drm/i915: Rename intel_context[engine].ringbuf
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50 * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 struct dentry *ent,
54 const void *key)
55 {
56 struct drm_info_node *node;
57
58 node = kmalloc(sizeof(*node), GFP_KERNEL);
59 if (node == NULL) {
60 debugfs_remove(ent);
61 return -ENOMEM;
62 }
63
64 node->minor = minor;
65 node->dent = ent;
66 node->info_ent = (void *) key;
67
68 mutex_lock(&minor->debugfs_lock);
69 list_add(&node->list, &minor->debugfs_list);
70 mutex_unlock(&minor->debugfs_lock);
71
72 return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 struct drm_info_node *node = m->private;
78 struct drm_device *dev = node->minor->dev;
79 const struct intel_device_info *info = INTEL_INFO(dev);
80
81 seq_printf(m, "gen: %d\n", info->gen);
82 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89 return 0;
90 }
91
92 static char get_active_flag(struct drm_i915_gem_object *obj)
93 {
94 return obj->active ? '*' : ' ';
95 }
96
97 static char get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 return obj->pin_display ? 'p' : ' ';
100 }
101
102 static char get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104 switch (obj->tiling_mode) {
105 default:
106 case I915_TILING_NONE: return ' ';
107 case I915_TILING_X: return 'X';
108 case I915_TILING_Y: return 'Y';
109 }
110 }
111
112 static char get_global_flag(struct drm_i915_gem_object *obj)
113 {
114 return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
115 }
116
117 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
118 {
119 return obj->mapping ? 'M' : ' ';
120 }
121
122 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
123 {
124 u64 size = 0;
125 struct i915_vma *vma;
126
127 list_for_each_entry(vma, &obj->vma_list, obj_link) {
128 if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
129 size += vma->node.size;
130 }
131
132 return size;
133 }
134
135 static void
136 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
137 {
138 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
139 struct intel_engine_cs *engine;
140 struct i915_vma *vma;
141 int pin_count = 0;
142 enum intel_engine_id id;
143
144 lockdep_assert_held(&obj->base.dev->struct_mutex);
145
146 seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
147 &obj->base,
148 get_active_flag(obj),
149 get_pin_flag(obj),
150 get_tiling_flag(obj),
151 get_global_flag(obj),
152 get_pin_mapped_flag(obj),
153 obj->base.size / 1024,
154 obj->base.read_domains,
155 obj->base.write_domain);
156 for_each_engine_id(engine, dev_priv, id)
157 seq_printf(m, "%x ",
158 i915_gem_request_get_seqno(obj->last_read_req[id]));
159 seq_printf(m, "] %x %x%s%s%s",
160 i915_gem_request_get_seqno(obj->last_write_req),
161 i915_gem_request_get_seqno(obj->last_fenced_req),
162 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
163 obj->dirty ? " dirty" : "",
164 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
165 if (obj->base.name)
166 seq_printf(m, " (name: %d)", obj->base.name);
167 list_for_each_entry(vma, &obj->vma_list, obj_link) {
168 if (vma->pin_count > 0)
169 pin_count++;
170 }
171 seq_printf(m, " (pinned x %d)", pin_count);
172 if (obj->pin_display)
173 seq_printf(m, " (display)");
174 if (obj->fence_reg != I915_FENCE_REG_NONE)
175 seq_printf(m, " (fence: %d)", obj->fence_reg);
176 list_for_each_entry(vma, &obj->vma_list, obj_link) {
177 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
178 vma->is_ggtt ? "g" : "pp",
179 vma->node.start, vma->node.size);
180 if (vma->is_ggtt)
181 seq_printf(m, ", type: %u", vma->ggtt_view.type);
182 seq_puts(m, ")");
183 }
184 if (obj->stolen)
185 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
186 if (obj->pin_display || obj->fault_mappable) {
187 char s[3], *t = s;
188 if (obj->pin_display)
189 *t++ = 'p';
190 if (obj->fault_mappable)
191 *t++ = 'f';
192 *t = '\0';
193 seq_printf(m, " (%s mappable)", s);
194 }
195 if (obj->last_write_req != NULL)
196 seq_printf(m, " (%s)",
197 i915_gem_request_get_engine(obj->last_write_req)->name);
198 if (obj->frontbuffer_bits)
199 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
200 }
201
202 static int i915_gem_object_list_info(struct seq_file *m, void *data)
203 {
204 struct drm_info_node *node = m->private;
205 uintptr_t list = (uintptr_t) node->info_ent->data;
206 struct list_head *head;
207 struct drm_device *dev = node->minor->dev;
208 struct drm_i915_private *dev_priv = to_i915(dev);
209 struct i915_ggtt *ggtt = &dev_priv->ggtt;
210 struct i915_vma *vma;
211 u64 total_obj_size, total_gtt_size;
212 int count, ret;
213
214 ret = mutex_lock_interruptible(&dev->struct_mutex);
215 if (ret)
216 return ret;
217
218 /* FIXME: the user of this interface might want more than just GGTT */
219 switch (list) {
220 case ACTIVE_LIST:
221 seq_puts(m, "Active:\n");
222 head = &ggtt->base.active_list;
223 break;
224 case INACTIVE_LIST:
225 seq_puts(m, "Inactive:\n");
226 head = &ggtt->base.inactive_list;
227 break;
228 default:
229 mutex_unlock(&dev->struct_mutex);
230 return -EINVAL;
231 }
232
233 total_obj_size = total_gtt_size = count = 0;
234 list_for_each_entry(vma, head, vm_link) {
235 seq_printf(m, " ");
236 describe_obj(m, vma->obj);
237 seq_printf(m, "\n");
238 total_obj_size += vma->obj->base.size;
239 total_gtt_size += vma->node.size;
240 count++;
241 }
242 mutex_unlock(&dev->struct_mutex);
243
244 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
245 count, total_obj_size, total_gtt_size);
246 return 0;
247 }
248
249 static int obj_rank_by_stolen(void *priv,
250 struct list_head *A, struct list_head *B)
251 {
252 struct drm_i915_gem_object *a =
253 container_of(A, struct drm_i915_gem_object, obj_exec_link);
254 struct drm_i915_gem_object *b =
255 container_of(B, struct drm_i915_gem_object, obj_exec_link);
256
257 if (a->stolen->start < b->stolen->start)
258 return -1;
259 if (a->stolen->start > b->stolen->start)
260 return 1;
261 return 0;
262 }
263
264 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
265 {
266 struct drm_info_node *node = m->private;
267 struct drm_device *dev = node->minor->dev;
268 struct drm_i915_private *dev_priv = to_i915(dev);
269 struct drm_i915_gem_object *obj;
270 u64 total_obj_size, total_gtt_size;
271 LIST_HEAD(stolen);
272 int count, ret;
273
274 ret = mutex_lock_interruptible(&dev->struct_mutex);
275 if (ret)
276 return ret;
277
278 total_obj_size = total_gtt_size = count = 0;
279 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
280 if (obj->stolen == NULL)
281 continue;
282
283 list_add(&obj->obj_exec_link, &stolen);
284
285 total_obj_size += obj->base.size;
286 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
287 count++;
288 }
289 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
290 if (obj->stolen == NULL)
291 continue;
292
293 list_add(&obj->obj_exec_link, &stolen);
294
295 total_obj_size += obj->base.size;
296 count++;
297 }
298 list_sort(NULL, &stolen, obj_rank_by_stolen);
299 seq_puts(m, "Stolen:\n");
300 while (!list_empty(&stolen)) {
301 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
302 seq_puts(m, " ");
303 describe_obj(m, obj);
304 seq_putc(m, '\n');
305 list_del_init(&obj->obj_exec_link);
306 }
307 mutex_unlock(&dev->struct_mutex);
308
309 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
310 count, total_obj_size, total_gtt_size);
311 return 0;
312 }
313
314 #define count_objects(list, member) do { \
315 list_for_each_entry(obj, list, member) { \
316 size += i915_gem_obj_total_ggtt_size(obj); \
317 ++count; \
318 if (obj->map_and_fenceable) { \
319 mappable_size += i915_gem_obj_ggtt_size(obj); \
320 ++mappable_count; \
321 } \
322 } \
323 } while (0)
324
325 struct file_stats {
326 struct drm_i915_file_private *file_priv;
327 unsigned long count;
328 u64 total, unbound;
329 u64 global, shared;
330 u64 active, inactive;
331 };
332
333 static int per_file_stats(int id, void *ptr, void *data)
334 {
335 struct drm_i915_gem_object *obj = ptr;
336 struct file_stats *stats = data;
337 struct i915_vma *vma;
338
339 stats->count++;
340 stats->total += obj->base.size;
341
342 if (obj->base.name || obj->base.dma_buf)
343 stats->shared += obj->base.size;
344
345 if (USES_FULL_PPGTT(obj->base.dev)) {
346 list_for_each_entry(vma, &obj->vma_list, obj_link) {
347 struct i915_hw_ppgtt *ppgtt;
348
349 if (!drm_mm_node_allocated(&vma->node))
350 continue;
351
352 if (vma->is_ggtt) {
353 stats->global += obj->base.size;
354 continue;
355 }
356
357 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
358 if (ppgtt->file_priv != stats->file_priv)
359 continue;
360
361 if (obj->active) /* XXX per-vma statistic */
362 stats->active += obj->base.size;
363 else
364 stats->inactive += obj->base.size;
365
366 return 0;
367 }
368 } else {
369 if (i915_gem_obj_ggtt_bound(obj)) {
370 stats->global += obj->base.size;
371 if (obj->active)
372 stats->active += obj->base.size;
373 else
374 stats->inactive += obj->base.size;
375 return 0;
376 }
377 }
378
379 if (!list_empty(&obj->global_list))
380 stats->unbound += obj->base.size;
381
382 return 0;
383 }
384
385 #define print_file_stats(m, name, stats) do { \
386 if (stats.count) \
387 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
388 name, \
389 stats.count, \
390 stats.total, \
391 stats.active, \
392 stats.inactive, \
393 stats.global, \
394 stats.shared, \
395 stats.unbound); \
396 } while (0)
397
398 static void print_batch_pool_stats(struct seq_file *m,
399 struct drm_i915_private *dev_priv)
400 {
401 struct drm_i915_gem_object *obj;
402 struct file_stats stats;
403 struct intel_engine_cs *engine;
404 int j;
405
406 memset(&stats, 0, sizeof(stats));
407
408 for_each_engine(engine, dev_priv) {
409 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
410 list_for_each_entry(obj,
411 &engine->batch_pool.cache_list[j],
412 batch_pool_link)
413 per_file_stats(0, obj, &stats);
414 }
415 }
416
417 print_file_stats(m, "[k]batch pool", stats);
418 }
419
420 static int per_file_ctx_stats(int id, void *ptr, void *data)
421 {
422 struct i915_gem_context *ctx = ptr;
423 int n;
424
425 for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
426 if (ctx->engine[n].state)
427 per_file_stats(0, ctx->engine[n].state, data);
428 if (ctx->engine[n].ring)
429 per_file_stats(0, ctx->engine[n].ring->obj, data);
430 }
431
432 return 0;
433 }
434
435 static void print_context_stats(struct seq_file *m,
436 struct drm_i915_private *dev_priv)
437 {
438 struct file_stats stats;
439 struct drm_file *file;
440
441 memset(&stats, 0, sizeof(stats));
442
443 mutex_lock(&dev_priv->drm.struct_mutex);
444 if (dev_priv->kernel_context)
445 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
446
447 list_for_each_entry(file, &dev_priv->drm.filelist, lhead) {
448 struct drm_i915_file_private *fpriv = file->driver_priv;
449 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
450 }
451 mutex_unlock(&dev_priv->drm.struct_mutex);
452
453 print_file_stats(m, "[k]contexts", stats);
454 }
455
456 #define count_vmas(list, member) do { \
457 list_for_each_entry(vma, list, member) { \
458 size += i915_gem_obj_total_ggtt_size(vma->obj); \
459 ++count; \
460 if (vma->obj->map_and_fenceable) { \
461 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
462 ++mappable_count; \
463 } \
464 } \
465 } while (0)
466
467 static int i915_gem_object_info(struct seq_file *m, void* data)
468 {
469 struct drm_info_node *node = m->private;
470 struct drm_device *dev = node->minor->dev;
471 struct drm_i915_private *dev_priv = to_i915(dev);
472 struct i915_ggtt *ggtt = &dev_priv->ggtt;
473 u32 count, mappable_count, purgeable_count;
474 u64 size, mappable_size, purgeable_size;
475 unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
476 u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
477 struct drm_i915_gem_object *obj;
478 struct drm_file *file;
479 struct i915_vma *vma;
480 int ret;
481
482 ret = mutex_lock_interruptible(&dev->struct_mutex);
483 if (ret)
484 return ret;
485
486 seq_printf(m, "%u objects, %zu bytes\n",
487 dev_priv->mm.object_count,
488 dev_priv->mm.object_memory);
489
490 size = count = mappable_size = mappable_count = 0;
491 count_objects(&dev_priv->mm.bound_list, global_list);
492 seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
493 count, mappable_count, size, mappable_size);
494
495 size = count = mappable_size = mappable_count = 0;
496 count_vmas(&ggtt->base.active_list, vm_link);
497 seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
498 count, mappable_count, size, mappable_size);
499
500 size = count = mappable_size = mappable_count = 0;
501 count_vmas(&ggtt->base.inactive_list, vm_link);
502 seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
503 count, mappable_count, size, mappable_size);
504
505 size = count = purgeable_size = purgeable_count = 0;
506 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
507 size += obj->base.size, ++count;
508 if (obj->madv == I915_MADV_DONTNEED)
509 purgeable_size += obj->base.size, ++purgeable_count;
510 if (obj->mapping) {
511 pin_mapped_count++;
512 pin_mapped_size += obj->base.size;
513 if (obj->pages_pin_count == 0) {
514 pin_mapped_purgeable_count++;
515 pin_mapped_purgeable_size += obj->base.size;
516 }
517 }
518 }
519 seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
520
521 size = count = mappable_size = mappable_count = 0;
522 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
523 if (obj->fault_mappable) {
524 size += i915_gem_obj_ggtt_size(obj);
525 ++count;
526 }
527 if (obj->pin_display) {
528 mappable_size += i915_gem_obj_ggtt_size(obj);
529 ++mappable_count;
530 }
531 if (obj->madv == I915_MADV_DONTNEED) {
532 purgeable_size += obj->base.size;
533 ++purgeable_count;
534 }
535 if (obj->mapping) {
536 pin_mapped_count++;
537 pin_mapped_size += obj->base.size;
538 if (obj->pages_pin_count == 0) {
539 pin_mapped_purgeable_count++;
540 pin_mapped_purgeable_size += obj->base.size;
541 }
542 }
543 }
544 seq_printf(m, "%u purgeable objects, %llu bytes\n",
545 purgeable_count, purgeable_size);
546 seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
547 mappable_count, mappable_size);
548 seq_printf(m, "%u fault mappable objects, %llu bytes\n",
549 count, size);
550 seq_printf(m,
551 "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
552 pin_mapped_count, pin_mapped_purgeable_count,
553 pin_mapped_size, pin_mapped_purgeable_size);
554
555 seq_printf(m, "%llu [%llu] gtt total\n",
556 ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
557
558 seq_putc(m, '\n');
559 print_batch_pool_stats(m, dev_priv);
560 mutex_unlock(&dev->struct_mutex);
561
562 mutex_lock(&dev->filelist_mutex);
563 print_context_stats(m, dev_priv);
564 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
565 struct file_stats stats;
566 struct task_struct *task;
567
568 memset(&stats, 0, sizeof(stats));
569 stats.file_priv = file->driver_priv;
570 spin_lock(&file->table_lock);
571 idr_for_each(&file->object_idr, per_file_stats, &stats);
572 spin_unlock(&file->table_lock);
573 /*
574 * Although we have a valid reference on file->pid, that does
575 * not guarantee that the task_struct who called get_pid() is
576 * still alive (e.g. get_pid(current) => fork() => exit()).
577 * Therefore, we need to protect this ->comm access using RCU.
