Merge branch 'drm_kms_for_next-v8' of git://git.linaro.org/people/benjamin.gaignard...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/device.h>
31 #include <linux/acpi.h>
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34 #include "i915_drv.h"
35 #include "i915_trace.h"
36 #include "intel_drv.h"
37
38 #include <linux/console.h>
39 #include <linux/module.h>
40 #include <linux/pm_runtime.h>
41 #include <drm/drm_crtc_helper.h>
42
43 static struct drm_driver driver;
44
45 #define GEN_DEFAULT_PIPEOFFSETS \
46 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
47 PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
48 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
49 TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
50 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
51
52 #define GEN_CHV_PIPEOFFSETS \
53 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
54 CHV_PIPE_C_OFFSET }, \
55 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
56 CHV_TRANSCODER_C_OFFSET, }, \
57 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
58 CHV_PALETTE_C_OFFSET }
59
60 #define CURSOR_OFFSETS \
61 .cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
62
63 #define IVB_CURSOR_OFFSETS \
64 .cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
65
66 static const struct intel_device_info intel_i830_info = {
67 .gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
68 .has_overlay = 1, .overlay_needs_physical = 1,
69 .ring_mask = RENDER_RING,
70 GEN_DEFAULT_PIPEOFFSETS,
71 CURSOR_OFFSETS,
72 };
73
74 static const struct intel_device_info intel_845g_info = {
75 .gen = 2, .num_pipes = 1,
76 .has_overlay = 1, .overlay_needs_physical = 1,
77 .ring_mask = RENDER_RING,
78 GEN_DEFAULT_PIPEOFFSETS,
79 CURSOR_OFFSETS,
80 };
81
82 static const struct intel_device_info intel_i85x_info = {
83 .gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
84 .cursor_needs_physical = 1,
85 .has_overlay = 1, .overlay_needs_physical = 1,
86 .has_fbc = 1,
87 .ring_mask = RENDER_RING,
88 GEN_DEFAULT_PIPEOFFSETS,
89 CURSOR_OFFSETS,
90 };
91
92 static const struct intel_device_info intel_i865g_info = {
93 .gen = 2, .num_pipes = 1,
94 .has_overlay = 1, .overlay_needs_physical = 1,
95 .ring_mask = RENDER_RING,
96 GEN_DEFAULT_PIPEOFFSETS,
97 CURSOR_OFFSETS,
98 };
99
100 static const struct intel_device_info intel_i915g_info = {
101 .gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
102 .has_overlay = 1, .overlay_needs_physical = 1,
103 .ring_mask = RENDER_RING,
104 GEN_DEFAULT_PIPEOFFSETS,
105 CURSOR_OFFSETS,
106 };
107 static const struct intel_device_info intel_i915gm_info = {
108 .gen = 3, .is_mobile = 1, .num_pipes = 2,
109 .cursor_needs_physical = 1,
110 .has_overlay = 1, .overlay_needs_physical = 1,
111 .supports_tv = 1,
112 .has_fbc = 1,
113 .ring_mask = RENDER_RING,
114 GEN_DEFAULT_PIPEOFFSETS,
115 CURSOR_OFFSETS,
116 };
117 static const struct intel_device_info intel_i945g_info = {
118 .gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
119 .has_overlay = 1, .overlay_needs_physical = 1,
120 .ring_mask = RENDER_RING,
121 GEN_DEFAULT_PIPEOFFSETS,
122 CURSOR_OFFSETS,
123 };
124 static const struct intel_device_info intel_i945gm_info = {
125 .gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
126 .has_hotplug = 1, .cursor_needs_physical = 1,
127 .has_overlay = 1, .overlay_needs_physical = 1,
128 .supports_tv = 1,
129 .has_fbc = 1,
130 .ring_mask = RENDER_RING,
131 GEN_DEFAULT_PIPEOFFSETS,
132 CURSOR_OFFSETS,
133 };
134
135 static const struct intel_device_info intel_i965g_info = {
136 .gen = 4, .is_broadwater = 1, .num_pipes = 2,
137 .has_hotplug = 1,
138 .has_overlay = 1,
139 .ring_mask = RENDER_RING,
140 GEN_DEFAULT_PIPEOFFSETS,
141 CURSOR_OFFSETS,
142 };
143
144 static const struct intel_device_info intel_i965gm_info = {
145 .gen = 4, .is_crestline = 1, .num_pipes = 2,
146 .is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
147 .has_overlay = 1,
148 .supports_tv = 1,
149 .ring_mask = RENDER_RING,
150 GEN_DEFAULT_PIPEOFFSETS,
151 CURSOR_OFFSETS,
152 };
153
154 static const struct intel_device_info intel_g33_info = {
155 .gen = 3, .is_g33 = 1, .num_pipes = 2,
156 .need_gfx_hws = 1, .has_hotplug = 1,
157 .has_overlay = 1,
158 .ring_mask = RENDER_RING,
159 GEN_DEFAULT_PIPEOFFSETS,
160 CURSOR_OFFSETS,
161 };
162
163 static const struct intel_device_info intel_g45_info = {
164 .gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
165 .has_pipe_cxsr = 1, .has_hotplug = 1,
166 .ring_mask = RENDER_RING | BSD_RING,
167 GEN_DEFAULT_PIPEOFFSETS,
168 CURSOR_OFFSETS,
169 };
170
171 static const struct intel_device_info intel_gm45_info = {
172 .gen = 4, .is_g4x = 1, .num_pipes = 2,
173 .is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
174 .has_pipe_cxsr = 1, .has_hotplug = 1,
175 .supports_tv = 1,
176 .ring_mask = RENDER_RING | BSD_RING,
177 GEN_DEFAULT_PIPEOFFSETS,
178 CURSOR_OFFSETS,
179 };
180
181 static const struct intel_device_info intel_pineview_info = {
182 .gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
183 .need_gfx_hws = 1, .has_hotplug = 1,
184 .has_overlay = 1,
185 GEN_DEFAULT_PIPEOFFSETS,
186 CURSOR_OFFSETS,
187 };
188
