drm/i915: Use SSE4.1 movntdqa to accelerate reads from WC memory
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51
52 #include "i915_params.h"
53 #include "i915_reg.h"
54
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64 #include "i915_gem_request.h"
65
66 #include "intel_gvt.h"
67
68 /* General customization:
69 */
70
71 #define DRIVER_NAME "i915"
72 #define DRIVER_DESC "Intel Graphics"
73 #define DRIVER_DATE "20160808"
74
75 #undef WARN_ON
76 /* Many gcc seem to no see through this and fall over :( */
77 #if 0
78 #define WARN_ON(x) ({ \
79 bool __i915_warn_cond = (x); \
80 if (__builtin_constant_p(__i915_warn_cond)) \
81 BUILD_BUG_ON(__i915_warn_cond); \
82 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
83 #else
84 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
85 #endif
86
87 #undef WARN_ON_ONCE
88 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
89
90 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
91 (long) (x), __func__);
92
93 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
94 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
95 * which may not necessarily be a user visible problem. This will either
96 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
97 * enable distros and users to tailor their preferred amount of i915 abrt
98 * spam.
99 */
100 #define I915_STATE_WARN(condition, format...) ({ \
101 int __ret_warn_on = !!(condition); \
102 if (unlikely(__ret_warn_on)) \
103 if (!WARN(i915.verbose_state_checks, format)) \
104 DRM_ERROR(format); \
105 unlikely(__ret_warn_on); \
106 })
107
108 #define I915_STATE_WARN_ON(x) \
109 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
110
111 bool __i915_inject_load_failure(const char *func, int line);
112 #define i915_inject_load_failure() \
113 __i915_inject_load_failure(__func__, __LINE__)
114
115 static inline const char *yesno(bool v)
116 {
117 return v ? "yes" : "no";
118 }
119
120 static inline const char *onoff(bool v)
121 {
122 return v ? "on" : "off";
123 }
124
125 enum pipe {
126 INVALID_PIPE = -1,
127 PIPE_A = 0,
128 PIPE_B,
129 PIPE_C,
130 _PIPE_EDP,
131 I915_MAX_PIPES = _PIPE_EDP
132 };
133 #define pipe_name(p) ((p) + 'A')
134
135 enum transcoder {
136 TRANSCODER_A = 0,
137 TRANSCODER_B,
138 TRANSCODER_C,
139 TRANSCODER_EDP,
140 TRANSCODER_DSI_A,
141 TRANSCODER_DSI_C,
142 I915_MAX_TRANSCODERS
143 };
144
145 static inline const char *transcoder_name(enum transcoder transcoder)
146 {
147 switch (transcoder) {
148 case TRANSCODER_A:
149 return "A";
150 case TRANSCODER_B:
151 return "B";
152 case TRANSCODER_C:
153 return "C";
154 case TRANSCODER_EDP:
155 return "EDP";
156 case TRANSCODER_DSI_A:
157 return "DSI A";
158 case TRANSCODER_DSI_C:
159 return "DSI C";
160 default:
161 return "<invalid>";
162 }
163 }
164
165 static inline bool transcoder_is_dsi(enum transcoder transcoder)
166 {
167 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
168 }
169
170 /*
171 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
172 * number of planes per CRTC. Not all platforms really have this many planes,
173 * which means some arrays of size I915_MAX_PLANES may have unused entries
174 * between the topmost sprite plane and the cursor plane.