578 */
579 rcu_read_lock();
580 task = pid_task(file->pid, PIDTYPE_PID);
581 print_file_stats(m, task ? task->comm : "<unknown>", stats);
582 rcu_read_unlock();
583 }
584 mutex_unlock(&dev->filelist_mutex);
585
586 return 0;
587 }
588
589 static int i915_gem_gtt_info(struct seq_file *m, void *data)
590 {
591 struct drm_info_node *node = m->private;
592 struct drm_device *dev = node->minor->dev;
593 uintptr_t list = (uintptr_t) node->info_ent->data;
594 struct drm_i915_private *dev_priv = to_i915(dev);
595 struct drm_i915_gem_object *obj;
596 u64 total_obj_size, total_gtt_size;
597 int count, ret;
598
599 ret = mutex_lock_interruptible(&dev->struct_mutex);
600 if (ret)
601 return ret;
602
603 total_obj_size = total_gtt_size = count = 0;
604 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
605 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
606 continue;
607
608 seq_puts(m, " ");
609 describe_obj(m, obj);
610 seq_putc(m, '\n');
611 total_obj_size += obj->base.size;
612 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
613 count++;
614 }
615
616 mutex_unlock(&dev->struct_mutex);
617
618 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
619 count, total_obj_size, total_gtt_size);
620
621 return 0;
622 }
623
624 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
625 {
626 struct drm_info_node *node = m->private;
627 struct drm_device *dev = node->minor->dev;
628 struct drm_i915_private *dev_priv = to_i915(dev);
629 struct intel_crtc *crtc;
630 int ret;
631
632 ret = mutex_lock_interruptible(&dev->struct_mutex);
633 if (ret)
634 return ret;
635
636 for_each_intel_crtc(dev, crtc) {
637 const char pipe = pipe_name(crtc->pipe);
638 const char plane = plane_name(crtc->plane);
639 struct intel_flip_work *work;
640
641 spin_lock_irq(&dev->event_lock);
642 work = crtc->flip_work;
643 if (work == NULL) {
644 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
645 pipe, plane);
646 } else {
647 u32 pending;
648 u32 addr;
649
650 pending = atomic_read(&work->pending);
651 if (pending) {
652 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
653 pipe, plane);
654 } else {
655 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
656 pipe, plane);
657 }
658 if (work->flip_queued_req) {
659 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
660
661 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
662 engine->name,
663 i915_gem_request_get_seqno(work->flip_queued_req),
664 dev_priv->next_seqno,
665 intel_engine_get_seqno(engine),
666 i915_gem_request_completed(work->flip_queued_req));
667 } else
668 seq_printf(m, "Flip not associated with any ring\n");
669 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
670 work->flip_queued_vblank,
671 work->flip_ready_vblank,
672 intel_crtc_get_vblank_counter(crtc));
673 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
674
675 if (INTEL_INFO(dev)->gen >= 4)
676 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
677 else
678 addr = I915_READ(DSPADDR(crtc->plane));
679 seq_printf(m, "Current scanout address 0x%08x\n", addr);
680
681 if (work->pending_flip_obj) {
682 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
683 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
684 }
685 }
686 spin_unlock_irq(&dev->event_lock);
687 }
688
689 mutex_unlock(&dev->struct_mutex);
690
691 return 0;
692 }
693
694 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
695 {
696 struct drm_info_node *node = m->private;
697 struct drm_device *dev = node->minor->dev;
698 struct drm_i915_private *dev_priv = to_i915(dev);
699 struct drm_i915_gem_object *obj;
700 struct intel_engine_cs *engine;
701 int total = 0;
702 int ret, j;
703
704 ret = mutex_lock_interruptible(&dev->struct_mutex);
705 if (ret)
706 return ret;
707
708 for_each_engine(engine, dev_priv) {
709 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
710 int count;
711
712 count = 0;
713 list_for_each_entry(obj,
714 &engine->batch_pool.cache_list[j],
715 batch_pool_link)
716 count++;
717 seq_printf(m, "%s cache[%d]: %d objects\n",
718 engine->name, j, count);
719
720 list_for_each_entry(obj,
721 &engine->batch_pool.cache_list[j],
722 batch_pool_link) {
723 seq_puts(m, " ");
724 describe_obj(m, obj);
725 seq_putc(m, '\n');
726 }
727
728 total += count;
729 }
730 }
731
732 seq_printf(m, "total: %d\n", total);
733
734 mutex_unlock(&dev->struct_mutex);
735
736 return 0;
737 }
738
739 static int i915_gem_request_info(struct seq_file *m, void *data)
740 {
741 struct drm_info_node *node = m->private;
742 struct drm_device *dev = node->minor->dev;
743 struct drm_i915_private *dev_priv = to_i915(dev);
744 struct intel_engine_cs *engine;
745 struct drm_i915_gem_request *req;
746 int ret, any;
747
748 ret = mutex_lock_interruptible(&dev->struct_mutex);
749 if (ret)
750 return ret;
751
752 any = 0;
753 for_each_engine(engine, dev_priv) {
754 int count;
755
756 count = 0;
757 list_for_each_entry(req, &engine->request_list, list)
758 count++;
759 if (count == 0)
760 continue;
761
762 seq_printf(m, "%s requests: %d\n", engine->name, count);
763 list_for_each_entry(req, &engine->request_list, list) {
764 struct task_struct *task;
765
766 rcu_read_lock();
767 task = NULL;
768 if (req->pid)
769 task = pid_task(req->pid, PIDTYPE_PID);
770 seq_printf(m, " %x @ %d: %s [%d]\n",
771 req->fence.seqno,
772 (int) (jiffies - req->emitted_jiffies),
773 task ? task->comm : "<unknown>",
774 task ? task->pid : -1);
775 rcu_read_unlock();
776 }
777
778 any++;
779 }
780 mutex_unlock(&dev->struct_mutex);
781
782 if (any == 0)
783 seq_puts(m, "No requests\n");
784
785 return 0;
786 }
787
788 static void i915_ring_seqno_info(struct seq_file *m,
789 struct intel_engine_cs *engine)
790 {
791 struct intel_breadcrumbs *b = &engine->breadcrumbs;
792 struct rb_node *rb;
793
794 seq_printf(m, "Current sequence (%s): %x\n",
795 engine->name, intel_engine_get_seqno(engine));
796 seq_printf(m, "Current user interrupts (%s): %lx\n",
797 engine->name, READ_ONCE(engine->breadcrumbs.irq_wakeups));
798
799 spin_lock(&b->lock);
800 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
801 struct intel_wait *w = container_of(rb, typeof(*w), node);
802
803 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
804 engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
805 }
806 spin_unlock(&b->lock);
807 }
808
809 static int i915_gem_seqno_info(struct seq_file *m, void *data)
810 {
811 struct drm_info_node *node = m->private;
812 struct drm_device *dev = node->minor->dev;
813 struct drm_i915_private *dev_priv = to_i915(dev);
814 struct intel_engine_cs *engine;
815 int ret;
816
817 ret = mutex_lock_interruptible(&dev->struct_mutex);
818 if (ret)
819 return ret;
820 intel_runtime_pm_get(dev_priv);
821
822 for_each_engine(engine, dev_priv)
823 i915_ring_seqno_info(m, engine);
824
825 intel_runtime_pm_put(dev_priv);
826 mutex_unlock(&dev->struct_mutex);
827
828 return 0;
829 }
830
831
832 static int i915_interrupt_info(struct seq_file *m, void *data)
833 {
834 struct drm_info_node *node = m->private;
835 struct drm_device *dev = node->minor->dev;
836 struct drm_i915_private *dev_priv = to_i915(dev);
837 struct intel_engine_cs *engine;
838 int ret, i, pipe;
839
840 ret = mutex_lock_interruptible(&dev->struct_mutex);
841 if (ret)
842 return ret;
843 intel_runtime_pm_get(dev_priv);
844
845 if (IS_CHERRYVIEW(dev)) {
846 seq_printf(m, "Master Interrupt Control:\t%08x\n",
847 I915_READ(GEN8_MASTER_IRQ));
848
849 seq_printf(m, "Display IER:\t%08x\n",
850 I915_READ(VLV_IER));
851 seq_printf(m, "Display IIR:\t%08x\n",
852 I915_READ(VLV_IIR));
853 seq_printf(m, "Display IIR_RW:\t%08x\n",
854 I915_READ(VLV_IIR_RW));
855 seq_printf(m, "Display IMR:\t%08x\n",
856 I915_READ(VLV_IMR));
857 for_each_pipe(dev_priv, pipe)
858 seq_printf(m, "Pipe %c stat:\t%08x\n",
859 pipe_name(pipe),
860 I915_READ(PIPESTAT(pipe)));
861
862 seq_printf(m, "Port hotplug:\t%08x\n",
863 I915_READ(PORT_HOTPLUG_EN));
864 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
865 I915_READ(VLV_DPFLIPSTAT));
866 seq_printf(m, "DPINVGTT:\t%08x\n",
867 I915_READ(DPINVGTT));
868
869 for (i = 0; i < 4; i++) {
870 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
871 i, I915_READ(GEN8_GT_IMR(i)));
872 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
873 i, I915_READ(GEN8_GT_IIR(i)));
874 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
875 i, I915_READ(GEN8_GT_IER(i)));
876 }
877
878 seq_printf(m, "PCU interrupt mask:\t%08x\n",
879 I915_READ(GEN8_PCU_IMR));
880 seq_printf(m, "PCU interrupt identity:\t%08x\n",
881 I915_READ(GEN8_PCU_IIR));
882 seq_printf(m, "PCU interrupt enable:\t%08x\n",
883 I915_READ(GEN8_PCU_IER));
884 } else if (INTEL_INFO(dev)->gen >= 8) {
885 seq_printf(m, "Master Interrupt Control:\t%08x\n",
886 I915_READ(GEN8_MASTER_IRQ));
887
888 for (i = 0; i < 4; i++) {
889 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
890 i, I915_READ(GEN8_GT_IMR(i)));
891 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
892 i, I915_READ(GEN8_GT_IIR(i)));
893 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
894 i, I915_READ(GEN8_GT_IER(i)));
895 }
896
897 for_each_pipe(dev_priv, pipe) {
898 enum intel_display_power_domain power_domain;
899
900 power_domain = POWER_DOMAIN_PIPE(pipe);
901 if (!intel_display_power_get_if_enabled(dev_priv,
902 power_domain)) {
903 seq_printf(m, "Pipe %c power disabled\n",
904 pipe_name(pipe));
905 continue;
906 }
907 seq_printf(m, "Pipe %c IMR:\t%08x\n",
908 pipe_name(pipe),
909 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
910 seq_printf(m, "Pipe %c IIR:\t%08x\n",
911 pipe_name(pipe),
912 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
913 seq_printf(m, "Pipe %c IER:\t%08x\n",
914 pipe_name(pipe),
915 I915_READ(GEN8_DE_PIPE_IER(pipe)));
916
917 intel_display_power_put(dev_priv, power_domain);
918 }
919
920 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
921 I915_READ(GEN8_DE_PORT_IMR));
922 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
923 I915_READ(GEN8_DE_PORT_IIR));
924 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
925 I915_READ(GEN8_DE_PORT_IER));
926
927 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
928 I915_READ(GEN8_DE_MISC_IMR));
929 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
930 I915_READ(GEN8_DE_MISC_IIR));
931 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
932 I915_READ(GEN8_DE_MISC_IER));
933
934 seq_printf(m, "PCU interrupt mask:\t%08x\n",
935 I915_READ(GEN8_PCU_IMR));
936 seq_printf(m, "PCU interrupt identity:\t%08x\n",
937 I915_READ(GEN8_PCU_IIR));
938 seq_printf(m, "PCU interrupt enable:\t%08x\n",
939 I915_READ(GEN8_PCU_IER));
940 } else if (IS_VALLEYVIEW(dev)) {
941 seq_printf(m, "Display IER:\t%08x\n",
942 I915_READ(VLV_IER));
943 seq_printf(m, "Display IIR:\t%08x\n",
944 I915_READ(VLV_IIR));
945 seq_printf(m, "Display IIR_RW:\t%08x\n",
946 I915_READ(VLV_IIR_RW));
947 seq_printf(m, "Display IMR:\t%08x\n",
948 I915_READ(VLV_IMR));
949 for_each_pipe(dev_priv, pipe)
950 seq_printf(m, "Pipe %c stat:\t%08x\n",
951 pipe_name(pipe),
952 I915_READ(PIPESTAT(pipe)));
953
954 seq_printf(m, "Master IER:\t%08x\n",
955 I915_READ(VLV_MASTER_IER));
956
957 seq_printf(m, "Render IER:\t%08x\n",
958 I915_READ(GTIER));
959 seq_printf(m, "Render IIR:\t%08x\n",
960 I915_READ(GTIIR));
961 seq_printf(m, "Render IMR:\t%08x\n",
962 I915_READ(GTIMR));
963
964 seq_printf(m, "PM IER:\t\t%08x\n",
965 I915_READ(GEN6_PMIER));
966 seq_printf(m, "PM IIR:\t\t%08x\n",
967 I915_READ(GEN6_PMIIR));
968 seq_printf(m, "PM IMR:\t\t%08x\n",
969 I915_READ(GEN6_PMIMR));
970
971 seq_printf(m, "Port hotplug:\t%08x\n",
972 I915_READ(PORT_HOTPLUG_EN));
973 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
974 I915_READ(VLV_DPFLIPSTAT));
975 seq_printf(m, "DPINVGTT:\t%08x\n",
976 I915_READ(DPINVGTT));
977
978 } else if (!HAS_PCH_SPLIT(dev)) {
979 seq_printf(m, "Interrupt enable: %08x\n",
980 I915_READ(IER));
981 seq_printf(m, "Interrupt identity: %08x\n",
982 I915_READ(IIR));
983 seq_printf(m, "Interrupt mask: %08x\n",
984 I915_READ(IMR));
985 for_each_pipe(dev_priv, pipe)
986 seq_printf(m, "Pipe %c stat: %08x\n",
987 pipe_name(pipe),
988 I915_READ(PIPESTAT(pipe)));
989 } else {
990 seq_printf(m, "North Display Interrupt enable: %08x\n",
991 I915_READ(DEIER));
992 seq_printf(m, "North Display Interrupt identity: %08x\n",
993 I915_READ(DEIIR));
994 seq_printf(m, "North Display Interrupt mask: %08x\n",
995 I915_READ(DEIMR));
996 seq_printf(m, "South Display Interrupt enable: %08x\n",
997 I915_READ(SDEIER));
998 seq_printf(m, "South Display Interrupt identity: %08x\n",
999 I915_READ(SDEIIR));
1000 seq_printf(m, "South Display Interrupt mask: %08x\n",
1001 I915_READ(SDEIMR));
1002 seq_printf(m, "Graphics Interrupt enable: %08x\n",
1003 I915_READ(GTIER));
1004 seq_printf(m, "Graphics Interrupt identity: %08x\n",
1005 I915_READ(GTIIR));
1006 seq_printf(m, "Graphics Interrupt mask: %08x\n",
1007 I915_READ(GTIMR));
1008 }
1009 for_each_engine(engine, dev_priv) {
1010 if (INTEL_INFO(dev)->gen >= 6) {
1011 seq_printf(m,
1012 "Graphics Interrupt mask (%s): %08x\n",
1013 engine->name, I915_READ_IMR(engine));
1014 }
1015 i915_ring_seqno_info(m, engine);
1016 }
1017 intel_runtime_pm_put(dev_priv);
1018 mutex_unlock(&dev->struct_mutex);
1019
1020 return 0;
1021 }
1022
1023 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
1024 {
1025 struct drm_info_node *node = m->private;
1026 struct drm_device *dev = node->minor->dev;
1027 struct drm_i915_private *dev_priv = to_i915(dev);
1028 int i, ret;
1029
1030 ret = mutex_lock_interruptible(&dev->struct_mutex);
1031 if (ret)
1032 return ret;
1033
1034 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
1035 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1036 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
1037
1038 seq_printf(m, "Fence %d, pin count = %d, object = ",
1039 i, dev_priv->fence_regs[i].pin_count);
1040 if (obj == NULL)
1041 seq_puts(m, "unused");
1042 else
1043 describe_obj(m, obj);
1044 seq_putc(m, '\n');
1045 }
1046
1047 mutex_unlock(&dev->struct_mutex);
1048 return 0;
1049 }
1050
1051 static int i915_hws_info(struct seq_file *m, void *data)
1052 {
1053 struct drm_info_node *node = m->private;
1054 struct drm_device *dev = node->minor->dev;
1055 struct drm_i915_private *dev_priv = to_i915(dev);
1056 struct intel_engine_cs *engine;
1057 const u32 *hws;
1058 int i;
1059
1060 engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
1061 hws = engine->status_page.page_addr;
1062 if (hws == NULL)
1063 return 0;
1064
1065 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
1066 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1067 i * 4,
1068 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
1069 }
1070 return 0;
1071 }
1072
1073 static ssize_t
1074 i915_error_state_write(struct file *filp,
1075 const char __user *ubuf,
1076 size_t cnt,
1077 loff_t *ppos)
1078 {
1079 struct i915_error_state_file_priv *error_priv = filp->private_data;
1080 struct drm_device *dev = error_priv->dev;
1081 int ret;
1082
1083 DRM_DEBUG_DRIVER("Resetting error state\n");
1084
1085 ret = mutex_lock_interruptible(&dev->struct_mutex);
1086 if (ret)
1087 return ret;
1088
1089 i915_destroy_error_state(dev);
1090 mutex_unlock(&dev->struct_mutex);
1091
1092 return cnt;
1093 }
1094
1095 static int i915_error_state_open(struct inode *inode, struct file *file)
1096 {
1097 struct drm_device *dev = inode->i_private;
1098 struct i915_error_state_file_priv *error_priv;
1099
1100 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1101 if (!error_priv)
1102 return -ENOMEM;
1103
1104 error_priv->dev = dev;
1105
1106 i915_error_state_get(dev, error_priv);
1107
1108 file->private_data = error_priv;
1109
1110 return 0;
1111 }
1112
1113 static int i915_error_state_release(struct inode *inode, struct file *file)
1114 {
1115 struct i915_error_state_file_priv *error_priv = file->private_data;
1116
1117 i915_error_state_put(error_priv);
1118 kfree(error_priv);
1119
1120 return 0;
1121 }
1122
1123 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1124 size_t count, loff_t *pos)
1125 {
1126 struct i915_error_state_file_priv *error_priv = file->private_data;
1127 struct drm_i915_error_state_buf error_str;
1128 loff_t tmp_pos = 0;
1129 ssize_t ret_count = 0;
1130 int ret;
1131
1132 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1133 if (ret)
1134 return ret;
1135
1136 ret = i915_error_state_to_str(&error_str, error_priv);
1137 if (ret)
1138 goto out;
1139
1140 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1141 error_str.buf,
1142 error_str.bytes);
1143
1144 if (ret_count < 0)
1145 ret = ret_count;
1146 else
1147 *pos = error_str.start + ret_count;
1148 out:
1149 i915_error_state_buf_release(&error_str);
1150 return ret ?: ret_count;
1151 }
1152
1153 static const struct file_operations i915_error_state_fops = {
1154 .owner = THIS_MODULE,
1155 .open = i915_error_state_open,
1156 .read = i915_error_state_read,
1157 .write = i915_error_state_write,
1158 .llseek = default_llseek,
1159 .release = i915_error_state_release,
1160 };
1161
1162 static int
1163 i915_next_seqno_get(void *data, u64 *val)
1164 {
1165 struct drm_device *dev = data;
1166 struct drm_i915_private *dev_priv = to_i915(dev);
1167 int ret;
1168
1169 ret = mutex_lock_interruptible(&dev->struct_mutex);
1170 if (ret)
1171 return ret;
1172
1173 *val = dev_priv->next_seqno;
1174 mutex_unlock(&dev->struct_mutex);
1175
1176 return 0;
1177 }
1178
1179 static int
1180 i915_next_seqno_set(void *data, u64 val)
1181 {
1182 struct drm_device *dev = data;
1183 int ret;
1184
1185 ret = mutex_lock_interruptible(&dev->struct_mutex);
1186 if (ret)
1187 return ret;
1188
1189 ret = i915_gem_set_seqno(dev, val);
1190 mutex_unlock(&dev->struct_mutex);
1191
1192 return ret;
1193 }
1194
1195 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1196 i915_next_seqno_get, i915_next_seqno_set,
1197 "0x%llx\n");
1198
1199 static int i915_frequency_info(struct seq_file *m, void *unused)
1200 {
1201 struct drm_info_node *node = m->private;
1202 struct drm_device *dev = node->minor->dev;
1203 struct drm_i915_private *dev_priv = to_i915(dev);
1204 int ret = 0;
1205
1206 intel_runtime_pm_get(dev_priv);
1207
1208 if (IS_GEN5(dev)) {
1209 u16 rgvswctl = I915_READ16(MEMSWCTL);
1210 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1211
1212 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1213 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1214 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1215 MEMSTAT_VID_SHIFT);
1216 seq_printf(m, "Current P-state: %d\n",
1217 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1218 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1219 u32 freq_sts;
1220
1221 mutex_lock(&dev_priv->rps.hw_lock);
1222 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1223 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1224 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1225
1226 seq_printf(m, "actual GPU freq: %d MHz\n",
1227 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1228
1229 seq_printf(m, "current GPU freq: %d MHz\n",
1230 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1231
1232 seq_printf(m, "max GPU freq: %d MHz\n",
1233 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1234
1235 seq_printf(m, "min GPU freq: %d MHz\n",
1236 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1237
1238 seq_printf(m, "idle GPU freq: %d MHz\n",
1239 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1240
1241 seq_printf(m,
1242 "efficient (RPe) frequency: %d MHz\n",
1243 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1244 mutex_unlock(&dev_priv->rps.hw_lock);
1245 } else if (INTEL_INFO(dev)->gen >= 6) {
1246 u32 rp_state_limits;
1247 u32 gt_perf_status;
1248 u32 rp_state_cap;
1249 u32 rpmodectl, rpinclimit, rpdeclimit;
1250 u32 rpstat, cagf, reqf;
1251 u32 rpupei, rpcurup, rpprevup;
1252 u32 rpdownei, rpcurdown, rpprevdown;
1253 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1254 int max_freq;
1255
1256 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1257 if (IS_BROXTON(dev)) {
1258 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1259 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1260 } else {
1261 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1262 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1263 }
1264
1265 /* RPSTAT1 is in the GT power well */
1266 ret = mutex_lock_interruptible(&dev->struct_mutex);
1267 if (ret)
1268 goto out;
1269
1270 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1271
1272 reqf = I915_READ(GEN6_RPNSWREQ);
1273 if (IS_GEN9(dev))
1274 reqf >>= 23;
1275 else {
1276 reqf &= ~GEN6_TURBO_DISABLE;
1277 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1278 reqf >>= 24;
1279 else
1280 reqf >>= 25;
1281 }
1282 reqf = intel_gpu_freq(dev_priv, reqf);
1283
1284 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1285 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1286 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1287
1288 rpstat = I915_READ(GEN6_RPSTAT1);
1289 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1290 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1291 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1292 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1293 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1294 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1295 if (IS_GEN9(dev))
1296 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1297 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1298 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1299 else
1300 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1301 cagf = intel_gpu_freq(dev_priv, cagf);
1302
1303 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1304 mutex_unlock(&dev->struct_mutex);
1305
1306 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1307 pm_ier = I915_READ(GEN6_PMIER);
1308 pm_imr = I915_READ(GEN6_PMIMR);
1309 pm_isr = I915_READ(GEN6_PMISR);
1310 pm_iir = I915_READ(GEN6_PMIIR);
1311 pm_mask = I915_READ(GEN6_PMINTRMSK);
1312 } else {
1313 pm_ier = I915_READ(GEN8_GT_IER(2));
1314 pm_imr = I915_READ(GEN8_GT_IMR(2));
1315 pm_isr = I915_READ(GEN8_GT_ISR(2));
1316 pm_iir = I915_READ(GEN8_GT_IIR(2));
1317 pm_mask = I915_READ(GEN6_PMINTRMSK);
1318 }
1319 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1320 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1321 seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1322 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1323 seq_printf(m, "Render p-state ratio: %d\n",
1324 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1325 seq_printf(m, "Render p-state VID: %d\n",
1326 gt_perf_status & 0xff);
1327 seq_printf(m, "Render p-state limit: %d\n",
1328 rp_state_limits & 0xff);
1329 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1330 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1331 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1332 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1333 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1334 seq_printf(m, "CAGF: %dMHz\n", cagf);
1335 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1336 rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1337 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1338 rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1339 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1340 rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1341 seq_printf(m, "Up threshold: %d%%\n",
1342 dev_priv->rps.up_threshold);
1343
1344 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1345 rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1346 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1347 rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1348 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1349 rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1350 seq_printf(m, "Down threshold: %d%%\n",
