size;
343
344 return 0;
345 }
346 } else {
347 if (i915_gem_obj_ggtt_bound(obj)) {
348 stats->global += obj->base.size;
349 if (obj->active)
350 stats->active += obj->base.size;
351 else
352 stats->inactive += obj->base.size;
353 return 0;
354 }
355 }
356
357 if (!list_empty(&obj->global_list))
358 stats->unbound += obj->base.size;
359
360 return 0;
361 }
362
363 #define print_file_stats(m, name, stats) \
364 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
365 name, \
366 stats.count, \
367 stats.total, \
368 stats.active, \
369 stats.inactive, \
370 stats.global, \
371 stats.shared, \
372 stats.unbound)
373
374 static void print_batch_pool_stats(struct seq_file *m,
375 struct drm_i915_private *dev_priv)
376 {
377 struct drm_i915_gem_object *obj;
378 struct file_stats stats;
379
380 memset(&stats, 0, sizeof(stats));
381
382 list_for_each_entry(obj,
383 &dev_priv->mm.batch_pool.cache_list,
384 batch_pool_list)
385 per_file_stats(0, obj, &stats);
386
387 print_file_stats(m, "batch pool", stats);
388 }
389
390 #define count_vmas(list, member) do { \
391 list_for_each_entry(vma, list, member) { \
392 size += i915_gem_obj_ggtt_size(vma->obj); \
393 ++count; \
394 if (vma->obj->map_and_fenceable) { \
395 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
396 ++mappable_count; \
397 } \
398 } \
399 } while (0)
400
401 static int i915_gem_object_info(struct seq_file *m, void* data)
402 {
403 struct drm_info_node *node = m->private;
404 struct drm_device *dev = node->minor->dev;
405 struct drm_i915_private *dev_priv = dev->dev_private;
406 u32 count, mappable_count, purgeable_count;
407 size_t size, mappable_size, purgeable_size;
408 struct drm_i915_gem_object *obj;
409 struct i915_address_space *vm = &dev_priv->gtt.base;
410 struct drm_file *file;
411 struct i915_vma *vma;
412 int ret;
413
414 ret = mutex_lock_interruptible(&dev->struct_mutex);
415 if (ret)
416 return ret;
417
418 seq_printf(m, "%u objects, %zu bytes\n",
419 dev_priv->mm.object_count,
420 dev_priv->mm.object_memory);
421
422 size = count = mappable_size = mappable_count = 0;
423 count_objects(&dev_priv->mm.bound_list, global_list);
424 seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
425 count, mappable_count, size, mappable_size);
426
427 size = count = mappable_size = mappable_count = 0;
428 count_vmas(&vm->active_list, mm_list);
429 seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
430 count, mappable_count, size, mappable_size);
431
432 size = count = mappable_size = mappable_count = 0;
433 count_vmas(&vm->inactive_list, mm_list);
434 seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
435 count, mappable_count, size, mappable_size);
436
437 size = count = purgeable_size = purgeable_count = 0;
438 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
439 size += obj->base.size, ++count;
440 if (obj->madv == I915_MADV_DONTNEED)
441 purgeable_size += obj->base.size, ++purgeable_count;
442 }
443 seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
444
445 size = count = mappable_size = mappable_count = 0;
446 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
447 if (obj->fault_mappable) {
448 size += i915_gem_obj_ggtt_size(obj);
449 ++count;
450 }
451 if (obj->pin_mappable) {
452 mappable_size += i915_gem_obj_ggtt_size(obj);
453 ++mappable_count;
454 }
455 if (obj->madv == I915_MADV_DONTNEED) {
456 purgeable_size += obj->base.size;
457 ++purgeable_count;
458 }
459 }
460 seq_printf(m, "%u purgeable objects, %zu bytes\n",
461 purgeable_count, purgeable_size);
462 seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
463 mappable_count, mappable_size);
464 seq_printf(m, "%u fault mappable objects, %zu bytes\n",
465 count, size);
466
467 seq_printf(m, "%zu [%lu] gtt total\n",
468 dev_priv->gtt.base.total,
469 dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
470
471 seq_putc(m, '\n');
472 print_batch_pool_stats(m, dev_priv);
473
474 seq_putc(m, '\n');
475 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
476 struct file_stats stats;
477 struct task_struct *task;
478
479 memset(&stats, 0, sizeof(stats));
480 stats.file_priv = file->driver_priv;
481 spin_lock(&file->table_lock);
482 idr_for_each(&file->object_idr, per_file_stats, &stats);
483 spin_unlock(&file->table_lock);
484 /*
485 * Although we have a valid reference on file->pid, that does
486 * not guarantee that the task_struct who called get_pid() is
487 * still alive (e.g. get_pid(current) => fork() => exit()).
488 * Therefore, we need to protect this ->comm access using RCU.
489 */
490 rcu_read_lock();
491 task = pid_task(file->pid, PIDTYPE_PID);
492 print_file_stats(m, task ? task->comm : "<unknown>", stats);
493 rcu_read_unlock();
494 }
495
496 mutex_unlock(&dev->struct_mutex);
497
498 return 0;
499 }
500
501 static int i915_gem_gtt_info(struct seq_file *m, void *data)
502 {
503 struct drm_info_node *node = m->private;
504 struct drm_device *dev = node->minor->dev;
505 uintptr_t list = (uintptr_t) node->info_ent->data;
506 struct drm_i915_private *dev_priv = dev->dev_private;
507 struct drm_i915_gem_object *obj;
508 size_t total_obj_size, total_gtt_size;
509 int count, ret;
510
511 ret = mutex_lock_interruptible(&dev->struct_mutex);
512 if (ret)
513 return ret;
514
515 total_obj_size = total_gtt_size = count = 0;
516 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
517 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
518 continue;
519
520 seq_puts(m, " ");
521 describe_obj(m, obj);
522 seq_putc(m, '\n');
523 total_obj_size += obj->base.size;
524 total_gtt_size += i915_gem_obj_ggtt_size(obj);
525 count++;
526 }
527
528 mutex_unlock(&dev->struct_mutex);
529
530 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
531 count, total_obj_size, total_gtt_size);
532
533 return 0;
534 }
535
536 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
537 {
538 struct drm_info_node *node = m->private;
539 struct drm_device *dev = node->minor->dev;
540 struct drm_i915_private *dev_priv = dev->dev_private;
541 struct intel_crtc *crtc;
542 int ret;
543
544 ret = mutex_lock_interruptible(&dev->struct_mutex);
545 if (ret)
546 return ret;
547
548 for_each_intel_crtc(dev, crtc) {
549 const char pipe = pipe_name(crtc->pipe);
550 const char plane = plane_name(crtc->plane);
551 struct intel_unpin_work *work;
552
553 spin_lock_irq(&dev->event_lock);
554 work = crtc->unpin_work;
555 if (work == NULL) {
556 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
557 pipe, plane);
558 } else {
559 u32 addr;
560
561 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
562 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
563 pipe, plane);
564 } else {
565 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
566 pipe, plane);
567 }
568 if (work->flip_queued_req) {
569 struct intel_engine_cs *ring =
570 i915_gem_request_get_ring(work->flip_queued_req);
571
572 seq_printf(m, "Flip queued on %s at seqno %u, next seqno %u [current breadcrumb %u], completed? %d\n",
573 ring->name,
574 i915_gem_request_get_seqno(work->flip_queued_req),
575 dev_priv->next_seqno,
576 ring->get_seqno(ring, true),
577 i915_gem_request_completed(work->flip_queued_req, true));
578 } else
579 seq_printf(m, "Flip not associated with any ring\n");
580 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
581 work->flip_queued_vblank,
582 work->flip_ready_vblank,
583 drm_vblank_count(dev, crtc->pipe));
584 if (work->enable_stall_check)
585 seq_puts(m, "Stall check enabled, ");
586 else
587 seq_puts(m, "Stall check waiting for page flip ioctl, ");
588 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
589
590 if (INTEL_INFO(dev)->gen >= 4)
591 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
592 else
593 addr = I915_READ(DSPADDR(crtc->plane));
594 seq_printf(m, "Current scanout address 0x%08x\n", addr);
595
596 if (work->pending_flip_obj) {
597 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
598 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
599 }
600 }
601 spin_unlock_irq(&dev->event_lock);
602 }
603
604 mutex_unlock(&dev->struct_mutex);
605
606 return 0;
607 }
608
609 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
610 {
611 struct drm_info_node *node = m->private;
612 struct drm_device *dev = node->minor->dev;
613 struct drm_i915_private *dev_priv = dev->dev_private;
614 struct drm_i915_gem_object *obj;
615 int count = 0;
616 int ret;
617
618 ret = mutex_lock_interruptible(&dev->struct_mutex);
619 if (ret)
620 return ret;
621
622 seq_puts(m, "cache:\n");
623 list_for_each_entry(obj,
624 &dev_priv->mm.batch_pool.cache_list,
625 batch_pool_list) {
626 seq_puts(m, " ");
627 describe_obj(m, obj);
628 seq_putc(m, '\n');
629 count++;
630 }
631
632 seq_printf(m, "total: %d\n", count);
633
634 mutex_unlock(&dev->struct_mutex);
635
636 return 0;
637 }
638
639 static int i915_gem_request_info(struct seq_file *m, void *data)
640 {
641 struct drm_info_node *node = m->private;
642 struct drm_device *dev = node->minor->dev;
643 struct drm_i915_private *dev_priv = dev->dev_private;
644 struct intel_engine_cs *ring;
645 struct drm_i915_gem_request *gem_request;
646 int ret, count, i;
647
648 ret = mutex_lock_interruptible(&dev->struct_mutex);
649 if (ret)
650 return ret;
651
652 count = 0;
653 for_each_ring(ring, dev_priv, i) {
654 if (list_empty(&ring->request_list))
655 continue;
656
657 seq_printf(m, "%s requests:\n", ring->name);
658 list_for_each_entry(gem_request,
659 &ring->request_list,
660 list) {
661 seq_printf(m, " %d @ %d\n",
662 gem_request->seqno,
663 (int) (jiffies - gem_request->emitted_jiffies));
664 }
665 count++;
666 }
667 mutex_unlock(&dev->struct_mutex);
668
669 if (count == 0)
670 seq_puts(m, "No requests\n");
671
672 return 0;
673 }
674
675 static void i915_ring_seqno_info(struct seq_file *m,
676 struct intel_engine_cs *ring)
677 {
678 if (ring->get_seqno) {
679 seq_printf(m, "Current sequence (%s): %u\n",
680 ring->name, ring->get_seqno(ring, false));
681 }
682 }
683
684 static int i915_gem_seqno_info(struct seq_file *m, void *data)
685 {
686 struct drm_info_node *node = m->private;
687 struct drm_device *dev = node->minor->dev;
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 struct intel_engine_cs *ring;
690 int ret, i;
691
692 ret = mutex_lock_interruptible(&dev->struct_mutex);
693 if (ret)
694 return ret;
695 intel_runtime_pm_get(dev_priv);
696
697 for_each_ring(ring, dev_priv, i)
698 i915_ring_seqno_info(m, ring);
699
700 intel_runtime_pm_put(dev_priv);
701 mutex_unlock(&dev->struct_mutex);
702
703 return 0;
704 }
705
706
707 static int i915_interrupt_info(struct seq_file *m, void *data)
708 {
709 struct drm_info_node *node = m->private;
710 struct drm_device *dev = node->minor->dev;
711 struct drm_i915_private *dev_priv = dev->dev_private;
712 struct intel_engine_cs *ring;
713 int ret, i, pipe;
714
715 ret = mutex_lock_interruptible(&dev->struct_mutex);
716 if (ret)
717 return ret;
718 intel_runtime_pm_get(dev_priv);
719
720 if (IS_CHERRYVIEW(dev)) {
721 seq_printf(m, "Master Interrupt Control:\t%08x\n",
722 I915_READ(GEN8_MASTER_IRQ));
723
724 seq_printf(m, "Display IER:\t%08x\n",
725 I915_READ(VLV_IER));
726 seq_printf(m, "Display IIR:\t%08x\n",
727 I915_READ(VLV_IIR));
728 seq_printf(m, "Display IIR_RW:\t%08x\n",
729 I915_READ(VLV_IIR_RW));
730 seq_printf(m, "Display IMR:\t%08x\n",
731 I915_READ(VLV_IMR));
732 for_each_pipe(dev_priv, pipe)
733 seq_printf(m, "Pipe %c stat:\t%08x\n",
734 pipe_name(pipe),
735 I915_READ(PIPESTAT(pipe)));
736
737 seq_printf(m, "Port hotplug:\t%08x\n",
738 I915_READ(PORT_HOTPLUG_EN));
739 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
740 I915_READ(VLV_DPFLIPSTAT));
741 seq_printf(m, "DPINVGTT:\t%08x\n",
742 I915_READ(DPINVGTT));
743
744 for (i = 0; i < 4; i++) {
745 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
746 i, I915_READ(GEN8_GT_IMR(i)));
747 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
748 i, I915_READ(GEN8_GT_IIR(i)));
749 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
750 i, I915_READ(GEN8_GT_IER(i)));
751 }
752
753 seq_printf(m, "PCU interrupt mask:\t%08x\n",
754 I915_READ(GEN8_PCU_IMR));
755 seq_printf(m, "PCU interrupt identity:\t%08x\n",
756 I915_READ(GEN8_PCU_IIR));
757 seq_printf(m, "PCU interrupt enable:\t%08x\n",
758 I915_READ(GEN8_PCU_IER));
759 } else if (INTEL_INFO(dev)->gen >= 8) {
760 seq_printf(m, "Master Interrupt Control:\t%08x\n",
761 I915_READ(GEN8_MASTER_IRQ));
762
763 for (i = 0; i < 4; i++) {
764 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
765 i, I915_READ(GEN8_GT_IMR(i)));
766 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
767 i, I915_READ(GEN8_GT_IIR(i)));
768 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
769 i, I915_READ(GEN8_GT_IER(i)));
770 }
771
772 for_each_pipe(dev_priv, pipe) {
773 if (!intel_display_power_is_enabled(dev_priv,
774 POWER_DOMAIN_PIPE(pipe))) {
775 seq_printf(m, "Pipe %c power disabled\n",
776 pipe_name(pipe));
777 continue;
778 }
779 seq_printf(m, "Pipe %c IMR:\t%08x\n",
780 pipe_name(pipe),
781 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
782 seq_printf(m, "Pipe %c IIR:\t%08x\n",
783 pipe_name(pipe),
784 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
785 seq_printf(m, "Pipe %c IER:\t%08x\n",
786 pipe_name(pipe),
787 I915_READ(GEN8_DE_PIPE_IER(pipe)));
788 }
789
790 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
791 I915_READ(GEN8_DE_PORT_IMR));
792 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
793 I915_READ(GEN8_DE_PORT_IIR));
794 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
795 I915_READ(GEN8_DE_PORT_IER));
796
797 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
798 I915_READ(GEN8_DE_MISC_IMR));
799 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
800 I915_READ(GEN8_DE_MISC_IIR));
801 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
802 I915_READ(GEN8_DE_MISC_IER));
803
804 seq_printf(m, "PCU interrupt mask:\t%08x\n",
805 I915_READ(GEN8_PCU_IMR));
806 seq_printf(m, "PCU interrupt identity:\t%08x\n",
807 I915_READ(GEN8_PCU_IIR));
808 seq_printf(m, "PCU interrupt enable:\t%08x\n",
809 I915_READ(GEN8_PCU_IER));
810 } else if (IS_VALLEYVIEW(dev)) {
811 seq_printf(m, "Display IER:\t%08x\n",
812 I915_READ(VLV_IER));
813 seq_printf(m, "Display IIR:\t%08x\n",
814 I915_READ(VLV_IIR));
815 seq_printf(m, "Display IIR_RW:\t%08x\n",
816 I915_READ(VLV_IIR_RW));
817 seq_printf(m, "Display IMR:\t%08x\n",
818 I915_READ(VLV_IMR));
819 for_each_pipe(dev_priv, pipe)
820 seq_printf(m, "Pipe %c stat:\t%08x\n",
821 pipe_name(pipe),
822 I915_READ(PIPESTAT(pipe)));
823
824 seq_printf(m, "Master IER:\t%08x\n",
825 I915_READ(VLV_MASTER_IER));
826
827 seq_printf(m, "Render IER:\t%08x\n",
828 I915_READ(GTIER));
829 seq_printf(m, "Render IIR:\t%08x\n",
830 I915_READ(GTIIR));
831 seq_printf(m, "Render IMR:\t%08x\n",
832 I915_READ(GTIMR));
833
834 seq_printf(m, "PM IER:\t\t%08x\n",
835 I915_READ(GEN6_PMIER));
836 seq_printf(m, "PM IIR:\t\t%08x\n",
837 I915_READ(GEN6_PMIIR));
838 seq_printf(m, "PM IMR:\t\t%08x\n",
839 I915_READ(GEN6_PMIMR));
840
841 seq_printf(m, "Port hotplug:\t%08x\n",
842 I915_READ(PORT_HOTPLUG_EN));
843 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
844 I915_READ(VLV_DPFLIPSTAT));
845 seq_printf(m, "DPINVGTT:\t%08x\n",
846 I915_READ(DPINVGTT));
847
848 } else if (!HAS_PCH_SPLIT(dev)) {
849 seq_printf(m, "Interrupt enable: %08x\n",
850 I915_READ(IER));
851 seq_printf(m, "Interrupt identity: %08x\n",
852 I915_READ(IIR));
853 seq_printf(m, "Interrupt mask: %08x\n",
854 I915_READ(IMR));
855 for_each_pipe(dev_priv, pipe)
856 seq_printf(m, "Pipe %c stat: %08x\n",
857 pipe_name(pipe),
858 I915_READ(PIPESTAT(pipe)));
859 } else {
860 seq_printf(m, "North Display Interrupt enable: %08x\n",
861 I915_READ(DEIER));
862 seq_printf(m, "North Display Interrupt identity: %08x\n",
863 I915_READ(DEIIR));
864 seq_printf(m, "North Display Interrupt mask: %08x\n",
865 I915_READ(DEIMR));
