drm/i915: Register debugfs interface last
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/device.h>
31 #include <linux/acpi.h>
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34 #include "i915_drv.h"
35 #include "i915_trace.h"
36 #include "intel_drv.h"
37
38 #include <linux/console.h>
39 #include <linux/module.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/vga_switcheroo.h>
42 #include <drm/drm_crtc_helper.h>
43
44 static struct drm_driver driver;
45
46 #define GEN_DEFAULT_PIPEOFFSETS \
47 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
48 PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
49 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
50 TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
51 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
52
53 #define GEN_CHV_PIPEOFFSETS \
54 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
55 CHV_PIPE_C_OFFSET }, \
56 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
57 CHV_TRANSCODER_C_OFFSET, }, \
58 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
59 CHV_PALETTE_C_OFFSET }
60
61 #define CURSOR_OFFSETS \
62 .cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
63
64 #define IVB_CURSOR_OFFSETS \
65 .cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
66
67 #define BDW_COLORS \
68 .color = { .degamma_lut_size = 512, .gamma_lut_size = 512 }
69 #define CHV_COLORS \
70 .color = { .degamma_lut_size = 65, .gamma_lut_size = 257 }
71
72 static const struct intel_device_info intel_i830_info = {
73 .gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
74 .has_overlay = 1, .overlay_needs_physical = 1,
75 .ring_mask = RENDER_RING,
76 GEN_DEFAULT_PIPEOFFSETS,
77 CURSOR_OFFSETS,
78 };
79
80 static const struct intel_device_info intel_845g_info = {
81 .gen = 2, .num_pipes = 1,
82 .has_overlay = 1, .overlay_needs_physical = 1,
83 .ring_mask = RENDER_RING,
84 GEN_DEFAULT_PIPEOFFSETS,
85 CURSOR_OFFSETS,
86 };
87
88 static const struct intel_device_info intel_i85x_info = {
89 .gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
90 .cursor_needs_physical = 1,
91 .has_overlay = 1, .overlay_needs_physical = 1,
92 .has_fbc = 1,
93 .ring_mask = RENDER_RING,
94 GEN_DEFAULT_PIPEOFFSETS,
95 CURSOR_OFFSETS,
96 };
97
98 static const struct intel_device_info intel_i865g_info = {
99 .gen = 2, .num_pipes = 1,
100 .has_overlay = 1, .overlay_needs_physical = 1,
101 .ring_mask = RENDER_RING,
102 GEN_DEFAULT_PIPEOFFSETS,
103 CURSOR_OFFSETS,
104 };
105
106 static const struct intel_device_info intel_i915g_info = {
107 .gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
108 .has_overlay = 1, .overlay_needs_physical = 1,
109 .ring_mask = RENDER_RING,
110 GEN_DEFAULT_PIPEOFFSETS,
111 CURSOR_OFFSETS,
112 };
113 static const struct intel_device_info intel_i915gm_info = {
114 .gen = 3, .is_mobile = 1, .num_pipes = 2,
115 .cursor_needs_physical = 1,
116 .has_overlay = 1, .overlay_needs_physical = 1,
117 .supports_tv = 1,
118 .has_fbc = 1,
119 .ring_mask = RENDER_RING,
120 GEN_DEFAULT_PIPEOFFSETS,
121 CURSOR_OFFSETS,
122 };
123 static const struct intel_device_info intel_i945g_info = {
124 .gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
125 .has_overlay = 1, .overlay_needs_physical = 1,
126 .ring_mask = RENDER_RING,
127 GEN_DEFAULT_PIPEOFFSETS,
128 CURSOR_OFFSETS,
129 };
130 static const struct intel_device_info intel_i945gm_info = {
131 .gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
132 .has_hotplug = 1, .cursor_needs_physical = 1,
133 .has_overlay = 1, .overlay_needs_physical = 1,
134 .supports_tv = 1,
135 .has_fbc = 1,
136 .ring_mask = RENDER_RING,
137 GEN_DEFAULT_PIPEOFFSETS,
138 CURSOR_OFFSETS,
139 };
140
141 static const struct intel_device_info intel_i965g_info = {
142 .gen = 4, .is_broadwater = 1, .num_pipes = 2,
143 .has_hotplug = 1,
144 .has_overlay = 1,
145 .ring_mask = RENDER_RING,
146 GEN_DEFAULT_PIPEOFFSETS,
147 CURSOR_OFFSETS,
148 };
149
150 static const struct intel_device_info intel_i965gm_info = {
151 .gen = 4, .is_crestline = 1, .num_pipes = 2,
152 .is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
153 .has_overlay = 1,
154 .supports_tv = 1,
155 .ring_mask = RENDER_RING,
156 GEN_DEFAULT_PIPEOFFSETS,
157 CURSOR_OFFSETS,
158 };
159
160 static const struct intel_device_info intel_g33_info = {
161 .gen = 3, .is_g33 = 1, .num_pipes = 2,
162 .need_gfx_hws = 1, .has_hotplug = 1,
163 .has_overlay = 1,
164 .ring_mask = RENDER_RING,
165 GEN_DEFAULT_PIPEOFFSETS,
166 CURSOR_OFFSETS,
167 };
168
169 static const struct intel_device_info intel_g45_info = {
170 .gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
171 .has_pipe_cxsr = 1, .has_hotplug = 1,
172 .ring_mask = RENDER_RING | BSD_RING,
173 GEN_DEFAULT_PIPEOFFSETS,
174 CURSOR_OFFSETS,
175 };
176
177 static const struct intel_device_info intel_gm45_info = {
178 .gen = 4, .is_g4x = 1, .num_pipes = 2,
179 .is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
180 .has_pipe_cxsr = 1, .has_hotplug = 1,
181 .supports_tv = 1,
182 .ring_mask = RENDER_RING | BSD_RING,
183 GEN_DEFAULT_PIPEOFFSETS,
184 CURSOR_OFFSETS,
185 };
186
187 static const struct intel_device_info intel_pineview_info = {
188 .gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
189 .need_gfx_hws = 1, .has_hotplug = 1,
190 .has_overlay = 1,
191 GEN_DEFAULT_PIPEOFFSETS,
192 CURSOR_OFFSETS,
193 };
194
195 static const struct intel_device_info intel_ironlake_d_info = {
196 .gen = 5, .num_pipes = 2,
197 .need_gfx_hws = 1, .has_hotplug = 1,
198 .ring_mask = RENDER_RING | BSD_RING,
199 GEN_DEFAULT_PIPEOFFSETS,
200 CURSOR_OFFSETS,
201 };
202
203 static const struct intel_device_info intel_ironlake_m_info = {
204 .gen = 5, .is_mobile = 1, .num_pipes = 2,
205 .need_gfx_hws = 1, .has_hotplug = 1,
206 .has_fbc = 1,
207 .ring_mask = RENDER_RING | BSD_RING,
208 GEN_DEFAULT_PIPEOFFSETS,
209 CURSOR_OFFSETS,
210 };
211
212 static const struct intel_device_info intel_sandybridge_d_info = {
213 .gen = 6, .num_pipes = 2,
214 .need_gfx_hws = 1, .has_hotplug = 1,
215 .has_fbc = 1,
216 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
217 .has_llc = 1,
218 GEN_DEFAULT_PIPEOFFSETS,
219 CURSOR_OFFSETS,
220 };
221
222 static const struct intel_device_info intel_sandybridge_m_info = {
223 .gen = 6, .is_mobile = 1, .num_pipes = 2,
224 .need_gfx_hws = 1, .has_hotplug = 1,
225 .has_fbc = 1,
226 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
227 .has_llc = 1,