1351 dev_priv->rps.down_threshold);
1352
1353 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1354 rp_state_cap >> 16) & 0xff;
1355 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1356 GEN9_FREQ_SCALER : 1);
1357 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1358 intel_gpu_freq(dev_priv, max_freq));
1359
1360 max_freq = (rp_state_cap & 0xff00) >> 8;
1361 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1362 GEN9_FREQ_SCALER : 1);
1363 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1364 intel_gpu_freq(dev_priv, max_freq));
1365
1366 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1367 rp_state_cap >> 0) & 0xff;
1368 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1369 GEN9_FREQ_SCALER : 1);
1370 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1371 intel_gpu_freq(dev_priv, max_freq));
1372 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1373 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1374
1375 seq_printf(m, "Current freq: %d MHz\n",
1376 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1377 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1378 seq_printf(m, "Idle freq: %d MHz\n",
1379 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1380 seq_printf(m, "Min freq: %d MHz\n",
1381 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1382 seq_printf(m, "Boost freq: %d MHz\n",
1383 intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1384 seq_printf(m, "Max freq: %d MHz\n",
1385 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1386 seq_printf(m,
1387 "efficient (RPe) frequency: %d MHz\n",
1388 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1389 } else {
1390 seq_puts(m, "no P-state info available\n");
1391 }
1392
1393 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1394 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1395 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1396
1397 out:
1398 intel_runtime_pm_put(dev_priv);
1399 return ret;
1400 }
1401
1402 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1403 {
1404 struct drm_info_node *node = m->private;
1405 struct drm_device *dev = node->minor->dev;
1406 struct drm_i915_private *dev_priv = to_i915(dev);
1407 struct intel_engine_cs *engine;
1408 u64 acthd[I915_NUM_ENGINES];
1409 u32 seqno[I915_NUM_ENGINES];
1410 u32 instdone[I915_NUM_INSTDONE_REG];
1411 enum intel_engine_id id;
1412 int j;
1413
1414 if (!i915.enable_hangcheck) {
1415 seq_printf(m, "Hangcheck disabled\n");
1416 return 0;
1417 }
1418
1419 intel_runtime_pm_get(dev_priv);
1420
1421 for_each_engine_id(engine, dev_priv, id) {
1422 acthd[id] = intel_ring_get_active_head(engine);
1423 seqno[id] = intel_engine_get_seqno(engine);
1424 }
1425
1426 i915_get_extra_instdone(dev_priv, instdone);
1427
1428 intel_runtime_pm_put(dev_priv);
1429
1430 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1431 seq_printf(m, "Hangcheck active, fires in %dms\n",
1432 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1433 jiffies));
1434 } else
1435 seq_printf(m, "Hangcheck inactive\n");
1436
1437 for_each_engine_id(engine, dev_priv, id) {
1438 seq_printf(m, "%s:\n", engine->name);
1439 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1440 engine->hangcheck.seqno,
1441 seqno[id],
1442 engine->last_submitted_seqno);
1443 seq_printf(m, "\twaiters? %d\n",
1444 intel_engine_has_waiter(engine));
1445 seq_printf(m, "\tuser interrupts = %lx [current %lx]\n",
1446 engine->hangcheck.user_interrupts,
1447 READ_ONCE(engine->breadcrumbs.irq_wakeups));
1448 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1449 (long long)engine->hangcheck.acthd,
1450 (long long)acthd[id]);
1451 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1452 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1453
1454 if (engine->id == RCS) {
1455 seq_puts(m, "\tinstdone read =");
1456
1457 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1458 seq_printf(m, " 0x%08x", instdone[j]);
1459
1460 seq_puts(m, "\n\tinstdone accu =");
1461
1462 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1463 seq_printf(m, " 0x%08x",
1464 engine->hangcheck.instdone[j]);
1465
1466 seq_puts(m, "\n");
1467 }
1468 }
1469
1470 return 0;
1471 }
1472
1473 static int ironlake_drpc_info(struct seq_file *m)
1474 {
1475 struct drm_info_node *node = m->private;
1476 struct drm_device *dev = node->minor->dev;
1477 struct drm_i915_private *dev_priv = to_i915(dev);
1478 u32 rgvmodectl, rstdbyctl;
1479 u16 crstandvid;
1480 int ret;
1481
1482 ret = mutex_lock_interruptible(&dev->struct_mutex);
1483 if (ret)
1484 return ret;
1485 intel_runtime_pm_get(dev_priv);
1486
1487 rgvmodectl = I915_READ(MEMMODECTL);
1488 rstdbyctl = I915_READ(RSTDBYCTL);
1489 crstandvid = I915_READ16(CRSTANDVID);
1490
1491 intel_runtime_pm_put(dev_priv);
1492 mutex_unlock(&dev->struct_mutex);
1493
1494 seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1495 seq_printf(m, "Boost freq: %d\n",
1496 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1497 MEMMODE_BOOST_FREQ_SHIFT);
1498 seq_printf(m, "HW control enabled: %s\n",
1499 yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1500 seq_printf(m, "SW control enabled: %s\n",
1501 yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1502 seq_printf(m, "Gated voltage change: %s\n",
1503 yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1504 seq_printf(m, "Starting frequency: P%d\n",
1505 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1506 seq_printf(m, "Max P-state: P%d\n",
1507 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1508 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1509 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1510 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1511 seq_printf(m, "Render standby enabled: %s\n",
1512 yesno(!(rstdbyctl & RCX_SW_EXIT)));
1513 seq_puts(m, "Current RS state: ");
1514 switch (rstdbyctl & RSX_STATUS_MASK) {
1515 case RSX_STATUS_ON:
1516 seq_puts(m, "on\n");
1517 break;
1518 case RSX_STATUS_RC1:
1519 seq_puts(m, "RC1\n");
1520 break;
1521 case RSX_STATUS_RC1E:
1522 seq_puts(m, "RC1E\n");
1523 break;
1524 case RSX_STATUS_RS1:
1525 seq_puts(m, "RS1\n");
1526 break;
1527 case RSX_STATUS_RS2:
1528 seq_puts(m, "RS2 (RC6)\n");
1529 break;
1530 case RSX_STATUS_RS3:
1531 seq_puts(m, "RC3 (RC6+)\n");
1532 break;
1533 default:
1534 seq_puts(m, "unknown\n");
1535 break;
1536 }
1537
1538 return 0;
1539 }
1540
1541 static int i915_forcewake_domains(struct seq_file *m, void *data)
1542 {
1543 struct drm_info_node *node = m->private;
1544 struct drm_device *dev = node->minor->dev;
1545 struct drm_i915_private *dev_priv = to_i915(dev);
1546 struct intel_uncore_forcewake_domain *fw_domain;
1547
1548 spin_lock_irq(&dev_priv->uncore.lock);
1549 for_each_fw_domain(fw_domain, dev_priv) {
1550 seq_printf(m, "%s.wake_count = %u\n",
1551 intel_uncore_forcewake_domain_to_str(fw_domain->id),
1552 fw_domain->wake_count);
1553 }
1554 spin_unlock_irq(&dev_priv->uncore.lock);
1555
1556 return 0;
1557 }
1558
1559 static int vlv_drpc_info(struct seq_file *m)
1560 {
1561 struct drm_info_node *node = m->private;
1562 struct drm_device *dev = node->minor->dev;
1563 struct drm_i915_private *dev_priv = to_i915(dev);
1564 u32 rpmodectl1, rcctl1, pw_status;
1565
1566 intel_runtime_pm_get(dev_priv);
1567
1568 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1569 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1570 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1571
1572 intel_runtime_pm_put(dev_priv);
1573
1574 seq_printf(m, "Video Turbo Mode: %s\n",
1575 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1576 seq_printf(m, "Turbo enabled: %s\n",
1577 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1578 seq_printf(m, "HW control enabled: %s\n",
1579 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1580 seq_printf(m, "SW control enabled: %s\n",
1581 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1582 GEN6_RP_MEDIA_SW_MODE));
1583 seq_printf(m, "RC6 Enabled: %s\n",
1584 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1585 GEN6_RC_CTL_EI_MODE(1))));
1586 seq_printf(m, "Render Power Well: %s\n",
1587 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1588 seq_printf(m, "Media Power Well: %s\n",
1589 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1590
1591 seq_printf(m, "Render RC6 residency since boot: %u\n",
1592 I915_READ(VLV_GT_RENDER_RC6));
1593 seq_printf(m, "Media RC6 residency since boot: %u\n",
1594 I915_READ(VLV_GT_MEDIA_RC6));
1595
1596 return i915_forcewake_domains(m, NULL);
1597 }
1598
1599 static int gen6_drpc_info(struct seq_file *m)
1600 {
1601 struct drm_info_node *node = m->private;
1602 struct drm_device *dev = node->minor->dev;
1603 struct drm_i915_private *dev_priv = to_i915(dev);
1604 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1605 u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1606 unsigned forcewake_count;
1607 int count = 0, ret;
1608
1609 ret = mutex_lock_interruptible(&dev->struct_mutex);
1610 if (ret)
1611 return ret;
1612 intel_runtime_pm_get(dev_priv);
1613
1614 spin_lock_irq(&dev_priv->uncore.lock);
1615 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1616 spin_unlock_irq(&dev_priv->uncore.lock);
1617
1618 if (forcewake_count) {
1619 seq_puts(m, "RC information inaccurate because somebody "
1620 "holds a forcewake reference \n");
1621 } else {
1622 /* NB: we cannot use forcewake, else we read the wrong values */
1623 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1624 udelay(10);
1625 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1626 }
1627
1628 gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1629 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1630
1631 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1632 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1633 if (INTEL_INFO(dev)->gen >= 9) {
1634 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1635 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1636 }
1637 mutex_unlock(&dev->struct_mutex);
1638 mutex_lock(&dev_priv->rps.hw_lock);
1639 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1640 mutex_unlock(&dev_priv->rps.hw_lock);
1641
1642 intel_runtime_pm_put(dev_priv);
1643
1644 seq_printf(m, "Video Turbo Mode: %s\n",
1645 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1646 seq_printf(m, "HW control enabled: %s\n",
1647 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1648 seq_printf(m, "SW control enabled: %s\n",
1649 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1650 GEN6_RP_MEDIA_SW_MODE));
1651 seq_printf(m, "RC1e Enabled: %s\n",
1652 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1653 seq_printf(m, "RC6 Enabled: %s\n",
1654 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1655 if (INTEL_INFO(dev)->gen >= 9) {
1656 seq_printf(m, "Render Well Gating Enabled: %s\n",
1657 yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1658 seq_printf(m, "Media Well Gating Enabled: %s\n",
1659 yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1660 }
1661 seq_printf(m, "Deep RC6 Enabled: %s\n",
1662 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1663 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1664 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1665 seq_puts(m, "Current RC state: ");
1666 switch (gt_core_status & GEN6_RCn_MASK) {
1667 case GEN6_RC0:
1668 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1669 seq_puts(m, "Core Power Down\n");
1670 else
1671 seq_puts(m, "on\n");
1672 break;
1673 case GEN6_RC3:
1674 seq_puts(m, "RC3\n");
1675 break;
1676 case GEN6_RC6:
1677 seq_puts(m, "RC6\n");
1678 break;
1679 case GEN6_RC7:
1680 seq_puts(m, "RC7\n");
1681 break;
1682 default:
1683 seq_puts(m, "Unknown\n");
1684 break;
1685 }
1686
1687 seq_printf(m, "Core Power Down: %s\n",
1688 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1689 if (INTEL_INFO(dev)->gen >= 9) {
1690 seq_printf(m, "Render Power Well: %s\n",
1691 (gen9_powergate_status &
1692 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1693 seq_printf(m, "Media Power Well: %s\n",
1694 (gen9_powergate_status &
1695 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1696 }
1697
1698 /* Not exactly sure what this is */
1699 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1700 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1701 seq_printf(m, "RC6 residency since boot: %u\n",
1702 I915_READ(GEN6_GT_GFX_RC6));
1703 seq_printf(m, "RC6+ residency since boot: %u\n",
1704 I915_READ(GEN6_GT_GFX_RC6p));
1705 seq_printf(m, "RC6++ residency since boot: %u\n",
1706 I915_READ(GEN6_GT_GFX_RC6pp));
1707
1708 seq_printf(m, "RC6 voltage: %dmV\n",
1709 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1710 seq_printf(m, "RC6+ voltage: %dmV\n",
1711 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1712 seq_printf(m, "RC6++ voltage: %dmV\n",
1713 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1714 return i915_forcewake_domains(m, NULL);
1715 }
1716
1717 static int i915_drpc_info(struct seq_file *m, void *unused)
1718 {
1719 struct drm_info_node *node = m->private;
1720 struct drm_device *dev = node->minor->dev;
1721
1722 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1723 return vlv_drpc_info(m);
1724 else if (INTEL_INFO(dev)->gen >= 6)
1725 return gen6_drpc_info(m);
1726 else
1727 return ironlake_drpc_info(m);
1728 }
1729
1730 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1731 {
1732 struct drm_info_node *node = m->private;
1733 struct drm_device *dev = node->minor->dev;
1734 struct drm_i915_private *dev_priv = to_i915(dev);
1735
1736 seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1737 dev_priv->fb_tracking.busy_bits);
1738
1739 seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1740 dev_priv->fb_tracking.flip_bits);
1741
1742 return 0;
1743 }
1744
1745 static int i915_fbc_status(struct seq_file *m, void *unused)
1746 {
1747 struct drm_info_node *node = m->private;
1748 struct drm_device *dev = node->minor->dev;
1749 struct drm_i915_private *dev_priv = to_i915(dev);
1750
1751 if (!HAS_FBC(dev)) {
1752 seq_puts(m, "FBC unsupported on this chipset\n");
1753 return 0;
1754 }
1755
1756 intel_runtime_pm_get(dev_priv);
1757 mutex_lock(&dev_priv->fbc.lock);
1758
1759 if (intel_fbc_is_active(dev_priv))
1760 seq_puts(m, "FBC enabled\n");
1761 else
1762 seq_printf(m, "FBC disabled: %s\n",
1763 dev_priv->fbc.no_fbc_reason);
1764
1765 if (INTEL_INFO(dev_priv)->gen >= 7)
1766 seq_printf(m, "Compressing: %s\n",
1767 yesno(I915_READ(FBC_STATUS2) &
1768 FBC_COMPRESSION_MASK));
1769
1770 mutex_unlock(&dev_priv->fbc.lock);
1771 intel_runtime_pm_put(dev_priv);
1772
1773 return 0;
1774 }
1775
1776 static int i915_fbc_fc_get(void *data, u64 *val)
1777 {
1778 struct drm_device *dev = data;
1779 struct drm_i915_private *dev_priv = to_i915(dev);
1780
1781 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1782 return -ENODEV;
1783
1784 *val = dev_priv->fbc.false_color;
1785
1786 return 0;
1787 }
1788
1789 static int i915_fbc_fc_set(void *data, u64 val)
1790 {
1791 struct drm_device *dev = data;
1792 struct drm_i915_private *dev_priv = to_i915(dev);
1793 u32 reg;
1794
1795 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1796 return -ENODEV;
1797
1798 mutex_lock(&dev_priv->fbc.lock);
1799
1800 reg = I915_READ(ILK_DPFC_CONTROL);
1801 dev_priv->fbc.false_color = val;
1802
1803 I915_WRITE(ILK_DPFC_CONTROL, val ?
1804 (reg | FBC_CTL_FALSE_COLOR) :
1805 (reg & ~FBC_CTL_FALSE_COLOR));
1806
1807 mutex_unlock(&dev_priv->fbc.lock);
1808 return 0;
1809 }
1810
1811 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1812 i915_fbc_fc_get, i915_fbc_fc_set,
1813 "%llu\n");
1814
1815 static int i915_ips_status(struct seq_file *m, void *unused)
1816 {
1817 struct drm_info_node *node = m->private;
1818 struct drm_device *dev = node->minor->dev;
1819 struct drm_i915_private *dev_priv = to_i915(dev);
1820
1821 if (!HAS_IPS(dev)) {
1822 seq_puts(m, "not supported\n");
1823 return 0;
1824 }
1825
1826 intel_runtime_pm_get(dev_priv);
1827
1828 seq_printf(m, "Enabled by kernel parameter: %s\n",
1829 yesno(i915.enable_ips));
1830
1831 if (INTEL_INFO(dev)->gen >= 8) {
1832 seq_puts(m, "Currently: unknown\n");
1833 } else {
1834 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1835 seq_puts(m, "Currently: enabled\n");
1836 else
1837 seq_puts(m, "Currently: disabled\n");
1838 }
1839
1840 intel_runtime_pm_put(dev_priv);
1841
1842 return 0;
1843 }
1844
1845 static int i915_sr_status(struct seq_file *m, void *unused)
1846 {
1847 struct drm_info_node *node = m->private;
1848 struct drm_device *dev = node->minor->dev;
1849 struct drm_i915_private *dev_priv = to_i915(dev);
1850 bool sr_enabled = false;
1851
1852 intel_runtime_pm_get(dev_priv);
1853
1854 if (HAS_PCH_SPLIT(dev))
1855 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1856 else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1857 IS_I945G(dev) || IS_I945GM(dev))
1858 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1859 else if (IS_I915GM(dev))
1860 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1861 else if (IS_PINEVIEW(dev))
1862 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1863 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1864 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1865
1866 intel_runtime_pm_put(dev_priv);
1867
1868 seq_printf(m, "self-refresh: %s\n",
1869 sr_enabled ? "enabled" : "disabled");
1870
1871 return 0;
1872 }
1873
1874 static int i915_emon_status(struct seq_file *m, void *unused)
1875 {
1876 struct drm_info_node *node = m->private;
1877 struct drm_device *dev = node->minor->dev;
1878 struct drm_i915_private *dev_priv = to_i915(dev);
1879 unsigned long temp, chipset, gfx;
1880 int ret;
1881
1882 if (!IS_GEN5(dev))
1883 return -ENODEV;
1884
1885 ret = mutex_lock_interruptible(&dev->struct_mutex);
1886 if (ret)
1887 return ret;
1888
1889 temp = i915_mch_val(dev_priv);
1890 chipset = i915_chipset_val(dev_priv);
1891 gfx = i915_gfx_val(dev_priv);
1892 mutex_unlock(&dev->struct_mutex);
1893
1894 seq_printf(m, "GMCH temp: %ld\n", temp);
1895 seq_printf(m, "Chipset power: %ld\n", chipset);
1896 seq_printf(m, "GFX power: %ld\n", gfx);
1897 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1898
1899 return 0;
1900 }
1901
1902 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1903 {
1904 struct drm_info_node *node = m->private;
1905 struct drm_device *dev = node->minor->dev;
1906 struct drm_i915_private *dev_priv = to_i915(dev);
1907 int ret = 0;
1908 int gpu_freq, ia_freq;
1909 unsigned int max_gpu_freq, min_gpu_freq;
1910
1911 if (!HAS_CORE_RING_FREQ(dev)) {
1912 seq_puts(m, "unsupported on this chipset\n");
1913 return 0;
1914 }
1915
1916 intel_runtime_pm_get(dev_priv);
1917
1918 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1919 if (ret)
1920 goto out;
1921
1922 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1923 /* Convert GT frequency to 50 HZ units */
1924 min_gpu_freq =
1925 dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1926 max_gpu_freq =
1927 dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1928 } else {
1929 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1930 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1931 }
1932
1933 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1934
1935 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1936 ia_freq = gpu_freq;
1937 sandybridge_pcode_read(dev_priv,
1938 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1939 &ia_freq);
1940 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1941 intel_gpu_freq(dev_priv, (gpu_freq *
1942 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1943 GEN9_FREQ_SCALER : 1))),
1944 ((ia_freq >> 0) & 0xff) * 100,
1945 ((ia_freq >> 8) & 0xff) * 100);
1946 }
1947
1948 mutex_unlock(&dev_priv->rps.hw_lock);
1949
1950 out:
1951 intel_runtime_pm_put(dev_priv);
1952 return ret;
1953 }
1954
1955 static int i915_opregion(struct seq_file *m, void *unused)
1956 {
1957 struct drm_info_node *node = m->private;
1958 struct drm_device *dev = node->minor->dev;
1959 struct drm_i915_private *dev_priv = to_i915(dev);
1960 struct intel_opregion *opregion = &dev_priv->opregion;
1961 int ret;
1962
1963 ret = mutex_lock_interruptible(&dev->struct_mutex);
1964 if (ret)
1965 goto out;
1966
1967 if (opregion->header)
1968 seq_write(m, opregion->header, OPREGION_SIZE);
1969
1970 mutex_unlock(&dev->struct_mutex);
1971
1972 out:
1973 return 0;
1974 }
1975
1976 static int i915_vbt(struct seq_file *m, void *unused)
1977 {
1978 struct drm_info_node *node = m->private;
1979 struct drm_device *dev = node->minor->dev;
1980 struct drm_i915_private *dev_priv = to_i915(dev);
1981 struct intel_opregion *opregion = &dev_priv->opregion;
1982
1983 if (opregion->vbt)
1984 seq_write(m, opregion->vbt, opregion->vbt_size);
1985
1986 return 0;
1987 }
1988
1989 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1990 {
1991 struct drm_info_node *node = m->private;
1992 struct drm_device *dev = node->minor->dev;
1993 struct intel_framebuffer *fbdev_fb = NULL;
1994 struct drm_framebuffer *drm_fb;
1995 int ret;
1996
1997 ret = mutex_lock_interruptible(&dev->struct_mutex);
1998 if (ret)
1999 return ret;
2000
2001 #ifdef CONFIG_DRM_FBDEV_EMULATION
2002 if (to_i915(dev)->fbdev) {
2003 fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
2004
2005 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
2006 fbdev_fb->base.width,
2007 fbdev_fb->base.height,
2008 fbdev_fb->base.depth,
2009 fbdev_fb->base.bits_per_pixel,
2010 fbdev_fb->base.modifier[0],
2011 drm_framebuffer_read_refcount(&fbdev_fb->base));
2012 describe_obj(m, fbdev_fb->obj);
2013 seq_putc(m, '\n');
2014 }
2015 #endif
2016
2017 mutex_lock(&dev->mode_config.fb_lock);
2018 drm_for_each_fb(drm_fb, dev) {
2019 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
2020 if (fb == fbdev_fb)
2021 continue;
2022
2023 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
2024 fb->base.width,
2025 fb->base.height,
2026 fb->base.depth,
2027 fb->base.bits_per_pixel,
2028 fb->base.modifier[0],
2029 drm_framebuffer_read_refcount(&fb->base));
2030 describe_obj(m, fb->obj);
2031 seq_putc(m, '\n');
2032 }
2033 mutex_unlock(&dev->mode_config.fb_lock);
2034 mutex_unlock(&dev->struct_mutex);
2035
2036 return 0;
2037 }
2038
2039 static void describe_ctx_ringbuf(struct seq_file *m,
2040 struct intel_ringbuffer *ringbuf)
2041 {
2042 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
2043 ringbuf->space, ringbuf->head, ringbuf->tail,
2044 ringbuf->last_retired_head);
2045 }
2046
2047 static int i915_context_status(struct seq_file *m, void *unused)
2048 {
2049 struct drm_info_node *node = m->private;
2050 struct drm_device *dev = node->minor->dev;
2051 struct drm_i915_private *dev_priv = to_i915(dev);
2052 struct intel_engine_cs *engine;
2053 struct i915_gem_context *ctx;
2054 int ret;
2055
2056 ret = mutex_lock_interruptible(&dev->struct_mutex);
2057 if (ret)
2058 return ret;
2059
2060 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2061 seq_printf(m, "HW context %u ", ctx->hw_id);
2062 if (IS_ERR(ctx->file_priv)) {
2063 seq_puts(m, "(deleted) ");
2064 } else if (ctx->file_priv) {
2065 struct pid *pid = ctx->file_priv->file->pid;
2066 struct task_struct *task;
2067
2068 task = get_pid_task(pid, PIDTYPE_PID);
2069 if (task) {
2070 seq_printf(m, "(%s [%d]) ",
2071 task->comm, task->pid);
2072 put_task_struct(task);
2073 }
2074 } else {
2075 seq_puts(m, "(kernel) ");
2076 }
2077
2078 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
2079 seq_putc(m, '\n');
2080
2081 for_each_engine(engine, dev_priv) {
