vga_switcheroo: Add helper for deferred probing
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/device.h>
31 #include <linux/acpi.h>
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34 #include "i915_drv.h"
35 #include "i915_trace.h"
36 #include "intel_drv.h"
37
38 #include <linux/console.h>
39 #include <linux/module.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/vga_switcheroo.h>
42 #include <drm/drm_crtc_helper.h>
43
44 static struct drm_driver driver;
45
46 #define GEN_DEFAULT_PIPEOFFSETS \
47 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
48 PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
49 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
50 TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
51 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
52
53 #define GEN_CHV_PIPEOFFSETS \
54 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
55 CHV_PIPE_C_OFFSET }, \
56 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
57 CHV_TRANSCODER_C_OFFSET, }, \
58 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
59 CHV_PALETTE_C_OFFSET }
60
61 #define CURSOR_OFFSETS \
62 .cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
63
64 #define IVB_CURSOR_OFFSETS \
65 .cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
66
67 #define BDW_COLORS \
68 .color = { .degamma_lut_size = 512, .gamma_lut_size = 512 }
69 #define CHV_COLORS \
70 .color = { .degamma_lut_size = 65, .gamma_lut_size = 257 }
71
72 static const struct intel_device_info intel_i830_info = {
73 .gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
74 .has_overlay = 1, .overlay_needs_physical = 1,
75 .ring_mask = RENDER_RING,
76 GEN_DEFAULT_PIPEOFFSETS,
77 CURSOR_OFFSETS,
78 };
79
80 static const struct intel_device_info intel_845g_info = {
81 .gen = 2, .num_pipes = 1,
82 .has_overlay = 1, .overlay_needs_physical = 1,
83 .ring_mask = RENDER_RING,
84 GEN_DEFAULT_PIPEOFFSETS,
85 CURSOR_OFFSETS,
86 };
87
88 static const struct intel_device_info intel_i85x_info = {
89 .gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
90 .cursor_needs_physical = 1,
91 .has_overlay = 1, .overlay_needs_physical = 1,
92 .has_fbc = 1,
93 .ring_mask = RENDER_RING,
94 GEN_DEFAULT_PIPEOFFSETS,
95 CURSOR_OFFSETS,
96 };
97
98 static const struct intel_device_info intel_i865g_info = {
99 .gen = 2, .num_pipes = 1,
100 .has_overlay = 1, .overlay_needs_physical = 1,
101 .ring_mask = RENDER_RING,
102 GEN_DEFAULT_PIPEOFFSETS,
103 CURSOR_OFFSETS,
104 };
105
106 static const struct intel_device_info intel_i915g_info = {
107 .gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
108 .has_overlay = 1, .overlay_needs_physical = 1,
109 .ring_mask = RENDER_RING,
110 GEN_DEFAULT_PIPEOFFSETS,
111 CURSOR_OFFSETS,
112 };
113 static const struct intel_device_info intel_i915gm_info = {
114 .gen = 3, .is_mobile = 1, .num_pipes = 2,
115 .cursor_needs_physical = 1,
116 .has_overlay = 1, .overlay_needs_physical = 1,
117 .supports_tv = 1,
118 .has_fbc = 1,
119 .ring_mask = RENDER_RING,
120 GEN_DEFAULT_PIPEOFFSETS,
121 CURSOR_OFFSETS,
122 };
123 static const struct intel_device_info intel_i945g_info = {
124 .gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
125 .has_overlay = 1, .overlay_needs_physical = 1,
126 .ring_mask = RENDER_RING,
127 GEN_DEFAULT_PIPEOFFSETS,
128 CURSOR_OFFSETS,
129 };
130 static const struct intel_device_info intel_i945gm_info = {
131 .gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
132 .has_hotplug = 1, .cursor_needs_physical = 1,
133 .has_overlay = 1, .overlay_needs_physical = 1,
134 .supports_tv = 1,
135 .has_fbc = 1,
136 .ring_mask = RENDER_RING,
137 GEN_DEFAULT_PIPEOFFSETS,
138 CURSOR_OFFSETS,
139 };
140
141 static const struct intel_device_info intel_i965g_info = {
142 .gen = 4, .is_broadwater = 1, .num_pipes = 2,
143 .has_hotplug = 1,
144 .has_overlay = 1,
145 .ring_mask = RENDER_RING,
146 GEN_DEFAULT_PIPEOFFSETS,
147 CURSOR_OFFSETS,
148 };
149
150 static const struct intel_device_info intel_i965gm_info = {
151 .gen = 4, .is_crestline = 1, .num_pipes = 2,
152 .is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
153 .has_overlay = 1,
154 .supports_tv = 1,
155 .ring_mask = RENDER_RING,
156 GEN_DEFAULT_PIPEOFFSETS,
157 CURSOR_OFFSETS,
158 };
159
160 static const struct intel_device_info intel_g33_info = {
161 .gen = 3, .is_g33 = 1, .num_pipes = 2,
162 .need_gfx_hws = 1, .has_hotplug = 1,
163 .has_overlay = 1,
164 .ring_mask = RENDER_RING,
165 GEN_DEFAULT_PIPEOFFSETS,
166 CURSOR_OFFSETS,
167 };
168
169 static const struct intel_device_info intel_g45_info = {
170 .gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
171 .has_pipe_cxsr = 1, .has_hotplug = 1,
172 .ring_mask = RENDER_RING | BSD_RING,
173 GEN_DEFAULT_PIPEOFFSETS,
174 CURSOR_OFFSETS,
175 };
176
177 static const struct intel_device_info intel_gm45_info = {
178 .gen = 4, .is_g4x = 1, .num_pipes = 2,
179 .is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
180 .has_pipe_cxsr = 1, .has_hotplug = 1,
181 .supports_tv = 1,
182 .ring_mask = RENDER_RING | BSD_RING,
183 GEN_DEFAULT_PIPEOFFSETS,
184 CURSOR_OFFSETS,
185 };
186
187 static const struct intel_device_info intel_pineview_info = {
188 .gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
189 .need_gfx_hws = 1, .has_hotplug = 1,
190 .has_overlay = 1,
191 GEN_DEFAULT_PIPEOFFSETS,
192 CURSOR_OFFSETS,
193 };
194
195 static const struct intel_device_info intel_ironlake_d_info = {
196 .gen = 5, .num_pipes = 2,
197 .need_gfx_hws = 1, .has_hotplug = 1,
198 .ring_mask = RENDER_RING | BSD_RING,
199 GEN_DEFAULT_PIPEOFFSETS,
200 CURSOR_OFFSETS,
201 };
202
203 static const struct intel_device_info intel_ironlake_m_info = {
204 .gen = 5, .is_mobile = 1, .num_pipes = 2,
205 .need_gfx_hws = 1, .has_hotplug = 1,
206 .has_fbc = 1,
207 .ring_mask = RENDER_RING | BSD_RING,
208 GEN_DEFAULT_PIPEOFFSETS,
209 CURSOR_OFFSETS,
210 };
211
212 static const struct intel_device_info intel_sandybridge_d_info = {
213 .gen = 6, .num_pipes = 2,
214 .need_gfx_hws = 1, .has_hotplug = 1,
215 .has_fbc = 1,
216 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
217 .has_llc = 1,
218 GEN_DEFAULT_PIPEOFFSETS,
219 CURSOR_OFFSETS,
220 };
221
222 static const struct intel_device_info intel_sandybridge_m_info = {
223 .gen = 6, .is_mobile = 1, .num_pipes = 2,
224 .need_gfx_hws = 1, .has_hotplug = 1,
225 .has_fbc = 1,
