drm/i915: Re-enable GGTT earlier during resume on pre-gen6 platforms
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50 * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 struct dentry *ent,
54 const void *key)
55 {
56 struct drm_info_node *node;
57
58 node = kmalloc(sizeof(*node), GFP_KERNEL);
59 if (node == NULL) {
60 debugfs_remove(ent);
61 return -ENOMEM;
62 }
63
64 node->minor = minor;
65 node->dent = ent;
66 node->info_ent = (void *) key;
67
68 mutex_lock(&minor->debugfs_lock);
69 list_add(&node->list, &minor->debugfs_list);
70 mutex_unlock(&minor->debugfs_lock);
71
72 return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 struct drm_info_node *node = m->private;
78 struct drm_device *dev = node->minor->dev;
79 const struct intel_device_info *info = INTEL_INFO(dev);
80
81 seq_printf(m, "gen: %d\n", info->gen);
82 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89 return 0;
90 }
91
92 static const char get_active_flag(struct drm_i915_gem_object *obj)
93 {
94 return obj->active ? '*' : ' ';
95 }
96
97 static const char get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 return obj->pin_display ? 'p' : ' ';
100 }
101
102 static const char get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104 switch (obj->tiling_mode) {
105 default:
106 case I915_TILING_NONE: return ' ';
107 case I915_TILING_X: return 'X';
108 case I915_TILING_Y: return 'Y';
109 }
110 }
111
112 static inline const char get_global_flag(struct drm_i915_gem_object *obj)
113 {
114 return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
115 }
116
117 static inline const char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
118 {
119 return obj->mapping ? 'M' : ' ';
120 }
121
122 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
123 {
124 u64 size = 0;
125 struct i915_vma *vma;
126
127 list_for_each_entry(vma, &obj->vma_list, obj_link) {
128 if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
129 size += vma->node.size;
130 }
131
132 return size;
133 }
134
135 static void
136 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
137 {
138 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
139 struct intel_engine_cs *engine;
140 struct i915_vma *vma;
141 int pin_count = 0;
142 enum intel_engine_id id;
143
144 lockdep_assert_held(&obj->base.dev->struct_mutex);
145
146 seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
147 &obj->base,
148 get_active_flag(obj),
149 get_pin_flag(obj),
150 get_tiling_flag(obj),
151 get_global_flag(obj),
152 get_pin_mapped_flag(obj),
153 obj->base.size / 1024,
154 obj->base.read_domains,
155 obj->base.write_domain);
156 for_each_engine_id(engine, dev_priv, id)
157 seq_printf(m, "%x ",
158 i915_gem_request_get_seqno(obj->last_read_req[id]));
159 seq_printf(m, "] %x %x%s%s%s",
160 i915_gem_request_get_seqno(obj->last_write_req),
161 i915_gem_request_get_seqno(obj->last_fenced_req),
162 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
163 obj->dirty ? " dirty" : "",
164 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
165 if (obj->base.name)
166 seq_printf(m, " (name: %d)", obj->base.name);
167 list_for_each_entry(vma, &obj->vma_list, obj_link) {
168 if (vma->pin_count > 0)
169 pin_count++;
170 }
171 seq_printf(m, " (pinned x %d)", pin_count);
172 if (obj->pin_display)
173 seq_printf(m, " (display)");
174 if (obj->fence_reg != I915_FENCE_REG_NONE)
175 seq_printf(m, " (fence: %d)", obj->fence_reg);
176 list_for_each_entry(vma, &obj->vma_list, obj_link) {
177 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
178 vma->is_ggtt ? "g" : "pp",
179 vma->node.start, vma->node.size);
180 if (vma->is_ggtt)
181 seq_printf(m, ", type: %u", vma->ggtt_view.type);
182 seq_puts(m, ")");
183 }
184 if (obj->stolen)
185 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
186 if (obj->pin_display || obj->fault_mappable) {
187 char s[3], *t = s;
188 if (obj->pin_display)
189 *t++ = 'p';
190 if (obj->fault_mappable)
191 *t++ = 'f';
192 *t = '\0';
193 seq_printf(m, " (%s mappable)", s);
194 }
195 if (obj->last_write_req != NULL)
196 seq_printf(m, " (%s)",
197 i915_gem_request_get_engine(obj->last_write_req)->name);
198 if (obj->frontbuffer_bits)
199 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
200 }
201
202 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
203 {
204 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
205 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
206 seq_putc(m, ' ');
207 }
208
209 static int i915_gem_object_list_info(struct seq_file *m, void *data)
210 {
211 struct drm_info_node *node = m->private;
212 uintptr_t list = (uintptr_t) node->info_ent->data;
213 struct list_head *head;
214 struct drm_device *dev = node->minor->dev;
215 struct drm_i915_private *dev_priv = to_i915(dev);
216 struct i915_ggtt *ggtt = &dev_priv->ggtt;
217 struct i915_vma *vma;
218 u64 total_obj_size, total_gtt_size;
219 int count, ret;
220
221 ret = mutex_lock_interruptible(&dev->struct_mutex);
222 if (ret)
223 return ret;
224
225 /* FIXME: the user of this interface might want more than just GGTT */
226 switch (list) {
227 case ACTIVE_LIST:
228 seq_puts(m, "Active:\n");
229 head = &ggtt->base.active_list;
230 break;
231 case INACTIVE_LIST:
232 seq_puts(m, "Inactive:\n");
233 head = &ggtt->base.inactive_list;
234 break;
235 default:
236 mutex_unlock(&dev->struct_mutex);
237 return -EINVAL;
238 }
239
240 total_obj_size = total_gtt_size = count = 0;
241 list_for_each_entry(vma, head, vm_link) {
242 seq_printf(m, " ");
243 describe_obj(m, vma->obj);
244 seq_printf(m, "\n");
245 total_obj_size += vma->obj->base.size;
246 total_gtt_size += vma->node.size;
247 count++;
248 }
249 mutex_unlock(&dev->struct_mutex);
250
251 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
252 count, total_obj_size, total_gtt_size);
253 return 0;
254 }
255
256 static int obj_rank_by_stolen(void *priv,
257 struct list_head *A, struct list_head *B)
258 {
259 struct drm_i915_gem_object *a =
260 container_of(A, struct drm_i915_gem_object, obj_exec_link);
261 struct drm_i915_gem_object *b =
262 container_of(B, struct drm_i915_gem_object, obj_exec_link);
263
264 if (a->stolen->start < b->stolen->start)
265 return -1;
266 if (a->stolen->start > b->stolen->start)
267 return 1;
268 return 0;
269 }
270
271 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
272 {
273 struct drm_info_node *node = m->private;
274 struct drm_device *dev = node->minor->dev;
275 struct drm_i915_private *dev_priv = dev->dev_private;
276 struct drm_i915_gem_object *obj;
277 u64 total_obj_size, total_gtt_size;
278 LIST_HEAD(stolen);
279 int count, ret;
280
281 ret = mutex_lock_interruptible(&dev->struct_mutex);
282 if (ret)
283 return ret;
284
285 total_obj_size = total_gtt_size = count = 0;
286 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
287 if (obj->stolen == NULL)
288 continue;
289
290 list_add(&obj->obj_exec_link, &stolen);
291
292 total_obj_size += obj->base.size;
293 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
294 count++;
295 }
296 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
297 if (obj->stolen == NULL)
298 continue;
299
300 list_add(&obj->obj_exec_link, &stolen);
301
302 total_obj_size += obj->base.size;
303 count++;
304 }
305 list_sort(NULL, &stolen, obj_rank_by_stolen);
306 seq_puts(m, "Stolen:\n");
307 while (!list_empty(&stolen)) {
308 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
309 seq_puts(m, " ");
310 describe_obj(m, obj);
311 seq_putc(m, '\n');
312 list_del_init(&obj->obj_exec_link);
313 }
314 mutex_unlock(&dev->struct_mutex);
315
316 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
317 count, total_obj_size, total_gtt_size);
318 return 0;
319 }
320
321 #define count_objects(list, member) do { \
322 list_for_each_entry(obj, list, member) { \
323 size += i915_gem_obj_total_ggtt_size(obj); \
324 ++count; \
325 if (obj->map_and_fenceable) { \
326 mappable_size += i915_gem_obj_ggtt_size(obj); \
327 ++mappable_count; \
328 } \
329 } \
330 } while (0)
331
332 struct file_stats {
333 struct drm_i915_file_private *file_priv;
334 unsigned long count;
335 u64 total, unbound;
336 u64 global, shared;
337 u64 active, inactive;
338 };
339
340 static int per_file_stats(int id, void *ptr, void *data)
341 {
342 struct drm_i915_gem_object *obj = ptr;
343 struct file_stats *stats = data;
344 struct i915_vma *vma;
345
346 stats->count++;
347 stats->total += obj->base.size;
348
349 if (obj->base.name || obj->base.dma_buf)
350 stats->shared += obj->base.size;
351
352 if (USES_FULL_PPGTT(obj->base.dev)) {
353 list_for_each_entry(vma, &obj->vma_list, obj_link) {
354 struct i915_hw_ppgtt *ppgtt;
355
356 if (!drm_mm_node_allocated(&vma->node))
357 continue;
358
359 if (vma->is_ggtt) {
360 stats->global += obj->base.size;
361 continue;
362 }
363
364 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
365 if (ppgtt->file_priv != stats->file_priv)
366 continue;
367
368 if (obj->active) /* XXX per-vma statistic */
369 stats->active += obj->base.size;
370 else
371 stats->inactive += obj->base.size;
372
373 return 0;
374 }
375 } else {
376 if (i915_gem_obj_ggtt_bound(obj)) {
377 stats->global += obj->base.size;
378 if (obj->active)
379 stats->active += obj->base.size;
380 else
381 stats->inactive += obj->base.size;
382 return 0;
383 }
384 }
385
386 if (!list_empty(&obj->global_list))
387 stats->unbound += obj->base.size;
388
389 return 0;
390 }
391
392 #define print_file_stats(m, name, stats) do { \
393 if (stats.count) \
394 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
395 name, \
396 stats.count, \
397 stats.total, \
398 stats.active, \
399 stats.inactive, \
400 stats.global, \
401 stats.shared, \
402 stats.unbound); \
403 } while (0)
404
405 static void print_batch_pool_stats(struct seq_file *m,
406 struct drm_i915_private *dev_priv)
407 {
408 struct drm_i915_gem_object *obj;
409 struct file_stats stats;
410 struct intel_engine_cs *engine;
411 int j;
412
413 memset(&stats, 0, sizeof(stats));
414
415 for_each_engine(engine, dev_priv) {
416 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
417 list_for_each_entry(obj,
418 &engine->batch_pool.cache_list[j],
419 batch_pool_link)
420 per_file_stats(0, obj, &stats);
421 }
422 }
423
424 print_file_stats(m, "[k]batch pool", stats);
425 }
426
427 #define count_vmas(list, member) do { \
428 list_for_each_entry(vma, list, member) { \
429 size += i915_gem_obj_total_ggtt_size(vma->obj); \
430 ++count; \
431 if (vma->obj->map_and_fenceable) { \
432 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
433 ++mappable_count; \
434 } \
435 } \
436 } while (0)
437
438 static int i915_gem_object_info(struct seq_file *m, void* data)
439 {
440 struct drm_info_node *node = m->private;
441 struct drm_device *dev = node->minor->dev;
442 struct drm_i915_private *dev_priv = to_i915(dev);
443 struct i915_ggtt *ggtt = &dev_priv->ggtt;
444 u32 count, mappable_count, purgeable_count;
445 u64 size, mappable_size, purgeable_size;
446 unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
447 u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
448 struct drm_i915_gem_object *obj;
449 struct drm_file *file;
450 struct i915_vma *vma;
451 int ret;
452
453 ret = mutex_lock_interruptible(&dev->struct_mutex);
454 if (ret)
455 return ret;
456
457 seq_printf(m, "%u objects, %zu bytes\n",
458 dev_priv->mm.object_count,
459 dev_priv->mm.object_memory);
460
461 size = count = mappable_size = mappable_count = 0;
462 count_objects(&dev_priv->mm.bound_list, global_list);
463 seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
464 count, mappable_count, size, mappable_size);
465
466 size = count = mappable_size = mappable_count = 0;
467 count_vmas(&ggtt->base.active_list, vm_link);
468 seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
469 count, mappable_count, size, mappable_size);
470
471 size = count = mappable_size = mappable_count = 0;
472 count_vmas(&ggtt->base.inactive_list, vm_link);
473 seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
474 count, mappable_count, size, mappable_size);
475
476 size = count = purgeable_size = purgeable_count = 0;
477 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
478 size += obj->base.size, ++count;
479 if (obj->madv == I915_MADV_DONTNEED)
480 purgeable_size += obj->base.size, ++purgeable_count;
481 if (obj->mapping) {
482 pin_mapped_count++;
483 pin_mapped_size += obj->base.size;
484 if (obj->pages_pin_count == 0) {
485 pin_mapped_purgeable_count++;
486 pin_mapped_purgeable_size += obj->base.size;
487 }
488 }
489 }
490 seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
491
492 size = count = mappable_size = mappable_count = 0;
493 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
494 if (obj->fault_mappable) {
495 size += i915_gem_obj_ggtt_size(obj);
496 ++count;
497 }
498 if (obj->pin_display) {
499 mappable_size += i915_gem_obj_ggtt_size(obj);
500 ++mappable_count;
501 }
502 if (obj->madv == I915_MADV_DONTNEED) {
503 purgeable_size += obj->base.size;
504 ++purgeable_count;
505 }
506 if (obj->mapping) {
507 pin_mapped_count++;
508 pin_mapped_size += obj->base.size;
509 if (obj->pages_pin_count == 0) {
510 pin_mapped_purgeable_count++;
511 pin_mapped_purgeable_size += obj->base.size;
512 }
513 }
514 }
515 seq_printf(m, "%u purgeable objects, %llu bytes\n",
516 purgeable_count, purgeable_size);
517 seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
518 mappable_count, mappable_size);
519 seq_printf(m, "%u fault mappable objects, %llu bytes\n",
520 count, size);
521 seq_printf(m,
522 "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
523 pin_mapped_count, pin_mapped_purgeable_count,
524 pin_mapped_size, pin_mapped_purgeable_size);
525
526 seq_printf(m, "%llu [%llu] gtt total\n",
527 ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
528
529 seq_putc(m, '\n');
530 print_batch_pool_stats(m, dev_priv);
531 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
532 struct file_stats stats;
533 struct task_struct *task;
534
535 memset(&stats, 0, sizeof(stats));
536 stats.file_priv = file->driver_priv;
537 spin_lock(&file->table_lock);
538 idr_for_each(&file->object_idr, per_file_stats, &stats);
539 spin_unlock(&file->table_lock);
540 /*
541 * Although we have a valid reference on file->pid, that does
542 * not guarantee that the task_struct who called get_pid() is
543 * still alive (e.g. get_pid(current) => fork() => exit()).
544 * Therefore, we need to protect this ->comm access using RCU.
545 */
546 rcu_read_lock();
547 task = pid_task(file->pid, PIDTYPE_PID);
548 print_file_stats(m, task ? task->comm : "<unknown>", stats);
549 rcu_read_unlock();
550 }
551
552 mutex_unlock(&dev->struct_mutex);
553
554 return 0;
555 }
556
557 static int i915_gem_gtt_info(struct seq_file *m, void *data)
558 {
559 struct drm_info_node *node = m->private;
560 struct drm_device *dev = node->minor->dev;
561 uintptr_t list = (uintptr_t) node->info_ent->data;
562 struct drm_i915_private *dev_priv = dev->dev_private;
563 struct drm_i915_gem_object *obj;
564 u64 total_obj_size, total_gtt_size;
565 int count, ret;
566
567 ret = mutex_lock_interruptible(&dev->struct_mutex);
568 if (ret)
569 return ret;
570
571 total_obj_size = total_gtt_size = count = 0;
572 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
573 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
574 continue;
575
576 seq_puts(m, " ");
577 describe_obj(m, obj);
578 seq_putc(m, '\n');
579 total_obj_size += obj->base.size;
580 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
581 count++;
582 }
583
584 mutex_unlock(&dev->struct_mutex);
585
586 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
587 count, total_obj_size, total_gtt_size);
588
589 return 0;
590 }
591
592 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
593 {
594 struct drm_info_node *node = m->private;
595 struct drm_device *dev = node->minor->dev;
596 struct drm_i915_private *dev_priv = dev->dev_private;
597 struct intel_crtc *crtc;
598 int ret;
599
600 ret = mutex_lock_interruptible(&dev->struct_mutex);
601 if (ret)
602 return ret;
603
604 for_each_intel_crtc(dev, crtc) {
605 const char pipe = pipe_name(crtc->pipe);
606 const char plane = plane_name(crtc->plane);
607 struct intel_unpin_work *work;
608
609 spin_lock_irq(&dev->event_lock);
610 work = crtc->unpin_work;
611 if (work == NULL) {
612 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
613 pipe, plane);
614 } else {
615 u32 addr;
616
617 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
618 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
619 pipe, plane);
620 } else {
621 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
622 pipe, plane);
623 }
624 if (work->flip_queued_req) {
625 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
626
627 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
628 engine->name,
629 i915_gem_request_get_seqno(work->flip_queued_req),
630 dev_priv->next_seqno,
631 engine->get_seqno(engine),
632 i915_gem_request_completed(work->flip_queued_req, true));
633 } else
634 seq_printf(m, "Flip not associated with any ring\n");
635 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
636 work->flip_queued_vblank,
637 work->flip_ready_vblank,
638 drm_crtc_vblank_count(&crtc->base));
639 if (work->enable_stall_check)
640 seq_puts(m, "Stall check enabled, ");
641 else
642 seq_puts(m, "Stall check waiting for page flip ioctl, ");
643 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
644
645 if (INTEL_INFO(dev)->gen >= 4)
646 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
647 else
648 addr = I915_READ(DSPADDR(crtc->plane));
649 seq_printf(m, "Current scanout address 0x%08x\n", addr);
650
651 if (work->pending_flip_obj) {
652 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
653 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
654 }
655 }
656 spin_unlock_irq(&dev->event_lock);
657 }
658
659 mutex_unlock(&dev->struct_mutex);
660
661 return 0;
662 }
663
664 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
665 {
666 struct drm_info_node *node = m->private;
667 struct drm_device *dev = node->minor->dev;
668 struct drm_i915_private *dev_priv = dev->dev_private;
669 struct drm_i915_gem_object *obj;
670 struct intel_engine_cs *engine;
671 int total = 0;
672 int ret, j;
673
674 ret = mutex_lock_interruptible(&dev->struct_mutex);
675 if (ret)
676 return ret;
677
678 for_each_engine(engine, dev_priv) {
679 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
680 int count;
681
682 count = 0;
683 list_for_each_entry(obj,
684 &engine->batch_pool.cache_list[j],
685 batch_pool_link)
686 count++;
687 seq_printf(m, "%s cache[%d]: %d objects\n",
688 engine->name, j, count);
689
690 list_for_each_entry(obj,
691 &engine->batch_pool.cache_list[j],
692 batch_pool_link) {
693 seq_puts(m, " ");
694 describe_obj(m, obj);
695 seq_putc(m, '\n');
696 }
697
698 total += count;
699 }
700 }
701
702 seq_printf(m, "total: %d\n", total);
703
704 mutex_unlock(&dev->struct_mutex);
705
706 return 0;
707 }
708
709 static int i915_gem_request_info(struct seq_file *m, void *data)
710 {
711 struct drm_info_node *node = m->private;
712 struct drm_device *dev = node->minor->dev;
713 struct drm_i915_private *dev_priv = dev->dev_private;
714 struct intel_engine_cs *engine;
715 struct drm_i915_gem_request *req;
716 int ret, any;
717
718 ret = mutex_lock_interruptible(&dev->struct_mutex);
719 if (ret)
720 return ret;
721
722 any = 0;
723 for_each_engine(engine, dev_priv) {
724 int count;
725
726 count = 0;
727 list_for_each_entry(req, &engine->request_list, list)
728 count++;
729 if (count == 0)
730 continue;
731
732 seq_printf(m, "%s requests: %d\n", engine->name, count);
733 list_for_each_entry(req, &engine->request_list, list) {
734 struct task_struct *task;
735
736 rcu_read_lock();
737 task = NULL;
738 if (req->pid)
739 task = pid_task(req->pid, PIDTYPE_PID);
740 seq_printf(m, " %x @ %d: %s [%d]\n",
741 req->seqno,
742 (int) (jiffies - req->emitted_jiffies),
743 task ? task->comm : "<unknown>",
744 task ? task->pid : -1);
745 rcu_read_unlock();
746 }
747
748 any++;
749 }
750 mutex_unlock(&dev->struct_mutex);
751
752 if (any == 0)
753 seq_puts(m, "No requests\n");
754
755 return 0;
756 }
757
758 static void i915_ring_seqno_info(struct seq_file *m,
759 struct intel_engine_cs *engine)
760 {
761 seq_printf(m, "Current sequence (%s): %x\n",
762 engine->name, engine->get_seqno(engine));
763 seq_printf(m, "Current user interrupts (%s): %x\n",
764 engine->name, READ_ONCE(engine->user_interrupts));
765 }
766
767 static int i915_gem_seqno_info(struct seq_file *m, void *data)
768 {
769 struct drm_info_node *node = m->private;
770 struct drm_device *dev = node->minor->dev;
771 struct drm_i915_private *dev_priv = dev->dev_private;
772 struct intel_engine_cs *engine;
773 int ret;
774
775 ret = mutex_lock_interruptible(&dev->struct_mutex);
776 if (ret)
777 return ret;
778 intel_runtime_pm_get(dev_priv);
779
780 for_each_engine(engine, dev_priv)
781 i915_ring_seqno_info(m, engine);
782
783 intel_runtime_pm_put(dev_priv);
784 mutex_unlock(&dev->struct_mutex);
785
786 return 0;
787 }
788
789
790 static int i915_interrupt_info(struct seq_file *m, void *data)
791 {
792 struct drm_info_node *node = m->private;
793 struct drm_device *dev = node->minor->dev;
794 struct drm_i915_private *dev_priv = dev->dev_private;
795 struct intel_engine_cs *engine;
796 int ret, i, pipe;
797
798 ret = mutex_lock_interruptible(&dev->struct_mutex);
799 if (ret)
800 return ret;
801 intel_runtime_pm_get(dev_priv);
802
803 if (IS_CHERRYVIEW(dev)) {
804 seq_printf(m, "Master Interrupt Control:\t%08x\n",
805 I915_READ(GEN8_MASTER_IRQ));
806