866 seq_printf(m, "South Display Interrupt enable: %08x\n",
867 I915_READ(SDEIER));
868 seq_printf(m, "South Display Interrupt identity: %08x\n",
869 I915_READ(SDEIIR));
870 seq_printf(m, "South Display Interrupt mask: %08x\n",
871 I915_READ(SDEIMR));
872 seq_printf(m, "Graphics Interrupt enable: %08x\n",
873 I915_READ(GTIER));
874 seq_printf(m, "Graphics Interrupt identity: %08x\n",
875 I915_READ(GTIIR));
876 seq_printf(m, "Graphics Interrupt mask: %08x\n",
877 I915_READ(GTIMR));
878 }
879 for_each_ring(ring, dev_priv, i) {
880 if (INTEL_INFO(dev)->gen >= 6) {
881 seq_printf(m,
882 "Graphics Interrupt mask (%s): %08x\n",
883 ring->name, I915_READ_IMR(ring));
884 }
885 i915_ring_seqno_info(m, ring);
886 }
887 intel_runtime_pm_put(dev_priv);
888 mutex_unlock(&dev->struct_mutex);
889
890 return 0;
891 }
892
893 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
894 {
895 struct drm_info_node *node = m->private;
896 struct drm_device *dev = node->minor->dev;
897 struct drm_i915_private *dev_priv = dev->dev_private;
898 int i, ret;
899
900 ret = mutex_lock_interruptible(&dev->struct_mutex);
901 if (ret)
902 return ret;
903
904 seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
905 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
906 for (i = 0; i < dev_priv->num_fence_regs; i++) {
907 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
908
909 seq_printf(m, "Fence %d, pin count = %d, object = ",
910 i, dev_priv->fence_regs[i].pin_count);
911 if (obj == NULL)
912 seq_puts(m, "unused");
913 else
914 describe_obj(m, obj);
915 seq_putc(m, '\n');
916 }
917
918 mutex_unlock(&dev->struct_mutex);
919 return 0;
920 }
921
922 static int i915_hws_info(struct seq_file *m, void *data)
923 {
924 struct drm_info_node *node = m->private;
925 struct drm_device *dev = node->minor->dev;
926 struct drm_i915_private *dev_priv = dev->dev_private;
927 struct intel_engine_cs *ring;
928 const u32 *hws;
929 int i;
930
931 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
932 hws = ring->status_page.page_addr;
933 if (hws == NULL)
934 return 0;
935
936 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
937 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
938 i * 4,
939 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
940 }
941 return 0;
942 }
943
944 static ssize_t
945 i915_error_state_write(struct file *filp,
946 const char __user *ubuf,
947 size_t cnt,
948 loff_t *ppos)
949 {
950 struct i915_error_state_file_priv *error_priv = filp->private_data;
951 struct drm_device *dev = error_priv->dev;
952 int ret;
953
954 DRM_DEBUG_DRIVER("Resetting error state\n");
955
956 ret = mutex_lock_interruptible(&dev->struct_mutex);
957 if (ret)
958 return ret;
959
960 i915_destroy_error_state(dev);
961 mutex_unlock(&dev->struct_mutex);
962
963 return cnt;
964 }
965
966 static int i915_error_state_open(struct inode *inode, struct file *file)
967 {
968 struct drm_device *dev = inode->i_private;
969 struct i915_error_state_file_priv *error_priv;
970
971 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
972 if (!error_priv)
973 return -ENOMEM;
974
975 error_priv->dev = dev;
976
977 i915_error_state_get(dev, error_priv);
978
979 file->private_data = error_priv;
980
981 return 0;
982 }
983
984 static int i915_error_state_release(struct inode *inode, struct file *file)
985 {
986 struct i915_error_state_file_priv *error_priv = file->private_data;
987
988 i915_error_state_put(error_priv);
989 kfree(error_priv);
990
991 return 0;
992 }
993
994 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
995 size_t count, loff_t *pos)
996 {
997 struct i915_error_state_file_priv *error_priv = file->private_data;
998 struct drm_i915_error_state_buf error_str;
999 loff_t tmp_pos = 0;
1000 ssize_t ret_count = 0;
1001 int ret;
1002
1003 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1004 if (ret)
1005 return ret;
1006
1007 ret = i915_error_state_to_str(&error_str, error_priv);
1008 if (ret)
1009 goto out;
1010
1011 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1012 error_str.buf,
1013 error_str.bytes);
1014
1015 if (ret_count < 0)
1016 ret = ret_count;
1017 else
1018 *pos = error_str.start + ret_count;
1019 out:
1020 i915_error_state_buf_release(&error_str);
1021 return ret ?: ret_count;
1022 }
1023
1024 static const struct file_operations i915_error_state_fops = {
1025 .owner = THIS_MODULE,
1026 .open = i915_error_state_open,
1027 .read = i915_error_state_read,
1028 .write = i915_error_state_write,
1029 .llseek = default_llseek,
1030 .release = i915_error_state_release,
1031 };
1032
1033 static int
1034 i915_next_seqno_get(void *data, u64 *val)
1035 {
1036 struct drm_device *dev = data;
1037 struct drm_i915_private *dev_priv = dev->dev_private;
1038 int ret;
1039
1040 ret = mutex_lock_interruptible(&dev->struct_mutex);
1041 if (ret)
1042 return ret;
1043
1044 *val = dev_priv->next_seqno;
1045 mutex_unlock(&dev->struct_mutex);
1046
1047 return 0;
1048 }
1049
1050 static int
1051 i915_next_seqno_set(void *data, u64 val)
1052 {
1053 struct drm_device *dev = data;
1054 int ret;
1055
1056 ret = mutex_lock_interruptible(&dev->struct_mutex);
1057 if (ret)
1058 return ret;
1059
1060 ret = i915_gem_set_seqno(dev, val);
1061 mutex_unlock(&dev->struct_mutex);
1062
1063 return ret;
1064 }
1065
1066 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1067 i915_next_seqno_get, i915_next_seqno_set,
1068 "0x%llx\n");
1069
1070 static int i915_frequency_info(struct seq_file *m, void *unused)
1071 {
1072 struct drm_info_node *node = m->private;
1073 struct drm_device *dev = node->minor->dev;
1074 struct drm_i915_private *dev_priv = dev->dev_private;
1075 int ret = 0;
1076
1077 intel_runtime_pm_get(dev_priv);
1078
1079 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1080
1081 if (IS_GEN5(dev)) {
1082 u16 rgvswctl = I915_READ16(MEMSWCTL);
1083 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1084
1085 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1086 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1087 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1088 MEMSTAT_VID_SHIFT);
1089 seq_printf(m, "Current P-state: %d\n",
1090 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1091 } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1092 IS_BROADWELL(dev)) {
1093 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1094 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1095 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1096 u32 rpmodectl, rpinclimit, rpdeclimit;
1097 u32 rpstat, cagf, reqf;
1098 u32 rpupei, rpcurup, rpprevup;
1099 u32 rpdownei, rpcurdown, rpprevdown;
1100 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1101 int max_freq;
1102
1103 /* RPSTAT1 is in the GT power well */
1104 ret = mutex_lock_interruptible(&dev->struct_mutex);
1105 if (ret)
1106 goto out;
1107
1108 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1109
1110 reqf = I915_READ(GEN6_RPNSWREQ);
1111 reqf &= ~GEN6_TURBO_DISABLE;
1112 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1113 reqf >>= 24;
1114 else
1115 reqf >>= 25;
1116 reqf *= GT_FREQUENCY_MULTIPLIER;
1117
1118 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1119 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1120 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1121
1122 rpstat = I915_READ(GEN6_RPSTAT1);
1123 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1124 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1125 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1126 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1127 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1128 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1129 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1130 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1131 else
1132 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1133 cagf *= GT_FREQUENCY_MULTIPLIER;
1134
1135 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1136 mutex_unlock(&dev->struct_mutex);
1137
1138 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1139 pm_ier = I915_READ(GEN6_PMIER);
1140 pm_imr = I915_READ(GEN6_PMIMR);
1141 pm_isr = I915_READ(GEN6_PMISR);
1142 pm_iir = I915_READ(GEN6_PMIIR);
1143 pm_mask = I915_READ(GEN6_PMINTRMSK);
1144 } else {
1145 pm_ier = I915_READ(GEN8_GT_IER(2));
1146 pm_imr = I915_READ(GEN8_GT_IMR(2));
1147 pm_isr = I915_READ(GEN8_GT_ISR(2));
1148 pm_iir = I915_READ(GEN8_GT_IIR(2));
1149 pm_mask = I915_READ(GEN6_PMINTRMSK);
1150 }
1151 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1152 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1153 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1154 seq_printf(m, "Render p-state ratio: %d\n",
1155 (gt_perf_status & 0xff00) >> 8);
1156 seq_printf(m, "Render p-state VID: %d\n",
1157 gt_perf_status & 0xff);
1158 seq_printf(m, "Render p-state limit: %d\n",
1159 rp_state_limits & 0xff);
1160 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1161 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1162 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1163 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1164 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1165 seq_printf(m, "CAGF: %dMHz\n", cagf);
1166 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1167 GEN6_CURICONT_MASK);
1168 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1169 GEN6_CURBSYTAVG_MASK);
1170 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1171 GEN6_CURBSYTAVG_MASK);
1172 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1173 GEN6_CURIAVG_MASK);
1174 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1175 GEN6_CURBSYTAVG_MASK);
1176 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1177 GEN6_CURBSYTAVG_MASK);
1178
1179 max_freq = (rp_state_cap & 0xff0000) >> 16;
1180 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1181 max_freq * GT_FREQUENCY_MULTIPLIER);
1182
1183 max_freq = (rp_state_cap & 0xff00) >> 8;
1184 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1185 max_freq * GT_FREQUENCY_MULTIPLIER);
1186
1187 max_freq = rp_state_cap & 0xff;
1188 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1189 max_freq * GT_FREQUENCY_MULTIPLIER);
1190
1191 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1192 dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1193 } else if (IS_VALLEYVIEW(dev)) {
1194 u32 freq_sts;
1195
1196 mutex_lock(&dev_priv->rps.hw_lock);
1197 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1198 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1199 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1200
1201 seq_printf(m, "max GPU freq: %d MHz\n",
1202 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1203
1204 seq_printf(m, "min GPU freq: %d MHz\n",
1205 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1206
1207 seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
1208 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1209
1210 seq_printf(m, "current GPU freq: %d MHz\n",
1211 vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1212 mutex_unlock(&dev_priv->rps.hw_lock);
1213 } else {
1214 seq_puts(m, "no P-state info available\n");
1215 }
1216
1217 out:
1218 intel_runtime_pm_put(dev_priv);
1219 return ret;
1220 }
1221
1222 static int ironlake_drpc_info(struct seq_file *m)
1223 {
1224 struct drm_info_node *node = m->private;
1225 struct drm_device *dev = node->minor->dev;
1226 struct drm_i915_private *dev_priv = dev->dev_private;
1227 u32 rgvmodectl, rstdbyctl;
1228 u16 crstandvid;
1229 int ret;
1230
1231 ret = mutex_lock_interruptible(&dev->struct_mutex);
1232 if (ret)
1233 return ret;
1234 intel_runtime_pm_get(dev_priv);
1235
1236 rgvmodectl = I915_READ(MEMMODECTL);
1237 rstdbyctl = I915_READ(RSTDBYCTL);
1238 crstandvid = I915_READ16(CRSTANDVID);
1239
1240 intel_runtime_pm_put(dev_priv);
1241 mutex_unlock(&dev->struct_mutex);
1242
1243 seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1244 "yes" : "no");
1245 seq_printf(m, "Boost freq: %d\n",
1246 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1247 MEMMODE_BOOST_FREQ_SHIFT);
1248 seq_printf(m, "HW control enabled: %s\n",
1249 rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1250 seq_printf(m, "SW control enabled: %s\n",
1251 rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1252 seq_printf(m, "Gated voltage change: %s\n",
1253 rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1254 seq_printf(m, "Starting frequency: P%d\n",
1255 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1256 seq_printf(m, "Max P-state: P%d\n",
1257 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1258 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1259 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1260 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1261 seq_printf(m, "Render standby enabled: %s\n",
1262 (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1263 seq_puts(m, "Current RS state: ");
1264 switch (rstdbyctl & RSX_STATUS_MASK) {
1265 case RSX_STATUS_ON:
1266 seq_puts(m, "on\n");
1267 break;
1268 case RSX_STATUS_RC1:
1269 seq_puts(m, "RC1\n");
1270 break;
1271 case RSX_STATUS_RC1E:
1272 seq_puts(m, "RC1E\n");
1273 break;
1274 case RSX_STATUS_RS1:
1275 seq_puts(m, "RS1\n");
1276 break;
1277 case RSX_STATUS_RS2:
1278 seq_puts(m, "RS2 (RC6)\n");
1279 break;
1280 case RSX_STATUS_RS3:
1281 seq_puts(m, "RC3 (RC6+)\n");
1282 break;
1283 default:
1284 seq_puts(m, "unknown\n");
1285 break;
1286 }
1287
1288 return 0;
1289 }
1290
1291 static int vlv_drpc_info(struct seq_file *m)
1292 {
1293
1294 struct drm_info_node *node = m->private;
1295 struct drm_device *dev = node->minor->dev;
1296 struct drm_i915_private *dev_priv = dev->dev_private;
1297 u32 rpmodectl1, rcctl1, pw_status;
1298 unsigned fw_rendercount = 0, fw_mediacount = 0;
1299
1300 intel_runtime_pm_get(dev_priv);
1301
1302 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1303 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1304 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1305
1306 intel_runtime_pm_put(dev_priv);
1307
1308 seq_printf(m, "Video Turbo Mode: %s\n",
1309 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1310 seq_printf(m, "Turbo enabled: %s\n",
1311 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1312 seq_printf(m, "HW control enabled: %s\n",
1313 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1314 seq_printf(m, "SW control enabled: %s\n",
1315 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1316 GEN6_RP_MEDIA_SW_MODE));
1317 seq_printf(m, "RC6 Enabled: %s\n",
1318 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1319 GEN6_RC_CTL_EI_MODE(1))));
1320 seq_printf(m, "Render Power Well: %s\n",
1321 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1322 seq_printf(m, "Media Power Well: %s\n",
1323 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1324
1325 seq_printf(m, "Render RC6 residency since boot: %u\n",
1326 I915_READ(VLV_GT_RENDER_RC6));
1327 seq_printf(m, "Media RC6 residency since boot: %u\n",
1328 I915_READ(VLV_GT_MEDIA_RC6));
1329
1330 spin_lock_irq(&dev_priv->uncore.lock);
1331 fw_rendercount = dev_priv->uncore.fw_rendercount;
1332 fw_mediacount = dev_priv->uncore.fw_mediacount;
1333 spin_unlock_irq(&dev_priv->uncore.lock);
1334
1335 seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1336 seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1337
1338
1339 return 0;
1340 }
1341
1342
1343 static int gen6_drpc_info(struct seq_file *m)
1344 {
1345
1346 struct drm_info_node *node = m->private;
1347 struct drm_device *dev = node->minor->dev;
1348 struct drm_i915_private *dev_priv = dev->dev_private;
1349 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1350 unsigned forcewake_count;
1351 int count = 0, ret;
1352
1353 ret = mutex_lock_interruptible(&dev->struct_mutex);
1354 if (ret)
1355 return ret;
1356 intel_runtime_pm_get(dev_priv);
1357
1358 spin_lock_irq(&dev_priv->uncore.lock);