2082 struct intel_context *ce = &ctx->engine[engine->id];
2083
2084 seq_printf(m, "%s: ", engine->name);
2085 seq_putc(m, ce->initialised ? 'I' : 'i');
2086 if (ce->state)
2087 describe_obj(m, ce->state);
2088 if (ce->ring)
2089 describe_ctx_ringbuf(m, ce->ring);
2090 seq_putc(m, '\n');
2091 }
2092
2093 seq_putc(m, '\n');
2094 }
2095
2096 mutex_unlock(&dev->struct_mutex);
2097
2098 return 0;
2099 }
2100
2101 static void i915_dump_lrc_obj(struct seq_file *m,
2102 struct i915_gem_context *ctx,
2103 struct intel_engine_cs *engine)
2104 {
2105 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2106 struct page *page;
2107 uint32_t *reg_state;
2108 int j;
2109 unsigned long ggtt_offset = 0;
2110
2111 seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2112
2113 if (ctx_obj == NULL) {
2114 seq_puts(m, "\tNot allocated\n");
2115 return;
2116 }
2117
2118 if (!i915_gem_obj_ggtt_bound(ctx_obj))
2119 seq_puts(m, "\tNot bound in GGTT\n");
2120 else
2121 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2122
2123 if (i915_gem_object_get_pages(ctx_obj)) {
2124 seq_puts(m, "\tFailed to get pages for context object\n");
2125 return;
2126 }
2127
2128 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2129 if (!WARN_ON(page == NULL)) {
2130 reg_state = kmap_atomic(page);
2131
2132 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2133 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2134 ggtt_offset + 4096 + (j * 4),
2135 reg_state[j], reg_state[j + 1],
2136 reg_state[j + 2], reg_state[j + 3]);
2137 }
2138 kunmap_atomic(reg_state);
2139 }
2140
2141 seq_putc(m, '\n');
2142 }
2143
2144 static int i915_dump_lrc(struct seq_file *m, void *unused)
2145 {
2146 struct drm_info_node *node = (struct drm_info_node *) m->private;
2147 struct drm_device *dev = node->minor->dev;
2148 struct drm_i915_private *dev_priv = to_i915(dev);
2149 struct intel_engine_cs *engine;
2150 struct i915_gem_context *ctx;
2151 int ret;
2152
2153 if (!i915.enable_execlists) {
2154 seq_printf(m, "Logical Ring Contexts are disabled\n");
2155 return 0;
2156 }
2157
2158 ret = mutex_lock_interruptible(&dev->struct_mutex);
2159 if (ret)
2160 return ret;
2161
2162 list_for_each_entry(ctx, &dev_priv->context_list, link)
2163 for_each_engine(engine, dev_priv)
2164 i915_dump_lrc_obj(m, ctx, engine);
2165
2166 mutex_unlock(&dev->struct_mutex);
2167
2168 return 0;
2169 }
2170
2171 static int i915_execlists(struct seq_file *m, void *data)
2172 {
2173 struct drm_info_node *node = (struct drm_info_node *)m->private;
2174 struct drm_device *dev = node->minor->dev;
2175 struct drm_i915_private *dev_priv = to_i915(dev);
2176 struct intel_engine_cs *engine;
2177 u32 status_pointer;
2178 u8 read_pointer;
2179 u8 write_pointer;
2180 u32 status;
2181 u32 ctx_id;
2182 struct list_head *cursor;
2183 int i, ret;
2184
2185 if (!i915.enable_execlists) {
2186 seq_puts(m, "Logical Ring Contexts are disabled\n");
2187 return 0;
2188 }
2189
2190 ret = mutex_lock_interruptible(&dev->struct_mutex);
2191 if (ret)
2192 return ret;
2193
2194 intel_runtime_pm_get(dev_priv);
2195
2196 for_each_engine(engine, dev_priv) {
2197 struct drm_i915_gem_request *head_req = NULL;
2198 int count = 0;
2199
2200 seq_printf(m, "%s\n", engine->name);
2201
2202 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2203 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2204 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2205 status, ctx_id);
2206
2207 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2208 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2209
2210 read_pointer = engine->next_context_status_buffer;
2211 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2212 if (read_pointer > write_pointer)
2213 write_pointer += GEN8_CSB_ENTRIES;
2214 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2215 read_pointer, write_pointer);
2216
2217 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2218 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2219 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2220
2221 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2222 i, status, ctx_id);
2223 }
2224
2225 spin_lock_bh(&engine->execlist_lock);
2226 list_for_each(cursor, &engine->execlist_queue)
2227 count++;
2228 head_req = list_first_entry_or_null(&engine->execlist_queue,
2229 struct drm_i915_gem_request,
2230 execlist_link);
2231 spin_unlock_bh(&engine->execlist_lock);
2232
2233 seq_printf(m, "\t%d requests in queue\n", count);
2234 if (head_req) {
2235 seq_printf(m, "\tHead request context: %u\n",
2236 head_req->ctx->hw_id);
2237 seq_printf(m, "\tHead request tail: %u\n",
2238 head_req->tail);
2239 }
2240
2241 seq_putc(m, '\n');
2242 }
2243
2244 intel_runtime_pm_put(dev_priv);
2245 mutex_unlock(&dev->struct_mutex);
2246
2247 return 0;
2248 }
2249
2250 static const char *swizzle_string(unsigned swizzle)
2251 {
2252 switch (swizzle) {
2253 case I915_BIT_6_SWIZZLE_NONE:
2254 return "none";
2255 case I915_BIT_6_SWIZZLE_9:
2256 return "bit9";
2257 case I915_BIT_6_SWIZZLE_9_10:
2258 return "bit9/bit10";
2259 case I915_BIT_6_SWIZZLE_9_11:
2260 return "bit9/bit11";
2261 case I915_BIT_6_SWIZZLE_9_10_11:
2262 return "bit9/bit10/bit11";
2263 case I915_BIT_6_SWIZZLE_9_17:
2264 return "bit9/bit17";
2265 case I915_BIT_6_SWIZZLE_9_10_17:
2266 return "bit9/bit10/bit17";
2267 case I915_BIT_6_SWIZZLE_UNKNOWN:
2268 return "unknown";
2269 }
2270
2271 return "bug";
2272 }
2273
2274 static int i915_swizzle_info(struct seq_file *m, void *data)
2275 {
2276 struct drm_info_node *node = m->private;
2277 struct drm_device *dev = node->minor->dev;
2278 struct drm_i915_private *dev_priv = to_i915(dev);
2279 int ret;
2280
2281 ret = mutex_lock_interruptible(&dev->struct_mutex);
2282 if (ret)
2283 return ret;
2284 intel_runtime_pm_get(dev_priv);
2285
2286 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2287 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2288 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2289 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2290
2291 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2292 seq_printf(m, "DDC = 0x%08x\n",
2293 I915_READ(DCC));
2294 seq_printf(m, "DDC2 = 0x%08x\n",
2295 I915_READ(DCC2));
2296 seq_printf(m, "C0DRB3 = 0x%04x\n",
2297 I915_READ16(C0DRB3));
2298 seq_printf(m, "C1DRB3 = 0x%04x\n",
2299 I915_READ16(C1DRB3));
2300 } else if (INTEL_INFO(dev)->gen >= 6) {
2301 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2302 I915_READ(MAD_DIMM_C0));
2303 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2304 I915_READ(MAD_DIMM_C1));
2305 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2306 I915_READ(MAD_DIMM_C2));
2307 seq_printf(m, "TILECTL = 0x%08x\n",
2308 I915_READ(TILECTL));
2309 if (INTEL_INFO(dev)->gen >= 8)
2310 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2311 I915_READ(GAMTARBMODE));
2312 else
2313 seq_printf(m, "ARB_MODE = 0x%08x\n",
2314 I915_READ(ARB_MODE));
2315 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2316 I915_READ(DISP_ARB_CTL));
2317 }
2318
2319 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2320 seq_puts(m, "L-shaped memory detected\n");
2321
2322 intel_runtime_pm_put(dev_priv);
2323 mutex_unlock(&dev->struct_mutex);
2324
2325 return 0;
2326 }
2327
2328 static int per_file_ctx(int id, void *ptr, void *data)
2329 {
2330 struct i915_gem_context *ctx = ptr;
2331 struct seq_file *m = data;
2332 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2333
2334 if (!ppgtt) {
2335 seq_printf(m, " no ppgtt for context %d\n",
2336 ctx->user_handle);
2337 return 0;
2338 }
2339
2340 if (i915_gem_context_is_default(ctx))
2341 seq_puts(m, " default context:\n");
2342 else
2343 seq_printf(m, " context %d:\n", ctx->user_handle);
2344 ppgtt->debug_dump(ppgtt, m);
2345
2346 return 0;
2347 }
2348
2349 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2350 {
2351 struct drm_i915_private *dev_priv = to_i915(dev);
2352 struct intel_engine_cs *engine;
2353 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2354 int i;
2355
2356 if (!ppgtt)
2357 return;
2358
2359 for_each_engine(engine, dev_priv) {
2360 seq_printf(m, "%s\n", engine->name);
2361 for (i = 0; i < 4; i++) {
2362 u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2363 pdp <<= 32;
2364 pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2365 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2366 }
2367 }
2368 }
2369
2370 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2371 {
2372 struct drm_i915_private *dev_priv = to_i915(dev);
2373 struct intel_engine_cs *engine;
2374
2375 if (IS_GEN6(dev_priv))
2376 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2377
2378 for_each_engine(engine, dev_priv) {
2379 seq_printf(m, "%s\n", engine->name);
2380 if (IS_GEN7(dev_priv))
2381 seq_printf(m, "GFX_MODE: 0x%08x\n",
2382 I915_READ(RING_MODE_GEN7(engine)));
2383 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2384 I915_READ(RING_PP_DIR_BASE(engine)));
2385 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2386 I915_READ(RING_PP_DIR_BASE_READ(engine)));
2387 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2388 I915_READ(RING_PP_DIR_DCLV(engine)));
2389 }
2390 if (dev_priv->mm.aliasing_ppgtt) {
2391 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2392
2393 seq_puts(m, "aliasing PPGTT:\n");
2394 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2395
2396 ppgtt->debug_dump(ppgtt, m);
2397 }
2398
2399 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2400 }
2401
2402 static int i915_ppgtt_info(struct seq_file *m, void *data)
2403 {
2404 struct drm_info_node *node = m->private;
2405 struct drm_device *dev = node->minor->dev;
2406 struct drm_i915_private *dev_priv = to_i915(dev);
2407 struct drm_file *file;
2408
2409 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2410 if (ret)
2411 return ret;
2412 intel_runtime_pm_get(dev_priv);
2413
2414 if (INTEL_INFO(dev)->gen >= 8)
2415 gen8_ppgtt_info(m, dev);
2416 else if (INTEL_INFO(dev)->gen >= 6)
2417 gen6_ppgtt_info(m, dev);
2418
2419 mutex_lock(&dev->filelist_mutex);
2420 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2421 struct drm_i915_file_private *file_priv = file->driver_priv;
2422 struct task_struct *task;
2423
2424 task = get_pid_task(file->pid, PIDTYPE_PID);
2425 if (!task) {
2426 ret = -ESRCH;
2427 goto out_unlock;
2428 }
2429 seq_printf(m, "\nproc: %s\n", task->comm);
2430 put_task_struct(task);
2431 idr_for_each(&file_priv->context_idr, per_file_ctx,
2432 (void *)(unsigned long)m);
2433 }
2434 out_unlock:
2435 mutex_unlock(&dev->filelist_mutex);
2436
2437 intel_runtime_pm_put(dev_priv);
2438 mutex_unlock(&dev->struct_mutex);
2439
2440 return ret;
2441 }
2442
2443 static int count_irq_waiters(struct drm_i915_private *i915)
2444 {
2445 struct intel_engine_cs *engine;
2446 int count = 0;
2447
2448 for_each_engine(engine, i915)
2449 count += intel_engine_has_waiter(engine);
2450
2451 return count;
2452 }
2453
2454 static int i915_rps_boost_info(struct seq_file *m, void *data)
2455 {
2456 struct drm_info_node *node = m->private;
2457 struct drm_device *dev = node->minor->dev;
2458 struct drm_i915_private *dev_priv = to_i915(dev);
2459 struct drm_file *file;
2460
2461 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2462 seq_printf(m, "GPU busy? %s [%x]\n",
2463 yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
2464 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2465 seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2466 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2467 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2468 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2469 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2470 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2471
2472 mutex_lock(&dev->filelist_mutex);
2473 spin_lock(&dev_priv->rps.client_lock);
2474 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2475 struct drm_i915_file_private *file_priv = file->driver_priv;
2476 struct task_struct *task;
2477
2478 rcu_read_lock();
2479 task = pid_task(file->pid, PIDTYPE_PID);
2480 seq_printf(m, "%s [%d]: %d boosts%s\n",
2481 task ? task->comm : "<unknown>",
2482 task ? task->pid : -1,
2483 file_priv->rps.boosts,
2484 list_empty(&file_priv->rps.link) ? "" : ", active");
2485 rcu_read_unlock();
2486 }
2487 seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2488 spin_unlock(&dev_priv->rps.client_lock);
2489 mutex_unlock(&dev->filelist_mutex);
2490
2491 return 0;
2492 }
2493
2494 static int i915_llc(struct seq_file *m, void *data)
2495 {
2496 struct drm_info_node *node = m->private;
2497 struct drm_device *dev = node->minor->dev;
2498 struct drm_i915_private *dev_priv = to_i915(dev);
2499 const bool edram = INTEL_GEN(dev_priv) > 8;
2500
2501 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2502 seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2503 intel_uncore_edram_size(dev_priv)/1024/1024);
2504
2505 return 0;
2506 }
2507
2508 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2509 {
2510 struct drm_info_node *node = m->private;
2511 struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
2512 struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2513 u32 tmp, i;
2514
2515 if (!HAS_GUC_UCODE(dev_priv))
2516 return 0;
2517
2518 seq_printf(m, "GuC firmware status:\n");
2519 seq_printf(m, "\tpath: %s\n",
2520 guc_fw->guc_fw_path);
2521 seq_printf(m, "\tfetch: %s\n",
2522 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2523 seq_printf(m, "\tload: %s\n",
2524 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2525 seq_printf(m, "\tversion wanted: %d.%d\n",
2526 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2527 seq_printf(m, "\tversion found: %d.%d\n",
2528 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2529 seq_printf(m, "\theader: offset is %d; size = %d\n",
2530 guc_fw->header_offset, guc_fw->header_size);
2531 seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2532 guc_fw->ucode_offset, guc_fw->ucode_size);
2533 seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2534 guc_fw->rsa_offset, guc_fw->rsa_size);
2535
2536 tmp = I915_READ(GUC_STATUS);
2537
2538 seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2539 seq_printf(m, "\tBootrom status = 0x%x\n",
2540 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2541 seq_printf(m, "\tuKernel status = 0x%x\n",
2542 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2543 seq_printf(m, "\tMIA Core status = 0x%x\n",
2544 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2545 seq_puts(m, "\nScratch registers:\n");
2546 for (i = 0; i < 16; i++)
2547 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2548
2549 return 0;
2550 }
2551
2552 static void i915_guc_client_info(struct seq_file *m,
2553 struct drm_i915_private *dev_priv,
2554 struct i915_guc_client *client)
2555 {
2556 struct intel_engine_cs *engine;
2557 uint64_t tot = 0;
2558
2559 seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2560 client->priority, client->ctx_index, client->proc_desc_offset);
2561 seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2562 client->doorbell_id, client->doorbell_offset, client->cookie);
2563 seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2564 client->wq_size, client->wq_offset, client->wq_tail);
2565
2566 seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2567 seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2568 seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2569 seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2570
2571 for_each_engine(engine, dev_priv) {
2572 seq_printf(m, "\tSubmissions: %llu %s\n",
2573 client->submissions[engine->id],
2574 engine->name);
2575 tot += client->submissions[engine->id];
2576 }
2577 seq_printf(m, "\tTotal: %llu\n", tot);
2578 }
2579
2580 static int i915_guc_info(struct seq_file *m, void *data)
2581 {
2582 struct drm_info_node *node = m->private;
2583 struct drm_device *dev = node->minor->dev;
2584 struct drm_i915_private *dev_priv = to_i915(dev);
2585 struct intel_guc guc;
2586 struct i915_guc_client client = {};
2587 struct intel_engine_cs *engine;
2588 u64 total = 0;
2589
2590 if (!HAS_GUC_SCHED(dev_priv))
2591 return 0;
2592
2593 if (mutex_lock_interruptible(&dev->struct_mutex))
2594 return 0;
2595
2596 /* Take a local copy of the GuC data, so we can dump it at leisure */
2597 guc = dev_priv->guc;
2598 if (guc.execbuf_client)
2599 client = *guc.execbuf_client;
2600
2601 mutex_unlock(&dev->struct_mutex);
2602
2603 seq_printf(m, "Doorbell map:\n");
2604 seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2605 seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2606
2607 seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2608 seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2609 seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2610 seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2611 seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2612
2613 seq_printf(m, "\nGuC submissions:\n");
2614 for_each_engine(engine, dev_priv) {
2615 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2616 engine->name, guc.submissions[engine->id],
2617 guc.last_seqno[engine->id]);
2618 total += guc.submissions[engine->id];
2619 }
2620 seq_printf(m, "\t%s: %llu\n", "Total", total);
2621
2622 seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2623 i915_guc_client_info(m, dev_priv, &client);
2624
2625 /* Add more as required ... */
2626
2627 return 0;
2628 }
2629
2630 static int i915_guc_log_dump(struct seq_file *m, void *data)
2631 {
2632 struct drm_info_node *node = m->private;
2633 struct drm_device *dev = node->minor->dev;
2634 struct drm_i915_private *dev_priv = to_i915(dev);
2635 struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2636 u32 *log;
2637 int i = 0, pg;
2638
2639 if (!log_obj)
2640 return 0;
2641
2642 for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2643 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2644
2645 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2646 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2647 *(log + i), *(log + i + 1),
2648 *(log + i + 2), *(log + i + 3));
2649
2650 kunmap_atomic(log);
2651 }
2652
2653 seq_putc(m, '\n');
2654
2655 return 0;
2656 }
2657
2658 static int i915_edp_psr_status(struct seq_file *m, void *data)
2659 {
2660 struct drm_info_node *node = m->private;
2661 struct drm_device *dev = node->minor->dev;
2662 struct drm_i915_private *dev_priv = to_i915(dev);
2663 u32 psrperf = 0;
2664 u32 stat[3];
2665 enum pipe pipe;
2666 bool enabled = false;
2667
2668 if (!HAS_PSR(dev)) {
2669 seq_puts(m, "PSR not supported\n");
2670 return 0;
2671 }
2672
2673 intel_runtime_pm_get(dev_priv);
2674
2675 mutex_lock(&dev_priv->psr.lock);
2676 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2677 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2678 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2679 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2680 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2681 dev_priv->psr.busy_frontbuffer_bits);
2682 seq_printf(m, "Re-enable work scheduled: %s\n",
2683 yesno(work_busy(&dev_priv->psr.work.work)));
2684
2685 if (HAS_DDI(dev))
2686 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2687 else {
2688 for_each_pipe(dev_priv, pipe) {
2689 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2690 VLV_EDP_PSR_CURR_STATE_MASK;
2691 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2692 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2693 enabled = true;
2694 }
2695 }
2696
2697 seq_printf(m, "Main link in standby mode: %s\n",
2698 yesno(dev_priv->psr.link_standby));
2699
2700 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2701
2702 if (!HAS_DDI(dev))
2703 for_each_pipe(dev_priv, pipe) {
2704 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2705 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2706 seq_printf(m, " pipe %c", pipe_name(pipe));
2707 }
2708 seq_puts(m, "\n");
2709
2710 /*
2711 * VLV/CHV PSR has no kind of performance counter
2712 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2713 */
2714 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2715 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2716 EDP_PSR_PERF_CNT_MASK;
2717
2718 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2719 }
2720 mutex_unlock(&dev_priv->psr.lock);
2721
2722 intel_runtime_pm_put(dev_priv);
2723 return 0;
2724 }
2725
2726 static int i915_sink_crc(struct seq_file *m, void *data)
2727 {
2728 struct drm_info_node *node = m->private;
2729 struct drm_device *dev = node->minor->dev;
2730 struct intel_connector *connector;
2731 struct intel_dp *intel_dp = NULL;
2732 int ret;
2733 u8 crc[6];
2734
2735 drm_modeset_lock_all(dev);
2736 for_each_intel_connector(dev, connector) {
2737 struct drm_crtc *crtc;
2738
2739 if (!connector->base.state->best_encoder)
2740 continue;
2741
2742 crtc = connector->base.state->crtc;
2743 if (!crtc->state->active)
2744 continue;
2745
2746 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2747 continue;
2748
2749 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2750
2751 ret = intel_dp_sink_crc(intel_dp, crc);
2752 if (ret)
2753 goto out;
2754
2755 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2756 crc[0], crc[1], crc[2],
2757 crc[3], crc[4], crc[5]);
2758 goto out;
2759 }
2760 ret = -ENODEV;
2761 out:
2762 drm_modeset_unlock_all(dev);
2763 return ret;
2764 }
2765
2766 static int i915_energy_uJ(struct seq_file *m, void *data)
2767 {
2768 struct drm_info_node *node = m->private;
2769 struct drm_device *dev = node->minor->dev;
2770 struct drm_i915_private *dev_priv = to_i915(dev);
2771 u64 power;
2772 u32 units;
2773
2774 if (INTEL_INFO(dev)->gen < 6)
2775 return -ENODEV;
2776
2777 intel_runtime_pm_get(dev_priv);
2778
2779 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2780 power = (power & 0x1f00) >> 8;
2781 units = 1000000 / (1 << power); /* convert to uJ */
2782 power = I915_READ(MCH_SECP_NRG_STTS);
2783 power *= units;
2784
2785 intel_runtime_pm_put(dev_priv);
2786
2787 seq_printf(m, "%llu", (long long unsigned)power);
2788
2789 return 0;
2790 }
2791
2792 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2793 {
2794 struct drm_info_node *node = m->private;
2795 struct drm_device *dev = node->minor->dev;
2796 struct drm_i915_private *dev_priv = to_i915(dev);
2797
2798 if (!HAS_RUNTIME_PM(dev_priv))
2799 seq_puts(m, "Runtime power management not supported\n");
2800
2801 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2802 seq_printf(m, "IRQs disabled: %s\n",
2803 yesno(!intel_irqs_enabled(dev_priv)));
2804 #ifdef CONFIG_PM
2805 seq_printf(m, "Usage count: %d\n",
2806 atomic_read(&dev->dev->power.usage_count));
2807 #else
2808 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2809 #endif
2810 seq_printf(m, "PCI device power state: %s [%d]\n",
2811 pci_power_name(dev_priv->drm.pdev->current_state),
2812 dev_priv->drm.pdev->current_state);
2813
2814 return 0;
2815 }
2816
2817 static int i915_power_domain_info(struct seq_file *m, void *unused)
2818 {
2819 struct drm_info_node *node = m->private;
2820 struct drm_device *dev = node->minor->dev;
2821 struct drm_i915_private *dev_priv = to_i915(dev);
2822 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2823 int i;
2824
2825 mutex_lock(&power_domains->lock);
2826
2827 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2828 for (i = 0; i < power_domains->power_well_count; i++) {
2829 struct i915_power_well *power_well;
2830 enum intel_display_power_domain power_domain;
2831
2832 power_well = &power_domains->power_wells[i];
2833 seq_printf(m, "%-25s %d\n", power_well->name,
2834 power_well->count);
2835
2836 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2837 power_domain++) {
2838 if (!(BIT(power_domain) & power_well->domains))