175 */
176 enum plane {
177 PLANE_A = 0,
178 PLANE_B,
179 PLANE_C,
180 PLANE_CURSOR,
181 I915_MAX_PLANES,
182 };
183 #define plane_name(p) ((p) + 'A')
184
185 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
186
187 enum port {
188 PORT_A = 0,
189 PORT_B,
190 PORT_C,
191 PORT_D,
192 PORT_E,
193 I915_MAX_PORTS
194 };
195 #define port_name(p) ((p) + 'A')
196
197 #define I915_NUM_PHYS_VLV 2
198
199 enum dpio_channel {
200 DPIO_CH0,
201 DPIO_CH1
202 };
203
204 enum dpio_phy {
205 DPIO_PHY0,
206 DPIO_PHY1
207 };
208
209 enum intel_display_power_domain {
210 POWER_DOMAIN_PIPE_A,
211 POWER_DOMAIN_PIPE_B,
212 POWER_DOMAIN_PIPE_C,
213 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
214 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
215 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
216 POWER_DOMAIN_TRANSCODER_A,
217 POWER_DOMAIN_TRANSCODER_B,
218 POWER_DOMAIN_TRANSCODER_C,
219 POWER_DOMAIN_TRANSCODER_EDP,
220 POWER_DOMAIN_TRANSCODER_DSI_A,
221 POWER_DOMAIN_TRANSCODER_DSI_C,
222 POWER_DOMAIN_PORT_DDI_A_LANES,
223 POWER_DOMAIN_PORT_DDI_B_LANES,
224 POWER_DOMAIN_PORT_DDI_C_LANES,
225 POWER_DOMAIN_PORT_DDI_D_LANES,
226 POWER_DOMAIN_PORT_DDI_E_LANES,
227 POWER_DOMAIN_PORT_DSI,
228 POWER_DOMAIN_PORT_CRT,
229 POWER_DOMAIN_PORT_OTHER,
230 POWER_DOMAIN_VGA,
231 POWER_DOMAIN_AUDIO,
232 POWER_DOMAIN_PLLS,
233 POWER_DOMAIN_AUX_A,
234 POWER_DOMAIN_AUX_B,
235 POWER_DOMAIN_AUX_C,
236 POWER_DOMAIN_AUX_D,
237 POWER_DOMAIN_GMBUS,
238 POWER_DOMAIN_MODESET,
239 POWER_DOMAIN_INIT,
240
241 POWER_DOMAIN_NUM,
242 };
243
244 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
245 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
246 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
247 #define POWER_DOMAIN_TRANSCODER(tran) \
248 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
249 (tran) + POWER_DOMAIN_TRANSCODER_A)
250
251 enum hpd_pin {
252 HPD_NONE = 0,
253 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
254 HPD_CRT,
255 HPD_SDVO_B,
256 HPD_SDVO_C,
257 HPD_PORT_A,
258 HPD_PORT_B,
259 HPD_PORT_C,
260 HPD_PORT_D,
261 HPD_PORT_E,
262 HPD_NUM_PINS
263 };
264
265 #define for_each_hpd_pin(__pin) \
266 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
267
268 struct i915_hotplug {
269 struct work_struct hotplug_work;
270
271 struct {
272 unsigned long last_jiffies;
273 int count;
274 enum {
275 HPD_ENABLED = 0,
276 HPD_DISABLED = 1,
277 HPD_MARK_DISABLED = 2
278 } state;
279 } stats[HPD_NUM_PINS];
280 u32 event_bits;
281 struct delayed_work reenable_work;
282
283 struct intel_digital_port *irq_port[I915_MAX_PORTS];
284 u32 long_port_mask;
285 u32 short_port_mask;
286 struct work_struct dig_port_work;
287
288 struct work_struct poll_init_work;
289 bool poll_enabled;
290
291 /*
292 * if we get a HPD irq from DP and a HPD irq from non-DP
293 * the non-DP HPD could block the workqueue on a mode config
294 * mutex getting, that userspace may have taken. However
295 * userspace is waiting on the DP workqueue to run which is
296 * blocked behind the non-DP one.