189 static const struct intel_device_info intel_ironlake_d_info = {
190 .gen = 5, .num_pipes = 2,
191 .need_gfx_hws = 1, .has_hotplug = 1,
192 .ring_mask = RENDER_RING | BSD_RING,
193 GEN_DEFAULT_PIPEOFFSETS,
194 CURSOR_OFFSETS,
195 };
196
197 static const struct intel_device_info intel_ironlake_m_info = {
198 .gen = 5, .is_mobile = 1, .num_pipes = 2,
199 .need_gfx_hws = 1, .has_hotplug = 1,
200 .has_fbc = 1,
201 .ring_mask = RENDER_RING | BSD_RING,
202 GEN_DEFAULT_PIPEOFFSETS,
203 CURSOR_OFFSETS,
204 };
205
206 static const struct intel_device_info intel_sandybridge_d_info = {
207 .gen = 6, .num_pipes = 2,
208 .need_gfx_hws = 1, .has_hotplug = 1,
209 .has_fbc = 1,
210 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
211 .has_llc = 1,
212 GEN_DEFAULT_PIPEOFFSETS,
213 CURSOR_OFFSETS,
214 };
215
216 static const struct intel_device_info intel_sandybridge_m_info = {
217 .gen = 6, .is_mobile = 1, .num_pipes = 2,
218 .need_gfx_hws = 1, .has_hotplug = 1,
219 .has_fbc = 1,
220 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
221 .has_llc = 1,
222 GEN_DEFAULT_PIPEOFFSETS,
223 CURSOR_OFFSETS,
224 };
225
226 #define GEN7_FEATURES \
227 .gen = 7, .num_pipes = 3, \
228 .need_gfx_hws = 1, .has_hotplug = 1, \
229 .has_fbc = 1, \
230 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
231 .has_llc = 1
232
233 static const struct intel_device_info intel_ivybridge_d_info = {
234 GEN7_FEATURES,
235 .is_ivybridge = 1,
236 GEN_DEFAULT_PIPEOFFSETS,
237 IVB_CURSOR_OFFSETS,
238 };
239
240 static const struct intel_device_info intel_ivybridge_m_info = {
241 GEN7_FEATURES,
242 .is_ivybridge = 1,
243 .is_mobile = 1,
244 GEN_DEFAULT_PIPEOFFSETS,
245 IVB_CURSOR_OFFSETS,
246 };
247
248 static const struct intel_device_info intel_ivybridge_q_info = {
249 GEN7_FEATURES,
250 .is_ivybridge = 1,
251 .num_pipes = 0, /* legal, last one wins */
252 GEN_DEFAULT_PIPEOFFSETS,
253 IVB_CURSOR_OFFSETS,
254 };
255
256 static const struct intel_device_info intel_valleyview_m_info = {
257 GEN7_FEATURES,
258 .is_mobile = 1,
259 .num_pipes = 2,
260 .is_valleyview = 1,
261 .display_mmio_offset = VLV_DISPLAY_BASE,
262 .has_fbc = 0, /* legal, last one wins */
263 .has_llc = 0, /* legal, last one wins */
264 GEN_DEFAULT_PIPEOFFSETS,
265 CURSOR_OFFSETS,
266 };
267
268 static const struct intel_device_info intel_valleyview_d_info = {
269 GEN7_FEATURES,
270 .num_pipes = 2,
271 .is_valleyview = 1,
272 .display_mmio_offset = VLV_DISPLAY_BASE,
273 .has_fbc = 0, /* legal, last one wins */
274 .has_llc = 0, /* legal, last one wins */
275 GEN_DEFAULT_PIPEOFFSETS,
276 CURSOR_OFFSETS,
277 };
278
279 static const struct intel_device_info intel_haswell_d_info = {
280 GEN7_FEATURES,
281 .is_haswell = 1,
282 .has_ddi = 1,
283 .has_fpga_dbg = 1,
284 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
285 GEN_DEFAULT_PIPEOFFSETS,
286 IVB_CURSOR_OFFSETS,
287 };
288
289 static const struct intel_device_info intel_haswell_m_info = {
290 GEN7_FEATURES,
291 .is_haswell = 1,
292 .is_mobile = 1,
293 .has_ddi = 1,
294 .has_fpga_dbg = 1,
295 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
296 GEN_DEFAULT_PIPEOFFSETS,
297 IVB_CURSOR_OFFSETS,
298 };
299
300 static const struct intel_device_info intel_broadwell_d_info = {
301 .gen = 8, .num_pipes = 3,
302 .need_gfx_hws = 1, .has_hotplug = 1,
303 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
304 .has_llc = 1,
305 .has_ddi = 1,
306 .has_fpga_dbg = 1,
307 .has_fbc = 1,
308 GEN_DEFAULT_PIPEOFFSETS,
309 IVB_CURSOR_OFFSETS,
310 };
311
312 static const struct intel_device_info intel_broadwell_m_info = {
313 .gen = 8, .is_mobile = 1, .num_pipes = 3,
314 .need_gfx_hws = 1, .has_hotplug = 1,
315 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
316 .has_llc = 1,
317 .has_ddi = 1,
318 .has_fpga_dbg = 1,
319 .has_fbc = 1,
320 GEN_DEFAULT_PIPEOFFSETS,
321 IVB_CURSOR_OFFSETS,
322 };
323
324 static const struct intel_device_info intel_broadwell_gt3d_info = {
325 .gen = 8, .num_pipes = 3,
326 .need_gfx_hws = 1, .has_hotplug = 1,
327 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
328 .has_llc = 1,
329 .has_ddi = 1,
330 .has_fpga_dbg = 1,
331 .has_fbc = 1,
332 GEN_DEFAULT_PIPEOFFSETS,
333 IVB_CURSOR_OFFSETS,
334 };
335
336 static const struct intel_device_info intel_broadwell_gt3m_info = {
337 .gen = 8, .is_mobile = 1, .num_pipes = 3,
338 .need_gfx_hws = 1, .has_hotplug = 1,
339 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
340 .has_llc = 1,
341 .has_ddi = 1,
342 .has_fpga_dbg = 1,
343 .has_fbc = 1,
344 GEN_DEFAULT_PIPEOFFSETS,
345 IVB_CURSOR_OFFSETS,
346 };
347
348 static const struct intel_device_info intel_cherryview_info = {
349 .is_preliminary = 1,
350 .gen = 8, .num_pipes = 3,
351 .need_gfx_hws = 1, .has_hotplug = 1,
352 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
353 .is_valleyview = 1,
354 .display_mmio_offset = VLV_DISPLAY_BASE,
355 GEN_CHV_PIPEOFFSETS,
356 CURSOR_OFFSETS,
357 };
358
359 /*
360 * Make sure any device matches here are from most specific to most
361 * general. For example, since the Quanta match is based on the subsystem
362 * and subvendor IDs, we need it to come before the more general IVB
363 * PCI ID matches, otherwise we'll use the wrong info struct above.
