drm: add driver->set_busid() callback
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/device.h>
31 #include <linux/acpi.h>
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34 #include "i915_drv.h"
35 #include "i915_trace.h"
36 #include "intel_drv.h"
37
38 #include <linux/console.h>
39 #include <linux/module.h>
40 #include <linux/pm_runtime.h>
41 #include <drm/drm_crtc_helper.h>
42
43 static struct drm_driver driver;
44
45 #define GEN_DEFAULT_PIPEOFFSETS \
46 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
47 PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
48 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
49 TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
50 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
51
52 #define GEN_CHV_PIPEOFFSETS \
53 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
54 CHV_PIPE_C_OFFSET }, \
55 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
56 CHV_TRANSCODER_C_OFFSET, }, \
57 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
58 CHV_PALETTE_C_OFFSET }
59
60 #define CURSOR_OFFSETS \
61 .cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
62
63 #define IVB_CURSOR_OFFSETS \
64 .cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
65
66 static const struct intel_device_info intel_i830_info = {
67 .gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
68 .has_overlay = 1, .overlay_needs_physical = 1,
69 .ring_mask = RENDER_RING,
70 GEN_DEFAULT_PIPEOFFSETS,
71 CURSOR_OFFSETS,
72 };
73
74 static const struct intel_device_info intel_845g_info = {
75 .gen = 2, .num_pipes = 1,
76 .has_overlay = 1, .overlay_needs_physical = 1,
77 .ring_mask = RENDER_RING,
78 GEN_DEFAULT_PIPEOFFSETS,
79 CURSOR_OFFSETS,
80 };
81
82 static const struct intel_device_info intel_i85x_info = {
83 .gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
84 .cursor_needs_physical = 1,
85 .has_overlay = 1, .overlay_needs_physical = 1,
86 .has_fbc = 1,
87 .ring_mask = RENDER_RING,
88 GEN_DEFAULT_PIPEOFFSETS,
89 CURSOR_OFFSETS,
90 };
91
92 static const struct intel_device_info intel_i865g_info = {
93 .gen = 2, .num_pipes = 1,
94 .has_overlay = 1, .overlay_needs_physical = 1,
95 .ring_mask = RENDER_RING,
96 GEN_DEFAULT_PIPEOFFSETS,
97 CURSOR_OFFSETS,
98 };
99
100 static const struct intel_device_info intel_i915g_info = {
101 .gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
102 .has_overlay = 1, .overlay_needs_physical = 1,
103 .ring_mask = RENDER_RING,
104 GEN_DEFAULT_PIPEOFFSETS,
105 CURSOR_OFFSETS,
106 };
107 static const struct intel_device_info intel_i915gm_info = {
108 .gen = 3, .is_mobile = 1, .num_pipes = 2,
109 .cursor_needs_physical = 1,
110 .has_overlay = 1, .overlay_needs_physical = 1,
111 .supports_tv = 1,
112 .has_fbc = 1,
113 .ring_mask = RENDER_RING,
114 GEN_DEFAULT_PIPEOFFSETS,
115 CURSOR_OFFSETS,
116 };
117 static const struct intel_device_info intel_i945g_info = {
118 .gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
119 .has_overlay = 1, .overlay_needs_physical = 1,
120 .ring_mask = RENDER_RING,
121 GEN_DEFAULT_PIPEOFFSETS,
122 CURSOR_OFFSETS,
123 };
124 static const struct intel_device_info intel_i945gm_info = {
125 .gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
126 .has_hotplug = 1, .cursor_needs_physical = 1,
127 .has_overlay = 1, .overlay_needs_physical = 1,
128 .supports_tv = 1,
129 .has_fbc = 1,
130 .ring_mask = RENDER_RING,
131 GEN_DEFAULT_PIPEOFFSETS,
132 CURSOR_OFFSETS,
133 };
134
135 static const struct intel_device_info intel_i965g_info = {
136 .gen = 4, .is_broadwater = 1, .num_pipes = 2,
137 .has_hotplug = 1,
138 .has_overlay = 1,
139 .ring_mask = RENDER_RING,
140 GEN_DEFAULT_PIPEOFFSETS,
141 CURSOR_OFFSETS,
142 };
143
144 static const struct intel_device_info intel_i965gm_info = {
145 .gen = 4, .is_crestline = 1, .num_pipes = 2,
146 .is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
147 .has_overlay = 1,
148 .supports_tv = 1,
149 .ring_mask = RENDER_RING,
150 GEN_DEFAULT_PIPEOFFSETS,
151 CURSOR_OFFSETS,
152 };
153
154 static const struct intel_device_info intel_g33_info = {
155 .gen = 3, .is_g33 = 1, .num_pipes = 2,
156 .need_gfx_hws = 1, .has_hotplug = 1,
157 .has_overlay = 1,
158 .ring_mask = RENDER_RING,
159 GEN_DEFAULT_PIPEOFFSETS,
160 CURSOR_OFFSETS,
161 };
162
163 static const struct intel_device_info intel_g45_info = {
164 .gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
165 .has_pipe_cxsr = 1, .has_hotplug = 1,
166 .ring_mask = RENDER_RING | BSD_RING,
167 GEN_DEFAULT_PIPEOFFSETS,
168 CURSOR_OFFSETS,
169 };
170
171 static const struct intel_device_info intel_gm45_info = {
172 .gen = 4, .is_g4x = 1, .num_pipes = 2,
173 .is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
174 .has_pipe_cxsr = 1, .has_hotplug = 1,
175 .supports_tv = 1,
176 .ring_mask = RENDER_RING | BSD_RING,
177 GEN_DEFAULT_PIPEOFFSETS,
178 CURSOR_OFFSETS,
179 };
180
181 static const struct intel_device_info intel_pineview_info = {
182 .gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
183 .need_gfx_hws = 1, .has_hotplug = 1,
184 .has_overlay = 1,
185 GEN_DEFAULT_PIPEOFFSETS,
186 CURSOR_OFFSETS,
187 };
188
189 static const struct intel_device_info intel_ironlake_d_info = {