2839 continue;
2840
2841 seq_printf(m, " %-23s %d\n",
2842 intel_display_power_domain_str(power_domain),
2843 power_domains->domain_use_count[power_domain]);
2844 }
2845 }
2846
2847 mutex_unlock(&power_domains->lock);
2848
2849 return 0;
2850 }
2851
2852 static int i915_dmc_info(struct seq_file *m, void *unused)
2853 {
2854 struct drm_info_node *node = m->private;
2855 struct drm_device *dev = node->minor->dev;
2856 struct drm_i915_private *dev_priv = to_i915(dev);
2857 struct intel_csr *csr;
2858
2859 if (!HAS_CSR(dev)) {
2860 seq_puts(m, "not supported\n");
2861 return 0;
2862 }
2863
2864 csr = &dev_priv->csr;
2865
2866 intel_runtime_pm_get(dev_priv);
2867
2868 seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2869 seq_printf(m, "path: %s\n", csr->fw_path);
2870
2871 if (!csr->dmc_payload)
2872 goto out;
2873
2874 seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2875 CSR_VERSION_MINOR(csr->version));
2876
2877 if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2878 seq_printf(m, "DC3 -> DC5 count: %d\n",
2879 I915_READ(SKL_CSR_DC3_DC5_COUNT));
2880 seq_printf(m, "DC5 -> DC6 count: %d\n",
2881 I915_READ(SKL_CSR_DC5_DC6_COUNT));
2882 } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2883 seq_printf(m, "DC3 -> DC5 count: %d\n",
2884 I915_READ(BXT_CSR_DC3_DC5_COUNT));
2885 }
2886
2887 out:
2888 seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2889 seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2890 seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2891
2892 intel_runtime_pm_put(dev_priv);
2893
2894 return 0;
2895 }
2896
2897 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2898 struct drm_display_mode *mode)
2899 {
2900 int i;
2901
2902 for (i = 0; i < tabs; i++)
2903 seq_putc(m, '\t');
2904
2905 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2906 mode->base.id, mode->name,
2907 mode->vrefresh, mode->clock,
2908 mode->hdisplay, mode->hsync_start,
2909 mode->hsync_end, mode->htotal,
2910 mode->vdisplay, mode->vsync_start,
2911 mode->vsync_end, mode->vtotal,
2912 mode->type, mode->flags);
2913 }
2914
2915 static void intel_encoder_info(struct seq_file *m,
2916 struct intel_crtc *intel_crtc,
2917 struct intel_encoder *intel_encoder)
2918 {
2919 struct drm_info_node *node = m->private;
2920 struct drm_device *dev = node->minor->dev;
2921 struct drm_crtc *crtc = &intel_crtc->base;
2922 struct intel_connector *intel_connector;
2923 struct drm_encoder *encoder;
2924
2925 encoder = &intel_encoder->base;
2926 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2927 encoder->base.id, encoder->name);
2928 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2929 struct drm_connector *connector = &intel_connector->base;
2930 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2931 connector->base.id,
2932 connector->name,
2933 drm_get_connector_status_name(connector->status));
2934 if (connector->status == connector_status_connected) {
2935 struct drm_display_mode *mode = &crtc->mode;
2936 seq_printf(m, ", mode:\n");
2937 intel_seq_print_mode(m, 2, mode);
2938 } else {
2939 seq_putc(m, '\n');
2940 }
2941 }
2942 }
2943
2944 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2945 {
2946 struct drm_info_node *node = m->private;
2947 struct drm_device *dev = node->minor->dev;
2948 struct drm_crtc *crtc = &intel_crtc->base;
2949 struct intel_encoder *intel_encoder;
2950 struct drm_plane_state *plane_state = crtc->primary->state;
2951 struct drm_framebuffer *fb = plane_state->fb;
2952
2953 if (fb)
2954 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2955 fb->base.id, plane_state->src_x >> 16,
2956 plane_state->src_y >> 16, fb->width, fb->height);
2957 else
2958 seq_puts(m, "\tprimary plane disabled\n");
2959 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2960 intel_encoder_info(m, intel_crtc, intel_encoder);
2961 }
2962
2963 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2964 {
2965 struct drm_display_mode *mode = panel->fixed_mode;
2966
2967 seq_printf(m, "\tfixed mode:\n");
2968 intel_seq_print_mode(m, 2, mode);
2969 }
2970
2971 static void intel_dp_info(struct seq_file *m,
2972 struct intel_connector *intel_connector)
2973 {
2974 struct intel_encoder *intel_encoder = intel_connector->encoder;
2975 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2976
2977 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2978 seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2979 if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2980 intel_panel_info(m, &intel_connector->panel);
2981 }
2982
2983 static void intel_hdmi_info(struct seq_file *m,
2984 struct intel_connector *intel_connector)
2985 {
2986 struct intel_encoder *intel_encoder = intel_connector->encoder;
2987 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2988
2989 seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2990 }
2991
2992 static void intel_lvds_info(struct seq_file *m,
2993 struct intel_connector *intel_connector)
2994 {
2995 intel_panel_info(m, &intel_connector->panel);
2996 }
2997
2998 static void intel_connector_info(struct seq_file *m,
2999 struct drm_connector *connector)
3000 {
3001 struct intel_connector *intel_connector = to_intel_connector(connector);
3002 struct intel_encoder *intel_encoder = intel_connector->encoder;
3003 struct drm_display_mode *mode;
3004
3005 seq_printf(m, "connector %d: type %s, status: %s\n",
3006 connector->base.id, connector->name,
3007 drm_get_connector_status_name(connector->status));
3008 if (connector->status == connector_status_connected) {
3009 seq_printf(m, "\tname: %s\n", connector->display_info.name);
3010 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3011 connector->display_info.width_mm,
3012 connector->display_info.height_mm);
3013 seq_printf(m, "\tsubpixel order: %s\n",
3014 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3015 seq_printf(m, "\tCEA rev: %d\n",
3016 connector->display_info.cea_rev);
3017 }
3018
3019 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3020 return;
3021
3022 switch (connector->connector_type) {
3023 case DRM_MODE_CONNECTOR_DisplayPort:
3024 case DRM_MODE_CONNECTOR_eDP:
3025 intel_dp_info(m, intel_connector);
3026 break;
3027 case DRM_MODE_CONNECTOR_LVDS:
3028 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3029 intel_lvds_info(m, intel_connector);
3030 break;
3031 case DRM_MODE_CONNECTOR_HDMIA:
3032 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3033 intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3034 intel_hdmi_info(m, intel_connector);
3035 break;
3036 default:
3037 break;
3038 }
3039
3040 seq_printf(m, "\tmodes:\n");
3041 list_for_each_entry(mode, &connector->modes, head)
3042 intel_seq_print_mode(m, 2, mode);
3043 }
3044
3045 static bool cursor_active(struct drm_device *dev, int pipe)
3046 {
3047 struct drm_i915_private *dev_priv = to_i915(dev);
3048 u32 state;
3049
3050 if (IS_845G(dev) || IS_I865G(dev))
3051 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
3052 else
3053 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
3054
3055 return state;
3056 }
3057
3058 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
3059 {
3060 struct drm_i915_private *dev_priv = to_i915(dev);
3061 u32 pos;
3062
3063 pos = I915_READ(CURPOS(pipe));
3064
3065 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
3066 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
3067 *x = -*x;
3068
3069 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
3070 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3071 *y = -*y;
3072
3073 return cursor_active(dev, pipe);
3074 }
3075
3076 static const char *plane_type(enum drm_plane_type type)
3077 {
3078 switch (type) {
3079 case DRM_PLANE_TYPE_OVERLAY:
3080 return "OVL";
3081 case DRM_PLANE_TYPE_PRIMARY:
3082 return "PRI";
3083 case DRM_PLANE_TYPE_CURSOR:
3084 return "CUR";
3085 /*
3086 * Deliberately omitting default: to generate compiler warnings
3087 * when a new drm_plane_type gets added.
3088 */
3089 }
3090
3091 return "unknown";
3092 }
3093
3094 static const char *plane_rotation(unsigned int rotation)
3095 {
3096 static char buf[48];
3097 /*
3098 * According to doc only one DRM_ROTATE_ is allowed but this
3099 * will print them all to visualize if the values are misused
3100 */
3101 snprintf(buf, sizeof(buf),
3102 "%s%s%s%s%s%s(0x%08x)",
3103 (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3104 (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3105 (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3106 (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3107 (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3108 (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3109 rotation);
3110
3111 return buf;
3112 }
3113
3114 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3115 {
3116 struct drm_info_node *node = m->private;
3117 struct drm_device *dev = node->minor->dev;
3118 struct intel_plane *intel_plane;
3119
3120 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3121 struct drm_plane_state *state;
3122 struct drm_plane *plane = &intel_plane->base;
3123
3124 if (!plane->state) {
3125 seq_puts(m, "plane->state is NULL!\n");
3126 continue;
3127 }
3128
3129 state = plane->state;
3130
3131 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3132 plane->base.id,
3133 plane_type(intel_plane->base.type),
3134 state->crtc_x, state->crtc_y,
3135 state->crtc_w, state->crtc_h,
3136 (state->src_x >> 16),
3137 ((state->src_x & 0xffff) * 15625) >> 10,
3138 (state->src_y >> 16),
3139 ((state->src_y & 0xffff) * 15625) >> 10,
3140 (state->src_w >> 16),
3141 ((state->src_w & 0xffff) * 15625) >> 10,
3142 (state->src_h >> 16),
3143 ((state->src_h & 0xffff) * 15625) >> 10,
3144 state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3145 plane_rotation(state->rotation));
3146 }
3147 }
3148
3149 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3150 {
3151 struct intel_crtc_state *pipe_config;
3152 int num_scalers = intel_crtc->num_scalers;
3153 int i;
3154
3155 pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3156
3157 /* Not all platformas have a scaler */
3158 if (num_scalers) {
3159 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3160 num_scalers,
3161 pipe_config->scaler_state.scaler_users,
3162 pipe_config->scaler_state.scaler_id);
3163
3164 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3165 struct intel_scaler *sc =
3166 &pipe_config->scaler_state.scalers[i];
3167
3168 seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3169 i, yesno(sc->in_use), sc->mode);
3170 }
3171 seq_puts(m, "\n");
3172 } else {
3173 seq_puts(m, "\tNo scalers available on this platform\n");
3174 }
3175 }
3176
3177 static int i915_display_info(struct seq_file *m, void *unused)
3178 {
3179 struct drm_info_node *node = m->private;
3180 struct drm_device *dev = node->minor->dev;
3181 struct drm_i915_private *dev_priv = to_i915(dev);
3182 struct intel_crtc *crtc;
3183 struct drm_connector *connector;
3184
3185 intel_runtime_pm_get(dev_priv);
3186 drm_modeset_lock_all(dev);
3187 seq_printf(m, "CRTC info\n");
3188 seq_printf(m, "---------\n");
3189 for_each_intel_crtc(dev, crtc) {
3190 bool active;
3191 struct intel_crtc_state *pipe_config;
3192 int x, y;
3193
3194 pipe_config = to_intel_crtc_state(crtc->base.state);
3195
3196 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3197 crtc->base.base.id, pipe_name(crtc->pipe),
3198 yesno(pipe_config->base.active),
3199 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3200 yesno(pipe_config->dither), pipe_config->pipe_bpp);
3201
3202 if (pipe_config->base.active) {
3203 intel_crtc_info(m, crtc);
3204
3205 active = cursor_position(dev, crtc->pipe, &x, &y);
3206 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3207 yesno(crtc->cursor_base),
3208 x, y, crtc->base.cursor->state->crtc_w,
3209 crtc->base.cursor->state->crtc_h,
3210 crtc->cursor_addr, yesno(active));
3211 intel_scaler_info(m, crtc);
3212 intel_plane_info(m, crtc);
3213 }
3214
3215 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3216 yesno(!crtc->cpu_fifo_underrun_disabled),
3217 yesno(!crtc->pch_fifo_underrun_disabled));
3218 }
3219
3220 seq_printf(m, "\n");
3221 seq_printf(m, "Connector info\n");
3222 seq_printf(m, "--------------\n");
3223 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3224 intel_connector_info(m, connector);
3225 }
3226 drm_modeset_unlock_all(dev);
3227 intel_runtime_pm_put(dev_priv);
3228
3229 return 0;
3230 }
3231
3232 static int i915_semaphore_status(struct seq_file *m, void *unused)
3233 {
3234 struct drm_info_node *node = (struct drm_info_node *) m->private;
3235 struct drm_device *dev = node->minor->dev;
3236 struct drm_i915_private *dev_priv = to_i915(dev);
3237 struct intel_engine_cs *engine;
3238 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3239 enum intel_engine_id id;
3240 int j, ret;
3241
3242 if (!i915.semaphores) {
3243 seq_puts(m, "Semaphores are disabled\n");
3244 return 0;
3245 }
3246
3247 ret = mutex_lock_interruptible(&dev->struct_mutex);
3248 if (ret)
3249 return ret;
3250 intel_runtime_pm_get(dev_priv);
3251
3252 if (IS_BROADWELL(dev)) {
3253 struct page *page;
3254 uint64_t *seqno;
3255
3256 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3257
3258 seqno = (uint64_t *)kmap_atomic(page);
3259 for_each_engine_id(engine, dev_priv, id) {
3260 uint64_t offset;
3261
3262 seq_printf(m, "%s\n", engine->name);
3263
3264 seq_puts(m, " Last signal:");
3265 for (j = 0; j < num_rings; j++) {
3266 offset = id * I915_NUM_ENGINES + j;
3267 seq_printf(m, "0x%08llx (0x%02llx) ",
3268 seqno[offset], offset * 8);
3269 }
3270 seq_putc(m, '\n');
3271
3272 seq_puts(m, " Last wait: ");
3273 for (j = 0; j < num_rings; j++) {
3274 offset = id + (j * I915_NUM_ENGINES);
3275 seq_printf(m, "0x%08llx (0x%02llx) ",
3276 seqno[offset], offset * 8);
3277 }
3278 seq_putc(m, '\n');
3279
3280 }
3281 kunmap_atomic(seqno);
3282 } else {
3283 seq_puts(m, " Last signal:");
3284 for_each_engine(engine, dev_priv)
3285 for (j = 0; j < num_rings; j++)
3286 seq_printf(m, "0x%08x\n",
3287 I915_READ(engine->semaphore.mbox.signal[j]));
3288 seq_putc(m, '\n');
3289 }
3290
3291 seq_puts(m, "\nSync seqno:\n");
3292 for_each_engine(engine, dev_priv) {
3293 for (j = 0; j < num_rings; j++)
3294 seq_printf(m, " 0x%08x ",
3295 engine->semaphore.sync_seqno[j]);
3296 seq_putc(m, '\n');
3297 }
3298 seq_putc(m, '\n');
3299
3300 intel_runtime_pm_put(dev_priv);
3301 mutex_unlock(&dev->struct_mutex);
3302 return 0;
3303 }
3304
3305 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3306 {
3307 struct drm_info_node *node = (struct drm_info_node *) m->private;
3308 struct drm_device *dev = node->minor->dev;
3309 struct drm_i915_private *dev_priv = to_i915(dev);
3310 int i;
3311
3312 drm_modeset_lock_all(dev);
3313 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3314 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3315
3316 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3317 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3318 pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3319 seq_printf(m, " tracked hardware state:\n");
3320 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
3321 seq_printf(m, " dpll_md: 0x%08x\n",
3322 pll->config.hw_state.dpll_md);
3323 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
3324 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
3325 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
3326 }
3327 drm_modeset_unlock_all(dev);
3328
3329 return 0;
3330 }
3331
3332 static int i915_wa_registers(struct seq_file *m, void *unused)
3333 {
3334 int i;
3335 int ret;
3336 struct intel_engine_cs *engine;
3337 struct drm_info_node *node = (struct drm_info_node *) m->private;
3338 struct drm_device *dev = node->minor->dev;
3339 struct drm_i915_private *dev_priv = to_i915(dev);
3340 struct i915_workarounds *workarounds = &dev_priv->workarounds;
3341 enum intel_engine_id id;
3342
3343 ret = mutex_lock_interruptible(&dev->struct_mutex);
3344 if (ret)
3345 return ret;
3346
3347 intel_runtime_pm_get(dev_priv);
3348
3349 seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3350 for_each_engine_id(engine, dev_priv, id)
3351 seq_printf(m, "HW whitelist count for %s: %d\n",
3352 engine->name, workarounds->hw_whitelist_count[id]);
3353 for (i = 0; i < workarounds->count; ++i) {
3354 i915_reg_t addr;
3355 u32 mask, value, read;
3356 bool ok;
3357
3358 addr = workarounds->reg[i].addr;
3359 mask = workarounds->reg[i].mask;
3360 value = workarounds->reg[i].value;
3361 read = I915_READ(addr);
3362 ok = (value & mask) == (read & mask);
3363 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3364 i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3365 }
3366
3367 intel_runtime_pm_put(dev_priv);
3368 mutex_unlock(&dev->struct_mutex);
3369
3370 return 0;
3371 }
3372
3373 static int i915_ddb_info(struct seq_file *m, void *unused)
3374 {
3375 struct drm_info_node *node = m->private;
3376 struct drm_device *dev = node->minor->dev;
3377 struct drm_i915_private *dev_priv = to_i915(dev);
3378 struct skl_ddb_allocation *ddb;
3379 struct skl_ddb_entry *entry;
3380 enum pipe pipe;
3381 int plane;
3382
3383 if (INTEL_INFO(dev)->gen < 9)
3384 return 0;
3385
3386 drm_modeset_lock_all(dev);
3387
3388 ddb = &dev_priv->wm.skl_hw.ddb;
3389
3390 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3391
3392 for_each_pipe(dev_priv, pipe) {
3393 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3394
3395 for_each_plane(dev_priv, pipe, plane) {
3396 entry = &ddb->plane[pipe][plane];
3397 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
3398 entry->start, entry->end,
3399 skl_ddb_entry_size(entry));
3400 }
3401
3402 entry = &ddb->plane[pipe][PLANE_CURSOR];
3403 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
3404 entry->end, skl_ddb_entry_size(entry));
3405 }
3406
3407 drm_modeset_unlock_all(dev);
3408
3409 return 0;
3410 }
3411
3412 static void drrs_status_per_crtc(struct seq_file *m,
3413 struct drm_device *dev, struct intel_crtc *intel_crtc)
3414 {
3415 struct drm_i915_private *dev_priv = to_i915(dev);
3416 struct i915_drrs *drrs = &dev_priv->drrs;
3417 int vrefresh = 0;
3418 struct drm_connector *connector;
3419
3420 drm_for_each_connector(connector, dev) {
3421 if (connector->state->crtc != &intel_crtc->base)
3422 continue;
3423
3424 seq_printf(m, "%s:\n", connector->name);
3425 }
3426
3427 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3428 seq_puts(m, "\tVBT: DRRS_type: Static");
3429 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3430 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3431 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3432 seq_puts(m, "\tVBT: DRRS_type: None");
3433 else
3434 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3435
3436 seq_puts(m, "\n\n");
3437
3438 if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3439 struct intel_panel *panel;
3440
3441 mutex_lock(&drrs->mutex);
3442 /* DRRS Supported */
3443 seq_puts(m, "\tDRRS Supported: Yes\n");
3444
3445 /* disable_drrs() will make drrs->dp NULL */
3446 if (!drrs->dp) {
3447 seq_puts(m, "Idleness DRRS: Disabled");
3448 mutex_unlock(&drrs->mutex);
3449 return;
3450 }
3451
3452 panel = &drrs->dp->attached_connector->panel;
3453 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3454 drrs->busy_frontbuffer_bits);
3455
3456 seq_puts(m, "\n\t\t");
3457 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3458 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3459 vrefresh = panel->fixed_mode->vrefresh;
3460 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3461 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3462 vrefresh = panel->downclock_mode->vrefresh;
3463 } else {
3464 seq_printf(m, "DRRS_State: Unknown(%d)\n",
3465 drrs->refresh_rate_type);
3466 mutex_unlock(&drrs->mutex);
3467 return;
3468 }
3469 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3470
3471 seq_puts(m, "\n\t\t");
3472 mutex_unlock(&drrs->mutex);
3473 } else {
3474 /* DRRS not supported. Print the VBT parameter*/
3475 seq_puts(m, "\tDRRS Supported : No");
3476 }
3477 seq_puts(m, "\n");
3478 }
3479
3480 static int i915_drrs_status(struct seq_file *m, void *unused)
3481 {
3482 struct drm_info_node *node = m->private;
3483 struct drm_device *dev = node->minor->dev;
3484 struct intel_crtc *intel_crtc;
3485 int active_crtc_cnt = 0;
3486
3487 drm_modeset_lock_all(dev);
3488 for_each_intel_crtc(dev, intel_crtc) {
3489 if (intel_crtc->base.state->active) {
3490 active_crtc_cnt++;
3491 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
3492
3493 drrs_status_per_crtc(m, dev, intel_crtc);
3494 }
3495 }
3496 drm_modeset_unlock_all(dev);
3497
3498 if (!active_crtc_cnt)
3499 seq_puts(m, "No active crtc found\n");
3500
3501 return 0;
3502 }
3503
3504 struct pipe_crc_info {
3505 const char *name;
3506 struct drm_device *dev;
3507 enum pipe pipe;
3508 };
3509
3510 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3511 {
3512 struct drm_info_node *node = (struct drm_info_node *) m->private;
3513 struct drm_device *dev = node->minor->dev;
3514 struct intel_encoder *intel_encoder;
3515 struct intel_digital_port *intel_dig_port;
3516 struct drm_connector *connector;
3517
3518 drm_modeset_lock_all(dev);
3519 drm_for_each_connector(connector, dev) {
3520 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3521 continue;
3522
3523 intel_encoder = intel_attached_encoder(connector);
3524 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3525 continue;
3526
3527 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3528 if (!intel_dig_port->dp.can_mst)
3529 continue;
3530
3531 seq_printf(m, "MST Source Port %c\n",
3532 port_name(intel_dig_port->port));
3533 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3534 }
3535 drm_modeset_unlock_all(dev);
3536 return 0;
3537 }
3538
3539 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3540 {
3541 struct pipe_crc_info *info = inode->i_private;
3542 struct drm_i915_private *dev_priv = to_i915(info->dev);
3543 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3544
3545 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3546 return -ENODEV;
3547
3548 spin_lock_irq(&pipe_crc->lock);
3549
3550 if (pipe_crc->opened) {
3551 spin_unlock_irq(&pipe_crc->lock);
3552 return -EBUSY; /* already open */
3553 }
3554
3555 pipe_crc->opened = true;
3556 filep->private_data = inode->i_private;
3557
3558 spin_unlock_irq(&pipe_crc->lock);
3559
3560 return 0;
3561 }
3562
3563 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3564 {
3565 struct pipe_crc_info *info = inode->i_private;
3566 struct drm_i915_private *dev_priv = to_i915(info->dev);
3567 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3568
3569 spin_lock_irq(&pipe_crc->lock);
3570 pipe_crc->opened = false;
3571 spin_unlock_irq(&pipe_crc->lock);
3572
3573 return 0;
3574 }
3575
3576 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3577 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
3578 /* account for \'0' */
3579 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
3580
3581 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3582 {
3583 assert_spin_locked(&pipe_crc->lock);
3584 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3585 INTEL_PIPE_CRC_ENTRIES_NR);
3586 }
3587
3588 static ssize_t
3589 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3590 loff_t *pos)
3591 {
3592 struct pipe_crc_info *info = filep->private_data;
3593 struct drm_device *dev = info->dev;
3594 struct drm_i915_private *dev_priv = to_i915(dev);
3595 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3596 char buf[PIPE_CRC_BUFFER_LEN];
3597 int n_entries;
3598 ssize_t bytes_read;
3599
3600 /*
3601 * Don't allow user space to provide buffers not big enough to hold
3602 * a line of data.