364 */
365 #define INTEL_PCI_IDS \
366 INTEL_I830_IDS(&intel_i830_info), \
367 INTEL_I845G_IDS(&intel_845g_info), \
368 INTEL_I85X_IDS(&intel_i85x_info), \
369 INTEL_I865G_IDS(&intel_i865g_info), \
370 INTEL_I915G_IDS(&intel_i915g_info), \
371 INTEL_I915GM_IDS(&intel_i915gm_info), \
372 INTEL_I945G_IDS(&intel_i945g_info), \
373 INTEL_I945GM_IDS(&intel_i945gm_info), \
374 INTEL_I965G_IDS(&intel_i965g_info), \
375 INTEL_G33_IDS(&intel_g33_info), \
376 INTEL_I965GM_IDS(&intel_i965gm_info), \
377 INTEL_GM45_IDS(&intel_gm45_info), \
378 INTEL_G45_IDS(&intel_g45_info), \
379 INTEL_PINEVIEW_IDS(&intel_pineview_info), \
380 INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info), \
381 INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info), \
382 INTEL_SNB_D_IDS(&intel_sandybridge_d_info), \
383 INTEL_SNB_M_IDS(&intel_sandybridge_m_info), \
384 INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */ \
385 INTEL_IVB_M_IDS(&intel_ivybridge_m_info), \
386 INTEL_IVB_D_IDS(&intel_ivybridge_d_info), \
387 INTEL_HSW_D_IDS(&intel_haswell_d_info), \
388 INTEL_HSW_M_IDS(&intel_haswell_m_info), \
389 INTEL_VLV_M_IDS(&intel_valleyview_m_info), \
390 INTEL_VLV_D_IDS(&intel_valleyview_d_info), \
391 INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info), \
392 INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info), \
393 INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info), \
394 INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info), \
395 INTEL_CHV_IDS(&intel_cherryview_info)
396
397 static const struct pci_device_id pciidlist[] = { /* aka */
398 INTEL_PCI_IDS,
399 {0, 0, 0}
400 };
401
402 #if defined(CONFIG_DRM_I915_KMS)
403 MODULE_DEVICE_TABLE(pci, pciidlist);
404 #endif
405
406 void intel_detect_pch(struct drm_device *dev)
407 {
408 struct drm_i915_private *dev_priv = dev->dev_private;
409 struct pci_dev *pch = NULL;
410
411 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
412 * (which really amounts to a PCH but no South Display).
413 */
414 if (INTEL_INFO(dev)->num_pipes == 0) {
415 dev_priv->pch_type = PCH_NOP;
416 return;
417 }
418
419 /*
420 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
421 * make graphics device passthrough work easy for VMM, that only
422 * need to expose ISA bridge to let driver know the real hardware
423 * underneath. This is a requirement from virtualization team.
424 *
425 * In some virtualized environments (e.g. XEN), there is irrelevant
426 * ISA bridge in the system. To work reliably, we should scan trhough
427 * all the ISA bridge devices and check for the first match, instead
428 * of only checking the first one.
429 */
430 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
431 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
432 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
433 dev_priv->pch_id = id;
434
435 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
436 dev_priv->pch_type = PCH_IBX;
437 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
438 WARN_ON(!IS_GEN5(dev));
439 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
440 dev_priv->pch_type = PCH_CPT;
441 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
442 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
443 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
444 /* PantherPoint is CPT compatible */
445 dev_priv->pch_type = PCH_CPT;
446 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
447 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
448 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
449 dev_priv->pch_type = PCH_LPT;
450 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
451 WARN_ON(!IS_HASWELL(dev));
452 WARN_ON(IS_ULT(dev));
453 } else if (IS_BROADWELL(dev)) {
454 dev_priv->pch_type = PCH_LPT;
455 dev_priv->pch_id =
456 INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
457 DRM_DEBUG_KMS("This is Broadwell, assuming "
458 "LynxPoint LP PCH\n");
459 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
460 dev_priv->pch_type = PCH_LPT;
461 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
462 WARN_ON(!IS_HASWELL(dev));
463 WARN_ON(!IS_ULT(dev));
464 } else
465 continue;
466
467 break;
468 }
469 }
470 if (!pch)
471 DRM_DEBUG_KMS("No PCH found.\n");
472
473 pci_dev_put(pch);
474 }
475
476 bool i915_semaphore_is_enabled(struct drm_device *dev)
477 {
478 if (INTEL_INFO(dev)->gen < 6)
479 return false;
480
481 if (i915.semaphores >= 0)
482 return i915.semaphores;
483
484 #ifdef CONFIG_INTEL_IOMMU
485 /* Enable semaphores on SNB when IO remapping is off */
486 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
487 return false;
488 #endif
489
490 return true;
491 }
492
493 static int i915_drm_freeze(struct drm_device *dev)
494 {
495 struct drm_i915_private *dev_priv = dev->dev_private;
496 struct drm_crtc *crtc;
497 pci_power_t opregion_target_state;
498
499 /* ignore lid events during suspend */
500 mutex_lock(&dev_priv->modeset_restore_lock);
501 dev_priv->modeset_restore = MODESET_SUSPENDED;
502 mutex_unlock(&dev_priv->modeset_restore_lock);
503
504 /* We do a lot of poking in a lot of registers, make sure they work
505 * properly. */
506 intel_display_set_init_power(dev_priv, true);
507
508 drm_kms_helper_poll_disable(dev);
509
510 pci_save_state(dev->pdev);
511
512 /* If KMS is active, we do the leavevt stuff here */
513 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
514 int error;
515
516 error = i915_gem_suspend(dev);
517 if (error) {
518 dev_err(&dev->pdev->dev,
519 "GEM idle failed, resume might fail\n");
520 return error;
521 }
522
523 /*
524 * Disable CRTCs directly since we want to preserve sw state
525 * for _thaw. Also, power gate the CRTC power wells.