226 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
227 .has_llc = 1,
228 GEN_DEFAULT_PIPEOFFSETS,
229 CURSOR_OFFSETS,
230 };
231
232 #define GEN7_FEATURES \
233 .gen = 7, .num_pipes = 3, \
234 .need_gfx_hws = 1, .has_hotplug = 1, \
235 .has_fbc = 1, \
236 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
237 .has_llc = 1, \
238 GEN_DEFAULT_PIPEOFFSETS, \
239 IVB_CURSOR_OFFSETS
240
241 static const struct intel_device_info intel_ivybridge_d_info = {
242 GEN7_FEATURES,
243 .is_ivybridge = 1,
244 };
245
246 static const struct intel_device_info intel_ivybridge_m_info = {
247 GEN7_FEATURES,
248 .is_ivybridge = 1,
249 .is_mobile = 1,
250 };
251
252 static const struct intel_device_info intel_ivybridge_q_info = {
253 GEN7_FEATURES,
254 .is_ivybridge = 1,
255 .num_pipes = 0, /* legal, last one wins */
256 };
257
258 #define VLV_FEATURES \
259 .gen = 7, .num_pipes = 2, \
260 .need_gfx_hws = 1, .has_hotplug = 1, \
261 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
262 .display_mmio_offset = VLV_DISPLAY_BASE, \
263 GEN_DEFAULT_PIPEOFFSETS, \
264 CURSOR_OFFSETS
265
266 static const struct intel_device_info intel_valleyview_m_info = {
267 VLV_FEATURES,
268 .is_valleyview = 1,
269 .is_mobile = 1,
270 };
271
272 static const struct intel_device_info intel_valleyview_d_info = {
273 VLV_FEATURES,
274 .is_valleyview = 1,
275 };
276
277 #define HSW_FEATURES \
278 GEN7_FEATURES, \
279 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, \
280 .has_ddi = 1, \
281 .has_fpga_dbg = 1
282
283 static const struct intel_device_info intel_haswell_d_info = {
284 HSW_FEATURES,
285 .is_haswell = 1,
286 };
287
288 static const struct intel_device_info intel_haswell_m_info = {
289 HSW_FEATURES,
290 .is_haswell = 1,
291 .is_mobile = 1,
292 };
293
294 #define BDW_FEATURES \
295 HSW_FEATURES, \
296 BDW_COLORS
297
298 static const struct intel_device_info intel_broadwell_d_info = {
299 BDW_FEATURES,
300 .gen = 8,
301 };
302
303 static const struct intel_device_info intel_broadwell_m_info = {
304 BDW_FEATURES,
305 .gen = 8, .is_mobile = 1,
306 };
307
308 static const struct intel_device_info intel_broadwell_gt3d_info = {
309 BDW_FEATURES,
310 .gen = 8,
311 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
312 };
313
314 static const struct intel_device_info intel_broadwell_gt3m_info = {
315 BDW_FEATURES,
316 .gen = 8, .is_mobile = 1,
317 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
318 };
319
320 static const struct intel_device_info intel_cherryview_info = {
321 .gen = 8, .num_pipes = 3,
322 .need_gfx_hws = 1, .has_hotplug = 1,
323 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
324 .is_cherryview = 1,
325 .display_mmio_offset = VLV_DISPLAY_BASE,
326 GEN_CHV_PIPEOFFSETS,
327 CURSOR_OFFSETS,
328 CHV_COLORS,
329 };
330
331 static const struct intel_device_info intel_skylake_info = {
332 BDW_FEATURES,
333 .is_skylake = 1,
334 .gen = 9,
335 };
336
337 static const struct intel_device_info intel_skylake_gt3_info = {
338 BDW_FEATURES,
339 .is_skylake = 1,
340 .gen = 9,
341 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
342 };
343
344 static const struct intel_device_info intel_broxton_info = {
345 .is_preliminary = 1,
346 .is_broxton = 1,
347 .gen = 9,
348 .need_gfx_hws = 1, .has_hotplug = 1,
349 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
350 .num_pipes = 3,
351 .has_ddi = 1,
352 .has_fpga_dbg = 1,
353 .has_fbc = 1,
354 GEN_DEFAULT_PIPEOFFSETS,
355 IVB_CURSOR_OFFSETS,
356 BDW_COLORS,
357 };
358
359 static const struct intel_device_info intel_kabylake_info = {
360 BDW_FEATURES,
361 .is_kabylake = 1,
362 .gen = 9,
363 };
364
365 static const struct intel_device_info intel_kabylake_gt3_info = {
366 BDW_FEATURES,
367 .is_kabylake = 1,
368 .gen = 9,
369 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
370 };
371
372 /*
373 * Make sure any device matches here are from most specific to most
374 * general. For example, since the Quanta match is based on the subsystem
375 * and subvendor IDs, we need it to come before the more general IVB
376 * PCI ID matches, otherwise we'll use the wrong info struct above.
377 */
378 static const struct pci_device_id pciidlist[] = {
379 INTEL_I830_IDS(&intel_i830_info),
380 INTEL_I845G_IDS(&intel_845g_info),
381 INTEL_I85X_IDS(&intel_i85x_info),
382 INTEL_I865G_IDS(&intel_i865g_info),
383 INTEL_I915G_IDS(&intel_i915g_info),
384 INTEL_I915GM_IDS(&intel_i915gm_info),
385 INTEL_I945G_IDS(&intel_i945g_info),
386 INTEL_I945GM_IDS(&intel_i945gm_info),
387 INTEL_I965G_IDS(&intel_i965g_info),
388 INTEL_G33_IDS(&intel_g33_info),
389 INTEL_I965GM_IDS(&intel_i965gm_info),
390 INTEL_GM45_IDS(&intel_gm45_info),
391 INTEL_G45_IDS(&intel_g45_info),
392 INTEL_PINEVIEW_IDS(&intel_pineview_info),
393 INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info),
394 INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info),
395 INTEL_SNB_D_IDS(&intel_sandybridge_d_info),
396 INTEL_SNB_M_IDS(&intel_sandybridge_m_info),
397 INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */
398 INTEL_IVB_M_IDS(&intel_ivybridge_m_info),
399 INTEL_IVB_D_IDS(&intel_ivybridge_d_info),
400 INTEL_HSW_D_IDS(&intel_haswell_d_info),
401 INTEL_HSW_M_IDS(&intel_haswell_m_info),
402 INTEL_VLV_M_IDS(&intel_valleyview_m_info),
403 INTEL_VLV_D_IDS(&intel_valleyview_d_info),
404 INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info),
405 INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info),
406 INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info),
407 INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info),
408 INTEL_CHV_IDS(&intel_cherryview_info),
409 INTEL_SKL_GT1_IDS(&intel_skylake_info),
410 INTEL_SKL_GT2_IDS(&intel_skylake_info),
411 INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info),
412 INTEL_SKL_GT4_IDS(&intel_skylake_gt3_info),
413 INTEL_BXT_IDS(&intel_broxton_info),
414 INTEL_KBL_GT1_IDS(&intel_kabylake_info),
415 INTEL_KBL_GT2_IDS(&intel_kabylake_info),
416 INTEL_KBL_GT3_IDS(&intel_kabylake_gt3_info),
417 INTEL_KBL_GT4_IDS(&intel_kabylake_gt3_info),
418 {0, 0, 0}
419 };
420
421 MODULE_DEVICE_TABLE(pci, pciidlist);
422
423 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
424 {
425 enum intel_pch ret = PCH_NOP;
426
427 /*
428 * In a virtualized passthrough environment we can be in a
429 * setup where the ISA bridge is not able to be passed through.