807 seq_printf(m, "Display IER:\t%08x\n",
808 I915_READ(VLV_IER));
809 seq_printf(m, "Display IIR:\t%08x\n",
810 I915_READ(VLV_IIR));
811 seq_printf(m, "Display IIR_RW:\t%08x\n",
812 I915_READ(VLV_IIR_RW));
813 seq_printf(m, "Display IMR:\t%08x\n",
814 I915_READ(VLV_IMR));
815 for_each_pipe(dev_priv, pipe)
816 seq_printf(m, "Pipe %c stat:\t%08x\n",
817 pipe_name(pipe),
818 I915_READ(PIPESTAT(pipe)));
819
820 seq_printf(m, "Port hotplug:\t%08x\n",
821 I915_READ(PORT_HOTPLUG_EN));
822 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
823 I915_READ(VLV_DPFLIPSTAT));
824 seq_printf(m, "DPINVGTT:\t%08x\n",
825 I915_READ(DPINVGTT));
826
827 for (i = 0; i < 4; i++) {
828 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
829 i, I915_READ(GEN8_GT_IMR(i)));
830 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
831 i, I915_READ(GEN8_GT_IIR(i)));
832 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
833 i, I915_READ(GEN8_GT_IER(i)));
834 }
835
836 seq_printf(m, "PCU interrupt mask:\t%08x\n",
837 I915_READ(GEN8_PCU_IMR));
838 seq_printf(m, "PCU interrupt identity:\t%08x\n",
839 I915_READ(GEN8_PCU_IIR));
840 seq_printf(m, "PCU interrupt enable:\t%08x\n",
841 I915_READ(GEN8_PCU_IER));
842 } else if (INTEL_INFO(dev)->gen >= 8) {
843 seq_printf(m, "Master Interrupt Control:\t%08x\n",
844 I915_READ(GEN8_MASTER_IRQ));
845
846 for (i = 0; i < 4; i++) {
847 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
848 i, I915_READ(GEN8_GT_IMR(i)));
849 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
850 i, I915_READ(GEN8_GT_IIR(i)));
851 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
852 i, I915_READ(GEN8_GT_IER(i)));
853 }
854
855 for_each_pipe(dev_priv, pipe) {
856 enum intel_display_power_domain power_domain;
857
858 power_domain = POWER_DOMAIN_PIPE(pipe);
859 if (!intel_display_power_get_if_enabled(dev_priv,
860 power_domain)) {
861 seq_printf(m, "Pipe %c power disabled\n",
862 pipe_name(pipe));
863 continue;
864 }
865 seq_printf(m, "Pipe %c IMR:\t%08x\n",
866 pipe_name(pipe),
867 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
868 seq_printf(m, "Pipe %c IIR:\t%08x\n",
869 pipe_name(pipe),
870 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
871 seq_printf(m, "Pipe %c IER:\t%08x\n",
872 pipe_name(pipe),
873 I915_READ(GEN8_DE_PIPE_IER(pipe)));
874
875 intel_display_power_put(dev_priv, power_domain);
876 }
877
878 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
879 I915_READ(GEN8_DE_PORT_IMR));
880 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
881 I915_READ(GEN8_DE_PORT_IIR));
882 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
883 I915_READ(GEN8_DE_PORT_IER));
884
885 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
886 I915_READ(GEN8_DE_MISC_IMR));
887 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
888 I915_READ(GEN8_DE_MISC_IIR));
889 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
890 I915_READ(GEN8_DE_MISC_IER));
891
892 seq_printf(m, "PCU interrupt mask:\t%08x\n",
893 I915_READ(GEN8_PCU_IMR));
894 seq_printf(m, "PCU interrupt identity:\t%08x\n",
895 I915_READ(GEN8_PCU_IIR));
896 seq_printf(m, "PCU interrupt enable:\t%08x\n",
897 I915_READ(GEN8_PCU_IER));
898 } else if (IS_VALLEYVIEW(dev)) {
899 seq_printf(m, "Display IER:\t%08x\n",
900 I915_READ(VLV_IER));
901 seq_printf(m, "Display IIR:\t%08x\n",
902 I915_READ(VLV_IIR));
903 seq_printf(m, "Display IIR_RW:\t%08x\n",
904 I915_READ(VLV_IIR_RW));
905 seq_printf(m, "Display IMR:\t%08x\n",
906 I915_READ(VLV_IMR));
907 for_each_pipe(dev_priv, pipe)
908 seq_printf(m, "Pipe %c stat:\t%08x\n",
909 pipe_name(pipe),
910 I915_READ(PIPESTAT(pipe)));
911
912 seq_printf(m, "Master IER:\t%08x\n",
913 I915_READ(VLV_MASTER_IER));
914
915 seq_printf(m, "Render IER:\t%08x\n",
916 I915_READ(GTIER));
917 seq_printf(m, "Render IIR:\t%08x\n",
918 I915_READ(GTIIR));
919 seq_printf(m, "Render IMR:\t%08x\n",
920 I915_READ(GTIMR));
921
922 seq_printf(m, "PM IER:\t\t%08x\n",
923 I915_READ(GEN6_PMIER));
924 seq_printf(m, "PM IIR:\t\t%08x\n",
925 I915_READ(GEN6_PMIIR));
926 seq_printf(m, "PM IMR:\t\t%08x\n",
927 I915_READ(GEN6_PMIMR));
928
929 seq_printf(m, "Port hotplug:\t%08x\n",
930 I915_READ(PORT_HOTPLUG_EN));
931 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
932 I915_READ(VLV_DPFLIPSTAT));
933 seq_printf(m, "DPINVGTT:\t%08x\n",
934 I915_READ(DPINVGTT));
935
936 } else if (!HAS_PCH_SPLIT(dev)) {
937 seq_printf(m, "Interrupt enable: %08x\n",
938 I915_READ(IER));
939 seq_printf(m, "Interrupt identity: %08x\n",
940 I915_READ(IIR));
941 seq_printf(m, "Interrupt mask: %08x\n",
942 I915_READ(IMR));
943 for_each_pipe(dev_priv, pipe)
944 seq_printf(m, "Pipe %c stat: %08x\n",
945 pipe_name(pipe),
946 I915_READ(PIPESTAT(pipe)));
947 } else {
948 seq_printf(m, "North Display Interrupt enable: %08x\n",
949 I915_READ(DEIER));
950 seq_printf(m, "North Display Interrupt identity: %08x\n",
951 I915_READ(DEIIR));
952 seq_printf(m, "North Display Interrupt mask: %08x\n",
953 I915_READ(DEIMR));
954 seq_printf(m, "South Display Interrupt enable: %08x\n",
955 I915_READ(SDEIER));
956 seq_printf(m, "South Display Interrupt identity: %08x\n",
957 I915_READ(SDEIIR));
958 seq_printf(m, "South Display Interrupt mask: %08x\n",
959 I915_READ(SDEIMR));
960 seq_printf(m, "Graphics Interrupt enable: %08x\n",
961 I915_READ(GTIER));
962 seq_printf(m, "Graphics Interrupt identity: %08x\n",
963 I915_READ(GTIIR));
964 seq_printf(m, "Graphics Interrupt mask: %08x\n",
965 I915_READ(GTIMR));
966 }
967 for_each_engine(engine, dev_priv) {
968 if (INTEL_INFO(dev)->gen >= 6) {
969 seq_printf(m,
970 "Graphics Interrupt mask (%s): %08x\n",
971 engine->name, I915_READ_IMR(engine));
972 }
973 i915_ring_seqno_info(m, engine);
974 }
975 intel_runtime_pm_put(dev_priv);
976 mutex_unlock(&dev->struct_mutex);
977
978 return 0;
979 }
980
981 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
982 {
983 struct drm_info_node *node = m->private;
984 struct drm_device *dev = node->minor->dev;
985 struct drm_i915_private *dev_priv = dev->dev_private;
986 int i, ret;
987
988 ret = mutex_lock_interruptible(&dev->struct_mutex);
989 if (ret)
990 return ret;
991
992 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
993 for (i = 0; i < dev_priv->num_fence_regs; i++) {
994 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
995
996 seq_printf(m, "Fence %d, pin count = %d, object = ",
997 i, dev_priv->fence_regs[i].pin_count);
998 if (obj == NULL)
999 seq_puts(m, "unused");
1000 else
1001 describe_obj(m, obj);
1002 seq_putc(m, '\n');
1003 }
1004
1005 mutex_unlock(&dev->struct_mutex);
1006 return 0;
1007 }
1008
1009 static int i915_hws_info(struct seq_file *m, void *data)
1010 {
1011 struct drm_info_node *node = m->private;
1012 struct drm_device *dev = node->minor->dev;
1013 struct drm_i915_private *dev_priv = dev->dev_private;
1014 struct intel_engine_cs *engine;
1015 const u32 *hws;
1016 int i;
1017
1018 engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
1019 hws = engine->status_page.page_addr;
1020 if (hws == NULL)
1021 return 0;
1022
1023 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
1024 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1025 i * 4,
1026 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
1027 }
1028 return 0;
1029 }
1030
1031 static ssize_t
1032 i915_error_state_write(struct file *filp,
1033 const char __user *ubuf,
1034 size_t cnt,
1035 loff_t *ppos)
1036 {
1037 struct i915_error_state_file_priv *error_priv = filp->private_data;
1038 struct drm_device *dev = error_priv->dev;
1039 int ret;
1040
1041 DRM_DEBUG_DRIVER("Resetting error state\n");
1042
1043 ret = mutex_lock_interruptible(&dev->struct_mutex);
1044 if (ret)
1045 return ret;
1046
1047 i915_destroy_error_state(dev);
1048 mutex_unlock(&dev->struct_mutex);
1049
1050 return cnt;
1051 }
1052
1053 static int i915_error_state_open(struct inode *inode, struct file *file)
1054 {
1055 struct drm_device *dev = inode->i_private;
1056 struct i915_error_state_file_priv *error_priv;
1057
1058 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1059 if (!error_priv)
1060 return -ENOMEM;
1061
1062 error_priv->dev = dev;
1063
1064 i915_error_state_get(dev, error_priv);
1065
1066 file->private_data = error_priv;
1067
1068 return 0;
1069 }
1070
1071 static int i915_error_state_release(struct inode *inode, struct file *file)
1072 {
1073 struct i915_error_state_file_priv *error_priv = file->private_data;
1074
1075 i915_error_state_put(error_priv);
1076 kfree(error_priv);
1077
1078 return 0;
1079 }
1080
1081 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1082 size_t count, loff_t *pos)
1083 {
1084 struct i915_error_state_file_priv *error_priv = file->private_data;
1085 struct drm_i915_error_state_buf error_str;
1086 loff_t tmp_pos = 0;
1087 ssize_t ret_count = 0;
1088 int ret;
1089
1090 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1091 if (ret)
1092 return ret;
1093
1094 ret = i915_error_state_to_str(&error_str, error_priv);
1095 if (ret)
1096 goto out;
1097
1098 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1099 error_str.buf,
1100 error_str.bytes);
1101
1102 if (ret_count < 0)
1103 ret = ret_count;
1104 else
1105 *pos = error_str.start + ret_count;
1106 out:
1107 i915_error_state_buf_release(&error_str);
1108 return ret ?: ret_count;
1109 }
1110
1111 static const struct file_operations i915_error_state_fops = {
1112 .owner = THIS_MODULE,
1113 .open = i915_error_state_open,
1114 .read = i915_error_state_read,
1115 .write = i915_error_state_write,
1116 .llseek = default_llseek,
1117 .release = i915_error_state_release,
1118 };
1119
1120 static int
1121 i915_next_seqno_get(void *data, u64 *val)
1122 {
1123 struct drm_device *dev = data;
1124 struct drm_i915_private *dev_priv = dev->dev_private;
1125 int ret;
1126
1127 ret = mutex_lock_interruptible(&dev->struct_mutex);
1128 if (ret)
1129 return ret;
1130
1131 *val = dev_priv->next_seqno;
1132 mutex_unlock(&dev->struct_mutex);
1133
1134 return 0;
1135 }
1136
1137 static int
1138 i915_next_seqno_set(void *data, u64 val)
1139 {
1140 struct drm_device *dev = data;
1141 int ret;
1142
1143 ret = mutex_lock_interruptible(&dev->struct_mutex);
1144 if (ret)
1145 return ret;
1146
1147 ret = i915_gem_set_seqno(dev, val);
1148 mutex_unlock(&dev->struct_mutex);
1149
1150 return ret;
1151 }
1152
1153 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1154 i915_next_seqno_get, i915_next_seqno_set,
1155 "0x%llx\n");
1156
1157 static int i915_frequency_info(struct seq_file *m, void *unused)
1158 {
1159 struct drm_info_node *node = m->private;
1160 struct drm_device *dev = node->minor->dev;
1161 struct drm_i915_private *dev_priv = dev->dev_private;
1162 int ret = 0;
1163
1164 intel_runtime_pm_get(dev_priv);
1165
1166 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1167
1168 if (IS_GEN5(dev)) {
1169 u16 rgvswctl = I915_READ16(MEMSWCTL);
1170 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1171
1172 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1173 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1174 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1175 MEMSTAT_VID_SHIFT);
1176 seq_printf(m, "Current P-state: %d\n",
1177 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1178 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1179 u32 freq_sts;
1180
1181 mutex_lock(&dev_priv->rps.hw_lock);
1182 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1183 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1184 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1185
1186 seq_printf(m, "actual GPU freq: %d MHz\n",
1187 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1188
1189 seq_printf(m, "current GPU freq: %d MHz\n",
1190 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1191
1192 seq_printf(m, "max GPU freq: %d MHz\n",
1193 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1194
1195 seq_printf(m, "min GPU freq: %d MHz\n",
1196 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1197
1198 seq_printf(m, "idle GPU freq: %d MHz\n",
1199 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1200
1201 seq_printf(m,
1202 "efficient (RPe) frequency: %d MHz\n",
1203 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1204 mutex_unlock(&dev_priv->rps.hw_lock);
1205 } else if (INTEL_INFO(dev)->gen >= 6) {
1206 u32 rp_state_limits;
1207 u32 gt_perf_status;
1208 u32 rp_state_cap;
1209 u32 rpmodectl, rpinclimit, rpdeclimit;
1210 u32 rpstat, cagf, reqf;
1211 u32 rpupei, rpcurup, rpprevup;
1212 u32 rpdownei, rpcurdown, rpprevdown;
1213 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1214 int max_freq;
1215
1216 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1217 if (IS_BROXTON(dev)) {
1218 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1219 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1220 } else {
1221 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1222 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1223 }
1224
1225 /* RPSTAT1 is in the GT power well */
1226 ret = mutex_lock_interruptible(&dev->struct_mutex);
1227 if (ret)
1228 goto out;
1229
1230 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1231
1232 reqf = I915_READ(GEN6_RPNSWREQ);
1233 if (IS_GEN9(dev))
1234 reqf >>= 23;
1235 else {
1236 reqf &= ~GEN6_TURBO_DISABLE;
1237 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1238 reqf >>= 24;
1239 else
1240 reqf >>= 25;
1241 }
1242 reqf = intel_gpu_freq(dev_priv, reqf);
1243
1244 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1245 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1246 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1247
1248 rpstat = I915_READ(GEN6_RPSTAT1);
1249 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1250 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1251 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1252 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1253 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1254 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1255 if (IS_GEN9(dev))
1256 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1257 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1258 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1259 else
1260 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1261 cagf = intel_gpu_freq(dev_priv, cagf);
1262
1263 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1264 mutex_unlock(&dev->struct_mutex);
1265
1266 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1267 pm_ier = I915_READ(GEN6_PMIER);
1268 pm_imr = I915_READ(GEN6_PMIMR);
1269 pm_isr = I915_READ(GEN6_PMISR);
1270 pm_iir = I915_READ(GEN6_PMIIR);
1271 pm_mask = I915_READ(GEN6_PMINTRMSK);
1272 } else {
1273 pm_ier = I915_READ(GEN8_GT_IER(2));
1274 pm_imr = I915_READ(GEN8_GT_IMR(2));
1275 pm_isr = I915_READ(GEN8_GT_ISR(2));
1276 pm_iir = I915_READ(GEN8_GT_IIR(2));
1277 pm_mask = I915_READ(GEN6_PMINTRMSK);
1278 }
1279 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1280 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1281 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1282 seq_printf(m, "Render p-state ratio: %d\n",
1283 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1284 seq_printf(m, "Render p-state VID: %d\n",
1285 gt_perf_status & 0xff);
1286 seq_printf(m, "Render p-state limit: %d\n",
1287 rp_state_limits & 0xff);
1288 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1289 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1290 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1291 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1292 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1293 seq_printf(m, "CAGF: %dMHz\n", cagf);
1294 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1295 rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1296 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1297 rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1298 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1299 rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1300 seq_printf(m, "Up threshold: %d%%\n",
1301 dev_priv->rps.up_threshold);
1302
1303 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1304 rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1305 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1306 rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1307 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1308 rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1309 seq_printf(m, "Down threshold: %d%%\n",
1310 dev_priv->rps.down_threshold);
1311
1312 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1313 rp_state_cap >> 16) & 0xff;
1314 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1315 GEN9_FREQ_SCALER : 1);
1316 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1317 intel_gpu_freq(dev_priv, max_freq));
1318
1319 max_freq = (rp_state_cap & 0xff00) >> 8;
1320 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1321 GEN9_FREQ_SCALER : 1);
1322 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1323 intel_gpu_freq(dev_priv, max_freq));
1324
1325 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1326 rp_state_cap >> 0) & 0xff;
1327 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1328 GEN9_FREQ_SCALER : 1);
1329 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1330 intel_gpu_freq(dev_priv, max_freq));
1331 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1332 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1333
1334 seq_printf(m, "Current freq: %d MHz\n",
1335 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1336 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1337 seq_printf(m, "Idle freq: %d MHz\n",
1338 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1339 seq_printf(m, "Min freq: %d MHz\n",
1340 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1341 seq_printf(m, "Max freq: %d MHz\n",
1342 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1343 seq_printf(m,
1344 "efficient (RPe) frequency: %d MHz\n",
1345 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1346 } else {
1347 seq_puts(m, "no P-state info available\n");
1348 }
1349
1350 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1351 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1352 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1353
1354 out:
1355 intel_runtime_pm_put(dev_priv);
1356 return ret;
1357 }
1358
1359 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1360 {
1361 struct drm_info_node *node = m->private;
1362 struct drm_device *dev = node->minor->dev;
1363 struct drm_i915_private *dev_priv = dev->dev_private;
1364 struct intel_engine_cs *engine;
1365 u64 acthd[I915_NUM_ENGINES];
1366 u32 seqno[I915_NUM_ENGINES];
1367 u32 instdone[I915_NUM_INSTDONE_REG];
1368 enum intel_engine_id id;
1369 int j;
1370
1371 if (!i915.enable_hangcheck) {
1372 seq_printf(m, "Hangcheck disabled\n");
1373 return 0;
1374 }
1375
1376 intel_runtime_pm_get(dev_priv);
1377
1378 for_each_engine_id(engine, dev_priv, id) {
1379 acthd[id] = intel_ring_get_active_head(engine);
1380 seqno[id] = engine->get_seqno(engine);
1381 }
1382
1383 i915_get_extra_instdone(dev_priv, instdone);
1384
1385 intel_runtime_pm_put(dev_priv);
1386
1387 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1388 seq_printf(m, "Hangcheck active, fires in %dms\n",
1389 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1390 jiffies));
1391 } else
1392 seq_printf(m, "Hangcheck inactive\n");
1393
1394 for_each_engine_id(engine, dev_priv, id) {
1395 seq_printf(m, "%s:\n", engine->name);
1396 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1397 engine->hangcheck.seqno,
1398 seqno[id],
1399 engine->last_submitted_seqno);
1400 seq_printf(m, "\tuser interrupts = %x [current %x]\n",
1401 engine->hangcheck.user_interrupts,
1402 READ_ONCE(engine->user_interrupts));
1403 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1404 (long long)engine->hangcheck.acthd,
1405 (long long)acthd[id]);
1406 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1407 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1408
1409 if (engine->id == RCS) {
1410 seq_puts(m, "\tinstdone read =");
1411
1412 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1413 seq_printf(m, " 0x%08x", instdone[j]);
1414
1415 seq_puts(m, "\n\tinstdone accu =");
1416
1417 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1418 seq_printf(m, " 0x%08x",
1419 engine->hangcheck.instdone[j]);
1420
1421 seq_puts(m, "\n");
1422 }
1423 }
1424
1425 return 0;
1426 }
1427
1428 static int ironlake_drpc_info(struct seq_file *m)
1429 {
1430 struct drm_info_node *node = m->private;
1431 struct drm_device *dev = node->minor->dev;
1432 struct drm_i915_private *dev_priv = dev->dev_private;
1433 u32 rgvmodectl, rstdbyctl;
1434 u16 crstandvid;
1435 int ret;
1436
1437 ret = mutex_lock_interruptible(&dev->struct_mutex);
1438 if (ret)
1439 return ret;
1440 intel_runtime_pm_get(dev_priv);
1441
1442 rgvmodectl = I915_READ(MEMMODECTL);
1443 rstdbyctl = I915_READ(RSTDBYCTL);
1444 crstandvid = I915_READ16(CRSTANDVID);
1445
1446 intel_runtime_pm_put(dev_priv);
1447 mutex_unlock(&dev->struct_mutex);
1448
1449 seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1450 seq_printf(m, "Boost freq: %d\n",
1451 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1452 MEMMODE_BOOST_FREQ_SHIFT);
1453 seq_printf(m, "HW control enabled: %s\n",
1454 yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1455 seq_printf(m, "SW control enabled: %s\n",
1456 yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1457 seq_printf(m, "Gated voltage change: %s\n",
1458 yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1459 seq_printf(m, "Starting frequency: P%d\n",
