Merge branch 'component-for-drm' of git://ftp.arm.linux.org.uk/~rmk/linux-arm into...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/device.h>
31 #include <linux/acpi.h>
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34 #include "i915_drv.h"
35 #include "i915_trace.h"
36 #include "intel_drv.h"
37
38 #include <linux/console.h>
39 #include <linux/module.h>
40 #include <linux/pm_runtime.h>
41 #include <drm/drm_crtc_helper.h>
42
43 static struct drm_driver driver;
44
45 #define GEN_DEFAULT_PIPEOFFSETS \
46 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
47 PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
48 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
49 TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
50 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
51
52 #define GEN_CHV_PIPEOFFSETS \
53 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
54 CHV_PIPE_C_OFFSET }, \
55 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
56 CHV_TRANSCODER_C_OFFSET, }, \
57 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
58 CHV_PALETTE_C_OFFSET }
59
60 #define CURSOR_OFFSETS \
61 .cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
62
63 #define IVB_CURSOR_OFFSETS \
64 .cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
65
66 static const struct intel_device_info intel_i830_info = {
67 .gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
68 .has_overlay = 1, .overlay_needs_physical = 1,
69 .ring_mask = RENDER_RING,
70 GEN_DEFAULT_PIPEOFFSETS,
71 CURSOR_OFFSETS,
72 };
73
74 static const struct intel_device_info intel_845g_info = {
75 .gen = 2, .num_pipes = 1,
76 .has_overlay = 1, .overlay_needs_physical = 1,
77 .ring_mask = RENDER_RING,
78 GEN_DEFAULT_PIPEOFFSETS,
79 CURSOR_OFFSETS,
80 };
81
82 static const struct intel_device_info intel_i85x_info = {
83 .gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
84 .cursor_needs_physical = 1,
85 .has_overlay = 1, .overlay_needs_physical = 1,
86 .has_fbc = 1,
87 .ring_mask = RENDER_RING,
88 GEN_DEFAULT_PIPEOFFSETS,
89 CURSOR_OFFSETS,
90 };
91
92 static const struct intel_device_info intel_i865g_info = {
93 .gen = 2, .num_pipes = 1,
94 .has_overlay = 1, .overlay_needs_physical = 1,
95 .ring_mask = RENDER_RING,
96 GEN_DEFAULT_PIPEOFFSETS,
97 CURSOR_OFFSETS,
98 };
99
100 static const struct intel_device_info intel_i915g_info = {
101 .gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
102 .has_overlay = 1, .overlay_needs_physical = 1,
103 .ring_mask = RENDER_RING,
104 GEN_DEFAULT_PIPEOFFSETS,
105 CURSOR_OFFSETS,
106 };
107 static const struct intel_device_info intel_i915gm_info = {
108 .gen = 3, .is_mobile = 1, .num_pipes = 2,
109 .cursor_needs_physical = 1,
110 .has_overlay = 1, .overlay_needs_physical = 1,
111 .supports_tv = 1,
112 .has_fbc = 1,
113 .ring_mask = RENDER_RING,
114 GEN_DEFAULT_PIPEOFFSETS,
115 CURSOR_OFFSETS,
116 };
117 static const struct intel_device_info intel_i945g_info = {
118 .gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
119 .has_overlay = 1, .overlay_needs_physical = 1,
120 .ring_mask = RENDER_RING,
121 GEN_DEFAULT_PIPEOFFSETS,
122 CURSOR_OFFSETS,
123 };
124 static const struct intel_device_info intel_i945gm_info = {
125 .gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
126 .has_hotplug = 1, .cursor_needs_physical = 1,
127 .has_overlay = 1, .overlay_needs_physical = 1,
128 .supports_tv = 1,
129 .has_fbc = 1,
130 .ring_mask = RENDER_RING,
131 GEN_DEFAULT_PIPEOFFSETS,
132 CURSOR_OFFSETS,
133 };
134
135 static const struct intel_device_info intel_i965g_info = {
136 .gen = 4, .is_broadwater = 1, .num_pipes = 2,
137 .has_hotplug = 1,
138 .has_overlay = 1,
139 .ring_mask = RENDER_RING,
140 GEN_DEFAULT_PIPEOFFSETS,
141 CURSOR_OFFSETS,
142 };
143
144 static const struct intel_device_info intel_i965gm_info = {
145 .gen = 4, .is_crestline = 1, .num_pipes = 2,
146 .is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
147 .has_overlay = 1,
148 .supports_tv = 1,
149 .ring_mask = RENDER_RING,
150 GEN_DEFAULT_PIPEOFFSETS,
151 CURSOR_OFFSETS,
152 };
153
154 static const struct intel_device_info intel_g33_info = {
155 .gen = 3, .is_g33 = 1, .num_pipes = 2,
156 .need_gfx_hws = 1, .has_hotplug = 1,
157 .has_overlay = 1,
158 .ring_mask = RENDER_RING,
159 GEN_DEFAULT_PIPEOFFSETS,
160 CURSOR_OFFSETS,
161 };
162
163 static const struct intel_device_info intel_g45_info = {
164 .gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
165 .has_pipe_cxsr = 1, .has_hotplug = 1,
166 .ring_mask = RENDER_RING | BSD_RING,
167 GEN_DEFAULT_PIPEOFFSETS,
168 CURSOR_OFFSETS,
169 };
170
171 static const struct intel_device_info intel_gm45_info = {
172 .gen = 4, .is_g4x = 1, .num_pipes = 2,
173 .is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
174 .has_pipe_cxsr = 1, .has_hotplug = 1,
175 .supports_tv = 1,
176 .ring_mask = RENDER_RING | BSD_RING,
177 GEN_DEFAULT_PIPEOFFSETS,
178 CURSOR_OFFSETS,
179 };
180
181 static const struct intel_device_info intel_pineview_info = {
182 .gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
183 .need_gfx_hws = 1, .has_hotplug = 1,
184 .has_overlay = 1,
185 GEN_DEFAULT_PIPEOFFSETS,