228 GEN_DEFAULT_PIPEOFFSETS,
229 CURSOR_OFFSETS,
230 };
231
232 #define GEN7_FEATURES \
233 .gen = 7, .num_pipes = 3, \
234 .need_gfx_hws = 1, .has_hotplug = 1, \
235 .has_fbc = 1, \
236 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
237 .has_llc = 1, \
238 GEN_DEFAULT_PIPEOFFSETS, \
239 IVB_CURSOR_OFFSETS
240
241 static const struct intel_device_info intel_ivybridge_d_info = {
242 GEN7_FEATURES,
243 .is_ivybridge = 1,
244 };
245
246 static const struct intel_device_info intel_ivybridge_m_info = {
247 GEN7_FEATURES,
248 .is_ivybridge = 1,
249 .is_mobile = 1,
250 };
251
252 static const struct intel_device_info intel_ivybridge_q_info = {
253 GEN7_FEATURES,
254 .is_ivybridge = 1,
255 .num_pipes = 0, /* legal, last one wins */
256 };
257
258 #define VLV_FEATURES \
259 .gen = 7, .num_pipes = 2, \
260 .need_gfx_hws = 1, .has_hotplug = 1, \
261 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
262 .display_mmio_offset = VLV_DISPLAY_BASE, \
263 GEN_DEFAULT_PIPEOFFSETS, \
264 CURSOR_OFFSETS
265
266 static const struct intel_device_info intel_valleyview_m_info = {
267 VLV_FEATURES,
268 .is_valleyview = 1,
269 .is_mobile = 1,
270 };
271
272 static const struct intel_device_info intel_valleyview_d_info = {
273 VLV_FEATURES,
274 .is_valleyview = 1,
275 };
276
277 #define HSW_FEATURES \
278 GEN7_FEATURES, \
279 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, \
280 .has_ddi = 1, \
281 .has_fpga_dbg = 1
282
283 static const struct intel_device_info intel_haswell_d_info = {
284 HSW_FEATURES,
285 .is_haswell = 1,
286 };
287
288 static const struct intel_device_info intel_haswell_m_info = {
289 HSW_FEATURES,
290 .is_haswell = 1,
291 .is_mobile = 1,
292 };
293
294 #define BDW_FEATURES \
295 HSW_FEATURES, \
296 BDW_COLORS
297
298 static const struct intel_device_info intel_broadwell_d_info = {
299 BDW_FEATURES,
300 .gen = 8,
301 .is_broadwell = 1,
302 };
303
304 static const struct intel_device_info intel_broadwell_m_info = {
305 BDW_FEATURES,
306 .gen = 8, .is_mobile = 1,
307 .is_broadwell = 1,
308 };
309
310 static const struct intel_device_info intel_broadwell_gt3d_info = {
311 BDW_FEATURES,
312 .gen = 8,
313 .is_broadwell = 1,
314 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
315 };
316
317 static const struct intel_device_info intel_broadwell_gt3m_info = {
318 BDW_FEATURES,
319 .gen = 8, .is_mobile = 1,
320 .is_broadwell = 1,
321 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
322 };
323
324 static const struct intel_device_info intel_cherryview_info = {
325 .gen = 8, .num_pipes = 3,
326 .need_gfx_hws = 1, .has_hotplug = 1,
327 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
328 .is_cherryview = 1,
329 .display_mmio_offset = VLV_DISPLAY_BASE,
330 GEN_CHV_PIPEOFFSETS,
331 CURSOR_OFFSETS,
332 CHV_COLORS,
333 };
334
335 static const struct intel_device_info intel_skylake_info = {
336 BDW_FEATURES,
337 .is_skylake = 1,
338 .gen = 9,
339 };
340
341 static const struct intel_device_info intel_skylake_gt3_info = {
342 BDW_FEATURES,
343 .is_skylake = 1,
344 .gen = 9,
345 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
346 };
347
348 static const struct intel_device_info intel_broxton_info = {
349 .is_preliminary = 1,
350 .is_broxton = 1,
351 .gen = 9,
352 .need_gfx_hws = 1, .has_hotplug = 1,
353 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
354 .num_pipes = 3,
355 .has_ddi = 1,
356 .has_fpga_dbg = 1,
357 .has_fbc = 1,
358 .has_pooled_eu = 0,
359 GEN_DEFAULT_PIPEOFFSETS,
360 IVB_CURSOR_OFFSETS,
361 BDW_COLORS,
362 };
363
364 static const struct intel_device_info intel_kabylake_info = {
365 BDW_FEATURES,
366 .is_kabylake = 1,
367 .gen = 9,
368 };
369
370 static const struct intel_device_info intel_kabylake_gt3_info = {
371 BDW_FEATURES,
372 .is_kabylake = 1,
373 .gen = 9,
374 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
375 };
376
377 /*
378 * Make sure any device matches here are from most specific to most
379 * general. For example, since the Quanta match is based on the subsystem
380 * and subvendor IDs, we need it to come before the more general IVB
381 * PCI ID matches, otherwise we'll use the wrong info struct above.
382 */
383 static const struct pci_device_id pciidlist[] = {
384 INTEL_I830_IDS(&intel_i830_info),
385 INTEL_I845G_IDS(&intel_845g_info),
386 INTEL_I85X_IDS(&intel_i85x_info),
387 INTEL_I865G_IDS(&intel_i865g_info),
388 INTEL_I915G_IDS(&intel_i915g_info),
389 INTEL_I915GM_IDS(&intel_i915gm_info),
390 INTEL_I945G_IDS(&intel_i945g_info),
391 INTEL_I945GM_IDS(&intel_i945gm_info),
392 INTEL_I965G_IDS(&intel_i965g_info),
393 INTEL_G33_IDS(&intel_g33_info),
394 INTEL_I965GM_IDS(&intel_i965gm_info),
395 INTEL_GM45_IDS(&intel_gm45_info),
396 INTEL_G45_IDS(&intel_g45_info),
397 INTEL_PINEVIEW_IDS(&intel_pineview_info),
398 INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info),
399 INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info),
400 INTEL_SNB_D_IDS(&intel_sandybridge_d_info),
401 INTEL_SNB_M_IDS(&intel_sandybridge_m_info),
402 INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */
403 INTEL_IVB_M_IDS(&intel_ivybridge_m_info),
404 INTEL_IVB_D_IDS(&intel_ivybridge_d_info),
405 INTEL_HSW_D_IDS(&intel_haswell_d_info),
406 INTEL_HSW_M_IDS(&intel_haswell_m_info),
407 INTEL_VLV_M_IDS(&intel_valleyview_m_info),
408 INTEL_VLV_D_IDS(&intel_valleyview_d_info),
409 INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info),
410 INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info),
411 INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info),
412 INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info),
413 INTEL_CHV_IDS(&intel_cherryview_info),
414 INTEL_SKL_GT1_IDS(&intel_skylake_info),
415 INTEL_SKL_GT2_IDS(&intel_skylake_info),
416 INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info),
417 INTEL_SKL_GT4_IDS(&intel_skylake_gt3_info),
418 INTEL_BXT_IDS(&intel_broxton_info),
419 INTEL_KBL_GT1_IDS(&intel_kabylake_info),
420 INTEL_KBL_GT2_IDS(&intel_kabylake_info),
421 INTEL_KBL_GT3_IDS(&intel_kabylake_gt3_info),
422 INTEL_KBL_GT4_IDS(&intel_kabylake_gt3_info),
423 {0, 0, 0}
424 };
425
426 MODULE_DEVICE_TABLE(pci, pciidlist);
427
428 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
429 {
430 enum intel_pch ret = PCH_NOP;
431
432 /*
433 * In a virtualized passthrough environment we can be in a
434 * setup where the ISA bridge is not able to be passed through.