3603 */
3604 if (count < PIPE_CRC_LINE_LEN)
3605 return -EINVAL;
3606
3607 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3608 return 0;
3609
3610 /* nothing to read */
3611 spin_lock_irq(&pipe_crc->lock);
3612 while (pipe_crc_data_count(pipe_crc) == 0) {
3613 int ret;
3614
3615 if (filep->f_flags & O_NONBLOCK) {
3616 spin_unlock_irq(&pipe_crc->lock);
3617 return -EAGAIN;
3618 }
3619
3620 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3621 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3622 if (ret) {
3623 spin_unlock_irq(&pipe_crc->lock);
3624 return ret;
3625 }
3626 }
3627
3628 /* We now have one or more entries to read */
3629 n_entries = count / PIPE_CRC_LINE_LEN;
3630
3631 bytes_read = 0;
3632 while (n_entries > 0) {
3633 struct intel_pipe_crc_entry *entry =
3634 &pipe_crc->entries[pipe_crc->tail];
3635 int ret;
3636
3637 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3638 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3639 break;
3640
3641 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3642 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3643
3644 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3645 "%8u %8x %8x %8x %8x %8x\n",
3646 entry->frame, entry->crc[0],
3647 entry->crc[1], entry->crc[2],
3648 entry->crc[3], entry->crc[4]);
3649
3650 spin_unlock_irq(&pipe_crc->lock);
3651
3652 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3653 if (ret == PIPE_CRC_LINE_LEN)
3654 return -EFAULT;
3655
3656 user_buf += PIPE_CRC_LINE_LEN;
3657 n_entries--;
3658
3659 spin_lock_irq(&pipe_crc->lock);
3660 }
3661
3662 spin_unlock_irq(&pipe_crc->lock);
3663
3664 return bytes_read;
3665 }
3666
3667 static const struct file_operations i915_pipe_crc_fops = {
3668 .owner = THIS_MODULE,
3669 .open = i915_pipe_crc_open,
3670 .read = i915_pipe_crc_read,
3671 .release = i915_pipe_crc_release,
3672 };
3673
3674 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3675 {
3676 .name = "i915_pipe_A_crc",
3677 .pipe = PIPE_A,
3678 },
3679 {
3680 .name = "i915_pipe_B_crc",
3681 .pipe = PIPE_B,
3682 },
3683 {
3684 .name = "i915_pipe_C_crc",
3685 .pipe = PIPE_C,
3686 },
3687 };
3688
3689 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3690 enum pipe pipe)
3691 {
3692 struct drm_device *dev = minor->dev;
3693 struct dentry *ent;
3694 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3695
3696 info->dev = dev;
3697 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3698 &i915_pipe_crc_fops);
3699 if (!ent)
3700 return -ENOMEM;
3701
3702 return drm_add_fake_info_node(minor, ent, info);
3703 }
3704
3705 static const char * const pipe_crc_sources[] = {
3706 "none",
3707 "plane1",
3708 "plane2",
3709 "pf",
3710 "pipe",
3711 "TV",
3712 "DP-B",
3713 "DP-C",
3714 "DP-D",
3715 "auto",
3716 };
3717
3718 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3719 {
3720 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3721 return pipe_crc_sources[source];
3722 }
3723
3724 static int display_crc_ctl_show(struct seq_file *m, void *data)
3725 {
3726 struct drm_device *dev = m->private;
3727 struct drm_i915_private *dev_priv = to_i915(dev);
3728 int i;
3729
3730 for (i = 0; i < I915_MAX_PIPES; i++)
3731 seq_printf(m, "%c %s\n", pipe_name(i),
3732 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3733
3734 return 0;
3735 }
3736
3737 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3738 {
3739 struct drm_device *dev = inode->i_private;
3740
3741 return single_open(file, display_crc_ctl_show, dev);
3742 }
3743
3744 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3745 uint32_t *val)
3746 {
3747 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3748 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3749
3750 switch (*source) {
3751 case INTEL_PIPE_CRC_SOURCE_PIPE:
3752 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3753 break;
3754 case INTEL_PIPE_CRC_SOURCE_NONE:
3755 *val = 0;
3756 break;
3757 default:
3758 return -EINVAL;
3759 }
3760
3761 return 0;
3762 }
3763
3764 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3765 enum intel_pipe_crc_source *source)
3766 {
3767 struct intel_encoder *encoder;
3768 struct intel_crtc *crtc;
3769 struct intel_digital_port *dig_port;
3770 int ret = 0;
3771
3772 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3773
3774 drm_modeset_lock_all(dev);
3775 for_each_intel_encoder(dev, encoder) {
3776 if (!encoder->base.crtc)
3777 continue;
3778
3779 crtc = to_intel_crtc(encoder->base.crtc);
3780
3781 if (crtc->pipe != pipe)
3782 continue;
3783
3784 switch (encoder->type) {
3785 case INTEL_OUTPUT_TVOUT:
3786 *source = INTEL_PIPE_CRC_SOURCE_TV;
3787 break;
3788 case INTEL_OUTPUT_DP:
3789 case INTEL_OUTPUT_EDP:
3790 dig_port = enc_to_dig_port(&encoder->base);
3791 switch (dig_port->port) {
3792 case PORT_B:
3793 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3794 break;
3795 case PORT_C:
3796 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3797 break;
3798 case PORT_D:
3799 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3800 break;
3801 default:
3802 WARN(1, "nonexisting DP port %c\n",
3803 port_name(dig_port->port));
3804 break;
3805 }
3806 break;
3807 default:
3808 break;
3809 }
3810 }
3811 drm_modeset_unlock_all(dev);
3812
3813 return ret;
3814 }
3815
3816 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3817 enum pipe pipe,
3818 enum intel_pipe_crc_source *source,
3819 uint32_t *val)
3820 {
3821 struct drm_i915_private *dev_priv = to_i915(dev);
3822 bool need_stable_symbols = false;
3823
3824 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3825 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3826 if (ret)
3827 return ret;
3828 }
3829
3830 switch (*source) {
3831 case INTEL_PIPE_CRC_SOURCE_PIPE:
3832 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3833 break;
3834 case INTEL_PIPE_CRC_SOURCE_DP_B:
3835 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3836 need_stable_symbols = true;
3837 break;
3838 case INTEL_PIPE_CRC_SOURCE_DP_C:
3839 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3840 need_stable_symbols = true;
3841 break;
3842 case INTEL_PIPE_CRC_SOURCE_DP_D:
3843 if (!IS_CHERRYVIEW(dev))
3844 return -EINVAL;
3845 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3846 need_stable_symbols = true;
3847 break;
3848 case INTEL_PIPE_CRC_SOURCE_NONE:
3849 *val = 0;
3850 break;
3851 default:
3852 return -EINVAL;
3853 }
3854
3855 /*
3856 * When the pipe CRC tap point is after the transcoders we need
3857 * to tweak symbol-level features to produce a deterministic series of
3858 * symbols for a given frame. We need to reset those features only once
3859 * a frame (instead of every nth symbol):
3860 * - DC-balance: used to ensure a better clock recovery from the data
3861 * link (SDVO)
3862 * - DisplayPort scrambling: used for EMI reduction
3863 */
3864 if (need_stable_symbols) {
3865 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3866
3867 tmp |= DC_BALANCE_RESET_VLV;
3868 switch (pipe) {
3869 case PIPE_A:
3870 tmp |= PIPE_A_SCRAMBLE_RESET;
3871 break;
3872 case PIPE_B:
3873 tmp |= PIPE_B_SCRAMBLE_RESET;
3874 break;
3875 case PIPE_C:
3876 tmp |= PIPE_C_SCRAMBLE_RESET;
3877 break;
3878 default:
3879 return -EINVAL;
3880 }
3881 I915_WRITE(PORT_DFT2_G4X, tmp);
3882 }
3883
3884 return 0;
3885 }
3886
3887 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3888 enum pipe pipe,
3889 enum intel_pipe_crc_source *source,
3890 uint32_t *val)
3891 {
3892 struct drm_i915_private *dev_priv = to_i915(dev);
3893 bool need_stable_symbols = false;
3894
3895 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3896 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3897 if (ret)
3898 return ret;
3899 }
3900
3901 switch (*source) {
3902 case INTEL_PIPE_CRC_SOURCE_PIPE:
3903 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3904 break;
3905 case INTEL_PIPE_CRC_SOURCE_TV:
3906 if (!SUPPORTS_TV(dev))
3907 return -EINVAL;
3908 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3909 break;
3910 case INTEL_PIPE_CRC_SOURCE_DP_B:
3911 if (!IS_G4X(dev))
3912 return -EINVAL;
3913 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3914 need_stable_symbols = true;
3915 break;
3916 case INTEL_PIPE_CRC_SOURCE_DP_C:
3917 if (!IS_G4X(dev))
3918 return -EINVAL;
3919 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3920 need_stable_symbols = true;
3921 break;
3922 case INTEL_PIPE_CRC_SOURCE_DP_D:
3923 if (!IS_G4X(dev))
3924 return -EINVAL;
3925 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3926 need_stable_symbols = true;
3927 break;
3928 case INTEL_PIPE_CRC_SOURCE_NONE:
3929 *val = 0;
3930 break;
3931 default:
3932 return -EINVAL;
3933 }
3934
3935 /*
3936 * When the pipe CRC tap point is after the transcoders we need
3937 * to tweak symbol-level features to produce a deterministic series of
3938 * symbols for a given frame. We need to reset those features only once
3939 * a frame (instead of every nth symbol):
3940 * - DC-balance: used to ensure a better clock recovery from the data
3941 * link (SDVO)
3942 * - DisplayPort scrambling: used for EMI reduction
3943 */
3944 if (need_stable_symbols) {
3945 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3946
3947 WARN_ON(!IS_G4X(dev));
3948
3949 I915_WRITE(PORT_DFT_I9XX,
3950 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3951
3952 if (pipe == PIPE_A)
3953 tmp |= PIPE_A_SCRAMBLE_RESET;
3954 else
3955 tmp |= PIPE_B_SCRAMBLE_RESET;
3956
3957 I915_WRITE(PORT_DFT2_G4X, tmp);
3958 }
3959
3960 return 0;
3961 }
3962
3963 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3964 enum pipe pipe)
3965 {
3966 struct drm_i915_private *dev_priv = to_i915(dev);
3967 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3968
3969 switch (pipe) {
3970 case PIPE_A:
3971 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3972 break;
3973 case PIPE_B:
3974 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3975 break;
3976 case PIPE_C:
3977 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3978 break;
3979 default:
3980 return;
3981 }
3982 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3983 tmp &= ~DC_BALANCE_RESET_VLV;
3984 I915_WRITE(PORT_DFT2_G4X, tmp);
3985
3986 }
3987
3988 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3989 enum pipe pipe)
3990 {
3991 struct drm_i915_private *dev_priv = to_i915(dev);
3992 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3993
3994 if (pipe == PIPE_A)
3995 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3996 else
3997 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3998 I915_WRITE(PORT_DFT2_G4X, tmp);
3999
4000 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
4001 I915_WRITE(PORT_DFT_I9XX,
4002 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
4003 }
4004 }
4005
4006 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
4007 uint32_t *val)
4008 {
4009 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4010 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
4011
4012 switch (*source) {
4013 case INTEL_PIPE_CRC_SOURCE_PLANE1:
4014 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
4015 break;
4016 case INTEL_PIPE_CRC_SOURCE_PLANE2:
4017 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
4018 break;
4019 case INTEL_PIPE_CRC_SOURCE_PIPE:
4020 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
4021 break;
4022 case INTEL_PIPE_CRC_SOURCE_NONE:
4023 *val = 0;
4024 break;
4025 default:
4026 return -EINVAL;
4027 }
4028
4029 return 0;
4030 }
4031
4032 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
4033 {
4034 struct drm_i915_private *dev_priv = to_i915(dev);
4035 struct intel_crtc *crtc =
4036 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
4037 struct intel_crtc_state *pipe_config;
4038 struct drm_atomic_state *state;
4039 int ret = 0;
4040
4041 drm_modeset_lock_all(dev);
4042 state = drm_atomic_state_alloc(dev);
4043 if (!state) {
4044 ret = -ENOMEM;
4045 goto out;
4046 }
4047
4048 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4049 pipe_config = intel_atomic_get_crtc_state(state, crtc);
4050 if (IS_ERR(pipe_config)) {
4051 ret = PTR_ERR(pipe_config);
4052 goto out;
4053 }
4054
4055 pipe_config->pch_pfit.force_thru = enable;
4056 if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4057 pipe_config->pch_pfit.enabled != enable)
4058 pipe_config->base.connectors_changed = true;
4059
4060 ret = drm_atomic_commit(state);
4061 out:
4062 drm_modeset_unlock_all(dev);
4063 WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4064 if (ret)
4065 drm_atomic_state_free(state);
4066 }
4067
4068 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
4069 enum pipe pipe,
4070 enum intel_pipe_crc_source *source,
4071 uint32_t *val)
4072 {
4073 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4074 *source = INTEL_PIPE_CRC_SOURCE_PF;
4075
4076 switch (*source) {
4077 case INTEL_PIPE_CRC_SOURCE_PLANE1:
4078 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4079 break;
4080 case INTEL_PIPE_CRC_SOURCE_PLANE2:
4081 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4082 break;
4083 case INTEL_PIPE_CRC_SOURCE_PF:
4084 if (IS_HASWELL(dev) && pipe == PIPE_A)
4085 hsw_trans_edp_pipe_A_crc_wa(dev, true);
4086
4087 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4088 break;
4089 case INTEL_PIPE_CRC_SOURCE_NONE:
4090 *val = 0;
4091 break;
4092 default:
4093 return -EINVAL;
4094 }
4095
4096 return 0;
4097 }
4098
4099 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4100 enum intel_pipe_crc_source source)
4101 {
4102 struct drm_i915_private *dev_priv = to_i915(dev);
4103 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4104 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4105 pipe));
4106 enum intel_display_power_domain power_domain;
4107 u32 val = 0; /* shut up gcc */
4108 int ret;
4109
4110 if (pipe_crc->source == source)
4111 return 0;
4112
4113 /* forbid changing the source without going back to 'none' */
4114 if (pipe_crc->source && source)
4115 return -EINVAL;
4116
4117 power_domain = POWER_DOMAIN_PIPE(pipe);
4118 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4119 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4120 return -EIO;
4121 }
4122
4123 if (IS_GEN2(dev))
4124 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4125 else if (INTEL_INFO(dev)->gen < 5)
4126 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4127 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4128 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4129 else if (IS_GEN5(dev) || IS_GEN6(dev))
4130 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4131 else
4132 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4133
4134 if (ret != 0)
4135 goto out;
4136
4137 /* none -> real source transition */
4138 if (source) {
4139 struct intel_pipe_crc_entry *entries;
4140
4141 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4142 pipe_name(pipe), pipe_crc_source_name(source));
4143
4144 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4145 sizeof(pipe_crc->entries[0]),
4146 GFP_KERNEL);
4147 if (!entries) {
4148 ret = -ENOMEM;
4149 goto out;
4150 }
4151
4152 /*
4153 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4154 * enabled and disabled dynamically based on package C states,
4155 * user space can't make reliable use of the CRCs, so let's just
4156 * completely disable it.