297 */
298 struct workqueue_struct *dp_wq;
299 };
300
301 #define I915_GEM_GPU_DOMAINS \
302 (I915_GEM_DOMAIN_RENDER | \
303 I915_GEM_DOMAIN_SAMPLER | \
304 I915_GEM_DOMAIN_COMMAND | \
305 I915_GEM_DOMAIN_INSTRUCTION | \
306 I915_GEM_DOMAIN_VERTEX)
307
308 #define for_each_pipe(__dev_priv, __p) \
309 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
310 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
311 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
312 for_each_if ((__mask) & (1 << (__p)))
313 #define for_each_plane(__dev_priv, __pipe, __p) \
314 for ((__p) = 0; \
315 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
316 (__p)++)
317 #define for_each_sprite(__dev_priv, __p, __s) \
318 for ((__s) = 0; \
319 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
320 (__s)++)
321
322 #define for_each_port_masked(__port, __ports_mask) \
323 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
324 for_each_if ((__ports_mask) & (1 << (__port)))
325
326 #define for_each_crtc(dev, crtc) \
327 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
328
329 #define for_each_intel_plane(dev, intel_plane) \
330 list_for_each_entry(intel_plane, \
331 &(dev)->mode_config.plane_list, \
332 base.head)
333
334 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
335 list_for_each_entry(intel_plane, \
336 &(dev)->mode_config.plane_list, \
337 base.head) \
338 for_each_if ((plane_mask) & \
339 (1 << drm_plane_index(&intel_plane->base)))
340
341 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
342 list_for_each_entry(intel_plane, \
343 &(dev)->mode_config.plane_list, \
344 base.head) \
345 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
346
347 #define for_each_intel_crtc(dev, intel_crtc) \
348 list_for_each_entry(intel_crtc, \
349 &(dev)->mode_config.crtc_list, \
350 base.head)
351
352 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
353 list_for_each_entry(intel_crtc, \
354 &(dev)->mode_config.crtc_list, \
355 base.head) \
356 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
357
358 #define for_each_intel_encoder(dev, intel_encoder) \
359 list_for_each_entry(intel_encoder, \
360 &(dev)->mode_config.encoder_list, \
361 base.head)
362
363 #define for_each_intel_connector(dev, intel_connector) \
364 list_for_each_entry(intel_connector, \
365 &(dev)->mode_config.connector_list, \
366 base.head)
367
368 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
369 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
370 for_each_if ((intel_encoder)->base.crtc == (__crtc))
371
372 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
373 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
374 for_each_if ((intel_connector)->base.encoder == (__encoder))
375
376 #define for_each_power_domain(domain, mask) \
377 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
378 for_each_if ((1 << (domain)) & (mask))
379
380 struct drm_i915_private;
381 struct i915_mm_struct;
382 struct i915_mmu_object;
383
384 struct drm_i915_file_private {
385 struct drm_i915_private *dev_priv;
386 struct drm_file *file;
387
388 struct {
389 spinlock_t lock;
390 struct list_head request_list;
391 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
392 * chosen to prevent the CPU getting more than a frame ahead of the GPU
393 * (when using lax throttling for the frontbuffer). We also use it to
394 * offer free GPU waitboosts for severely congested workloads.
395 */
396 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
397 } mm;
398 struct idr context_idr;
399
400 struct intel_rps_client {
401 struct list_head link;
402 unsigned boosts;
403 } rps;
404
405 unsigned int bsd_engine;
406 };
407
408 /* Used by dp and fdi links */
409 struct intel_link_m_n {
410 uint32_t tu;
411 uint32_t gmch_m;
412 uint32_t gmch_n;
413 uint32_t link_m;
414 uint32_t link_n;
415 };
416
417 void intel_link_compute_m_n(int bpp, int nlanes,
418 int pixel_clock, int link_clock,
419 struct intel_link_m_n *m_n);
420
421 /* Interface history:
422 *
423 * 1.1: Original.
424 * 1.2: Add Power Management
425 * 1.3: Add vblank support
426 * 1.4: Fix cmdbuffer path, add heap destroy
427 * 1.5: Add vblank pipe configuration
428 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
429 * - Support vertical blank on secondary display pipe
430 */
431 #define DRIVER_MAJOR 1