1359 forcewake_count = dev_priv->uncore.forcewake_count;
1360 spin_unlock_irq(&dev_priv->uncore.lock);
1361
1362 if (forcewake_count) {
1363 seq_puts(m, "RC information inaccurate because somebody "
1364 "holds a forcewake reference \n");
1365 } else {
1366 /* NB: we cannot use forcewake, else we read the wrong values */
1367 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1368 udelay(10);
1369 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1370 }
1371
1372 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1373 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1374
1375 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1376 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1377 mutex_unlock(&dev->struct_mutex);
1378 mutex_lock(&dev_priv->rps.hw_lock);
1379 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1380 mutex_unlock(&dev_priv->rps.hw_lock);
1381
1382 intel_runtime_pm_put(dev_priv);
1383
1384 seq_printf(m, "Video Turbo Mode: %s\n",
1385 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1386 seq_printf(m, "HW control enabled: %s\n",
1387 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1388 seq_printf(m, "SW control enabled: %s\n",
1389 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1390 GEN6_RP_MEDIA_SW_MODE));
1391 seq_printf(m, "RC1e Enabled: %s\n",
1392 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1393 seq_printf(m, "RC6 Enabled: %s\n",
1394 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1395 seq_printf(m, "Deep RC6 Enabled: %s\n",
1396 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1397 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1398 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1399 seq_puts(m, "Current RC state: ");
1400 switch (gt_core_status & GEN6_RCn_MASK) {
1401 case GEN6_RC0:
1402 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1403 seq_puts(m, "Core Power Down\n");
1404 else
1405 seq_puts(m, "on\n");
1406 break;
1407 case GEN6_RC3:
1408 seq_puts(m, "RC3\n");
1409 break;
1410 case GEN6_RC6:
1411 seq_puts(m, "RC6\n");
1412 break;
1413 case GEN6_RC7:
1414 seq_puts(m, "RC7\n");
1415 break;
1416 default:
1417 seq_puts(m, "Unknown\n");
1418 break;
1419 }
1420
1421 seq_printf(m, "Core Power Down: %s\n",
1422 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1423
1424 /* Not exactly sure what this is */
1425 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1426 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1427 seq_printf(m, "RC6 residency since boot: %u\n",
1428 I915_READ(GEN6_GT_GFX_RC6));
1429 seq_printf(m, "RC6+ residency since boot: %u\n",
1430 I915_READ(GEN6_GT_GFX_RC6p));
1431 seq_printf(m, "RC6++ residency since boot: %u\n",
1432 I915_READ(GEN6_GT_GFX_RC6pp));
1433
1434 seq_printf(m, "RC6 voltage: %dmV\n",
1435 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1436 seq_printf(m, "RC6+ voltage: %dmV\n",
1437 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1438 seq_printf(m, "RC6++ voltage: %dmV\n",
1439 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1440 return 0;
1441 }
1442
1443 static int i915_drpc_info(struct seq_file *m, void *unused)
1444 {
1445 struct drm_info_node *node = m->private;
1446 struct drm_device *dev = node->minor->dev;
1447
1448 if (IS_VALLEYVIEW(dev))
1449 return vlv_drpc_info(m);
1450 else if (INTEL_INFO(dev)->gen >= 6)
1451 return gen6_drpc_info(m);
1452 else
1453 return ironlake_drpc_info(m);
1454 }
1455
1456 static int i915_fbc_status(struct seq_file *m, void *unused)
1457 {
1458 struct drm_info_node *node = m->private;
1459 struct drm_device *dev = node->minor->dev;
1460 struct drm_i915_private *dev_priv = dev->dev_private;
1461
1462 if (!HAS_FBC(dev)) {
1463 seq_puts(m, "FBC unsupported on this chipset\n");
1464 return 0;
1465 }
1466
1467 intel_runtime_pm_get(dev_priv);
1468
1469 if (intel_fbc_enabled(dev)) {
1470 seq_puts(m, "FBC enabled\n");
1471 } else {
1472 seq_puts(m, "FBC disabled: ");
1473 switch (dev_priv->fbc.no_fbc_reason) {
1474 case FBC_OK:
1475 seq_puts(m, "FBC actived, but currently disabled in hardware");
1476 break;
1477 case FBC_UNSUPPORTED:
1478 seq_puts(m, "unsupported by this chipset");
1479 break;
1480 case FBC_NO_OUTPUT:
1481 seq_puts(m, "no outputs");
1482 break;
1483 case FBC_STOLEN_TOO_SMALL:
1484 seq_puts(m, "not enough stolen memory");
1485 break;
1486 case FBC_UNSUPPORTED_MODE:
1487 seq_puts(m, "mode not supported");
1488 break;
1489 case FBC_MODE_TOO_LARGE:
1490 seq_puts(m, "mode too large");
1491 break;
1492 case FBC_BAD_PLANE:
1493 seq_puts(m, "FBC unsupported on plane");
1494 break;
1495 case FBC_NOT_TILED:
1496 seq_puts(m, "scanout buffer not tiled");
1497 break;
1498 case FBC_MULTIPLE_PIPES:
1499 seq_puts(m, "multiple pipes are enabled");
1500 break;
1501 case FBC_MODULE_PARAM:
1502 seq_puts(m, "disabled per module param (default off)");
1503 break;
1504 case FBC_CHIP_DEFAULT:
1505 seq_puts(m, "disabled per chip default");
1506 break;
1507 default:
1508 seq_puts(m, "unknown reason");
1509 }
1510 seq_putc(m, '\n');
1511 }
1512
1513 intel_runtime_pm_put(dev_priv);
1514
1515 return 0;
1516 }
1517
1518 static int i915_fbc_fc_get(void *data, u64 *val)
1519 {
1520 struct drm_device *dev = data;
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522
1523 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1524 return -ENODEV;
1525
1526 drm_modeset_lock_all(dev);
1527 *val = dev_priv->fbc.false_color;
1528 drm_modeset_unlock_all(dev);
1529
1530 return 0;
1531 }
1532
1533 static int i915_fbc_fc_set(void *data, u64 val)
1534 {
1535 struct drm_device *dev = data;
1536 struct drm_i915_private *dev_priv = dev->dev_private;
1537 u32 reg;
1538
1539 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1540 return -ENODEV;
1541
1542 drm_modeset_lock_all(dev);
1543
1544 reg = I915_READ(ILK_DPFC_CONTROL);
1545 dev_priv->fbc.false_color = val;
1546
1547 I915_WRITE(ILK_DPFC_CONTROL, val ?
1548 (reg | FBC_CTL_FALSE_COLOR) :
1549 (reg & ~FBC_CTL_FALSE_COLOR));
1550
1551 drm_modeset_unlock_all(dev);
1552 return 0;
1553 }
1554
1555 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1556 i915_fbc_fc_get, i915_fbc_fc_set,
1557 "%llu\n");
1558
1559 static int i915_ips_status(struct seq_file *m, void *unused)
1560 {
1561 struct drm_info_node *node = m->private;
1562 struct drm_device *dev = node->minor->dev;
1563 struct drm_i915_private *dev_priv = dev->dev_private;
1564
1565 if (!HAS_IPS(dev)) {
1566 seq_puts(m, "not supported\n");
1567 return 0;
1568 }
1569
1570 intel_runtime_pm_get(dev_priv);
1571
1572 seq_printf(m, "Enabled by kernel parameter: %s\n",
1573 yesno(i915.enable_ips));
1574
1575 if (INTEL_INFO(dev)->gen >= 8) {
1576 seq_puts(m, "Currently: unknown\n");
1577 } else {
1578 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1579 seq_puts(m, "Currently: enabled\n");
1580 else
1581 seq_puts(m, "Currently: disabled\n");
1582 }
1583
1584 intel_runtime_pm_put(dev_priv);
1585
1586 return 0;
1587 }
1588
1589 static int i915_sr_status(struct seq_file *m, void *unused)
1590 {
1591 struct drm_info_node *node = m->private;
1592 struct drm_device *dev = node->minor->dev;
1593 struct drm_i915_private *dev_priv = dev->dev_private;
1594 bool sr_enabled = false;
1595
1596 intel_runtime_pm_get(dev_priv);
1597
1598 if (HAS_PCH_SPLIT(dev))
1599 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1600 else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1601 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1602 else if (IS_I915GM(dev))
1603 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1604 else if (IS_PINEVIEW(dev))
1605 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1606
1607 intel_runtime_pm_put(dev_priv);
1608
1609 seq_printf(m, "self-refresh: %s\n",
1610 sr_enabled ? "enabled" : "disabled");
1611
1612 return 0;
1613 }
1614
1615 static int i915_emon_status(struct seq_file *m, void *unused)
1616 {
1617 struct drm_info_node *node = m->private;
1618 struct drm_device *dev = node->minor->dev;
1619 struct drm_i915_private *dev_priv = dev->dev_private;
1620 unsigned long temp, chipset, gfx;
1621 int ret;
1622
1623 if (!IS_GEN5(dev))
1624 return -ENODEV;
1625
1626 ret = mutex_lock_interruptible(&dev->struct_mutex);
1627 if (ret)
1628 return ret;
1629
1630 temp = i915_mch_val(dev_priv);
1631 chipset = i915_chipset_val(dev_priv);
1632 gfx = i915_gfx_val(dev_priv);
1633 mutex_unlock(&dev->struct_mutex);
1634
1635 seq_printf(m, "GMCH temp: %ld\n", temp);
1636 seq_printf(m, "Chipset power: %ld\n", chipset);
1637 seq_printf(m, "GFX power: %ld\n", gfx);
1638 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1639
1640 return 0;
1641 }
1642
1643 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1644 {
1645 struct drm_info_node *node = m->private;
1646 struct drm_device *dev = node->minor->dev;
1647 struct drm_i915_private *dev_priv = dev->dev_private;
1648 int ret = 0;
1649 int gpu_freq, ia_freq;
1650
1651 if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1652 seq_puts(m, "unsupported on this chipset\n");
1653 return 0;
1654 }
1655
1656 intel_runtime_pm_get(dev_priv);
1657
1658 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1659
1660 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1661 if (ret)
1662 goto out;
1663
1664 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1665
1666 for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1667 gpu_freq <= dev_priv->rps.max_freq_softlimit;
1668 gpu_freq++) {
1669 ia_freq = gpu_freq;
1670 sandybridge_pcode_read(dev_priv,
1671 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1672 &ia_freq);
1673 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1674 gpu_freq * GT_FREQUENCY_MULTIPLIER,
1675 ((ia_freq >> 0) & 0xff) * 100,
1676 ((ia_freq >> 8) & 0xff) * 100);
1677 }
1678
1679 mutex_unlock(&dev_priv->rps.hw_lock);
1680
1681 out:
1682 intel_runtime_pm_put(dev_priv);
1683 return ret;
1684 }
1685
1686 static int i915_opregion(struct seq_file *m, void *unused)
1687 {
1688 struct drm_info_node *node = m->private;
1689 struct drm_device *dev = node->minor->dev;
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1691 struct intel_opregion *opregion = &dev_priv->opregion;
1692 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1693 int ret;
1694
1695 if (data == NULL)
1696 return -ENOMEM;
1697
1698 ret = mutex_lock_interruptible(&dev->struct_mutex);
1699 if (ret)
1700 goto out;
1701
1702 if (opregion->header) {
1703 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1704 seq_write(m, data, OPREGION_SIZE);
1705 }
1706
1707 mutex_unlock(&dev->struct_mutex);
1708
1709 out:
1710 kfree(data);
1711 return 0;
1712 }
1713
1714 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1715 {
1716 struct drm_info_node *node = m->private;
1717 struct drm_device *dev = node->minor->dev;
1718 struct intel_fbdev *ifbdev = NULL;
1719 struct intel_framebuffer *fb;
1720
1721 #ifdef CONFIG_DRM_I915_FBDEV
1722 struct drm_i915_private *dev_priv = dev->dev_private;
1723
1724 ifbdev = dev_priv->fbdev;
1725 fb = to_intel_framebuffer(ifbdev->helper.fb);
1726
1727 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1728 fb->base.width,
1729 fb->base.height,
1730 fb->base.depth,
1731 fb->base.bits_per_pixel,
1732 atomic_read(&fb->base.refcount.refcount));
1733 describe_obj(m, fb->obj);
1734 seq_putc(m, '\n');
1735 #endif
1736
1737 mutex_lock(&dev->mode_config.fb_lock);
1738 list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1739 if (ifbdev && &fb->base == ifbdev->helper.fb)
1740 continue;
1741
1742 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1743 fb->base.width,
1744 fb->base.height,
1745 fb->base.depth,
1746 fb->base.bits_per_pixel,
1747 atomic_read(&fb->base.refcount.refcount));
1748 describe_obj(m, fb->obj);
1749 seq_putc(m, '\n');
1750 }
1751 mutex_unlock(&dev->mode_config.fb_lock);
1752
1753 return 0;
1754 }
1755
1756 static void describe_ctx_ringbuf(struct seq_file *m,
1757 struct intel_ringbuffer *ringbuf)
1758 {
1759 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1760 ringbuf->space, ringbuf->head, ringbuf->tail,
1761 ringbuf->last_retired_head);
1762 }
1763
1764 static int i915_context_status(struct seq_file *m, void *unused)
1765 {
1766 struct drm_info_node *node = m->private;
1767 struct drm_device *dev = node->minor->dev;
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 struct intel_engine_cs *ring;
1770 struct intel_context *ctx;
1771 int ret, i;
1772
1773 ret = mutex_lock_interruptible(&dev->struct_mutex);
1774 if (ret)
1775 return ret;
1776
1777 if (dev_priv->ips.pwrctx) {
1778 seq_puts(m, "power context ");
1779 describe_obj(m, dev_priv->ips.pwrctx);
1780 seq_putc(m, '\n');
1781 }
1782
1783 if (dev_priv->ips.renderctx) {
1784 seq_puts(m, "render context ");
1785 describe_obj(m, dev_priv->ips.renderctx);
1786 seq_putc(m, '\n');
1787 }
1788
1789 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1790 if (!i915.enable_execlists &&
1791 ctx->legacy_hw_ctx.rcs_state == NULL)
1792 continue;
1793
1794 seq_puts(m, "HW context ");
1795 describe_ctx(m, ctx);
1796 for_each_ring(ring, dev_priv, i) {
1797 if (ring->default_context == ctx)
1798 seq_printf(m, "(default context %s) ",
1799 ring->name);
1800 }
1801
1802 if (i915.enable_execlists) {
1803 seq_putc(m, '\n');
1804 for_each_ring(ring, dev_priv, i) {
1805 struct drm_i915_gem_object *ctx_obj =
1806 ctx->engine[i].state;
1807 struct intel_ringbuffer *ringbuf =
1808 ctx->engine[i].ringbuf;
1809
1810 seq_printf(m, "%s: ", ring->name);
1811 if (ctx_obj)
1812 describe_obj(m, ctx_obj);
1813 if (ringbuf)
1814 describe_ctx_ringbuf(m, ringbuf);
1815 seq_putc(m, '\n');
1816 }
1817 } else {
1818 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1819 }
1820
1821 seq_putc(m, '\n');
1822 }
1823
1824 mutex_unlock(&dev->struct_mutex);
1825
1826 return 0;
1827 }
1828
1829 static void i915_dump_lrc_obj(struct seq_file *m,
1830 struct intel_engine_cs *ring,
1831 struct drm_i915_gem_object *ctx_obj)
1832 {
1833 struct page *page;
1834 uint32_t *reg_state;
1835 int j;
1836 unsigned long ggtt_offset = 0;
1837
1838 if (ctx_obj == NULL) {
1839 seq_printf(m, "Context on %s with no gem object\n",
1840 ring->name);
1841 return;
1842 }
1843
1844 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1845 intel_execlists_ctx_id(ctx_obj));
1846
1847 if (!i915_gem_obj_ggtt_bound(ctx_obj))
1848 seq_puts(m, "\tNot bound in GGTT\n");
1849 else
1850 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1851
1852 if (i915_gem_object_get_pages(ctx_obj)) {
1853 seq_puts(m, "\tFailed to get pages for context object\n");
1854 return;
1855 }
1856
1857 page = i915_gem_object_get_page(ctx_obj, 1);
1858 if (!WARN_ON(page == NULL)) {
1859 reg_state = kmap_atomic(page);
1860
1861 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1862 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1863 ggtt_offset + 4096 + (j * 4),
1864 reg_state[j], reg_state[j + 1],
1865 reg_state[j + 2], reg_state[j + 3]);
1866 }
1867 kunmap_atomic(reg_state);
1868 }
1869
1870 seq_putc(m, '\n');
1871 }
1872
1873 static int i915_dump_lrc(struct seq_file *m, void *unused)
1874 {
1875 struct drm_info_node *node = (struct drm_info_node *) m->private;
1876 struct drm_device *dev = node->minor->dev;
1877 struct drm_i915_private *dev_priv = dev->dev_private;
1878 struct intel_engine_cs *ring;
1879 struct intel_context *ctx;
1880 int ret, i;
1881
1882 if (!i915.enable_execlists) {
1883 seq_printf(m, "Logical Ring Contexts are disabled\n");
1884 return 0;
1885 }
1886
1887 ret = mutex_lock_interruptible(&dev->struct_mutex);
1888 if (ret)
1889 return ret;
1890
1891 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1892 for_each_ring(ring, dev_priv, i) {
1893 if (ring->default_context != ctx)
1894 i915_dump_lrc_obj(m, ring,
1895 ctx->engine[i].state);
1896 }
1897 }
1898
1899 mutex_unlock(&dev->struct_mutex);
1900
1901 return 0;
1902 }
1903
1904 static int i915_execlists(struct seq_file *m, void *data)
1905 {
1906 struct drm_info_node *node = (struct drm_info_node *)m->private;