4157 */
4158 hsw_disable_ips(crtc);
4159
4160 spin_lock_irq(&pipe_crc->lock);
4161 kfree(pipe_crc->entries);
4162 pipe_crc->entries = entries;
4163 pipe_crc->head = 0;
4164 pipe_crc->tail = 0;
4165 spin_unlock_irq(&pipe_crc->lock);
4166 }
4167
4168 pipe_crc->source = source;
4169
4170 I915_WRITE(PIPE_CRC_CTL(pipe), val);
4171 POSTING_READ(PIPE_CRC_CTL(pipe));
4172
4173 /* real source -> none transition */
4174 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4175 struct intel_pipe_crc_entry *entries;
4176 struct intel_crtc *crtc =
4177 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4178
4179 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4180 pipe_name(pipe));
4181
4182 drm_modeset_lock(&crtc->base.mutex, NULL);
4183 if (crtc->base.state->active)
4184 intel_wait_for_vblank(dev, pipe);
4185 drm_modeset_unlock(&crtc->base.mutex);
4186
4187 spin_lock_irq(&pipe_crc->lock);
4188 entries = pipe_crc->entries;
4189 pipe_crc->entries = NULL;
4190 pipe_crc->head = 0;
4191 pipe_crc->tail = 0;
4192 spin_unlock_irq(&pipe_crc->lock);
4193
4194 kfree(entries);
4195
4196 if (IS_G4X(dev))
4197 g4x_undo_pipe_scramble_reset(dev, pipe);
4198 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4199 vlv_undo_pipe_scramble_reset(dev, pipe);
4200 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4201 hsw_trans_edp_pipe_A_crc_wa(dev, false);
4202
4203 hsw_enable_ips(crtc);
4204 }
4205
4206 ret = 0;
4207
4208 out:
4209 intel_display_power_put(dev_priv, power_domain);
4210
4211 return ret;
4212 }
4213
4214 /*
4215 * Parse pipe CRC command strings:
4216 * command: wsp* object wsp+ name wsp+ source wsp*
4217 * object: 'pipe'
4218 * name: (A | B | C)
4219 * source: (none | plane1 | plane2 | pf)
4220 * wsp: (#0x20 | #0x9 | #0xA)+
4221 *
4222 * eg.:
4223 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
4224 * "pipe A none" -> Stop CRC
4225 */
4226 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4227 {
4228 int n_words = 0;
4229
4230 while (*buf) {
4231 char *end;
4232
4233 /* skip leading white space */
4234 buf = skip_spaces(buf);
4235 if (!*buf)
4236 break; /* end of buffer */
4237
4238 /* find end of word */
4239 for (end = buf; *end && !isspace(*end); end++)
4240 ;
4241
4242 if (n_words == max_words) {
4243 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4244 max_words);
4245 return -EINVAL; /* ran out of words[] before bytes */
4246 }
4247
4248 if (*end)
4249 *end++ = '\0';
4250 words[n_words++] = buf;
4251 buf = end;
4252 }
4253
4254 return n_words;
4255 }
4256
4257 enum intel_pipe_crc_object {
4258 PIPE_CRC_OBJECT_PIPE,
4259 };
4260
4261 static const char * const pipe_crc_objects[] = {
4262 "pipe",
4263 };
4264
4265 static int
4266 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4267 {
4268 int i;
4269
4270 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4271 if (!strcmp(buf, pipe_crc_objects[i])) {
4272 *o = i;
4273 return 0;
4274 }
4275
4276 return -EINVAL;
4277 }
4278
4279 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4280 {
4281 const char name = buf[0];
4282
4283 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4284 return -EINVAL;
4285
4286 *pipe = name - 'A';
4287
4288 return 0;
4289 }
4290
4291 static int
4292 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4293 {
4294 int i;
4295
4296 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4297 if (!strcmp(buf, pipe_crc_sources[i])) {
4298 *s = i;
4299 return 0;
4300 }
4301
4302 return -EINVAL;
4303 }
4304
4305 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4306 {
4307 #define N_WORDS 3
4308 int n_words;
4309 char *words[N_WORDS];
4310 enum pipe pipe;
4311 enum intel_pipe_crc_object object;
4312 enum intel_pipe_crc_source source;
4313
4314 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4315 if (n_words != N_WORDS) {
4316 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4317 N_WORDS);
4318 return -EINVAL;
4319 }
4320
4321 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4322 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4323 return -EINVAL;
4324 }
4325
4326 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4327 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4328 return -EINVAL;
4329 }
4330
4331 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4332 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4333 return -EINVAL;
4334 }
4335
4336 return pipe_crc_set_source(dev, pipe, source);
4337 }
4338
4339 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4340 size_t len, loff_t *offp)
4341 {
4342 struct seq_file *m = file->private_data;
4343 struct drm_device *dev = m->private;
4344 char *tmpbuf;
4345 int ret;
4346
4347 if (len == 0)
4348 return 0;
4349
4350 if (len > PAGE_SIZE - 1) {
4351 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4352 PAGE_SIZE);
4353 return -E2BIG;
4354 }
4355
4356 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4357 if (!tmpbuf)
4358 return -ENOMEM;
4359
4360 if (copy_from_user(tmpbuf, ubuf, len)) {
4361 ret = -EFAULT;
4362 goto out;
4363 }
4364 tmpbuf[len] = '\0';
4365
4366 ret = display_crc_ctl_parse(dev, tmpbuf, len);
4367
4368 out:
4369 kfree(tmpbuf);
4370 if (ret < 0)
4371 return ret;
4372
4373 *offp += len;
4374 return len;
4375 }
4376
4377 static const struct file_operations i915_display_crc_ctl_fops = {
4378 .owner = THIS_MODULE,
4379 .open = display_crc_ctl_open,
4380 .read = seq_read,
4381 .llseek = seq_lseek,
4382 .release = single_release,
4383 .write = display_crc_ctl_write
4384 };
4385
4386 static ssize_t i915_displayport_test_active_write(struct file *file,
4387 const char __user *ubuf,
4388 size_t len, loff_t *offp)
4389 {
4390 char *input_buffer;
4391 int status = 0;
4392 struct drm_device *dev;
4393 struct drm_connector *connector;
4394 struct list_head *connector_list;
4395 struct intel_dp *intel_dp;
4396 int val = 0;
4397
4398 dev = ((struct seq_file *)file->private_data)->private;
4399
4400 connector_list = &dev->mode_config.connector_list;
4401
4402 if (len == 0)
4403 return 0;
4404
4405 input_buffer = kmalloc(len + 1, GFP_KERNEL);
4406 if (!input_buffer)
4407 return -ENOMEM;
4408
4409 if (copy_from_user(input_buffer, ubuf, len)) {
4410 status = -EFAULT;
4411 goto out;
4412 }
4413
4414 input_buffer[len] = '\0';
4415 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4416
4417 list_for_each_entry(connector, connector_list, head) {
4418
4419 if (connector->connector_type !=
4420 DRM_MODE_CONNECTOR_DisplayPort)
4421 continue;
4422
4423 if (connector->status == connector_status_connected &&
4424 connector->encoder != NULL) {
4425 intel_dp = enc_to_intel_dp(connector->encoder);
4426 status = kstrtoint(input_buffer, 10, &val);
4427 if (status < 0)
4428 goto out;
4429 DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4430 /* To prevent erroneous activation of the compliance
4431 * testing code, only accept an actual value of 1 here
4432 */
4433 if (val == 1)
4434 intel_dp->compliance_test_active = 1;
4435 else
4436 intel_dp->compliance_test_active = 0;
4437 }
4438 }
4439 out:
4440 kfree(input_buffer);
4441 if (status < 0)
4442 return status;
4443
4444 *offp += len;
4445 return len;
4446 }
4447
4448 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4449 {
4450 struct drm_device *dev = m->private;
4451 struct drm_connector *connector;
4452 struct list_head *connector_list = &dev->mode_config.connector_list;
4453 struct intel_dp *intel_dp;
4454
4455 list_for_each_entry(connector, connector_list, head) {
4456
4457 if (connector->connector_type !=
4458 DRM_MODE_CONNECTOR_DisplayPort)
4459 continue;
4460
4461 if (connector->status == connector_status_connected &&
4462 connector->encoder != NULL) {
4463 intel_dp = enc_to_intel_dp(connector->encoder);
4464 if (intel_dp->compliance_test_active)
4465 seq_puts(m, "1");
4466 else
4467 seq_puts(m, "0");
4468 } else
4469 seq_puts(m, "0");
4470 }
4471
4472 return 0;
4473 }
4474
4475 static int i915_displayport_test_active_open(struct inode *inode,
4476 struct file *file)
4477 {
4478 struct drm_device *dev = inode->i_private;
4479
4480 return single_open(file, i915_displayport_test_active_show, dev);
4481 }
4482
4483 static const struct file_operations i915_displayport_test_active_fops = {
4484 .owner = THIS_MODULE,
4485 .open = i915_displayport_test_active_open,
4486 .read = seq_read,
4487 .llseek = seq_lseek,
4488 .release = single_release,
4489 .write = i915_displayport_test_active_write
4490 };
4491
4492 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4493 {
4494 struct drm_device *dev = m->private;
4495 struct drm_connector *connector;
4496 struct list_head *connector_list = &dev->mode_config.connector_list;
4497 struct intel_dp *intel_dp;
4498
4499 list_for_each_entry(connector, connector_list, head) {
4500
4501 if (connector->connector_type !=
4502 DRM_MODE_CONNECTOR_DisplayPort)
4503 continue;
4504
4505 if (connector->status == connector_status_connected &&
4506 connector->encoder != NULL) {
4507 intel_dp = enc_to_intel_dp(connector->encoder);
4508 seq_printf(m, "%lx", intel_dp->compliance_test_data);
4509 } else
4510 seq_puts(m, "0");
4511 }
4512
4513 return 0;
4514 }
4515 static int i915_displayport_test_data_open(struct inode *inode,
4516 struct file *file)
4517 {
4518 struct drm_device *dev = inode->i_private;
4519
4520 return single_open(file, i915_displayport_test_data_show, dev);
4521 }
4522
4523 static const struct file_operations i915_displayport_test_data_fops = {
4524 .owner = THIS_MODULE,
4525 .open = i915_displayport_test_data_open,
4526 .read = seq_read,
4527 .llseek = seq_lseek,
4528 .release = single_release
4529 };
4530
4531 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4532 {
4533 struct drm_device *dev = m->private;
4534 struct drm_connector *connector;
4535 struct list_head *connector_list = &dev->mode_config.connector_list;
4536 struct intel_dp *intel_dp;
4537
4538 list_for_each_entry(connector, connector_list, head) {
4539
4540 if (connector->connector_type !=
4541 DRM_MODE_CONNECTOR_DisplayPort)
4542 continue;
4543
4544 if (connector->status == connector_status_connected &&
4545 connector->encoder != NULL) {
4546 intel_dp = enc_to_intel_dp(connector->encoder);
4547 seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4548 } else
4549 seq_puts(m, "0");
4550 }
4551
4552 return 0;
4553 }
4554
4555 static int i915_displayport_test_type_open(struct inode *inode,
4556 struct file *file)
4557 {
4558 struct drm_device *dev = inode->i_private;
4559
4560 return single_open(file, i915_displayport_test_type_show, dev);
4561 }
4562
4563 static const struct file_operations i915_displayport_test_type_fops = {
4564 .owner = THIS_MODULE,
4565 .open = i915_displayport_test_type_open,
4566 .read = seq_read,
4567 .llseek = seq_lseek,
4568 .release = single_release
4569 };
4570
4571 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4572 {
4573 struct drm_device *dev = m->private;
4574 int level;
4575 int num_levels;
4576
4577 if (IS_CHERRYVIEW(dev))
4578 num_levels = 3;
4579 else if (IS_VALLEYVIEW(dev))
4580 num_levels = 1;
4581 else
4582 num_levels = ilk_wm_max_level(dev) + 1;
4583
4584 drm_modeset_lock_all(dev);
4585
4586 for (level = 0; level < num_levels; level++) {
4587 unsigned int latency = wm[level];
4588
4589 /*
4590 * - WM1+ latency values in 0.5us units
4591 * - latencies are in us on gen9/vlv/chv
4592 */
4593 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4594 IS_CHERRYVIEW(dev))
4595 latency *= 10;
4596 else if (level > 0)
4597 latency *= 5;
4598
4599 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4600 level, wm[level], latency / 10, latency % 10);
4601 }
4602
4603 drm_modeset_unlock_all(dev);
4604 }
4605
4606 static int pri_wm_latency_show(struct seq_file *m, void *data)
4607 {
4608 struct drm_device *dev = m->private;
4609 struct drm_i915_private *dev_priv = to_i915(dev);
4610 const uint16_t *latencies;
4611
4612 if (INTEL_INFO(dev)->gen >= 9)
4613 latencies = dev_priv->wm.skl_latency;
4614 else
4615 latencies = to_i915(dev)->wm.pri_latency;
4616
4617 wm_latency_show(m, latencies);
4618
4619 return 0;
4620 }
4621
4622 static int spr_wm_latency_show(struct seq_file *m, void *data)
4623 {
4624 struct drm_device *dev = m->private;
4625 struct drm_i915_private *dev_priv = to_i915(dev);
4626 const uint16_t *latencies;
4627
4628 if (INTEL_INFO(dev)->gen >= 9)
4629 latencies = dev_priv->wm.skl_latency;
4630 else
4631 latencies = to_i915(dev)->wm.spr_latency;
4632
4633 wm_latency_show(m, latencies);
4634
4635 return 0;
4636 }
4637
4638 static int cur_wm_latency_show(struct seq_file *m, void *data)
4639 {
4640 struct drm_device *dev = m->private;
4641 struct drm_i915_private *dev_priv = to_i915(dev);
4642 const uint16_t *latencies;
4643
4644 if (INTEL_INFO(dev)->gen >= 9)
4645 latencies = dev_priv->wm.skl_latency;
4646 else
4647 latencies = to_i915(dev)->wm.cur_latency;
4648
4649 wm_latency_show(m, latencies);
4650
4651 return 0;
4652 }
4653
4654 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4655 {
4656 struct drm_device *dev = inode->i_private;
4657
4658 if (INTEL_INFO(dev)->gen < 5)
4659 return -ENODEV;
4660
4661 return single_open(file, pri_wm_latency_show, dev);
4662 }
4663
4664 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4665 {
4666 struct drm_device *dev = inode->i_private;
4667
4668 if (HAS_GMCH_DISPLAY(dev))
4669 return -ENODEV;
4670
4671 return single_open(file, spr_wm_latency_show, dev);
4672 }
4673
4674 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4675 {
4676 struct drm_device *dev = inode->i_private;
4677
4678 if (HAS_GMCH_DISPLAY(dev))
4679 return -ENODEV;
4680
4681 return single_open(file, cur_wm_latency_show, dev);
4682 }
4683
4684 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4685 size_t len, loff_t *offp, uint16_t wm[8])
4686 {
4687 struct seq_file *m = file->private_data;
4688 struct drm_device *dev = m->private;
4689 uint16_t new[8] = { 0 };
4690 int num_levels;
4691 int level;
4692 int ret;
4693 char tmp[32];
4694
4695 if (IS_CHERRYVIEW(dev))
4696 num_levels = 3;
4697 else if (IS_VALLEYVIEW(dev))
4698 num_levels = 1;
4699 else
4700 num_levels = ilk_wm_max_level(dev) + 1;
4701
4702 if (len >= sizeof(tmp))
4703 return -EINVAL;
4704
4705 if (copy_from_user(tmp, ubuf, len))
4706 return -EFAULT;
4707
4708 tmp[len] = '\0';
4709
4710 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4711 &new[0], &new[1], &new[2], &new[3],
4712 &new[4], &new[5], &new[6], &new[7]);
4713 if (ret != num_levels)
4714 return -EINVAL;
4715
4716 drm_modeset_lock_all(dev);
4717
4718 for (level = 0; level < num_levels; level++)
4719 wm[level] = new[level];
4720
4721 drm_modeset_unlock_all(dev);
4722
4723 return len;
4724 }
4725
4726
4727 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4728 size_t len, loff_t *offp)
4729 {
4730 struct seq_file *m = file->private_data;
4731 struct drm_device *dev = m->private;
4732 struct drm_i915_private *dev_priv = to_i915(dev);
4733 uint16_t *latencies;
4734
4735 if (INTEL_INFO(dev)->gen >= 9)
4736 latencies = dev_priv->wm.skl_latency;
4737 else
4738 latencies = to_i915(dev)->wm.pri_latency;
4739
4740 return wm_latency_write(file, ubuf, len, offp, latencies);
4741 }
4742
4743 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4744 size_t len, loff_t *offp)
4745 {
4746 struct seq_file *m = file->private_data;
4747 struct drm_device *dev = m->private;
4748 struct drm_i915_private *dev_priv = to_i915(dev);
4749 uint16_t *latencies;
4750
4751 if (INTEL_INFO(dev)->gen >= 9)
4752 latencies = dev_priv->wm.skl_latency;
4753 else
4754 latencies = to_i915(dev)->wm.spr_latency;
4755
4756 return wm_latency_write(file, ubuf, len, offp, latencies);
4757 }
4758
4759 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4760 size_t len, loff_t *offp)
4761 {
4762 struct seq_file *m = file->private_data;
4763 struct drm_device *dev = m->private;
4764 struct drm_i915_private *dev_priv = to_i915(dev);
4765 uint16_t *latencies;
4766
4767 if (INTEL_INFO(dev)->gen >= 9)
4768 latencies = dev_priv->wm.skl_latency;
4769 else
4770 latencies = to_i915(dev)->wm.cur_latency;
4771
4772 return wm_latency_write(file, ubuf, len, offp, latencies);
4773 }
4774
4775 static const struct file_operations i915_pri_wm_latency_fops = {
4776 .owner = THIS_MODULE,
4777 .open = pri_wm_latency_open,
4778 .read = seq_read,
4779 .llseek = seq_lseek,
4780 .release = single_release,
4781 .write = pri_wm_latency_write
4782 };
4783
4784 static const struct file_operations i915_spr_wm_latency_fops = {
4785 .owner = THIS_MODULE,
4786 .open = spr_wm_latency_open,
4787 .read = seq_read,
4788 .llseek = seq_lseek,
4789 .release = single_release,
4790 .write = spr_wm_latency_write
4791 };
4792
4793 static const struct file_operations i915_cur_wm_latency_fops = {
4794 .owner = THIS_MODULE,
4795 .open = cur_wm_latency_open,
4796 .read = seq_read,
4797 .llseek = seq_lseek,
4798 .release = single_release,
4799 .write = cur_wm_latency_write
4800 };
4801
4802 static int
4803 i915_wedged_get(void *data, u64 *val)
4804 {
4805 struct drm_device *dev = data;
4806 struct drm_i915_private *dev_priv = to_i915(dev);
4807
4808 *val = i915_terminally_wedged(&dev_priv->gpu_error);
4809
4810 return 0;
4811 }
4812
4813 static int
4814 i915_wedged_set(void *data, u64 val)
4815 {
4816 struct drm_device *dev = data;
4817 struct drm_i915_private *dev_priv = to_i915(dev);
4818
4819 /*
4820 * There is no safeguard against this debugfs entry colliding
4821 * with the hangcheck calling same i915_handle_error() in
4822 * parallel, causing an explosion. For now we assume that the
4823 * test harness is responsible enough not to inject gpu hangs
4824 * while it is writing to 'i915_wedged'
4825 */
4826
4827 if (i915_reset_in_progress(&dev_priv->gpu_error))
4828 return -EAGAIN;
4829
4830 intel_runtime_pm_get(dev_priv);
4831
4832 i915_handle_error(dev_priv, val,
4833 "Manually setting wedged to %llu", val);
4834
4835 intel_runtime_pm_put(dev_priv);
4836
4837 return 0;
4838 }
4839
4840 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4841 i915_wedged_get, i915_wedged_set,
4842 "%llu\n");
4843
4844 static int
4845 i915_ring_missed_irq_get(void *data, u64 *val)
4846 {
4847 struct drm_device *dev = data;
4848 struct drm_i915_private *dev_priv = to_i915(dev);
4849
4850 *val = dev_priv->gpu_error.missed_irq_rings;
4851 return 0;
4852 }
4853
4854 static int
4855 i915_ring_missed_irq_set(void *data, u64 val)
4856 {
4857 struct drm_device *dev = data;
4858 struct drm_i915_private *dev_priv = to_i915(dev);
4859 int ret;
4860
4861 /* Lock against concurrent debugfs callers */
4862 ret = mutex_lock_interruptible(&dev->struct_mutex);
4863 if (ret)
4864 return ret;
4865 dev_priv->gpu_error.missed_irq_rings = val;
4866 mutex_unlock(&dev->struct_mutex);
4867
4868 return 0;
4869 }
4870
4871 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4872 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4873 "0x%08llx\n");
4874
4875 static int
4876 i915_ring_test_irq_get(void *data, u64 *val)
4877 {
4878 struct drm_device *dev = data;
4879 struct drm_i915_private *dev_priv = to_i915(dev);
4880
4881 *val = dev_priv->gpu_error.test_irq_rings;
4882
4883 return 0;
4884 }
4885
4886 static int
4887 i915_ring_test_irq_set(void *data, u64 val)
4888 {
4889 struct drm_device *dev = data;
4890 struct drm_i915_private *dev_priv = to_i915(dev);
4891
4892 val &= INTEL_INFO(dev_priv)->ring_mask;
4893 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4894 dev_priv->gpu_error.test_irq_rings = val;
4895
4896 return 0;
4897 }
4898
4899 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4900 i915_ring_test_irq_get, i915_ring_test_irq_set,
4901 "0x%08llx\n");
4902
4903 #define DROP_UNBOUND 0x1
4904 #define DROP_BOUND 0x2
4905 #define DROP_RETIRE 0x4
4906 #define DROP_ACTIVE 0x8
4907 #define DROP_ALL (DROP_UNBOUND | \
4908 DROP_BOUND | \
4909 DROP_RETIRE | \
4910 DROP_ACTIVE)
4911 static int
4912 i915_drop_caches_get(void *data, u64 *val)
4913 {
4914 *val = DROP_ALL;
4915
4916 return 0;
4917 }
4918
4919 static int
4920 i915_drop_caches_set(void *data, u64 val)
4921 {
4922 struct drm_device *dev = data;
4923 struct drm_i915_private *dev_priv = to_i915(dev);
4924 int ret;
4925
4926 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4927
4928 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4929 * on ioctls on -EAGAIN. */
4930 ret = mutex_lock_interruptible(&dev->struct_mutex);
4931 if (ret)
4932 return ret;
4933
4934 if (val & DROP_ACTIVE) {
4935 ret = i915_gem_wait_for_idle(dev_priv);
4936 if (ret)
4937 goto unlock;
4938 }
4939
4940 if (val & (DROP_RETIRE | DROP_ACTIVE))
4941 i915_gem_retire_requests(dev_priv);
4942
4943 if (val & DROP_BOUND)
4944 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4945
4946 if (val & DROP_UNBOUND)
4947 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4948
4949 unlock:
4950 mutex_unlock(&dev->struct_mutex);
4951
4952 return ret;
4953 }
4954
4955 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4956 i915_drop_caches_get, i915_drop_caches_set,
4957 "0x%08llx\n");
4958
4959 static int
4960 i915_max_freq_get(void *data, u64 *val)
4961 {
4962 struct drm_device *dev = data;
4963 struct drm_i915_private *dev_priv = to_i915(dev);
4964
4965 if (INTEL_INFO(dev)->gen < 6)
4966 return -ENODEV;
4967
4968 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4969 return 0;
4970 }
4971
4972 static int
4973 i915_max_freq_set(void *data, u64 val)
4974 {
4975 struct drm_device *dev = data;
4976 struct drm_i915_private *dev_priv = to_i915(dev);
4977 u32 hw_max, hw_min;
4978 int ret;
4979
4980 if (INTEL_INFO(dev)->gen < 6)
4981 return -ENODEV;
4982
4983 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4984
4985 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4986 if (ret)
4987 return ret;
4988
4989 /*
4990 * Turbo will still be enabled, but won't go above the set value.