430 * In this case, a south bridge can be emulated and we have to
431 * make an educated guess as to which PCH is really there.
432 */
433
434 if (IS_GEN5(dev)) {
435 ret = PCH_IBX;
436 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
437 } else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
438 ret = PCH_CPT;
439 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
440 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
441 ret = PCH_LPT;
442 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
443 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
444 ret = PCH_SPT;
445 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
446 }
447
448 return ret;
449 }
450
451 void intel_detect_pch(struct drm_device *dev)
452 {
453 struct drm_i915_private *dev_priv = dev->dev_private;
454 struct pci_dev *pch = NULL;
455
456 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
457 * (which really amounts to a PCH but no South Display).
458 */
459 if (INTEL_INFO(dev)->num_pipes == 0) {
460 dev_priv->pch_type = PCH_NOP;
461 return;
462 }
463
464 /*
465 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
466 * make graphics device passthrough work easy for VMM, that only
467 * need to expose ISA bridge to let driver know the real hardware
468 * underneath. This is a requirement from virtualization team.
469 *
470 * In some virtualized environments (e.g. XEN), there is irrelevant
471 * ISA bridge in the system. To work reliably, we should scan trhough
472 * all the ISA bridge devices and check for the first match, instead
473 * of only checking the first one.
474 */
475 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
476 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
477 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
478 dev_priv->pch_id = id;
479
480 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
481 dev_priv->pch_type = PCH_IBX;
482 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
483 WARN_ON(!IS_GEN5(dev));
484 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
485 dev_priv->pch_type = PCH_CPT;
486 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
487 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
488 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
489 /* PantherPoint is CPT compatible */
490 dev_priv->pch_type = PCH_CPT;
491 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
492 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
493 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
494 dev_priv->pch_type = PCH_LPT;
495 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
496 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
497 WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
498 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
499 dev_priv->pch_type = PCH_LPT;
500 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
501 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
502 WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
503 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
504 dev_priv->pch_type = PCH_SPT;
505 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
506 WARN_ON(!IS_SKYLAKE(dev) &&
507 !IS_KABYLAKE(dev));
508 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
509 dev_priv->pch_type = PCH_SPT;
510 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
511 WARN_ON(!IS_SKYLAKE(dev) &&
512 !IS_KABYLAKE(dev));
513 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
514 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
515 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
516 pch->subsystem_vendor == 0x1af4 &&
517 pch->subsystem_device == 0x1100)) {
518 dev_priv->pch_type = intel_virt_detect_pch(dev);
519 } else
520 continue;
521
522 break;
523 }
524 }
525 if (!pch)
526 DRM_DEBUG_KMS("No PCH found.\n");
527
528 pci_dev_put(pch);
529 }
530
531 bool i915_semaphore_is_enabled(struct drm_device *dev)
532 {
533 if (INTEL_INFO(dev)->gen < 6)
534 return false;
535
536 if (i915.semaphores >= 0)
537 return i915.semaphores;
538
539 /* TODO: make semaphores and Execlists play nicely together */
540 if (i915.enable_execlists)
541 return false;
542
543 /* Until we get further testing... */
544 if (IS_GEN8(dev))
545 return false;
546
547 #ifdef CONFIG_INTEL_IOMMU
548 /* Enable semaphores on SNB when IO remapping is off */
549 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
550 return false;
551 #endif
552
553 return true;
554 }
555
556 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
557 {
558 struct drm_device *dev = dev_priv->dev;
559 struct intel_encoder *encoder;
560
561 drm_modeset_lock_all(dev);
562 for_each_intel_encoder(dev, encoder)
563 if (encoder->suspend)
564 encoder->suspend(encoder);
565 drm_modeset_unlock_all(dev);
566 }
567
568 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
569 bool rpm_resume);
570 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
571
572 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
573 {
574 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
575 if (acpi_target_system_state() < ACPI_STATE_S3)
576 return true;
577 #endif
578 return false;
579 }
580
581 static int i915_drm_suspend(struct drm_device *dev)
582 {
583 struct drm_i915_private *dev_priv = dev->dev_private;
584 pci_power_t opregion_target_state;
585 int error;
586
587 /* ignore lid events during suspend */
588 mutex_lock(&dev_priv->modeset_restore_lock);
589 dev_priv->modeset_restore = MODESET_SUSPENDED;
590 mutex_unlock(&dev_priv->modeset_restore_lock);
591
592 disable_rpm_wakeref_asserts(dev_priv);
593
594 /* We do a lot of poking in a lot of registers, make sure they work
595 * properly. */
596 intel_display_set_init_power(dev_priv, true);
597
598 drm_kms_helper_poll_disable(dev);
599
600 pci_save_state(dev->pdev);
601
602 error = i915_gem_suspend(dev);
603 if (error) {
604 dev_err(&dev->pdev->dev,
605 "GEM idle failed, resume might fail\n");
606 goto out;
607 }
608
609 intel_guc_suspend(dev);
610
611 intel_suspend_gt_powersave(dev);
612
613 intel_display_suspend(dev);
614
615 intel_dp_mst_suspend(dev);
616
617 intel_runtime_pm_disable_interrupts(dev_priv);
618 intel_hpd_cancel_work(dev_priv);
619
620 intel_suspend_encoders(dev_priv);
621
622 intel_suspend_hw(dev);
623
624 i915_gem_suspend_gtt_mappings(dev);
625
626 i915_save_state(dev);
627
628 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
629 intel_opregion_notify_adapter(dev, opregion_target_state);
630
631 intel_uncore_forcewake_reset(dev, false);
632 intel_opregion_fini(dev);
633
634 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
635
636 dev_priv->suspend_count++;
637
638 intel_display_set_init_power(dev_priv, false);
639
640 intel_csr_ucode_suspend(dev_priv);
641
642 out:
643 enable_rpm_wakeref_asserts(dev_priv);
644
645 return error;
646 }
647
648 static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
649 {
650 struct drm_i915_private *dev_priv = drm_dev->dev_private;
651 bool fw_csr;
652 int ret;
653
654 disable_rpm_wakeref_asserts(dev_priv);
655
656 fw_csr = !IS_BROXTON(dev_priv) &&
657 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
658 /*
659 * In case of firmware assisted context save/restore don't manually
660 * deinit the power domains. This also means the CSR/DMC firmware will
661 * stay active, it will power down any HW resources as required and
662 * also enable deeper system power states that would be blocked if the
663 * firmware was inactive.