435 * In this case, a south bridge can be emulated and we have to
436 * make an educated guess as to which PCH is really there.
437 */
438
439 if (IS_GEN5(dev)) {
440 ret = PCH_IBX;
441 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
442 } else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
443 ret = PCH_CPT;
444 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
445 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
446 ret = PCH_LPT;
447 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
448 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
449 ret = PCH_SPT;
450 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
451 }
452
453 return ret;
454 }
455
456 void intel_detect_pch(struct drm_device *dev)
457 {
458 struct drm_i915_private *dev_priv = dev->dev_private;
459 struct pci_dev *pch = NULL;
460
461 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
462 * (which really amounts to a PCH but no South Display).
463 */
464 if (INTEL_INFO(dev)->num_pipes == 0) {
465 dev_priv->pch_type = PCH_NOP;
466 return;
467 }
468
469 /*
470 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
471 * make graphics device passthrough work easy for VMM, that only
472 * need to expose ISA bridge to let driver know the real hardware
473 * underneath. This is a requirement from virtualization team.
474 *
475 * In some virtualized environments (e.g. XEN), there is irrelevant
476 * ISA bridge in the system. To work reliably, we should scan trhough
477 * all the ISA bridge devices and check for the first match, instead
478 * of only checking the first one.
479 */
480 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
481 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
482 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
483 dev_priv->pch_id = id;
484
485 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
486 dev_priv->pch_type = PCH_IBX;
487 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
488 WARN_ON(!IS_GEN5(dev));
489 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
490 dev_priv->pch_type = PCH_CPT;
491 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
492 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
493 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
494 /* PantherPoint is CPT compatible */
495 dev_priv->pch_type = PCH_CPT;
496 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
497 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
498 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
499 dev_priv->pch_type = PCH_LPT;
500 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
501 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
502 WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
503 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
504 dev_priv->pch_type = PCH_LPT;
505 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
506 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
507 WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
508 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
509 dev_priv->pch_type = PCH_SPT;
510 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
511 WARN_ON(!IS_SKYLAKE(dev) &&
512 !IS_KABYLAKE(dev));
513 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
514 dev_priv->pch_type = PCH_SPT;
515 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
516 WARN_ON(!IS_SKYLAKE(dev) &&
517 !IS_KABYLAKE(dev));
518 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
519 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
520 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
521 pch->subsystem_vendor ==
522 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
523 pch->subsystem_device ==
524 PCI_SUBDEVICE_ID_QEMU)) {
525 dev_priv->pch_type = intel_virt_detect_pch(dev);
526 } else
527 continue;
528
529 break;
530 }
531 }
532 if (!pch)
533 DRM_DEBUG_KMS("No PCH found.\n");
534
535 pci_dev_put(pch);
536 }
537
538 bool i915_semaphore_is_enabled(struct drm_i915_private *dev_priv)
539 {
540 if (INTEL_GEN(dev_priv) < 6)
541 return false;
542
543 if (i915.semaphores >= 0)
544 return i915.semaphores;
545
546 /* TODO: make semaphores and Execlists play nicely together */
547 if (i915.enable_execlists)
548 return false;
549
550 #ifdef CONFIG_INTEL_IOMMU
551 /* Enable semaphores on SNB when IO remapping is off */
552 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped)
553 return false;
554 #endif
555
556 return true;
557 }
558
559 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
560 {
561 struct drm_device *dev = dev_priv->dev;
562 struct intel_encoder *encoder;
563
564 drm_modeset_lock_all(dev);
565 for_each_intel_encoder(dev, encoder)
566 if (encoder->suspend)
567 encoder->suspend(encoder);
568 drm_modeset_unlock_all(dev);
569 }
570
571 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
572 bool rpm_resume);
573 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
574
575 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
576 {
577 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
578 if (acpi_target_system_state() < ACPI_STATE_S3)
579 return true;
580 #endif
581 return false;
582 }
583
584 static int i915_drm_suspend(struct drm_device *dev)
585 {
586 struct drm_i915_private *dev_priv = dev->dev_private;
587 pci_power_t opregion_target_state;
588 int error;
589
590 /* ignore lid events during suspend */
591 mutex_lock(&dev_priv->modeset_restore_lock);
592 dev_priv->modeset_restore = MODESET_SUSPENDED;
593 mutex_unlock(&dev_priv->modeset_restore_lock);
594
595 disable_rpm_wakeref_asserts(dev_priv);
596
597 /* We do a lot of poking in a lot of registers, make sure they work
598 * properly. */
599 intel_display_set_init_power(dev_priv, true);
600
601 drm_kms_helper_poll_disable(dev);
602
603 pci_save_state(dev->pdev);
604
605 error = i915_gem_suspend(dev);
606 if (error) {
607 dev_err(&dev->pdev->dev,
608 "GEM idle failed, resume might fail\n");
609 goto out;
610 }
611
612 intel_guc_suspend(dev);
613
614 intel_suspend_gt_powersave(dev_priv);
615
616 intel_display_suspend(dev);
617
618 intel_dp_mst_suspend(dev);
619
620 intel_runtime_pm_disable_interrupts(dev_priv);
621 intel_hpd_cancel_work(dev_priv);
622
623 intel_suspend_encoders(dev_priv);
624
625 intel_suspend_hw(dev);
626
627 i915_gem_suspend_gtt_mappings(dev);
628
629 i915_save_state(dev);
630
631 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
632 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
633
634 intel_uncore_forcewake_reset(dev_priv, false);
635 intel_opregion_unregister(dev_priv);
636
637 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
638
639 dev_priv->suspend_count++;
640
641 intel_display_set_init_power(dev_priv, false);
642
643 intel_csr_ucode_suspend(dev_priv);
644
645 out:
646 enable_rpm_wakeref_asserts(dev_priv);
647
648 return error;
649 }
650
651 static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
652 {
653 struct drm_i915_private *dev_priv = drm_dev->dev_private;
654 bool fw_csr;
655 int ret;
656
657 disable_rpm_wakeref_asserts(dev_priv);
658
659 fw_csr = !IS_BROXTON(dev_priv) &&
660 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
661 /*
662 * In case of firmware assisted context save/restore don't manually
663 * deinit the power domains. This also means the CSR/DMC firmware will
664 * stay active, it will power down any HW resources as required and
665 * also enable deeper system power states that would be blocked if the
666 * firmware was inactive.