4991 */
4992 val = intel_freq_opcode(dev_priv, val);
4993
4994 hw_max = dev_priv->rps.max_freq;
4995 hw_min = dev_priv->rps.min_freq;
4996
4997 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4998 mutex_unlock(&dev_priv->rps.hw_lock);
4999 return -EINVAL;
5000 }
5001
5002 dev_priv->rps.max_freq_softlimit = val;
5003
5004 intel_set_rps(dev_priv, val);
5005
5006 mutex_unlock(&dev_priv->rps.hw_lock);
5007
5008 return 0;
5009 }
5010
5011 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
5012 i915_max_freq_get, i915_max_freq_set,
5013 "%llu\n");
5014
5015 static int
5016 i915_min_freq_get(void *data, u64 *val)
5017 {
5018 struct drm_device *dev = data;
5019 struct drm_i915_private *dev_priv = to_i915(dev);
5020
5021 if (INTEL_GEN(dev_priv) < 6)
5022 return -ENODEV;
5023
5024 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5025 return 0;
5026 }
5027
5028 static int
5029 i915_min_freq_set(void *data, u64 val)
5030 {
5031 struct drm_device *dev = data;
5032 struct drm_i915_private *dev_priv = to_i915(dev);
5033 u32 hw_max, hw_min;
5034 int ret;
5035
5036 if (INTEL_GEN(dev_priv) < 6)
5037 return -ENODEV;
5038
5039 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5040
5041 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5042 if (ret)
5043 return ret;
5044
5045 /*
5046 * Turbo will still be enabled, but won't go below the set value.
5047 */
5048 val = intel_freq_opcode(dev_priv, val);
5049
5050 hw_max = dev_priv->rps.max_freq;
5051 hw_min = dev_priv->rps.min_freq;
5052
5053 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5054 mutex_unlock(&dev_priv->rps.hw_lock);
5055 return -EINVAL;
5056 }
5057
5058 dev_priv->rps.min_freq_softlimit = val;
5059
5060 intel_set_rps(dev_priv, val);
5061
5062 mutex_unlock(&dev_priv->rps.hw_lock);
5063
5064 return 0;
5065 }
5066
5067 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5068 i915_min_freq_get, i915_min_freq_set,
5069 "%llu\n");
5070
5071 static int
5072 i915_cache_sharing_get(void *data, u64 *val)
5073 {
5074 struct drm_device *dev = data;
5075 struct drm_i915_private *dev_priv = to_i915(dev);
5076 u32 snpcr;
5077 int ret;
5078
5079 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5080 return -ENODEV;
5081
5082 ret = mutex_lock_interruptible(&dev->struct_mutex);
5083 if (ret)
5084 return ret;
5085 intel_runtime_pm_get(dev_priv);
5086
5087 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5088
5089 intel_runtime_pm_put(dev_priv);
5090 mutex_unlock(&dev_priv->drm.struct_mutex);
5091
5092 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5093
5094 return 0;
5095 }
5096
5097 static int
5098 i915_cache_sharing_set(void *data, u64 val)
5099 {
5100 struct drm_device *dev = data;
5101 struct drm_i915_private *dev_priv = to_i915(dev);
5102 u32 snpcr;
5103
5104 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5105 return -ENODEV;
5106
5107 if (val > 3)
5108 return -EINVAL;
5109
5110 intel_runtime_pm_get(dev_priv);
5111 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5112
5113 /* Update the cache sharing policy here as well */
5114 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5115 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5116 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5117 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5118
5119 intel_runtime_pm_put(dev_priv);
5120 return 0;
5121 }
5122
5123 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5124 i915_cache_sharing_get, i915_cache_sharing_set,
5125 "%llu\n");
5126
5127 struct sseu_dev_status {
5128 unsigned int slice_total;
5129 unsigned int subslice_total;
5130 unsigned int subslice_per_slice;
5131 unsigned int eu_total;
5132 unsigned int eu_per_subslice;
5133 };
5134
5135 static void cherryview_sseu_device_status(struct drm_device *dev,
5136 struct sseu_dev_status *stat)
5137 {
5138 struct drm_i915_private *dev_priv = to_i915(dev);
5139 int ss_max = 2;
5140 int ss;
5141 u32 sig1[ss_max], sig2[ss_max];
5142
5143 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5144 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5145 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5146 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5147
5148 for (ss = 0; ss < ss_max; ss++) {
5149 unsigned int eu_cnt;
5150
5151 if (sig1[ss] & CHV_SS_PG_ENABLE)
5152 /* skip disabled subslice */
5153 continue;
5154
5155 stat->slice_total = 1;
5156 stat->subslice_per_slice++;
5157 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5158 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5159 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5160 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5161 stat->eu_total += eu_cnt;
5162 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5163 }
5164 stat->subslice_total = stat->subslice_per_slice;
5165 }
5166
5167 static void gen9_sseu_device_status(struct drm_device *dev,
5168 struct sseu_dev_status *stat)
5169 {
5170 struct drm_i915_private *dev_priv = to_i915(dev);
5171 int s_max = 3, ss_max = 4;
5172 int s, ss;
5173 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5174
5175 /* BXT has a single slice and at most 3 subslices. */
5176 if (IS_BROXTON(dev)) {
5177 s_max = 1;
5178 ss_max = 3;
5179 }
5180
5181 for (s = 0; s < s_max; s++) {
5182 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5183 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5184 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5185 }
5186
5187 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5188 GEN9_PGCTL_SSA_EU19_ACK |
5189 GEN9_PGCTL_SSA_EU210_ACK |
5190 GEN9_PGCTL_SSA_EU311_ACK;
5191 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5192 GEN9_PGCTL_SSB_EU19_ACK |
5193 GEN9_PGCTL_SSB_EU210_ACK |
5194 GEN9_PGCTL_SSB_EU311_ACK;
5195
5196 for (s = 0; s < s_max; s++) {
5197 unsigned int ss_cnt = 0;
5198
5199 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5200 /* skip disabled slice */
5201 continue;
5202
5203 stat->slice_total++;
5204
5205 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5206 ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5207
5208 for (ss = 0; ss < ss_max; ss++) {
5209 unsigned int eu_cnt;
5210
5211 if (IS_BROXTON(dev) &&
5212 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5213 /* skip disabled subslice */
5214 continue;
5215
5216 if (IS_BROXTON(dev))
5217 ss_cnt++;
5218
5219 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5220 eu_mask[ss%2]);
5221 stat->eu_total += eu_cnt;
5222 stat->eu_per_subslice = max(stat->eu_per_subslice,
5223 eu_cnt);
5224 }
5225
5226 stat->subslice_total += ss_cnt;
5227 stat->subslice_per_slice = max(stat->subslice_per_slice,
5228 ss_cnt);
5229 }
5230 }
5231
5232 static void broadwell_sseu_device_status(struct drm_device *dev,
5233 struct sseu_dev_status *stat)
5234 {
5235 struct drm_i915_private *dev_priv = to_i915(dev);
5236 int s;
5237 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5238
5239 stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5240
5241 if (stat->slice_total) {
5242 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5243 stat->subslice_total = stat->slice_total *
5244 stat->subslice_per_slice;
5245 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5246 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5247
5248 /* subtract fused off EU(s) from enabled slice(s) */
5249 for (s = 0; s < stat->slice_total; s++) {
5250 u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5251
5252 stat->eu_total -= hweight8(subslice_7eu);
5253 }
5254 }
5255 }
5256
5257 static int i915_sseu_status(struct seq_file *m, void *unused)
5258 {
5259 struct drm_info_node *node = (struct drm_info_node *) m->private;
5260 struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
5261 struct drm_device *dev = &dev_priv->drm;
5262 struct sseu_dev_status stat;
5263
5264 if (INTEL_INFO(dev)->gen < 8)
5265 return -ENODEV;
5266
5267 seq_puts(m, "SSEU Device Info\n");
5268 seq_printf(m, " Available Slice Total: %u\n",
5269 INTEL_INFO(dev)->slice_total);
5270 seq_printf(m, " Available Subslice Total: %u\n",
5271 INTEL_INFO(dev)->subslice_total);
5272 seq_printf(m, " Available Subslice Per Slice: %u\n",
5273 INTEL_INFO(dev)->subslice_per_slice);
5274 seq_printf(m, " Available EU Total: %u\n",
5275 INTEL_INFO(dev)->eu_total);
5276 seq_printf(m, " Available EU Per Subslice: %u\n",
5277 INTEL_INFO(dev)->eu_per_subslice);
5278 seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev)));
5279 if (HAS_POOLED_EU(dev))
5280 seq_printf(m, " Min EU in pool: %u\n",
5281 INTEL_INFO(dev)->min_eu_in_pool);
5282 seq_printf(m, " Has Slice Power Gating: %s\n",
5283 yesno(INTEL_INFO(dev)->has_slice_pg));
5284 seq_printf(m, " Has Subslice Power Gating: %s\n",
5285 yesno(INTEL_INFO(dev)->has_subslice_pg));
5286 seq_printf(m, " Has EU Power Gating: %s\n",
5287 yesno(INTEL_INFO(dev)->has_eu_pg));
5288
5289 seq_puts(m, "SSEU Device Status\n");
5290 memset(&stat, 0, sizeof(stat));
5291
5292 intel_runtime_pm_get(dev_priv);
5293
5294 if (IS_CHERRYVIEW(dev)) {
5295 cherryview_sseu_device_status(dev, &stat);
5296 } else if (IS_BROADWELL(dev)) {
5297 broadwell_sseu_device_status(dev, &stat);
5298 } else if (INTEL_INFO(dev)->gen >= 9) {
5299 gen9_sseu_device_status(dev, &stat);
5300 }
5301
5302 intel_runtime_pm_put(dev_priv);
5303
5304 seq_printf(m, " Enabled Slice Total: %u\n",
5305 stat.slice_total);
5306 seq_printf(m, " Enabled Subslice Total: %u\n",
5307 stat.subslice_total);
5308 seq_printf(m, " Enabled Subslice Per Slice: %u\n",
5309 stat.subslice_per_slice);
5310 seq_printf(m, " Enabled EU Total: %u\n",
5311 stat.eu_total);
5312 seq_printf(m, " Enabled EU Per Subslice: %u\n",
5313 stat.eu_per_subslice);
5314
5315 return 0;
5316 }
5317
5318 static int i915_forcewake_open(struct inode *inode, struct file *file)
5319 {
5320 struct drm_device *dev = inode->i_private;
5321 struct drm_i915_private *dev_priv = to_i915(dev);
5322
5323 if (INTEL_INFO(dev)->gen < 6)
5324 return 0;
5325
5326 intel_runtime_pm_get(dev_priv);
5327 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5328
5329 return 0;
5330 }
5331
5332 static int i915_forcewake_release(struct inode *inode, struct file *file)
5333 {
5334 struct drm_device *dev = inode->i_private;
5335 struct drm_i915_private *dev_priv = to_i915(dev);
5336
5337 if (INTEL_INFO(dev)->gen < 6)
5338 return 0;
5339
5340 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5341 intel_runtime_pm_put(dev_priv);
5342
5343 return 0;
5344 }
5345
5346 static const struct file_operations i915_forcewake_fops = {
5347 .owner = THIS_MODULE,
5348 .open = i915_forcewake_open,
5349 .release = i915_forcewake_release,
5350 };
5351
5352 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5353 {
5354 struct drm_device *dev = minor->dev;
5355 struct dentry *ent;
5356
5357 ent = debugfs_create_file("i915_forcewake_user",
5358 S_IRUSR,
5359 root, dev,
5360 &i915_forcewake_fops);
5361 if (!ent)
5362 return -ENOMEM;
5363
5364 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5365 }
5366
5367 static int i915_debugfs_create(struct dentry *root,
5368 struct drm_minor *minor,
5369 const char *name,
5370 const struct file_operations *fops)
5371 {
5372 struct drm_device *dev = minor->dev;
5373 struct dentry *ent;
5374
5375 ent = debugfs_create_file(name,
5376 S_IRUGO | S_IWUSR,
5377 root, dev,
5378 fops);
5379 if (!ent)
5380 return -ENOMEM;
5381
5382 return drm_add_fake_info_node(minor, ent, fops);
5383 }
5384
5385 static const struct drm_info_list i915_debugfs_list[] = {
5386 {"i915_capabilities", i915_capabilities, 0},
5387 {"i915_gem_objects", i915_gem_object_info, 0},
5388 {"i915_gem_gtt", i915_gem_gtt_info, 0},
5389 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5390 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5391 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5392 {"i915_gem_stolen", i915_gem_stolen_list_info },
5393 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5394 {"i915_gem_request", i915_gem_request_info, 0},
5395 {"i915_gem_seqno", i915_gem_seqno_info, 0},
5396 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5397 {"i915_gem_interrupt", i915_interrupt_info, 0},
5398 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5399 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5400 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5401 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5402 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5403 {"i915_guc_info", i915_guc_info, 0},
5404 {"i915_guc_load_status", i915_guc_load_status_info, 0},
5405 {"i915_guc_log_dump", i915_guc_log_dump, 0},
5406 {"i915_frequency_info", i915_frequency_info, 0},
5407 {"i915_hangcheck_info", i915_hangcheck_info, 0},
5408 {"i915_drpc_info", i915_drpc_info, 0},
5409 {"i915_emon_status", i915_emon_status, 0},
5410 {"i915_ring_freq_table", i915_ring_freq_table, 0},
5411 {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5412 {"i915_fbc_status", i915_fbc_status, 0},
5413 {"i915_ips_status", i915_ips_status, 0},
5414 {"i915_sr_status", i915_sr_status, 0},
5415 {"i915_opregion", i915_opregion, 0},
5416 {"i915_vbt", i915_vbt, 0},
5417 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5418 {"i915_context_status", i915_context_status, 0},
5419 {"i915_dump_lrc", i915_dump_lrc, 0},
5420 {"i915_execlists", i915_execlists, 0},
5421 {"i915_forcewake_domains", i915_forcewake_domains, 0},
5422 {"i915_swizzle_info", i915_swizzle_info, 0},
5423 {"i915_ppgtt_info", i915_ppgtt_info, 0},
5424 {"i915_llc", i915_llc, 0},
5425 {"i915_edp_psr_status", i915_edp_psr_status, 0},
5426 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5427 {"i915_energy_uJ", i915_energy_uJ, 0},
5428 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5429 {"i915_power_domain_info", i915_power_domain_info, 0},
5430 {"i915_dmc_info", i915_dmc_info, 0},
5431 {"i915_display_info", i915_display_info, 0},
5432 {"i915_semaphore_status", i915_semaphore_status, 0},
5433 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5434 {"i915_dp_mst_info", i915_dp_mst_info, 0},
5435 {"i915_wa_registers", i915_wa_registers, 0},
5436 {"i915_ddb_info", i915_ddb_info, 0},
5437 {"i915_sseu_status", i915_sseu_status, 0},
5438 {"i915_drrs_status", i915_drrs_status, 0},
5439 {"i915_rps_boost_info", i915_rps_boost_info, 0},
5440 };
5441 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5442
5443 static const struct i915_debugfs_files {
5444 const char *name;
5445 const struct file_operations *fops;
5446 } i915_debugfs_files[] = {
5447 {"i915_wedged", &i915_wedged_fops},
5448 {"i915_max_freq", &i915_max_freq_fops},
5449 {"i915_min_freq", &i915_min_freq_fops},
5450 {"i915_cache_sharing", &i915_cache_sharing_fops},
5451 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5452 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5453 {"i915_gem_drop_caches", &i915_drop_caches_fops},
5454 {"i915_error_state", &i915_error_state_fops},
5455 {"i915_next_seqno", &i915_next_seqno_fops},
5456 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5457 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5458 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5459 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5460 {"i915_fbc_false_color", &i915_fbc_fc_fops},
5461 {"i915_dp_test_data", &i915_displayport_test_data_fops},
5462 {"i915_dp_test_type", &i915_displayport_test_type_fops},
5463 {"i915_dp_test_active", &i915_displayport_test_active_fops}
5464 };
5465
5466 void intel_display_crc_init(struct drm_device *dev)
5467 {
5468 struct drm_i915_private *dev_priv = to_i915(dev);
5469 enum pipe pipe;
5470
5471 for_each_pipe(dev_priv, pipe) {
5472 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5473
5474 pipe_crc->opened = false;
5475 spin_lock_init(&pipe_crc->lock);
5476 init_waitqueue_head(&pipe_crc->wq);
5477 }
5478 }
5479
5480 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5481 {
5482 struct drm_minor *minor = dev_priv->drm.primary;
5483 int ret, i;
5484
5485 ret = i915_forcewake_create(minor->debugfs_root, minor);
5486 if (ret)
5487 return ret;
5488
5489 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5490 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5491 if (ret)
5492 return ret;
5493 }
5494
5495 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5496 ret = i915_debugfs_create(minor->debugfs_root, minor,
5497 i915_debugfs_files[i].name,
5498 i915_debugfs_files[i].fops);
5499 if (ret)
5500 return ret;
5501 }
5502
5503 return drm_debugfs_create_files(i915_debugfs_list,
5504 I915_DEBUGFS_ENTRIES,
5505 minor->debugfs_root, minor);
5506 }
5507
5508 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5509 {
5510 struct drm_minor *minor = dev_priv->drm.primary;
5511 int i;
5512
5513 drm_debugfs_remove_files(i915_debugfs_list,
5514 I915_DEBUGFS_ENTRIES, minor);
5515
5516 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5517 1, minor);
5518
5519 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5520 struct drm_info_list *info_list =
5521 (struct drm_info_list *)&i915_pipe_crc_data[i];
5522
5523 drm_debugfs_remove_files(info_list, 1, minor);
5524 }
5525
5526 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5527 struct drm_info_list *info_list =
5528 (struct drm_info_list *) i915_debugfs_files[i].fops;
5529
5530 drm_debugfs_remove_files(info_list, 1, minor);
5531 }
5532 }
5533
5534 struct dpcd_block {
5535 /* DPCD dump start address. */
5536 unsigned int offset;
5537 /* DPCD dump end address, inclusive. If unset, .size will be used. */
5538 unsigned int end;
5539 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5540 size_t size;
5541 /* Only valid for eDP. */
5542 bool edp;
5543 };
5544
5545 static const struct dpcd_block i915_dpcd_debug[] = {
5546 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5547 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5548 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5549 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5550 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5551 { .offset = DP_SET_POWER },
5552 { .offset = DP_EDP_DPCD_REV },
5553 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5554 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5555 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5556 };
5557
5558 static int i915_dpcd_show(struct seq_file *m, void *data)
5559 {
5560 struct drm_connector *connector = m->private;
5561 struct intel_dp *intel_dp =
5562 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5563 uint8_t buf[16];
5564 ssize_t err;
5565 int i;
5566
5567 if (connector->status != connector_status_connected)
5568 return -ENODEV;
5569
5570 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5571 const struct dpcd_block *b = &i915_dpcd_debug[i];
5572 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5573
5574 if (b->edp &&
5575 connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5576 continue;
5577
5578 /* low tech for now */
5579 if (WARN_ON(size > sizeof(buf)))
5580 continue;
5581
5582 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5583 if (err <= 0) {
5584 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5585 size, b->offset, err);
5586 continue;
5587 }
5588
5589 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5590 }
5591
5592 return 0;
5593 }
5594
5595 static int i915_dpcd_open(struct inode *inode, struct file *file)
5596 {
5597 return single_open(file, i915_dpcd_show, inode->i_private);
5598 }
5599
5600 static const struct file_operations i915_dpcd_fops = {
5601 .owner = THIS_MODULE,
5602 .open = i915_dpcd_open,
5603 .read = seq_read,
5604 .llseek = seq_lseek,
5605 .release = single_release,
5606 };
5607
5608 /**
5609 * i915_debugfs_connector_add - add i915 specific connector debugfs files
5610 * @connector: pointer to a registered drm_connector
5611 *
5612 * Cleanup will be done by drm_connector_unregister() through a call to
5613 * drm_debugfs_connector_remove().
5614 *
5615 * Returns 0 on success, negative error codes on error.
5616 */
5617 int i915_debugfs_connector_add(struct drm_connector *connector)
5618 {
5619 struct dentry *root = connector->debugfs_entry;
5620
5621 /* The connector must have been registered beforehands. */
5622 if (!root)
5623 return -ENODEV;
5624
5625 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5626 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5627 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5628 &i915_dpcd_fops);
5629
5630 return 0;
5631 }
This page took 0.152115 seconds and 6 git commands to generate.