1460 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1461 seq_printf(m, "Max P-state: P%d\n",
1462 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1463 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1464 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1465 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1466 seq_printf(m, "Render standby enabled: %s\n",
1467 yesno(!(rstdbyctl & RCX_SW_EXIT)));
1468 seq_puts(m, "Current RS state: ");
1469 switch (rstdbyctl & RSX_STATUS_MASK) {
1470 case RSX_STATUS_ON:
1471 seq_puts(m, "on\n");
1472 break;
1473 case RSX_STATUS_RC1:
1474 seq_puts(m, "RC1\n");
1475 break;
1476 case RSX_STATUS_RC1E:
1477 seq_puts(m, "RC1E\n");
1478 break;
1479 case RSX_STATUS_RS1:
1480 seq_puts(m, "RS1\n");
1481 break;
1482 case RSX_STATUS_RS2:
1483 seq_puts(m, "RS2 (RC6)\n");
1484 break;
1485 case RSX_STATUS_RS3:
1486 seq_puts(m, "RC3 (RC6+)\n");
1487 break;
1488 default:
1489 seq_puts(m, "unknown\n");
1490 break;
1491 }
1492
1493 return 0;
1494 }
1495
1496 static int i915_forcewake_domains(struct seq_file *m, void *data)
1497 {
1498 struct drm_info_node *node = m->private;
1499 struct drm_device *dev = node->minor->dev;
1500 struct drm_i915_private *dev_priv = dev->dev_private;
1501 struct intel_uncore_forcewake_domain *fw_domain;
1502
1503 spin_lock_irq(&dev_priv->uncore.lock);
1504 for_each_fw_domain(fw_domain, dev_priv) {
1505 seq_printf(m, "%s.wake_count = %u\n",
1506 intel_uncore_forcewake_domain_to_str(fw_domain->id),
1507 fw_domain->wake_count);
1508 }
1509 spin_unlock_irq(&dev_priv->uncore.lock);
1510
1511 return 0;
1512 }
1513
1514 static int vlv_drpc_info(struct seq_file *m)
1515 {
1516 struct drm_info_node *node = m->private;
1517 struct drm_device *dev = node->minor->dev;
1518 struct drm_i915_private *dev_priv = dev->dev_private;
1519 u32 rpmodectl1, rcctl1, pw_status;
1520
1521 intel_runtime_pm_get(dev_priv);
1522
1523 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1524 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1525 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1526
1527 intel_runtime_pm_put(dev_priv);
1528
1529 seq_printf(m, "Video Turbo Mode: %s\n",
1530 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1531 seq_printf(m, "Turbo enabled: %s\n",
1532 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1533 seq_printf(m, "HW control enabled: %s\n",
1534 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1535 seq_printf(m, "SW control enabled: %s\n",
1536 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1537 GEN6_RP_MEDIA_SW_MODE));
1538 seq_printf(m, "RC6 Enabled: %s\n",
1539 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1540 GEN6_RC_CTL_EI_MODE(1))));
1541 seq_printf(m, "Render Power Well: %s\n",
1542 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1543 seq_printf(m, "Media Power Well: %s\n",
1544 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1545
1546 seq_printf(m, "Render RC6 residency since boot: %u\n",
1547 I915_READ(VLV_GT_RENDER_RC6));
1548 seq_printf(m, "Media RC6 residency since boot: %u\n",
1549 I915_READ(VLV_GT_MEDIA_RC6));
1550
1551 return i915_forcewake_domains(m, NULL);
1552 }
1553
1554 static int gen6_drpc_info(struct seq_file *m)
1555 {
1556 struct drm_info_node *node = m->private;
1557 struct drm_device *dev = node->minor->dev;
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1560 unsigned forcewake_count;
1561 int count = 0, ret;
1562
1563 ret = mutex_lock_interruptible(&dev->struct_mutex);
1564 if (ret)
1565 return ret;
1566 intel_runtime_pm_get(dev_priv);
1567
1568 spin_lock_irq(&dev_priv->uncore.lock);
1569 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1570 spin_unlock_irq(&dev_priv->uncore.lock);
1571
1572 if (forcewake_count) {
1573 seq_puts(m, "RC information inaccurate because somebody "
1574 "holds a forcewake reference \n");
1575 } else {
1576 /* NB: we cannot use forcewake, else we read the wrong values */
1577 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1578 udelay(10);
1579 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1580 }
1581
1582 gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1583 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1584
1585 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1586 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1587 mutex_unlock(&dev->struct_mutex);
1588 mutex_lock(&dev_priv->rps.hw_lock);
1589 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1590 mutex_unlock(&dev_priv->rps.hw_lock);
1591
1592 intel_runtime_pm_put(dev_priv);
1593
1594 seq_printf(m, "Video Turbo Mode: %s\n",
1595 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1596 seq_printf(m, "HW control enabled: %s\n",
1597 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1598 seq_printf(m, "SW control enabled: %s\n",
1599 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1600 GEN6_RP_MEDIA_SW_MODE));
1601 seq_printf(m, "RC1e Enabled: %s\n",
1602 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1603 seq_printf(m, "RC6 Enabled: %s\n",
1604 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1605 seq_printf(m, "Deep RC6 Enabled: %s\n",
1606 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1607 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1608 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1609 seq_puts(m, "Current RC state: ");
1610 switch (gt_core_status & GEN6_RCn_MASK) {
1611 case GEN6_RC0:
1612 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1613 seq_puts(m, "Core Power Down\n");
1614 else
1615 seq_puts(m, "on\n");
1616 break;
1617 case GEN6_RC3:
1618 seq_puts(m, "RC3\n");
1619 break;
1620 case GEN6_RC6:
1621 seq_puts(m, "RC6\n");
1622 break;
1623 case GEN6_RC7:
1624 seq_puts(m, "RC7\n");
1625 break;
1626 default:
1627 seq_puts(m, "Unknown\n");
1628 break;
1629 }
1630
1631 seq_printf(m, "Core Power Down: %s\n",
1632 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1633
1634 /* Not exactly sure what this is */
1635 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1636 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1637 seq_printf(m, "RC6 residency since boot: %u\n",
1638 I915_READ(GEN6_GT_GFX_RC6));
1639 seq_printf(m, "RC6+ residency since boot: %u\n",
1640 I915_READ(GEN6_GT_GFX_RC6p));
1641 seq_printf(m, "RC6++ residency since boot: %u\n",
1642 I915_READ(GEN6_GT_GFX_RC6pp));
1643
1644 seq_printf(m, "RC6 voltage: %dmV\n",
1645 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1646 seq_printf(m, "RC6+ voltage: %dmV\n",
1647 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1648 seq_printf(m, "RC6++ voltage: %dmV\n",
1649 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1650 return 0;
1651 }
1652
1653 static int i915_drpc_info(struct seq_file *m, void *unused)
1654 {
1655 struct drm_info_node *node = m->private;
1656 struct drm_device *dev = node->minor->dev;
1657
1658 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1659 return vlv_drpc_info(m);
1660 else if (INTEL_INFO(dev)->gen >= 6)
1661 return gen6_drpc_info(m);
1662 else
1663 return ironlake_drpc_info(m);
1664 }
1665
1666 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1667 {
1668 struct drm_info_node *node = m->private;
1669 struct drm_device *dev = node->minor->dev;
1670 struct drm_i915_private *dev_priv = dev->dev_private;
1671
1672 seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1673 dev_priv->fb_tracking.busy_bits);
1674
1675 seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1676 dev_priv->fb_tracking.flip_bits);
1677
1678 return 0;
1679 }
1680
1681 static int i915_fbc_status(struct seq_file *m, void *unused)
1682 {
1683 struct drm_info_node *node = m->private;
1684 struct drm_device *dev = node->minor->dev;
1685 struct drm_i915_private *dev_priv = dev->dev_private;
1686
1687 if (!HAS_FBC(dev)) {
1688 seq_puts(m, "FBC unsupported on this chipset\n");
1689 return 0;
1690 }
1691
1692 intel_runtime_pm_get(dev_priv);
1693 mutex_lock(&dev_priv->fbc.lock);
1694
1695 if (intel_fbc_is_active(dev_priv))
1696 seq_puts(m, "FBC enabled\n");
1697 else
1698 seq_printf(m, "FBC disabled: %s\n",
1699 dev_priv->fbc.no_fbc_reason);
1700
1701 if (INTEL_INFO(dev_priv)->gen >= 7)
1702 seq_printf(m, "Compressing: %s\n",
1703 yesno(I915_READ(FBC_STATUS2) &
1704 FBC_COMPRESSION_MASK));
1705
1706 mutex_unlock(&dev_priv->fbc.lock);
1707 intel_runtime_pm_put(dev_priv);
1708
1709 return 0;
1710 }
1711
1712 static int i915_fbc_fc_get(void *data, u64 *val)
1713 {
1714 struct drm_device *dev = data;
1715 struct drm_i915_private *dev_priv = dev->dev_private;
1716
1717 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1718 return -ENODEV;
1719
1720 *val = dev_priv->fbc.false_color;
1721
1722 return 0;
1723 }
1724
1725 static int i915_fbc_fc_set(void *data, u64 val)
1726 {
1727 struct drm_device *dev = data;
1728 struct drm_i915_private *dev_priv = dev->dev_private;
1729 u32 reg;
1730
1731 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1732 return -ENODEV;
1733
1734 mutex_lock(&dev_priv->fbc.lock);
1735
1736 reg = I915_READ(ILK_DPFC_CONTROL);
1737 dev_priv->fbc.false_color = val;
1738
1739 I915_WRITE(ILK_DPFC_CONTROL, val ?
1740 (reg | FBC_CTL_FALSE_COLOR) :
1741 (reg & ~FBC_CTL_FALSE_COLOR));
1742
1743 mutex_unlock(&dev_priv->fbc.lock);
1744 return 0;
1745 }
1746
1747 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1748 i915_fbc_fc_get, i915_fbc_fc_set,
1749 "%llu\n");
1750
1751 static int i915_ips_status(struct seq_file *m, void *unused)
1752 {
1753 struct drm_info_node *node = m->private;
1754 struct drm_device *dev = node->minor->dev;
1755 struct drm_i915_private *dev_priv = dev->dev_private;
1756
1757 if (!HAS_IPS(dev)) {
1758 seq_puts(m, "not supported\n");
1759 return 0;
1760 }
1761
1762 intel_runtime_pm_get(dev_priv);
1763
1764 seq_printf(m, "Enabled by kernel parameter: %s\n",
1765 yesno(i915.enable_ips));
1766
1767 if (INTEL_INFO(dev)->gen >= 8) {
1768 seq_puts(m, "Currently: unknown\n");
1769 } else {
1770 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1771 seq_puts(m, "Currently: enabled\n");
1772 else
1773 seq_puts(m, "Currently: disabled\n");
1774 }
1775
1776 intel_runtime_pm_put(dev_priv);
1777
1778 return 0;
1779 }
1780
1781 static int i915_sr_status(struct seq_file *m, void *unused)
1782 {
1783 struct drm_info_node *node = m->private;
1784 struct drm_device *dev = node->minor->dev;
1785 struct drm_i915_private *dev_priv = dev->dev_private;
1786 bool sr_enabled = false;
1787
1788 intel_runtime_pm_get(dev_priv);
1789
1790 if (HAS_PCH_SPLIT(dev))
1791 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1792 else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1793 IS_I945G(dev) || IS_I945GM(dev))
1794 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1795 else if (IS_I915GM(dev))
1796 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1797 else if (IS_PINEVIEW(dev))
1798 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1799 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1800 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1801
1802 intel_runtime_pm_put(dev_priv);
1803
1804 seq_printf(m, "self-refresh: %s\n",
1805 sr_enabled ? "enabled" : "disabled");
1806
1807 return 0;
1808 }
1809
1810 static int i915_emon_status(struct seq_file *m, void *unused)
1811 {
1812 struct drm_info_node *node = m->private;
1813 struct drm_device *dev = node->minor->dev;
1814 struct drm_i915_private *dev_priv = dev->dev_private;
1815 unsigned long temp, chipset, gfx;
1816 int ret;
1817
1818 if (!IS_GEN5(dev))
1819 return -ENODEV;
1820
1821 ret = mutex_lock_interruptible(&dev->struct_mutex);
1822 if (ret)
1823 return ret;
1824
1825 temp = i915_mch_val(dev_priv);
1826 chipset = i915_chipset_val(dev_priv);
1827 gfx = i915_gfx_val(dev_priv);
1828 mutex_unlock(&dev->struct_mutex);
1829
1830 seq_printf(m, "GMCH temp: %ld\n", temp);
1831 seq_printf(m, "Chipset power: %ld\n", chipset);
1832 seq_printf(m, "GFX power: %ld\n", gfx);
1833 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1834
1835 return 0;
1836 }
1837
1838 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1839 {
1840 struct drm_info_node *node = m->private;
1841 struct drm_device *dev = node->minor->dev;
1842 struct drm_i915_private *dev_priv = dev->dev_private;
1843 int ret = 0;
1844 int gpu_freq, ia_freq;
1845 unsigned int max_gpu_freq, min_gpu_freq;
1846
1847 if (!HAS_CORE_RING_FREQ(dev)) {
1848 seq_puts(m, "unsupported on this chipset\n");
1849 return 0;
1850 }
1851
1852 intel_runtime_pm_get(dev_priv);
1853
1854 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1855
1856 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1857 if (ret)
1858 goto out;
1859
1860 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1861 /* Convert GT frequency to 50 HZ units */
1862 min_gpu_freq =
1863 dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1864 max_gpu_freq =
1865 dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1866 } else {
1867 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1868 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1869 }
1870
1871 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1872
1873 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1874 ia_freq = gpu_freq;
1875 sandybridge_pcode_read(dev_priv,
1876 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1877 &ia_freq);
1878 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1879 intel_gpu_freq(dev_priv, (gpu_freq *
1880 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1881 GEN9_FREQ_SCALER : 1))),
1882 ((ia_freq >> 0) & 0xff) * 100,
1883 ((ia_freq >> 8) & 0xff) * 100);
1884 }
1885
1886 mutex_unlock(&dev_priv->rps.hw_lock);
1887
1888 out:
1889 intel_runtime_pm_put(dev_priv);
1890 return ret;
1891 }
1892
1893 static int i915_opregion(struct seq_file *m, void *unused)
1894 {
1895 struct drm_info_node *node = m->private;
1896 struct drm_device *dev = node->minor->dev;
1897 struct drm_i915_private *dev_priv = dev->dev_private;
1898 struct intel_opregion *opregion = &dev_priv->opregion;
1899 int ret;
1900
1901 ret = mutex_lock_interruptible(&dev->struct_mutex);
1902 if (ret)
1903 goto out;
1904
1905 if (opregion->header)
1906 seq_write(m, opregion->header, OPREGION_SIZE);
1907
1908 mutex_unlock(&dev->struct_mutex);
1909
1910 out:
1911 return 0;
1912 }
1913
1914 static int i915_vbt(struct seq_file *m, void *unused)
1915 {
1916 struct drm_info_node *node = m->private;
1917 struct drm_device *dev = node->minor->dev;
1918 struct drm_i915_private *dev_priv = dev->dev_private;
1919 struct intel_opregion *opregion = &dev_priv->opregion;
1920
1921 if (opregion->vbt)
1922 seq_write(m, opregion->vbt, opregion->vbt_size);
1923
1924 return 0;
1925 }
1926
1927 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1928 {
1929 struct drm_info_node *node = m->private;
1930 struct drm_device *dev = node->minor->dev;
1931 struct intel_framebuffer *fbdev_fb = NULL;
1932 struct drm_framebuffer *drm_fb;
1933 int ret;
1934
1935 ret = mutex_lock_interruptible(&dev->struct_mutex);
1936 if (ret)
1937 return ret;
1938
1939 #ifdef CONFIG_DRM_FBDEV_EMULATION
1940 if (to_i915(dev)->fbdev) {
1941 fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1942
1943 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1944 fbdev_fb->base.width,
1945 fbdev_fb->base.height,
1946 fbdev_fb->base.depth,
1947 fbdev_fb->base.bits_per_pixel,
1948 fbdev_fb->base.modifier[0],
1949 atomic_read(&fbdev_fb->base.refcount.refcount));
1950 describe_obj(m, fbdev_fb->obj);
1951 seq_putc(m, '\n');
1952 }
1953 #endif
1954
1955 mutex_lock(&dev->mode_config.fb_lock);
1956 drm_for_each_fb(drm_fb, dev) {
1957 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1958 if (fb == fbdev_fb)
1959 continue;
1960
1961 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1962 fb->base.width,
1963 fb->base.height,
1964 fb->base.depth,
1965 fb->base.bits_per_pixel,
1966 fb->base.modifier[0],
1967 atomic_read(&fb->base.refcount.refcount));
1968 describe_obj(m, fb->obj);
1969 seq_putc(m, '\n');
1970 }
1971 mutex_unlock(&dev->mode_config.fb_lock);
1972 mutex_unlock(&dev->struct_mutex);
1973
1974 return 0;
1975 }
1976
1977 static void describe_ctx_ringbuf(struct seq_file *m,
1978 struct intel_ringbuffer *ringbuf)
1979 {
1980 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1981 ringbuf->space, ringbuf->head, ringbuf->tail,
1982 ringbuf->last_retired_head);
1983 }
1984
1985 static int i915_context_status(struct seq_file *m, void *unused)
1986 {
1987 struct drm_info_node *node = m->private;
1988 struct drm_device *dev = node->minor->dev;
1989 struct drm_i915_private *dev_priv = dev->dev_private;
1990 struct intel_engine_cs *engine;
1991 struct intel_context *ctx;
1992 enum intel_engine_id id;
1993 int ret;
1994
1995 ret = mutex_lock_interruptible(&dev->struct_mutex);
1996 if (ret)
1997 return ret;
1998
1999 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2000 if (!i915.enable_execlists &&
2001 ctx->legacy_hw_ctx.rcs_state == NULL)
2002 continue;
2003
2004 seq_printf(m, "HW context %u ", ctx->hw_id);
2005 describe_ctx(m, ctx);
2006 if (ctx == dev_priv->kernel_context)
2007 seq_printf(m, "(kernel context) ");
2008
2009 if (i915.enable_execlists) {
2010 seq_putc(m, '\n');
2011 for_each_engine_id(engine, dev_priv, id) {
2012 struct drm_i915_gem_object *ctx_obj =
2013 ctx->engine[id].state;
2014 struct intel_ringbuffer *ringbuf =
2015 ctx->engine[id].ringbuf;
2016
2017 seq_printf(m, "%s: ", engine->name);
2018 if (ctx_obj)
2019 describe_obj(m, ctx_obj);
2020 if (ringbuf)
2021 describe_ctx_ringbuf(m, ringbuf);
2022 seq_putc(m, '\n');
2023 }
2024 } else {
2025 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
2026 }
2027
2028 seq_putc(m, '\n');
2029 }
2030
2031 mutex_unlock(&dev->struct_mutex);
2032
2033 return 0;
2034 }
2035
2036 static void i915_dump_lrc_obj(struct seq_file *m,
2037 struct intel_context *ctx,
2038 struct intel_engine_cs *engine)
2039 {
2040 struct page *page;
2041 uint32_t *reg_state;
2042 int j;
2043 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2044 unsigned long ggtt_offset = 0;
2045
2046 seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2047
2048 if (ctx_obj == NULL) {
2049 seq_puts(m, "\tNot allocated\n");
2050 return;
2051 }
2052
2053 if (!i915_gem_obj_ggtt_bound(ctx_obj))
2054 seq_puts(m, "\tNot bound in GGTT\n");
2055 else
2056 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2057
2058 if (i915_gem_object_get_pages(ctx_obj)) {
2059 seq_puts(m, "\tFailed to get pages for context object\n");
2060 return;
2061 }
2062
2063 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2064 if (!WARN_ON(page == NULL)) {
2065 reg_state = kmap_atomic(page);
2066
2067 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2068 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2069 ggtt_offset + 4096 + (j * 4),
2070 reg_state[j], reg_state[j + 1],
2071 reg_state[j + 2], reg_state[j + 3]);
2072 }
2073 kunmap_atomic(reg_state);
2074 }
2075
2076 seq_putc(m, '\n');
2077 }
2078
2079 static int i915_dump_lrc(struct seq_file *m, void *unused)
2080 {
2081 struct drm_info_node *node = (struct drm_info_node *) m->private;
2082 struct drm_device *dev = node->minor->dev;
2083 struct drm_i915_private *dev_priv = dev->dev_private;
2084 struct intel_engine_cs *engine;
2085 struct intel_context *ctx;
2086 int ret;
2087
2088 if (!i915.enable_execlists) {
2089 seq_printf(m, "Logical Ring Contexts are disabled\n");
2090 return 0;
2091 }
2092
2093 ret = mutex_lock_interruptible(&dev->struct_mutex);
2094 if (ret)
2095 return ret;
2096
2097 list_for_each_entry(ctx, &dev_priv->context_list, link)
2098 for_each_engine(engine, dev_priv)
2099 i915_dump_lrc_obj(m, ctx, engine);
2100
2101 mutex_unlock(&dev->struct_mutex);
2102
2103 return 0;
2104 }
2105
2106 static int i915_execlists(struct seq_file *m, void *data)
2107 {
2108 struct drm_info_node *node = (struct drm_info_node *)m->private;
2109 struct drm_device *dev = node->minor->dev;
2110 struct drm_i915_private *dev_priv = dev->dev_private;
2111 struct intel_engine_cs *engine;
2112 u32 status_pointer;
2113 u8 read_pointer;
2114 u8 write_pointer;
2115 u32 status;
2116 u32 ctx_id;
2117 struct list_head *cursor;
2118 int i, ret;
2119
2120 if (!i915.enable_execlists) {
2121 seq_puts(m, "Logical Ring Contexts are disabled\n");
2122 return 0;
2123 }
2124
2125 ret = mutex_lock_interruptible(&dev->struct_mutex);
2126 if (ret)
2127 return ret;
2128
2129 intel_runtime_pm_get(dev_priv);
2130
2131 for_each_engine(engine, dev_priv) {
2132 struct drm_i915_gem_request *head_req = NULL;
2133 int count = 0;
2134
2135 seq_printf(m, "%s\n", engine->name);
2136
2137 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2138 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2139 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2140 status, ctx_id);
2141
2142 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2143 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2144
2145 read_pointer = engine->next_context_status_buffer;
2146 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2147 if (read_pointer > write_pointer)
2148 write_pointer += GEN8_CSB_ENTRIES;
2149 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2150 read_pointer, write_pointer);
2151
2152 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2153 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2154 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2155
2156 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2157 i, status, ctx_id);
2158 }
2159
2160 spin_lock_bh(&engine->execlist_lock);
2161 list_for_each(cursor, &engine->execlist_queue)
2162 count++;