1907 struct drm_device *dev = node->minor->dev;
1908 struct drm_i915_private *dev_priv = dev->dev_private;
1909 struct intel_engine_cs *ring;
1910 u32 status_pointer;
1911 u8 read_pointer;
1912 u8 write_pointer;
1913 u32 status;
1914 u32 ctx_id;
1915 struct list_head *cursor;
1916 int ring_id, i;
1917 int ret;
1918
1919 if (!i915.enable_execlists) {
1920 seq_puts(m, "Logical Ring Contexts are disabled\n");
1921 return 0;
1922 }
1923
1924 ret = mutex_lock_interruptible(&dev->struct_mutex);
1925 if (ret)
1926 return ret;
1927
1928 intel_runtime_pm_get(dev_priv);
1929
1930 for_each_ring(ring, dev_priv, ring_id) {
1931 struct intel_ctx_submit_request *head_req = NULL;
1932 int count = 0;
1933 unsigned long flags;
1934
1935 seq_printf(m, "%s\n", ring->name);
1936
1937 status = I915_READ(RING_EXECLIST_STATUS(ring));
1938 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1939 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1940 status, ctx_id);
1941
1942 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1943 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1944
1945 read_pointer = ring->next_context_status_buffer;
1946 write_pointer = status_pointer & 0x07;
1947 if (read_pointer > write_pointer)
1948 write_pointer += 6;
1949 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
1950 read_pointer, write_pointer);
1951
1952 for (i = 0; i < 6; i++) {
1953 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
1954 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
1955
1956 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
1957 i, status, ctx_id);
1958 }
1959
1960 spin_lock_irqsave(&ring->execlist_lock, flags);
1961 list_for_each(cursor, &ring->execlist_queue)
1962 count++;
1963 head_req = list_first_entry_or_null(&ring->execlist_queue,
1964 struct intel_ctx_submit_request, execlist_link);
1965 spin_unlock_irqrestore(&ring->execlist_lock, flags);
1966
1967 seq_printf(m, "\t%d requests in queue\n", count);
1968 if (head_req) {
1969 struct drm_i915_gem_object *ctx_obj;
1970
1971 ctx_obj = head_req->ctx->engine[ring_id].state;
1972 seq_printf(m, "\tHead request id: %u\n",
1973 intel_execlists_ctx_id(ctx_obj));
1974 seq_printf(m, "\tHead request tail: %u\n",
1975 head_req->tail);
1976 }
1977
1978 seq_putc(m, '\n');
1979 }
1980
1981 intel_runtime_pm_put(dev_priv);
1982 mutex_unlock(&dev->struct_mutex);
1983
1984 return 0;
1985 }
1986
1987 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1988 {
1989 struct drm_info_node *node = m->private;
1990 struct drm_device *dev = node->minor->dev;
1991 struct drm_i915_private *dev_priv = dev->dev_private;
1992 unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1993
1994 spin_lock_irq(&dev_priv->uncore.lock);
1995 if (IS_VALLEYVIEW(dev)) {
1996 fw_rendercount = dev_priv->uncore.fw_rendercount;
1997 fw_mediacount = dev_priv->uncore.fw_mediacount;
1998 } else
1999 forcewake_count = dev_priv->uncore.forcewake_count;
2000 spin_unlock_irq(&dev_priv->uncore.lock);
2001
2002 if (IS_VALLEYVIEW(dev)) {
2003 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
2004 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
2005 } else
2006 seq_printf(m, "forcewake count = %u\n", forcewake_count);
2007
2008 return 0;
2009 }
2010
2011 static const char *swizzle_string(unsigned swizzle)
2012 {
2013 switch (swizzle) {
2014 case I915_BIT_6_SWIZZLE_NONE:
2015 return "none";
2016 case I915_BIT_6_SWIZZLE_9:
2017 return "bit9";
2018 case I915_BIT_6_SWIZZLE_9_10:
2019 return "bit9/bit10";
2020 case I915_BIT_6_SWIZZLE_9_11:
2021 return "bit9/bit11";
2022 case I915_BIT_6_SWIZZLE_9_10_11:
2023 return "bit9/bit10/bit11";
2024 case I915_BIT_6_SWIZZLE_9_17:
2025 return "bit9/bit17";
2026 case I915_BIT_6_SWIZZLE_9_10_17:
2027 return "bit9/bit10/bit17";
2028 case I915_BIT_6_SWIZZLE_UNKNOWN:
2029 return "unknown";
2030 }
2031
2032 return "bug";
2033 }
2034
2035 static int i915_swizzle_info(struct seq_file *m, void *data)
2036 {
2037 struct drm_info_node *node = m->private;
2038 struct drm_device *dev = node->minor->dev;
2039 struct drm_i915_private *dev_priv = dev->dev_private;
2040 int ret;
2041
2042 ret = mutex_lock_interruptible(&dev->struct_mutex);
2043 if (ret)
2044 return ret;
2045 intel_runtime_pm_get(dev_priv);
2046
2047 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2048 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2049 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2050 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2051
2052 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2053 seq_printf(m, "DDC = 0x%08x\n",
2054 I915_READ(DCC));
2055 seq_printf(m, "DDC2 = 0x%08x\n",
2056 I915_READ(DCC2));
2057 seq_printf(m, "C0DRB3 = 0x%04x\n",
2058 I915_READ16(C0DRB3));
2059 seq_printf(m, "C1DRB3 = 0x%04x\n",
2060 I915_READ16(C1DRB3));
2061 } else if (INTEL_INFO(dev)->gen >= 6) {
2062 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2063 I915_READ(MAD_DIMM_C0));
2064 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2065 I915_READ(MAD_DIMM_C1));
2066 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2067 I915_READ(MAD_DIMM_C2));
2068 seq_printf(m, "TILECTL = 0x%08x\n",
2069 I915_READ(TILECTL));
2070 if (INTEL_INFO(dev)->gen >= 8)
2071 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2072 I915_READ(GAMTARBMODE));
2073 else
2074 seq_printf(m, "ARB_MODE = 0x%08x\n",
2075 I915_READ(ARB_MODE));
2076 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2077 I915_READ(DISP_ARB_CTL));
2078 }
2079
2080 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2081 seq_puts(m, "L-shaped memory detected\n");
2082
2083 intel_runtime_pm_put(dev_priv);
2084 mutex_unlock(&dev->struct_mutex);
2085
2086 return 0;
2087 }
2088
2089 static int per_file_ctx(int id, void *ptr, void *data)
2090 {
2091 struct intel_context *ctx = ptr;
2092 struct seq_file *m = data;
2093 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2094
2095 if (!ppgtt) {
2096 seq_printf(m, " no ppgtt for context %d\n",
2097 ctx->user_handle);
2098 return 0;
2099 }
2100
2101 if (i915_gem_context_is_default(ctx))
2102 seq_puts(m, " default context:\n");
2103 else
2104 seq_printf(m, " context %d:\n", ctx->user_handle);
2105 ppgtt->debug_dump(ppgtt, m);
2106
2107 return 0;
2108 }
2109
2110 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2111 {
2112 struct drm_i915_private *dev_priv = dev->dev_private;
2113 struct intel_engine_cs *ring;
2114 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2115 int unused, i;
2116
2117 if (!ppgtt)
2118 return;
2119
2120 seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2121 seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2122 for_each_ring(ring, dev_priv, unused) {
2123 seq_printf(m, "%s\n", ring->name);
2124 for (i = 0; i < 4; i++) {
2125 u32 offset = 0x270 + i * 8;
2126 u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2127 pdp <<= 32;
2128 pdp |= I915_READ(ring->mmio_base + offset);
2129 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2130 }
2131 }
2132 }
2133
2134 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2135 {
2136 struct drm_i915_private *dev_priv = dev->dev_private;
2137 struct intel_engine_cs *ring;
2138 struct drm_file *file;
2139 int i;
2140
2141 if (INTEL_INFO(dev)->gen == 6)
2142 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2143
2144 for_each_ring(ring, dev_priv, i) {
2145 seq_printf(m, "%s\n", ring->name);
2146 if (INTEL_INFO(dev)->gen == 7)
2147 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2148 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2149 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2150 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2151 }
2152 if (dev_priv->mm.aliasing_ppgtt) {
2153 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2154
2155 seq_puts(m, "aliasing PPGTT:\n");
2156 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
2157
2158 ppgtt->debug_dump(ppgtt, m);
2159 }
2160
2161 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2162 struct drm_i915_file_private *file_priv = file->driver_priv;
2163
2164 seq_printf(m, "proc: %s\n",
2165 get_pid_task(file->pid, PIDTYPE_PID)->comm);
2166 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2167 }
2168 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2169 }
2170
2171 static int i915_ppgtt_info(struct seq_file *m, void *data)
2172 {
2173 struct drm_info_node *node = m->private;
2174 struct drm_device *dev = node->minor->dev;
2175 struct drm_i915_private *dev_priv = dev->dev_private;
2176
2177 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2178 if (ret)
2179 return ret;
2180 intel_runtime_pm_get(dev_priv);
2181
2182 if (INTEL_INFO(dev)->gen >= 8)
2183 gen8_ppgtt_info(m, dev);
2184 else if (INTEL_INFO(dev)->gen >= 6)
2185 gen6_ppgtt_info(m, dev);
2186
2187 intel_runtime_pm_put(dev_priv);
2188 mutex_unlock(&dev->struct_mutex);
2189
2190 return 0;
2191 }
2192
2193 static int i915_llc(struct seq_file *m, void *data)
2194 {
2195 struct drm_info_node *node = m->private;
2196 struct drm_device *dev = node->minor->dev;
2197 struct drm_i915_private *dev_priv = dev->dev_private;
2198
2199 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2200 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2201 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2202
2203 return 0;
2204 }
2205
2206 static int i915_edp_psr_status(struct seq_file *m, void *data)
2207 {
2208 struct drm_info_node *node = m->private;
2209 struct drm_device *dev = node->minor->dev;
2210 struct drm_i915_private *dev_priv = dev->dev_private;
2211 u32 psrperf = 0;
2212 u32 stat[3];
2213 enum pipe pipe;
2214 bool enabled = false;
2215
2216 intel_runtime_pm_get(dev_priv);
2217
2218 mutex_lock(&dev_priv->psr.lock);
2219 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2220 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2221 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2222 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2223 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2224 dev_priv->psr.busy_frontbuffer_bits);
2225 seq_printf(m, "Re-enable work scheduled: %s\n",
2226 yesno(work_busy(&dev_priv->psr.work.work)));
2227
2228 if (HAS_PSR(dev)) {
2229 if (HAS_DDI(dev))
2230 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2231 else {
2232 for_each_pipe(dev_priv, pipe) {
2233 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2234 VLV_EDP_PSR_CURR_STATE_MASK;
2235 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2236 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2237 enabled = true;
2238 }
2239 }
2240 }
2241 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2242
2243 if (!HAS_DDI(dev))
2244 for_each_pipe(dev_priv, pipe) {
2245 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2246 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2247 seq_printf(m, " pipe %c", pipe_name(pipe));
2248 }
2249 seq_puts(m, "\n");
2250
2251 seq_printf(m, "Link standby: %s\n",
2252 yesno((bool)dev_priv->psr.link_standby));
2253
2254 /* CHV PSR has no kind of performance counter */
2255 if (HAS_PSR(dev) && HAS_DDI(dev)) {
2256 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2257 EDP_PSR_PERF_CNT_MASK;
2258
2259 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2260 }
2261 mutex_unlock(&dev_priv->psr.lock);
2262
2263 intel_runtime_pm_put(dev_priv);
2264 return 0;
2265 }
2266
2267 static int i915_sink_crc(struct seq_file *m, void *data)
2268 {
2269 struct drm_info_node *node = m->private;
2270 struct drm_device *dev = node->minor->dev;
2271 struct intel_encoder *encoder;
2272 struct intel_connector *connector;
2273 struct intel_dp *intel_dp = NULL;
2274 int ret;
2275 u8 crc[6];
2276
2277 drm_modeset_lock_all(dev);
2278 list_for_each_entry(connector, &dev->mode_config.connector_list,
2279 base.head) {
2280
2281 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2282 continue;
2283
2284 if (!connector->base.encoder)
2285 continue;
2286
2287 encoder = to_intel_encoder(connector->base.encoder);
2288 if (encoder->type != INTEL_OUTPUT_EDP)
2289 continue;
2290
2291 intel_dp = enc_to_intel_dp(&encoder->base);
2292
2293 ret = intel_dp_sink_crc(intel_dp, crc);
2294 if (ret)
2295 goto out;
2296
2297 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2298 crc[0], crc[1], crc[2],
2299 crc[3], crc[4], crc[5]);
2300 goto out;
2301 }
2302 ret = -ENODEV;
2303 out:
2304 drm_modeset_unlock_all(dev);
2305 return ret;
2306 }
2307
2308 static int i915_energy_uJ(struct seq_file *m, void *data)
2309 {
2310 struct drm_info_node *node = m->private;
2311 struct drm_device *dev = node->minor->dev;
2312 struct drm_i915_private *dev_priv = dev->dev_private;
2313 u64 power;
2314 u32 units;
2315
2316 if (INTEL_INFO(dev)->gen < 6)
2317 return -ENODEV;
2318
2319 intel_runtime_pm_get(dev_priv);
2320
2321 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2322 power = (power & 0x1f00) >> 8;
2323 units = 1000000 / (1 << power); /* convert to uJ */
2324 power = I915_READ(MCH_SECP_NRG_STTS);
2325 power *= units;
2326
2327 intel_runtime_pm_put(dev_priv);
2328
2329 seq_printf(m, "%llu", (long long unsigned)power);
2330
2331 return 0;
2332 }
2333
2334 static int i915_pc8_status(struct seq_file *m, void *unused)
2335 {
2336 struct drm_info_node *node = m->private;
2337 struct drm_device *dev = node->minor->dev;
2338 struct drm_i915_private *dev_priv = dev->dev_private;
2339
2340 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2341 seq_puts(m, "not supported\n");
2342 return 0;
2343 }
2344
2345 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2346 seq_printf(m, "IRQs disabled: %s\n",
2347 yesno(!intel_irqs_enabled(dev_priv)));
2348
2349 return 0;
2350 }
2351
2352 static const char *power_domain_str(enum intel_display_power_domain domain)
2353 {
2354 switch (domain) {
2355 case POWER_DOMAIN_PIPE_A:
2356 return "PIPE_A";
2357 case POWER_DOMAIN_PIPE_B:
2358 return "PIPE_B";
2359 case POWER_DOMAIN_PIPE_C:
2360 return "PIPE_C";
2361 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2362 return "PIPE_A_PANEL_FITTER";
2363 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2364 return "PIPE_B_PANEL_FITTER";
2365 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2366 return "PIPE_C_PANEL_FITTER";
2367 case POWER_DOMAIN_TRANSCODER_A:
2368 return "TRANSCODER_A";
2369 case POWER_DOMAIN_TRANSCODER_B:
2370 return "TRANSCODER_B";
2371 case POWER_DOMAIN_TRANSCODER_C:
2372 return "TRANSCODER_C";
2373 case POWER_DOMAIN_TRANSCODER_EDP:
2374 return "TRANSCODER_EDP";
2375 case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2376 return "PORT_DDI_A_2_LANES";
2377 case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2378 return "PORT_DDI_A_4_LANES";
2379 case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2380 return "PORT_DDI_B_2_LANES";
2381 case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2382 return "PORT_DDI_B_4_LANES";
2383 case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2384 return "PORT_DDI_C_2_LANES";
2385 case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2386 return "PORT_DDI_C_4_LANES";
2387 case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2388 return "PORT_DDI_D_2_LANES";
2389 case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2390 return "PORT_DDI_D_4_LANES";
2391 case POWER_DOMAIN_PORT_DSI:
2392 return "PORT_DSI";
2393 case POWER_DOMAIN_PORT_CRT:
2394 return "PORT_CRT";
2395 case POWER_DOMAIN_PORT_OTHER:
2396 return "PORT_OTHER";
2397 case POWER_DOMAIN_VGA:
2398 return "VGA";
2399 case POWER_DOMAIN_AUDIO:
2400 return "AUDIO";
2401 case POWER_DOMAIN_PLLS:
2402 return "PLLS";
2403 case POWER_DOMAIN_INIT:
2404 return "INIT";
2405 default:
2406 MISSING_CASE(domain);
2407 return "?";
2408 }
2409 }
2410
2411 static int i915_power_domain_info(struct seq_file *m, void *unused)
2412 {
2413 struct drm_info_node *node = m->private;
2414 struct drm_device *dev = node->minor->dev;
2415 struct drm_i915_private *dev_priv = dev->dev_private;