526 */
527 drm_modeset_lock_all(dev);
528 for_each_crtc(dev, crtc)
529 intel_crtc_control(crtc, false);
530 drm_modeset_unlock_all(dev);
531
532 intel_dp_mst_suspend(dev);
533
534 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
535
536 intel_runtime_pm_disable_interrupts(dev);
537
538 intel_suspend_gt_powersave(dev);
539
540 intel_modeset_suspend_hw(dev);
541 }
542
543 i915_gem_suspend_gtt_mappings(dev);
544
545 i915_save_state(dev);
546
547 opregion_target_state = PCI_D3cold;
548 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
549 if (acpi_target_system_state() < ACPI_STATE_S3)
550 opregion_target_state = PCI_D1;
551 #endif
552 intel_opregion_notify_adapter(dev, opregion_target_state);
553
554 intel_uncore_forcewake_reset(dev, false);
555 intel_opregion_fini(dev);
556
557 console_lock();
558 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED);
559 console_unlock();
560
561 dev_priv->suspend_count++;
562
563 intel_display_set_init_power(dev_priv, false);
564
565 return 0;
566 }
567
568 int i915_suspend(struct drm_device *dev, pm_message_t state)
569 {
570 int error;
571
572 if (!dev || !dev->dev_private) {
573 DRM_ERROR("dev: %p\n", dev);
574 DRM_ERROR("DRM not initialized, aborting suspend.\n");
575 return -ENODEV;
576 }
577
578 if (state.event == PM_EVENT_PRETHAW)
579 return 0;
580
581
582 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
583 return 0;
584
585 error = i915_drm_freeze(dev);
586 if (error)
587 return error;
588
589 if (state.event == PM_EVENT_SUSPEND) {
590 /* Shut down the device */
591 pci_disable_device(dev->pdev);
592 pci_set_power_state(dev->pdev, PCI_D3hot);
593 }
594
595 return 0;
596 }
597
598 void intel_console_resume(struct work_struct *work)
599 {
600 struct drm_i915_private *dev_priv =
601 container_of(work, struct drm_i915_private,
602 console_resume_work);
603 struct drm_device *dev = dev_priv->dev;
604
605 console_lock();
606 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING);
607 console_unlock();
608 }
609
610 static int i915_drm_thaw_early(struct drm_device *dev)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613
614 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
615 hsw_disable_pc8(dev_priv);
616
617 intel_uncore_early_sanitize(dev, true);
618 intel_uncore_sanitize(dev);
619 intel_power_domains_init_hw(dev_priv);
620
621 return 0;
622 }
623
624 static int __i915_drm_thaw(struct drm_device *dev, bool restore_gtt_mappings)
625 {
626 struct drm_i915_private *dev_priv = dev->dev_private;
627
628 if (drm_core_check_feature(dev, DRIVER_MODESET) &&
629 restore_gtt_mappings) {
630 mutex_lock(&dev->struct_mutex);
631 i915_gem_restore_gtt_mappings(dev);
632 mutex_unlock(&dev->struct_mutex);
633 }
634
635 i915_restore_state(dev);
636 intel_opregion_setup(dev);
637
638 /* KMS EnterVT equivalent */
639 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
640 intel_init_pch_refclk(dev);
641 drm_mode_config_reset(dev);
642
643 mutex_lock(&dev->struct_mutex);
644 if (i915_gem_init_hw(dev)) {
645 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
646 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
647 }
648 mutex_unlock(&dev->struct_mutex);
649
650 intel_runtime_pm_restore_interrupts(dev);
651
652 intel_modeset_init_hw(dev);
653
654 {
655 unsigned long irqflags;
656 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
657 if (dev_priv->display.hpd_irq_setup)
658 dev_priv->display.hpd_irq_setup(dev);
659 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
660 }
661
662 intel_dp_mst_resume(dev);
663 drm_modeset_lock_all(dev);
664 intel_modeset_setup_hw_state(dev, true);
665 drm_modeset_unlock_all(dev);
666
667 /*
668 * ... but also need to make sure that hotplug processing
669 * doesn't cause havoc. Like in the driver load code we don't
670 * bother with the tiny race here where we might loose hotplug
671 * notifications.
672 * */
673 intel_hpd_init(dev);
674 /* Config may have changed between suspend and resume */
675 drm_helper_hpd_irq_event(dev);
676 }
677
678 intel_opregion_init(dev);
679
680 /*
681 * The console lock can be pretty contented on resume due
682 * to all the printk activity. Try to keep it out of the hot
683 * path of resume if possible.
684 */
685 if (console_trylock()) {
686 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING);
687 console_unlock();
688 } else {
689 schedule_work(&dev_priv->console_resume_work);
690 }
691
692 mutex_lock(&dev_priv->modeset_restore_lock);
693 dev_priv->modeset_restore = MODESET_DONE;
694 mutex_unlock(&dev_priv->modeset_restore_lock);
695
696 intel_opregion_notify_adapter(dev, PCI_D0);
697
698 return 0;
699 }
700
701 static int i915_drm_thaw(struct drm_device *dev)
702 {
703 if (drm_core_check_feature(dev, DRIVER_MODESET))
704 i915_check_and_clear_faults(dev);
705
706 return __i915_drm_thaw(dev, true);
707 }
708
709 static int i915_resume_early(struct drm_device *dev)
710 {
711 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
712 return 0;
713
714 /*
715 * We have a resume ordering issue with the snd-hda driver also
716 * requiring our device to be power up. Due to the lack of a
717 * parent/child relationship we currently solve this with an early
718 * resume hook.
719 *
720 * FIXME: This should be solved with a special hdmi sink device or
721 * similar so that power domains can be employed.
722 */
723 if (pci_enable_device(dev->pdev))
724 return -EIO;
725
726 pci_set_master(dev->pdev);
727
728 return i915_drm_thaw_early(dev);
729 }
730
731 int i915_resume(struct drm_device *dev)
732 {
733 struct drm_i915_private *dev_priv = dev->dev_private;
734 int ret;
735
736 /*
737 * Platforms with opregion should have sane BIOS, older ones (gen3 and
738 * earlier) need to restore the GTT mappings since the BIOS might clear
739 * all our scratch PTEs.
740 */
741 ret = __i915_drm_thaw(dev, !dev_priv->opregion.header);
742 if (ret)
743 return ret;
744
745 drm_kms_helper_poll_enable(dev);
746 return 0;
747 }
748
749 static int i915_resume_legacy(struct drm_device *dev)
750 {
751 i915_resume_early(dev);
752 i915_resume(dev);
753
754 return 0;
755 }
756
757 /**
758 * i915_reset - reset chip after a hang
759 * @dev: drm device to reset
760 *
761 * Reset the chip. Useful if a hang is detected. Returns zero on successful
762 * reset or otherwise an error code.
763 *
764 * Procedure is fairly simple:
765 * - reset the chip using the reset reg
766 * - re-init context state
767 * - re-init hardware status page
768 * - re-init ring buffer
769 * - re-init interrupt state
770 * - re-init display
771 */
772 int i915_reset(struct drm_device *dev)
773 {
774 struct drm_i915_private *dev_priv = dev->dev_private;
775 bool simulated;
776 int ret;
777
778 if (!i915.reset)
779 return 0;
780
781 mutex_lock(&dev->struct_mutex);
782
783 i915_gem_reset(dev);
784
785 simulated = dev_priv->gpu_error.stop_rings != 0;
786
787 ret = intel_gpu_reset(dev);
788
789 /* Also reset the gpu hangman. */
790 if (simulated) {
791 DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
792 dev_priv->gpu_error.stop_rings = 0;
793 if (ret == -ENODEV) {
794 DRM_INFO("Reset not implemented, but ignoring "
795 "error for simulated gpu hangs\n");
796 ret = 0;
797 }
798 }
799
800 if (ret) {
801 DRM_ERROR("Failed to reset chip: %i\n", ret);
802 mutex_unlock(&dev->struct_mutex);
803 return ret;
804 }
805
806 /* Ok, now get things going again... */
807
808 /*
809 * Everything depends on having the GTT running, so we need to start
810 * there. Fortunately we don't need to do this unless we reset the
811 * chip at a PCI level.