667 */
668 if (!fw_csr)
669 intel_power_domains_suspend(dev_priv);
670
671 ret = 0;
672 if (IS_BROXTON(dev_priv))
673 bxt_enable_dc9(dev_priv);
674 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
675 hsw_enable_pc8(dev_priv);
676 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
677 ret = vlv_suspend_complete(dev_priv);
678
679 if (ret) {
680 DRM_ERROR("Suspend complete failed: %d\n", ret);
681 if (!fw_csr)
682 intel_power_domains_init_hw(dev_priv, true);
683
684 goto out;
685 }
686
687 pci_disable_device(drm_dev->pdev);
688 /*
689 * During hibernation on some platforms the BIOS may try to access
690 * the device even though it's already in D3 and hang the machine. So
691 * leave the device in D0 on those platforms and hope the BIOS will
692 * power down the device properly. The issue was seen on multiple old
693 * GENs with different BIOS vendors, so having an explicit blacklist
694 * is inpractical; apply the workaround on everything pre GEN6. The
695 * platforms where the issue was seen:
696 * Lenovo Thinkpad X301, X61s, X60, T60, X41
697 * Fujitsu FSC S7110
698 * Acer Aspire 1830T
699 */
700 if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
701 pci_set_power_state(drm_dev->pdev, PCI_D3hot);
702
703 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
704
705 out:
706 enable_rpm_wakeref_asserts(dev_priv);
707
708 return ret;
709 }
710
711 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
712 {
713 int error;
714
715 if (!dev || !dev->dev_private) {
716 DRM_ERROR("dev: %p\n", dev);
717 DRM_ERROR("DRM not initialized, aborting suspend.\n");
718 return -ENODEV;
719 }
720
721 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
722 state.event != PM_EVENT_FREEZE))
723 return -EINVAL;
724
725 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
726 return 0;
727
728 error = i915_drm_suspend(dev);
729 if (error)
730 return error;
731
732 return i915_drm_suspend_late(dev, false);
733 }
734
735 static int i915_drm_resume(struct drm_device *dev)
736 {
737 struct drm_i915_private *dev_priv = dev->dev_private;
738 int ret;
739
740 disable_rpm_wakeref_asserts(dev_priv);
741
742 ret = i915_ggtt_enable_hw(dev);
743 if (ret)
744 DRM_ERROR("failed to re-enable GGTT\n");
745
746 intel_csr_ucode_resume(dev_priv);
747
748 mutex_lock(&dev->struct_mutex);
749 i915_gem_restore_gtt_mappings(dev);
750 mutex_unlock(&dev->struct_mutex);
751
752 i915_restore_state(dev);
753 intel_opregion_setup(dev_priv);
754
755 intel_init_pch_refclk(dev);
756 drm_mode_config_reset(dev);
757
758 /*
759 * Interrupts have to be enabled before any batches are run. If not the
760 * GPU will hang. i915_gem_init_hw() will initiate batches to
761 * update/restore the context.
762 *
763 * Modeset enabling in intel_modeset_init_hw() also needs working
764 * interrupts.
765 */
766 intel_runtime_pm_enable_interrupts(dev_priv);
767
768 mutex_lock(&dev->struct_mutex);
769 if (i915_gem_init_hw(dev)) {
770 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
771 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
772 }
773 mutex_unlock(&dev->struct_mutex);
774
775 intel_guc_resume(dev);
776
777 intel_modeset_init_hw(dev);
778
779 spin_lock_irq(&dev_priv->irq_lock);
780 if (dev_priv->display.hpd_irq_setup)
781 dev_priv->display.hpd_irq_setup(dev_priv);
782 spin_unlock_irq(&dev_priv->irq_lock);
783
784 intel_dp_mst_resume(dev);
785
786 intel_display_resume(dev);
787
788 /*
789 * ... but also need to make sure that hotplug processing
790 * doesn't cause havoc. Like in the driver load code we don't
791 * bother with the tiny race here where we might loose hotplug
792 * notifications.
793 * */
794 intel_hpd_init(dev_priv);
795 /* Config may have changed between suspend and resume */
796 drm_helper_hpd_irq_event(dev);
797
798 intel_opregion_register(dev_priv);
799
800 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
801
802 mutex_lock(&dev_priv->modeset_restore_lock);
803 dev_priv->modeset_restore = MODESET_DONE;
804 mutex_unlock(&dev_priv->modeset_restore_lock);
805
806 intel_opregion_notify_adapter(dev_priv, PCI_D0);
807
808 drm_kms_helper_poll_enable(dev);
809
810 enable_rpm_wakeref_asserts(dev_priv);
811
812 return 0;
813 }
814
815 static int i915_drm_resume_early(struct drm_device *dev)
816 {
817 struct drm_i915_private *dev_priv = dev->dev_private;
818 int ret;
819
820 /*
821 * We have a resume ordering issue with the snd-hda driver also
822 * requiring our device to be power up. Due to the lack of a
823 * parent/child relationship we currently solve this with an early
824 * resume hook.
825 *
826 * FIXME: This should be solved with a special hdmi sink device or
827 * similar so that power domains can be employed.
828 */
829
830 /*
831 * Note that we need to set the power state explicitly, since we
832 * powered off the device during freeze and the PCI core won't power
833 * it back up for us during thaw. Powering off the device during
834 * freeze is not a hard requirement though, and during the
835 * suspend/resume phases the PCI core makes sure we get here with the
836 * device powered on. So in case we change our freeze logic and keep
837 * the device powered we can also remove the following set power state
838 * call.
839 */
840 ret = pci_set_power_state(dev->pdev, PCI_D0);
841 if (ret) {
842 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
843 goto out;
844 }
845
846 /*
847 * Note that pci_enable_device() first enables any parent bridge
848 * device and only then sets the power state for this device. The
849 * bridge enabling is a nop though, since bridge devices are resumed
850 * first. The order of enabling power and enabling the device is
851 * imposed by the PCI core as described above, so here we preserve the
852 * same order for the freeze/thaw phases.
853 *
854 * TODO: eventually we should remove pci_disable_device() /
855 * pci_enable_enable_device() from suspend/resume. Due to how they
856 * depend on the device enable refcount we can't anyway depend on them
857 * disabling/enabling the device.
858 */
859 if (pci_enable_device(dev->pdev)) {
860 ret = -EIO;
861 goto out;
862 }
863
864 pci_set_master(dev->pdev);
865
866 disable_rpm_wakeref_asserts(dev_priv);
867
868 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
869 ret = vlv_resume_prepare(dev_priv, false);
870 if (ret)
871 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
872 ret);
873
874 intel_uncore_early_sanitize(dev_priv, true);
875
876 if (IS_BROXTON(dev_priv)) {
877 if (!dev_priv->suspended_to_idle)
878 gen9_sanitize_dc_state(dev_priv);
879 bxt_disable_dc9(dev_priv);
880 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
881 hsw_disable_pc8(dev_priv);
882 }
883
884 intel_uncore_sanitize(dev_priv);
885
886 if (IS_BROXTON(dev_priv) ||
887 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
888 intel_power_domains_init_hw(dev_priv, true);
889
890 enable_rpm_wakeref_asserts(dev_priv);
891
892 out:
893 dev_priv->suspended_to_idle = false;
894
895 return ret;
896 }
897
898 int i915_resume_switcheroo(struct drm_device *dev)
899 {
900 int ret;
901
902 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
903 return 0;
904
905 ret = i915_drm_resume_early(dev);
906 if (ret)
907 return ret;
908
909 return i915_drm_resume(dev);
910 }
911
912 /**
913 * i915_reset - reset chip after a hang
914 * @dev: drm device to reset
915 *
916 * Reset the chip. Useful if a hang is detected. Returns zero on successful
917 * reset or otherwise an error code.