2416 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2417 int i;
2418
2419 mutex_lock(&power_domains->lock);
2420
2421 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2422 for (i = 0; i < power_domains->power_well_count; i++) {
2423 struct i915_power_well *power_well;
2424 enum intel_display_power_domain power_domain;
2425
2426 power_well = &power_domains->power_wells[i];
2427 seq_printf(m, "%-25s %d\n", power_well->name,
2428 power_well->count);
2429
2430 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2431 power_domain++) {
2432 if (!(BIT(power_domain) & power_well->domains))
2433 continue;
2434
2435 seq_printf(m, " %-23s %d\n",
2436 power_domain_str(power_domain),
2437 power_domains->domain_use_count[power_domain]);
2438 }
2439 }
2440
2441 mutex_unlock(&power_domains->lock);
2442
2443 return 0;
2444 }
2445
2446 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2447 struct drm_display_mode *mode)
2448 {
2449 int i;
2450
2451 for (i = 0; i < tabs; i++)
2452 seq_putc(m, '\t');
2453
2454 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2455 mode->base.id, mode->name,
2456 mode->vrefresh, mode->clock,
2457 mode->hdisplay, mode->hsync_start,
2458 mode->hsync_end, mode->htotal,
2459 mode->vdisplay, mode->vsync_start,
2460 mode->vsync_end, mode->vtotal,
2461 mode->type, mode->flags);
2462 }
2463
2464 static void intel_encoder_info(struct seq_file *m,
2465 struct intel_crtc *intel_crtc,
2466 struct intel_encoder *intel_encoder)
2467 {
2468 struct drm_info_node *node = m->private;
2469 struct drm_device *dev = node->minor->dev;
2470 struct drm_crtc *crtc = &intel_crtc->base;
2471 struct intel_connector *intel_connector;
2472 struct drm_encoder *encoder;
2473
2474 encoder = &intel_encoder->base;
2475 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2476 encoder->base.id, encoder->name);
2477 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2478 struct drm_connector *connector = &intel_connector->base;
2479 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2480 connector->base.id,
2481 connector->name,
2482 drm_get_connector_status_name(connector->status));
2483 if (connector->status == connector_status_connected) {
2484 struct drm_display_mode *mode = &crtc->mode;
2485 seq_printf(m, ", mode:\n");
2486 intel_seq_print_mode(m, 2, mode);
2487 } else {
2488 seq_putc(m, '\n');
2489 }
2490 }
2491 }
2492
2493 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2494 {
2495 struct drm_info_node *node = m->private;
2496 struct drm_device *dev = node->minor->dev;
2497 struct drm_crtc *crtc = &intel_crtc->base;
2498 struct intel_encoder *intel_encoder;
2499
2500 if (crtc->primary->fb)
2501 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2502 crtc->primary->fb->base.id, crtc->x, crtc->y,
2503 crtc->primary->fb->width, crtc->primary->fb->height);
2504 else
2505 seq_puts(m, "\tprimary plane disabled\n");
2506 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2507 intel_encoder_info(m, intel_crtc, intel_encoder);
2508 }
2509
2510 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2511 {
2512 struct drm_display_mode *mode = panel->fixed_mode;
2513
2514 seq_printf(m, "\tfixed mode:\n");
2515 intel_seq_print_mode(m, 2, mode);
2516 }
2517
2518 static void intel_dp_info(struct seq_file *m,
2519 struct intel_connector *intel_connector)
2520 {
2521 struct intel_encoder *intel_encoder = intel_connector->encoder;
2522 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2523
2524 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2525 seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2526 "no");
2527 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2528 intel_panel_info(m, &intel_connector->panel);
2529 }
2530
2531 static void intel_hdmi_info(struct seq_file *m,
2532 struct intel_connector *intel_connector)
2533 {
2534 struct intel_encoder *intel_encoder = intel_connector->encoder;
2535 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2536
2537 seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2538 "no");
2539 }
2540
2541 static void intel_lvds_info(struct seq_file *m,
2542 struct intel_connector *intel_connector)
2543 {
2544 intel_panel_info(m, &intel_connector->panel);
2545 }
2546
2547 static void intel_connector_info(struct seq_file *m,
2548 struct drm_connector *connector)
2549 {
2550 struct intel_connector *intel_connector = to_intel_connector(connector);
2551 struct intel_encoder *intel_encoder = intel_connector->encoder;
2552 struct drm_display_mode *mode;
2553
2554 seq_printf(m, "connector %d: type %s, status: %s\n",
2555 connector->base.id, connector->name,
2556 drm_get_connector_status_name(connector->status));
2557 if (connector->status == connector_status_connected) {
2558 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2559 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2560 connector->display_info.width_mm,
2561 connector->display_info.height_mm);
2562 seq_printf(m, "\tsubpixel order: %s\n",
2563 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2564 seq_printf(m, "\tCEA rev: %d\n",
2565 connector->display_info.cea_rev);
2566 }
2567 if (intel_encoder) {
2568 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2569 intel_encoder->type == INTEL_OUTPUT_EDP)
2570 intel_dp_info(m, intel_connector);
2571 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2572 intel_hdmi_info(m, intel_connector);
2573 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2574 intel_lvds_info(m, intel_connector);
2575 }
2576
2577 seq_printf(m, "\tmodes:\n");
2578 list_for_each_entry(mode, &connector->modes, head)
2579 intel_seq_print_mode(m, 2, mode);
2580 }
2581
2582 static bool cursor_active(struct drm_device *dev, int pipe)
2583 {
2584 struct drm_i915_private *dev_priv = dev->dev_private;
2585 u32 state;
2586
2587 if (IS_845G(dev) || IS_I865G(dev))
2588 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2589 else
2590 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2591
2592 return state;
2593 }
2594
2595 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2596 {
2597 struct drm_i915_private *dev_priv = dev->dev_private;
2598 u32 pos;
2599
2600 pos = I915_READ(CURPOS(pipe));
2601
2602 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2603 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2604 *x = -*x;
2605
2606 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2607 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2608 *y = -*y;
2609
2610 return cursor_active(dev, pipe);
2611 }
2612
2613 static int i915_display_info(struct seq_file *m, void *unused)
2614 {
2615 struct drm_info_node *node = m->private;
2616 struct drm_device *dev = node->minor->dev;
2617 struct drm_i915_private *dev_priv = dev->dev_private;
2618 struct intel_crtc *crtc;
2619 struct drm_connector *connector;
2620
2621 intel_runtime_pm_get(dev_priv);
2622 drm_modeset_lock_all(dev);
2623 seq_printf(m, "CRTC info\n");
2624 seq_printf(m, "---------\n");
2625 for_each_intel_crtc(dev, crtc) {
2626 bool active;
2627 int x, y;
2628
2629 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2630 crtc->base.base.id, pipe_name(crtc->pipe),
2631 yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
2632 if (crtc->active) {
2633 intel_crtc_info(m, crtc);
2634
2635 active = cursor_position(dev, crtc->pipe, &x, &y);
2636 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2637 yesno(crtc->cursor_base),
2638 x, y, crtc->cursor_width, crtc->cursor_height,
2639 crtc->cursor_addr, yesno(active));
2640 }
2641
2642 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2643 yesno(!crtc->cpu_fifo_underrun_disabled),
2644 yesno(!crtc->pch_fifo_underrun_disabled));
2645 }
2646
2647 seq_printf(m, "\n");
2648 seq_printf(m, "Connector info\n");
2649 seq_printf(m, "--------------\n");
2650 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2651 intel_connector_info(m, connector);
2652 }
2653 drm_modeset_unlock_all(dev);
2654 intel_runtime_pm_put(dev_priv);
2655
2656 return 0;
2657 }
2658
2659 static int i915_semaphore_status(struct seq_file *m, void *unused)
2660 {
2661 struct drm_info_node *node = (struct drm_info_node *) m->private;
2662 struct drm_device *dev = node->minor->dev;
2663 struct drm_i915_private *dev_priv = dev->dev_private;
2664 struct intel_engine_cs *ring;
2665 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2666 int i, j, ret;
2667
2668 if (!i915_semaphore_is_enabled(dev)) {
2669 seq_puts(m, "Semaphores are disabled\n");
2670 return 0;
2671 }
2672
2673 ret = mutex_lock_interruptible(&dev->struct_mutex);
2674 if (ret)
2675 return ret;
2676 intel_runtime_pm_get(dev_priv);
2677
2678 if (IS_BROADWELL(dev)) {
2679 struct page *page;
2680 uint64_t *seqno;
2681
2682 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2683
2684 seqno = (uint64_t *)kmap_atomic(page);
2685 for_each_ring(ring, dev_priv, i) {
2686 uint64_t offset;
2687
2688 seq_printf(m, "%s\n", ring->name);
2689
2690 seq_puts(m, " Last signal:");
2691 for (j = 0; j < num_rings; j++) {
2692 offset = i * I915_NUM_RINGS + j;
2693 seq_printf(m, "0x%08llx (0x%02llx) ",
2694 seqno[offset], offset * 8);
2695 }
2696 seq_putc(m, '\n');
2697
2698 seq_puts(m, " Last wait: ");
2699 for (j = 0; j < num_rings; j++) {
2700 offset = i + (j * I915_NUM_RINGS);
2701 seq_printf(m, "0x%08llx (0x%02llx) ",
2702 seqno[offset], offset * 8);
2703 }
2704 seq_putc(m, '\n');
2705
2706 }
2707 kunmap_atomic(seqno);
2708 } else {
2709 seq_puts(m, " Last signal:");
2710 for_each_ring(ring, dev_priv, i)
2711 for (j = 0; j < num_rings; j++)
2712 seq_printf(m, "0x%08x\n",
2713 I915_READ(ring->semaphore.mbox.signal[j]));
2714 seq_putc(m, '\n');
2715 }
2716
2717 seq_puts(m, "\nSync seqno:\n");
2718 for_each_ring(ring, dev_priv, i) {
2719 for (j = 0; j < num_rings; j++) {
2720 seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
2721 }
2722 seq_putc(m, '\n');
2723 }
2724 seq_putc(m, '\n');
2725
2726 intel_runtime_pm_put(dev_priv);
2727 mutex_unlock(&dev->struct_mutex);
2728 return 0;
2729 }
2730
2731 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2732 {
2733 struct drm_info_node *node = (struct drm_info_node *) m->private;
2734 struct drm_device *dev = node->minor->dev;
2735 struct drm_i915_private *dev_priv = dev->dev_private;
2736 int i;
2737
2738 drm_modeset_lock_all(dev);
2739 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2740 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2741
2742 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2743 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2744 pll->config.crtc_mask, pll->active, yesno(pll->on));
2745 seq_printf(m, " tracked hardware state:\n");
2746 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
2747 seq_printf(m, " dpll_md: 0x%08x\n",
2748 pll->config.hw_state.dpll_md);
2749 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
2750 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
2751 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
2752 }
2753 drm_modeset_unlock_all(dev);
2754
2755 return 0;
2756 }
2757
2758 static int i915_wa_registers(struct seq_file *m, void *unused)
2759 {
2760 int i;
2761 int ret;
2762 struct drm_info_node *node = (struct drm_info_node *) m->private;
2763 struct drm_device *dev = node->minor->dev;
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765
2766 ret = mutex_lock_interruptible(&dev->struct_mutex);
2767 if (ret)
2768 return ret;
2769
2770 intel_runtime_pm_get(dev_priv);
2771
2772 seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2773 for (i = 0; i < dev_priv->workarounds.count; ++i) {
2774 u32 addr, mask, value, read;
2775 bool ok;
2776
2777 addr = dev_priv->workarounds.reg[i].addr;
2778 mask = dev_priv->workarounds.reg[i].mask;
2779 value = dev_priv->workarounds.reg[i].value;
2780 read = I915_READ(addr);
2781 ok = (value & mask) == (read & mask);
2782 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2783 addr, value, mask, read, ok ? "OK" : "FAIL");
2784 }
2785
2786 intel_runtime_pm_put(dev_priv);
2787 mutex_unlock(&dev->struct_mutex);
2788
2789 return 0;
2790 }
2791
2792 static int i915_ddb_info(struct seq_file *m, void *unused)
2793 {
2794 struct drm_info_node *node = m->private;
2795 struct drm_device *dev = node->minor->dev;
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 struct skl_ddb_allocation *ddb;
2798 struct skl_ddb_entry *entry;
2799 enum pipe pipe;
2800 int plane;
2801
2802 if (INTEL_INFO(dev)->gen < 9)
2803 return 0;
2804
2805 drm_modeset_lock_all(dev);
2806
2807 ddb = &dev_priv->wm.skl_hw.ddb;
2808
2809 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2810
2811 for_each_pipe(dev_priv, pipe) {
2812 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2813
2814 for_each_plane(pipe, plane) {
2815 entry = &ddb->plane[pipe][plane];
2816 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
2817 entry->start, entry->end,
2818 skl_ddb_entry_size(entry));
2819 }
2820
2821 entry = &ddb->cursor[pipe];
2822 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
2823 entry->end, skl_ddb_entry_size(entry));
2824 }
2825
2826 drm_modeset_unlock_all(dev);
2827
2828 return 0;
2829 }
2830
2831 struct pipe_crc_info {
2832 const char *name;
2833 struct drm_device *dev;
2834 enum pipe pipe;
2835 };
2836
2837 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2838 {
2839 struct drm_info_node *node = (struct drm_info_node *) m->private;
2840 struct drm_device *dev = node->minor->dev;
2841 struct drm_encoder *encoder;
2842 struct intel_encoder *intel_encoder;
2843 struct intel_digital_port *intel_dig_port;
2844 drm_modeset_lock_all(dev);
2845 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2846 intel_encoder = to_intel_encoder(encoder);
2847 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2848 continue;
2849 intel_dig_port = enc_to_dig_port(encoder);
2850 if (!intel_dig_port->dp.can_mst)
2851 continue;
2852
2853 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2854 }
2855 drm_modeset_unlock_all(dev);
2856 return 0;
2857 }
2858
2859 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2860 {
2861 struct pipe_crc_info *info = inode->i_private;
2862 struct drm_i915_private *dev_priv = info->dev->dev_private;
2863 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2864
2865 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2866 return -ENODEV;
2867
2868 spin_lock_irq(&pipe_crc->lock);
2869
2870 if (pipe_crc->opened) {
2871 spin_unlock_irq(&pipe_crc->lock);
2872 return -EBUSY; /* already open */
2873 }
2874
2875 pipe_crc->opened = true;
2876 filep->private_data = inode->i_private;
2877
2878 spin_unlock_irq(&pipe_crc->lock);
2879
2880 return 0;
2881 }
2882
2883 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2884 {
2885 struct pipe_crc_info *info = inode->i_private;
2886 struct drm_i915_private *dev_priv = info->dev->dev_private;
2887 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2888
2889 spin_lock_irq(&pipe_crc->lock);
2890 pipe_crc->opened = false;
2891 spin_unlock_irq(&pipe_crc->lock);
2892
2893 return 0;
2894 }
2895
2896 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2897 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
2898 /* account for \'0' */
2899 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
2900
2901 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2902 {
2903 assert_spin_locked(&pipe_crc->lock);
2904 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2905 INTEL_PIPE_CRC_ENTRIES_NR);
2906 }
2907
2908 static ssize_t
2909 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2910 loff_t *pos)
2911 {
2912 struct pipe_crc_info *info = filep->private_data;
2913 struct drm_device *dev = info->dev;
2914 struct drm_i915_private *dev_priv = dev->dev_private;
2915 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2916 char buf[PIPE_CRC_BUFFER_LEN];
2917 int n_entries;
2918 ssize_t bytes_read;
2919
2920 /*
2921 * Don't allow user space to provide buffers not big enough to hold
2922 * a line of data.