812 *
813 * Next we need to restore the context, but we don't use those
814 * yet either...
815 *
816 * Ring buffer needs to be re-initialized in the KMS case, or if X
817 * was running at the time of the reset (i.e. we weren't VT
818 * switched away).
819 */
820 if (drm_core_check_feature(dev, DRIVER_MODESET) ||
821 !dev_priv->ums.mm_suspended) {
822 dev_priv->ums.mm_suspended = 0;
823
824 ret = i915_gem_init_hw(dev);
825 mutex_unlock(&dev->struct_mutex);
826 if (ret) {
827 DRM_ERROR("Failed hw init on reset %d\n", ret);
828 return ret;
829 }
830
831 /*
832 * FIXME: This races pretty badly against concurrent holders of
833 * ring interrupts. This is possible since we've started to drop
834 * dev->struct_mutex in select places when waiting for the gpu.
835 */
836
837 /*
838 * rps/rc6 re-init is necessary to restore state lost after the
839 * reset and the re-install of gt irqs. Skip for ironlake per
840 * previous concerns that it doesn't respond well to some forms
841 * of re-init after reset.
842 */
843 if (INTEL_INFO(dev)->gen > 5)
844 intel_reset_gt_powersave(dev);
845
846 intel_hpd_init(dev);
847 } else {
848 mutex_unlock(&dev->struct_mutex);
849 }
850
851 return 0;
852 }
853
854 static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
855 {
856 struct intel_device_info *intel_info =
857 (struct intel_device_info *) ent->driver_data;
858
859 if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
860 DRM_INFO("This hardware requires preliminary hardware support.\n"
861 "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
862 return -ENODEV;
863 }
864
865 /* Only bind to function 0 of the device. Early generations
866 * used function 1 as a placeholder for multi-head. This causes
867 * us confusion instead, especially on the systems where both
868 * functions have the same PCI-ID!
869 */
870 if (PCI_FUNC(pdev->devfn))
871 return -ENODEV;
872
873 driver.driver_features &= ~(DRIVER_USE_AGP);
874
875 return drm_get_pci_dev(pdev, ent, &driver);
876 }
877
878 static void
879 i915_pci_remove(struct pci_dev *pdev)
880 {
881 struct drm_device *dev = pci_get_drvdata(pdev);
882
883 drm_put_dev(dev);
884 }
885
886 static int i915_pm_suspend(struct device *dev)
887 {
888 struct pci_dev *pdev = to_pci_dev(dev);
889 struct drm_device *drm_dev = pci_get_drvdata(pdev);
890
891 if (!drm_dev || !drm_dev->dev_private) {
892 dev_err(dev, "DRM not initialized, aborting suspend.\n");
893 return -ENODEV;
894 }
895
896 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
897 return 0;
898
899 return i915_drm_freeze(drm_dev);
900 }
901
902 static int i915_pm_suspend_late(struct device *dev)
903 {
904 struct pci_dev *pdev = to_pci_dev(dev);
905 struct drm_device *drm_dev = pci_get_drvdata(pdev);
906 struct drm_i915_private *dev_priv = drm_dev->dev_private;
907
908 /*
909 * We have a suspedn ordering issue with the snd-hda driver also
910 * requiring our device to be power up. Due to the lack of a
911 * parent/child relationship we currently solve this with an late
912 * suspend hook.
913 *
914 * FIXME: This should be solved with a special hdmi sink device or
915 * similar so that power domains can be employed.
916 */
917 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
918 return 0;
919
920 if (IS_HASWELL(drm_dev) || IS_BROADWELL(drm_dev))
921 hsw_enable_pc8(dev_priv);
922
923 pci_disable_device(pdev);
924 pci_set_power_state(pdev, PCI_D3hot);
925
926 return 0;
927 }
928
929 static int i915_pm_resume_early(struct device *dev)
930 {
931 struct pci_dev *pdev = to_pci_dev(dev);
932 struct drm_device *drm_dev = pci_get_drvdata(pdev);
933
934 return i915_resume_early(drm_dev);
935 }
936
937 static int i915_pm_resume(struct device *dev)
938 {
939 struct pci_dev *pdev = to_pci_dev(dev);
940 struct drm_device *drm_dev = pci_get_drvdata(pdev);
941
942 return i915_resume(drm_dev);
943 }
944
945 static int i915_pm_freeze(struct device *dev)
946 {
947 struct pci_dev *pdev = to_pci_dev(dev);
948 struct drm_device *drm_dev = pci_get_drvdata(pdev);
949
950 if (!drm_dev || !drm_dev->dev_private) {
951 dev_err(dev, "DRM not initialized, aborting suspend.\n");
952 return -ENODEV;
953 }
954
955 return i915_drm_freeze(drm_dev);
956 }
957
958 static int i915_pm_thaw_early(struct device *dev)
959 {
960 struct pci_dev *pdev = to_pci_dev(dev);
961 struct drm_device *drm_dev = pci_get_drvdata(pdev);
962
963 return i915_drm_thaw_early(drm_dev);
964 }
965
966 static int i915_pm_thaw(struct device *dev)
967 {
968 struct pci_dev *pdev = to_pci_dev(dev);
969 struct drm_device *drm_dev = pci_get_drvdata(pdev);
970
971 return i915_drm_thaw(drm_dev);
972 }
973
974 static int i915_pm_poweroff(struct device *dev)
975 {
976 struct pci_dev *pdev = to_pci_dev(dev);
977 struct drm_device *drm_dev = pci_get_drvdata(pdev);
978
979 return i915_drm_freeze(drm_dev);
980 }
981
982 static int hsw_runtime_suspend(struct drm_i915_private *dev_priv)
983 {
984 hsw_enable_pc8(dev_priv);
985
986 return 0;
987 }
988
989 static int snb_runtime_resume(struct drm_i915_private *dev_priv)
990 {
991 struct drm_device *dev = dev_priv->dev;
992
993 intel_init_pch_refclk(dev);
994
995 return 0;
996 }
997
998 static int hsw_runtime_resume(struct drm_i915_private *dev_priv)
999 {
1000 hsw_disable_pc8(dev_priv);
1001
1002 return 0;
1003 }
1004
1005 /*
1006 * Save all Gunit registers that may be lost after a D3 and a subsequent
1007 * S0i[R123] transition. The list of registers needing a save/restore is
1008 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1009 * registers in the following way:
1010 * - Driver: saved/restored by the driver
1011 * - Punit : saved/restored by the Punit firmware
1012 * - No, w/o marking: no need to save/restore, since the register is R/O or
1013 * used internally by the HW in a way that doesn't depend
1014 * keeping the content across a suspend/resume.