664 */
665 if (!fw_csr)
666 intel_power_domains_suspend(dev_priv);
667
668 ret = 0;
669 if (IS_BROXTON(dev_priv))
670 bxt_enable_dc9(dev_priv);
671 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
672 hsw_enable_pc8(dev_priv);
673 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
674 ret = vlv_suspend_complete(dev_priv);
675
676 if (ret) {
677 DRM_ERROR("Suspend complete failed: %d\n", ret);
678 if (!fw_csr)
679 intel_power_domains_init_hw(dev_priv, true);
680
681 goto out;
682 }
683
684 pci_disable_device(drm_dev->pdev);
685 /*
686 * During hibernation on some platforms the BIOS may try to access
687 * the device even though it's already in D3 and hang the machine. So
688 * leave the device in D0 on those platforms and hope the BIOS will
689 * power down the device properly. The issue was seen on multiple old
690 * GENs with different BIOS vendors, so having an explicit blacklist
691 * is inpractical; apply the workaround on everything pre GEN6. The
692 * platforms where the issue was seen:
693 * Lenovo Thinkpad X301, X61s, X60, T60, X41
694 * Fujitsu FSC S7110
695 * Acer Aspire 1830T
696 */
697 if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
698 pci_set_power_state(drm_dev->pdev, PCI_D3hot);
699
700 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
701
702 out:
703 enable_rpm_wakeref_asserts(dev_priv);
704
705 return ret;
706 }
707
708 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
709 {
710 int error;
711
712 if (!dev || !dev->dev_private) {
713 DRM_ERROR("dev: %p\n", dev);
714 DRM_ERROR("DRM not initialized, aborting suspend.\n");
715 return -ENODEV;
716 }
717
718 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
719 state.event != PM_EVENT_FREEZE))
720 return -EINVAL;
721
722 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
723 return 0;
724
725 error = i915_drm_suspend(dev);
726 if (error)
727 return error;
728
729 return i915_drm_suspend_late(dev, false);
730 }
731
732 static int i915_drm_resume(struct drm_device *dev)
733 {
734 struct drm_i915_private *dev_priv = dev->dev_private;
735
736 disable_rpm_wakeref_asserts(dev_priv);
737
738 intel_csr_ucode_resume(dev_priv);
739
740 mutex_lock(&dev->struct_mutex);
741 i915_gem_restore_gtt_mappings(dev);
742 mutex_unlock(&dev->struct_mutex);
743
744 i915_restore_state(dev);
745 intel_opregion_setup(dev);
746
747 intel_init_pch_refclk(dev);
748 drm_mode_config_reset(dev);
749
750 /*
751 * Interrupts have to be enabled before any batches are run. If not the
752 * GPU will hang. i915_gem_init_hw() will initiate batches to
753 * update/restore the context.
754 *
755 * Modeset enabling in intel_modeset_init_hw() also needs working
756 * interrupts.
757 */
758 intel_runtime_pm_enable_interrupts(dev_priv);
759
760 mutex_lock(&dev->struct_mutex);
761 if (i915_gem_init_hw(dev)) {
762 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
763 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
764 }
765 mutex_unlock(&dev->struct_mutex);
766
767 intel_guc_resume(dev);
768
769 intel_modeset_init_hw(dev);
770
771 spin_lock_irq(&dev_priv->irq_lock);
772 if (dev_priv->display.hpd_irq_setup)
773 dev_priv->display.hpd_irq_setup(dev);
774 spin_unlock_irq(&dev_priv->irq_lock);
775
776 intel_dp_mst_resume(dev);
777
778 intel_display_resume(dev);
779
780 /*
781 * ... but also need to make sure that hotplug processing
782 * doesn't cause havoc. Like in the driver load code we don't
783 * bother with the tiny race here where we might loose hotplug
784 * notifications.
785 * */
786 intel_hpd_init(dev_priv);
787 /* Config may have changed between suspend and resume */
788 drm_helper_hpd_irq_event(dev);
789
790 intel_opregion_init(dev);
791
792 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
793
794 mutex_lock(&dev_priv->modeset_restore_lock);
795 dev_priv->modeset_restore = MODESET_DONE;
796 mutex_unlock(&dev_priv->modeset_restore_lock);
797
798 intel_opregion_notify_adapter(dev, PCI_D0);
799
800 drm_kms_helper_poll_enable(dev);
801
802 enable_rpm_wakeref_asserts(dev_priv);
803
804 return 0;
805 }
806
807 static int i915_drm_resume_early(struct drm_device *dev)
808 {
809 struct drm_i915_private *dev_priv = dev->dev_private;
810 int ret;
811
812 /*
813 * We have a resume ordering issue with the snd-hda driver also
814 * requiring our device to be power up. Due to the lack of a
815 * parent/child relationship we currently solve this with an early
816 * resume hook.
817 *
818 * FIXME: This should be solved with a special hdmi sink device or
819 * similar so that power domains can be employed.
820 */
821
822 /*
823 * Note that we need to set the power state explicitly, since we
824 * powered off the device during freeze and the PCI core won't power
825 * it back up for us during thaw. Powering off the device during
826 * freeze is not a hard requirement though, and during the
827 * suspend/resume phases the PCI core makes sure we get here with the
828 * device powered on. So in case we change our freeze logic and keep
829 * the device powered we can also remove the following set power state
830 * call.
831 */
832 ret = pci_set_power_state(dev->pdev, PCI_D0);
833 if (ret) {
834 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
835 goto out;
836 }
837
838 /*
839 * Note that pci_enable_device() first enables any parent bridge
840 * device and only then sets the power state for this device. The
841 * bridge enabling is a nop though, since bridge devices are resumed
842 * first. The order of enabling power and enabling the device is
843 * imposed by the PCI core as described above, so here we preserve the
844 * same order for the freeze/thaw phases.
845 *
846 * TODO: eventually we should remove pci_disable_device() /
847 * pci_enable_enable_device() from suspend/resume. Due to how they
848 * depend on the device enable refcount we can't anyway depend on them
849 * disabling/enabling the device.