432 #define DRIVER_MINOR 6
433 #define DRIVER_PATCHLEVEL 0
434
435 struct opregion_header;
436 struct opregion_acpi;
437 struct opregion_swsci;
438 struct opregion_asle;
439
440 struct intel_opregion {
441 struct opregion_header *header;
442 struct opregion_acpi *acpi;
443 struct opregion_swsci *swsci;
444 u32 swsci_gbda_sub_functions;
445 u32 swsci_sbcb_sub_functions;
446 struct opregion_asle *asle;
447 void *rvda;
448 const void *vbt;
449 u32 vbt_size;
450 u32 *lid_state;
451 struct work_struct asle_work;
452 };
453 #define OPREGION_SIZE (8*1024)
454
455 struct intel_overlay;
456 struct intel_overlay_error_state;
457
458 #define I915_FENCE_REG_NONE -1
459 #define I915_MAX_NUM_FENCES 32
460 /* 32 fences + sign bit for FENCE_REG_NONE */
461 #define I915_MAX_NUM_FENCE_BITS 6
462
463 struct drm_i915_fence_reg {
464 struct list_head lru_list;
465 struct drm_i915_gem_object *obj;
466 int pin_count;
467 };
468
469 struct sdvo_device_mapping {
470 u8 initialized;
471 u8 dvo_port;
472 u8 slave_addr;
473 u8 dvo_wiring;
474 u8 i2c_pin;
475 u8 ddc_pin;
476 };
477
478 struct intel_display_error_state;
479
480 struct drm_i915_error_state {
481 struct kref ref;
482 struct timeval time;
483
484 char error_msg[128];
485 bool simulated;
486 int iommu;
487 u32 reset_count;
488 u32 suspend_count;
489
490 /* Generic register state */
491 u32 eir;
492 u32 pgtbl_er;
493 u32 ier;
494 u32 gtier[4];
495 u32 ccid;
496 u32 derrmr;
497 u32 forcewake;
498 u32 error; /* gen6+ */
499 u32 err_int; /* gen7 */
500 u32 fault_data0; /* gen8, gen9 */
501 u32 fault_data1; /* gen8, gen9 */
502 u32 done_reg;
503 u32 gac_eco;
504 u32 gam_ecochk;
505 u32 gab_ctl;
506 u32 gfx_mode;
507 u32 extra_instdone[I915_NUM_INSTDONE_REG];
508 u64 fence[I915_MAX_NUM_FENCES];
509 struct intel_overlay_error_state *overlay;
510 struct intel_display_error_state *display;
511 struct drm_i915_error_object *semaphore_obj;
512
513 struct drm_i915_error_engine {
514 int engine_id;
515 /* Software tracked state */
516 bool waiting;
517 int num_waiters;
518 int hangcheck_score;
519 enum intel_engine_hangcheck_action hangcheck_action;
520 int num_requests;
521
522 /* our own tracking of ring head and tail */
523 u32 cpu_ring_head;
524 u32 cpu_ring_tail;
525
526 u32 last_seqno;
527 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
528
529 /* Register state */
530 u32 start;
531 u32 tail;
532 u32 head;
533 u32 ctl;
534 u32 hws;
535 u32 ipeir;
536 u32 ipehr;
537 u32 instdone;
538 u32 bbstate;
539 u32 instpm;
540 u32 instps;
541 u32 seqno;
542 u64 bbaddr;
543 u64 acthd;
544 u32 fault_reg;
545 u64 faddr;
546 u32 rc_psmi; /* sleep state */
547 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
548
549 struct drm_i915_error_object {
550 int page_count;
551 u64 gtt_offset;
552 u32 *pages[0];
553 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
554
555 struct drm_i915_error_object *wa_ctx;
556
557 struct drm_i915_error_request {
558 long jiffies;
559 u32 seqno;
560 u32 tail;
561 } *requests;
562
563 struct drm_i915_error_waiter {
564 char comm[TASK_COMM_LEN];
565 pid_t pid;
566 u32 seqno;
567 } *waiters;
568
569 struct {
570 u32 gfx_mode;
571 union {
572 u64 pdp[4];
573 u32 pp_dir_base;
574 };
575 } vm_info;
576
577 pid_t pid;
578 char comm[TASK_COMM_LEN];
579 } engine[I915_NUM_ENGINES];
580
581 struct drm_i915_error_buffer {
582 u32 size;
583 u32 name;
584 u32 rseqno[I915_NUM_ENGINES], wseqno;
585 u64 gtt_offset;
586 u32 read_domains;
587 u32 write_domain;
588 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
589 s32 pinned:2;
590 u32 tiling:2;
591 u32 dirty:1;
592 u32 purgeable:1;
593 u32 userptr:1;
594 s32 engine:4;
595 u32 cache_level:3;
596 } **active_bo, **pinned_bo;
597
598 u32 *active_bo_count, *pinned_bo_count;
599 u32 vm_count;
600 };
601
602 struct intel_connector;
603 struct intel_encoder;
604 struct intel_crtc_state;
605 struct intel_initial_plane_config;
606 struct intel_crtc;
607 struct intel_limit;
608 struct dpll;
609
610 struct drm_i915_display_funcs {
611 int (*get_display_clock_speed)(struct drm_device *dev);
612 int (*get_fifo_size)(struct drm_device *dev, int plane);
613 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
614 int (*compute_intermediate_wm)(struct drm_device *dev,
615 struct intel_crtc *intel_crtc,
616 struct intel_crtc_state *newstate);