918 *
919 * Procedure is fairly simple:
920 * - reset the chip using the reset reg
921 * - re-init context state
922 * - re-init hardware status page
923 * - re-init ring buffer
924 * - re-init interrupt state
925 * - re-init display
926 */
927 int i915_reset(struct drm_i915_private *dev_priv)
928 {
929 struct drm_device *dev = dev_priv->dev;
930 struct i915_gpu_error *error = &dev_priv->gpu_error;
931 unsigned reset_counter;
932 int ret;
933
934 intel_reset_gt_powersave(dev_priv);
935
936 mutex_lock(&dev->struct_mutex);
937
938 /* Clear any previous failed attempts at recovery. Time to try again. */
939 atomic_andnot(I915_WEDGED, &error->reset_counter);
940
941 /* Clear the reset-in-progress flag and increment the reset epoch. */
942 reset_counter = atomic_inc_return(&error->reset_counter);
943 if (WARN_ON(__i915_reset_in_progress(reset_counter))) {
944 ret = -EIO;
945 goto error;
946 }
947
948 i915_gem_reset(dev);
949
950 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
951
952 /* Also reset the gpu hangman. */
953 if (error->stop_rings != 0) {
954 DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
955 error->stop_rings = 0;
956 if (ret == -ENODEV) {
957 DRM_INFO("Reset not implemented, but ignoring "
958 "error for simulated gpu hangs\n");
959 ret = 0;
960 }
961 }
962
963 if (i915_stop_ring_allow_warn(dev_priv))
964 pr_notice("drm/i915: Resetting chip after gpu hang\n");
965
966 if (ret) {
967 if (ret != -ENODEV)
968 DRM_ERROR("Failed to reset chip: %i\n", ret);
969 else
970 DRM_DEBUG_DRIVER("GPU reset disabled\n");
971 goto error;
972 }
973
974 intel_overlay_reset(dev_priv);
975
976 /* Ok, now get things going again... */
977
978 /*
979 * Everything depends on having the GTT running, so we need to start
980 * there. Fortunately we don't need to do this unless we reset the
981 * chip at a PCI level.
982 *
983 * Next we need to restore the context, but we don't use those
984 * yet either...
985 *
986 * Ring buffer needs to be re-initialized in the KMS case, or if X
987 * was running at the time of the reset (i.e. we weren't VT
988 * switched away).
989 */
990 ret = i915_gem_init_hw(dev);
991 if (ret) {
992 DRM_ERROR("Failed hw init on reset %d\n", ret);
993 goto error;
994 }
995
996 mutex_unlock(&dev->struct_mutex);
997
998 /*
999 * rps/rc6 re-init is necessary to restore state lost after the
1000 * reset and the re-install of gt irqs. Skip for ironlake per
1001 * previous concerns that it doesn't respond well to some forms
1002 * of re-init after reset.
1003 */
1004 if (INTEL_INFO(dev)->gen > 5)
1005 intel_enable_gt_powersave(dev_priv);
1006
1007 return 0;
1008
1009 error:
1010 atomic_or(I915_WEDGED, &error->reset_counter);
1011 mutex_unlock(&dev->struct_mutex);
1012 return ret;
1013 }
1014
1015 static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1016 {
1017 struct intel_device_info *intel_info =
1018 (struct intel_device_info *) ent->driver_data;
1019
1020 if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
1021 DRM_INFO("This hardware requires preliminary hardware support.\n"
1022 "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
1023 return -ENODEV;
1024 }
1025
1026 /* Only bind to function 0 of the device. Early generations
1027 * used function 1 as a placeholder for multi-head. This causes
1028 * us confusion instead, especially on the systems where both
1029 * functions have the same PCI-ID!
1030 */
1031 if (PCI_FUNC(pdev->devfn))
1032 return -ENODEV;
1033
1034 if (vga_switcheroo_client_probe_defer(pdev))
1035 return -EPROBE_DEFER;
1036
1037 return drm_get_pci_dev(pdev, ent, &driver);
1038 }
1039
1040 static void
1041 i915_pci_remove(struct pci_dev *pdev)
1042 {
1043 struct drm_device *dev = pci_get_drvdata(pdev);
1044
1045 drm_put_dev(dev);
1046 }
1047
1048 static int i915_pm_suspend(struct device *dev)
1049 {
1050 struct pci_dev *pdev = to_pci_dev(dev);
1051 struct drm_device *drm_dev = pci_get_drvdata(pdev);
1052
1053 if (!drm_dev || !drm_dev->dev_private) {
1054 dev_err(dev, "DRM not initialized, aborting suspend.\n");
1055 return -ENODEV;
1056 }
1057
1058 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1059 return 0;
1060
1061 return i915_drm_suspend(drm_dev);
1062 }
1063
1064 static int i915_pm_suspend_late(struct device *dev)
1065 {
1066 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1067
1068 /*
1069 * We have a suspend ordering issue with the snd-hda driver also
1070 * requiring our device to be power up. Due to the lack of a
1071 * parent/child relationship we currently solve this with an late
1072 * suspend hook.
1073 *
1074 * FIXME: This should be solved with a special hdmi sink device or
1075 * similar so that power domains can be employed.
1076 */
1077 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1078 return 0;
1079
1080 return i915_drm_suspend_late(drm_dev, false);
1081 }
1082
1083 static int i915_pm_poweroff_late(struct device *dev)
1084 {
1085 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1086
1087 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1088 return 0;
1089
1090 return i915_drm_suspend_late(drm_dev, true);
1091 }
1092
1093 static int i915_pm_resume_early(struct device *dev)
1094 {
1095 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1096
1097 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1098 return 0;
1099
1100 return i915_drm_resume_early(drm_dev);
1101 }
1102
1103 static int i915_pm_resume(struct device *dev)
1104 {
1105 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1106
1107 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1108 return 0;
1109
1110 return i915_drm_resume(drm_dev);
1111 }
1112
1113 /* freeze: before creating the hibernation_image */
1114 static int i915_pm_freeze(struct device *dev)
1115 {
1116 return i915_pm_suspend(dev);
1117 }
1118
1119 static int i915_pm_freeze_late(struct device *dev)
1120 {
1121 int ret;
1122
1123 ret = i915_pm_suspend_late(dev);
1124 if (ret)
1125 return ret;
1126
1127 ret = i915_gem_freeze_late(dev_to_i915(dev));
1128 if (ret)
1129 return ret;
1130
1131 return 0;
1132 }
1133
1134 /* thaw: called after creating the hibernation image, but before turning off. */
1135 static int i915_pm_thaw_early(struct device *dev)
1136 {
1137 return i915_pm_resume_early(dev);
1138 }
1139
1140 static int i915_pm_thaw(struct device *dev)
1141 {
1142 return i915_pm_resume(dev);
1143 }
1144
1145 /* restore: called after loading the hibernation image. */
1146 static int i915_pm_restore_early(struct device *dev)
1147 {
1148 return i915_pm_resume_early(dev);
1149 }
1150
1151 static int i915_pm_restore(struct device *dev)
1152 {
1153 return i915_pm_resume(dev);
1154 }
1155
1156 /*
1157 * Save all Gunit registers that may be lost after a D3 and a subsequent
1158 * S0i[R123] transition. The list of registers needing a save/restore is
1159 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1160 * registers in the following way:
1161 * - Driver: saved/restored by the driver
1162 * - Punit : saved/restored by the Punit firmware
1163 * - No, w/o marking: no need to save/restore, since the register is R/O or
1164 * used internally by the HW in a way that doesn't depend
1165 * keeping the content across a suspend/resume.