186 CURSOR_OFFSETS,
187 };
188
189 static const struct intel_device_info intel_ironlake_d_info = {
190 .gen = 5, .num_pipes = 2,
191 .need_gfx_hws = 1, .has_hotplug = 1,
192 .ring_mask = RENDER_RING | BSD_RING,
193 GEN_DEFAULT_PIPEOFFSETS,
194 CURSOR_OFFSETS,
195 };
196
197 static const struct intel_device_info intel_ironlake_m_info = {
198 .gen = 5, .is_mobile = 1, .num_pipes = 2,
199 .need_gfx_hws = 1, .has_hotplug = 1,
200 .has_fbc = 1,
201 .ring_mask = RENDER_RING | BSD_RING,
202 GEN_DEFAULT_PIPEOFFSETS,
203 CURSOR_OFFSETS,
204 };
205
206 static const struct intel_device_info intel_sandybridge_d_info = {
207 .gen = 6, .num_pipes = 2,
208 .need_gfx_hws = 1, .has_hotplug = 1,
209 .has_fbc = 1,
210 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
211 .has_llc = 1,
212 GEN_DEFAULT_PIPEOFFSETS,
213 CURSOR_OFFSETS,
214 };
215
216 static const struct intel_device_info intel_sandybridge_m_info = {
217 .gen = 6, .is_mobile = 1, .num_pipes = 2,
218 .need_gfx_hws = 1, .has_hotplug = 1,
219 .has_fbc = 1,
220 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
221 .has_llc = 1,
222 GEN_DEFAULT_PIPEOFFSETS,
223 CURSOR_OFFSETS,
224 };
225
226 #define GEN7_FEATURES \
227 .gen = 7, .num_pipes = 3, \
228 .need_gfx_hws = 1, .has_hotplug = 1, \
229 .has_fbc = 1, \
230 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
231 .has_llc = 1
232
233 static const struct intel_device_info intel_ivybridge_d_info = {
234 GEN7_FEATURES,
235 .is_ivybridge = 1,
236 GEN_DEFAULT_PIPEOFFSETS,
237 IVB_CURSOR_OFFSETS,
238 };
239
240 static const struct intel_device_info intel_ivybridge_m_info = {
241 GEN7_FEATURES,
242 .is_ivybridge = 1,
243 .is_mobile = 1,
244 GEN_DEFAULT_PIPEOFFSETS,
245 IVB_CURSOR_OFFSETS,
246 };
247
248 static const struct intel_device_info intel_ivybridge_q_info = {
249 GEN7_FEATURES,
250 .is_ivybridge = 1,
251 .num_pipes = 0, /* legal, last one wins */
252 GEN_DEFAULT_PIPEOFFSETS,
253 IVB_CURSOR_OFFSETS,
254 };
255
256 static const struct intel_device_info intel_valleyview_m_info = {
257 GEN7_FEATURES,
258 .is_mobile = 1,
259 .num_pipes = 2,
260 .is_valleyview = 1,
261 .display_mmio_offset = VLV_DISPLAY_BASE,
262 .has_fbc = 0, /* legal, last one wins */
263 .has_llc = 0, /* legal, last one wins */
264 GEN_DEFAULT_PIPEOFFSETS,
265 CURSOR_OFFSETS,
266 };
267
268 static const struct intel_device_info intel_valleyview_d_info = {
269 GEN7_FEATURES,
270 .num_pipes = 2,
271 .is_valleyview = 1,
272 .display_mmio_offset = VLV_DISPLAY_BASE,
273 .has_fbc = 0, /* legal, last one wins */
274 .has_llc = 0, /* legal, last one wins */
275 GEN_DEFAULT_PIPEOFFSETS,
276 CURSOR_OFFSETS,
277 };
278
279 static const struct intel_device_info intel_haswell_d_info = {
280 GEN7_FEATURES,
281 .is_haswell = 1,
282 .has_ddi = 1,
283 .has_fpga_dbg = 1,
284 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
285 GEN_DEFAULT_PIPEOFFSETS,
286 IVB_CURSOR_OFFSETS,
287 };
288
289 static const struct intel_device_info intel_haswell_m_info = {
290 GEN7_FEATURES,
291 .is_haswell = 1,
292 .is_mobile = 1,
293 .has_ddi = 1,
294 .has_fpga_dbg = 1,
295 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
296 GEN_DEFAULT_PIPEOFFSETS,
297 IVB_CURSOR_OFFSETS,
298 };
299
300 static const struct intel_device_info intel_broadwell_d_info = {
301 .gen = 8, .num_pipes = 3,
302 .need_gfx_hws = 1, .has_hotplug = 1,
303 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
304 .has_llc = 1,
305 .has_ddi = 1,
306 .has_fbc = 1,
307 GEN_DEFAULT_PIPEOFFSETS,
308 IVB_CURSOR_OFFSETS,
309 };
310
311 static const struct intel_device_info intel_broadwell_m_info = {
312 .gen = 8, .is_mobile = 1, .num_pipes = 3,
313 .need_gfx_hws = 1, .has_hotplug = 1,
314 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
315 .has_llc = 1,
316 .has_ddi = 1,
317 .has_fbc = 1,
318 GEN_DEFAULT_PIPEOFFSETS,
319 IVB_CURSOR_OFFSETS,
320 };
321
322 static const struct intel_device_info intel_broadwell_gt3d_info = {
323 .gen = 8, .num_pipes = 3,
324 .need_gfx_hws = 1, .has_hotplug = 1,
325 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
326 .has_llc = 1,
327 .has_ddi = 1,
328 .has_fbc = 1,
329 GEN_DEFAULT_PIPEOFFSETS,
330 IVB_CURSOR_OFFSETS,
331 };
332
333 static const struct intel_device_info intel_broadwell_gt3m_info = {
334 .gen = 8, .is_mobile = 1, .num_pipes = 3,
335 .need_gfx_hws = 1, .has_hotplug = 1,
336 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
337 .has_llc = 1,
338 .has_ddi = 1,
339 .has_fbc = 1,
340 GEN_DEFAULT_PIPEOFFSETS,
341 IVB_CURSOR_OFFSETS,
342 };
343
344 static const struct intel_device_info intel_cherryview_info = {
345 .is_preliminary = 1,
346 .gen = 8, .num_pipes = 3,
347 .need_gfx_hws = 1, .has_hotplug = 1,
348 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
349 .is_valleyview = 1,
350 .display_mmio_offset = VLV_DISPLAY_BASE,
351 GEN_CHV_PIPEOFFSETS,
352 CURSOR_OFFSETS,
353 };
354
355 /*
356 * Make sure any device matches here are from most specific to most
357 * general. For example, since the Quanta match is based on the subsystem
358 * and subvendor IDs, we need it to come before the more general IVB
359 * PCI ID matches, otherwise we'll use the wrong info struct above.