190 .gen = 5, .num_pipes = 2,
191 .need_gfx_hws = 1, .has_hotplug = 1,
192 .ring_mask = RENDER_RING | BSD_RING,
193 GEN_DEFAULT_PIPEOFFSETS,
194 CURSOR_OFFSETS,
195 };
196
197 static const struct intel_device_info intel_ironlake_m_info = {
198 .gen = 5, .is_mobile = 1, .num_pipes = 2,
199 .need_gfx_hws = 1, .has_hotplug = 1,
200 .has_fbc = 1,
201 .ring_mask = RENDER_RING | BSD_RING,
202 GEN_DEFAULT_PIPEOFFSETS,
203 CURSOR_OFFSETS,
204 };
205
206 static const struct intel_device_info intel_sandybridge_d_info = {
207 .gen = 6, .num_pipes = 2,
208 .need_gfx_hws = 1, .has_hotplug = 1,
209 .has_fbc = 1,
210 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
211 .has_llc = 1,
212 GEN_DEFAULT_PIPEOFFSETS,
213 CURSOR_OFFSETS,
214 };
215
216 static const struct intel_device_info intel_sandybridge_m_info = {
217 .gen = 6, .is_mobile = 1, .num_pipes = 2,
218 .need_gfx_hws = 1, .has_hotplug = 1,
219 .has_fbc = 1,
220 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
221 .has_llc = 1,
222 GEN_DEFAULT_PIPEOFFSETS,
223 CURSOR_OFFSETS,
224 };
225
226 #define GEN7_FEATURES \
227 .gen = 7, .num_pipes = 3, \
228 .need_gfx_hws = 1, .has_hotplug = 1, \
229 .has_fbc = 1, \
230 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
231 .has_llc = 1
232
233 static const struct intel_device_info intel_ivybridge_d_info = {
234 GEN7_FEATURES,
235 .is_ivybridge = 1,
236 GEN_DEFAULT_PIPEOFFSETS,
237 IVB_CURSOR_OFFSETS,
238 };
239
240 static const struct intel_device_info intel_ivybridge_m_info = {
241 GEN7_FEATURES,
242 .is_ivybridge = 1,
243 .is_mobile = 1,
244 GEN_DEFAULT_PIPEOFFSETS,
245 IVB_CURSOR_OFFSETS,
246 };
247
248 static const struct intel_device_info intel_ivybridge_q_info = {
249 GEN7_FEATURES,
250 .is_ivybridge = 1,
251 .num_pipes = 0, /* legal, last one wins */
252 GEN_DEFAULT_PIPEOFFSETS,
253 IVB_CURSOR_OFFSETS,
254 };
255
256 static const struct intel_device_info intel_valleyview_m_info = {
257 GEN7_FEATURES,
258 .is_mobile = 1,
259 .num_pipes = 2,
260 .is_valleyview = 1,
261 .display_mmio_offset = VLV_DISPLAY_BASE,
262 .has_fbc = 0, /* legal, last one wins */
263 .has_llc = 0, /* legal, last one wins */
264 GEN_DEFAULT_PIPEOFFSETS,
265 CURSOR_OFFSETS,
266 };
267
268 static const struct intel_device_info intel_valleyview_d_info = {
269 GEN7_FEATURES,
270 .num_pipes = 2,
271 .is_valleyview = 1,
272 .display_mmio_offset = VLV_DISPLAY_BASE,
273 .has_fbc = 0, /* legal, last one wins */
274 .has_llc = 0, /* legal, last one wins */
275 GEN_DEFAULT_PIPEOFFSETS,
276 CURSOR_OFFSETS,
277 };
278
279 static const struct intel_device_info intel_haswell_d_info = {
280 GEN7_FEATURES,
281 .is_haswell = 1,
282 .has_ddi = 1,
283 .has_fpga_dbg = 1,
284 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
285 GEN_DEFAULT_PIPEOFFSETS,
286 IVB_CURSOR_OFFSETS,
287 };
288
289 static const struct intel_device_info intel_haswell_m_info = {
290 GEN7_FEATURES,
291 .is_haswell = 1,
292 .is_mobile = 1,
293 .has_ddi = 1,
294 .has_fpga_dbg = 1,
295 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
296 GEN_DEFAULT_PIPEOFFSETS,
297 IVB_CURSOR_OFFSETS,
298 };
299
300 static const struct intel_device_info intel_broadwell_d_info = {
301 .gen = 8, .num_pipes = 3,
302 .need_gfx_hws = 1, .has_hotplug = 1,
303 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
304 .has_llc = 1,
305 .has_ddi = 1,
306 .has_fpga_dbg = 1,
307 .has_fbc = 1,
308 GEN_DEFAULT_PIPEOFFSETS,
309 IVB_CURSOR_OFFSETS,
310 };
311
312 static const struct intel_device_info intel_broadwell_m_info = {
313 .gen = 8, .is_mobile = 1, .num_pipes = 3,
314 .need_gfx_hws = 1, .has_hotplug = 1,
315 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
316 .has_llc = 1,
317 .has_ddi = 1,
318 .has_fpga_dbg = 1,
319 .has_fbc = 1,
320 GEN_DEFAULT_PIPEOFFSETS,
321 IVB_CURSOR_OFFSETS,
322 };
323
324 static const struct intel_device_info intel_broadwell_gt3d_info = {
325 .gen = 8, .num_pipes = 3,
326 .need_gfx_hws = 1, .has_hotplug = 1,
327 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
328 .has_llc = 1,
329 .has_ddi = 1,
330 .has_fpga_dbg = 1,
331 .has_fbc = 1,
332 GEN_DEFAULT_PIPEOFFSETS,
333 IVB_CURSOR_OFFSETS,
334 };
335
336 static const struct intel_device_info intel_broadwell_gt3m_info = {
337 .gen = 8, .is_mobile = 1, .num_pipes = 3,
338 .need_gfx_hws = 1, .has_hotplug = 1,
339 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
340 .has_llc = 1,
341 .has_ddi = 1,
342 .has_fpga_dbg = 1,
343 .has_fbc = 1,
344 GEN_DEFAULT_PIPEOFFSETS,
345 IVB_CURSOR_OFFSETS,
346 };
347
348 static const struct intel_device_info intel_cherryview_info = {
349 .is_preliminary = 1,
350 .gen = 8, .num_pipes = 3,
351 .need_gfx_hws = 1, .has_hotplug = 1,
352 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
353 .is_valleyview = 1,
354 .display_mmio_offset = VLV_DISPLAY_BASE,
355 GEN_CHV_PIPEOFFSETS,
356 CURSOR_OFFSETS,
357 };
358
359 /*
360 * Make sure any device matches here are from most specific to most
361 * general. For example, since the Quanta match is based on the subsystem
362 * and subvendor IDs, we need it to come before the more general IVB
363 * PCI ID matches, otherwise we'll use the wrong info struct above.