1166 * - Debug : used for debugging
1167 *
1168 * We save/restore all registers marked with 'Driver', with the following
1169 * exceptions:
1170 * - Registers out of use, including also registers marked with 'Debug'.
1171 * These have no effect on the driver's operation, so we don't save/restore
1172 * them to reduce the overhead.
1173 * - Registers that are fully setup by an initialization function called from
1174 * the resume path. For example many clock gating and RPS/RC6 registers.
1175 * - Registers that provide the right functionality with their reset defaults.
1176 *
1177 * TODO: Except for registers that based on the above 3 criteria can be safely
1178 * ignored, we save/restore all others, practically treating the HW context as
1179 * a black-box for the driver. Further investigation is needed to reduce the
1180 * saved/restored registers even further, by following the same 3 criteria.
1181 */
1182 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1183 {
1184 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1185 int i;
1186
1187 /* GAM 0x4000-0x4770 */
1188 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1189 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1190 s->arb_mode = I915_READ(ARB_MODE);
1191 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1192 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1193
1194 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1195 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1196
1197 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1198 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1199
1200 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1201 s->ecochk = I915_READ(GAM_ECOCHK);
1202 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1203 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1204
1205 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1206
1207 /* MBC 0x9024-0x91D0, 0x8500 */
1208 s->g3dctl = I915_READ(VLV_G3DCTL);
1209 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1210 s->mbctl = I915_READ(GEN6_MBCTL);
1211
1212 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1213 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
1214 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
1215 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
1216 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
1217 s->rstctl = I915_READ(GEN6_RSTCTL);
1218 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
1219
1220 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1221 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
1222 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
1223 s->rpdeuc = I915_READ(GEN6_RPDEUC);
1224 s->ecobus = I915_READ(ECOBUS);
1225 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
1226 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1227 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
1228 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
1229 s->rcedata = I915_READ(VLV_RCEDATA);
1230 s->spare2gh = I915_READ(VLV_SPAREG2H);
1231
1232 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1233 s->gt_imr = I915_READ(GTIMR);
1234 s->gt_ier = I915_READ(GTIER);
1235 s->pm_imr = I915_READ(GEN6_PMIMR);
1236 s->pm_ier = I915_READ(GEN6_PMIER);
1237
1238 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1239 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
1240
1241 /* GT SA CZ domain, 0x100000-0x138124 */
1242 s->tilectl = I915_READ(TILECTL);
1243 s->gt_fifoctl = I915_READ(GTFIFOCTL);
1244 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
1245 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1246 s->pmwgicz = I915_READ(VLV_PMWGICZ);
1247
1248 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1249 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
1250 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
1251 s->pcbr = I915_READ(VLV_PCBR);
1252 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
1253
1254 /*
1255 * Not saving any of:
1256 * DFT, 0x9800-0x9EC0
1257 * SARB, 0xB000-0xB1FC
1258 * GAC, 0x5208-0x524C, 0x14000-0x14C000
1259 * PCI CFG
1260 */
1261 }
1262
1263 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1264 {
1265 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1266 u32 val;
1267 int i;
1268
1269 /* GAM 0x4000-0x4770 */
1270 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
1271 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
1272 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
1273 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
1274 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
1275
1276 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1277 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
1278
1279 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1280 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
1281
1282 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
1283 I915_WRITE(GAM_ECOCHK, s->ecochk);
1284 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
1285 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
1286
1287 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
1288
1289 /* MBC 0x9024-0x91D0, 0x8500 */
1290 I915_WRITE(VLV_G3DCTL, s->g3dctl);
1291 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
1292 I915_WRITE(GEN6_MBCTL, s->mbctl);
1293
1294 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1295 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
1296 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
1297 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
1298 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
1299 I915_WRITE(GEN6_RSTCTL, s->rstctl);
1300 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
1301
1302 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1303 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
1304 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
1305 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
1306 I915_WRITE(ECOBUS, s->ecobus);
1307 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
1308 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1309 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
1310 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
1311 I915_WRITE(VLV_RCEDATA, s->rcedata);
1312 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
1313
1314 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1315 I915_WRITE(GTIMR, s->gt_imr);
1316 I915_WRITE(GTIER, s->gt_ier);
1317 I915_WRITE(GEN6_PMIMR, s->pm_imr);
1318 I915_WRITE(GEN6_PMIER, s->pm_ier);
1319
1320 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1321 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
1322
1323 /* GT SA CZ domain, 0x100000-0x138124 */
1324 I915_WRITE(TILECTL, s->tilectl);
1325 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
1326 /*
1327 * Preserve the GT allow wake and GFX force clock bit, they are not
1328 * be restored, as they are used to control the s0ix suspend/resume
1329 * sequence by the caller.
1330 */
1331 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1332 val &= VLV_GTLC_ALLOWWAKEREQ;
1333 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1334 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1335
1336 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1337 val &= VLV_GFX_CLK_FORCE_ON_BIT;
1338 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1339 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1340
1341 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
1342
1343 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1344 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
1345 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
1346 I915_WRITE(VLV_PCBR, s->pcbr);
1347 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
1348 }
1349
1350 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1351 {
1352 u32 val;
1353 int err;
1354
1355 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1356
1357 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1358 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1359 if (force_on)
1360 val |= VLV_GFX_CLK_FORCE_ON_BIT;
1361 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1362
1363 if (!force_on)
1364 return 0;
1365
1366 err = wait_for(COND, 20);
1367 if (err)
1368 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1369 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1370
1371 return err;
1372 #undef COND
1373 }
1374
1375 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1376 {
1377 u32 val;
1378 int err = 0;
1379
1380 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1381 val &= ~VLV_GTLC_ALLOWWAKEREQ;
1382 if (allow)
1383 val |= VLV_GTLC_ALLOWWAKEREQ;
1384 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1385 POSTING_READ(VLV_GTLC_WAKE_CTRL);
1386
1387 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1388 allow)
1389 err = wait_for(COND, 1);
1390 if (err)
1391 DRM_ERROR("timeout disabling GT waking\n");
1392 return err;
1393 #undef COND
1394 }
1395
1396 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1397 bool wait_for_on)
1398 {
1399 u32 mask;
1400 u32 val;
1401 int err;
1402
1403 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1404 val = wait_for_on ? mask : 0;
1405 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1406 if (COND)
1407 return 0;
1408
1409 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1410 onoff(wait_for_on),
1411 I915_READ(VLV_GTLC_PW_STATUS));
1412
1413 /*
1414 * RC6 transitioning can be delayed up to 2 msec (see
1415 * valleyview_enable_rps), use 3 msec for safety.