360 */
361 #define INTEL_PCI_IDS \
362 INTEL_I830_IDS(&intel_i830_info), \
363 INTEL_I845G_IDS(&intel_845g_info), \
364 INTEL_I85X_IDS(&intel_i85x_info), \
365 INTEL_I865G_IDS(&intel_i865g_info), \
366 INTEL_I915G_IDS(&intel_i915g_info), \
367 INTEL_I915GM_IDS(&intel_i915gm_info), \
368 INTEL_I945G_IDS(&intel_i945g_info), \
369 INTEL_I945GM_IDS(&intel_i945gm_info), \
370 INTEL_I965G_IDS(&intel_i965g_info), \
371 INTEL_G33_IDS(&intel_g33_info), \
372 INTEL_I965GM_IDS(&intel_i965gm_info), \
373 INTEL_GM45_IDS(&intel_gm45_info), \
374 INTEL_G45_IDS(&intel_g45_info), \
375 INTEL_PINEVIEW_IDS(&intel_pineview_info), \
376 INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info), \
377 INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info), \
378 INTEL_SNB_D_IDS(&intel_sandybridge_d_info), \
379 INTEL_SNB_M_IDS(&intel_sandybridge_m_info), \
380 INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */ \
381 INTEL_IVB_M_IDS(&intel_ivybridge_m_info), \
382 INTEL_IVB_D_IDS(&intel_ivybridge_d_info), \
383 INTEL_HSW_D_IDS(&intel_haswell_d_info), \
384 INTEL_HSW_M_IDS(&intel_haswell_m_info), \
385 INTEL_VLV_M_IDS(&intel_valleyview_m_info), \
386 INTEL_VLV_D_IDS(&intel_valleyview_d_info), \
387 INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info), \
388 INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info), \
389 INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info), \
390 INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info), \
391 INTEL_CHV_IDS(&intel_cherryview_info)
392
393 static const struct pci_device_id pciidlist[] = { /* aka */
394 INTEL_PCI_IDS,
395 {0, 0, 0}
396 };
397
398 #if defined(CONFIG_DRM_I915_KMS)
399 MODULE_DEVICE_TABLE(pci, pciidlist);
400 #endif
401
402 void intel_detect_pch(struct drm_device *dev)
403 {
404 struct drm_i915_private *dev_priv = dev->dev_private;
405 struct pci_dev *pch = NULL;
406
407 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
408 * (which really amounts to a PCH but no South Display).
409 */
410 if (INTEL_INFO(dev)->num_pipes == 0) {
411 dev_priv->pch_type = PCH_NOP;
412 return;
413 }
414
415 /*
416 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
417 * make graphics device passthrough work easy for VMM, that only
418 * need to expose ISA bridge to let driver know the real hardware
419 * underneath. This is a requirement from virtualization team.
420 *
421 * In some virtualized environments (e.g. XEN), there is irrelevant
422 * ISA bridge in the system. To work reliably, we should scan trhough
423 * all the ISA bridge devices and check for the first match, instead
424 * of only checking the first one.
425 */
426 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
427 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
428 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
429 dev_priv->pch_id = id;
430
431 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
432 dev_priv->pch_type = PCH_IBX;
433 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
434 WARN_ON(!IS_GEN5(dev));
435 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
436 dev_priv->pch_type = PCH_CPT;
437 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
438 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
439 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
440 /* PantherPoint is CPT compatible */
441 dev_priv->pch_type = PCH_CPT;
442 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
443 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
444 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
445 dev_priv->pch_type = PCH_LPT;
446 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
447 WARN_ON(!IS_HASWELL(dev));
448 WARN_ON(IS_ULT(dev));
449 } else if (IS_BROADWELL(dev)) {
450 dev_priv->pch_type = PCH_LPT;
451 dev_priv->pch_id =
452 INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
453 DRM_DEBUG_KMS("This is Broadwell, assuming "
454 "LynxPoint LP PCH\n");
455 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
456 dev_priv->pch_type = PCH_LPT;
457 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
458 WARN_ON(!IS_HASWELL(dev));
459 WARN_ON(!IS_ULT(dev));
460 } else
461 continue;
462
463 break;
464 }
465 }
466 if (!pch)
467 DRM_DEBUG_KMS("No PCH found.\n");
468
469 pci_dev_put(pch);
470 }
471
472 bool i915_semaphore_is_enabled(struct drm_device *dev)
473 {
474 if (INTEL_INFO(dev)->gen < 6)
475 return false;
476
477 if (i915.semaphores >= 0)
478 return i915.semaphores;
479
480 #ifdef CONFIG_INTEL_IOMMU
481 /* Enable semaphores on SNB when IO remapping is off */
482 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
483 return false;
484 #endif
485
486 return true;
487 }
488
489 static int i915_drm_freeze(struct drm_device *dev)
490 {
491 struct drm_i915_private *dev_priv = dev->dev_private;
492 struct drm_crtc *crtc;
493 pci_power_t opregion_target_state;
494
495 /* ignore lid events during suspend */
496 mutex_lock(&dev_priv->modeset_restore_lock);
497 dev_priv->modeset_restore = MODESET_SUSPENDED;
498 mutex_unlock(&dev_priv->modeset_restore_lock);
499
500 /* We do a lot of poking in a lot of registers, make sure they work
501 * properly. */
502 intel_display_set_init_power(dev_priv, true);
503
504 drm_kms_helper_poll_disable(dev);
505
506 pci_save_state(dev->pdev);
507
508 /* If KMS is active, we do the leavevt stuff here */
509 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
510 int error;
511
512 error = i915_gem_suspend(dev);
513 if (error) {
514 dev_err(&dev->pdev->dev,
515 "GEM idle failed, resume might fail\n");
516 return error;
517 }
518
519 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
520
521
522 intel_suspend_gt_powersave(dev);
523
524 /*
525 * Disable CRTCs directly since we want to preserve sw state
526 * for _thaw.