364 */
365 #define INTEL_PCI_IDS \
366 INTEL_I830_IDS(&intel_i830_info), \
367 INTEL_I845G_IDS(&intel_845g_info), \
368 INTEL_I85X_IDS(&intel_i85x_info), \
369 INTEL_I865G_IDS(&intel_i865g_info), \
370 INTEL_I915G_IDS(&intel_i915g_info), \
371 INTEL_I915GM_IDS(&intel_i915gm_info), \
372 INTEL_I945G_IDS(&intel_i945g_info), \
373 INTEL_I945GM_IDS(&intel_i945gm_info), \
374 INTEL_I965G_IDS(&intel_i965g_info), \
375 INTEL_G33_IDS(&intel_g33_info), \
376 INTEL_I965GM_IDS(&intel_i965gm_info), \
377 INTEL_GM45_IDS(&intel_gm45_info), \
378 INTEL_G45_IDS(&intel_g45_info), \
379 INTEL_PINEVIEW_IDS(&intel_pineview_info), \
380 INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info), \
381 INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info), \
382 INTEL_SNB_D_IDS(&intel_sandybridge_d_info), \
383 INTEL_SNB_M_IDS(&intel_sandybridge_m_info), \
384 INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */ \
385 INTEL_IVB_M_IDS(&intel_ivybridge_m_info), \
386 INTEL_IVB_D_IDS(&intel_ivybridge_d_info), \
387 INTEL_HSW_D_IDS(&intel_haswell_d_info), \
388 INTEL_HSW_M_IDS(&intel_haswell_m_info), \
389 INTEL_VLV_M_IDS(&intel_valleyview_m_info), \
390 INTEL_VLV_D_IDS(&intel_valleyview_d_info), \
391 INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info), \
392 INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info), \
393 INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info), \
394 INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info), \
395 INTEL_CHV_IDS(&intel_cherryview_info)
396
397 static const struct pci_device_id pciidlist[] = { /* aka */
398 INTEL_PCI_IDS,
399 {0, 0, 0}
400 };
401
402 #if defined(CONFIG_DRM_I915_KMS)
403 MODULE_DEVICE_TABLE(pci, pciidlist);
404 #endif
405
406 void intel_detect_pch(struct drm_device *dev)
407 {
408 struct drm_i915_private *dev_priv = dev->dev_private;
409 struct pci_dev *pch = NULL;
410
411 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
412 * (which really amounts to a PCH but no South Display).
413 */
414 if (INTEL_INFO(dev)->num_pipes == 0) {
415 dev_priv->pch_type = PCH_NOP;
416 return;
417 }
418
419 /*
420 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
421 * make graphics device passthrough work easy for VMM, that only
422 * need to expose ISA bridge to let driver know the real hardware
423 * underneath. This is a requirement from virtualization team.
424 *
425 * In some virtualized environments (e.g. XEN), there is irrelevant
426 * ISA bridge in the system. To work reliably, we should scan trhough
427 * all the ISA bridge devices and check for the first match, instead
428 * of only checking the first one.
429 */
430 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
431 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
432 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
433 dev_priv->pch_id = id;
434
435 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
436 dev_priv->pch_type = PCH_IBX;
437 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
438 WARN_ON(!IS_GEN5(dev));
439 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
440 dev_priv->pch_type = PCH_CPT;
441 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
442 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
443 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
444 /* PantherPoint is CPT compatible */
445 dev_priv->pch_type = PCH_CPT;
446 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
447 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
448 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
449 dev_priv->pch_type = PCH_LPT;
450 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
451 WARN_ON(!IS_HASWELL(dev));
452 WARN_ON(IS_ULT(dev));
453 } else if (IS_BROADWELL(dev)) {
454 dev_priv->pch_type = PCH_LPT;
455 dev_priv->pch_id =
456 INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
457 DRM_DEBUG_KMS("This is Broadwell, assuming "
458 "LynxPoint LP PCH\n");
459 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
460 dev_priv->pch_type = PCH_LPT;
461 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
462 WARN_ON(!IS_HASWELL(dev));
463 WARN_ON(!IS_ULT(dev));
464 } else
465 continue;
466
467 break;
468 }
469 }
470 if (!pch)
471 DRM_DEBUG_KMS("No PCH found.\n");
472
473 pci_dev_put(pch);
474 }
475
476 bool i915_semaphore_is_enabled(struct drm_device *dev)
477 {
478 if (INTEL_INFO(dev)->gen < 6)
479 return false;
480
481 if (i915.semaphores >= 0)
482 return i915.semaphores;
483
484 /* TODO: make semaphores and Execlists play nicely together */
485 if (i915.enable_execlists)
486 return false;
487
488 /* Until we get further testing... */
489 if (IS_GEN8(dev))
490 return false;
491
492 #ifdef CONFIG_INTEL_IOMMU
493 /* Enable semaphores on SNB when IO remapping is off */
494 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
495 return false;
496 #endif
497
498 return true;
499 }
500
501 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv)
502 {
503 spin_lock_irq(&dev_priv->irq_lock);
504
505 dev_priv->long_hpd_port_mask = 0;
506 dev_priv->short_hpd_port_mask = 0;
507 dev_priv->hpd_event_bits = 0;
508
509 spin_unlock_irq(&dev_priv->irq_lock);
510
511 cancel_work_sync(&dev_priv->dig_port_work);
512 cancel_work_sync(&dev_priv->hotplug_work);
513 cancel_delayed_work_sync(&dev_priv->hotplug_reenable_work);
514 }
515
516 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
517 {
518 struct drm_device *dev = dev_priv->dev;
519 struct drm_encoder *encoder;
520
521 drm_modeset_lock_all(dev);
522 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
523 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
524
525 if (intel_encoder->suspend)
526 intel_encoder->suspend(intel_encoder);
527 }
528 drm_modeset_unlock_all(dev);
529 }
530
531 static int intel_suspend_complete(struct drm_i915_private *dev_priv);
532 static int intel_resume_prepare(struct drm_i915_private *dev_priv,
533 bool rpm_resume);
534
535 static int i915_drm_freeze(struct drm_device *dev)
536 {
537 struct drm_i915_private *dev_priv = dev->dev_private;
538 struct drm_crtc *crtc;
539 pci_power_t opregion_target_state;
540
541 /* ignore lid events during suspend */
542 mutex_lock(&dev_priv->modeset_restore_lock);
543 dev_priv->modeset_restore = MODESET_SUSPENDED;
544 mutex_unlock(&dev_priv->modeset_restore_lock);
545
546 /* We do a lot of poking in a lot of registers, make sure they work
547 * properly. */
548 intel_display_set_init_power(dev_priv, true);
549
550 drm_kms_helper_poll_disable(dev);
551
552 pci_save_state(dev->pdev);
553
554 /* If KMS is active, we do the leavevt stuff here */
555 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
556 int error;
557
558 error = i915_gem_suspend(dev);
559 if (error) {
560 dev_err(&dev->pdev->dev,
561 "GEM idle failed, resume might fail\n");
562 return error;
563 }
564
565 /*
566 * Disable CRTCs directly since we want to preserve sw state
567 * for _thaw. Also, power gate the CRTC power wells.