1416 */
1417 err = wait_for(COND, 3);
1418 if (err)
1419 DRM_ERROR("timeout waiting for GT wells to go %s\n",
1420 onoff(wait_for_on));
1421
1422 return err;
1423 #undef COND
1424 }
1425
1426 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1427 {
1428 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1429 return;
1430
1431 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
1432 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1433 }
1434
1435 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
1436 {
1437 u32 mask;
1438 int err;
1439
1440 /*
1441 * Bspec defines the following GT well on flags as debug only, so
1442 * don't treat them as hard failures.
1443 */
1444 (void)vlv_wait_for_gt_wells(dev_priv, false);
1445
1446 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1447 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1448
1449 vlv_check_no_gt_access(dev_priv);
1450
1451 err = vlv_force_gfx_clock(dev_priv, true);
1452 if (err)
1453 goto err1;
1454
1455 err = vlv_allow_gt_wake(dev_priv, false);
1456 if (err)
1457 goto err2;
1458
1459 if (!IS_CHERRYVIEW(dev_priv))
1460 vlv_save_gunit_s0ix_state(dev_priv);
1461
1462 err = vlv_force_gfx_clock(dev_priv, false);
1463 if (err)
1464 goto err2;
1465
1466 return 0;
1467
1468 err2:
1469 /* For safety always re-enable waking and disable gfx clock forcing */
1470 vlv_allow_gt_wake(dev_priv, true);
1471 err1:
1472 vlv_force_gfx_clock(dev_priv, false);
1473
1474 return err;
1475 }
1476
1477 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1478 bool rpm_resume)
1479 {
1480 struct drm_device *dev = dev_priv->dev;
1481 int err;
1482 int ret;
1483
1484 /*
1485 * If any of the steps fail just try to continue, that's the best we
1486 * can do at this point. Return the first error code (which will also
1487 * leave RPM permanently disabled).
1488 */
1489 ret = vlv_force_gfx_clock(dev_priv, true);
1490
1491 if (!IS_CHERRYVIEW(dev_priv))
1492 vlv_restore_gunit_s0ix_state(dev_priv);
1493
1494 err = vlv_allow_gt_wake(dev_priv, true);
1495 if (!ret)
1496 ret = err;
1497
1498 err = vlv_force_gfx_clock(dev_priv, false);
1499 if (!ret)
1500 ret = err;
1501
1502 vlv_check_no_gt_access(dev_priv);
1503
1504 if (rpm_resume) {
1505 intel_init_clock_gating(dev);
1506 i915_gem_restore_fences(dev);
1507 }
1508
1509 return ret;
1510 }
1511
1512 static int intel_runtime_suspend(struct device *device)
1513 {
1514 struct pci_dev *pdev = to_pci_dev(device);
1515 struct drm_device *dev = pci_get_drvdata(pdev);
1516 struct drm_i915_private *dev_priv = dev->dev_private;
1517 int ret;
1518
1519 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
1520 return -ENODEV;
1521
1522 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1523 return -ENODEV;
1524
1525 DRM_DEBUG_KMS("Suspending device\n");
1526
1527 /*
1528 * We could deadlock here in case another thread holding struct_mutex
1529 * calls RPM suspend concurrently, since the RPM suspend will wait
1530 * first for this RPM suspend to finish. In this case the concurrent
1531 * RPM resume will be followed by its RPM suspend counterpart. Still
1532 * for consistency return -EAGAIN, which will reschedule this suspend.
1533 */
1534 if (!mutex_trylock(&dev->struct_mutex)) {
1535 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1536 /*
1537 * Bump the expiration timestamp, otherwise the suspend won't
1538 * be rescheduled.
1539 */
1540 pm_runtime_mark_last_busy(device);
1541
1542 return -EAGAIN;
1543 }
1544
1545 disable_rpm_wakeref_asserts(dev_priv);
1546
1547 /*
1548 * We are safe here against re-faults, since the fault handler takes
1549 * an RPM reference.
1550 */
1551 i915_gem_release_all_mmaps(dev_priv);
1552 mutex_unlock(&dev->struct_mutex);
1553
1554 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1555
1556 intel_guc_suspend(dev);
1557
1558 intel_suspend_gt_powersave(dev_priv);
1559 intel_runtime_pm_disable_interrupts(dev_priv);
1560
1561 ret = 0;
1562 if (IS_BROXTON(dev_priv)) {
1563 bxt_display_core_uninit(dev_priv);
1564 bxt_enable_dc9(dev_priv);
1565 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1566 hsw_enable_pc8(dev_priv);
1567 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1568 ret = vlv_suspend_complete(dev_priv);
1569 }
1570
1571 if (ret) {
1572 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1573 intel_runtime_pm_enable_interrupts(dev_priv);
1574
1575 enable_rpm_wakeref_asserts(dev_priv);
1576
1577 return ret;
1578 }
1579
1580 intel_uncore_forcewake_reset(dev_priv, false);
1581
1582 enable_rpm_wakeref_asserts(dev_priv);
1583 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
1584
1585 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
1586 DRM_ERROR("Unclaimed access detected prior to suspending\n");
1587
1588 dev_priv->pm.suspended = true;
1589
1590 /*
1591 * FIXME: We really should find a document that references the arguments
1592 * used below!
1593 */
1594 if (IS_BROADWELL(dev_priv)) {
1595 /*
1596 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
1597 * being detected, and the call we do at intel_runtime_resume()
1598 * won't be able to restore them. Since PCI_D3hot matches the
1599 * actual specification and appears to be working, use it.
1600 */
1601 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
1602 } else {
1603 /*
1604 * current versions of firmware which depend on this opregion
1605 * notification have repurposed the D1 definition to mean
1606 * "runtime suspended" vs. what you would normally expect (D3)
1607 * to distinguish it from notifications that might be sent via
1608 * the suspend path.
1609 */
1610 intel_opregion_notify_adapter(dev_priv, PCI_D1);
1611 }
1612
1613 assert_forcewakes_inactive(dev_priv);
1614
1615 DRM_DEBUG_KMS("Device suspended\n");
1616 return 0;
1617 }
1618
1619 static int intel_runtime_resume(struct device *device)
1620 {
1621 struct pci_dev *pdev = to_pci_dev(device);
1622 struct drm_device *dev = pci_get_drvdata(pdev);
1623 struct drm_i915_private *dev_priv = dev->dev_private;
1624 int ret = 0;
1625
1626 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1627 return -ENODEV;
1628
1629 DRM_DEBUG_KMS("Resuming device\n");
1630
1631 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
1632 disable_rpm_wakeref_asserts(dev_priv);
1633
1634 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1635 dev_priv->pm.suspended = false;
1636 if (intel_uncore_unclaimed_mmio(dev_priv))
1637 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
1638
1639 intel_guc_resume(dev);
1640
1641 if (IS_GEN6(dev_priv))
1642 intel_init_pch_refclk(dev);
1643
1644 if (IS_BROXTON(dev)) {
1645 bxt_disable_dc9(dev_priv);
1646 bxt_display_core_init(dev_priv, true);
1647 if (dev_priv->csr.dmc_payload &&
1648 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
1649 gen9_enable_dc5(dev_priv);
1650 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1651 hsw_disable_pc8(dev_priv);
1652 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1653 ret = vlv_resume_prepare(dev_priv, true);
1654 }
1655
1656 /*
1657 * No point of rolling back things in case of an error, as the best
1658 * we can do is to hope that things will still work (and disable RPM).