527 */
528 drm_modeset_lock_all(dev);
529 for_each_crtc(dev, crtc) {
530 dev_priv->display.crtc_disable(crtc);
531 }
532 drm_modeset_unlock_all(dev);
533
534 intel_dp_mst_suspend(dev);
535 intel_runtime_pm_disable_interrupts(dev);
536
537 intel_modeset_suspend_hw(dev);
538 }
539
540 i915_gem_suspend_gtt_mappings(dev);
541
542 i915_save_state(dev);
543
544 opregion_target_state = PCI_D3cold;
545 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
546 if (acpi_target_system_state() < ACPI_STATE_S3)
547 opregion_target_state = PCI_D1;
548 #endif
549 intel_opregion_notify_adapter(dev, opregion_target_state);
550
551 intel_uncore_forcewake_reset(dev, false);
552 intel_opregion_fini(dev);
553
554 console_lock();
555 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED);
556 console_unlock();
557
558 dev_priv->suspend_count++;
559
560 intel_display_set_init_power(dev_priv, false);
561
562 return 0;
563 }
564
565 int i915_suspend(struct drm_device *dev, pm_message_t state)
566 {
567 int error;
568
569 if (!dev || !dev->dev_private) {
570 DRM_ERROR("dev: %p\n", dev);
571 DRM_ERROR("DRM not initialized, aborting suspend.\n");
572 return -ENODEV;
573 }
574
575 if (state.event == PM_EVENT_PRETHAW)
576 return 0;
577
578
579 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
580 return 0;
581
582 error = i915_drm_freeze(dev);
583 if (error)
584 return error;
585
586 if (state.event == PM_EVENT_SUSPEND) {
587 /* Shut down the device */
588 pci_disable_device(dev->pdev);
589 pci_set_power_state(dev->pdev, PCI_D3hot);
590 }
591
592 return 0;
593 }
594
595 void intel_console_resume(struct work_struct *work)
596 {
597 struct drm_i915_private *dev_priv =
598 container_of(work, struct drm_i915_private,
599 console_resume_work);
600 struct drm_device *dev = dev_priv->dev;
601
602 console_lock();
603 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING);
604 console_unlock();
605 }
606
607 static int i915_drm_thaw_early(struct drm_device *dev)
608 {
609 struct drm_i915_private *dev_priv = dev->dev_private;
610
611 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
612 hsw_disable_pc8(dev_priv);
613
614 intel_uncore_early_sanitize(dev, true);
615 intel_uncore_sanitize(dev);
616 intel_power_domains_init_hw(dev_priv);
617
618 return 0;
619 }
620
621 static int __i915_drm_thaw(struct drm_device *dev, bool restore_gtt_mappings)
622 {
623 struct drm_i915_private *dev_priv = dev->dev_private;
624
625 if (drm_core_check_feature(dev, DRIVER_MODESET) &&
626 restore_gtt_mappings) {
627 mutex_lock(&dev->struct_mutex);
628 i915_gem_restore_gtt_mappings(dev);
629 mutex_unlock(&dev->struct_mutex);
630 }
631
632 i915_restore_state(dev);
633 intel_opregion_setup(dev);
634
635 /* KMS EnterVT equivalent */
636 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
637 intel_init_pch_refclk(dev);
638 drm_mode_config_reset(dev);
639
640 mutex_lock(&dev->struct_mutex);
641 if (i915_gem_init_hw(dev)) {
642 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
643 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
644 }
645 mutex_unlock(&dev->struct_mutex);
646
647 intel_runtime_pm_restore_interrupts(dev);
648
649 intel_modeset_init_hw(dev);
650
651 {
652 unsigned long irqflags;
653 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
654 if (dev_priv->display.hpd_irq_setup)
655 dev_priv->display.hpd_irq_setup(dev);
656 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
657 }
658
659 intel_dp_mst_resume(dev);
660 drm_modeset_lock_all(dev);
661 intel_modeset_setup_hw_state(dev, true);
662 drm_modeset_unlock_all(dev);
663
664 /*
665 * ... but also need to make sure that hotplug processing
666 * doesn't cause havoc. Like in the driver load code we don't
667 * bother with the tiny race here where we might loose hotplug
668 * notifications.
669 * */
670 intel_hpd_init(dev);
671 /* Config may have changed between suspend and resume */
672 drm_helper_hpd_irq_event(dev);
673 }
674
675 intel_opregion_init(dev);
676
677 /*
678 * The console lock can be pretty contented on resume due
679 * to all the printk activity. Try to keep it out of the hot
680 * path of resume if possible.
681 */
682 if (console_trylock()) {
683 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING);
684 console_unlock();
685 } else {
686 schedule_work(&dev_priv->console_resume_work);
687 }
688
689 mutex_lock(&dev_priv->modeset_restore_lock);
690 dev_priv->modeset_restore = MODESET_DONE;
691 mutex_unlock(&dev_priv->modeset_restore_lock);
692
693 intel_opregion_notify_adapter(dev, PCI_D0);
694
695 return 0;
696 }
697
698 static int i915_drm_thaw(struct drm_device *dev)
699 {
700 if (drm_core_check_feature(dev, DRIVER_MODESET))
701 i915_check_and_clear_faults(dev);
702
703 return __i915_drm_thaw(dev, true);
704 }
705
706 static int i915_resume_early(struct drm_device *dev)
707 {
708 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
709 return 0;
710
711 /*
712 * We have a resume ordering issue with the snd-hda driver also
713 * requiring our device to be power up. Due to the lack of a
714 * parent/child relationship we currently solve this with an early
715 * resume hook.
716 *
717 * FIXME: This should be solved with a special hdmi sink device or
718 * similar so that power domains can be employed.
719 */
720 if (pci_enable_device(dev->pdev))
721 return -EIO;
722
723 pci_set_master(dev->pdev);
724
725 return i915_drm_thaw_early(dev);
726 }
727
728 int i915_resume(struct drm_device *dev)
729 {
730 struct drm_i915_private *dev_priv = dev->dev_private;
731 int ret;
732
733 /*
734 * Platforms with opregion should have sane BIOS, older ones (gen3 and
735 * earlier) need to restore the GTT mappings since the BIOS might clear
736 * all our scratch PTEs.
737 */
738 ret = __i915_drm_thaw(dev, !dev_priv->opregion.header);
739 if (ret)
740 return ret;
741
742 drm_kms_helper_poll_enable(dev);
743 return 0;
744 }
745
746 static int i915_resume_legacy(struct drm_device *dev)
747 {
748 i915_resume_early(dev);
749 i915_resume(dev);
750
751 return 0;
752 }
753
754 /**
755 * i915_reset - reset chip after a hang
756 * @dev: drm device to reset
757 *
758 * Reset the chip. Useful if a hang is detected. Returns zero on successful
759 * reset or otherwise an error code.
760 *
761 * Procedure is fairly simple:
762 * - reset the chip using the reset reg
763 * - re-init context state
764 * - re-init hardware status page
765 * - re-init ring buffer
766 * - re-init interrupt state
767 * - re-init display
768 */
769 int i915_reset(struct drm_device *dev)
770 {
771 struct drm_i915_private *dev_priv = dev->dev_private;
772 bool simulated;
773 int ret;
774
775 if (!i915.reset)
776 return 0;
777
778 mutex_lock(&dev->struct_mutex);
779
780 i915_gem_reset(dev);
781
782 simulated = dev_priv->gpu_error.stop_rings != 0;
783
784 ret = intel_gpu_reset(dev);
785
786 /* Also reset the gpu hangman. */
787 if (simulated) {
788 DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
789 dev_priv->gpu_error.stop_rings = 0;
790 if (ret == -ENODEV) {
791 DRM_INFO("Reset not implemented, but ignoring "
792 "error for simulated gpu hangs\n");
793 ret = 0;
794 }
795 }
796
797 if (ret) {
798 DRM_ERROR("Failed to reset chip: %i\n", ret);
799 mutex_unlock(&dev->struct_mutex);
800 return ret;
801 }
802
803 /* Ok, now get things going again... */
804
805 /*
806 * Everything depends on having the GTT running, so we need to start
807 * there. Fortunately we don't need to do this unless we reset the
808 * chip at a PCI level.