2163 head_req = list_first_entry_or_null(&engine->execlist_queue,
2164 struct drm_i915_gem_request,
2165 execlist_link);
2166 spin_unlock_bh(&engine->execlist_lock);
2167
2168 seq_printf(m, "\t%d requests in queue\n", count);
2169 if (head_req) {
2170 seq_printf(m, "\tHead request context: %u\n",
2171 head_req->ctx->hw_id);
2172 seq_printf(m, "\tHead request tail: %u\n",
2173 head_req->tail);
2174 }
2175
2176 seq_putc(m, '\n');
2177 }
2178
2179 intel_runtime_pm_put(dev_priv);
2180 mutex_unlock(&dev->struct_mutex);
2181
2182 return 0;
2183 }
2184
2185 static const char *swizzle_string(unsigned swizzle)
2186 {
2187 switch (swizzle) {
2188 case I915_BIT_6_SWIZZLE_NONE:
2189 return "none";
2190 case I915_BIT_6_SWIZZLE_9:
2191 return "bit9";
2192 case I915_BIT_6_SWIZZLE_9_10:
2193 return "bit9/bit10";
2194 case I915_BIT_6_SWIZZLE_9_11:
2195 return "bit9/bit11";
2196 case I915_BIT_6_SWIZZLE_9_10_11:
2197 return "bit9/bit10/bit11";
2198 case I915_BIT_6_SWIZZLE_9_17:
2199 return "bit9/bit17";
2200 case I915_BIT_6_SWIZZLE_9_10_17:
2201 return "bit9/bit10/bit17";
2202 case I915_BIT_6_SWIZZLE_UNKNOWN:
2203 return "unknown";
2204 }
2205
2206 return "bug";
2207 }
2208
2209 static int i915_swizzle_info(struct seq_file *m, void *data)
2210 {
2211 struct drm_info_node *node = m->private;
2212 struct drm_device *dev = node->minor->dev;
2213 struct drm_i915_private *dev_priv = dev->dev_private;
2214 int ret;
2215
2216 ret = mutex_lock_interruptible(&dev->struct_mutex);
2217 if (ret)
2218 return ret;
2219 intel_runtime_pm_get(dev_priv);
2220
2221 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2222 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2223 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2224 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2225
2226 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2227 seq_printf(m, "DDC = 0x%08x\n",
2228 I915_READ(DCC));
2229 seq_printf(m, "DDC2 = 0x%08x\n",
2230 I915_READ(DCC2));
2231 seq_printf(m, "C0DRB3 = 0x%04x\n",
2232 I915_READ16(C0DRB3));
2233 seq_printf(m, "C1DRB3 = 0x%04x\n",
2234 I915_READ16(C1DRB3));
2235 } else if (INTEL_INFO(dev)->gen >= 6) {
2236 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2237 I915_READ(MAD_DIMM_C0));
2238 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2239 I915_READ(MAD_DIMM_C1));
2240 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2241 I915_READ(MAD_DIMM_C2));
2242 seq_printf(m, "TILECTL = 0x%08x\n",
2243 I915_READ(TILECTL));
2244 if (INTEL_INFO(dev)->gen >= 8)
2245 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2246 I915_READ(GAMTARBMODE));
2247 else
2248 seq_printf(m, "ARB_MODE = 0x%08x\n",
2249 I915_READ(ARB_MODE));
2250 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2251 I915_READ(DISP_ARB_CTL));
2252 }
2253
2254 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2255 seq_puts(m, "L-shaped memory detected\n");
2256
2257 intel_runtime_pm_put(dev_priv);
2258 mutex_unlock(&dev->struct_mutex);
2259
2260 return 0;
2261 }
2262
2263 static int per_file_ctx(int id, void *ptr, void *data)
2264 {
2265 struct intel_context *ctx = ptr;
2266 struct seq_file *m = data;
2267 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2268
2269 if (!ppgtt) {
2270 seq_printf(m, " no ppgtt for context %d\n",
2271 ctx->user_handle);
2272 return 0;
2273 }
2274
2275 if (i915_gem_context_is_default(ctx))
2276 seq_puts(m, " default context:\n");
2277 else
2278 seq_printf(m, " context %d:\n", ctx->user_handle);
2279 ppgtt->debug_dump(ppgtt, m);
2280
2281 return 0;
2282 }
2283
2284 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2285 {
2286 struct drm_i915_private *dev_priv = dev->dev_private;
2287 struct intel_engine_cs *engine;
2288 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2289 int i;
2290
2291 if (!ppgtt)
2292 return;
2293
2294 for_each_engine(engine, dev_priv) {
2295 seq_printf(m, "%s\n", engine->name);
2296 for (i = 0; i < 4; i++) {
2297 u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2298 pdp <<= 32;
2299 pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2300 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2301 }
2302 }
2303 }
2304
2305 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2306 {
2307 struct drm_i915_private *dev_priv = dev->dev_private;
2308 struct intel_engine_cs *engine;
2309
2310 if (INTEL_INFO(dev)->gen == 6)
2311 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2312
2313 for_each_engine(engine, dev_priv) {
2314 seq_printf(m, "%s\n", engine->name);
2315 if (INTEL_INFO(dev)->gen == 7)
2316 seq_printf(m, "GFX_MODE: 0x%08x\n",
2317 I915_READ(RING_MODE_GEN7(engine)));
2318 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2319 I915_READ(RING_PP_DIR_BASE(engine)));
2320 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2321 I915_READ(RING_PP_DIR_BASE_READ(engine)));
2322 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2323 I915_READ(RING_PP_DIR_DCLV(engine)));
2324 }
2325 if (dev_priv->mm.aliasing_ppgtt) {
2326 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2327
2328 seq_puts(m, "aliasing PPGTT:\n");
2329 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2330
2331 ppgtt->debug_dump(ppgtt, m);
2332 }
2333
2334 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2335 }
2336
2337 static int i915_ppgtt_info(struct seq_file *m, void *data)
2338 {
2339 struct drm_info_node *node = m->private;
2340 struct drm_device *dev = node->minor->dev;
2341 struct drm_i915_private *dev_priv = dev->dev_private;
2342 struct drm_file *file;
2343
2344 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2345 if (ret)
2346 return ret;
2347 intel_runtime_pm_get(dev_priv);
2348
2349 if (INTEL_INFO(dev)->gen >= 8)
2350 gen8_ppgtt_info(m, dev);
2351 else if (INTEL_INFO(dev)->gen >= 6)
2352 gen6_ppgtt_info(m, dev);
2353
2354 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2355 struct drm_i915_file_private *file_priv = file->driver_priv;
2356 struct task_struct *task;
2357
2358 task = get_pid_task(file->pid, PIDTYPE_PID);
2359 if (!task) {
2360 ret = -ESRCH;
2361 goto out_put;
2362 }
2363 seq_printf(m, "\nproc: %s\n", task->comm);
2364 put_task_struct(task);
2365 idr_for_each(&file_priv->context_idr, per_file_ctx,
2366 (void *)(unsigned long)m);
2367 }
2368
2369 out_put:
2370 intel_runtime_pm_put(dev_priv);
2371 mutex_unlock(&dev->struct_mutex);
2372
2373 return ret;
2374 }
2375
2376 static int count_irq_waiters(struct drm_i915_private *i915)
2377 {
2378 struct intel_engine_cs *engine;
2379 int count = 0;
2380
2381 for_each_engine(engine, i915)
2382 count += engine->irq_refcount;
2383
2384 return count;
2385 }
2386
2387 static int i915_rps_boost_info(struct seq_file *m, void *data)
2388 {
2389 struct drm_info_node *node = m->private;
2390 struct drm_device *dev = node->minor->dev;
2391 struct drm_i915_private *dev_priv = dev->dev_private;
2392 struct drm_file *file;
2393
2394 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2395 seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2396 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2397 seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2398 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2399 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2400 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2401 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2402 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2403 spin_lock(&dev_priv->rps.client_lock);
2404 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2405 struct drm_i915_file_private *file_priv = file->driver_priv;
2406 struct task_struct *task;
2407
2408 rcu_read_lock();
2409 task = pid_task(file->pid, PIDTYPE_PID);
2410 seq_printf(m, "%s [%d]: %d boosts%s\n",
2411 task ? task->comm : "<unknown>",
2412 task ? task->pid : -1,
2413 file_priv->rps.boosts,
2414 list_empty(&file_priv->rps.link) ? "" : ", active");
2415 rcu_read_unlock();
2416 }
2417 seq_printf(m, "Semaphore boosts: %d%s\n",
2418 dev_priv->rps.semaphores.boosts,
2419 list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2420 seq_printf(m, "MMIO flip boosts: %d%s\n",
2421 dev_priv->rps.mmioflips.boosts,
2422 list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2423 seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2424 spin_unlock(&dev_priv->rps.client_lock);
2425
2426 return 0;
2427 }
2428
2429 static int i915_llc(struct seq_file *m, void *data)
2430 {
2431 struct drm_info_node *node = m->private;
2432 struct drm_device *dev = node->minor->dev;
2433 struct drm_i915_private *dev_priv = dev->dev_private;
2434 const bool edram = INTEL_GEN(dev_priv) > 8;
2435
2436 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2437 seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2438 intel_uncore_edram_size(dev_priv)/1024/1024);
2439
2440 return 0;
2441 }
2442
2443 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2444 {
2445 struct drm_info_node *node = m->private;
2446 struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2447 struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2448 u32 tmp, i;
2449
2450 if (!HAS_GUC_UCODE(dev_priv))
2451 return 0;
2452
2453 seq_printf(m, "GuC firmware status:\n");
2454 seq_printf(m, "\tpath: %s\n",
2455 guc_fw->guc_fw_path);
2456 seq_printf(m, "\tfetch: %s\n",
2457 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2458 seq_printf(m, "\tload: %s\n",
2459 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2460 seq_printf(m, "\tversion wanted: %d.%d\n",
2461 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2462 seq_printf(m, "\tversion found: %d.%d\n",
2463 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2464 seq_printf(m, "\theader: offset is %d; size = %d\n",
2465 guc_fw->header_offset, guc_fw->header_size);
2466 seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2467 guc_fw->ucode_offset, guc_fw->ucode_size);
2468 seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2469 guc_fw->rsa_offset, guc_fw->rsa_size);
2470
2471 tmp = I915_READ(GUC_STATUS);
2472
2473 seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2474 seq_printf(m, "\tBootrom status = 0x%x\n",
2475 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2476 seq_printf(m, "\tuKernel status = 0x%x\n",
2477 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2478 seq_printf(m, "\tMIA Core status = 0x%x\n",
2479 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2480 seq_puts(m, "\nScratch registers:\n");
2481 for (i = 0; i < 16; i++)
2482 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2483
2484 return 0;
2485 }
2486
2487 static void i915_guc_client_info(struct seq_file *m,
2488 struct drm_i915_private *dev_priv,
2489 struct i915_guc_client *client)
2490 {
2491 struct intel_engine_cs *engine;
2492 uint64_t tot = 0;
2493
2494 seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2495 client->priority, client->ctx_index, client->proc_desc_offset);
2496 seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2497 client->doorbell_id, client->doorbell_offset, client->cookie);
2498 seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2499 client->wq_size, client->wq_offset, client->wq_tail);
2500
2501 seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2502 seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2503 seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2504
2505 for_each_engine(engine, dev_priv) {
2506 seq_printf(m, "\tSubmissions: %llu %s\n",
2507 client->submissions[engine->guc_id],
2508 engine->name);
2509 tot += client->submissions[engine->guc_id];
2510 }
2511 seq_printf(m, "\tTotal: %llu\n", tot);
2512 }
2513
2514 static int i915_guc_info(struct seq_file *m, void *data)
2515 {
2516 struct drm_info_node *node = m->private;
2517 struct drm_device *dev = node->minor->dev;
2518 struct drm_i915_private *dev_priv = dev->dev_private;
2519 struct intel_guc guc;
2520 struct i915_guc_client client = {};
2521 struct intel_engine_cs *engine;
2522 u64 total = 0;
2523
2524 if (!HAS_GUC_SCHED(dev_priv))
2525 return 0;
2526
2527 if (mutex_lock_interruptible(&dev->struct_mutex))
2528 return 0;
2529
2530 /* Take a local copy of the GuC data, so we can dump it at leisure */
2531 guc = dev_priv->guc;
2532 if (guc.execbuf_client)
2533 client = *guc.execbuf_client;
2534
2535 mutex_unlock(&dev->struct_mutex);
2536
2537 seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2538 seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2539 seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2540 seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2541 seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2542
2543 seq_printf(m, "\nGuC submissions:\n");
2544 for_each_engine(engine, dev_priv) {
2545 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2546 engine->name, guc.submissions[engine->guc_id],
2547 guc.last_seqno[engine->guc_id]);
2548 total += guc.submissions[engine->guc_id];
2549 }
2550 seq_printf(m, "\t%s: %llu\n", "Total", total);
2551
2552 seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2553 i915_guc_client_info(m, dev_priv, &client);
2554
2555 /* Add more as required ... */
2556
2557 return 0;
2558 }
2559
2560 static int i915_guc_log_dump(struct seq_file *m, void *data)
2561 {
2562 struct drm_info_node *node = m->private;
2563 struct drm_device *dev = node->minor->dev;
2564 struct drm_i915_private *dev_priv = dev->dev_private;
2565 struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2566 u32 *log;
2567 int i = 0, pg;
2568
2569 if (!log_obj)
2570 return 0;
2571
2572 for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2573 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2574
2575 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2576 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2577 *(log + i), *(log + i + 1),
2578 *(log + i + 2), *(log + i + 3));
2579
2580 kunmap_atomic(log);
2581 }
2582
2583 seq_putc(m, '\n');
2584
2585 return 0;
2586 }
2587
2588 static int i915_edp_psr_status(struct seq_file *m, void *data)
2589 {
2590 struct drm_info_node *node = m->private;
2591 struct drm_device *dev = node->minor->dev;
2592 struct drm_i915_private *dev_priv = dev->dev_private;
2593 u32 psrperf = 0;
2594 u32 stat[3];
2595 enum pipe pipe;
2596 bool enabled = false;
2597
2598 if (!HAS_PSR(dev)) {
2599 seq_puts(m, "PSR not supported\n");
2600 return 0;
2601 }
2602
2603 intel_runtime_pm_get(dev_priv);
2604
2605 mutex_lock(&dev_priv->psr.lock);
2606 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2607 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2608 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2609 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2610 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2611 dev_priv->psr.busy_frontbuffer_bits);
2612 seq_printf(m, "Re-enable work scheduled: %s\n",
2613 yesno(work_busy(&dev_priv->psr.work.work)));
2614
2615 if (HAS_DDI(dev))
2616 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2617 else {
2618 for_each_pipe(dev_priv, pipe) {
2619 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2620 VLV_EDP_PSR_CURR_STATE_MASK;
2621 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2622 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2623 enabled = true;
2624 }
2625 }
2626
2627 seq_printf(m, "Main link in standby mode: %s\n",
2628 yesno(dev_priv->psr.link_standby));
2629
2630 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2631
2632 if (!HAS_DDI(dev))
2633 for_each_pipe(dev_priv, pipe) {
2634 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2635 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2636 seq_printf(m, " pipe %c", pipe_name(pipe));
2637 }
2638 seq_puts(m, "\n");
2639
2640 /*
2641 * VLV/CHV PSR has no kind of performance counter
2642 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2643 */
2644 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2645 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2646 EDP_PSR_PERF_CNT_MASK;
2647
2648 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2649 }
2650 mutex_unlock(&dev_priv->psr.lock);
2651
2652 intel_runtime_pm_put(dev_priv);
2653 return 0;
2654 }
2655
2656 static int i915_sink_crc(struct seq_file *m, void *data)
2657 {
2658 struct drm_info_node *node = m->private;
2659 struct drm_device *dev = node->minor->dev;
2660 struct intel_encoder *encoder;
2661 struct intel_connector *connector;
2662 struct intel_dp *intel_dp = NULL;
2663 int ret;
2664 u8 crc[6];
2665
2666 drm_modeset_lock_all(dev);
2667 for_each_intel_connector(dev, connector) {
2668
2669 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2670 continue;
2671
2672 if (!connector->base.encoder)
2673 continue;
2674
2675 encoder = to_intel_encoder(connector->base.encoder);
2676 if (encoder->type != INTEL_OUTPUT_EDP)
2677 continue;
2678
2679 intel_dp = enc_to_intel_dp(&encoder->base);
2680
2681 ret = intel_dp_sink_crc(intel_dp, crc);
2682 if (ret)
2683 goto out;
2684
2685 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2686 crc[0], crc[1], crc[2],
2687 crc[3], crc[4], crc[5]);
2688 goto out;
2689 }
2690 ret = -ENODEV;
2691 out:
2692 drm_modeset_unlock_all(dev);
2693 return ret;
2694 }
2695
2696 static int i915_energy_uJ(struct seq_file *m, void *data)
2697 {
2698 struct drm_info_node *node = m->private;
2699 struct drm_device *dev = node->minor->dev;
2700 struct drm_i915_private *dev_priv = dev->dev_private;
2701 u64 power;
2702 u32 units;
2703
2704 if (INTEL_INFO(dev)->gen < 6)
2705 return -ENODEV;
2706
2707 intel_runtime_pm_get(dev_priv);
2708
2709 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2710 power = (power & 0x1f00) >> 8;
2711 units = 1000000 / (1 << power); /* convert to uJ */
2712 power = I915_READ(MCH_SECP_NRG_STTS);
2713 power *= units;
2714
2715 intel_runtime_pm_put(dev_priv);
2716
2717 seq_printf(m, "%llu", (long long unsigned)power);
2718
2719 return 0;
2720 }
2721
2722 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2723 {
2724 struct drm_info_node *node = m->private;
2725 struct drm_device *dev = node->minor->dev;
2726 struct drm_i915_private *dev_priv = dev->dev_private;
2727
2728 if (!HAS_RUNTIME_PM(dev_priv))
2729 seq_puts(m, "Runtime power management not supported\n");
2730
2731 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2732 seq_printf(m, "IRQs disabled: %s\n",
2733 yesno(!intel_irqs_enabled(dev_priv)));
2734 #ifdef CONFIG_PM
2735 seq_printf(m, "Usage count: %d\n",
2736 atomic_read(&dev->dev->power.usage_count));
2737 #else
2738 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2739 #endif
2740 seq_printf(m, "PCI device power state: %s [%d]\n",
2741 pci_power_name(dev_priv->dev->pdev->current_state),
2742 dev_priv->dev->pdev->current_state);
2743
2744 return 0;
2745 }
2746
2747 static int i915_power_domain_info(struct seq_file *m, void *unused)
2748 {
2749 struct drm_info_node *node = m->private;
2750 struct drm_device *dev = node->minor->dev;
2751 struct drm_i915_private *dev_priv = dev->dev_private;
2752 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2753 int i;
2754
2755 mutex_lock(&power_domains->lock);
2756
2757 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2758 for (i = 0; i < power_domains->power_well_count; i++) {
2759 struct i915_power_well *power_well;
2760 enum intel_display_power_domain power_domain;
2761
2762 power_well = &power_domains->power_wells[i];
2763 seq_printf(m, "%-25s %d\n", power_well->name,
2764 power_well->count);
2765
2766 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2767 power_domain++) {
2768 if (!(BIT(power_domain) & power_well->domains))
2769 continue;
2770
2771 seq_printf(m, " %-23s %d\n",
2772 intel_display_power_domain_str(power_domain),
2773 power_domains->domain_use_count[power_domain]);
2774 }
2775 }
2776
2777 mutex_unlock(&power_domains->lock);
2778
2779 return 0;
2780 }
2781
2782 static int i915_dmc_info(struct seq_file *m, void *unused)
2783 {
2784 struct drm_info_node *node = m->private;
2785 struct drm_device *dev = node->minor->dev;
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 struct intel_csr *csr;
2788
2789 if (!HAS_CSR(dev)) {
2790 seq_puts(m, "not supported\n");
2791 return 0;
2792 }
2793
2794 csr = &dev_priv->csr;
2795
2796 intel_runtime_pm_get(dev_priv);
2797
2798 seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2799 seq_printf(m, "path: %s\n", csr->fw_path);
2800
2801 if (!csr->dmc_payload)
2802 goto out;
2803
2804 seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2805 CSR_VERSION_MINOR(csr->version));
2806
2807 if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2808 seq_printf(m, "DC3 -> DC5 count: %d\n",
2809 I915_READ(SKL_CSR_DC3_DC5_COUNT));
2810 seq_printf(m, "DC5 -> DC6 count: %d\n",
2811 I915_READ(SKL_CSR_DC5_DC6_COUNT));
2812 } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2813 seq_printf(m, "DC3 -> DC5 count: %d\n",
2814 I915_READ(BXT_CSR_DC3_DC5_COUNT));
2815 }
2816
2817 out:
2818 seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2819 seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2820 seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2821
2822 intel_runtime_pm_put(dev_priv);
2823
2824 return 0;
2825 }
2826
2827 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2828 struct drm_display_mode *mode)
2829 {
2830 int i;
2831
2832 for (i = 0; i < tabs; i++)
2833 seq_putc(m, '\t');
2834
2835 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2836 mode->base.id, mode->name,
2837 mode->vrefresh, mode->clock,
2838 mode->hdisplay, mode->hsync_start,
2839 mode->hsync_end, mode->htotal,
2840 mode->vdisplay, mode->vsync_start,
2841 mode->vsync_end, mode->vtotal,
2842 mode->type, mode->flags);
2843 }
2844
2845 static void intel_encoder_info(struct seq_file *m,