617 void (*initial_watermarks)(struct intel_crtc_state *cstate);
618 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
619 int (*compute_global_watermarks)(struct drm_atomic_state *state);
620 void (*update_wm)(struct drm_crtc *crtc);
621 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
622 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
623 /* Returns the active state of the crtc, and if the crtc is active,
624 * fills out the pipe-config with the hw state. */
625 bool (*get_pipe_config)(struct intel_crtc *,
626 struct intel_crtc_state *);
627 void (*get_initial_plane_config)(struct intel_crtc *,
628 struct intel_initial_plane_config *);
629 int (*crtc_compute_clock)(struct intel_crtc *crtc,
630 struct intel_crtc_state *crtc_state);
631 void (*crtc_enable)(struct drm_crtc *crtc);
632 void (*crtc_disable)(struct drm_crtc *crtc);
633 void (*audio_codec_enable)(struct drm_connector *connector,
634 struct intel_encoder *encoder,
635 const struct drm_display_mode *adjusted_mode);
636 void (*audio_codec_disable)(struct intel_encoder *encoder);
637 void (*fdi_link_train)(struct drm_crtc *crtc);
638 void (*init_clock_gating)(struct drm_device *dev);
639 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
640 struct drm_framebuffer *fb,
641 struct drm_i915_gem_object *obj,
642 struct drm_i915_gem_request *req,
643 uint32_t flags);
644 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
645 /* clock updates for mode set */
646 /* cursor updates */
647 /* render clock increase/decrease */
648 /* display clock increase/decrease */
649 /* pll clock increase/decrease */
650
651 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
652 void (*load_luts)(struct drm_crtc_state *crtc_state);
653 };
654
655 enum forcewake_domain_id {
656 FW_DOMAIN_ID_RENDER = 0,
657 FW_DOMAIN_ID_BLITTER,
658 FW_DOMAIN_ID_MEDIA,
659
660 FW_DOMAIN_ID_COUNT
661 };
662
663 enum forcewake_domains {
664 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
665 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
666 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
667 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
668 FORCEWAKE_BLITTER |
669 FORCEWAKE_MEDIA)
670 };
671
672 #define FW_REG_READ (1)
673 #define FW_REG_WRITE (2)
674
675 enum forcewake_domains
676 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
677 i915_reg_t reg, unsigned int op);
678
679 struct intel_uncore_funcs {
680 void (*force_wake_get)(struct drm_i915_private *dev_priv,
681 enum forcewake_domains domains);
682 void (*force_wake_put)(struct drm_i915_private *dev_priv,
683 enum forcewake_domains domains);
684
685 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
686 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
687 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
688 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
689
690 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
691 uint8_t val, bool trace);
692 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
693 uint16_t val, bool trace);
694 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
695 uint32_t val, bool trace);
696 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
697 uint64_t val, bool trace);
698 };
699
700 struct intel_uncore {
701 spinlock_t lock; /** lock is also taken in irq contexts. */
702
703 struct intel_uncore_funcs funcs;
704
705 unsigned fifo_count;
706 enum forcewake_domains fw_domains;
707
708 struct intel_uncore_forcewake_domain {
709 struct drm_i915_private *i915;
710 enum forcewake_domain_id id;
711 enum forcewake_domains mask;
712 unsigned wake_count;
713 struct hrtimer timer;
714 i915_reg_t reg_set;
715 u32 val_set;
716 u32 val_clear;
717 i915_reg_t reg_ack;
718 i915_reg_t reg_post;
719 u32 val_reset;
720 } fw_domain[FW_DOMAIN_ID_COUNT];
721
722 int unclaimed_mmio_check;
723 };
724
725 /* Iterate over initialised fw domains */
726 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
727 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
728 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
729 (domain__)++) \
730 for_each_if ((mask__) & (domain__)->mask)
731
732 #define for_each_fw_domain(domain__, dev_priv__) \
733 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
734
735 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
736 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