809 *
810 * Next we need to restore the context, but we don't use those
811 * yet either...
812 *
813 * Ring buffer needs to be re-initialized in the KMS case, or if X
814 * was running at the time of the reset (i.e. we weren't VT
815 * switched away).
816 */
817 if (drm_core_check_feature(dev, DRIVER_MODESET) ||
818 !dev_priv->ums.mm_suspended) {
819 dev_priv->ums.mm_suspended = 0;
820
821 ret = i915_gem_init_hw(dev);
822 mutex_unlock(&dev->struct_mutex);
823 if (ret) {
824 DRM_ERROR("Failed hw init on reset %d\n", ret);
825 return ret;
826 }
827
828 /*
829 * FIXME: This races pretty badly against concurrent holders of
830 * ring interrupts. This is possible since we've started to drop
831 * dev->struct_mutex in select places when waiting for the gpu.
832 */
833
834 /*
835 * rps/rc6 re-init is necessary to restore state lost after the
836 * reset and the re-install of gt irqs. Skip for ironlake per
837 * previous concerns that it doesn't respond well to some forms
838 * of re-init after reset.
839 */
840 if (INTEL_INFO(dev)->gen > 5)
841 intel_reset_gt_powersave(dev);
842
843 intel_hpd_init(dev);
844 } else {
845 mutex_unlock(&dev->struct_mutex);
846 }
847
848 return 0;
849 }
850
851 static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
852 {
853 struct intel_device_info *intel_info =
854 (struct intel_device_info *) ent->driver_data;
855
856 if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
857 DRM_INFO("This hardware requires preliminary hardware support.\n"
858 "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
859 return -ENODEV;
860 }
861
862 /* Only bind to function 0 of the device. Early generations
863 * used function 1 as a placeholder for multi-head. This causes
864 * us confusion instead, especially on the systems where both
865 * functions have the same PCI-ID!
866 */
867 if (PCI_FUNC(pdev->devfn))
868 return -ENODEV;
869
870 driver.driver_features &= ~(DRIVER_USE_AGP);
871
872 return drm_get_pci_dev(pdev, ent, &driver);
873 }
874
875 static void
876 i915_pci_remove(struct pci_dev *pdev)
877 {
878 struct drm_device *dev = pci_get_drvdata(pdev);
879
880 drm_put_dev(dev);
881 }
882
883 static int i915_pm_suspend(struct device *dev)
884 {
885 struct pci_dev *pdev = to_pci_dev(dev);
886 struct drm_device *drm_dev = pci_get_drvdata(pdev);
887
888 if (!drm_dev || !drm_dev->dev_private) {
889 dev_err(dev, "DRM not initialized, aborting suspend.\n");
890 return -ENODEV;
891 }
892
893 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
894 return 0;
895
896 return i915_drm_freeze(drm_dev);
897 }
898
899 static int i915_pm_suspend_late(struct device *dev)
900 {
901 struct pci_dev *pdev = to_pci_dev(dev);
902 struct drm_device *drm_dev = pci_get_drvdata(pdev);
903 struct drm_i915_private *dev_priv = drm_dev->dev_private;
904
905 /*
906 * We have a suspedn ordering issue with the snd-hda driver also
907 * requiring our device to be power up. Due to the lack of a
908 * parent/child relationship we currently solve this with an late
909 * suspend hook.
910 *
911 * FIXME: This should be solved with a special hdmi sink device or
912 * similar so that power domains can be employed.
913 */
914 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
915 return 0;
916
917 if (IS_HASWELL(drm_dev) || IS_BROADWELL(drm_dev))
918 hsw_enable_pc8(dev_priv);
919
920 pci_disable_device(pdev);
921 pci_set_power_state(pdev, PCI_D3hot);
922
923 return 0;
924 }
925
926 static int i915_pm_resume_early(struct device *dev)
927 {
928 struct pci_dev *pdev = to_pci_dev(dev);
929 struct drm_device *drm_dev = pci_get_drvdata(pdev);
930
931 return i915_resume_early(drm_dev);
932 }
933
934 static int i915_pm_resume(struct device *dev)
935 {
936 struct pci_dev *pdev = to_pci_dev(dev);
937 struct drm_device *drm_dev = pci_get_drvdata(pdev);
938
939 return i915_resume(drm_dev);
940 }
941
942 static int i915_pm_freeze(struct device *dev)
943 {
944 struct pci_dev *pdev = to_pci_dev(dev);
945 struct drm_device *drm_dev = pci_get_drvdata(pdev);
946
947 if (!drm_dev || !drm_dev->dev_private) {
948 dev_err(dev, "DRM not initialized, aborting suspend.\n");
949 return -ENODEV;
950 }
951
952 return i915_drm_freeze(drm_dev);
953 }
954
955 static int i915_pm_thaw_early(struct device *dev)
956 {
957 struct pci_dev *pdev = to_pci_dev(dev);
958 struct drm_device *drm_dev = pci_get_drvdata(pdev);
959
960 return i915_drm_thaw_early(drm_dev);
961 }
962
963 static int i915_pm_thaw(struct device *dev)
964 {
965 struct pci_dev *pdev = to_pci_dev(dev);
966 struct drm_device *drm_dev = pci_get_drvdata(pdev);
967
968 return i915_drm_thaw(drm_dev);
969 }
970
971 static int i915_pm_poweroff(struct device *dev)
972 {
973 struct pci_dev *pdev = to_pci_dev(dev);
974 struct drm_device *drm_dev = pci_get_drvdata(pdev);
975
976 return i915_drm_freeze(drm_dev);
977 }
978
979 static int hsw_runtime_suspend(struct drm_i915_private *dev_priv)
980 {
981 hsw_enable_pc8(dev_priv);
982
983 return 0;
984 }
985
986 static int snb_runtime_resume(struct drm_i915_private *dev_priv)
987 {
988 struct drm_device *dev = dev_priv->dev;
989
990 intel_init_pch_refclk(dev);
991
992 return 0;
993 }
994
995 static int hsw_runtime_resume(struct drm_i915_private *dev_priv)
996 {
997 hsw_disable_pc8(dev_priv);
998
999 return 0;
1000 }
1001
1002 /*
1003 * Save all Gunit registers that may be lost after a D3 and a subsequent
1004 * S0i[R123] transition. The list of registers needing a save/restore is
1005 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1006 * registers in the following way:
1007 * - Driver: saved/restored by the driver
1008 * - Punit : saved/restored by the Punit firmware
1009 * - No, w/o marking: no need to save/restore, since the register is R/O or
1010 * used internally by the HW in a way that doesn't depend
1011 * keeping the content across a suspend/resume.