850 */
851 if (pci_enable_device(dev->pdev)) {
852 ret = -EIO;
853 goto out;
854 }
855
856 pci_set_master(dev->pdev);
857
858 disable_rpm_wakeref_asserts(dev_priv);
859
860 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
861 ret = vlv_resume_prepare(dev_priv, false);
862 if (ret)
863 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
864 ret);
865
866 intel_uncore_early_sanitize(dev, true);
867
868 if (IS_BROXTON(dev)) {
869 if (!dev_priv->suspended_to_idle)
870 gen9_sanitize_dc_state(dev_priv);
871 bxt_disable_dc9(dev_priv);
872 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
873 hsw_disable_pc8(dev_priv);
874 }
875
876 intel_uncore_sanitize(dev);
877
878 if (IS_BROXTON(dev_priv) ||
879 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
880 intel_power_domains_init_hw(dev_priv, true);
881
882 enable_rpm_wakeref_asserts(dev_priv);
883
884 out:
885 dev_priv->suspended_to_idle = false;
886
887 return ret;
888 }
889
890 int i915_resume_switcheroo(struct drm_device *dev)
891 {
892 int ret;
893
894 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
895 return 0;
896
897 ret = i915_drm_resume_early(dev);
898 if (ret)
899 return ret;
900
901 return i915_drm_resume(dev);
902 }
903
904 /**
905 * i915_reset - reset chip after a hang
906 * @dev: drm device to reset
907 *
908 * Reset the chip. Useful if a hang is detected. Returns zero on successful
909 * reset or otherwise an error code.
910 *
911 * Procedure is fairly simple:
912 * - reset the chip using the reset reg
913 * - re-init context state
914 * - re-init hardware status page
915 * - re-init ring buffer
916 * - re-init interrupt state
917 * - re-init display
918 */
919 int i915_reset(struct drm_device *dev)
920 {
921 struct drm_i915_private *dev_priv = dev->dev_private;
922 struct i915_gpu_error *error = &dev_priv->gpu_error;
923 unsigned reset_counter;
924 int ret;
925
926 intel_reset_gt_powersave(dev);
927
928 mutex_lock(&dev->struct_mutex);
929
930 /* Clear any previous failed attempts at recovery. Time to try again. */
931 atomic_andnot(I915_WEDGED, &error->reset_counter);
932
933 /* Clear the reset-in-progress flag and increment the reset epoch. */
934 reset_counter = atomic_inc_return(&error->reset_counter);
935 if (WARN_ON(__i915_reset_in_progress(reset_counter))) {
936 ret = -EIO;
937 goto error;
938 }
939
940 i915_gem_reset(dev);
941
942 ret = intel_gpu_reset(dev, ALL_ENGINES);
943
944 /* Also reset the gpu hangman. */
945 if (error->stop_rings != 0) {
946 DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
947 error->stop_rings = 0;
948 if (ret == -ENODEV) {
949 DRM_INFO("Reset not implemented, but ignoring "
950 "error for simulated gpu hangs\n");
951 ret = 0;
952 }
953 }
954
955 if (i915_stop_ring_allow_warn(dev_priv))
956 pr_notice("drm/i915: Resetting chip after gpu hang\n");
957
958 if (ret) {
959 if (ret != -ENODEV)
960 DRM_ERROR("Failed to reset chip: %i\n", ret);
961 else
962 DRM_DEBUG_DRIVER("GPU reset disabled\n");
963 goto error;
964 }
965
966 intel_overlay_reset(dev_priv);
967
968 /* Ok, now get things going again... */
969
970 /*
971 * Everything depends on having the GTT running, so we need to start
972 * there. Fortunately we don't need to do this unless we reset the
973 * chip at a PCI level.
974 *
975 * Next we need to restore the context, but we don't use those
976 * yet either...
977 *
978 * Ring buffer needs to be re-initialized in the KMS case, or if X
979 * was running at the time of the reset (i.e. we weren't VT
980 * switched away).
981 */
982 ret = i915_gem_init_hw(dev);
983 if (ret) {
984 DRM_ERROR("Failed hw init on reset %d\n", ret);
985 goto error;
986 }
987
988 mutex_unlock(&dev->struct_mutex);
989
990 /*
991 * rps/rc6 re-init is necessary to restore state lost after the
992 * reset and the re-install of gt irqs. Skip for ironlake per
993 * previous concerns that it doesn't respond well to some forms
994 * of re-init after reset.
995 */
996 if (INTEL_INFO(dev)->gen > 5)
997 intel_enable_gt_powersave(dev);
998
999 return 0;
1000
1001 error:
1002 atomic_or(I915_WEDGED, &error->reset_counter);
1003 mutex_unlock(&dev->struct_mutex);
1004 return ret;
1005 }
1006
1007 static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1008 {
1009 struct intel_device_info *intel_info =
1010 (struct intel_device_info *) ent->driver_data;
1011
1012 if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
1013 DRM_INFO("This hardware requires preliminary hardware support.\n"
1014 "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
1015 return -ENODEV;
1016 }
1017
1018 /* Only bind to function 0 of the device. Early generations
1019 * used function 1 as a placeholder for multi-head. This causes
1020 * us confusion instead, especially on the systems where both
1021 * functions have the same PCI-ID!
1022 */
1023 if (PCI_FUNC(pdev->devfn))
1024 return -ENODEV;
1025
1026 if (vga_switcheroo_client_probe_defer(pdev))
1027 return -EPROBE_DEFER;
1028
1029 return drm_get_pci_dev(pdev, ent, &driver);
1030 }
1031
1032 static void
1033 i915_pci_remove(struct pci_dev *pdev)
1034 {
1035 struct drm_device *dev = pci_get_drvdata(pdev);
1036
1037 drm_put_dev(dev);
1038 }
1039
1040 static int i915_pm_suspend(struct device *dev)
1041 {
1042 struct pci_dev *pdev = to_pci_dev(dev);
1043 struct drm_device *drm_dev = pci_get_drvdata(pdev);
1044
1045 if (!drm_dev || !drm_dev->dev_private) {
1046 dev_err(dev, "DRM not initialized, aborting suspend.\n");
1047 return -ENODEV;
1048 }
1049
1050 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1051 return 0;
1052
1053 return i915_drm_suspend(drm_dev);
1054 }
1055
1056 static int i915_pm_suspend_late(struct device *dev)
1057 {
1058 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1059
1060 /*
1061 * We have a suspend ordering issue with the snd-hda driver also
1062 * requiring our device to be power up. Due to the lack of a
1063 * parent/child relationship we currently solve this with an late
1064 * suspend hook.
1065 *
1066 * FIXME: This should be solved with a special hdmi sink device or
1067 * similar so that power domains can be employed.
1068 */
1069 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1070 return 0;
1071
1072 return i915_drm_suspend_late(drm_dev, false);
1073 }
1074
1075 static int i915_pm_poweroff_late(struct device *dev)
1076 {
1077 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1078
1079 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1080 return 0;
1081
1082 return i915_drm_suspend_late(drm_dev, true);
1083 }
1084
1085 static int i915_pm_resume_early(struct device *dev)
1086 {
1087 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1088
1089 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1090 return 0;
1091
1092 return i915_drm_resume_early(drm_dev);
1093 }
1094
1095 static int i915_pm_resume(struct device *dev)
1096 {
1097 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1098
1099 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1100 return 0;
1101
1102 return i915_drm_resume(drm_dev);
1103 }
1104
1105 /*
1106 * Save all Gunit registers that may be lost after a D3 and a subsequent
1107 * S0i[R123] transition. The list of registers needing a save/restore is
1108 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1109 * registers in the following way:
1110 * - Driver: saved/restored by the driver
1111 * - Punit : saved/restored by the Punit firmware
1112 * - No, w/o marking: no need to save/restore, since the register is R/O or
1113 * used internally by the HW in a way that doesn't depend
1114 * keeping the content across a suspend/resume.