568 */
569 drm_modeset_lock_all(dev);
570 for_each_crtc(dev, crtc)
571 intel_crtc_control(crtc, false);
572 drm_modeset_unlock_all(dev);
573
574 intel_dp_mst_suspend(dev);
575
576 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
577
578 intel_runtime_pm_disable_interrupts(dev);
579 intel_hpd_cancel_work(dev_priv);
580
581 intel_suspend_encoders(dev_priv);
582
583 intel_suspend_gt_powersave(dev);
584
585 intel_modeset_suspend_hw(dev);
586 }
587
588 i915_gem_suspend_gtt_mappings(dev);
589
590 i915_save_state(dev);
591
592 opregion_target_state = PCI_D3cold;
593 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
594 if (acpi_target_system_state() < ACPI_STATE_S3)
595 opregion_target_state = PCI_D1;
596 #endif
597 intel_opregion_notify_adapter(dev, opregion_target_state);
598
599 intel_uncore_forcewake_reset(dev, false);
600 intel_opregion_fini(dev);
601
602 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
603
604 dev_priv->suspend_count++;
605
606 intel_display_set_init_power(dev_priv, false);
607
608 return 0;
609 }
610
611 int i915_suspend(struct drm_device *dev, pm_message_t state)
612 {
613 int error;
614
615 if (!dev || !dev->dev_private) {
616 DRM_ERROR("dev: %p\n", dev);
617 DRM_ERROR("DRM not initialized, aborting suspend.\n");
618 return -ENODEV;
619 }
620
621 if (state.event == PM_EVENT_PRETHAW)
622 return 0;
623
624
625 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
626 return 0;
627
628 error = i915_drm_freeze(dev);
629 if (error)
630 return error;
631
632 if (state.event == PM_EVENT_SUSPEND) {
633 /* Shut down the device */
634 pci_disable_device(dev->pdev);
635 pci_set_power_state(dev->pdev, PCI_D3hot);
636 }
637
638 return 0;
639 }
640
641 static int i915_drm_thaw_early(struct drm_device *dev)
642 {
643 struct drm_i915_private *dev_priv = dev->dev_private;
644 int ret;
645
646 ret = intel_resume_prepare(dev_priv, false);
647 if (ret)
648 DRM_ERROR("Resume prepare failed: %d,Continuing resume\n", ret);
649
650 intel_uncore_early_sanitize(dev, true);
651 intel_uncore_sanitize(dev);
652 intel_power_domains_init_hw(dev_priv);
653
654 return ret;
655 }
656
657 static int __i915_drm_thaw(struct drm_device *dev, bool restore_gtt_mappings)
658 {
659 struct drm_i915_private *dev_priv = dev->dev_private;
660
661 if (drm_core_check_feature(dev, DRIVER_MODESET) &&
662 restore_gtt_mappings) {
663 mutex_lock(&dev->struct_mutex);
664 i915_gem_restore_gtt_mappings(dev);
665 mutex_unlock(&dev->struct_mutex);
666 }
667
668 i915_restore_state(dev);
669 intel_opregion_setup(dev);
670
671 /* KMS EnterVT equivalent */
672 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
673 intel_init_pch_refclk(dev);
674 drm_mode_config_reset(dev);
675
676 mutex_lock(&dev->struct_mutex);
677 if (i915_gem_init_hw(dev)) {
678 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
679 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
680 }
681 mutex_unlock(&dev->struct_mutex);
682
683 intel_runtime_pm_restore_interrupts(dev);
684
685 intel_modeset_init_hw(dev);
686
687 {
688 unsigned long irqflags;
689 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
690 if (dev_priv->display.hpd_irq_setup)
691 dev_priv->display.hpd_irq_setup(dev);
692 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
693 }
694
695 intel_dp_mst_resume(dev);
696 drm_modeset_lock_all(dev);
697 intel_modeset_setup_hw_state(dev, true);
698 drm_modeset_unlock_all(dev);
699
700 /*
701 * ... but also need to make sure that hotplug processing
702 * doesn't cause havoc. Like in the driver load code we don't
703 * bother with the tiny race here where we might loose hotplug
704 * notifications.
705 * */
706 intel_hpd_init(dev);
707 /* Config may have changed between suspend and resume */
708 drm_helper_hpd_irq_event(dev);
709 }
710
711 intel_opregion_init(dev);
712
713 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
714
715 mutex_lock(&dev_priv->modeset_restore_lock);
716 dev_priv->modeset_restore = MODESET_DONE;
717 mutex_unlock(&dev_priv->modeset_restore_lock);
718
719 intel_opregion_notify_adapter(dev, PCI_D0);
720
721 return 0;
722 }
723
724 static int i915_drm_thaw(struct drm_device *dev)
725 {
726 if (drm_core_check_feature(dev, DRIVER_MODESET))
727 i915_check_and_clear_faults(dev);
728
729 return __i915_drm_thaw(dev, true);
730 }
731
732 static int i915_resume_early(struct drm_device *dev)
733 {
734 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
735 return 0;
736
737 /*
738 * We have a resume ordering issue with the snd-hda driver also
739 * requiring our device to be power up. Due to the lack of a
740 * parent/child relationship we currently solve this with an early
741 * resume hook.
742 *
743 * FIXME: This should be solved with a special hdmi sink device or
744 * similar so that power domains can be employed.
745 */
746 if (pci_enable_device(dev->pdev))
747 return -EIO;
748
749 pci_set_master(dev->pdev);
750
751 return i915_drm_thaw_early(dev);
752 }
753
754 int i915_resume(struct drm_device *dev)
755 {
756 struct drm_i915_private *dev_priv = dev->dev_private;
757 int ret;
758
759 /*
760 * Platforms with opregion should have sane BIOS, older ones (gen3 and
761 * earlier) need to restore the GTT mappings since the BIOS might clear
762 * all our scratch PTEs.
763 */
764 ret = __i915_drm_thaw(dev, !dev_priv->opregion.header);
765 if (ret)
766 return ret;
767
768 drm_kms_helper_poll_enable(dev);
769 return 0;
770 }
771
772 static int i915_resume_legacy(struct drm_device *dev)
773 {
774 i915_resume_early(dev);
775 i915_resume(dev);
776
777 return 0;
778 }
779
780 /**
781 * i915_reset - reset chip after a hang
782 * @dev: drm device to reset
783 *
784 * Reset the chip. Useful if a hang is detected. Returns zero on successful
785 * reset or otherwise an error code.
786 *
787 * Procedure is fairly simple:
788 * - reset the chip using the reset reg
789 * - re-init context state
790 * - re-init hardware status page
791 * - re-init ring buffer
792 * - re-init interrupt state
793 * - re-init display
794 */
795 int i915_reset(struct drm_device *dev)
796 {
797 struct drm_i915_private *dev_priv = dev->dev_private;
798 bool simulated;
799 int ret;
800
801 if (!i915.reset)
802 return 0;
803
804 mutex_lock(&dev->struct_mutex);
805
806 i915_gem_reset(dev);
807
808 simulated = dev_priv->gpu_error.stop_rings != 0;
809
810 ret = intel_gpu_reset(dev);
811
812 /* Also reset the gpu hangman. */
813 if (simulated) {
814 DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
815 dev_priv->gpu_error.stop_rings = 0;
816 if (ret == -ENODEV) {
817 DRM_INFO("Reset not implemented, but ignoring "
818 "error for simulated gpu hangs\n");
819 ret = 0;
820 }
821 }
822
823 if (ret) {
824 DRM_ERROR("Failed to reset chip: %i\n", ret);
825 mutex_unlock(&dev->struct_mutex);
826 return ret;
827 }
828
829 /* Ok, now get things going again... */
830
831 /*
832 * Everything depends on having the GTT running, so we need to start
833 * there. Fortunately we don't need to do this unless we reset the
834 * chip at a PCI level.