1659 */
1660 i915_gem_init_swizzling(dev);
1661 gen6_update_ring_freq(dev_priv);
1662
1663 intel_runtime_pm_enable_interrupts(dev_priv);
1664
1665 /*
1666 * On VLV/CHV display interrupts are part of the display
1667 * power well, so hpd is reinitialized from there. For
1668 * everyone else do it here.
1669 */
1670 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1671 intel_hpd_init(dev_priv);
1672
1673 intel_enable_gt_powersave(dev_priv);
1674
1675 enable_rpm_wakeref_asserts(dev_priv);
1676
1677 if (ret)
1678 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1679 else
1680 DRM_DEBUG_KMS("Device resumed\n");
1681
1682 return ret;
1683 }
1684
1685 static const struct dev_pm_ops i915_pm_ops = {
1686 /*
1687 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
1688 * PMSG_RESUME]
1689 */
1690 .suspend = i915_pm_suspend,
1691 .suspend_late = i915_pm_suspend_late,
1692 .resume_early = i915_pm_resume_early,
1693 .resume = i915_pm_resume,
1694
1695 /*
1696 * S4 event handlers
1697 * @freeze, @freeze_late : called (1) before creating the
1698 * hibernation image [PMSG_FREEZE] and
1699 * (2) after rebooting, before restoring
1700 * the image [PMSG_QUIESCE]
1701 * @thaw, @thaw_early : called (1) after creating the hibernation
1702 * image, before writing it [PMSG_THAW]
1703 * and (2) after failing to create or
1704 * restore the image [PMSG_RECOVER]
1705 * @poweroff, @poweroff_late: called after writing the hibernation
1706 * image, before rebooting [PMSG_HIBERNATE]
1707 * @restore, @restore_early : called after rebooting and restoring the
1708 * hibernation image [PMSG_RESTORE]
1709 */
1710 .freeze = i915_pm_freeze,
1711 .freeze_late = i915_pm_freeze_late,
1712 .thaw_early = i915_pm_thaw_early,
1713 .thaw = i915_pm_thaw,
1714 .poweroff = i915_pm_suspend,
1715 .poweroff_late = i915_pm_poweroff_late,
1716 .restore_early = i915_pm_restore_early,
1717 .restore = i915_pm_restore,
1718
1719 /* S0ix (via runtime suspend) event handlers */
1720 .runtime_suspend = intel_runtime_suspend,
1721 .runtime_resume = intel_runtime_resume,
1722 };
1723
1724 static const struct vm_operations_struct i915_gem_vm_ops = {
1725 .fault = i915_gem_fault,
1726 .open = drm_gem_vm_open,
1727 .close = drm_gem_vm_close,
1728 };
1729
1730 static const struct file_operations i915_driver_fops = {
1731 .owner = THIS_MODULE,
1732 .open = drm_open,
1733 .release = drm_release,
1734 .unlocked_ioctl = drm_ioctl,
1735 .mmap = drm_gem_mmap,
1736 .poll = drm_poll,
1737 .read = drm_read,
1738 #ifdef CONFIG_COMPAT
1739 .compat_ioctl = i915_compat_ioctl,
1740 #endif
1741 .llseek = noop_llseek,
1742 };
1743
1744 static struct drm_driver driver = {
1745 /* Don't use MTRRs here; the Xserver or userspace app should
1746 * deal with them for Intel hardware.
1747 */
1748 .driver_features =
1749 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
1750 DRIVER_RENDER | DRIVER_MODESET,
1751 .load = i915_driver_load,
1752 .unload = i915_driver_unload,
1753 .open = i915_driver_open,
1754 .lastclose = i915_driver_lastclose,
1755 .preclose = i915_driver_preclose,
1756 .postclose = i915_driver_postclose,
1757 .set_busid = drm_pci_set_busid,
1758
1759 .gem_free_object = i915_gem_free_object,
1760 .gem_vm_ops = &i915_gem_vm_ops,
1761
1762 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
1763 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
1764 .gem_prime_export = i915_gem_prime_export,
1765 .gem_prime_import = i915_gem_prime_import,
1766
1767 .dumb_create = i915_gem_dumb_create,
1768 .dumb_map_offset = i915_gem_mmap_gtt,
1769 .dumb_destroy = drm_gem_dumb_destroy,
1770 .ioctls = i915_ioctls,
1771 .fops = &i915_driver_fops,
1772 .name = DRIVER_NAME,
1773 .desc = DRIVER_DESC,
1774 .date = DRIVER_DATE,
1775 .major = DRIVER_MAJOR,
1776 .minor = DRIVER_MINOR,
1777 .patchlevel = DRIVER_PATCHLEVEL,
1778 };
1779
1780 static struct pci_driver i915_pci_driver = {
1781 .name = DRIVER_NAME,
1782 .id_table = pciidlist,
1783 .probe = i915_pci_probe,
1784 .remove = i915_pci_remove,
1785 .driver.pm = &i915_pm_ops,
1786 };
1787
1788 static int __init i915_init(void)
1789 {
1790 driver.num_ioctls = i915_max_ioctl;
1791
1792 /*
1793 * Enable KMS by default, unless explicitly overriden by
1794 * either the i915.modeset prarameter or by the
1795 * vga_text_mode_force boot option.
1796 */
1797
1798 if (i915.modeset == 0)
1799 driver.driver_features &= ~DRIVER_MODESET;
1800
1801 if (vgacon_text_force() && i915.modeset == -1)
1802 driver.driver_features &= ~DRIVER_MODESET;
1803
1804 if (!(driver.driver_features & DRIVER_MODESET)) {
1805 /* Silently fail loading to not upset userspace. */
1806 DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1807 return 0;
1808 }
1809
1810 if (i915.nuclear_pageflip)
1811 driver.driver_features |= DRIVER_ATOMIC;
1812
1813 return drm_pci_init(&driver, &i915_pci_driver);
1814 }
1815
1816 static void __exit i915_exit(void)
1817 {
1818 if (!(driver.driver_features & DRIVER_MODESET))
1819 return; /* Never loaded a driver. */
1820
1821 drm_pci_exit(&driver, &i915_pci_driver);
1822 }
1823
1824 module_init(i915_init);
1825 module_exit(i915_exit);
1826
1827 MODULE_AUTHOR("Tungsten Graphics, Inc.");
1828 MODULE_AUTHOR("Intel Corporation");
1829
1830 MODULE_DESCRIPTION(DRIVER_DESC);
1831 MODULE_LICENSE("GPL and additional rights");
This page took 0.066128 seconds and 6 git commands to generate.