1115 * - Debug : used for debugging
1116 *
1117 * We save/restore all registers marked with 'Driver', with the following
1118 * exceptions:
1119 * - Registers out of use, including also registers marked with 'Debug'.
1120 * These have no effect on the driver's operation, so we don't save/restore
1121 * them to reduce the overhead.
1122 * - Registers that are fully setup by an initialization function called from
1123 * the resume path. For example many clock gating and RPS/RC6 registers.
1124 * - Registers that provide the right functionality with their reset defaults.
1125 *
1126 * TODO: Except for registers that based on the above 3 criteria can be safely
1127 * ignored, we save/restore all others, practically treating the HW context as
1128 * a black-box for the driver. Further investigation is needed to reduce the
1129 * saved/restored registers even further, by following the same 3 criteria.
1130 */
1131 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1132 {
1133 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1134 int i;
1135
1136 /* GAM 0x4000-0x4770 */
1137 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1138 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1139 s->arb_mode = I915_READ(ARB_MODE);
1140 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1141 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1142
1143 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1144 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1145
1146 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1147 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1148
1149 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1150 s->ecochk = I915_READ(GAM_ECOCHK);
1151 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1152 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1153
1154 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1155
1156 /* MBC 0x9024-0x91D0, 0x8500 */
1157 s->g3dctl = I915_READ(VLV_G3DCTL);
1158 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1159 s->mbctl = I915_READ(GEN6_MBCTL);
1160
1161 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1162 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
1163 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
1164 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
1165 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
1166 s->rstctl = I915_READ(GEN6_RSTCTL);
1167 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
1168
1169 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1170 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
1171 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
1172 s->rpdeuc = I915_READ(GEN6_RPDEUC);
1173 s->ecobus = I915_READ(ECOBUS);
1174 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
1175 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1176 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
1177 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
1178 s->rcedata = I915_READ(VLV_RCEDATA);
1179 s->spare2gh = I915_READ(VLV_SPAREG2H);
1180
1181 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1182 s->gt_imr = I915_READ(GTIMR);
1183 s->gt_ier = I915_READ(GTIER);
1184 s->pm_imr = I915_READ(GEN6_PMIMR);
1185 s->pm_ier = I915_READ(GEN6_PMIER);
1186
1187 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1188 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
1189
1190 /* GT SA CZ domain, 0x100000-0x138124 */
1191 s->tilectl = I915_READ(TILECTL);
1192 s->gt_fifoctl = I915_READ(GTFIFOCTL);
1193 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
1194 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1195 s->pmwgicz = I915_READ(VLV_PMWGICZ);
1196
1197 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1198 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
1199 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
1200 s->pcbr = I915_READ(VLV_PCBR);
1201 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
1202
1203 /*
1204 * Not saving any of:
1205 * DFT, 0x9800-0x9EC0
1206 * SARB, 0xB000-0xB1FC
1207 * GAC, 0x5208-0x524C, 0x14000-0x14C000
1208 * PCI CFG
1209 */
1210 }
1211
1212 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1213 {
1214 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1215 u32 val;
1216 int i;
1217
1218 /* GAM 0x4000-0x4770 */
1219 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
1220 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
1221 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
1222 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
1223 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
1224
1225 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1226 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
1227
1228 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1229 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
1230
1231 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
1232 I915_WRITE(GAM_ECOCHK, s->ecochk);
1233 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
1234 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
1235
1236 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
1237
1238 /* MBC 0x9024-0x91D0, 0x8500 */
1239 I915_WRITE(VLV_G3DCTL, s->g3dctl);
1240 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
1241 I915_WRITE(GEN6_MBCTL, s->mbctl);
1242
1243 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1244 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
1245 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
1246 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
1247 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
1248 I915_WRITE(GEN6_RSTCTL, s->rstctl);
1249 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
1250
1251 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1252 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
1253 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
1254 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
1255 I915_WRITE(ECOBUS, s->ecobus);
1256 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
1257 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1258 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
1259 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
1260 I915_WRITE(VLV_RCEDATA, s->rcedata);
1261 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
1262
1263 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1264 I915_WRITE(GTIMR, s->gt_imr);
1265 I915_WRITE(GTIER, s->gt_ier);
1266 I915_WRITE(GEN6_PMIMR, s->pm_imr);
1267 I915_WRITE(GEN6_PMIER, s->pm_ier);
1268
1269 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1270 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
1271
1272 /* GT SA CZ domain, 0x100000-0x138124 */
1273 I915_WRITE(TILECTL, s->tilectl);
1274 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
1275 /*
1276 * Preserve the GT allow wake and GFX force clock bit, they are not
1277 * be restored, as they are used to control the s0ix suspend/resume
1278 * sequence by the caller.
1279 */
1280 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1281 val &= VLV_GTLC_ALLOWWAKEREQ;
1282 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1283 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1284
1285 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1286 val &= VLV_GFX_CLK_FORCE_ON_BIT;
1287 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1288 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1289
1290 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
1291
1292 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1293 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
1294 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
1295 I915_WRITE(VLV_PCBR, s->pcbr);
1296 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
1297 }
1298
1299 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1300 {
1301 u32 val;
1302 int err;
1303
1304 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1305
1306 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1307 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1308 if (force_on)
1309 val |= VLV_GFX_CLK_FORCE_ON_BIT;
1310 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1311
1312 if (!force_on)
1313 return 0;
1314
1315 err = wait_for(COND, 20);
1316 if (err)
1317 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1318 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1319
1320 return err;
1321 #undef COND
1322 }
1323
1324 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1325 {
1326 u32 val;
1327 int err = 0;
1328
1329 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1330 val &= ~VLV_GTLC_ALLOWWAKEREQ;
1331 if (allow)
1332 val |= VLV_GTLC_ALLOWWAKEREQ;
1333 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1334 POSTING_READ(VLV_GTLC_WAKE_CTRL);
1335
1336 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1337 allow)
1338 err = wait_for(COND, 1);
1339 if (err)
1340 DRM_ERROR("timeout disabling GT waking\n");
1341 return err;
1342 #undef COND
1343 }
1344
1345 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1346 bool wait_for_on)
1347 {
1348 u32 mask;
1349 u32 val;
1350 int err;
1351
1352 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1353 val = wait_for_on ? mask : 0;
1354 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1355 if (COND)
1356 return 0;
1357
1358 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1359 onoff(wait_for_on),
1360 I915_READ(VLV_GTLC_PW_STATUS));
1361
1362 /*
1363 * RC6 transitioning can be delayed up to 2 msec (see
1364 * valleyview_enable_rps), use 3 msec for safety.