2846 struct intel_crtc *intel_crtc,
2847 struct intel_encoder *intel_encoder)
2848 {
2849 struct drm_info_node *node = m->private;
2850 struct drm_device *dev = node->minor->dev;
2851 struct drm_crtc *crtc = &intel_crtc->base;
2852 struct intel_connector *intel_connector;
2853 struct drm_encoder *encoder;
2854
2855 encoder = &intel_encoder->base;
2856 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2857 encoder->base.id, encoder->name);
2858 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2859 struct drm_connector *connector = &intel_connector->base;
2860 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2861 connector->base.id,
2862 connector->name,
2863 drm_get_connector_status_name(connector->status));
2864 if (connector->status == connector_status_connected) {
2865 struct drm_display_mode *mode = &crtc->mode;
2866 seq_printf(m, ", mode:\n");
2867 intel_seq_print_mode(m, 2, mode);
2868 } else {
2869 seq_putc(m, '\n');
2870 }
2871 }
2872 }
2873
2874 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2875 {
2876 struct drm_info_node *node = m->private;
2877 struct drm_device *dev = node->minor->dev;
2878 struct drm_crtc *crtc = &intel_crtc->base;
2879 struct intel_encoder *intel_encoder;
2880 struct drm_plane_state *plane_state = crtc->primary->state;
2881 struct drm_framebuffer *fb = plane_state->fb;
2882
2883 if (fb)
2884 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2885 fb->base.id, plane_state->src_x >> 16,
2886 plane_state->src_y >> 16, fb->width, fb->height);
2887 else
2888 seq_puts(m, "\tprimary plane disabled\n");
2889 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2890 intel_encoder_info(m, intel_crtc, intel_encoder);
2891 }
2892
2893 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2894 {
2895 struct drm_display_mode *mode = panel->fixed_mode;
2896
2897 seq_printf(m, "\tfixed mode:\n");
2898 intel_seq_print_mode(m, 2, mode);
2899 }
2900
2901 static void intel_dp_info(struct seq_file *m,
2902 struct intel_connector *intel_connector)
2903 {
2904 struct intel_encoder *intel_encoder = intel_connector->encoder;
2905 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2906
2907 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2908 seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2909 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2910 intel_panel_info(m, &intel_connector->panel);
2911 }
2912
2913 static void intel_hdmi_info(struct seq_file *m,
2914 struct intel_connector *intel_connector)
2915 {
2916 struct intel_encoder *intel_encoder = intel_connector->encoder;
2917 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2918
2919 seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2920 }
2921
2922 static void intel_lvds_info(struct seq_file *m,
2923 struct intel_connector *intel_connector)
2924 {
2925 intel_panel_info(m, &intel_connector->panel);
2926 }
2927
2928 static void intel_connector_info(struct seq_file *m,
2929 struct drm_connector *connector)
2930 {
2931 struct intel_connector *intel_connector = to_intel_connector(connector);
2932 struct intel_encoder *intel_encoder = intel_connector->encoder;
2933 struct drm_display_mode *mode;
2934
2935 seq_printf(m, "connector %d: type %s, status: %s\n",
2936 connector->base.id, connector->name,
2937 drm_get_connector_status_name(connector->status));
2938 if (connector->status == connector_status_connected) {
2939 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2940 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2941 connector->display_info.width_mm,
2942 connector->display_info.height_mm);
2943 seq_printf(m, "\tsubpixel order: %s\n",
2944 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2945 seq_printf(m, "\tCEA rev: %d\n",
2946 connector->display_info.cea_rev);
2947 }
2948 if (intel_encoder) {
2949 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2950 intel_encoder->type == INTEL_OUTPUT_EDP)
2951 intel_dp_info(m, intel_connector);
2952 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2953 intel_hdmi_info(m, intel_connector);
2954 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2955 intel_lvds_info(m, intel_connector);
2956 }
2957
2958 seq_printf(m, "\tmodes:\n");
2959 list_for_each_entry(mode, &connector->modes, head)
2960 intel_seq_print_mode(m, 2, mode);
2961 }
2962
2963 static bool cursor_active(struct drm_device *dev, int pipe)
2964 {
2965 struct drm_i915_private *dev_priv = dev->dev_private;
2966 u32 state;
2967
2968 if (IS_845G(dev) || IS_I865G(dev))
2969 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2970 else
2971 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2972
2973 return state;
2974 }
2975
2976 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2977 {
2978 struct drm_i915_private *dev_priv = dev->dev_private;
2979 u32 pos;
2980
2981 pos = I915_READ(CURPOS(pipe));
2982
2983 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2984 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2985 *x = -*x;
2986
2987 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2988 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2989 *y = -*y;
2990
2991 return cursor_active(dev, pipe);
2992 }
2993
2994 static const char *plane_type(enum drm_plane_type type)
2995 {
2996 switch (type) {
2997 case DRM_PLANE_TYPE_OVERLAY:
2998 return "OVL";
2999 case DRM_PLANE_TYPE_PRIMARY:
3000 return "PRI";
3001 case DRM_PLANE_TYPE_CURSOR:
3002 return "CUR";
3003 /*
3004 * Deliberately omitting default: to generate compiler warnings
3005 * when a new drm_plane_type gets added.
3006 */
3007 }
3008
3009 return "unknown";
3010 }
3011
3012 static const char *plane_rotation(unsigned int rotation)
3013 {
3014 static char buf[48];
3015 /*
3016 * According to doc only one DRM_ROTATE_ is allowed but this
3017 * will print them all to visualize if the values are misused
3018 */
3019 snprintf(buf, sizeof(buf),
3020 "%s%s%s%s%s%s(0x%08x)",
3021 (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3022 (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3023 (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3024 (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3025 (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3026 (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3027 rotation);
3028
3029 return buf;
3030 }
3031
3032 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3033 {
3034 struct drm_info_node *node = m->private;
3035 struct drm_device *dev = node->minor->dev;
3036 struct intel_plane *intel_plane;
3037
3038 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3039 struct drm_plane_state *state;
3040 struct drm_plane *plane = &intel_plane->base;
3041
3042 if (!plane->state) {
3043 seq_puts(m, "plane->state is NULL!\n");
3044 continue;
3045 }
3046
3047 state = plane->state;
3048
3049 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3050 plane->base.id,
3051 plane_type(intel_plane->base.type),
3052 state->crtc_x, state->crtc_y,
3053 state->crtc_w, state->crtc_h,
3054 (state->src_x >> 16),
3055 ((state->src_x & 0xffff) * 15625) >> 10,
3056 (state->src_y >> 16),
3057 ((state->src_y & 0xffff) * 15625) >> 10,
3058 (state->src_w >> 16),
3059 ((state->src_w & 0xffff) * 15625) >> 10,
3060 (state->src_h >> 16),
3061 ((state->src_h & 0xffff) * 15625) >> 10,
3062 state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3063 plane_rotation(state->rotation));
3064 }
3065 }
3066
3067 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3068 {
3069 struct intel_crtc_state *pipe_config;
3070 int num_scalers = intel_crtc->num_scalers;
3071 int i;
3072
3073 pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3074
3075 /* Not all platformas have a scaler */
3076 if (num_scalers) {
3077 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3078 num_scalers,
3079 pipe_config->scaler_state.scaler_users,
3080 pipe_config->scaler_state.scaler_id);
3081
3082 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3083 struct intel_scaler *sc =
3084 &pipe_config->scaler_state.scalers[i];
3085
3086 seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3087 i, yesno(sc->in_use), sc->mode);
3088 }
3089 seq_puts(m, "\n");
3090 } else {
3091 seq_puts(m, "\tNo scalers available on this platform\n");
3092 }
3093 }
3094
3095 static int i915_display_info(struct seq_file *m, void *unused)
3096 {
3097 struct drm_info_node *node = m->private;
3098 struct drm_device *dev = node->minor->dev;
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100 struct intel_crtc *crtc;
3101 struct drm_connector *connector;
3102
3103 intel_runtime_pm_get(dev_priv);
3104 drm_modeset_lock_all(dev);
3105 seq_printf(m, "CRTC info\n");
3106 seq_printf(m, "---------\n");
3107 for_each_intel_crtc(dev, crtc) {
3108 bool active;
3109 struct intel_crtc_state *pipe_config;
3110 int x, y;
3111
3112 pipe_config = to_intel_crtc_state(crtc->base.state);
3113
3114 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3115 crtc->base.base.id, pipe_name(crtc->pipe),
3116 yesno(pipe_config->base.active),
3117 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3118 yesno(pipe_config->dither), pipe_config->pipe_bpp);
3119
3120 if (pipe_config->base.active) {
3121 intel_crtc_info(m, crtc);
3122
3123 active = cursor_position(dev, crtc->pipe, &x, &y);
3124 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3125 yesno(crtc->cursor_base),
3126 x, y, crtc->base.cursor->state->crtc_w,
3127 crtc->base.cursor->state->crtc_h,
3128 crtc->cursor_addr, yesno(active));
3129 intel_scaler_info(m, crtc);
3130 intel_plane_info(m, crtc);
3131 }
3132
3133 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3134 yesno(!crtc->cpu_fifo_underrun_disabled),
3135 yesno(!crtc->pch_fifo_underrun_disabled));
3136 }
3137
3138 seq_printf(m, "\n");
3139 seq_printf(m, "Connector info\n");
3140 seq_printf(m, "--------------\n");
3141 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3142 intel_connector_info(m, connector);
3143 }
3144 drm_modeset_unlock_all(dev);
3145 intel_runtime_pm_put(dev_priv);
3146
3147 return 0;
3148 }
3149
3150 static int i915_semaphore_status(struct seq_file *m, void *unused)
3151 {
3152 struct drm_info_node *node = (struct drm_info_node *) m->private;
3153 struct drm_device *dev = node->minor->dev;
3154 struct drm_i915_private *dev_priv = dev->dev_private;
3155 struct intel_engine_cs *engine;
3156 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3157 enum intel_engine_id id;
3158 int j, ret;
3159
3160 if (!i915_semaphore_is_enabled(dev_priv)) {
3161 seq_puts(m, "Semaphores are disabled\n");
3162 return 0;
3163 }
3164
3165 ret = mutex_lock_interruptible(&dev->struct_mutex);
3166 if (ret)
3167 return ret;
3168 intel_runtime_pm_get(dev_priv);
3169
3170 if (IS_BROADWELL(dev)) {
3171 struct page *page;
3172 uint64_t *seqno;
3173
3174 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3175
3176 seqno = (uint64_t *)kmap_atomic(page);
3177 for_each_engine_id(engine, dev_priv, id) {
3178 uint64_t offset;
3179
3180 seq_printf(m, "%s\n", engine->name);
3181
3182 seq_puts(m, " Last signal:");
3183 for (j = 0; j < num_rings; j++) {
3184 offset = id * I915_NUM_ENGINES + j;
3185 seq_printf(m, "0x%08llx (0x%02llx) ",
3186 seqno[offset], offset * 8);
3187 }
3188 seq_putc(m, '\n');
3189
3190 seq_puts(m, " Last wait: ");
3191 for (j = 0; j < num_rings; j++) {
3192 offset = id + (j * I915_NUM_ENGINES);
3193 seq_printf(m, "0x%08llx (0x%02llx) ",
3194 seqno[offset], offset * 8);
3195 }
3196 seq_putc(m, '\n');
3197
3198 }
3199 kunmap_atomic(seqno);
3200 } else {
3201 seq_puts(m, " Last signal:");
3202 for_each_engine(engine, dev_priv)
3203 for (j = 0; j < num_rings; j++)
3204 seq_printf(m, "0x%08x\n",
3205 I915_READ(engine->semaphore.mbox.signal[j]));
3206 seq_putc(m, '\n');
3207 }
3208
3209 seq_puts(m, "\nSync seqno:\n");
3210 for_each_engine(engine, dev_priv) {
3211 for (j = 0; j < num_rings; j++)
3212 seq_printf(m, " 0x%08x ",
3213 engine->semaphore.sync_seqno[j]);
3214 seq_putc(m, '\n');
3215 }
3216 seq_putc(m, '\n');
3217
3218 intel_runtime_pm_put(dev_priv);
3219 mutex_unlock(&dev->struct_mutex);
3220 return 0;
3221 }
3222
3223 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3224 {
3225 struct drm_info_node *node = (struct drm_info_node *) m->private;
3226 struct drm_device *dev = node->minor->dev;
3227 struct drm_i915_private *dev_priv = dev->dev_private;
3228 int i;
3229
3230 drm_modeset_lock_all(dev);
3231 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3232 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3233
3234 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3235 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3236 pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3237 seq_printf(m, " tracked hardware state:\n");
3238 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
3239 seq_printf(m, " dpll_md: 0x%08x\n",
3240 pll->config.hw_state.dpll_md);
3241 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
3242 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
3243 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
3244 }
3245 drm_modeset_unlock_all(dev);
3246
3247 return 0;
3248 }
3249
3250 static int i915_wa_registers(struct seq_file *m, void *unused)
3251 {
3252 int i;
3253 int ret;
3254 struct intel_engine_cs *engine;
3255 struct drm_info_node *node = (struct drm_info_node *) m->private;
3256 struct drm_device *dev = node->minor->dev;
3257 struct drm_i915_private *dev_priv = dev->dev_private;
3258 struct i915_workarounds *workarounds = &dev_priv->workarounds;
3259 enum intel_engine_id id;
3260
3261 ret = mutex_lock_interruptible(&dev->struct_mutex);
3262 if (ret)
3263 return ret;
3264
3265 intel_runtime_pm_get(dev_priv);
3266
3267 seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3268 for_each_engine_id(engine, dev_priv, id)
3269 seq_printf(m, "HW whitelist count for %s: %d\n",
3270 engine->name, workarounds->hw_whitelist_count[id]);
3271 for (i = 0; i < workarounds->count; ++i) {
3272 i915_reg_t addr;
3273 u32 mask, value, read;
3274 bool ok;
3275
3276 addr = workarounds->reg[i].addr;
3277 mask = workarounds->reg[i].mask;
3278 value = workarounds->reg[i].value;
3279 read = I915_READ(addr);
3280 ok = (value & mask) == (read & mask);
3281 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3282 i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3283 }
3284
3285 intel_runtime_pm_put(dev_priv);
3286 mutex_unlock(&dev->struct_mutex);
3287
3288 return 0;
3289 }
3290
3291 static int i915_ddb_info(struct seq_file *m, void *unused)
3292 {
3293 struct drm_info_node *node = m->private;
3294 struct drm_device *dev = node->minor->dev;
3295 struct drm_i915_private *dev_priv = dev->dev_private;
3296 struct skl_ddb_allocation *ddb;
3297 struct skl_ddb_entry *entry;
3298 enum pipe pipe;
3299 int plane;
3300
3301 if (INTEL_INFO(dev)->gen < 9)
3302 return 0;
3303
3304 drm_modeset_lock_all(dev);
3305
3306 ddb = &dev_priv->wm.skl_hw.ddb;
3307
3308 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3309
3310 for_each_pipe(dev_priv, pipe) {
3311 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3312
3313 for_each_plane(dev_priv, pipe, plane) {
3314 entry = &ddb->plane[pipe][plane];
3315 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
3316 entry->start, entry->end,
3317 skl_ddb_entry_size(entry));
3318 }
3319
3320 entry = &ddb->plane[pipe][PLANE_CURSOR];
3321 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
3322 entry->end, skl_ddb_entry_size(entry));
3323 }
3324
3325 drm_modeset_unlock_all(dev);
3326
3327 return 0;
3328 }
3329
3330 static void drrs_status_per_crtc(struct seq_file *m,
3331 struct drm_device *dev, struct intel_crtc *intel_crtc)
3332 {
3333 struct intel_encoder *intel_encoder;
3334 struct drm_i915_private *dev_priv = dev->dev_private;
3335 struct i915_drrs *drrs = &dev_priv->drrs;
3336 int vrefresh = 0;
3337
3338 for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3339 /* Encoder connected on this CRTC */
3340 switch (intel_encoder->type) {
3341 case INTEL_OUTPUT_EDP:
3342 seq_puts(m, "eDP:\n");
3343 break;
3344 case INTEL_OUTPUT_DSI:
3345 seq_puts(m, "DSI:\n");
3346 break;
3347 case INTEL_OUTPUT_HDMI:
3348 seq_puts(m, "HDMI:\n");
3349 break;
3350 case INTEL_OUTPUT_DISPLAYPORT:
3351 seq_puts(m, "DP:\n");
3352 break;
3353 default:
3354 seq_printf(m, "Other encoder (id=%d).\n",
3355 intel_encoder->type);
3356 return;
3357 }
3358 }
3359
3360 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3361 seq_puts(m, "\tVBT: DRRS_type: Static");
3362 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3363 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3364 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3365 seq_puts(m, "\tVBT: DRRS_type: None");
3366 else
3367 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3368
3369 seq_puts(m, "\n\n");
3370
3371 if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3372 struct intel_panel *panel;
3373
3374 mutex_lock(&drrs->mutex);
3375 /* DRRS Supported */
3376 seq_puts(m, "\tDRRS Supported: Yes\n");
3377
3378 /* disable_drrs() will make drrs->dp NULL */
3379 if (!drrs->dp) {
3380 seq_puts(m, "Idleness DRRS: Disabled");
3381 mutex_unlock(&drrs->mutex);
3382 return;
3383 }
3384
3385 panel = &drrs->dp->attached_connector->panel;
3386 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3387 drrs->busy_frontbuffer_bits);
3388
3389 seq_puts(m, "\n\t\t");
3390 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3391 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3392 vrefresh = panel->fixed_mode->vrefresh;
3393 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3394 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3395 vrefresh = panel->downclock_mode->vrefresh;
3396 } else {
3397 seq_printf(m, "DRRS_State: Unknown(%d)\n",
3398 drrs->refresh_rate_type);
3399 mutex_unlock(&drrs->mutex);
3400 return;
3401 }
3402 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3403
3404 seq_puts(m, "\n\t\t");
3405 mutex_unlock(&drrs->mutex);
3406 } else {
3407 /* DRRS not supported. Print the VBT parameter*/
3408 seq_puts(m, "\tDRRS Supported : No");
3409 }
3410 seq_puts(m, "\n");
3411 }
3412
3413 static int i915_drrs_status(struct seq_file *m, void *unused)
3414 {
3415 struct drm_info_node *node = m->private;
3416 struct drm_device *dev = node->minor->dev;
3417 struct intel_crtc *intel_crtc;
3418 int active_crtc_cnt = 0;
3419
3420 for_each_intel_crtc(dev, intel_crtc) {
3421 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3422
3423 if (intel_crtc->base.state->active) {
3424 active_crtc_cnt++;
3425 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
3426
3427 drrs_status_per_crtc(m, dev, intel_crtc);
3428 }
3429
3430 drm_modeset_unlock(&intel_crtc->base.mutex);
3431 }
3432
3433 if (!active_crtc_cnt)
3434 seq_puts(m, "No active crtc found\n");
3435
3436 return 0;
3437 }
3438
3439 struct pipe_crc_info {
3440 const char *name;
3441 struct drm_device *dev;
3442 enum pipe pipe;
3443 };
3444
3445 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3446 {
3447 struct drm_info_node *node = (struct drm_info_node *) m->private;
3448 struct drm_device *dev = node->minor->dev;
3449 struct drm_encoder *encoder;
3450 struct intel_encoder *intel_encoder;
3451 struct intel_digital_port *intel_dig_port;
3452 drm_modeset_lock_all(dev);
3453 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3454 intel_encoder = to_intel_encoder(encoder);
3455 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3456 continue;
3457 intel_dig_port = enc_to_dig_port(encoder);
3458 if (!intel_dig_port->dp.can_mst)
3459 continue;
3460
3461 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3462 }
3463 drm_modeset_unlock_all(dev);
3464 return 0;
3465 }
3466
3467 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3468 {
3469 struct pipe_crc_info *info = inode->i_private;
3470 struct drm_i915_private *dev_priv = info->dev->dev_private;
3471 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3472
3473 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3474 return -ENODEV;
3475
3476 spin_lock_irq(&pipe_crc->lock);
3477
3478 if (pipe_crc->opened) {
3479 spin_unlock_irq(&pipe_crc->lock);
3480 return -EBUSY; /* already open */
3481 }
3482
3483 pipe_crc->opened = true;
3484 filep->private_data = inode->i_private;
3485
3486 spin_unlock_irq(&pipe_crc->lock);
3487
3488 return 0;
3489 }
3490
3491 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3492 {
3493 struct pipe_crc_info *info = inode->i_private;
3494 struct drm_i915_private *dev_priv = info->dev->dev_private;
3495 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3496
3497 spin_lock_irq(&pipe_crc->lock);
3498 pipe_crc->opened = false;
3499 spin_unlock_irq(&pipe_crc->lock);
3500
3501 return 0;
3502 }
3503
3504 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3505 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
3506 /* account for \'0' */
3507 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
3508
3509 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3510 {
3511 assert_spin_locked(&pipe_crc->lock);
3512 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3513 INTEL_PIPE_CRC_ENTRIES_NR);
3514 }
3515
3516 static ssize_t
3517 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3518 loff_t *pos)
3519 {
3520 struct pipe_crc_info *info = filep->private_data;
3521 struct drm_device *dev = info->dev;
3522 struct drm_i915_private *dev_priv = dev->dev_private;
3523 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3524 char buf[PIPE_CRC_BUFFER_LEN];
3525 int n_entries;
3526 ssize_t bytes_read;
3527
3528 /*
3529 * Don't allow user space to provide buffers not big enough to hold
3530 * a line of data.