835 *
836 * Next we need to restore the context, but we don't use those
837 * yet either...
838 *
839 * Ring buffer needs to be re-initialized in the KMS case, or if X
840 * was running at the time of the reset (i.e. we weren't VT
841 * switched away).
842 */
843 if (drm_core_check_feature(dev, DRIVER_MODESET) ||
844 !dev_priv->ums.mm_suspended) {
845 dev_priv->ums.mm_suspended = 0;
846
847 ret = i915_gem_init_hw(dev);
848 mutex_unlock(&dev->struct_mutex);
849 if (ret) {
850 DRM_ERROR("Failed hw init on reset %d\n", ret);
851 return ret;
852 }
853
854 /*
855 * FIXME: This races pretty badly against concurrent holders of
856 * ring interrupts. This is possible since we've started to drop
857 * dev->struct_mutex in select places when waiting for the gpu.
858 */
859
860 /*
861 * rps/rc6 re-init is necessary to restore state lost after the
862 * reset and the re-install of gt irqs. Skip for ironlake per
863 * previous concerns that it doesn't respond well to some forms
864 * of re-init after reset.
865 */
866 if (INTEL_INFO(dev)->gen > 5)
867 intel_reset_gt_powersave(dev);
868
869 intel_hpd_init(dev);
870 } else {
871 mutex_unlock(&dev->struct_mutex);
872 }
873
874 return 0;
875 }
876
877 static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
878 {
879 struct intel_device_info *intel_info =
880 (struct intel_device_info *) ent->driver_data;
881
882 if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
883 DRM_INFO("This hardware requires preliminary hardware support.\n"
884 "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
885 return -ENODEV;
886 }
887
888 /* Only bind to function 0 of the device. Early generations
889 * used function 1 as a placeholder for multi-head. This causes
890 * us confusion instead, especially on the systems where both
891 * functions have the same PCI-ID!
892 */
893 if (PCI_FUNC(pdev->devfn))
894 return -ENODEV;
895
896 driver.driver_features &= ~(DRIVER_USE_AGP);
897
898 return drm_get_pci_dev(pdev, ent, &driver);
899 }
900
901 static void
902 i915_pci_remove(struct pci_dev *pdev)
903 {
904 struct drm_device *dev = pci_get_drvdata(pdev);
905
906 drm_put_dev(dev);
907 }
908
909 static int i915_pm_suspend(struct device *dev)
910 {
911 struct pci_dev *pdev = to_pci_dev(dev);
912 struct drm_device *drm_dev = pci_get_drvdata(pdev);
913
914 if (!drm_dev || !drm_dev->dev_private) {
915 dev_err(dev, "DRM not initialized, aborting suspend.\n");
916 return -ENODEV;
917 }
918
919 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
920 return 0;
921
922 return i915_drm_freeze(drm_dev);
923 }
924
925 static int i915_pm_suspend_late(struct device *dev)
926 {
927 struct pci_dev *pdev = to_pci_dev(dev);
928 struct drm_device *drm_dev = pci_get_drvdata(pdev);
929 struct drm_i915_private *dev_priv = drm_dev->dev_private;
930 int ret;
931
932 /*
933 * We have a suspedn ordering issue with the snd-hda driver also
934 * requiring our device to be power up. Due to the lack of a
935 * parent/child relationship we currently solve this with an late
936 * suspend hook.
937 *
938 * FIXME: This should be solved with a special hdmi sink device or
939 * similar so that power domains can be employed.
940 */
941 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
942 return 0;
943
944 ret = intel_suspend_complete(dev_priv);
945
946 if (ret)
947 DRM_ERROR("Suspend complete failed: %d\n", ret);
948 else {
949 pci_disable_device(pdev);
950 pci_set_power_state(pdev, PCI_D3hot);
951 }
952
953 return ret;
954 }
955
956 static int i915_pm_resume_early(struct device *dev)
957 {
958 struct pci_dev *pdev = to_pci_dev(dev);
959 struct drm_device *drm_dev = pci_get_drvdata(pdev);
960
961 return i915_resume_early(drm_dev);
962 }
963
964 static int i915_pm_resume(struct device *dev)
965 {
966 struct pci_dev *pdev = to_pci_dev(dev);
967 struct drm_device *drm_dev = pci_get_drvdata(pdev);
968
969 return i915_resume(drm_dev);
970 }
971
972 static int i915_pm_freeze(struct device *dev)
973 {
974 struct pci_dev *pdev = to_pci_dev(dev);
975 struct drm_device *drm_dev = pci_get_drvdata(pdev);
976
977 if (!drm_dev || !drm_dev->dev_private) {
978 dev_err(dev, "DRM not initialized, aborting suspend.\n");
979 return -ENODEV;
980 }
981
982 return i915_drm_freeze(drm_dev);
983 }
984
985 static int i915_pm_thaw_early(struct device *dev)
986 {
987 struct pci_dev *pdev = to_pci_dev(dev);
988 struct drm_device *drm_dev = pci_get_drvdata(pdev);
989
990 return i915_drm_thaw_early(drm_dev);
991 }
992
993 static int i915_pm_thaw(struct device *dev)
994 {
995 struct pci_dev *pdev = to_pci_dev(dev);
996 struct drm_device *drm_dev = pci_get_drvdata(pdev);
997
998 return i915_drm_thaw(drm_dev);
999 }
1000
1001 static int i915_pm_poweroff(struct device *dev)
1002 {
1003 struct pci_dev *pdev = to_pci_dev(dev);
1004 struct drm_device *drm_dev = pci_get_drvdata(pdev);
1005
1006 return i915_drm_freeze(drm_dev);
1007 }
1008
1009 static int hsw_suspend_complete(struct drm_i915_private *dev_priv)
1010 {
1011 hsw_enable_pc8(dev_priv);
1012
1013 return 0;
1014 }
1015
1016 static int snb_resume_prepare(struct drm_i915_private *dev_priv,
1017 bool rpm_resume)
1018 {
1019 struct drm_device *dev = dev_priv->dev;
1020
1021 if (rpm_resume)
1022 intel_init_pch_refclk(dev);
1023
1024 return 0;
1025 }
1026
1027 static int hsw_resume_prepare(struct drm_i915_private *dev_priv,
1028 bool rpm_resume)
1029 {
1030 hsw_disable_pc8(dev_priv);
1031
1032 return 0;
1033 }
1034
1035 /*
1036 * Save all Gunit registers that may be lost after a D3 and a subsequent
1037 * S0i[R123] transition. The list of registers needing a save/restore is
1038 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1039 * registers in the following way:
1040 * - Driver: saved/restored by the driver
1041 * - Punit : saved/restored by the Punit firmware
1042 * - No, w/o marking: no need to save/restore, since the register is R/O or
1043 * used internally by the HW in a way that doesn't depend
1044 * keeping the content across a suspend/resume.