1365 */
1366 err = wait_for(COND, 3);
1367 if (err)
1368 DRM_ERROR("timeout waiting for GT wells to go %s\n",
1369 onoff(wait_for_on));
1370
1371 return err;
1372 #undef COND
1373 }
1374
1375 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1376 {
1377 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1378 return;
1379
1380 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
1381 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1382 }
1383
1384 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
1385 {
1386 u32 mask;
1387 int err;
1388
1389 /*
1390 * Bspec defines the following GT well on flags as debug only, so
1391 * don't treat them as hard failures.
1392 */
1393 (void)vlv_wait_for_gt_wells(dev_priv, false);
1394
1395 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1396 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1397
1398 vlv_check_no_gt_access(dev_priv);
1399
1400 err = vlv_force_gfx_clock(dev_priv, true);
1401 if (err)
1402 goto err1;
1403
1404 err = vlv_allow_gt_wake(dev_priv, false);
1405 if (err)
1406 goto err2;
1407
1408 if (!IS_CHERRYVIEW(dev_priv))
1409 vlv_save_gunit_s0ix_state(dev_priv);
1410
1411 err = vlv_force_gfx_clock(dev_priv, false);
1412 if (err)
1413 goto err2;
1414
1415 return 0;
1416
1417 err2:
1418 /* For safety always re-enable waking and disable gfx clock forcing */
1419 vlv_allow_gt_wake(dev_priv, true);
1420 err1:
1421 vlv_force_gfx_clock(dev_priv, false);
1422
1423 return err;
1424 }
1425
1426 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1427 bool rpm_resume)
1428 {
1429 struct drm_device *dev = dev_priv->dev;
1430 int err;
1431 int ret;
1432
1433 /*
1434 * If any of the steps fail just try to continue, that's the best we
1435 * can do at this point. Return the first error code (which will also
1436 * leave RPM permanently disabled).
1437 */
1438 ret = vlv_force_gfx_clock(dev_priv, true);
1439
1440 if (!IS_CHERRYVIEW(dev_priv))
1441 vlv_restore_gunit_s0ix_state(dev_priv);
1442
1443 err = vlv_allow_gt_wake(dev_priv, true);
1444 if (!ret)
1445 ret = err;
1446
1447 err = vlv_force_gfx_clock(dev_priv, false);
1448 if (!ret)
1449 ret = err;
1450
1451 vlv_check_no_gt_access(dev_priv);
1452
1453 if (rpm_resume) {
1454 intel_init_clock_gating(dev);
1455 i915_gem_restore_fences(dev);
1456 }
1457
1458 return ret;
1459 }
1460
1461 static int intel_runtime_suspend(struct device *device)
1462 {
1463 struct pci_dev *pdev = to_pci_dev(device);
1464 struct drm_device *dev = pci_get_drvdata(pdev);
1465 struct drm_i915_private *dev_priv = dev->dev_private;
1466 int ret;
1467
1468 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1469 return -ENODEV;
1470
1471 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1472 return -ENODEV;
1473
1474 DRM_DEBUG_KMS("Suspending device\n");
1475
1476 /*
1477 * We could deadlock here in case another thread holding struct_mutex
1478 * calls RPM suspend concurrently, since the RPM suspend will wait
1479 * first for this RPM suspend to finish. In this case the concurrent
1480 * RPM resume will be followed by its RPM suspend counterpart. Still
1481 * for consistency return -EAGAIN, which will reschedule this suspend.
1482 */
1483 if (!mutex_trylock(&dev->struct_mutex)) {
1484 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1485 /*
1486 * Bump the expiration timestamp, otherwise the suspend won't
1487 * be rescheduled.
1488 */
1489 pm_runtime_mark_last_busy(device);
1490
1491 return -EAGAIN;
1492 }
1493
1494 disable_rpm_wakeref_asserts(dev_priv);
1495
1496 /*
1497 * We are safe here against re-faults, since the fault handler takes
1498 * an RPM reference.
1499 */
1500 i915_gem_release_all_mmaps(dev_priv);
1501 mutex_unlock(&dev->struct_mutex);
1502
1503 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1504
1505 intel_guc_suspend(dev);
1506
1507 intel_suspend_gt_powersave(dev);
1508 intel_runtime_pm_disable_interrupts(dev_priv);
1509
1510 ret = 0;
1511 if (IS_BROXTON(dev_priv)) {
1512 bxt_display_core_uninit(dev_priv);
1513 bxt_enable_dc9(dev_priv);
1514 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1515 hsw_enable_pc8(dev_priv);
1516 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1517 ret = vlv_suspend_complete(dev_priv);
1518 }
1519
1520 if (ret) {
1521 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1522 intel_runtime_pm_enable_interrupts(dev_priv);
1523
1524 enable_rpm_wakeref_asserts(dev_priv);
1525
1526 return ret;
1527 }
1528
1529 intel_uncore_forcewake_reset(dev, false);
1530
1531 enable_rpm_wakeref_asserts(dev_priv);
1532 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
1533
1534 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
1535 DRM_ERROR("Unclaimed access detected prior to suspending\n");
1536
1537 dev_priv->pm.suspended = true;
1538
1539 /*
1540 * FIXME: We really should find a document that references the arguments
1541 * used below!
1542 */
1543 if (IS_BROADWELL(dev)) {
1544 /*
1545 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
1546 * being detected, and the call we do at intel_runtime_resume()
1547 * won't be able to restore them. Since PCI_D3hot matches the
1548 * actual specification and appears to be working, use it.
1549 */
1550 intel_opregion_notify_adapter(dev, PCI_D3hot);
1551 } else {
1552 /*
1553 * current versions of firmware which depend on this opregion
1554 * notification have repurposed the D1 definition to mean
1555 * "runtime suspended" vs. what you would normally expect (D3)
1556 * to distinguish it from notifications that might be sent via
1557 * the suspend path.
1558 */
1559 intel_opregion_notify_adapter(dev, PCI_D1);
1560 }
1561
1562 assert_forcewakes_inactive(dev_priv);
1563
1564 DRM_DEBUG_KMS("Device suspended\n");
1565 return 0;
1566 }
1567
1568 static int intel_runtime_resume(struct device *device)
1569 {
1570 struct pci_dev *pdev = to_pci_dev(device);
1571 struct drm_device *dev = pci_get_drvdata(pdev);
1572 struct drm_i915_private *dev_priv = dev->dev_private;
1573 int ret = 0;
1574
1575 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1576 return -ENODEV;
1577
1578 DRM_DEBUG_KMS("Resuming device\n");
1579
1580 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
1581 disable_rpm_wakeref_asserts(dev_priv);
1582
1583 intel_opregion_notify_adapter(dev, PCI_D0);
1584 dev_priv->pm.suspended = false;
1585 if (intel_uncore_unclaimed_mmio(dev_priv))
1586 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
1587
1588 intel_guc_resume(dev);
1589
1590 if (IS_GEN6(dev_priv))
1591 intel_init_pch_refclk(dev);
1592
1593 if (IS_BROXTON(dev)) {
1594 bxt_disable_dc9(dev_priv);
1595 bxt_display_core_init(dev_priv, true);
1596 if (dev_priv->csr.dmc_payload &&
1597 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
1598 gen9_enable_dc5(dev_priv);
1599 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1600 hsw_disable_pc8(dev_priv);
1601 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1602 ret = vlv_resume_prepare(dev_priv, true);
1603 }
1604
1605 /*
1606 * No point of rolling back things in case of an error, as the best
1607 * we can do is to hope that things will still work (and disable RPM).