3531 */
3532 if (count < PIPE_CRC_LINE_LEN)
3533 return -EINVAL;
3534
3535 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3536 return 0;
3537
3538 /* nothing to read */
3539 spin_lock_irq(&pipe_crc->lock);
3540 while (pipe_crc_data_count(pipe_crc) == 0) {
3541 int ret;
3542
3543 if (filep->f_flags & O_NONBLOCK) {
3544 spin_unlock_irq(&pipe_crc->lock);
3545 return -EAGAIN;
3546 }
3547
3548 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3549 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3550 if (ret) {
3551 spin_unlock_irq(&pipe_crc->lock);
3552 return ret;
3553 }
3554 }
3555
3556 /* We now have one or more entries to read */
3557 n_entries = count / PIPE_CRC_LINE_LEN;
3558
3559 bytes_read = 0;
3560 while (n_entries > 0) {
3561 struct intel_pipe_crc_entry *entry =
3562 &pipe_crc->entries[pipe_crc->tail];
3563 int ret;
3564
3565 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3566 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3567 break;
3568
3569 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3570 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3571
3572 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3573 "%8u %8x %8x %8x %8x %8x\n",
3574 entry->frame, entry->crc[0],
3575 entry->crc[1], entry->crc[2],
3576 entry->crc[3], entry->crc[4]);
3577
3578 spin_unlock_irq(&pipe_crc->lock);
3579
3580 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3581 if (ret == PIPE_CRC_LINE_LEN)
3582 return -EFAULT;
3583
3584 user_buf += PIPE_CRC_LINE_LEN;
3585 n_entries--;
3586
3587 spin_lock_irq(&pipe_crc->lock);
3588 }
3589
3590 spin_unlock_irq(&pipe_crc->lock);
3591
3592 return bytes_read;
3593 }
3594
3595 static const struct file_operations i915_pipe_crc_fops = {
3596 .owner = THIS_MODULE,
3597 .open = i915_pipe_crc_open,
3598 .read = i915_pipe_crc_read,
3599 .release = i915_pipe_crc_release,
3600 };
3601
3602 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3603 {
3604 .name = "i915_pipe_A_crc",
3605 .pipe = PIPE_A,
3606 },
3607 {
3608 .name = "i915_pipe_B_crc",
3609 .pipe = PIPE_B,
3610 },
3611 {
3612 .name = "i915_pipe_C_crc",
3613 .pipe = PIPE_C,
3614 },
3615 };
3616
3617 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3618 enum pipe pipe)
3619 {
3620 struct drm_device *dev = minor->dev;
3621 struct dentry *ent;
3622 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3623
3624 info->dev = dev;
3625 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3626 &i915_pipe_crc_fops);
3627 if (!ent)
3628 return -ENOMEM;
3629
3630 return drm_add_fake_info_node(minor, ent, info);
3631 }
3632
3633 static const char * const pipe_crc_sources[] = {
3634 "none",
3635 "plane1",
3636 "plane2",
3637 "pf",
3638 "pipe",
3639 "TV",
3640 "DP-B",
3641 "DP-C",
3642 "DP-D",
3643 "auto",
3644 };
3645
3646 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3647 {
3648 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3649 return pipe_crc_sources[source];
3650 }
3651
3652 static int display_crc_ctl_show(struct seq_file *m, void *data)
3653 {
3654 struct drm_device *dev = m->private;
3655 struct drm_i915_private *dev_priv = dev->dev_private;
3656 int i;
3657
3658 for (i = 0; i < I915_MAX_PIPES; i++)
3659 seq_printf(m, "%c %s\n", pipe_name(i),
3660 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3661
3662 return 0;
3663 }
3664
3665 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3666 {
3667 struct drm_device *dev = inode->i_private;
3668
3669 return single_open(file, display_crc_ctl_show, dev);
3670 }
3671
3672 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3673 uint32_t *val)
3674 {
3675 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3676 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3677
3678 switch (*source) {
3679 case INTEL_PIPE_CRC_SOURCE_PIPE:
3680 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3681 break;
3682 case INTEL_PIPE_CRC_SOURCE_NONE:
3683 *val = 0;
3684 break;
3685 default:
3686 return -EINVAL;
3687 }
3688
3689 return 0;
3690 }
3691
3692 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3693 enum intel_pipe_crc_source *source)
3694 {
3695 struct intel_encoder *encoder;
3696 struct intel_crtc *crtc;
3697 struct intel_digital_port *dig_port;
3698 int ret = 0;
3699
3700 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3701
3702 drm_modeset_lock_all(dev);
3703 for_each_intel_encoder(dev, encoder) {
3704 if (!encoder->base.crtc)
3705 continue;
3706
3707 crtc = to_intel_crtc(encoder->base.crtc);
3708
3709 if (crtc->pipe != pipe)
3710 continue;
3711
3712 switch (encoder->type) {
3713 case INTEL_OUTPUT_TVOUT:
3714 *source = INTEL_PIPE_CRC_SOURCE_TV;
3715 break;
3716 case INTEL_OUTPUT_DISPLAYPORT:
3717 case INTEL_OUTPUT_EDP:
3718 dig_port = enc_to_dig_port(&encoder->base);
3719 switch (dig_port->port) {
3720 case PORT_B:
3721 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3722 break;
3723 case PORT_C:
3724 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3725 break;
3726 case PORT_D:
3727 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3728 break;
3729 default:
3730 WARN(1, "nonexisting DP port %c\n",
3731 port_name(dig_port->port));
3732 break;
3733 }
3734 break;
3735 default:
3736 break;
3737 }
3738 }
3739 drm_modeset_unlock_all(dev);
3740
3741 return ret;
3742 }
3743
3744 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3745 enum pipe pipe,
3746 enum intel_pipe_crc_source *source,
3747 uint32_t *val)
3748 {
3749 struct drm_i915_private *dev_priv = dev->dev_private;
3750 bool need_stable_symbols = false;
3751
3752 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3753 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3754 if (ret)
3755 return ret;
3756 }
3757
3758 switch (*source) {
3759 case INTEL_PIPE_CRC_SOURCE_PIPE:
3760 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3761 break;
3762 case INTEL_PIPE_CRC_SOURCE_DP_B:
3763 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3764 need_stable_symbols = true;
3765 break;
3766 case INTEL_PIPE_CRC_SOURCE_DP_C:
3767 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3768 need_stable_symbols = true;
3769 break;
3770 case INTEL_PIPE_CRC_SOURCE_DP_D:
3771 if (!IS_CHERRYVIEW(dev))
3772 return -EINVAL;
3773 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3774 need_stable_symbols = true;
3775 break;
3776 case INTEL_PIPE_CRC_SOURCE_NONE:
3777 *val = 0;
3778 break;
3779 default:
3780 return -EINVAL;
3781 }
3782
3783 /*
3784 * When the pipe CRC tap point is after the transcoders we need
3785 * to tweak symbol-level features to produce a deterministic series of
3786 * symbols for a given frame. We need to reset those features only once
3787 * a frame (instead of every nth symbol):
3788 * - DC-balance: used to ensure a better clock recovery from the data
3789 * link (SDVO)
3790 * - DisplayPort scrambling: used for EMI reduction
3791 */
3792 if (need_stable_symbols) {
3793 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3794
3795 tmp |= DC_BALANCE_RESET_VLV;
3796 switch (pipe) {
3797 case PIPE_A:
3798 tmp |= PIPE_A_SCRAMBLE_RESET;
3799 break;
3800 case PIPE_B:
3801 tmp |= PIPE_B_SCRAMBLE_RESET;
3802 break;
3803 case PIPE_C:
3804 tmp |= PIPE_C_SCRAMBLE_RESET;
3805 break;
3806 default:
3807 return -EINVAL;
3808 }
3809 I915_WRITE(PORT_DFT2_G4X, tmp);
3810 }
3811
3812 return 0;
3813 }
3814
3815 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3816 enum pipe pipe,
3817 enum intel_pipe_crc_source *source,
3818 uint32_t *val)
3819 {
3820 struct drm_i915_private *dev_priv = dev->dev_private;
3821 bool need_stable_symbols = false;
3822
3823 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3824 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3825 if (ret)
3826 return ret;
3827 }
3828
3829 switch (*source) {
3830 case INTEL_PIPE_CRC_SOURCE_PIPE:
3831 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3832 break;
3833 case INTEL_PIPE_CRC_SOURCE_TV:
3834 if (!SUPPORTS_TV(dev))
3835 return -EINVAL;
3836 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3837 break;
3838 case INTEL_PIPE_CRC_SOURCE_DP_B:
3839 if (!IS_G4X(dev))
3840 return -EINVAL;
3841 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3842 need_stable_symbols = true;
3843 break;
3844 case INTEL_PIPE_CRC_SOURCE_DP_C:
3845 if (!IS_G4X(dev))
3846 return -EINVAL;
3847 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3848 need_stable_symbols = true;
3849 break;
3850 case INTEL_PIPE_CRC_SOURCE_DP_D:
3851 if (!IS_G4X(dev))
3852 return -EINVAL;
3853 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3854 need_stable_symbols = true;
3855 break;
3856 case INTEL_PIPE_CRC_SOURCE_NONE:
3857 *val = 0;
3858 break;
3859 default:
3860 return -EINVAL;
3861 }
3862
3863 /*
3864 * When the pipe CRC tap point is after the transcoders we need
3865 * to tweak symbol-level features to produce a deterministic series of
3866 * symbols for a given frame. We need to reset those features only once
3867 * a frame (instead of every nth symbol):
3868 * - DC-balance: used to ensure a better clock recovery from the data
3869 * link (SDVO)
3870 * - DisplayPort scrambling: used for EMI reduction
3871 */
3872 if (need_stable_symbols) {
3873 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3874
3875 WARN_ON(!IS_G4X(dev));
3876
3877 I915_WRITE(PORT_DFT_I9XX,
3878 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3879
3880 if (pipe == PIPE_A)
3881 tmp |= PIPE_A_SCRAMBLE_RESET;
3882 else
3883 tmp |= PIPE_B_SCRAMBLE_RESET;
3884
3885 I915_WRITE(PORT_DFT2_G4X, tmp);
3886 }
3887
3888 return 0;
3889 }
3890
3891 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3892 enum pipe pipe)
3893 {
3894 struct drm_i915_private *dev_priv = dev->dev_private;
3895 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3896
3897 switch (pipe) {
3898 case PIPE_A:
3899 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3900 break;
3901 case PIPE_B:
3902 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3903 break;
3904 case PIPE_C:
3905 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3906 break;
3907 default:
3908 return;
3909 }
3910 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3911 tmp &= ~DC_BALANCE_RESET_VLV;
3912 I915_WRITE(PORT_DFT2_G4X, tmp);
3913
3914 }
3915
3916 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3917 enum pipe pipe)
3918 {
3919 struct drm_i915_private *dev_priv = dev->dev_private;
3920 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3921
3922 if (pipe == PIPE_A)
3923 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3924 else
3925 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3926 I915_WRITE(PORT_DFT2_G4X, tmp);
3927
3928 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3929 I915_WRITE(PORT_DFT_I9XX,
3930 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3931 }
3932 }
3933
3934 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3935 uint32_t *val)
3936 {
3937 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3938 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3939
3940 switch (*source) {
3941 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3942 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3943 break;
3944 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3945 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3946 break;
3947 case INTEL_PIPE_CRC_SOURCE_PIPE:
3948 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3949 break;
3950 case INTEL_PIPE_CRC_SOURCE_NONE:
3951 *val = 0;
3952 break;
3953 default:
3954 return -EINVAL;
3955 }
3956
3957 return 0;
3958 }
3959
3960 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3961 {
3962 struct drm_i915_private *dev_priv = dev->dev_private;
3963 struct intel_crtc *crtc =
3964 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3965 struct intel_crtc_state *pipe_config;
3966 struct drm_atomic_state *state;
3967 int ret = 0;
3968
3969 drm_modeset_lock_all(dev);
3970 state = drm_atomic_state_alloc(dev);
3971 if (!state) {
3972 ret = -ENOMEM;
3973 goto out;
3974 }
3975
3976 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3977 pipe_config = intel_atomic_get_crtc_state(state, crtc);
3978 if (IS_ERR(pipe_config)) {
3979 ret = PTR_ERR(pipe_config);
3980 goto out;
3981 }
3982
3983 pipe_config->pch_pfit.force_thru = enable;
3984 if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3985 pipe_config->pch_pfit.enabled != enable)
3986 pipe_config->base.connectors_changed = true;
3987
3988 ret = drm_atomic_commit(state);
3989 out:
3990 drm_modeset_unlock_all(dev);
3991 WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3992 if (ret)
3993 drm_atomic_state_free(state);
3994 }
3995
3996 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3997 enum pipe pipe,
3998 enum intel_pipe_crc_source *source,
3999 uint32_t *val)
4000 {
4001 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4002 *source = INTEL_PIPE_CRC_SOURCE_PF;
4003
4004 switch (*source) {
4005 case INTEL_PIPE_CRC_SOURCE_PLANE1:
4006 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4007 break;
4008 case INTEL_PIPE_CRC_SOURCE_PLANE2:
4009 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4010 break;
4011 case INTEL_PIPE_CRC_SOURCE_PF:
4012 if (IS_HASWELL(dev) && pipe == PIPE_A)
4013 hsw_trans_edp_pipe_A_crc_wa(dev, true);
4014
4015 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4016 break;
4017 case INTEL_PIPE_CRC_SOURCE_NONE:
4018 *val = 0;
4019 break;
4020 default:
4021 return -EINVAL;
4022 }
4023
4024 return 0;
4025 }
4026
4027 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4028 enum intel_pipe_crc_source source)
4029 {
4030 struct drm_i915_private *dev_priv = dev->dev_private;
4031 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4032 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4033 pipe));
4034 enum intel_display_power_domain power_domain;
4035 u32 val = 0; /* shut up gcc */
4036 int ret;
4037
4038 if (pipe_crc->source == source)
4039 return 0;
4040
4041 /* forbid changing the source without going back to 'none' */
4042 if (pipe_crc->source && source)
4043 return -EINVAL;
4044
4045 power_domain = POWER_DOMAIN_PIPE(pipe);
4046 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4047 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4048 return -EIO;
4049 }
4050
4051 if (IS_GEN2(dev))
4052 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4053 else if (INTEL_INFO(dev)->gen < 5)
4054 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4055 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4056 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4057 else if (IS_GEN5(dev) || IS_GEN6(dev))
4058 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4059 else
4060 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4061
4062 if (ret != 0)
4063 goto out;
4064
4065 /* none -> real source transition */
4066 if (source) {
4067 struct intel_pipe_crc_entry *entries;
4068
4069 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4070 pipe_name(pipe), pipe_crc_source_name(source));
4071
4072 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4073 sizeof(pipe_crc->entries[0]),
4074 GFP_KERNEL);
4075 if (!entries) {
4076 ret = -ENOMEM;
4077 goto out;
4078 }
4079
4080 /*
4081 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4082 * enabled and disabled dynamically based on package C states,
4083 * user space can't make reliable use of the CRCs, so let's just
4084 * completely disable it.