1012 * - Debug : used for debugging
1013 *
1014 * We save/restore all registers marked with 'Driver', with the following
1015 * exceptions:
1016 * - Registers out of use, including also registers marked with 'Debug'.
1017 * These have no effect on the driver's operation, so we don't save/restore
1018 * them to reduce the overhead.
1019 * - Registers that are fully setup by an initialization function called from
1020 * the resume path. For example many clock gating and RPS/RC6 registers.
1021 * - Registers that provide the right functionality with their reset defaults.
1022 *
1023 * TODO: Except for registers that based on the above 3 criteria can be safely
1024 * ignored, we save/restore all others, practically treating the HW context as
1025 * a black-box for the driver. Further investigation is needed to reduce the
1026 * saved/restored registers even further, by following the same 3 criteria.
1027 */
1028 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1029 {
1030 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1031 int i;
1032
1033 /* GAM 0x4000-0x4770 */
1034 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1035 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1036 s->arb_mode = I915_READ(ARB_MODE);
1037 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1038 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1039
1040 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1041 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS_BASE + i * 4);
1042
1043 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1044 s->gfx_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1045
1046 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1047 s->ecochk = I915_READ(GAM_ECOCHK);
1048 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1049 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1050
1051 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1052
1053 /* MBC 0x9024-0x91D0, 0x8500 */
1054 s->g3dctl = I915_READ(VLV_G3DCTL);
1055 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1056 s->mbctl = I915_READ(GEN6_MBCTL);
1057
1058 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1059 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
1060 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
1061 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
1062 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
1063 s->rstctl = I915_READ(GEN6_RSTCTL);
1064 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
1065
1066 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1067 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
1068 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
1069 s->rpdeuc = I915_READ(GEN6_RPDEUC);
1070 s->ecobus = I915_READ(ECOBUS);
1071 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
1072 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1073 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
1074 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
1075 s->rcedata = I915_READ(VLV_RCEDATA);
1076 s->spare2gh = I915_READ(VLV_SPAREG2H);
1077
1078 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1079 s->gt_imr = I915_READ(GTIMR);
1080 s->gt_ier = I915_READ(GTIER);
1081 s->pm_imr = I915_READ(GEN6_PMIMR);
1082 s->pm_ier = I915_READ(GEN6_PMIER);
1083
1084 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1085 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH_BASE + i * 4);
1086
1087 /* GT SA CZ domain, 0x100000-0x138124 */
1088 s->tilectl = I915_READ(TILECTL);
1089 s->gt_fifoctl = I915_READ(GTFIFOCTL);
1090 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
1091 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1092 s->pmwgicz = I915_READ(VLV_PMWGICZ);
1093
1094 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1095 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
1096 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
1097 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
1098
1099 /*
1100 * Not saving any of:
1101 * DFT, 0x9800-0x9EC0
1102 * SARB, 0xB000-0xB1FC
1103 * GAC, 0x5208-0x524C, 0x14000-0x14C000
1104 * PCI CFG
1105 */
1106 }
1107
1108 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1109 {
1110 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1111 u32 val;
1112 int i;
1113
1114 /* GAM 0x4000-0x4770 */
1115 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
1116 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
1117 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
1118 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
1119 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
1120
1121 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1122 I915_WRITE(GEN7_LRA_LIMITS_BASE + i * 4, s->lra_limits[i]);
1123
1124 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1125 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->gfx_max_req_count);
1126
1127 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
1128 I915_WRITE(GAM_ECOCHK, s->ecochk);
1129 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
1130 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
1131
1132 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
1133
1134 /* MBC 0x9024-0x91D0, 0x8500 */
1135 I915_WRITE(VLV_G3DCTL, s->g3dctl);
1136 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
1137 I915_WRITE(GEN6_MBCTL, s->mbctl);
1138
1139 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1140 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
1141 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
1142 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
1143 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
1144 I915_WRITE(GEN6_RSTCTL, s->rstctl);
1145 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
1146
1147 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1148 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
1149 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
1150 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
1151 I915_WRITE(ECOBUS, s->ecobus);
1152 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
1153 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1154 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
1155 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
1156 I915_WRITE(VLV_RCEDATA, s->rcedata);
1157 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
1158
1159 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1160 I915_WRITE(GTIMR, s->gt_imr);
1161 I915_WRITE(GTIER, s->gt_ier);
1162 I915_WRITE(GEN6_PMIMR, s->pm_imr);
1163 I915_WRITE(GEN6_PMIER, s->pm_ier);
1164
1165 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1166 I915_WRITE(GEN7_GT_SCRATCH_BASE + i * 4, s->gt_scratch[i]);
1167
1168 /* GT SA CZ domain, 0x100000-0x138124 */
1169 I915_WRITE(TILECTL, s->tilectl);
1170 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
1171 /*
1172 * Preserve the GT allow wake and GFX force clock bit, they are not
1173 * be restored, as they are used to control the s0ix suspend/resume
1174 * sequence by the caller.
1175 */
1176 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1177 val &= VLV_GTLC_ALLOWWAKEREQ;
1178 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1179 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1180
1181 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1182 val &= VLV_GFX_CLK_FORCE_ON_BIT;
1183 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1184 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1185
1186 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
1187
1188 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1189 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
1190 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
1191 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
1192 }
1193
1194 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1195 {
1196 u32 val;
1197 int err;
1198
1199 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1200 WARN_ON(!!(val & VLV_GFX_CLK_FORCE_ON_BIT) == force_on);
1201
1202 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1203 /* Wait for a previous force-off to settle */
1204 if (force_on) {
1205 err = wait_for(!COND, 20);
1206 if (err) {
1207 DRM_ERROR("timeout waiting for GFX clock force-off (%08x)\n",
1208 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1209 return err;
1210 }
1211 }
1212
1213 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1214 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1215 if (force_on)
1216 val |= VLV_GFX_CLK_FORCE_ON_BIT;
1217 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1218
1219 if (!force_on)
1220 return 0;
1221
1222 err = wait_for(COND, 20);
1223 if (err)
1224 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1225 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1226
1227 return err;
1228 #undef COND
1229 }
1230
1231 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1232 {
1233 u32 val;
1234 int err = 0;
1235
1236 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1237 val &= ~VLV_GTLC_ALLOWWAKEREQ;
1238 if (allow)
1239 val |= VLV_GTLC_ALLOWWAKEREQ;
1240 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1241 POSTING_READ(VLV_GTLC_WAKE_CTRL);
1242
1243 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1244 allow)
1245 err = wait_for(COND, 1);
1246 if (err)
1247 DRM_ERROR("timeout disabling GT waking\n");
1248 return err;
1249 #undef COND
1250 }
1251
1252 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1253 bool wait_for_on)
1254 {
1255 u32 mask;
1256 u32 val;
1257 int err;
1258
1259 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1260 val = wait_for_on ? mask : 0;
1261 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1262 if (COND)
1263 return 0;
1264
1265 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1266 wait_for_on ? "on" : "off",
1267 I915_READ(VLV_GTLC_PW_STATUS));
1268
1269 /*
1270 * RC6 transitioning can be delayed up to 2 msec (see
1271 * valleyview_enable_rps), use 3 msec for safety.