2923 */
2924 if (count < PIPE_CRC_LINE_LEN)
2925 return -EINVAL;
2926
2927 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2928 return 0;
2929
2930 /* nothing to read */
2931 spin_lock_irq(&pipe_crc->lock);
2932 while (pipe_crc_data_count(pipe_crc) == 0) {
2933 int ret;
2934
2935 if (filep->f_flags & O_NONBLOCK) {
2936 spin_unlock_irq(&pipe_crc->lock);
2937 return -EAGAIN;
2938 }
2939
2940 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2941 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2942 if (ret) {
2943 spin_unlock_irq(&pipe_crc->lock);
2944 return ret;
2945 }
2946 }
2947
2948 /* We now have one or more entries to read */
2949 n_entries = count / PIPE_CRC_LINE_LEN;
2950
2951 bytes_read = 0;
2952 while (n_entries > 0) {
2953 struct intel_pipe_crc_entry *entry =
2954 &pipe_crc->entries[pipe_crc->tail];
2955 int ret;
2956
2957 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2958 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
2959 break;
2960
2961 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2962 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2963
2964 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2965 "%8u %8x %8x %8x %8x %8x\n",
2966 entry->frame, entry->crc[0],
2967 entry->crc[1], entry->crc[2],
2968 entry->crc[3], entry->crc[4]);
2969
2970 spin_unlock_irq(&pipe_crc->lock);
2971
2972 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
2973 if (ret == PIPE_CRC_LINE_LEN)
2974 return -EFAULT;
2975
2976 user_buf += PIPE_CRC_LINE_LEN;
2977 n_entries--;
2978
2979 spin_lock_irq(&pipe_crc->lock);
2980 }
2981
2982 spin_unlock_irq(&pipe_crc->lock);
2983
2984 return bytes_read;
2985 }
2986
2987 static const struct file_operations i915_pipe_crc_fops = {
2988 .owner = THIS_MODULE,
2989 .open = i915_pipe_crc_open,
2990 .read = i915_pipe_crc_read,
2991 .release = i915_pipe_crc_release,
2992 };
2993
2994 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2995 {
2996 .name = "i915_pipe_A_crc",
2997 .pipe = PIPE_A,
2998 },
2999 {
3000 .name = "i915_pipe_B_crc",
3001 .pipe = PIPE_B,
3002 },
3003 {
3004 .name = "i915_pipe_C_crc",
3005 .pipe = PIPE_C,
3006 },
3007 };
3008
3009 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3010 enum pipe pipe)
3011 {
3012 struct drm_device *dev = minor->dev;
3013 struct dentry *ent;
3014 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3015
3016 info->dev = dev;
3017 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3018 &i915_pipe_crc_fops);
3019 if (!ent)
3020 return -ENOMEM;
3021
3022 return drm_add_fake_info_node(minor, ent, info);
3023 }
3024
3025 static const char * const pipe_crc_sources[] = {
3026 "none",
3027 "plane1",
3028 "plane2",
3029 "pf",
3030 "pipe",
3031 "TV",
3032 "DP-B",
3033 "DP-C",
3034 "DP-D",
3035 "auto",
3036 };
3037
3038 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3039 {
3040 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3041 return pipe_crc_sources[source];
3042 }
3043
3044 static int display_crc_ctl_show(struct seq_file *m, void *data)
3045 {
3046 struct drm_device *dev = m->private;
3047 struct drm_i915_private *dev_priv = dev->dev_private;
3048 int i;
3049
3050 for (i = 0; i < I915_MAX_PIPES; i++)
3051 seq_printf(m, "%c %s\n", pipe_name(i),
3052 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3053
3054 return 0;
3055 }
3056
3057 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3058 {
3059 struct drm_device *dev = inode->i_private;
3060
3061 return single_open(file, display_crc_ctl_show, dev);
3062 }
3063
3064 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3065 uint32_t *val)
3066 {
3067 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3068 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3069
3070 switch (*source) {
3071 case INTEL_PIPE_CRC_SOURCE_PIPE:
3072 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3073 break;
3074 case INTEL_PIPE_CRC_SOURCE_NONE:
3075 *val = 0;
3076 break;
3077 default:
3078 return -EINVAL;
3079 }
3080
3081 return 0;
3082 }
3083
3084 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3085 enum intel_pipe_crc_source *source)
3086 {
3087 struct intel_encoder *encoder;
3088 struct intel_crtc *crtc;
3089 struct intel_digital_port *dig_port;
3090 int ret = 0;
3091
3092 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3093
3094 drm_modeset_lock_all(dev);
3095 for_each_intel_encoder(dev, encoder) {
3096 if (!encoder->base.crtc)
3097 continue;
3098
3099 crtc = to_intel_crtc(encoder->base.crtc);
3100
3101 if (crtc->pipe != pipe)
3102 continue;
3103
3104 switch (encoder->type) {
3105 case INTEL_OUTPUT_TVOUT:
3106 *source = INTEL_PIPE_CRC_SOURCE_TV;
3107 break;
3108 case INTEL_OUTPUT_DISPLAYPORT:
3109 case INTEL_OUTPUT_EDP:
3110 dig_port = enc_to_dig_port(&encoder->base);
3111 switch (dig_port->port) {
3112 case PORT_B:
3113 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3114 break;
3115 case PORT_C:
3116 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3117 break;
3118 case PORT_D:
3119 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3120 break;
3121 default:
3122 WARN(1, "nonexisting DP port %c\n",
3123 port_name(dig_port->port));
3124 break;
3125 }
3126 break;
3127 default:
3128 break;
3129 }
3130 }
3131 drm_modeset_unlock_all(dev);
3132
3133 return ret;
3134 }
3135
3136 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3137 enum pipe pipe,
3138 enum intel_pipe_crc_source *source,
3139 uint32_t *val)
3140 {
3141 struct drm_i915_private *dev_priv = dev->dev_private;
3142 bool need_stable_symbols = false;
3143
3144 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3145 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3146 if (ret)
3147 return ret;
3148 }
3149
3150 switch (*source) {
3151 case INTEL_PIPE_CRC_SOURCE_PIPE:
3152 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3153 break;
3154 case INTEL_PIPE_CRC_SOURCE_DP_B:
3155 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3156 need_stable_symbols = true;
3157 break;
3158 case INTEL_PIPE_CRC_SOURCE_DP_C:
3159 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3160 need_stable_symbols = true;
3161 break;
3162 case INTEL_PIPE_CRC_SOURCE_DP_D:
3163 if (!IS_CHERRYVIEW(dev))
3164 return -EINVAL;
3165 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3166 need_stable_symbols = true;
3167 break;
3168 case INTEL_PIPE_CRC_SOURCE_NONE:
3169 *val = 0;
3170 break;
3171 default:
3172 return -EINVAL;
3173 }
3174
3175 /*
3176 * When the pipe CRC tap point is after the transcoders we need
3177 * to tweak symbol-level features to produce a deterministic series of
3178 * symbols for a given frame. We need to reset those features only once
3179 * a frame (instead of every nth symbol):
3180 * - DC-balance: used to ensure a better clock recovery from the data
3181 * link (SDVO)
3182 * - DisplayPort scrambling: used for EMI reduction
3183 */
3184 if (need_stable_symbols) {
3185 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3186
3187 tmp |= DC_BALANCE_RESET_VLV;
3188 switch (pipe) {
3189 case PIPE_A:
3190 tmp |= PIPE_A_SCRAMBLE_RESET;
3191 break;
3192 case PIPE_B:
3193 tmp |= PIPE_B_SCRAMBLE_RESET;
3194 break;
3195 case PIPE_C:
3196 tmp |= PIPE_C_SCRAMBLE_RESET;
3197 break;
3198 default:
3199 return -EINVAL;
3200 }
3201 I915_WRITE(PORT_DFT2_G4X, tmp);
3202 }
3203
3204 return 0;
3205 }
3206
3207 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3208 enum pipe pipe,
3209 enum intel_pipe_crc_source *source,
3210 uint32_t *val)
3211 {
3212 struct drm_i915_private *dev_priv = dev->dev_private;
3213 bool need_stable_symbols = false;
3214
3215 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3216 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3217 if (ret)
3218 return ret;
3219 }
3220
3221 switch (*source) {
3222 case INTEL_PIPE_CRC_SOURCE_PIPE:
3223 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3224 break;
3225 case INTEL_PIPE_CRC_SOURCE_TV:
3226 if (!SUPPORTS_TV(dev))
3227 return -EINVAL;
3228 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3229 break;
3230 case INTEL_PIPE_CRC_SOURCE_DP_B:
3231 if (!IS_G4X(dev))
3232 return -EINVAL;
3233 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3234 need_stable_symbols = true;
3235 break;
3236 case INTEL_PIPE_CRC_SOURCE_DP_C:
3237 if (!IS_G4X(dev))
3238 return -EINVAL;
3239 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3240 need_stable_symbols = true;
3241 break;
3242 case INTEL_PIPE_CRC_SOURCE_DP_D:
3243 if (!IS_G4X(dev))
3244 return -EINVAL;
3245 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3246 need_stable_symbols = true;
3247 break;
3248 case INTEL_PIPE_CRC_SOURCE_NONE:
3249 *val = 0;
3250 break;
3251 default:
3252 return -EINVAL;
3253 }
3254
3255 /*
3256 * When the pipe CRC tap point is after the transcoders we need
3257 * to tweak symbol-level features to produce a deterministic series of
3258 * symbols for a given frame. We need to reset those features only once
3259 * a frame (instead of every nth symbol):
3260 * - DC-balance: used to ensure a better clock recovery from the data
3261 * link (SDVO)
3262 * - DisplayPort scrambling: used for EMI reduction
3263 */
3264 if (need_stable_symbols) {
3265 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3266
3267 WARN_ON(!IS_G4X(dev));
3268
3269 I915_WRITE(PORT_DFT_I9XX,
3270 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3271
3272 if (pipe == PIPE_A)
3273 tmp |= PIPE_A_SCRAMBLE_RESET;
3274 else
3275 tmp |= PIPE_B_SCRAMBLE_RESET;
3276
3277 I915_WRITE(PORT_DFT2_G4X, tmp);
3278 }
3279
3280 return 0;
3281 }
3282
3283 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3284 enum pipe pipe)
3285 {
3286 struct drm_i915_private *dev_priv = dev->dev_private;
3287 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3288
3289 switch (pipe) {
3290 case PIPE_A:
3291 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3292 break;
3293 case PIPE_B:
3294 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3295 break;
3296 case PIPE_C:
3297 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3298 break;
3299 default:
3300 return;
3301 }
3302 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3303 tmp &= ~DC_BALANCE_RESET_VLV;
3304 I915_WRITE(PORT_DFT2_G4X, tmp);
3305
3306 }
3307
3308 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3309 enum pipe pipe)
3310 {
3311 struct drm_i915_private *dev_priv = dev->dev_private;
3312 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3313
3314 if (pipe == PIPE_A)
3315 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3316 else
3317 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3318 I915_WRITE(PORT_DFT2_G4X, tmp);
3319
3320 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3321 I915_WRITE(PORT_DFT_I9XX,
3322 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3323 }
3324 }
3325
3326 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3327 uint32_t *val)
3328 {
3329 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3330 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3331
3332 switch (*source) {
3333 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3334 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3335 break;
3336 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3337 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3338 break;
3339 case INTEL_PIPE_CRC_SOURCE_PIPE:
3340 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3341 break;
3342 case INTEL_PIPE_CRC_SOURCE_NONE:
3343 *val = 0;
3344 break;
3345 default:
3346 return -EINVAL;
3347 }
3348
3349 return 0;
3350 }
3351
3352 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3353 {
3354 struct drm_i915_private *dev_priv = dev->dev_private;
3355 struct intel_crtc *crtc =
3356 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3357
3358 drm_modeset_lock_all(dev);
3359 /*
3360 * If we use the eDP transcoder we need to make sure that we don't
3361 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3362 * relevant on hsw with pipe A when using the always-on power well
3363 * routing.
3364 */
3365 if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
3366 !crtc->config.pch_pfit.enabled) {
3367 crtc->config.pch_pfit.force_thru = true;
3368
3369 intel_display_power_get(dev_priv,
3370 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3371
3372 dev_priv->display.crtc_disable(&crtc->base);
3373 dev_priv->display.crtc_enable(&crtc->base);
3374 }
3375 drm_modeset_unlock_all(dev);
3376 }
3377
3378 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3379 {
3380 struct drm_i915_private *dev_priv = dev->dev_private;
3381 struct intel_crtc *crtc =
3382 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3383
3384 drm_modeset_lock_all(dev);
3385 /*
3386 * If we use the eDP transcoder we need to make sure that we don't
3387 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3388 * relevant on hsw with pipe A when using the always-on power well
3389 * routing.