4085 */
4086 hsw_disable_ips(crtc);
4087
4088 spin_lock_irq(&pipe_crc->lock);
4089 kfree(pipe_crc->entries);
4090 pipe_crc->entries = entries;
4091 pipe_crc->head = 0;
4092 pipe_crc->tail = 0;
4093 spin_unlock_irq(&pipe_crc->lock);
4094 }
4095
4096 pipe_crc->source = source;
4097
4098 I915_WRITE(PIPE_CRC_CTL(pipe), val);
4099 POSTING_READ(PIPE_CRC_CTL(pipe));
4100
4101 /* real source -> none transition */
4102 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4103 struct intel_pipe_crc_entry *entries;
4104 struct intel_crtc *crtc =
4105 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4106
4107 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4108 pipe_name(pipe));
4109
4110 drm_modeset_lock(&crtc->base.mutex, NULL);
4111 if (crtc->base.state->active)
4112 intel_wait_for_vblank(dev, pipe);
4113 drm_modeset_unlock(&crtc->base.mutex);
4114
4115 spin_lock_irq(&pipe_crc->lock);
4116 entries = pipe_crc->entries;
4117 pipe_crc->entries = NULL;
4118 pipe_crc->head = 0;
4119 pipe_crc->tail = 0;
4120 spin_unlock_irq(&pipe_crc->lock);
4121
4122 kfree(entries);
4123
4124 if (IS_G4X(dev))
4125 g4x_undo_pipe_scramble_reset(dev, pipe);
4126 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4127 vlv_undo_pipe_scramble_reset(dev, pipe);
4128 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4129 hsw_trans_edp_pipe_A_crc_wa(dev, false);
4130
4131 hsw_enable_ips(crtc);
4132 }
4133
4134 ret = 0;
4135
4136 out:
4137 intel_display_power_put(dev_priv, power_domain);
4138
4139 return ret;
4140 }
4141
4142 /*
4143 * Parse pipe CRC command strings:
4144 * command: wsp* object wsp+ name wsp+ source wsp*
4145 * object: 'pipe'
4146 * name: (A | B | C)
4147 * source: (none | plane1 | plane2 | pf)
4148 * wsp: (#0x20 | #0x9 | #0xA)+
4149 *
4150 * eg.:
4151 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
4152 * "pipe A none" -> Stop CRC
4153 */
4154 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4155 {
4156 int n_words = 0;
4157
4158 while (*buf) {
4159 char *end;
4160
4161 /* skip leading white space */
4162 buf = skip_spaces(buf);
4163 if (!*buf)
4164 break; /* end of buffer */
4165
4166 /* find end of word */
4167 for (end = buf; *end && !isspace(*end); end++)
4168 ;
4169
4170 if (n_words == max_words) {
4171 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4172 max_words);
4173 return -EINVAL; /* ran out of words[] before bytes */
4174 }
4175
4176 if (*end)
4177 *end++ = '\0';
4178 words[n_words++] = buf;
4179 buf = end;
4180 }
4181
4182 return n_words;
4183 }
4184
4185 enum intel_pipe_crc_object {
4186 PIPE_CRC_OBJECT_PIPE,
4187 };
4188
4189 static const char * const pipe_crc_objects[] = {
4190 "pipe",
4191 };
4192
4193 static int
4194 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4195 {
4196 int i;
4197
4198 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4199 if (!strcmp(buf, pipe_crc_objects[i])) {
4200 *o = i;
4201 return 0;
4202 }
4203
4204 return -EINVAL;
4205 }
4206
4207 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4208 {
4209 const char name = buf[0];
4210
4211 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4212 return -EINVAL;
4213
4214 *pipe = name - 'A';
4215
4216 return 0;
4217 }
4218
4219 static int
4220 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4221 {
4222 int i;
4223
4224 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4225 if (!strcmp(buf, pipe_crc_sources[i])) {
4226 *s = i;
4227 return 0;
4228 }
4229
4230 return -EINVAL;
4231 }
4232
4233 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4234 {
4235 #define N_WORDS 3
4236 int n_words;
4237 char *words[N_WORDS];
4238 enum pipe pipe;
4239 enum intel_pipe_crc_object object;
4240 enum intel_pipe_crc_source source;
4241
4242 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4243 if (n_words != N_WORDS) {
4244 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4245 N_WORDS);
4246 return -EINVAL;
4247 }
4248
4249 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4250 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4251 return -EINVAL;
4252 }
4253
4254 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4255 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4256 return -EINVAL;
4257 }
4258
4259 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4260 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4261 return -EINVAL;
4262 }
4263
4264 return pipe_crc_set_source(dev, pipe, source);
4265 }
4266
4267 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4268 size_t len, loff_t *offp)
4269 {
4270 struct seq_file *m = file->private_data;
4271 struct drm_device *dev = m->private;
4272 char *tmpbuf;
4273 int ret;
4274
4275 if (len == 0)
4276 return 0;
4277
4278 if (len > PAGE_SIZE - 1) {
4279 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4280 PAGE_SIZE);
4281 return -E2BIG;
4282 }
4283
4284 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4285 if (!tmpbuf)
4286 return -ENOMEM;
4287
4288 if (copy_from_user(tmpbuf, ubuf, len)) {
4289 ret = -EFAULT;
4290 goto out;
4291 }
4292 tmpbuf[len] = '\0';
4293
4294 ret = display_crc_ctl_parse(dev, tmpbuf, len);
4295
4296 out:
4297 kfree(tmpbuf);
4298 if (ret < 0)
4299 return ret;
4300
4301 *offp += len;
4302 return len;
4303 }
4304
4305 static const struct file_operations i915_display_crc_ctl_fops = {
4306 .owner = THIS_MODULE,
4307 .open = display_crc_ctl_open,
4308 .read = seq_read,
4309 .llseek = seq_lseek,
4310 .release = single_release,
4311 .write = display_crc_ctl_write
4312 };
4313
4314 static ssize_t i915_displayport_test_active_write(struct file *file,
4315 const char __user *ubuf,
4316 size_t len, loff_t *offp)
4317 {
4318 char *input_buffer;
4319 int status = 0;
4320 struct drm_device *dev;
4321 struct drm_connector *connector;
4322 struct list_head *connector_list;
4323 struct intel_dp *intel_dp;
4324 int val = 0;
4325
4326 dev = ((struct seq_file *)file->private_data)->private;
4327
4328 connector_list = &dev->mode_config.connector_list;
4329
4330 if (len == 0)
4331 return 0;
4332
4333 input_buffer = kmalloc(len + 1, GFP_KERNEL);
4334 if (!input_buffer)
4335 return -ENOMEM;
4336
4337 if (copy_from_user(input_buffer, ubuf, len)) {
4338 status = -EFAULT;
4339 goto out;
4340 }
4341
4342 input_buffer[len] = '\0';
4343 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4344
4345 list_for_each_entry(connector, connector_list, head) {
4346
4347 if (connector->connector_type !=
4348 DRM_MODE_CONNECTOR_DisplayPort)
4349 continue;
4350
4351 if (connector->status == connector_status_connected &&
4352 connector->encoder != NULL) {
4353 intel_dp = enc_to_intel_dp(connector->encoder);
4354 status = kstrtoint(input_buffer, 10, &val);
4355 if (status < 0)
4356 goto out;
4357 DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4358 /* To prevent erroneous activation of the compliance
4359 * testing code, only accept an actual value of 1 here
4360 */
4361 if (val == 1)
4362 intel_dp->compliance_test_active = 1;
4363 else
4364 intel_dp->compliance_test_active = 0;
4365 }
4366 }
4367 out:
4368 kfree(input_buffer);
4369 if (status < 0)
4370 return status;
4371
4372 *offp += len;
4373 return len;
4374 }
4375
4376 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4377 {
4378 struct drm_device *dev = m->private;
4379 struct drm_connector *connector;
4380 struct list_head *connector_list = &dev->mode_config.connector_list;
4381 struct intel_dp *intel_dp;
4382
4383 list_for_each_entry(connector, connector_list, head) {
4384
4385 if (connector->connector_type !=
4386 DRM_MODE_CONNECTOR_DisplayPort)
4387 continue;
4388
4389 if (connector->status == connector_status_connected &&
4390 connector->encoder != NULL) {
4391 intel_dp = enc_to_intel_dp(connector->encoder);
4392 if (intel_dp->compliance_test_active)
4393 seq_puts(m, "1");
4394 else
4395 seq_puts(m, "0");
4396 } else
4397 seq_puts(m, "0");
4398 }
4399
4400 return 0;
4401 }
4402
4403 static int i915_displayport_test_active_open(struct inode *inode,
4404 struct file *file)
4405 {
4406 struct drm_device *dev = inode->i_private;
4407
4408 return single_open(file, i915_displayport_test_active_show, dev);
4409 }
4410
4411 static const struct file_operations i915_displayport_test_active_fops = {
4412 .owner = THIS_MODULE,
4413 .open = i915_displayport_test_active_open,
4414 .read = seq_read,
4415 .llseek = seq_lseek,
4416 .release = single_release,
4417 .write = i915_displayport_test_active_write
4418 };
4419
4420 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4421 {
4422 struct drm_device *dev = m->private;
4423 struct drm_connector *connector;
4424 struct list_head *connector_list = &dev->mode_config.connector_list;
4425 struct intel_dp *intel_dp;
4426
4427 list_for_each_entry(connector, connector_list, head) {
4428
4429 if (connector->connector_type !=
4430 DRM_MODE_CONNECTOR_DisplayPort)
4431 continue;
4432
4433 if (connector->status == connector_status_connected &&
4434 connector->encoder != NULL) {
4435 intel_dp = enc_to_intel_dp(connector->encoder);
4436 seq_printf(m, "%lx", intel_dp->compliance_test_data);
4437 } else
4438 seq_puts(m, "0");
4439 }
4440
4441 return 0;
4442 }
4443 static int i915_displayport_test_data_open(struct inode *inode,
4444 struct file *file)
4445 {
4446 struct drm_device *dev = inode->i_private;
4447
4448 return single_open(file, i915_displayport_test_data_show, dev);
4449 }
4450
4451 static const struct file_operations i915_displayport_test_data_fops = {
4452 .owner = THIS_MODULE,
4453 .open = i915_displayport_test_data_open,
4454 .read = seq_read,
4455 .llseek = seq_lseek,
4456 .release = single_release
4457 };
4458
4459 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4460 {
4461 struct drm_device *dev = m->private;
4462 struct drm_connector *connector;
4463 struct list_head *connector_list = &dev->mode_config.connector_list;
4464 struct intel_dp *intel_dp;
4465
4466 list_for_each_entry(connector, connector_list, head) {
4467
4468 if (connector->connector_type !=
4469 DRM_MODE_CONNECTOR_DisplayPort)
4470 continue;
4471
4472 if (connector->status == connector_status_connected &&
4473 connector->encoder != NULL) {
4474 intel_dp = enc_to_intel_dp(connector->encoder);
4475 seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4476 } else
4477 seq_puts(m, "0");
4478 }
4479
4480 return 0;
4481 }
4482
4483 static int i915_displayport_test_type_open(struct inode *inode,
4484 struct file *file)
4485 {
4486 struct drm_device *dev = inode->i_private;
4487
4488 return single_open(file, i915_displayport_test_type_show, dev);
4489 }
4490
4491 static const struct file_operations i915_displayport_test_type_fops = {
4492 .owner = THIS_MODULE,
4493 .open = i915_displayport_test_type_open,
4494 .read = seq_read,
4495 .llseek = seq_lseek,
4496 .release = single_release
4497 };
4498
4499 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4500 {
4501 struct drm_device *dev = m->private;
4502 int level;
4503 int num_levels;
4504
4505 if (IS_CHERRYVIEW(dev))
4506 num_levels = 3;
4507 else if (IS_VALLEYVIEW(dev))
4508 num_levels = 1;
4509 else
4510 num_levels = ilk_wm_max_level(dev) + 1;
4511
4512 drm_modeset_lock_all(dev);
4513
4514 for (level = 0; level < num_levels; level++) {
4515 unsigned int latency = wm[level];
4516
4517 /*
4518 * - WM1+ latency values in 0.5us units
4519 * - latencies are in us on gen9/vlv/chv
4520 */
4521 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4522 IS_CHERRYVIEW(dev))
4523 latency *= 10;
4524 else if (level > 0)
4525 latency *= 5;
4526
4527 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4528 level, wm[level], latency / 10, latency % 10);
4529 }
4530
4531 drm_modeset_unlock_all(dev);
4532 }
4533
4534 static int pri_wm_latency_show(struct seq_file *m, void *data)
4535 {
4536 struct drm_device *dev = m->private;
4537 struct drm_i915_private *dev_priv = dev->dev_private;
4538 const uint16_t *latencies;
4539
4540 if (INTEL_INFO(dev)->gen >= 9)
4541 latencies = dev_priv->wm.skl_latency;
4542 else
4543 latencies = to_i915(dev)->wm.pri_latency;
4544
4545 wm_latency_show(m, latencies);
4546
4547 return 0;
4548 }
4549
4550 static int spr_wm_latency_show(struct seq_file *m, void *data)
4551 {
4552 struct drm_device *dev = m->private;
4553 struct drm_i915_private *dev_priv = dev->dev_private;
4554 const uint16_t *latencies;
4555
4556 if (INTEL_INFO(dev)->gen >= 9)
4557 latencies = dev_priv->wm.skl_latency;
4558 else
4559 latencies = to_i915(dev)->wm.spr_latency;
4560
4561 wm_latency_show(m, latencies);
4562
4563 return 0;
4564 }
4565
4566 static int cur_wm_latency_show(struct seq_file *m, void *data)
4567 {
4568 struct drm_device *dev = m->private;
4569 struct drm_i915_private *dev_priv = dev->dev_private;
4570 const uint16_t *latencies;
4571
4572 if (INTEL_INFO(dev)->gen >= 9)
4573 latencies = dev_priv->wm.skl_latency;
4574 else
4575 latencies = to_i915(dev)->wm.cur_latency;
4576
4577 wm_latency_show(m, latencies);
4578
4579 return 0;
4580 }
4581
4582 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4583 {
4584 struct drm_device *dev = inode->i_private;
4585
4586 if (INTEL_INFO(dev)->gen < 5)
4587 return -ENODEV;
4588
4589 return single_open(file, pri_wm_latency_show, dev);
4590 }
4591
4592 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4593 {
4594 struct drm_device *dev = inode->i_private;
4595
4596 if (HAS_GMCH_DISPLAY(dev))
4597 return -ENODEV;
4598
4599 return single_open(file, spr_wm_latency_show, dev);
4600 }
4601
4602 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4603 {
4604 struct drm_device *dev = inode->i_private;
4605
4606 if (HAS_GMCH_DISPLAY(dev))
4607 return -ENODEV;
4608
4609 return single_open(file, cur_wm_latency_show, dev);
4610 }
4611
4612 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4613 size_t len, loff_t *offp, uint16_t wm[8])
4614 {
4615 struct seq_file *m = file->private_data;
4616 struct drm_device *dev = m->private;
4617 uint16_t new[8] = { 0 };
4618 int num_levels;
4619 int level;
4620 int ret;
4621 char tmp[32];
4622
4623 if (IS_CHERRYVIEW(dev))
4624 num_levels = 3;
4625 else if (IS_VALLEYVIEW(dev))
4626 num_levels = 1;
4627 else
4628 num_levels = ilk_wm_max_level(dev) + 1;
4629
4630 if (len >= sizeof(tmp))
4631 return -EINVAL;
4632
4633 if (copy_from_user(tmp, ubuf, len))
4634 return -EFAULT;
4635
4636 tmp[len] = '\0';
4637
4638 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4639 &new[0], &new[1], &new[2], &new[3],
4640 &new[4], &new[5], &new[6], &new[7]);
4641 if (ret != num_levels)
4642 return -EINVAL;
4643
4644 drm_modeset_lock_all(dev);
4645
4646 for (level = 0; level < num_levels; level++)
4647 wm[level] = new[level];
4648
4649 drm_modeset_unlock_all(dev);
4650
4651 return len;
4652 }
4653
4654
4655 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4656 size_t len, loff_t *offp)
4657 {
4658 struct seq_file *m = file->private_data;
4659 struct drm_device *dev = m->private;
4660 struct drm_i915_private *dev_priv = dev->dev_private;
4661 uint16_t *latencies;
4662
4663 if (INTEL_INFO(dev)->gen >= 9)
4664 latencies = dev_priv->wm.skl_latency;
4665 else
4666 latencies = to_i915(dev)->wm.pri_latency;
4667
4668 return wm_latency_write(file, ubuf, len, offp, latencies);
4669 }
4670
4671 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4672 size_t len, loff_t *offp)
4673 {
4674 struct seq_file *m = file->private_data;
4675 struct drm_device *dev = m->private;
4676 struct drm_i915_private *dev_priv = dev->dev_private;
4677 uint16_t *latencies;
4678
4679 if (INTEL_INFO(dev)->gen >= 9)
4680 latencies = dev_priv->wm.skl_latency;
4681 else
4682 latencies = to_i915(dev)->wm.spr_latency;
4683
4684 return wm_latency_write(file, ubuf, len, offp, latencies);
4685 }
4686
4687 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4688 size_t len, loff_t *offp)
4689 {
4690 struct seq_file *m = file->private_data;
4691 struct drm_device *dev = m->private;
4692 struct drm_i915_private *dev_priv = dev->dev_private;
4693 uint16_t *latencies;
4694
4695 if (INTEL_INFO(dev)->gen >= 9)
4696 latencies = dev_priv->wm.skl_latency;
4697 else
4698 latencies = to_i915(dev)->wm.cur_latency;
4699
4700 return wm_latency_write(file, ubuf, len, offp, latencies);
4701 }
4702
4703 static const struct file_operations i915_pri_wm_latency_fops = {
4704 .owner = THIS_MODULE,
4705 .open = pri_wm_latency_open,
4706 .read = seq_read,
4707 .llseek = seq_lseek,
4708 .release = single_release,
4709 .write = pri_wm_latency_write
4710 };
4711
4712 static const struct file_operations i915_spr_wm_latency_fops = {
4713 .owner = THIS_MODULE,
4714 .open = spr_wm_latency_open,
4715 .read = seq_read,
4716 .llseek = seq_lseek,
4717 .release = single_release,
4718 .write = spr_wm_latency_write
4719 };
4720
4721 static const struct file_operations i915_cur_wm_latency_fops = {
4722 .owner = THIS_MODULE,
4723 .open = cur_wm_latency_open,
4724 .read = seq_read,
4725 .llseek = seq_lseek,
4726 .release = single_release,
4727 .write = cur_wm_latency_write
4728 };
4729
4730 static int
4731 i915_wedged_get(void *data, u64 *val)
4732 {
4733 struct drm_device *dev = data;
4734 struct drm_i915_private *dev_priv = dev->dev_private;
4735
4736 *val = i915_terminally_wedged(&dev_priv->gpu_error);
4737
4738 return 0;
4739 }
4740
4741 static int
4742 i915_wedged_set(void *data, u64 val)
4743 {
4744 struct drm_device *dev = data;
4745 struct drm_i915_private *dev_priv = dev->dev_private;
4746
4747 /*
4748 * There is no safeguard against this debugfs entry colliding
4749 * with the hangcheck calling same i915_handle_error() in
4750 * parallel, causing an explosion. For now we assume that the
4751 * test harness is responsible enough not to inject gpu hangs
4752 * while it is writing to 'i915_wedged'
4753 */
4754
4755 if (i915_reset_in_progress(&dev_priv->gpu_error))
4756 return -EAGAIN;
4757
4758 intel_runtime_pm_get(dev_priv);
4759
4760 i915_handle_error(dev_priv, val,
4761 "Manually setting wedged to %llu", val);
4762
4763 intel_runtime_pm_put(dev_priv);
4764
4765 return 0;
4766 }
4767
4768 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4769 i915_wedged_get, i915_wedged_set,
4770 "%llu\n");
4771
4772 static int
4773 i915_ring_stop_get(void *data, u64 *val)
4774 {
4775 struct drm_device *dev = data;
4776 struct drm_i915_private *dev_priv = dev->dev_private;
4777
4778 *val = dev_priv->gpu_error.stop_rings;
4779
4780 return 0;
4781 }
4782
4783 static int
4784 i915_ring_stop_set(void *data, u64 val)
4785 {
4786 struct drm_device *dev = data;
4787 struct drm_i915_private *dev_priv = dev->dev_private;
4788 int ret;
4789
4790 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4791
4792 ret = mutex_lock_interruptible(&dev->struct_mutex);
4793 if (ret)
4794 return ret;
4795
4796 dev_priv->gpu_error.stop_rings = val;
4797 mutex_unlock(&dev->struct_mutex);
4798
4799 return 0;
4800 }
4801
4802 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4803 i915_ring_stop_get, i915_ring_stop_set,
4804 "0x%08llx\n");
4805
4806 static int
4807 i915_ring_missed_irq_get(void *data, u64 *val)
4808 {
4809 struct drm_device *dev = data;
4810 struct drm_i915_private *dev_priv = dev->dev_private;
4811
4812 *val = dev_priv->gpu_error.missed_irq_rings;
4813 return 0;
4814 }
4815
4816 static int
4817 i915_ring_missed_irq_set(void *data, u64 val)
4818 {
4819 struct drm_device *dev = data;
4820 struct drm_i915_private *dev_priv = dev->dev_private;
4821 int ret;
4822
4823 /* Lock against concurrent debugfs callers */
4824 ret = mutex_lock_interruptible(&dev->struct_mutex);
4825 if (ret)
4826 return ret;
4827 dev_priv->gpu_error.missed_irq_rings = val;
4828 mutex_unlock(&dev->struct_mutex);
4829
4830 return 0;
4831 }
4832
4833 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4834 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4835 "0x%08llx\n");
4836
4837 static int
4838 i915_ring_test_irq_get(void *data, u64 *val)
4839 {
4840 struct drm_device *dev = data;
4841 struct drm_i915_private *dev_priv = dev->dev_private;
4842
4843 *val = dev_priv->gpu_error.test_irq_rings;
4844
4845 return 0;
4846 }
4847
4848 static int
4849 i915_ring_test_irq_set(void *data, u64 val)
4850 {
4851 struct drm_device *dev = data;
4852 struct drm_i915_private *dev_priv = dev->dev_private;
4853 int ret;
4854
4855 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4856
4857 /* Lock against concurrent debugfs callers */
4858 ret = mutex_lock_interruptible(&dev->struct_mutex);
4859 if (ret)
4860 return ret;
4861
4862 dev_priv->gpu_error.test_irq_rings = val;
4863 mutex_unlock(&dev->struct_mutex);
4864
4865 return 0;
4866 }
4867
4868 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4869 i915_ring_test_irq_get, i915_ring_test_irq_set,
4870 "0x%08llx\n");
4871
4872 #define DROP_UNBOUND 0x1
4873 #define DROP_BOUND 0x2
4874 #define DROP_RETIRE 0x4
4875 #define DROP_ACTIVE 0x8
4876 #define DROP_ALL (DROP_UNBOUND | \
4877 DROP_BOUND | \
4878 DROP_RETIRE | \
4879 DROP_ACTIVE)
4880 static int
4881 i915_drop_caches_get(void *data, u64 *val)
4882 {
4883 *val = DROP_ALL;
4884
4885 return 0;
4886 }
4887
4888 static int
4889 i915_drop_caches_set(void *data, u64 val)
4890 {
4891 struct drm_device *dev = data;
4892 struct drm_i915_private *dev_priv = dev->dev_private;
4893 int ret;
4894
4895 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4896
4897 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4898 * on ioctls on -EAGAIN. */
4899 ret = mutex_lock_interruptible(&dev->struct_mutex);
4900 if (ret)
4901 return ret;
4902
4903 if (val & DROP_ACTIVE) {
4904 ret = i915_gpu_idle(dev);
4905 if (ret)
4906 goto unlock;
4907 }
4908
4909 if (val & (DROP_RETIRE | DROP_ACTIVE))
4910 i915_gem_retire_requests(dev_priv);
4911
4912 if (val & DROP_BOUND)
4913 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4914
4915 if (val & DROP_UNBOUND)
4916 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4917
4918 unlock:
4919 mutex_unlock(&dev->struct_mutex);
4920
4921 return ret;
4922 }
4923
4924 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4925 i915_drop_caches_get, i915_drop_caches_set,
4926 "0x%08llx\n");
4927
4928 static int
4929 i915_max_freq_get(void *data, u64 *val)
4930 {
4931 struct drm_device *dev = data;
4932 struct drm_i915_private *dev_priv = dev->dev_private;
4933 int ret;
4934
4935 if (INTEL_INFO(dev)->gen < 6)
4936 return -ENODEV;
4937
4938 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4939
4940 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4941 if (ret)
4942 return ret;
4943
4944 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4945 mutex_unlock(&dev_priv->rps.hw_lock);
4946
4947 return 0;
4948 }
4949
4950 static int
4951 i915_max_freq_set(void *data, u64 val)
4952 {
4953 struct drm_device *dev = data;
4954 struct drm_i915_private *dev_priv = dev->dev_private;
4955 u32 hw_max, hw_min;
4956 int ret;
4957
4958 if (INTEL_INFO(dev)->gen < 6)
4959 return -ENODEV;
4960
4961 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4962
4963 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4964
4965 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4966 if (ret)
4967 return ret;
4968
4969 /*
4970 * Turbo will still be enabled, but won't go above the set value.