1272 */
1273 err = wait_for(COND, 3);
1274 if (err)
1275 DRM_ERROR("timeout waiting for GT wells to go %s\n",
1276 wait_for_on ? "on" : "off");
1277
1278 return err;
1279 #undef COND
1280 }
1281
1282 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1283 {
1284 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1285 return;
1286
1287 DRM_ERROR("GT register access while GT waking disabled\n");
1288 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1289 }
1290
1291 static int vlv_runtime_suspend(struct drm_i915_private *dev_priv)
1292 {
1293 u32 mask;
1294 int err;
1295
1296 /*
1297 * Bspec defines the following GT well on flags as debug only, so
1298 * don't treat them as hard failures.
1299 */
1300 (void)vlv_wait_for_gt_wells(dev_priv, false);
1301
1302 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1303 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1304
1305 vlv_check_no_gt_access(dev_priv);
1306
1307 err = vlv_force_gfx_clock(dev_priv, true);
1308 if (err)
1309 goto err1;
1310
1311 err = vlv_allow_gt_wake(dev_priv, false);
1312 if (err)
1313 goto err2;
1314 vlv_save_gunit_s0ix_state(dev_priv);
1315
1316 err = vlv_force_gfx_clock(dev_priv, false);
1317 if (err)
1318 goto err2;
1319
1320 return 0;
1321
1322 err2:
1323 /* For safety always re-enable waking and disable gfx clock forcing */
1324 vlv_allow_gt_wake(dev_priv, true);
1325 err1:
1326 vlv_force_gfx_clock(dev_priv, false);
1327
1328 return err;
1329 }
1330
1331 static int vlv_runtime_resume(struct drm_i915_private *dev_priv)
1332 {
1333 struct drm_device *dev = dev_priv->dev;
1334 int err;
1335 int ret;
1336
1337 /*
1338 * If any of the steps fail just try to continue, that's the best we
1339 * can do at this point. Return the first error code (which will also
1340 * leave RPM permanently disabled).
1341 */
1342 ret = vlv_force_gfx_clock(dev_priv, true);
1343
1344 vlv_restore_gunit_s0ix_state(dev_priv);
1345
1346 err = vlv_allow_gt_wake(dev_priv, true);
1347 if (!ret)
1348 ret = err;
1349
1350 err = vlv_force_gfx_clock(dev_priv, false);
1351 if (!ret)
1352 ret = err;
1353
1354 vlv_check_no_gt_access(dev_priv);
1355
1356 intel_init_clock_gating(dev);
1357 i915_gem_restore_fences(dev);
1358
1359 return ret;
1360 }
1361
1362 static int intel_runtime_suspend(struct device *device)
1363 {
1364 struct pci_dev *pdev = to_pci_dev(device);
1365 struct drm_device *dev = pci_get_drvdata(pdev);
1366 struct drm_i915_private *dev_priv = dev->dev_private;
1367 int ret;
1368
1369 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1370 return -ENODEV;
1371
1372 WARN_ON(!HAS_RUNTIME_PM(dev));
1373 assert_force_wake_inactive(dev_priv);
1374
1375 DRM_DEBUG_KMS("Suspending device\n");
1376
1377 /*
1378 * We could deadlock here in case another thread holding struct_mutex
1379 * calls RPM suspend concurrently, since the RPM suspend will wait
1380 * first for this RPM suspend to finish. In this case the concurrent
1381 * RPM resume will be followed by its RPM suspend counterpart. Still
1382 * for consistency return -EAGAIN, which will reschedule this suspend.
1383 */
1384 if (!mutex_trylock(&dev->struct_mutex)) {
1385 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1386 /*
1387 * Bump the expiration timestamp, otherwise the suspend won't
1388 * be rescheduled.
1389 */
1390 pm_runtime_mark_last_busy(device);
1391
1392 return -EAGAIN;
1393 }
1394 /*
1395 * We are safe here against re-faults, since the fault handler takes
1396 * an RPM reference.
1397 */
1398 i915_gem_release_all_mmaps(dev_priv);
1399 mutex_unlock(&dev->struct_mutex);
1400
1401 /*
1402 * rps.work can't be rearmed here, since we get here only after making
1403 * sure the GPU is idle and the RPS freq is set to the minimum. See
1404 * intel_mark_idle().
1405 */
1406 cancel_work_sync(&dev_priv->rps.work);
1407 intel_runtime_pm_disable_interrupts(dev);
1408
1409 if (IS_GEN6(dev)) {
1410 ret = 0;
1411 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1412 ret = hsw_runtime_suspend(dev_priv);
1413 } else if (IS_VALLEYVIEW(dev)) {
1414 ret = vlv_runtime_suspend(dev_priv);
1415 } else {
1416 ret = -ENODEV;
1417 WARN_ON(1);
1418 }
1419
1420 if (ret) {
1421 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1422 intel_runtime_pm_restore_interrupts(dev);
1423
1424 return ret;
1425 }
1426
1427 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
1428 dev_priv->pm.suspended = true;
1429
1430 /*
1431 * current versions of firmware which depend on this opregion
1432 * notification have repurposed the D1 definition to mean
1433 * "runtime suspended" vs. what you would normally expect (D3)
1434 * to distinguish it from notifications that might be sent
1435 * via the suspend path.
1436 */
1437 intel_opregion_notify_adapter(dev, PCI_D1);
1438
1439 DRM_DEBUG_KMS("Device suspended\n");
1440 return 0;
1441 }
1442
1443 static int intel_runtime_resume(struct device *device)
1444 {
1445 struct pci_dev *pdev = to_pci_dev(device);
1446 struct drm_device *dev = pci_get_drvdata(pdev);
1447 struct drm_i915_private *dev_priv = dev->dev_private;
1448 int ret;
1449
1450 WARN_ON(!HAS_RUNTIME_PM(dev));
1451
1452 DRM_DEBUG_KMS("Resuming device\n");
1453
1454 intel_opregion_notify_adapter(dev, PCI_D0);
1455 dev_priv->pm.suspended = false;
1456
1457 if (IS_GEN6(dev)) {
1458 ret = snb_runtime_resume(dev_priv);
1459 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1460 ret = hsw_runtime_resume(dev_priv);
1461 } else if (IS_VALLEYVIEW(dev)) {
1462 ret = vlv_runtime_resume(dev_priv);
1463 } else {
1464 WARN_ON(1);
1465 ret = -ENODEV;
1466 }
1467
1468 /*
1469 * No point of rolling back things in case of an error, as the best
1470 * we can do is to hope that things will still work (and disable RPM).