3390 */
3391 if (crtc->config.pch_pfit.force_thru) {
3392 crtc->config.pch_pfit.force_thru = false;
3393
3394 dev_priv->display.crtc_disable(&crtc->base);
3395 dev_priv->display.crtc_enable(&crtc->base);
3396
3397 intel_display_power_put(dev_priv,
3398 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3399 }
3400 drm_modeset_unlock_all(dev);
3401 }
3402
3403 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3404 enum pipe pipe,
3405 enum intel_pipe_crc_source *source,
3406 uint32_t *val)
3407 {
3408 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3409 *source = INTEL_PIPE_CRC_SOURCE_PF;
3410
3411 switch (*source) {
3412 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3413 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3414 break;
3415 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3416 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3417 break;
3418 case INTEL_PIPE_CRC_SOURCE_PF:
3419 if (IS_HASWELL(dev) && pipe == PIPE_A)
3420 hsw_trans_edp_pipe_A_crc_wa(dev);
3421
3422 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3423 break;
3424 case INTEL_PIPE_CRC_SOURCE_NONE:
3425 *val = 0;
3426 break;
3427 default:
3428 return -EINVAL;
3429 }
3430
3431 return 0;
3432 }
3433
3434 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3435 enum intel_pipe_crc_source source)
3436 {
3437 struct drm_i915_private *dev_priv = dev->dev_private;
3438 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3439 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3440 pipe));
3441 u32 val = 0; /* shut up gcc */
3442 int ret;
3443
3444 if (pipe_crc->source == source)
3445 return 0;
3446
3447 /* forbid changing the source without going back to 'none' */
3448 if (pipe_crc->source && source)
3449 return -EINVAL;
3450
3451 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3452 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3453 return -EIO;
3454 }
3455
3456 if (IS_GEN2(dev))
3457 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3458 else if (INTEL_INFO(dev)->gen < 5)
3459 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3460 else if (IS_VALLEYVIEW(dev))
3461 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3462 else if (IS_GEN5(dev) || IS_GEN6(dev))
3463 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3464 else
3465 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3466
3467 if (ret != 0)
3468 return ret;
3469
3470 /* none -> real source transition */
3471 if (source) {
3472 struct intel_pipe_crc_entry *entries;
3473
3474 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3475 pipe_name(pipe), pipe_crc_source_name(source));
3476
3477 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3478 sizeof(pipe_crc->entries[0]),
3479 GFP_KERNEL);
3480 if (!entries)
3481 return -ENOMEM;
3482
3483 /*
3484 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3485 * enabled and disabled dynamically based on package C states,
3486 * user space can't make reliable use of the CRCs, so let's just
3487 * completely disable it.
3488 */
3489 hsw_disable_ips(crtc);
3490
3491 spin_lock_irq(&pipe_crc->lock);
3492 kfree(pipe_crc->entries);
3493 pipe_crc->entries = entries;
3494 pipe_crc->head = 0;
3495 pipe_crc->tail = 0;
3496 spin_unlock_irq(&pipe_crc->lock);
3497 }
3498
3499 pipe_crc->source = source;
3500
3501 I915_WRITE(PIPE_CRC_CTL(pipe), val);
3502 POSTING_READ(PIPE_CRC_CTL(pipe));
3503
3504 /* real source -> none transition */
3505 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3506 struct intel_pipe_crc_entry *entries;
3507 struct intel_crtc *crtc =
3508 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3509
3510 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3511 pipe_name(pipe));
3512
3513 drm_modeset_lock(&crtc->base.mutex, NULL);
3514 if (crtc->active)
3515 intel_wait_for_vblank(dev, pipe);
3516 drm_modeset_unlock(&crtc->base.mutex);
3517
3518 spin_lock_irq(&pipe_crc->lock);
3519 entries = pipe_crc->entries;
3520 pipe_crc->entries = NULL;
3521 pipe_crc->head = 0;
3522 pipe_crc->tail = 0;
3523 spin_unlock_irq(&pipe_crc->lock);
3524
3525 kfree(entries);
3526
3527 if (IS_G4X(dev))
3528 g4x_undo_pipe_scramble_reset(dev, pipe);
3529 else if (IS_VALLEYVIEW(dev))
3530 vlv_undo_pipe_scramble_reset(dev, pipe);
3531 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3532 hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3533
3534 hsw_enable_ips(crtc);
3535 }
3536
3537 return 0;
3538 }
3539
3540 /*
3541 * Parse pipe CRC command strings:
3542 * command: wsp* object wsp+ name wsp+ source wsp*
3543 * object: 'pipe'
3544 * name: (A | B | C)
3545 * source: (none | plane1 | plane2 | pf)
3546 * wsp: (#0x20 | #0x9 | #0xA)+
3547 *
3548 * eg.:
3549 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
3550 * "pipe A none" -> Stop CRC
3551 */
3552 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3553 {
3554 int n_words = 0;
3555
3556 while (*buf) {
3557 char *end;
3558
3559 /* skip leading white space */
3560 buf = skip_spaces(buf);
3561 if (!*buf)
3562 break; /* end of buffer */
3563
3564 /* find end of word */
3565 for (end = buf; *end && !isspace(*end); end++)
3566 ;
3567
3568 if (n_words == max_words) {
3569 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3570 max_words);
3571 return -EINVAL; /* ran out of words[] before bytes */
3572 }
3573
3574 if (*end)
3575 *end++ = '\0';
3576 words[n_words++] = buf;
3577 buf = end;
3578 }
3579
3580 return n_words;
3581 }
3582
3583 enum intel_pipe_crc_object {
3584 PIPE_CRC_OBJECT_PIPE,
3585 };
3586
3587 static const char * const pipe_crc_objects[] = {
3588 "pipe",
3589 };
3590
3591 static int
3592 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3593 {
3594 int i;
3595
3596 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3597 if (!strcmp(buf, pipe_crc_objects[i])) {
3598 *o = i;
3599 return 0;
3600 }
3601
3602 return -EINVAL;
3603 }
3604
3605 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3606 {
3607 const char name = buf[0];
3608
3609 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3610 return -EINVAL;
3611
3612 *pipe = name - 'A';
3613
3614 return 0;
3615 }
3616
3617 static int
3618 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3619 {
3620 int i;
3621
3622 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3623 if (!strcmp(buf, pipe_crc_sources[i])) {
3624 *s = i;
3625 return 0;
3626 }
3627
3628 return -EINVAL;
3629 }
3630
3631 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3632 {
3633 #define N_WORDS 3
3634 int n_words;
3635 char *words[N_WORDS];
3636 enum pipe pipe;
3637 enum intel_pipe_crc_object object;
3638 enum intel_pipe_crc_source source;
3639
3640 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3641 if (n_words != N_WORDS) {
3642 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3643 N_WORDS);
3644 return -EINVAL;
3645 }
3646
3647 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3648 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3649 return -EINVAL;
3650 }
3651
3652 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3653 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3654 return -EINVAL;
3655 }
3656
3657 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3658 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3659 return -EINVAL;
3660 }
3661
3662 return pipe_crc_set_source(dev, pipe, source);
3663 }
3664
3665 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3666 size_t len, loff_t *offp)
3667 {
3668 struct seq_file *m = file->private_data;
3669 struct drm_device *dev = m->private;
3670 char *tmpbuf;
3671 int ret;
3672
3673 if (len == 0)
3674 return 0;
3675
3676 if (len > PAGE_SIZE - 1) {
3677 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3678 PAGE_SIZE);
3679 return -E2BIG;
3680 }
3681
3682 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3683 if (!tmpbuf)
3684 return -ENOMEM;
3685
3686 if (copy_from_user(tmpbuf, ubuf, len)) {
3687 ret = -EFAULT;
3688 goto out;
3689 }
3690 tmpbuf[len] = '\0';
3691
3692 ret = display_crc_ctl_parse(dev, tmpbuf, len);
3693
3694 out:
3695 kfree(tmpbuf);
3696 if (ret < 0)
3697 return ret;
3698
3699 *offp += len;
3700 return len;
3701 }
3702
3703 static const struct file_operations i915_display_crc_ctl_fops = {
3704 .owner = THIS_MODULE,
3705 .open = display_crc_ctl_open,
3706 .read = seq_read,
3707 .llseek = seq_lseek,
3708 .release = single_release,
3709 .write = display_crc_ctl_write
3710 };
3711
3712 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3713 {
3714 struct drm_device *dev = m->private;
3715 int num_levels = ilk_wm_max_level(dev) + 1;
3716 int level;
3717
3718 drm_modeset_lock_all(dev);
3719
3720 for (level = 0; level < num_levels; level++) {
3721 unsigned int latency = wm[level];
3722
3723 /*
3724 * - WM1+ latency values in 0.5us units
3725 * - latencies are in us on gen9
3726 */
3727 if (INTEL_INFO(dev)->gen >= 9)
3728 latency *= 10;
3729 else if (level > 0)
3730 latency *= 5;
3731
3732 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3733 level, wm[level], latency / 10, latency % 10);
3734 }
3735
3736 drm_modeset_unlock_all(dev);
3737 }
3738
3739 static int pri_wm_latency_show(struct seq_file *m, void *data)
3740 {
3741 struct drm_device *dev = m->private;
3742 struct drm_i915_private *dev_priv = dev->dev_private;
3743 const uint16_t *latencies;
3744
3745 if (INTEL_INFO(dev)->gen >= 9)
3746 latencies = dev_priv->wm.skl_latency;
3747 else
3748 latencies = to_i915(dev)->wm.pri_latency;
3749
3750 wm_latency_show(m, latencies);
3751
3752 return 0;
3753 }
3754
3755 static int spr_wm_latency_show(struct seq_file *m, void *data)
3756 {
3757 struct drm_device *dev = m->private;
3758 struct drm_i915_private *dev_priv = dev->dev_private;
3759 const uint16_t *latencies;
3760
3761 if (INTEL_INFO(dev)->gen >= 9)
3762 latencies = dev_priv->wm.skl_latency;
3763 else
3764 latencies = to_i915(dev)->wm.spr_latency;
3765
3766 wm_latency_show(m, latencies);
3767
3768 return 0;
3769 }
3770
3771 static int cur_wm_latency_show(struct seq_file *m, void *data)
3772 {
3773 struct drm_device *dev = m->private;
3774 struct drm_i915_private *dev_priv = dev->dev_private;
3775 const uint16_t *latencies;
3776
3777 if (INTEL_INFO(dev)->gen >= 9)
3778 latencies = dev_priv->wm.skl_latency;
3779 else
3780 latencies = to_i915(dev)->wm.cur_latency;
3781
3782 wm_latency_show(m, latencies);
3783
3784 return 0;
3785 }
3786
3787 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3788 {
3789 struct drm_device *dev = inode->i_private;
3790
3791 if (HAS_GMCH_DISPLAY(dev))
3792 return -ENODEV;
3793
3794 return single_open(file, pri_wm_latency_show, dev);
3795 }
3796
3797 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3798 {
3799 struct drm_device *dev = inode->i_private;
3800
3801 if (HAS_GMCH_DISPLAY(dev))
3802 return -ENODEV;
3803
3804 return single_open(file, spr_wm_latency_show, dev);
3805 }
3806
3807 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3808 {
3809 struct drm_device *dev = inode->i_private;
3810
3811 if (HAS_GMCH_DISPLAY(dev))
3812 return -ENODEV;
3813
3814 return single_open(file, cur_wm_latency_show, dev);
3815 }
3816
3817 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3818 size_t len, loff_t *offp, uint16_t wm[8])
3819 {
3820 struct seq_file *m = file->private_data;
3821 struct drm_device *dev = m->private;
3822 uint16_t new[8] = { 0 };
3823 int num_levels = ilk_wm_max_level(dev) + 1;
3824 int level;
3825 int ret;
3826 char tmp[32];
3827
3828 if (len >= sizeof(tmp))
3829 return -EINVAL;
3830
3831 if (copy_from_user(tmp, ubuf, len))
3832 return -EFAULT;
3833
3834 tmp[len] = '\0';
3835
3836 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3837 &new[0], &new[1], &new[2], &new[3],
3838 &new[4], &new[5], &new[6], &new[7]);
3839 if (ret != num_levels)
3840 return -EINVAL;
3841
3842 drm_modeset_lock_all(dev);
3843
3844 for (level = 0; level < num_levels; level++)
3845 wm[level] = new[level];
3846
3847 drm_modeset_unlock_all(dev);
3848
3849 return len;
3850 }
3851
3852
3853 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3854 size_t len, loff_t *offp)
3855 {
3856 struct seq_file *m = file->private_data;
3857 struct drm_device *dev = m->private;
3858 struct drm_i915_private *dev_priv = dev->dev_private;
3859 uint16_t *latencies;
3860
3861 if (INTEL_INFO(dev)->gen >= 9)
3862 latencies = dev_priv->wm.skl_latency;
3863 else
3864 latencies = to_i915(dev)->wm.pri_latency;
3865
3866 return wm_latency_write(file, ubuf, len, offp, latencies);
3867 }
3868
3869 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3870 size_t len, loff_t *offp)
3871 {
3872 struct seq_file *m = file->private_data;
3873 struct drm_device *dev = m->private;
3874 struct drm_i915_private *dev_priv = dev->dev_private;
3875 uint16_t *latencies;
3876
3877 if (INTEL_INFO(dev)->gen >= 9)
3878 latencies = dev_priv->wm.skl_latency;
3879 else
3880 latencies = to_i915(dev)->wm.spr_latency;
3881
3882 return wm_latency_write(file, ubuf, len, offp, latencies);
3883 }
3884
3885 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3886 size_t len, loff_t *offp)
3887 {
3888 struct seq_file *m = file->private_data;
3889 struct drm_device *dev = m->private;
3890 struct drm_i915_private *dev_priv = dev->dev_private;
3891 uint16_t *latencies;
3892
3893 if (INTEL_INFO(dev)->gen >= 9)
3894 latencies = dev_priv->wm.skl_latency;
3895 else
3896 latencies = to_i915(dev)->wm.cur_latency;
3897
3898 return wm_latency_write(file, ubuf, len, offp, latencies);
3899 }
3900
3901 static const struct file_operations i915_pri_wm_latency_fops = {
3902 .owner = THIS_MODULE,
3903 .open = pri_wm_latency_open,
3904 .read = seq_read,
3905 .llseek = seq_lseek,
3906 .release = single_release,
3907 .write = pri_wm_latency_write
3908 };
3909
3910 static const struct file_operations i915_spr_wm_latency_fops = {
3911 .owner = THIS_MODULE,
3912 .open = spr_wm_latency_open,
3913 .read = seq_read,
3914 .llseek = seq_lseek,
3915 .release = single_release,
3916 .write = spr_wm_latency_write
3917 };
3918
3919 static const struct file_operations i915_cur_wm_latency_fops = {
3920 .owner = THIS_MODULE,
3921 .open = cur_wm_latency_open,
3922 .read = seq_read,
3923 .llseek = seq_lseek,
3924 .release = single_release,
3925 .write = cur_wm_latency_write
3926 };
3927
3928 static int
3929 i915_wedged_get(void *data, u64 *val)
3930 {
3931 struct drm_device *dev = data;
3932 struct drm_i915_private *dev_priv = dev->dev_private;
3933
3934 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3935
3936 return 0;
3937 }
3938
3939 static int
3940 i915_wedged_set(void *data, u64 val)
3941 {
3942 struct drm_device *dev = data;
3943 struct drm_i915_private *dev_priv = dev->dev_private;
3944
3945 intel_runtime_pm_get(dev_priv);
3946
3947 i915_handle_error(dev, val,
3948 "Manually setting wedged to %llu", val);
3949
3950 intel_runtime_pm_put(dev_priv);
3951
3952 return 0;
3953 }
3954
3955 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3956 i915_wedged_get, i915_wedged_set,
3957 "%llu\n");
3958
3959 static int
3960 i915_ring_stop_get(void *data, u64 *val)
3961 {
3962 struct drm_device *dev = data;
3963 struct drm_i915_private *dev_priv = dev->dev_private;
3964
3965 *val = dev_priv->gpu_error.stop_rings;
3966
3967 return 0;
3968 }
3969
3970 static int
3971 i915_ring_stop_set(void *data, u64 val)
3972 {
3973 struct drm_device *dev = data;
3974 struct drm_i915_private *dev_priv = dev->dev_private;
3975 int ret;
3976
3977 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3978
3979 ret = mutex_lock_interruptible(&dev->struct_mutex);
3980 if (ret)
3981 return ret;
3982
3983 dev_priv->gpu_error.stop_rings = val;
3984 mutex_unlock(&dev->struct_mutex);
3985
3986 return 0;
3987 }
3988
3989 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3990 i915_ring_stop_get, i915_ring_stop_set,
3991 "0x%08llx\n");
3992
3993 static int
3994 i915_ring_missed_irq_get(void *data, u64 *val)
3995 {
3996 struct drm_device *dev = data;
3997 struct drm_i915_private *dev_priv = dev->dev_private;
3998
3999 *val = dev_priv->gpu_error.missed_irq_rings;
4000 return 0;
4001 }
4002
4003 static int
4004 i915_ring_missed_irq_set(void *data, u64 val)
4005 {
4006 struct drm_device *dev = data;
4007 struct drm_i915_private *dev_priv = dev->dev_private;
4008 int ret;
4009
4010 /* Lock against concurrent debugfs callers */
4011 ret = mutex_lock_interruptible(&dev->struct_mutex);
4012 if (ret)
4013 return ret;
4014 dev_priv->gpu_error.missed_irq_rings = val;
4015 mutex_unlock(&dev->struct_mutex);
4016
4017 return 0;
4018 }
4019
4020 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4021 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4022 "0x%08llx\n");
4023
4024 static int
4025 i915_ring_test_irq_get(void *data, u64 *val)
4026 {
4027 struct drm_device *dev = data;
4028 struct drm_i915_private *dev_priv = dev->dev_private;
4029
4030 *val = dev_priv->gpu_error.test_irq_rings;
4031
4032 return 0;
4033 }
4034
4035 static int
4036 i915_ring_test_irq_set(void *data, u64 val)
4037 {
4038 struct drm_device *dev = data;
4039 struct drm_i915_private *dev_priv = dev->dev_private;
4040 int ret;
4041
4042 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4043
4044 /* Lock against concurrent debugfs callers */
4045 ret = mutex_lock_interruptible(&dev->struct_mutex);
4046 if (ret)
4047 return ret;
4048
4049 dev_priv->gpu_error.test_irq_rings = val;
4050 mutex_unlock(&dev->struct_mutex);
4051
4052 return 0;
4053 }
4054
4055 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4056 i915_ring_test_irq_get, i915_ring_test_irq_set,
4057 "0x%08llx\n");
4058
4059 #define DROP_UNBOUND 0x1
4060 #define DROP_BOUND 0x2
4061 #define DROP_RETIRE 0x4
4062 #define DROP_ACTIVE 0x8
4063 #define DROP_ALL (DROP_UNBOUND | \
4064 DROP_BOUND | \
4065 DROP_RETIRE | \
4066 DROP_ACTIVE)
4067 static int
4068 i915_drop_caches_get(void *data, u64 *val)
4069 {
4070 *val = DROP_ALL;
4071
4072 return 0;
4073 }
4074
4075 static int
4076 i915_drop_caches_set(void *data, u64 val)
4077 {
4078 struct drm_device *dev = data;
4079 struct drm_i915_private *dev_priv = dev->dev_private;
4080 int ret;
4081
4082 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4083
4084 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4085 * on ioctls on -EAGAIN. */
4086 ret = mutex_lock_interruptible(&dev->struct_mutex);
4087 if (ret)
4088 return ret;
4089
4090 if (val & DROP_ACTIVE) {
4091 ret = i915_gpu_idle(dev);
4092 if (ret)
4093 goto unlock;
4094 }
4095
4096 if (val & (DROP_RETIRE | DROP_ACTIVE))
4097 i915_gem_retire_requests(dev);
4098
4099 if (val & DROP_BOUND)
4100 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4101
4102 if (val & DROP_UNBOUND)
4103 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4104
4105 unlock:
4106 mutex_unlock(&dev->struct_mutex);
4107
4108 return ret;
4109 }
4110
4111 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4112 i915_drop_caches_get, i915_drop_caches_set,
4113 "0x%08llx\n");
4114
4115 static int
4116 i915_max_freq_get(void *data, u64 *val)
4117 {
4118 struct drm_device *dev = data;
4119 struct drm_i915_private *dev_priv = dev->dev_private;
4120 int ret;
4121
4122 if (INTEL_INFO(dev)->gen < 6)
4123 return -ENODEV;
4124
4125 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4126
4127 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4128 if (ret)
4129 return ret;
4130
4131 if (IS_VALLEYVIEW(dev))
4132 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4133 else
4134 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
4135 mutex_unlock(&dev_priv->rps.hw_lock);
4136
4137 return 0;
4138 }
4139
4140 static int
4141 i915_max_freq_set(void *data, u64 val)
4142 {
4143 struct drm_device *dev = data;
4144 struct drm_i915_private *dev_priv = dev->dev_private;
4145 u32 rp_state_cap, hw_max, hw_min;
4146 int ret;
4147
4148 if (INTEL_INFO(dev)->gen < 6)
4149 return -ENODEV;
4150
4151 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4152
4153 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4154
4155 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4156 if (ret)
4157 return ret;
4158
4159 /*
4160 * Turbo will still be enabled, but won't go above the set value.