1015 * - Debug : used for debugging
1016 *
1017 * We save/restore all registers marked with 'Driver', with the following
1018 * exceptions:
1019 * - Registers out of use, including also registers marked with 'Debug'.
1020 * These have no effect on the driver's operation, so we don't save/restore
1021 * them to reduce the overhead.
1022 * - Registers that are fully setup by an initialization function called from
1023 * the resume path. For example many clock gating and RPS/RC6 registers.
1024 * - Registers that provide the right functionality with their reset defaults.
1025 *
1026 * TODO: Except for registers that based on the above 3 criteria can be safely
1027 * ignored, we save/restore all others, practically treating the HW context as
1028 * a black-box for the driver. Further investigation is needed to reduce the
1029 * saved/restored registers even further, by following the same 3 criteria.
1030 */
1031 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1032 {
1033 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1034 int i;
1035
1036 /* GAM 0x4000-0x4770 */
1037 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1038 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1039 s->arb_mode = I915_READ(ARB_MODE);
1040 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1041 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1042
1043 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1044 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS_BASE + i * 4);
1045
1046 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1047 s->gfx_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1048
1049 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1050 s->ecochk = I915_READ(GAM_ECOCHK);
1051 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1052 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1053
1054 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1055
1056 /* MBC 0x9024-0x91D0, 0x8500 */
1057 s->g3dctl = I915_READ(VLV_G3DCTL);
1058 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1059 s->mbctl = I915_READ(GEN6_MBCTL);
1060
1061 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1062 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
1063 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
1064 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
1065 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
1066 s->rstctl = I915_READ(GEN6_RSTCTL);
1067 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
1068
1069 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1070 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
1071 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
1072 s->rpdeuc = I915_READ(GEN6_RPDEUC);
1073 s->ecobus = I915_READ(ECOBUS);
1074 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
1075 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1076 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
1077 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
1078 s->rcedata = I915_READ(VLV_RCEDATA);
1079 s->spare2gh = I915_READ(VLV_SPAREG2H);
1080
1081 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1082 s->gt_imr = I915_READ(GTIMR);
1083 s->gt_ier = I915_READ(GTIER);
1084 s->pm_imr = I915_READ(GEN6_PMIMR);
1085 s->pm_ier = I915_READ(GEN6_PMIER);
1086
1087 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1088 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH_BASE + i * 4);
1089
1090 /* GT SA CZ domain, 0x100000-0x138124 */
1091 s->tilectl = I915_READ(TILECTL);
1092 s->gt_fifoctl = I915_READ(GTFIFOCTL);
1093 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
1094 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1095 s->pmwgicz = I915_READ(VLV_PMWGICZ);
1096
1097 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1098 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
1099 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
1100 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
1101
1102 /*
1103 * Not saving any of:
1104 * DFT, 0x9800-0x9EC0
1105 * SARB, 0xB000-0xB1FC
1106 * GAC, 0x5208-0x524C, 0x14000-0x14C000
1107 * PCI CFG
1108 */
1109 }
1110
1111 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1112 {
1113 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1114 u32 val;
1115 int i;
1116
1117 /* GAM 0x4000-0x4770 */
1118 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
1119 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
1120 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
1121 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
1122 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
1123
1124 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1125 I915_WRITE(GEN7_LRA_LIMITS_BASE + i * 4, s->lra_limits[i]);
1126
1127 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1128 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->gfx_max_req_count);
1129
1130 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
1131 I915_WRITE(GAM_ECOCHK, s->ecochk);
1132 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
1133 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
1134
1135 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
1136
1137 /* MBC 0x9024-0x91D0, 0x8500 */
1138 I915_WRITE(VLV_G3DCTL, s->g3dctl);
1139 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
1140 I915_WRITE(GEN6_MBCTL, s->mbctl);
1141
1142 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1143 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
1144 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
1145 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
1146 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
1147 I915_WRITE(GEN6_RSTCTL, s->rstctl);
1148 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
1149
1150 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1151 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
1152 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
1153 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
1154 I915_WRITE(ECOBUS, s->ecobus);
1155 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
1156 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1157 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
1158 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
1159 I915_WRITE(VLV_RCEDATA, s->rcedata);
1160 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
1161
1162 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1163 I915_WRITE(GTIMR, s->gt_imr);
1164 I915_WRITE(GTIER, s->gt_ier);
1165 I915_WRITE(GEN6_PMIMR, s->pm_imr);
1166 I915_WRITE(GEN6_PMIER, s->pm_ier);
1167
1168 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1169 I915_WRITE(GEN7_GT_SCRATCH_BASE + i * 4, s->gt_scratch[i]);
1170
1171 /* GT SA CZ domain, 0x100000-0x138124 */
1172 I915_WRITE(TILECTL, s->tilectl);
1173 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
1174 /*
1175 * Preserve the GT allow wake and GFX force clock bit, they are not
1176 * be restored, as they are used to control the s0ix suspend/resume
1177 * sequence by the caller.
1178 */
1179 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1180 val &= VLV_GTLC_ALLOWWAKEREQ;
1181 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1182 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1183
1184 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1185 val &= VLV_GFX_CLK_FORCE_ON_BIT;
1186 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1187 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1188
1189 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
1190
1191 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1192 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
1193 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
1194 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
1195 }
1196
1197 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1198 {
1199 u32 val;
1200 int err;
1201
1202 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1203 WARN_ON(!!(val & VLV_GFX_CLK_FORCE_ON_BIT) == force_on);
1204
1205 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1206 /* Wait for a previous force-off to settle */
1207 if (force_on) {
1208 err = wait_for(!COND, 20);
1209 if (err) {
1210 DRM_ERROR("timeout waiting for GFX clock force-off (%08x)\n",
1211 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1212 return err;
1213 }
1214 }
1215
1216 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1217 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1218 if (force_on)
1219 val |= VLV_GFX_CLK_FORCE_ON_BIT;
1220 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1221
1222 if (!force_on)
1223 return 0;
1224
1225 err = wait_for(COND, 20);
1226 if (err)
1227 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1228 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1229
1230 return err;
1231 #undef COND
1232 }
1233
1234 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1235 {
1236 u32 val;
1237 int err = 0;
1238
1239 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1240 val &= ~VLV_GTLC_ALLOWWAKEREQ;
1241 if (allow)
1242 val |= VLV_GTLC_ALLOWWAKEREQ;
1243 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1244 POSTING_READ(VLV_GTLC_WAKE_CTRL);
1245
1246 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1247 allow)
1248 err = wait_for(COND, 1);
1249 if (err)
1250 DRM_ERROR("timeout disabling GT waking\n");
1251 return err;
1252 #undef COND
1253 }
1254
1255 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1256 bool wait_for_on)
1257 {
1258 u32 mask;
1259 u32 val;
1260 int err;
1261
1262 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1263 val = wait_for_on ? mask : 0;
1264 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1265 if (COND)
1266 return 0;
1267
1268 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1269 wait_for_on ? "on" : "off",
1270 I915_READ(VLV_GTLC_PW_STATUS));
1271
1272 /*
1273 * RC6 transitioning can be delayed up to 2 msec (see
1274 * valleyview_enable_rps), use 3 msec for safety.