1045 * - Debug : used for debugging
1046 *
1047 * We save/restore all registers marked with 'Driver', with the following
1048 * exceptions:
1049 * - Registers out of use, including also registers marked with 'Debug'.
1050 * These have no effect on the driver's operation, so we don't save/restore
1051 * them to reduce the overhead.
1052 * - Registers that are fully setup by an initialization function called from
1053 * the resume path. For example many clock gating and RPS/RC6 registers.
1054 * - Registers that provide the right functionality with their reset defaults.
1055 *
1056 * TODO: Except for registers that based on the above 3 criteria can be safely
1057 * ignored, we save/restore all others, practically treating the HW context as
1058 * a black-box for the driver. Further investigation is needed to reduce the
1059 * saved/restored registers even further, by following the same 3 criteria.
1060 */
1061 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1062 {
1063 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1064 int i;
1065
1066 /* GAM 0x4000-0x4770 */
1067 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1068 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1069 s->arb_mode = I915_READ(ARB_MODE);
1070 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1071 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1072
1073 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1074 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS_BASE + i * 4);
1075
1076 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1077 s->gfx_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1078
1079 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1080 s->ecochk = I915_READ(GAM_ECOCHK);
1081 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1082 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1083
1084 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1085
1086 /* MBC 0x9024-0x91D0, 0x8500 */
1087 s->g3dctl = I915_READ(VLV_G3DCTL);
1088 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1089 s->mbctl = I915_READ(GEN6_MBCTL);
1090
1091 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1092 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
1093 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
1094 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
1095 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
1096 s->rstctl = I915_READ(GEN6_RSTCTL);
1097 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
1098
1099 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1100 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
1101 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
1102 s->rpdeuc = I915_READ(GEN6_RPDEUC);
1103 s->ecobus = I915_READ(ECOBUS);
1104 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
1105 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1106 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
1107 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
1108 s->rcedata = I915_READ(VLV_RCEDATA);
1109 s->spare2gh = I915_READ(VLV_SPAREG2H);
1110
1111 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1112 s->gt_imr = I915_READ(GTIMR);
1113 s->gt_ier = I915_READ(GTIER);
1114 s->pm_imr = I915_READ(GEN6_PMIMR);
1115 s->pm_ier = I915_READ(GEN6_PMIER);
1116
1117 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1118 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH_BASE + i * 4);
1119
1120 /* GT SA CZ domain, 0x100000-0x138124 */
1121 s->tilectl = I915_READ(TILECTL);
1122 s->gt_fifoctl = I915_READ(GTFIFOCTL);
1123 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
1124 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1125 s->pmwgicz = I915_READ(VLV_PMWGICZ);
1126
1127 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1128 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
1129 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
1130 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
1131
1132 /*
1133 * Not saving any of:
1134 * DFT, 0x9800-0x9EC0
1135 * SARB, 0xB000-0xB1FC
1136 * GAC, 0x5208-0x524C, 0x14000-0x14C000
1137 * PCI CFG
1138 */
1139 }
1140
1141 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1142 {
1143 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1144 u32 val;
1145 int i;
1146
1147 /* GAM 0x4000-0x4770 */
1148 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
1149 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
1150 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
1151 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
1152 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
1153
1154 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1155 I915_WRITE(GEN7_LRA_LIMITS_BASE + i * 4, s->lra_limits[i]);
1156
1157 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1158 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->gfx_max_req_count);
1159
1160 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
1161 I915_WRITE(GAM_ECOCHK, s->ecochk);
1162 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
1163 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
1164
1165 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
1166
1167 /* MBC 0x9024-0x91D0, 0x8500 */
1168 I915_WRITE(VLV_G3DCTL, s->g3dctl);
1169 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
1170 I915_WRITE(GEN6_MBCTL, s->mbctl);
1171
1172 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1173 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
1174 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
1175 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
1176 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
1177 I915_WRITE(GEN6_RSTCTL, s->rstctl);
1178 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
1179
1180 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1181 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
1182 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
1183 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
1184 I915_WRITE(ECOBUS, s->ecobus);
1185 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
1186 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1187 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
1188 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
1189 I915_WRITE(VLV_RCEDATA, s->rcedata);
1190 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
1191
1192 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1193 I915_WRITE(GTIMR, s->gt_imr);
1194 I915_WRITE(GTIER, s->gt_ier);
1195 I915_WRITE(GEN6_PMIMR, s->pm_imr);
1196 I915_WRITE(GEN6_PMIER, s->pm_ier);
1197
1198 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1199 I915_WRITE(GEN7_GT_SCRATCH_BASE + i * 4, s->gt_scratch[i]);
1200
1201 /* GT SA CZ domain, 0x100000-0x138124 */
1202 I915_WRITE(TILECTL, s->tilectl);
1203 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
1204 /*
1205 * Preserve the GT allow wake and GFX force clock bit, they are not
1206 * be restored, as they are used to control the s0ix suspend/resume
1207 * sequence by the caller.
1208 */
1209 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1210 val &= VLV_GTLC_ALLOWWAKEREQ;
1211 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1212 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1213
1214 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1215 val &= VLV_GFX_CLK_FORCE_ON_BIT;
1216 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1217 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1218
1219 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
1220
1221 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1222 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
1223 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
1224 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
1225 }
1226
1227 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1228 {
1229 u32 val;
1230 int err;
1231
1232 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1233 WARN_ON(!!(val & VLV_GFX_CLK_FORCE_ON_BIT) == force_on);
1234
1235 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1236 /* Wait for a previous force-off to settle */
1237 if (force_on) {
1238 err = wait_for(!COND, 20);
1239 if (err) {
1240 DRM_ERROR("timeout waiting for GFX clock force-off (%08x)\n",
1241 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1242 return err;
1243 }
1244 }
1245
1246 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1247 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1248 if (force_on)
1249 val |= VLV_GFX_CLK_FORCE_ON_BIT;
1250 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1251
1252 if (!force_on)
1253 return 0;
1254
1255 err = wait_for(COND, 20);
1256 if (err)
1257 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1258 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1259
1260 return err;
1261 #undef COND
1262 }
1263
1264 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1265 {
1266 u32 val;
1267 int err = 0;
1268
1269 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1270 val &= ~VLV_GTLC_ALLOWWAKEREQ;
1271 if (allow)
1272 val |= VLV_GTLC_ALLOWWAKEREQ;
1273 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1274 POSTING_READ(VLV_GTLC_WAKE_CTRL);
1275
1276 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1277 allow)
1278 err = wait_for(COND, 1);
1279 if (err)
1280 DRM_ERROR("timeout disabling GT waking\n");
1281 return err;
1282 #undef COND
1283 }
1284
1285 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1286 bool wait_for_on)
1287 {
1288 u32 mask;
1289 u32 val;
1290 int err;
1291
1292 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1293 val = wait_for_on ? mask : 0;
1294 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1295 if (COND)
1296 return 0;
1297
1298 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1299 wait_for_on ? "on" : "off",
1300 I915_READ(VLV_GTLC_PW_STATUS));
1301
1302 /*
1303 * RC6 transitioning can be delayed up to 2 msec (see
1304 * valleyview_enable_rps), use 3 msec for safety.