4971 */
4972 val = intel_freq_opcode(dev_priv, val);
4973
4974 hw_max = dev_priv->rps.max_freq;
4975 hw_min = dev_priv->rps.min_freq;
4976
4977 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4978 mutex_unlock(&dev_priv->rps.hw_lock);
4979 return -EINVAL;
4980 }
4981
4982 dev_priv->rps.max_freq_softlimit = val;
4983
4984 intel_set_rps(dev, val);
4985
4986 mutex_unlock(&dev_priv->rps.hw_lock);
4987
4988 return 0;
4989 }
4990
4991 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4992 i915_max_freq_get, i915_max_freq_set,
4993 "%llu\n");
4994
4995 static int
4996 i915_min_freq_get(void *data, u64 *val)
4997 {
4998 struct drm_device *dev = data;
4999 struct drm_i915_private *dev_priv = dev->dev_private;
5000 int ret;
5001
5002 if (INTEL_INFO(dev)->gen < 6)
5003 return -ENODEV;
5004
5005 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5006
5007 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5008 if (ret)
5009 return ret;
5010
5011 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5012 mutex_unlock(&dev_priv->rps.hw_lock);
5013
5014 return 0;
5015 }
5016
5017 static int
5018 i915_min_freq_set(void *data, u64 val)
5019 {
5020 struct drm_device *dev = data;
5021 struct drm_i915_private *dev_priv = dev->dev_private;
5022 u32 hw_max, hw_min;
5023 int ret;
5024
5025 if (INTEL_INFO(dev)->gen < 6)
5026 return -ENODEV;
5027
5028 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5029
5030 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5031
5032 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5033 if (ret)
5034 return ret;
5035
5036 /*
5037 * Turbo will still be enabled, but won't go below the set value.
5038 */
5039 val = intel_freq_opcode(dev_priv, val);
5040
5041 hw_max = dev_priv->rps.max_freq;
5042 hw_min = dev_priv->rps.min_freq;
5043
5044 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5045 mutex_unlock(&dev_priv->rps.hw_lock);
5046 return -EINVAL;
5047 }
5048
5049 dev_priv->rps.min_freq_softlimit = val;
5050
5051 intel_set_rps(dev, val);
5052
5053 mutex_unlock(&dev_priv->rps.hw_lock);
5054
5055 return 0;
5056 }
5057
5058 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5059 i915_min_freq_get, i915_min_freq_set,
5060 "%llu\n");
5061
5062 static int
5063 i915_cache_sharing_get(void *data, u64 *val)
5064 {
5065 struct drm_device *dev = data;
5066 struct drm_i915_private *dev_priv = dev->dev_private;
5067 u32 snpcr;
5068 int ret;
5069
5070 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5071 return -ENODEV;
5072
5073 ret = mutex_lock_interruptible(&dev->struct_mutex);
5074 if (ret)
5075 return ret;
5076 intel_runtime_pm_get(dev_priv);
5077
5078 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5079
5080 intel_runtime_pm_put(dev_priv);
5081 mutex_unlock(&dev_priv->dev->struct_mutex);
5082
5083 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5084
5085 return 0;
5086 }
5087
5088 static int
5089 i915_cache_sharing_set(void *data, u64 val)
5090 {
5091 struct drm_device *dev = data;
5092 struct drm_i915_private *dev_priv = dev->dev_private;
5093 u32 snpcr;
5094
5095 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5096 return -ENODEV;
5097
5098 if (val > 3)
5099 return -EINVAL;
5100
5101 intel_runtime_pm_get(dev_priv);
5102 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5103
5104 /* Update the cache sharing policy here as well */
5105 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5106 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5107 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5108 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5109
5110 intel_runtime_pm_put(dev_priv);
5111 return 0;
5112 }
5113
5114 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5115 i915_cache_sharing_get, i915_cache_sharing_set,
5116 "%llu\n");
5117
5118 struct sseu_dev_status {
5119 unsigned int slice_total;
5120 unsigned int subslice_total;
5121 unsigned int subslice_per_slice;
5122 unsigned int eu_total;
5123 unsigned int eu_per_subslice;
5124 };
5125
5126 static void cherryview_sseu_device_status(struct drm_device *dev,
5127 struct sseu_dev_status *stat)
5128 {
5129 struct drm_i915_private *dev_priv = dev->dev_private;
5130 int ss_max = 2;
5131 int ss;
5132 u32 sig1[ss_max], sig2[ss_max];
5133
5134 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5135 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5136 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5137 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5138
5139 for (ss = 0; ss < ss_max; ss++) {
5140 unsigned int eu_cnt;
5141
5142 if (sig1[ss] & CHV_SS_PG_ENABLE)
5143 /* skip disabled subslice */
5144 continue;
5145
5146 stat->slice_total = 1;
5147 stat->subslice_per_slice++;
5148 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5149 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5150 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5151 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5152 stat->eu_total += eu_cnt;
5153 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5154 }
5155 stat->subslice_total = stat->subslice_per_slice;
5156 }
5157
5158 static void gen9_sseu_device_status(struct drm_device *dev,
5159 struct sseu_dev_status *stat)
5160 {
5161 struct drm_i915_private *dev_priv = dev->dev_private;
5162 int s_max = 3, ss_max = 4;
5163 int s, ss;
5164 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5165
5166 /* BXT has a single slice and at most 3 subslices. */
5167 if (IS_BROXTON(dev)) {
5168 s_max = 1;
5169 ss_max = 3;
5170 }
5171
5172 for (s = 0; s < s_max; s++) {
5173 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5174 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5175 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5176 }
5177
5178 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5179 GEN9_PGCTL_SSA_EU19_ACK |
5180 GEN9_PGCTL_SSA_EU210_ACK |
5181 GEN9_PGCTL_SSA_EU311_ACK;
5182 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5183 GEN9_PGCTL_SSB_EU19_ACK |
5184 GEN9_PGCTL_SSB_EU210_ACK |
5185 GEN9_PGCTL_SSB_EU311_ACK;
5186
5187 for (s = 0; s < s_max; s++) {
5188 unsigned int ss_cnt = 0;
5189
5190 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5191 /* skip disabled slice */
5192 continue;
5193
5194 stat->slice_total++;
5195
5196 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5197 ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5198
5199 for (ss = 0; ss < ss_max; ss++) {
5200 unsigned int eu_cnt;
5201
5202 if (IS_BROXTON(dev) &&
5203 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5204 /* skip disabled subslice */
5205 continue;
5206
5207 if (IS_BROXTON(dev))
5208 ss_cnt++;
5209
5210 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5211 eu_mask[ss%2]);
5212 stat->eu_total += eu_cnt;
5213 stat->eu_per_subslice = max(stat->eu_per_subslice,
5214 eu_cnt);
5215 }
5216
5217 stat->subslice_total += ss_cnt;
5218 stat->subslice_per_slice = max(stat->subslice_per_slice,
5219 ss_cnt);
5220 }
5221 }
5222
5223 static void broadwell_sseu_device_status(struct drm_device *dev,
5224 struct sseu_dev_status *stat)
5225 {
5226 struct drm_i915_private *dev_priv = dev->dev_private;
5227 int s;
5228 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5229
5230 stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5231
5232 if (stat->slice_total) {
5233 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5234 stat->subslice_total = stat->slice_total *
5235 stat->subslice_per_slice;
5236 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5237 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5238
5239 /* subtract fused off EU(s) from enabled slice(s) */
5240 for (s = 0; s < stat->slice_total; s++) {
5241 u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5242
5243 stat->eu_total -= hweight8(subslice_7eu);
5244 }
5245 }
5246 }
5247
5248 static int i915_sseu_status(struct seq_file *m, void *unused)
5249 {
5250 struct drm_info_node *node = (struct drm_info_node *) m->private;
5251 struct drm_device *dev = node->minor->dev;
5252 struct sseu_dev_status stat;
5253
5254 if (INTEL_INFO(dev)->gen < 8)
5255 return -ENODEV;
5256
5257 seq_puts(m, "SSEU Device Info\n");
5258 seq_printf(m, " Available Slice Total: %u\n",
5259 INTEL_INFO(dev)->slice_total);
5260 seq_printf(m, " Available Subslice Total: %u\n",
5261 INTEL_INFO(dev)->subslice_total);
5262 seq_printf(m, " Available Subslice Per Slice: %u\n",
5263 INTEL_INFO(dev)->subslice_per_slice);
5264 seq_printf(m, " Available EU Total: %u\n",
5265 INTEL_INFO(dev)->eu_total);
5266 seq_printf(m, " Available EU Per Subslice: %u\n",
5267 INTEL_INFO(dev)->eu_per_subslice);
5268 seq_printf(m, " Has Slice Power Gating: %s\n",
5269 yesno(INTEL_INFO(dev)->has_slice_pg));
5270 seq_printf(m, " Has Subslice Power Gating: %s\n",
5271 yesno(INTEL_INFO(dev)->has_subslice_pg));
5272 seq_printf(m, " Has EU Power Gating: %s\n",
5273 yesno(INTEL_INFO(dev)->has_eu_pg));
5274
5275 seq_puts(m, "SSEU Device Status\n");
5276 memset(&stat, 0, sizeof(stat));
5277 if (IS_CHERRYVIEW(dev)) {
5278 cherryview_sseu_device_status(dev, &stat);
5279 } else if (IS_BROADWELL(dev)) {
5280 broadwell_sseu_device_status(dev, &stat);
5281 } else if (INTEL_INFO(dev)->gen >= 9) {
5282 gen9_sseu_device_status(dev, &stat);
5283 }
5284 seq_printf(m, " Enabled Slice Total: %u\n",
5285 stat.slice_total);
5286 seq_printf(m, " Enabled Subslice Total: %u\n",
5287 stat.subslice_total);
5288 seq_printf(m, " Enabled Subslice Per Slice: %u\n",
5289 stat.subslice_per_slice);
5290 seq_printf(m, " Enabled EU Total: %u\n",
5291 stat.eu_total);
5292 seq_printf(m, " Enabled EU Per Subslice: %u\n",
5293 stat.eu_per_subslice);
5294
5295 return 0;
5296 }
5297
5298 static int i915_forcewake_open(struct inode *inode, struct file *file)
5299 {
5300 struct drm_device *dev = inode->i_private;
5301 struct drm_i915_private *dev_priv = dev->dev_private;
5302
5303 if (INTEL_INFO(dev)->gen < 6)
5304 return 0;
5305
5306 intel_runtime_pm_get(dev_priv);
5307 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5308
5309 return 0;
5310 }
5311
5312 static int i915_forcewake_release(struct inode *inode, struct file *file)
5313 {
5314 struct drm_device *dev = inode->i_private;
5315 struct drm_i915_private *dev_priv = dev->dev_private;
5316
5317 if (INTEL_INFO(dev)->gen < 6)
5318 return 0;
5319
5320 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5321 intel_runtime_pm_put(dev_priv);
5322
5323 return 0;
5324 }
5325
5326 static const struct file_operations i915_forcewake_fops = {
5327 .owner = THIS_MODULE,
5328 .open = i915_forcewake_open,
5329 .release = i915_forcewake_release,
5330 };
5331
5332 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5333 {
5334 struct drm_device *dev = minor->dev;
5335 struct dentry *ent;
5336
5337 ent = debugfs_create_file("i915_forcewake_user",
5338 S_IRUSR,
5339 root, dev,
5340 &i915_forcewake_fops);
5341 if (!ent)
5342 return -ENOMEM;
5343
5344 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5345 }
5346
5347 static int i915_debugfs_create(struct dentry *root,
5348 struct drm_minor *minor,
5349 const char *name,
5350 const struct file_operations *fops)
5351 {
5352 struct drm_device *dev = minor->dev;
5353 struct dentry *ent;
5354
5355 ent = debugfs_create_file(name,
5356 S_IRUGO | S_IWUSR,
5357 root, dev,
5358 fops);
5359 if (!ent)
5360 return -ENOMEM;
5361
5362 return drm_add_fake_info_node(minor, ent, fops);
5363 }
5364
5365 static const struct drm_info_list i915_debugfs_list[] = {
5366 {"i915_capabilities", i915_capabilities, 0},
5367 {"i915_gem_objects", i915_gem_object_info, 0},
5368 {"i915_gem_gtt", i915_gem_gtt_info, 0},
5369 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5370 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5371 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5372 {"i915_gem_stolen", i915_gem_stolen_list_info },
5373 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5374 {"i915_gem_request", i915_gem_request_info, 0},
5375 {"i915_gem_seqno", i915_gem_seqno_info, 0},
5376 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5377 {"i915_gem_interrupt", i915_interrupt_info, 0},
5378 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5379 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5380 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5381 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5382 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5383 {"i915_guc_info", i915_guc_info, 0},
5384 {"i915_guc_load_status", i915_guc_load_status_info, 0},
5385 {"i915_guc_log_dump", i915_guc_log_dump, 0},
5386 {"i915_frequency_info", i915_frequency_info, 0},
5387 {"i915_hangcheck_info", i915_hangcheck_info, 0},
5388 {"i915_drpc_info", i915_drpc_info, 0},
5389 {"i915_emon_status", i915_emon_status, 0},
5390 {"i915_ring_freq_table", i915_ring_freq_table, 0},
5391 {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5392 {"i915_fbc_status", i915_fbc_status, 0},
5393 {"i915_ips_status", i915_ips_status, 0},
5394 {"i915_sr_status", i915_sr_status, 0},
5395 {"i915_opregion", i915_opregion, 0},
5396 {"i915_vbt", i915_vbt, 0},
5397 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5398 {"i915_context_status", i915_context_status, 0},
5399 {"i915_dump_lrc", i915_dump_lrc, 0},
5400 {"i915_execlists", i915_execlists, 0},
5401 {"i915_forcewake_domains", i915_forcewake_domains, 0},
5402 {"i915_swizzle_info", i915_swizzle_info, 0},
5403 {"i915_ppgtt_info", i915_ppgtt_info, 0},
5404 {"i915_llc", i915_llc, 0},
5405 {"i915_edp_psr_status", i915_edp_psr_status, 0},
5406 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5407 {"i915_energy_uJ", i915_energy_uJ, 0},
5408 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5409 {"i915_power_domain_info", i915_power_domain_info, 0},
5410 {"i915_dmc_info", i915_dmc_info, 0},
5411 {"i915_display_info", i915_display_info, 0},
5412 {"i915_semaphore_status", i915_semaphore_status, 0},
5413 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5414 {"i915_dp_mst_info", i915_dp_mst_info, 0},
5415 {"i915_wa_registers", i915_wa_registers, 0},
5416 {"i915_ddb_info", i915_ddb_info, 0},
5417 {"i915_sseu_status", i915_sseu_status, 0},
5418 {"i915_drrs_status", i915_drrs_status, 0},
5419 {"i915_rps_boost_info", i915_rps_boost_info, 0},
5420 };
5421 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5422
5423 static const struct i915_debugfs_files {
5424 const char *name;
5425 const struct file_operations *fops;
5426 } i915_debugfs_files[] = {
5427 {"i915_wedged", &i915_wedged_fops},
5428 {"i915_max_freq", &i915_max_freq_fops},
5429 {"i915_min_freq", &i915_min_freq_fops},
5430 {"i915_cache_sharing", &i915_cache_sharing_fops},
5431 {"i915_ring_stop", &i915_ring_stop_fops},
5432 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5433 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5434 {"i915_gem_drop_caches", &i915_drop_caches_fops},
5435 {"i915_error_state", &i915_error_state_fops},
5436 {"i915_next_seqno", &i915_next_seqno_fops},
5437 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5438 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5439 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5440 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5441 {"i915_fbc_false_color", &i915_fbc_fc_fops},
5442 {"i915_dp_test_data", &i915_displayport_test_data_fops},
5443 {"i915_dp_test_type", &i915_displayport_test_type_fops},
5444 {"i915_dp_test_active", &i915_displayport_test_active_fops}
5445 };
5446
5447 void intel_display_crc_init(struct drm_device *dev)
5448 {
5449 struct drm_i915_private *dev_priv = dev->dev_private;
5450 enum pipe pipe;
5451
5452 for_each_pipe(dev_priv, pipe) {
5453 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5454
5455 pipe_crc->opened = false;
5456 spin_lock_init(&pipe_crc->lock);
5457 init_waitqueue_head(&pipe_crc->wq);
5458 }
5459 }
5460
5461 int i915_debugfs_init(struct drm_minor *minor)
5462 {
5463 int ret, i;
5464
5465 ret = i915_forcewake_create(minor->debugfs_root, minor);
5466 if (ret)
5467 return ret;
5468
5469 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5470 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5471 if (ret)
5472 return ret;
5473 }
5474
5475 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5476 ret = i915_debugfs_create(minor->debugfs_root, minor,
5477 i915_debugfs_files[i].name,
5478 i915_debugfs_files[i].fops);
5479 if (ret)
5480 return ret;
5481 }
5482
5483 return drm_debugfs_create_files(i915_debugfs_list,
5484 I915_DEBUGFS_ENTRIES,
5485 minor->debugfs_root, minor);
5486 }
5487
5488 void i915_debugfs_cleanup(struct drm_minor *minor)
5489 {
5490 int i;
5491
5492 drm_debugfs_remove_files(i915_debugfs_list,
5493 I915_DEBUGFS_ENTRIES, minor);
5494
5495 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5496 1, minor);
5497
5498 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5499 struct drm_info_list *info_list =
5500 (struct drm_info_list *)&i915_pipe_crc_data[i];
5501
5502 drm_debugfs_remove_files(info_list, 1, minor);
5503 }
5504
5505 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5506 struct drm_info_list *info_list =
5507 (struct drm_info_list *) i915_debugfs_files[i].fops;
5508
5509 drm_debugfs_remove_files(info_list, 1, minor);
5510 }
5511 }
5512
5513 struct dpcd_block {
5514 /* DPCD dump start address. */
5515 unsigned int offset;
5516 /* DPCD dump end address, inclusive. If unset, .size will be used. */
5517 unsigned int end;
5518 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5519 size_t size;
5520 /* Only valid for eDP. */
5521 bool edp;
5522 };
5523
5524 static const struct dpcd_block i915_dpcd_debug[] = {
5525 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5526 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5527 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5528 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5529 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5530 { .offset = DP_SET_POWER },
5531 { .offset = DP_EDP_DPCD_REV },
5532 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5533 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5534 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5535 };
5536
5537 static int i915_dpcd_show(struct seq_file *m, void *data)
5538 {
5539 struct drm_connector *connector = m->private;
5540 struct intel_dp *intel_dp =
5541 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5542 uint8_t buf[16];
5543 ssize_t err;
5544 int i;
5545
5546 if (connector->status != connector_status_connected)
5547 return -ENODEV;
5548
5549 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5550 const struct dpcd_block *b = &i915_dpcd_debug[i];
5551 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5552
5553 if (b->edp &&
5554 connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5555 continue;
5556
5557 /* low tech for now */
5558 if (WARN_ON(size > sizeof(buf)))
5559 continue;
5560
5561 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5562 if (err <= 0) {
5563 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5564 size, b->offset, err);
5565 continue;
5566 }
5567
5568 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5569 }
5570
5571 return 0;
5572 }
5573
5574 static int i915_dpcd_open(struct inode *inode, struct file *file)
5575 {
5576 return single_open(file, i915_dpcd_show, inode->i_private);
5577 }
5578
5579 static const struct file_operations i915_dpcd_fops = {
5580 .owner = THIS_MODULE,
5581 .open = i915_dpcd_open,
5582 .read = seq_read,
5583 .llseek = seq_lseek,
5584 .release = single_release,
5585 };
5586
5587 /**
5588 * i915_debugfs_connector_add - add i915 specific connector debugfs files
5589 * @connector: pointer to a registered drm_connector
5590 *
5591 * Cleanup will be done by drm_connector_unregister() through a call to
5592 * drm_debugfs_connector_remove().
5593 *
5594 * Returns 0 on success, negative error codes on error.
5595 */
5596 int i915_debugfs_connector_add(struct drm_connector *connector)
5597 {
5598 struct dentry *root = connector->debugfs_entry;
5599
5600 /* The connector must have been registered beforehands. */
5601 if (!root)
5602 return -ENODEV;
5603
5604 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5605 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5606 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5607 &i915_dpcd_fops);
5608
5609 return 0;
5610 }
This page took 0.207885 seconds and 6 git commands to generate.