737 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
738
739 struct intel_csr {
740 struct work_struct work;
741 const char *fw_path;
742 uint32_t *dmc_payload;
743 uint32_t dmc_fw_size;
744 uint32_t version;
745 uint32_t mmio_count;
746 i915_reg_t mmioaddr[8];
747 uint32_t mmiodata[8];
748 uint32_t dc_state;
749 uint32_t allowed_dc_mask;
750 };
751
752 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
753 func(is_mobile) sep \
754 func(is_i85x) sep \
755 func(is_i915g) sep \
756 func(is_i945gm) sep \
757 func(is_g33) sep \
758 func(need_gfx_hws) sep \
759 func(is_g4x) sep \
760 func(is_pineview) sep \
761 func(is_broadwater) sep \
762 func(is_crestline) sep \
763 func(is_ivybridge) sep \
764 func(is_valleyview) sep \
765 func(is_cherryview) sep \
766 func(is_haswell) sep \
767 func(is_broadwell) sep \
768 func(is_skylake) sep \
769 func(is_broxton) sep \
770 func(is_kabylake) sep \
771 func(is_preliminary) sep \
772 func(has_fbc) sep \
773 func(has_pipe_cxsr) sep \
774 func(has_hotplug) sep \
775 func(cursor_needs_physical) sep \
776 func(has_overlay) sep \
777 func(overlay_needs_physical) sep \
778 func(supports_tv) sep \
779 func(has_llc) sep \
780 func(has_snoop) sep \
781 func(has_ddi) sep \
782 func(has_fpga_dbg) sep \
783 func(has_pooled_eu)
784
785 #define DEFINE_FLAG(name) u8 name:1
786 #define SEP_SEMICOLON ;
787
788 struct intel_device_info {
789 u32 display_mmio_offset;
790 u16 device_id;
791 u8 num_pipes;
792 u8 num_sprites[I915_MAX_PIPES];
793 u8 gen;
794 u16 gen_mask;
795 u8 ring_mask; /* Rings supported by the HW */
796 u8 num_rings;
797 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
798 /* Register offsets for the various display pipes and transcoders */
799 int pipe_offsets[I915_MAX_TRANSCODERS];
800 int trans_offsets[I915_MAX_TRANSCODERS];
801 int palette_offsets[I915_MAX_PIPES];
802 int cursor_offsets[I915_MAX_PIPES];
803
804 /* Slice/subslice/EU info */
805 u8 slice_total;
806 u8 subslice_total;
807 u8 subslice_per_slice;
808 u8 eu_total;
809 u8 eu_per_subslice;
810 u8 min_eu_in_pool;
811 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
812 u8 subslice_7eu[3];
813 u8 has_slice_pg:1;
814 u8 has_subslice_pg:1;
815 u8 has_eu_pg:1;
816
817 struct color_luts {
818 u16 degamma_lut_size;
819 u16 gamma_lut_size;
820 } color;
821 };
822
823 #undef DEFINE_FLAG
824 #undef SEP_SEMICOLON
825
826 enum i915_cache_level {
827 I915_CACHE_NONE = 0,
828 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
829 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
830 caches, eg sampler/render caches, and the
831 large Last-Level-Cache. LLC is coherent with
832 the CPU, but L3 is only visible to the GPU. */
833 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
834 };
835
836 struct i915_ctx_hang_stats {
837 /* This context had batch pending when hang was declared */
838 unsigned batch_pending;
839
840 /* This context had batch active when hang was declared */
841 unsigned batch_active;
842
843 /* Time when this context was last blamed for a GPU reset */
844 unsigned long guilty_ts;
845
846 /* If the contexts causes a second GPU hang within this time,
847 * it is permanently banned from submitting any more work.
848 */
849 unsigned long ban_period_seconds;
850
851 /* This context is banned to submit more work */
852 bool banned;
853 };
854
855 /* This must match up with the value previously used for execbuf2.rsvd1. */
856 #define DEFAULT_CONTEXT_HANDLE 0
857
858 /**
859 * struct i915_gem_context - as the name implies, represents a context.
860 * @ref: reference count.
861 * @user_handle: userspace tracking identity for this context.
862 * @remap_slice: l3 row remapping information.
863 * @flags: context specific flags:
864 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
865 * @file_priv: filp associated with this context (NULL for global default
866 * context).
867 * @hang_stats: information about the role of this context in possible GPU
868 * hangs.
869 * @ppgtt: virtual memory space used by this context.
870 * @legacy_hw_ctx: render context backing object and whether it is correctly
871 * initialized (legacy ring submission mechanism only).
872 * @link: link in the global list of contexts.
873 *
874 * Contexts are memory images used by the hardware to store copies of their
875 * internal state.