1305 */
1306 err = wait_for(COND, 3);
1307 if (err)
1308 DRM_ERROR("timeout waiting for GT wells to go %s\n",
1309 wait_for_on ? "on" : "off");
1310
1311 return err;
1312 #undef COND
1313 }
1314
1315 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1316 {
1317 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1318 return;
1319
1320 DRM_ERROR("GT register access while GT waking disabled\n");
1321 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1322 }
1323
1324 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
1325 {
1326 u32 mask;
1327 int err;
1328
1329 /*
1330 * Bspec defines the following GT well on flags as debug only, so
1331 * don't treat them as hard failures.
1332 */
1333 (void)vlv_wait_for_gt_wells(dev_priv, false);
1334
1335 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1336 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1337
1338 vlv_check_no_gt_access(dev_priv);
1339
1340 err = vlv_force_gfx_clock(dev_priv, true);
1341 if (err)
1342 goto err1;
1343
1344 err = vlv_allow_gt_wake(dev_priv, false);
1345 if (err)
1346 goto err2;
1347 vlv_save_gunit_s0ix_state(dev_priv);
1348
1349 err = vlv_force_gfx_clock(dev_priv, false);
1350 if (err)
1351 goto err2;
1352
1353 return 0;
1354
1355 err2:
1356 /* For safety always re-enable waking and disable gfx clock forcing */
1357 vlv_allow_gt_wake(dev_priv, true);
1358 err1:
1359 vlv_force_gfx_clock(dev_priv, false);
1360
1361 return err;
1362 }
1363
1364 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1365 bool rpm_resume)
1366 {
1367 struct drm_device *dev = dev_priv->dev;
1368 int err;
1369 int ret;
1370
1371 /*
1372 * If any of the steps fail just try to continue, that's the best we
1373 * can do at this point. Return the first error code (which will also
1374 * leave RPM permanently disabled).
1375 */
1376 ret = vlv_force_gfx_clock(dev_priv, true);
1377
1378 vlv_restore_gunit_s0ix_state(dev_priv);
1379
1380 err = vlv_allow_gt_wake(dev_priv, true);
1381 if (!ret)
1382 ret = err;
1383
1384 err = vlv_force_gfx_clock(dev_priv, false);
1385 if (!ret)
1386 ret = err;
1387
1388 vlv_check_no_gt_access(dev_priv);
1389
1390 if (rpm_resume) {
1391 intel_init_clock_gating(dev);
1392 i915_gem_restore_fences(dev);
1393 }
1394
1395 return ret;
1396 }
1397
1398 static int intel_runtime_suspend(struct device *device)
1399 {
1400 struct pci_dev *pdev = to_pci_dev(device);
1401 struct drm_device *dev = pci_get_drvdata(pdev);
1402 struct drm_i915_private *dev_priv = dev->dev_private;
1403 int ret;
1404
1405 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1406 return -ENODEV;
1407
1408 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1409 return -ENODEV;
1410
1411 assert_force_wake_inactive(dev_priv);
1412
1413 DRM_DEBUG_KMS("Suspending device\n");
1414
1415 /*
1416 * We could deadlock here in case another thread holding struct_mutex
1417 * calls RPM suspend concurrently, since the RPM suspend will wait
1418 * first for this RPM suspend to finish. In this case the concurrent
1419 * RPM resume will be followed by its RPM suspend counterpart. Still
1420 * for consistency return -EAGAIN, which will reschedule this suspend.
1421 */
1422 if (!mutex_trylock(&dev->struct_mutex)) {
1423 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1424 /*
1425 * Bump the expiration timestamp, otherwise the suspend won't
1426 * be rescheduled.
1427 */
1428 pm_runtime_mark_last_busy(device);
1429
1430 return -EAGAIN;
1431 }
1432 /*
1433 * We are safe here against re-faults, since the fault handler takes
1434 * an RPM reference.
1435 */
1436 i915_gem_release_all_mmaps(dev_priv);
1437 mutex_unlock(&dev->struct_mutex);
1438
1439 /*
1440 * rps.work can't be rearmed here, since we get here only after making
1441 * sure the GPU is idle and the RPS freq is set to the minimum. See
1442 * intel_mark_idle().
1443 */
1444 cancel_work_sync(&dev_priv->rps.work);
1445 intel_runtime_pm_disable_interrupts(dev);
1446
1447 ret = intel_suspend_complete(dev_priv);
1448 if (ret) {
1449 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1450 intel_runtime_pm_restore_interrupts(dev);
1451
1452 return ret;
1453 }
1454
1455 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
1456 dev_priv->pm.suspended = true;
1457
1458 /*
1459 * current versions of firmware which depend on this opregion
1460 * notification have repurposed the D1 definition to mean
1461 * "runtime suspended" vs. what you would normally expect (D3)
1462 * to distinguish it from notifications that might be sent
1463 * via the suspend path.
1464 */
1465 intel_opregion_notify_adapter(dev, PCI_D1);
1466
1467 DRM_DEBUG_KMS("Device suspended\n");
1468 return 0;
1469 }
1470
1471 static int intel_runtime_resume(struct device *device)
1472 {
1473 struct pci_dev *pdev = to_pci_dev(device);
1474 struct drm_device *dev = pci_get_drvdata(pdev);
1475 struct drm_i915_private *dev_priv = dev->dev_private;
1476 int ret;
1477
1478 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1479 return -ENODEV;
1480
1481 DRM_DEBUG_KMS("Resuming device\n");
1482
1483 intel_opregion_notify_adapter(dev, PCI_D0);
1484 dev_priv->pm.suspended = false;
1485
1486 ret = intel_resume_prepare(dev_priv, true);
1487 /*
1488 * No point of rolling back things in case of an error, as the best
1489 * we can do is to hope that things will still work (and disable RPM).
1490 */
1491 i915_gem_init_swizzling(dev);
1492 gen6_update_ring_freq(dev);
1493
1494 intel_runtime_pm_restore_interrupts(dev);
1495 intel_reset_gt_powersave(dev);
1496
1497 if (ret)
1498 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1499 else
1500 DRM_DEBUG_KMS("Device resumed\n");
1501
1502 return ret;
1503 }
1504
1505 /*
1506 * This function implements common functionality of runtime and system
1507 * suspend sequence.