1471 */
1472 i915_gem_init_swizzling(dev);
1473 gen6_update_ring_freq(dev);
1474
1475 intel_runtime_pm_restore_interrupts(dev);
1476 intel_reset_gt_powersave(dev);
1477
1478 if (ret)
1479 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1480 else
1481 DRM_DEBUG_KMS("Device resumed\n");
1482
1483 return ret;
1484 }
1485
1486 static const struct dev_pm_ops i915_pm_ops = {
1487 .suspend = i915_pm_suspend,
1488 .suspend_late = i915_pm_suspend_late,
1489 .resume_early = i915_pm_resume_early,
1490 .resume = i915_pm_resume,
1491 .freeze = i915_pm_freeze,
1492 .thaw_early = i915_pm_thaw_early,
1493 .thaw = i915_pm_thaw,
1494 .poweroff = i915_pm_poweroff,
1495 .restore_early = i915_pm_resume_early,
1496 .restore = i915_pm_resume,
1497 .runtime_suspend = intel_runtime_suspend,
1498 .runtime_resume = intel_runtime_resume,
1499 };
1500
1501 static const struct vm_operations_struct i915_gem_vm_ops = {
1502 .fault = i915_gem_fault,
1503 .open = drm_gem_vm_open,
1504 .close = drm_gem_vm_close,
1505 };
1506
1507 static const struct file_operations i915_driver_fops = {
1508 .owner = THIS_MODULE,
1509 .open = drm_open,
1510 .release = drm_release,
1511 .unlocked_ioctl = drm_ioctl,
1512 .mmap = drm_gem_mmap,
1513 .poll = drm_poll,
1514 .read = drm_read,
1515 #ifdef CONFIG_COMPAT
1516 .compat_ioctl = i915_compat_ioctl,
1517 #endif
1518 .llseek = noop_llseek,
1519 };
1520
1521 static struct drm_driver driver = {
1522 /* Don't use MTRRs here; the Xserver or userspace app should
1523 * deal with them for Intel hardware.
1524 */
1525 .driver_features =
1526 DRIVER_USE_AGP |
1527 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
1528 DRIVER_RENDER,
1529 .load = i915_driver_load,
1530 .unload = i915_driver_unload,
1531 .open = i915_driver_open,
1532 .lastclose = i915_driver_lastclose,
1533 .preclose = i915_driver_preclose,
1534 .postclose = i915_driver_postclose,
1535
1536 /* Used in place of i915_pm_ops for non-DRIVER_MODESET */
1537 .suspend = i915_suspend,
1538 .resume = i915_resume_legacy,
1539
1540 .device_is_agp = i915_driver_device_is_agp,
1541 .master_create = i915_master_create,
1542 .master_destroy = i915_master_destroy,
1543 #if defined(CONFIG_DEBUG_FS)
1544 .debugfs_init = i915_debugfs_init,
1545 .debugfs_cleanup = i915_debugfs_cleanup,
1546 #endif
1547 .gem_free_object = i915_gem_free_object,
1548 .gem_vm_ops = &i915_gem_vm_ops,
1549
1550 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
1551 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
1552 .gem_prime_export = i915_gem_prime_export,
1553 .gem_prime_import = i915_gem_prime_import,
1554
1555 .dumb_create = i915_gem_dumb_create,
1556 .dumb_map_offset = i915_gem_mmap_gtt,
1557 .dumb_destroy = drm_gem_dumb_destroy,
1558 .ioctls = i915_ioctls,
1559 .fops = &i915_driver_fops,
1560 .name = DRIVER_NAME,
1561 .desc = DRIVER_DESC,
1562 .date = DRIVER_DATE,
1563 .major = DRIVER_MAJOR,
1564 .minor = DRIVER_MINOR,
1565 .patchlevel = DRIVER_PATCHLEVEL,
1566 };
1567
1568 static struct pci_driver i915_pci_driver = {
1569 .name = DRIVER_NAME,
1570 .id_table = pciidlist,
1571 .probe = i915_pci_probe,
1572 .remove = i915_pci_remove,
1573 .driver.pm = &i915_pm_ops,
1574 };
1575
1576 static int __init i915_init(void)
1577 {
1578 driver.num_ioctls = i915_max_ioctl;
1579
1580 /*
1581 * If CONFIG_DRM_I915_KMS is set, default to KMS unless
1582 * explicitly disabled with the module pararmeter.
1583 *
1584 * Otherwise, just follow the parameter (defaulting to off).
1585 *
1586 * Allow optional vga_text_mode_force boot option to override
1587 * the default behavior.
1588 */
1589 #if defined(CONFIG_DRM_I915_KMS)
1590 if (i915.modeset != 0)
1591 driver.driver_features |= DRIVER_MODESET;
1592 #endif
1593 if (i915.modeset == 1)
1594 driver.driver_features |= DRIVER_MODESET;
1595
1596 #ifdef CONFIG_VGA_CONSOLE
1597 if (vgacon_text_force() && i915.modeset == -1)
1598 driver.driver_features &= ~DRIVER_MODESET;
1599 #endif
1600
1601 if (!(driver.driver_features & DRIVER_MODESET)) {
1602 driver.get_vblank_timestamp = NULL;
1603 #ifndef CONFIG_DRM_I915_UMS
1604 /* Silently fail loading to not upset userspace. */
1605 DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1606 return 0;
1607 #endif
1608 }
1609
1610 return drm_pci_init(&driver, &i915_pci_driver);
1611 }
1612
1613 static void __exit i915_exit(void)
1614 {
1615 #ifndef CONFIG_DRM_I915_UMS
1616 if (!(driver.driver_features & DRIVER_MODESET))
1617 return; /* Never loaded a driver. */
1618 #endif
1619
1620 drm_pci_exit(&driver, &i915_pci_driver);
1621 }
1622
1623 module_init(i915_init);
1624 module_exit(i915_exit);
1625
1626 MODULE_AUTHOR(DRIVER_AUTHOR);
1627 MODULE_DESCRIPTION(DRIVER_DESC);
1628 MODULE_LICENSE("GPL and additional rights");
This page took 0.064518 seconds and 6 git commands to generate.