876 */
877 struct i915_gem_context {
878 struct kref ref;
879 struct drm_i915_private *i915;
880 struct drm_i915_file_private *file_priv;
881 struct i915_hw_ppgtt *ppgtt;
882
883 struct i915_ctx_hang_stats hang_stats;
884
885 /* Unique identifier for this context, used by the hw for tracking */
886 unsigned long flags;
887 #define CONTEXT_NO_ZEROMAP BIT(0)
888 #define CONTEXT_NO_ERROR_CAPTURE BIT(1)
889 unsigned hw_id;
890 u32 user_handle;
891
892 u32 ggtt_alignment;
893
894 struct intel_context {
895 struct drm_i915_gem_object *state;
896 struct intel_ring *ring;
897 struct i915_vma *lrc_vma;
898 uint32_t *lrc_reg_state;
899 u64 lrc_desc;
900 int pin_count;
901 bool initialised;
902 } engine[I915_NUM_ENGINES];
903 u32 ring_size;
904 u32 desc_template;
905 struct atomic_notifier_head status_notifier;
906 bool execlists_force_single_submission;
907
908 struct list_head link;
909
910 u8 remap_slice;
911 bool closed:1;
912 };
913
914 enum fb_op_origin {
915 ORIGIN_GTT,
916 ORIGIN_CPU,
917 ORIGIN_CS,
918 ORIGIN_FLIP,
919 ORIGIN_DIRTYFB,
920 };
921
922 struct intel_fbc {
923 /* This is always the inner lock when overlapping with struct_mutex and
924 * it's the outer lock when overlapping with stolen_lock. */
925 struct mutex lock;
926 unsigned threshold;
927 unsigned int possible_framebuffer_bits;
928 unsigned int busy_bits;
929 unsigned int visible_pipes_mask;
930 struct intel_crtc *crtc;
931
932 struct drm_mm_node compressed_fb;
933 struct drm_mm_node *compressed_llb;
934
935 bool false_color;
936
937 bool enabled;
938 bool active;
939
940 struct intel_fbc_state_cache {
941 struct {
942 unsigned int mode_flags;
943 uint32_t hsw_bdw_pixel_rate;
944 } crtc;
945
946 struct {
947 unsigned int rotation;
948 int src_w;
949 int src_h;
950 bool visible;
951 } plane;
952
953 struct {
954 u64 ilk_ggtt_offset;
955 uint32_t pixel_format;
956 unsigned int stride;
957 int fence_reg;
958 unsigned int tiling_mode;
959 } fb;
960 } state_cache;
961
962 struct intel_fbc_reg_params {
963 struct {
964 enum pipe pipe;
965 enum plane plane;
966 unsigned int fence_y_offset;
967 } crtc;
968
969 struct {
970 u64 ggtt_offset;
971 uint32_t pixel_format;
972 unsigned int stride;
973 int fence_reg;
974 } fb;
975
976 int cfb_size;
977 } params;
978
979 struct intel_fbc_work {
980 bool scheduled;
981 u32 scheduled_vblank;
982 struct work_struct work;
983 } work;
984
985 const char *no_fbc_reason;
986 };
987
988 /**
989 * HIGH_RR is the highest eDP panel refresh rate read from EDID
990 * LOW_RR is the lowest eDP panel refresh rate found from EDID
991 * parsing for same resolution.
992 */
993 enum drrs_refresh_rate_type {
994 DRRS_HIGH_RR,
995 DRRS_LOW_RR,
996 DRRS_MAX_RR, /* RR count */
997 };
998
999 enum drrs_support_type {
1000 DRRS_NOT_SUPPORTED = 0,
1001 STATIC_DRRS_SUPPORT = 1,
1002 SEAMLESS_DRRS_SUPPORT = 2
1003 };
1004
1005 struct intel_dp;
1006 struct i915_drrs {
1007 struct mutex mutex;
1008 struct delayed_work work;
1009 struct intel_dp *dp;
1010 unsigned busy_frontbuffer_bits;
1011 enum drrs_refresh_rate_type refresh_rate_type;
1012 enum drrs_support_type type;
1013 };
1014
1015 struct i915_psr {
1016 struct mutex lock;
1017 bool sink_support;
1018 bool source_ok;
1019 struct intel_dp *enabled;
1020 bool active;
1021 struct delayed_work work;
1022 unsigned busy_frontbuffer_bits;
1023 bool psr2_support;
1024 bool aux_frame_sync;
1025 bool link_standby;
1026 };
1027
1028 enum intel_pch {
1029 PCH_NONE = 0, /* No PCH present */
1030 PCH_IBX, /* Ibexpeak PCH */
1031 PCH_CPT, /* Cougarpoint PCH */
1032 PCH_LPT, /* Lynxpoint PCH */
1033 PCH_SPT, /* Sunrisepoint PCH */