1275 */
1276 err = wait_for(COND, 3);
1277 if (err)
1278 DRM_ERROR("timeout waiting for GT wells to go %s\n",
1279 wait_for_on ? "on" : "off");
1280
1281 return err;
1282 #undef COND
1283 }
1284
1285 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1286 {
1287 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1288 return;
1289
1290 DRM_ERROR("GT register access while GT waking disabled\n");
1291 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1292 }
1293
1294 static int vlv_runtime_suspend(struct drm_i915_private *dev_priv)
1295 {
1296 u32 mask;
1297 int err;
1298
1299 /*
1300 * Bspec defines the following GT well on flags as debug only, so
1301 * don't treat them as hard failures.
1302 */
1303 (void)vlv_wait_for_gt_wells(dev_priv, false);
1304
1305 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1306 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1307
1308 vlv_check_no_gt_access(dev_priv);
1309
1310 err = vlv_force_gfx_clock(dev_priv, true);
1311 if (err)
1312 goto err1;
1313
1314 err = vlv_allow_gt_wake(dev_priv, false);
1315 if (err)
1316 goto err2;
1317 vlv_save_gunit_s0ix_state(dev_priv);
1318
1319 err = vlv_force_gfx_clock(dev_priv, false);
1320 if (err)
1321 goto err2;
1322
1323 return 0;
1324
1325 err2:
1326 /* For safety always re-enable waking and disable gfx clock forcing */
1327 vlv_allow_gt_wake(dev_priv, true);
1328 err1:
1329 vlv_force_gfx_clock(dev_priv, false);
1330
1331 return err;
1332 }
1333
1334 static int vlv_runtime_resume(struct drm_i915_private *dev_priv)
1335 {
1336 struct drm_device *dev = dev_priv->dev;
1337 int err;
1338 int ret;
1339
1340 /*
1341 * If any of the steps fail just try to continue, that's the best we
1342 * can do at this point. Return the first error code (which will also
1343 * leave RPM permanently disabled).
1344 */
1345 ret = vlv_force_gfx_clock(dev_priv, true);
1346
1347 vlv_restore_gunit_s0ix_state(dev_priv);
1348
1349 err = vlv_allow_gt_wake(dev_priv, true);
1350 if (!ret)
1351 ret = err;
1352
1353 err = vlv_force_gfx_clock(dev_priv, false);
1354 if (!ret)
1355 ret = err;
1356
1357 vlv_check_no_gt_access(dev_priv);
1358
1359 intel_init_clock_gating(dev);
1360 i915_gem_restore_fences(dev);
1361
1362 return ret;
1363 }
1364
1365 static int intel_runtime_suspend(struct device *device)
1366 {
1367 struct pci_dev *pdev = to_pci_dev(device);
1368 struct drm_device *dev = pci_get_drvdata(pdev);
1369 struct drm_i915_private *dev_priv = dev->dev_private;
1370 int ret;
1371
1372 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1373 return -ENODEV;
1374
1375 WARN_ON(!HAS_RUNTIME_PM(dev));
1376 assert_force_wake_inactive(dev_priv);
1377
1378 DRM_DEBUG_KMS("Suspending device\n");
1379
1380 /*
1381 * We could deadlock here in case another thread holding struct_mutex
1382 * calls RPM suspend concurrently, since the RPM suspend will wait
1383 * first for this RPM suspend to finish. In this case the concurrent
1384 * RPM resume will be followed by its RPM suspend counterpart. Still
1385 * for consistency return -EAGAIN, which will reschedule this suspend.
1386 */
1387 if (!mutex_trylock(&dev->struct_mutex)) {
1388 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1389 /*
1390 * Bump the expiration timestamp, otherwise the suspend won't
1391 * be rescheduled.
1392 */
1393 pm_runtime_mark_last_busy(device);
1394
1395 return -EAGAIN;
1396 }
1397 /*
1398 * We are safe here against re-faults, since the fault handler takes
1399 * an RPM reference.
1400 */
1401 i915_gem_release_all_mmaps(dev_priv);
1402 mutex_unlock(&dev->struct_mutex);
1403
1404 /*
1405 * rps.work can't be rearmed here, since we get here only after making
1406 * sure the GPU is idle and the RPS freq is set to the minimum. See
1407 * intel_mark_idle().
1408 */
1409 cancel_work_sync(&dev_priv->rps.work);
1410 intel_runtime_pm_disable_interrupts(dev);
1411
1412 if (IS_GEN6(dev)) {
1413 ret = 0;
1414 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1415 ret = hsw_runtime_suspend(dev_priv);
1416 } else if (IS_VALLEYVIEW(dev)) {
1417 ret = vlv_runtime_suspend(dev_priv);
1418 } else {
1419 ret = -ENODEV;
1420 WARN_ON(1);
1421 }
1422
1423 if (ret) {
1424 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1425 intel_runtime_pm_restore_interrupts(dev);
1426
1427 return ret;
1428 }
1429
1430 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
1431 dev_priv->pm.suspended = true;
1432
1433 /*
1434 * current versions of firmware which depend on this opregion
1435 * notification have repurposed the D1 definition to mean
1436 * "runtime suspended" vs. what you would normally expect (D3)
1437 * to distinguish it from notifications that might be sent
1438 * via the suspend path.
1439 */
1440 intel_opregion_notify_adapter(dev, PCI_D1);
1441
1442 DRM_DEBUG_KMS("Device suspended\n");
1443 return 0;
1444 }
1445
1446 static int intel_runtime_resume(struct device *device)
1447 {
1448 struct pci_dev *pdev = to_pci_dev(device);
1449 struct drm_device *dev = pci_get_drvdata(pdev);
1450 struct drm_i915_private *dev_priv = dev->dev_private;
1451 int ret;
1452
1453 WARN_ON(!HAS_RUNTIME_PM(dev));
1454
1455 DRM_DEBUG_KMS("Resuming device\n");
1456
1457 intel_opregion_notify_adapter(dev, PCI_D0);
1458 dev_priv->pm.suspended = false;
1459
1460 if (IS_GEN6(dev)) {
1461 ret = snb_runtime_resume(dev_priv);
1462 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1463 ret = hsw_runtime_resume(dev_priv);
1464 } else if (IS_VALLEYVIEW(dev)) {
1465 ret = vlv_runtime_resume(dev_priv);
1466 } else {
1467 WARN_ON(1);
1468 ret = -ENODEV;
1469 }
1470
1471 /*
1472 * No point of rolling back things in case of an error, as the best
1473 * we can do is to hope that things will still work (and disable RPM).