1608 */
1609 i915_gem_init_swizzling(dev);
1610 gen6_update_ring_freq(dev);
1611
1612 intel_runtime_pm_enable_interrupts(dev_priv);
1613
1614 /*
1615 * On VLV/CHV display interrupts are part of the display
1616 * power well, so hpd is reinitialized from there. For
1617 * everyone else do it here.
1618 */
1619 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1620 intel_hpd_init(dev_priv);
1621
1622 intel_enable_gt_powersave(dev);
1623
1624 enable_rpm_wakeref_asserts(dev_priv);
1625
1626 if (ret)
1627 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1628 else
1629 DRM_DEBUG_KMS("Device resumed\n");
1630
1631 return ret;
1632 }
1633
1634 static const struct dev_pm_ops i915_pm_ops = {
1635 /*
1636 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
1637 * PMSG_RESUME]
1638 */
1639 .suspend = i915_pm_suspend,
1640 .suspend_late = i915_pm_suspend_late,
1641 .resume_early = i915_pm_resume_early,
1642 .resume = i915_pm_resume,
1643
1644 /*
1645 * S4 event handlers
1646 * @freeze, @freeze_late : called (1) before creating the
1647 * hibernation image [PMSG_FREEZE] and
1648 * (2) after rebooting, before restoring
1649 * the image [PMSG_QUIESCE]
1650 * @thaw, @thaw_early : called (1) after creating the hibernation
1651 * image, before writing it [PMSG_THAW]
1652 * and (2) after failing to create or
1653 * restore the image [PMSG_RECOVER]
1654 * @poweroff, @poweroff_late: called after writing the hibernation
1655 * image, before rebooting [PMSG_HIBERNATE]
1656 * @restore, @restore_early : called after rebooting and restoring the
1657 * hibernation image [PMSG_RESTORE]
1658 */
1659 .freeze = i915_pm_suspend,
1660 .freeze_late = i915_pm_suspend_late,
1661 .thaw_early = i915_pm_resume_early,
1662 .thaw = i915_pm_resume,
1663 .poweroff = i915_pm_suspend,
1664 .poweroff_late = i915_pm_poweroff_late,
1665 .restore_early = i915_pm_resume_early,
1666 .restore = i915_pm_resume,
1667
1668 /* S0ix (via runtime suspend) event handlers */
1669 .runtime_suspend = intel_runtime_suspend,
1670 .runtime_resume = intel_runtime_resume,
1671 };
1672
1673 static const struct vm_operations_struct i915_gem_vm_ops = {
1674 .fault = i915_gem_fault,
1675 .open = drm_gem_vm_open,
1676 .close = drm_gem_vm_close,
1677 };
1678
1679 static const struct file_operations i915_driver_fops = {
1680 .owner = THIS_MODULE,
1681 .open = drm_open,
1682 .release = drm_release,
1683 .unlocked_ioctl = drm_ioctl,
1684 .mmap = drm_gem_mmap,
1685 .poll = drm_poll,
1686 .read = drm_read,
1687 #ifdef CONFIG_COMPAT
1688 .compat_ioctl = i915_compat_ioctl,
1689 #endif
1690 .llseek = noop_llseek,
1691 };
1692
1693 static struct drm_driver driver = {
1694 /* Don't use MTRRs here; the Xserver or userspace app should
1695 * deal with them for Intel hardware.
1696 */
1697 .driver_features =
1698 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
1699 DRIVER_RENDER | DRIVER_MODESET,
1700 .load = i915_driver_load,
1701 .unload = i915_driver_unload,
1702 .open = i915_driver_open,
1703 .lastclose = i915_driver_lastclose,
1704 .preclose = i915_driver_preclose,
1705 .postclose = i915_driver_postclose,
1706 .set_busid = drm_pci_set_busid,
1707
1708 #if defined(CONFIG_DEBUG_FS)
1709 .debugfs_init = i915_debugfs_init,
1710 .debugfs_cleanup = i915_debugfs_cleanup,
1711 #endif
1712 .gem_free_object = i915_gem_free_object,
1713 .gem_vm_ops = &i915_gem_vm_ops,
1714
1715 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
1716 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
1717 .gem_prime_export = i915_gem_prime_export,
1718 .gem_prime_import = i915_gem_prime_import,
1719
1720 .dumb_create = i915_gem_dumb_create,
1721 .dumb_map_offset = i915_gem_mmap_gtt,
1722 .dumb_destroy = drm_gem_dumb_destroy,
1723 .ioctls = i915_ioctls,
1724 .fops = &i915_driver_fops,
1725 .name = DRIVER_NAME,
1726 .desc = DRIVER_DESC,
1727 .date = DRIVER_DATE,
1728 .major = DRIVER_MAJOR,
1729 .minor = DRIVER_MINOR,
1730 .patchlevel = DRIVER_PATCHLEVEL,
1731 };
1732
1733 static struct pci_driver i915_pci_driver = {
1734 .name = DRIVER_NAME,
1735 .id_table = pciidlist,
1736 .probe = i915_pci_probe,
1737 .remove = i915_pci_remove,
1738 .driver.pm = &i915_pm_ops,
1739 };
1740
1741 static int __init i915_init(void)
1742 {
1743 driver.num_ioctls = i915_max_ioctl;
1744
1745 /*
1746 * Enable KMS by default, unless explicitly overriden by
1747 * either the i915.modeset prarameter or by the
1748 * vga_text_mode_force boot option.
1749 */
1750
1751 if (i915.modeset == 0)
1752 driver.driver_features &= ~DRIVER_MODESET;
1753
1754 if (vgacon_text_force() && i915.modeset == -1)
1755 driver.driver_features &= ~DRIVER_MODESET;
1756
1757 if (!(driver.driver_features & DRIVER_MODESET)) {
1758 /* Silently fail loading to not upset userspace. */
1759 DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1760 return 0;
1761 }
1762
1763 if (i915.nuclear_pageflip)
1764 driver.driver_features |= DRIVER_ATOMIC;
1765
1766 return drm_pci_init(&driver, &i915_pci_driver);
1767 }
1768
1769 static void __exit i915_exit(void)
1770 {
1771 if (!(driver.driver_features & DRIVER_MODESET))
1772 return; /* Never loaded a driver. */
1773
1774 drm_pci_exit(&driver, &i915_pci_driver);
1775 }
1776
1777 module_init(i915_init);
1778 module_exit(i915_exit);
1779
1780 MODULE_AUTHOR("Tungsten Graphics, Inc.");
1781 MODULE_AUTHOR("Intel Corporation");
1782
1783 MODULE_DESCRIPTION(DRIVER_DESC);
1784 MODULE_LICENSE("GPL and additional rights");
This page took 0.067423 seconds and 6 git commands to generate.