1508 */
1509 static int intel_suspend_complete(struct drm_i915_private *dev_priv)
1510 {
1511 struct drm_device *dev = dev_priv->dev;
1512 int ret;
1513
1514 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1515 ret = hsw_suspend_complete(dev_priv);
1516 else if (IS_VALLEYVIEW(dev))
1517 ret = vlv_suspend_complete(dev_priv);
1518 else
1519 ret = 0;
1520
1521 return ret;
1522 }
1523
1524 /*
1525 * This function implements common functionality of runtime and system
1526 * resume sequence. Variable rpm_resume used for implementing different
1527 * code paths.
1528 */
1529 static int intel_resume_prepare(struct drm_i915_private *dev_priv,
1530 bool rpm_resume)
1531 {
1532 struct drm_device *dev = dev_priv->dev;
1533 int ret;
1534
1535 if (IS_GEN6(dev))
1536 ret = snb_resume_prepare(dev_priv, rpm_resume);
1537 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1538 ret = hsw_resume_prepare(dev_priv, rpm_resume);
1539 else if (IS_VALLEYVIEW(dev))
1540 ret = vlv_resume_prepare(dev_priv, rpm_resume);
1541 else
1542 ret = 0;
1543
1544 return ret;
1545 }
1546
1547 static const struct dev_pm_ops i915_pm_ops = {
1548 .suspend = i915_pm_suspend,
1549 .suspend_late = i915_pm_suspend_late,
1550 .resume_early = i915_pm_resume_early,
1551 .resume = i915_pm_resume,
1552 .freeze = i915_pm_freeze,
1553 .thaw_early = i915_pm_thaw_early,
1554 .thaw = i915_pm_thaw,
1555 .poweroff = i915_pm_poweroff,
1556 .restore_early = i915_pm_resume_early,
1557 .restore = i915_pm_resume,
1558 .runtime_suspend = intel_runtime_suspend,
1559 .runtime_resume = intel_runtime_resume,
1560 };
1561
1562 static const struct vm_operations_struct i915_gem_vm_ops = {
1563 .fault = i915_gem_fault,
1564 .open = drm_gem_vm_open,
1565 .close = drm_gem_vm_close,
1566 };
1567
1568 static const struct file_operations i915_driver_fops = {
1569 .owner = THIS_MODULE,
1570 .open = drm_open,
1571 .release = drm_release,
1572 .unlocked_ioctl = drm_ioctl,
1573 .mmap = drm_gem_mmap,
1574 .poll = drm_poll,
1575 .read = drm_read,
1576 #ifdef CONFIG_COMPAT
1577 .compat_ioctl = i915_compat_ioctl,
1578 #endif
1579 .llseek = noop_llseek,
1580 };
1581
1582 static struct drm_driver driver = {
1583 /* Don't use MTRRs here; the Xserver or userspace app should
1584 * deal with them for Intel hardware.
1585 */
1586 .driver_features =
1587 DRIVER_USE_AGP |
1588 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
1589 DRIVER_RENDER,
1590 .load = i915_driver_load,
1591 .unload = i915_driver_unload,
1592 .open = i915_driver_open,
1593 .lastclose = i915_driver_lastclose,
1594 .preclose = i915_driver_preclose,
1595 .postclose = i915_driver_postclose,
1596 .set_busid = drm_pci_set_busid,
1597
1598 /* Used in place of i915_pm_ops for non-DRIVER_MODESET */
1599 .suspend = i915_suspend,
1600 .resume = i915_resume_legacy,
1601
1602 .device_is_agp = i915_driver_device_is_agp,
1603 .master_create = i915_master_create,
1604 .master_destroy = i915_master_destroy,
1605 #if defined(CONFIG_DEBUG_FS)
1606 .debugfs_init = i915_debugfs_init,
1607 .debugfs_cleanup = i915_debugfs_cleanup,
1608 #endif
1609 .gem_free_object = i915_gem_free_object,
1610 .gem_vm_ops = &i915_gem_vm_ops,
1611
1612 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
1613 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
1614 .gem_prime_export = i915_gem_prime_export,
1615 .gem_prime_import = i915_gem_prime_import,
1616
1617 .dumb_create = i915_gem_dumb_create,
1618 .dumb_map_offset = i915_gem_mmap_gtt,
1619 .dumb_destroy = drm_gem_dumb_destroy,
1620 .ioctls = i915_ioctls,
1621 .fops = &i915_driver_fops,
1622 .name = DRIVER_NAME,
1623 .desc = DRIVER_DESC,
1624 .date = DRIVER_DATE,
1625 .major = DRIVER_MAJOR,
1626 .minor = DRIVER_MINOR,
1627 .patchlevel = DRIVER_PATCHLEVEL,
1628 };
1629
1630 static struct pci_driver i915_pci_driver = {
1631 .name = DRIVER_NAME,
1632 .id_table = pciidlist,
1633 .probe = i915_pci_probe,
1634 .remove = i915_pci_remove,
1635 .driver.pm = &i915_pm_ops,
1636 };
1637
1638 static int __init i915_init(void)
1639 {
1640 driver.num_ioctls = i915_max_ioctl;
1641
1642 /*
1643 * If CONFIG_DRM_I915_KMS is set, default to KMS unless
1644 * explicitly disabled with the module pararmeter.
1645 *
1646 * Otherwise, just follow the parameter (defaulting to off).
1647 *
1648 * Allow optional vga_text_mode_force boot option to override
1649 * the default behavior.
1650 */
1651 #if defined(CONFIG_DRM_I915_KMS)
1652 if (i915.modeset != 0)
1653 driver.driver_features |= DRIVER_MODESET;
1654 #endif
1655 if (i915.modeset == 1)
1656 driver.driver_features |= DRIVER_MODESET;
1657
1658 #ifdef CONFIG_VGA_CONSOLE
1659 if (vgacon_text_force() && i915.modeset == -1)
1660 driver.driver_features &= ~DRIVER_MODESET;
1661 #endif
1662
1663 if (!(driver.driver_features & DRIVER_MODESET)) {
1664 driver.get_vblank_timestamp = NULL;
1665 #ifndef CONFIG_DRM_I915_UMS
1666 /* Silently fail loading to not upset userspace. */
1667 DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1668 return 0;
1669 #endif
1670 }
1671
1672 return drm_pci_init(&driver, &i915_pci_driver);
1673 }
1674
1675 static void __exit i915_exit(void)
1676 {
1677 #ifndef CONFIG_DRM_I915_UMS
1678 if (!(driver.driver_features & DRIVER_MODESET))
1679 return; /* Never loaded a driver. */
1680 #endif
1681
1682 drm_pci_exit(&driver, &i915_pci_driver);
1683 }
1684
1685 module_init(i915_init);
1686 module_exit(i915_exit);
1687
1688 MODULE_AUTHOR(DRIVER_AUTHOR);
1689 MODULE_DESCRIPTION(DRIVER_DESC);
1690 MODULE_LICENSE("GPL and additional rights");
This page took 0.076852 seconds and 5 git commands to generate.