1474 */
1475 i915_gem_init_swizzling(dev);
1476 gen6_update_ring_freq(dev);
1477
1478 intel_runtime_pm_restore_interrupts(dev);
1479 intel_reset_gt_powersave(dev);
1480
1481 if (ret)
1482 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1483 else
1484 DRM_DEBUG_KMS("Device resumed\n");
1485
1486 return ret;
1487 }
1488
1489 static const struct dev_pm_ops i915_pm_ops = {
1490 .suspend = i915_pm_suspend,
1491 .suspend_late = i915_pm_suspend_late,
1492 .resume_early = i915_pm_resume_early,
1493 .resume = i915_pm_resume,
1494 .freeze = i915_pm_freeze,
1495 .thaw_early = i915_pm_thaw_early,
1496 .thaw = i915_pm_thaw,
1497 .poweroff = i915_pm_poweroff,
1498 .restore_early = i915_pm_resume_early,
1499 .restore = i915_pm_resume,
1500 .runtime_suspend = intel_runtime_suspend,
1501 .runtime_resume = intel_runtime_resume,
1502 };
1503
1504 static const struct vm_operations_struct i915_gem_vm_ops = {
1505 .fault = i915_gem_fault,
1506 .open = drm_gem_vm_open,
1507 .close = drm_gem_vm_close,
1508 };
1509
1510 static const struct file_operations i915_driver_fops = {
1511 .owner = THIS_MODULE,
1512 .open = drm_open,
1513 .release = drm_release,
1514 .unlocked_ioctl = drm_ioctl,
1515 .mmap = drm_gem_mmap,
1516 .poll = drm_poll,
1517 .read = drm_read,
1518 #ifdef CONFIG_COMPAT
1519 .compat_ioctl = i915_compat_ioctl,
1520 #endif
1521 .llseek = noop_llseek,
1522 };
1523
1524 static struct drm_driver driver = {
1525 /* Don't use MTRRs here; the Xserver or userspace app should
1526 * deal with them for Intel hardware.
1527 */
1528 .driver_features =
1529 DRIVER_USE_AGP |
1530 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
1531 DRIVER_RENDER,
1532 .load = i915_driver_load,
1533 .unload = i915_driver_unload,
1534 .open = i915_driver_open,
1535 .lastclose = i915_driver_lastclose,
1536 .preclose = i915_driver_preclose,
1537 .postclose = i915_driver_postclose,
1538
1539 /* Used in place of i915_pm_ops for non-DRIVER_MODESET */
1540 .suspend = i915_suspend,
1541 .resume = i915_resume_legacy,
1542
1543 .device_is_agp = i915_driver_device_is_agp,
1544 .master_create = i915_master_create,
1545 .master_destroy = i915_master_destroy,
1546 #if defined(CONFIG_DEBUG_FS)
1547 .debugfs_init = i915_debugfs_init,
1548 .debugfs_cleanup = i915_debugfs_cleanup,
1549 #endif
1550 .gem_free_object = i915_gem_free_object,
1551 .gem_vm_ops = &i915_gem_vm_ops,
1552
1553 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
1554 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
1555 .gem_prime_export = i915_gem_prime_export,
1556 .gem_prime_import = i915_gem_prime_import,
1557
1558 .dumb_create = i915_gem_dumb_create,
1559 .dumb_map_offset = i915_gem_mmap_gtt,
1560 .dumb_destroy = drm_gem_dumb_destroy,
1561 .ioctls = i915_ioctls,
1562 .fops = &i915_driver_fops,
1563 .name = DRIVER_NAME,
1564 .desc = DRIVER_DESC,
1565 .date = DRIVER_DATE,
1566 .major = DRIVER_MAJOR,
1567 .minor = DRIVER_MINOR,
1568 .patchlevel = DRIVER_PATCHLEVEL,
1569 };
1570
1571 static struct pci_driver i915_pci_driver = {
1572 .name = DRIVER_NAME,
1573 .id_table = pciidlist,
1574 .probe = i915_pci_probe,
1575 .remove = i915_pci_remove,
1576 .driver.pm = &i915_pm_ops,
1577 };
1578
1579 static int __init i915_init(void)
1580 {
1581 driver.num_ioctls = i915_max_ioctl;
1582
1583 /*
1584 * If CONFIG_DRM_I915_KMS is set, default to KMS unless
1585 * explicitly disabled with the module pararmeter.
1586 *
1587 * Otherwise, just follow the parameter (defaulting to off).
1588 *
1589 * Allow optional vga_text_mode_force boot option to override
1590 * the default behavior.
1591 */
1592 #if defined(CONFIG_DRM_I915_KMS)
1593 if (i915.modeset != 0)
1594 driver.driver_features |= DRIVER_MODESET;
1595 #endif
1596 if (i915.modeset == 1)
1597 driver.driver_features |= DRIVER_MODESET;
1598
1599 #ifdef CONFIG_VGA_CONSOLE
1600 if (vgacon_text_force() && i915.modeset == -1)
1601 driver.driver_features &= ~DRIVER_MODESET;
1602 #endif
1603
1604 if (!(driver.driver_features & DRIVER_MODESET)) {
1605 driver.get_vblank_timestamp = NULL;
1606 #ifndef CONFIG_DRM_I915_UMS
1607 /* Silently fail loading to not upset userspace. */
1608 DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1609 return 0;
1610 #endif
1611 }
1612
1613 return drm_pci_init(&driver, &i915_pci_driver);
1614 }
1615
1616 static void __exit i915_exit(void)
1617 {
1618 #ifndef CONFIG_DRM_I915_UMS
1619 if (!(driver.driver_features & DRIVER_MODESET))
1620 return; /* Never loaded a driver. */
1621 #endif
1622
1623 drm_pci_exit(&driver, &i915_pci_driver);
1624 }
1625
1626 module_init(i915_init);
1627 module_exit(i915_exit);
1628
1629 MODULE_AUTHOR(DRIVER_AUTHOR);
1630 MODULE_DESCRIPTION(DRIVER_DESC);
1631 MODULE_LICENSE("GPL and additional rights");
This page took 0.071701 seconds and 6 git commands to generate.