4161 */
4162 if (IS_VALLEYVIEW(dev)) {
4163 val = vlv_freq_opcode(dev_priv, val);
4164
4165 hw_max = dev_priv->rps.max_freq;
4166 hw_min = dev_priv->rps.min_freq;
4167 } else {
4168 do_div(val, GT_FREQUENCY_MULTIPLIER);
4169
4170 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4171 hw_max = dev_priv->rps.max_freq;
4172 hw_min = (rp_state_cap >> 16) & 0xff;
4173 }
4174
4175 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4176 mutex_unlock(&dev_priv->rps.hw_lock);
4177 return -EINVAL;
4178 }
4179
4180 dev_priv->rps.max_freq_softlimit = val;
4181
4182 if (IS_VALLEYVIEW(dev))
4183 valleyview_set_rps(dev, val);
4184 else
4185 gen6_set_rps(dev, val);
4186
4187 mutex_unlock(&dev_priv->rps.hw_lock);
4188
4189 return 0;
4190 }
4191
4192 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4193 i915_max_freq_get, i915_max_freq_set,
4194 "%llu\n");
4195
4196 static int
4197 i915_min_freq_get(void *data, u64 *val)
4198 {
4199 struct drm_device *dev = data;
4200 struct drm_i915_private *dev_priv = dev->dev_private;
4201 int ret;
4202
4203 if (INTEL_INFO(dev)->gen < 6)
4204 return -ENODEV;
4205
4206 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4207
4208 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4209 if (ret)
4210 return ret;
4211
4212 if (IS_VALLEYVIEW(dev))
4213 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4214 else
4215 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
4216 mutex_unlock(&dev_priv->rps.hw_lock);
4217
4218 return 0;
4219 }
4220
4221 static int
4222 i915_min_freq_set(void *data, u64 val)
4223 {
4224 struct drm_device *dev = data;
4225 struct drm_i915_private *dev_priv = dev->dev_private;
4226 u32 rp_state_cap, hw_max, hw_min;
4227 int ret;
4228
4229 if (INTEL_INFO(dev)->gen < 6)
4230 return -ENODEV;
4231
4232 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4233
4234 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4235
4236 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4237 if (ret)
4238 return ret;
4239
4240 /*
4241 * Turbo will still be enabled, but won't go below the set value.
4242 */
4243 if (IS_VALLEYVIEW(dev)) {
4244 val = vlv_freq_opcode(dev_priv, val);
4245
4246 hw_max = dev_priv->rps.max_freq;
4247 hw_min = dev_priv->rps.min_freq;
4248 } else {
4249 do_div(val, GT_FREQUENCY_MULTIPLIER);
4250
4251 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4252 hw_max = dev_priv->rps.max_freq;
4253 hw_min = (rp_state_cap >> 16) & 0xff;
4254 }
4255
4256 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4257 mutex_unlock(&dev_priv->rps.hw_lock);
4258 return -EINVAL;
4259 }
4260
4261 dev_priv->rps.min_freq_softlimit = val;
4262
4263 if (IS_VALLEYVIEW(dev))
4264 valleyview_set_rps(dev, val);
4265 else
4266 gen6_set_rps(dev, val);
4267
4268 mutex_unlock(&dev_priv->rps.hw_lock);
4269
4270 return 0;
4271 }
4272
4273 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4274 i915_min_freq_get, i915_min_freq_set,
4275 "%llu\n");
4276
4277 static int
4278 i915_cache_sharing_get(void *data, u64 *val)
4279 {
4280 struct drm_device *dev = data;
4281 struct drm_i915_private *dev_priv = dev->dev_private;
4282 u32 snpcr;
4283 int ret;
4284
4285 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4286 return -ENODEV;
4287
4288 ret = mutex_lock_interruptible(&dev->struct_mutex);
4289 if (ret)
4290 return ret;
4291 intel_runtime_pm_get(dev_priv);
4292
4293 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4294
4295 intel_runtime_pm_put(dev_priv);
4296 mutex_unlock(&dev_priv->dev->struct_mutex);
4297
4298 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4299
4300 return 0;
4301 }
4302
4303 static int
4304 i915_cache_sharing_set(void *data, u64 val)
4305 {
4306 struct drm_device *dev = data;
4307 struct drm_i915_private *dev_priv = dev->dev_private;
4308 u32 snpcr;
4309
4310 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4311 return -ENODEV;
4312
4313 if (val > 3)
4314 return -EINVAL;
4315
4316 intel_runtime_pm_get(dev_priv);
4317 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4318
4319 /* Update the cache sharing policy here as well */
4320 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4321 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4322 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4323 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4324
4325 intel_runtime_pm_put(dev_priv);
4326 return 0;
4327 }
4328
4329 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4330 i915_cache_sharing_get, i915_cache_sharing_set,
4331 "%llu\n");
4332
4333 static int i915_forcewake_open(struct inode *inode, struct file *file)
4334 {
4335 struct drm_device *dev = inode->i_private;
4336 struct drm_i915_private *dev_priv = dev->dev_private;
4337
4338 if (INTEL_INFO(dev)->gen < 6)
4339 return 0;
4340
4341 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4342
4343 return 0;
4344 }
4345
4346 static int i915_forcewake_release(struct inode *inode, struct file *file)
4347 {
4348 struct drm_device *dev = inode->i_private;
4349 struct drm_i915_private *dev_priv = dev->dev_private;
4350
4351 if (INTEL_INFO(dev)->gen < 6)
4352 return 0;
4353
4354 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4355
4356 return 0;
4357 }
4358
4359 static const struct file_operations i915_forcewake_fops = {
4360 .owner = THIS_MODULE,
4361 .open = i915_forcewake_open,
4362 .release = i915_forcewake_release,
4363 };
4364
4365 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4366 {
4367 struct drm_device *dev = minor->dev;
4368 struct dentry *ent;
4369
4370 ent = debugfs_create_file("i915_forcewake_user",
4371 S_IRUSR,
4372 root, dev,
4373 &i915_forcewake_fops);
4374 if (!ent)
4375 return -ENOMEM;
4376
4377 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4378 }
4379
4380 static int i915_debugfs_create(struct dentry *root,
4381 struct drm_minor *minor,
4382 const char *name,
4383 const struct file_operations *fops)
4384 {
4385 struct drm_device *dev = minor->dev;
4386 struct dentry *ent;
4387
4388 ent = debugfs_create_file(name,
4389 S_IRUGO | S_IWUSR,
4390 root, dev,
4391 fops);
4392 if (!ent)
4393 return -ENOMEM;
4394
4395 return drm_add_fake_info_node(minor, ent, fops);
4396 }
4397
4398 static const struct drm_info_list i915_debugfs_list[] = {
4399 {"i915_capabilities", i915_capabilities, 0},
4400 {"i915_gem_objects", i915_gem_object_info, 0},
4401 {"i915_gem_gtt", i915_gem_gtt_info, 0},
4402 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4403 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4404 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4405 {"i915_gem_stolen", i915_gem_stolen_list_info },
4406 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4407 {"i915_gem_request", i915_gem_request_info, 0},
4408 {"i915_gem_seqno", i915_gem_seqno_info, 0},
4409 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4410 {"i915_gem_interrupt", i915_interrupt_info, 0},
4411 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4412 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4413 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4414 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4415 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4416 {"i915_frequency_info", i915_frequency_info, 0},
4417 {"i915_drpc_info", i915_drpc_info, 0},
4418 {"i915_emon_status", i915_emon_status, 0},
4419 {"i915_ring_freq_table", i915_ring_freq_table, 0},
4420 {"i915_fbc_status", i915_fbc_status, 0},
4421 {"i915_ips_status", i915_ips_status, 0},
4422 {"i915_sr_status", i915_sr_status, 0},
4423 {"i915_opregion", i915_opregion, 0},
4424 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4425 {"i915_context_status", i915_context_status, 0},
4426 {"i915_dump_lrc", i915_dump_lrc, 0},
4427 {"i915_execlists", i915_execlists, 0},
4428 {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
4429 {"i915_swizzle_info", i915_swizzle_info, 0},
4430 {"i915_ppgtt_info", i915_ppgtt_info, 0},
4431 {"i915_llc", i915_llc, 0},
4432 {"i915_edp_psr_status", i915_edp_psr_status, 0},
4433 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4434 {"i915_energy_uJ", i915_energy_uJ, 0},
4435 {"i915_pc8_status", i915_pc8_status, 0},
4436 {"i915_power_domain_info", i915_power_domain_info, 0},
4437 {"i915_display_info", i915_display_info, 0},
4438 {"i915_semaphore_status", i915_semaphore_status, 0},
4439 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4440 {"i915_dp_mst_info", i915_dp_mst_info, 0},
4441 {"i915_wa_registers", i915_wa_registers, 0},
4442 {"i915_ddb_info", i915_ddb_info, 0},
4443 };
4444 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4445
4446 static const struct i915_debugfs_files {
4447 const char *name;
4448 const struct file_operations *fops;
4449 } i915_debugfs_files[] = {
4450 {"i915_wedged", &i915_wedged_fops},
4451 {"i915_max_freq", &i915_max_freq_fops},
4452 {"i915_min_freq", &i915_min_freq_fops},
4453 {"i915_cache_sharing", &i915_cache_sharing_fops},
4454 {"i915_ring_stop", &i915_ring_stop_fops},
4455 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4456 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4457 {"i915_gem_drop_caches", &i915_drop_caches_fops},
4458 {"i915_error_state", &i915_error_state_fops},
4459 {"i915_next_seqno", &i915_next_seqno_fops},
4460 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4461 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4462 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4463 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4464 {"i915_fbc_false_color", &i915_fbc_fc_fops},
4465 };
4466
4467 void intel_display_crc_init(struct drm_device *dev)
4468 {
4469 struct drm_i915_private *dev_priv = dev->dev_private;
4470 enum pipe pipe;
4471
4472 for_each_pipe(dev_priv, pipe) {
4473 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4474
4475 pipe_crc->opened = false;
4476 spin_lock_init(&pipe_crc->lock);
4477 init_waitqueue_head(&pipe_crc->wq);
4478 }
4479 }
4480
4481 int i915_debugfs_init(struct drm_minor *minor)
4482 {
4483 int ret, i;
4484
4485 ret = i915_forcewake_create(minor->debugfs_root, minor);
4486 if (ret)
4487 return ret;
4488
4489 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4490 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4491 if (ret)
4492 return ret;
4493 }
4494
4495 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4496 ret = i915_debugfs_create(minor->debugfs_root, minor,
4497 i915_debugfs_files[i].name,
4498 i915_debugfs_files[i].fops);
4499 if (ret)
4500 return ret;
4501 }
4502
4503 return drm_debugfs_create_files(i915_debugfs_list,
4504 I915_DEBUGFS_ENTRIES,
4505 minor->debugfs_root, minor);
4506 }
4507
4508 void i915_debugfs_cleanup(struct drm_minor *minor)
4509 {
4510 int i;
4511
4512 drm_debugfs_remove_files(i915_debugfs_list,
4513 I915_DEBUGFS_ENTRIES, minor);
4514
4515 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4516 1, minor);
4517
4518 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4519 struct drm_info_list *info_list =
4520 (struct drm_info_list *)&i915_pipe_crc_data[i];
4521
4522 drm_debugfs_remove_files(info_list, 1, minor);
4523 }
4524
4525 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4526 struct drm_info_list *info_list =
4527 (struct drm_info_list *) i915_debugfs_files[i].fops;
4528
4529 drm_debugfs_remove_files(info_list, 1, minor);
4530 }
4531 }
This page took 0.190691 seconds and 6 git commands to generate.