1034 PCH_KBP, /* Kabypoint PCH */
1035 PCH_NOP,
1036 };
1037
1038 enum intel_sbi_destination {
1039 SBI_ICLK,
1040 SBI_MPHY,
1041 };
1042
1043 #define QUIRK_PIPEA_FORCE (1<<0)
1044 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1045 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1046 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1047 #define QUIRK_PIPEB_FORCE (1<<4)
1048 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1049
1050 struct intel_fbdev;
1051 struct intel_fbc_work;
1052
1053 struct intel_gmbus {
1054 struct i2c_adapter adapter;
1055 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1056 u32 force_bit;
1057 u32 reg0;
1058 i915_reg_t gpio_reg;
1059 struct i2c_algo_bit_data bit_algo;
1060 struct drm_i915_private *dev_priv;
1061 };
1062
1063 struct i915_suspend_saved_registers {
1064 u32 saveDSPARB;
1065 u32 saveFBC_CONTROL;
1066 u32 saveCACHE_MODE_0;
1067 u32 saveMI_ARB_STATE;
1068 u32 saveSWF0[16];
1069 u32 saveSWF1[16];
1070 u32 saveSWF3[3];
1071 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1072 u32 savePCH_PORT_HOTPLUG;
1073 u16 saveGCDGMBUS;
1074 };
1075
1076 struct vlv_s0ix_state {
1077 /* GAM */
1078 u32 wr_watermark;
1079 u32 gfx_prio_ctrl;
1080 u32 arb_mode;
1081 u32 gfx_pend_tlb0;
1082 u32 gfx_pend_tlb1;
1083 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1084 u32 media_max_req_count;
1085 u32 gfx_max_req_count;
1086 u32 render_hwsp;
1087 u32 ecochk;
1088 u32 bsd_hwsp;
1089 u32 blt_hwsp;
1090 u32 tlb_rd_addr;
1091
1092 /* MBC */
1093 u32 g3dctl;
1094 u32 gsckgctl;
1095 u32 mbctl;
1096
1097 /* GCP */
1098 u32 ucgctl1;
1099 u32 ucgctl3;
1100 u32 rcgctl1;
1101 u32 rcgctl2;
1102 u32 rstctl;
1103 u32 misccpctl;
1104
1105 /* GPM */
1106 u32 gfxpause;
1107 u32 rpdeuhwtc;
1108 u32 rpdeuc;
1109 u32 ecobus;
1110 u32 pwrdwnupctl;
1111 u32 rp_down_timeout;
1112 u32 rp_deucsw;
1113 u32 rcubmabdtmr;
1114 u32 rcedata;
1115 u32 spare2gh;
1116
1117 /* Display 1 CZ domain */
1118 u32 gt_imr;
1119 u32 gt_ier;
1120 u32 pm_imr;
1121 u32 pm_ier;
1122 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1123
1124 /* GT SA CZ domain */
1125 u32 tilectl;
1126 u32 gt_fifoctl;
1127 u32 gtlc_wake_ctrl;
1128 u32 gtlc_survive;
1129 u32 pmwgicz;
1130
1131 /* Display 2 CZ domain */
1132 u32 gu_ctl0;
1133 u32 gu_ctl1;
1134 u32 pcbr;
1135 u32 clock_gate_dis2;
1136 };
1137
1138 struct intel_rps_ei {
1139 u32 cz_clock;
1140 u32 render_c0;
1141 u32 media_c0;
1142 };
1143
1144 struct intel_gen6_power_mgmt {
1145 /*
1146 * work, interrupts_enabled and pm_iir are protected by
1147 * dev_priv->irq_lock
1148 */
1149 struct work_struct work;
1150 bool interrupts_enabled;
1151 u32 pm_iir;
1152
1153 u32 pm_intr_keep;
1154
1155 /* Frequencies are stored in potentially platform dependent multiples.
1156 * In other words, *_freq needs to be multiplied by X to be interesting.
1157 * Soft limits are those which are used for the dynamic reclocking done
1158 * by the driver (raise frequencies under heavy loads, and lower for
1159 * lighter loads). Hard limits are those imposed by the hardware.
1160 *
1161 * A distinction is made for overclocking, which is never enabled by
1162 * default, and is considered to be above the hard limit if it's
1163 * possible at all.
1164 */
1165 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1166 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1167 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1168 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1169 u8 min_freq; /* AKA RPn. Minimum frequency */
1170 u8 boost_freq; /* Frequency to request when wait boosting */
1171 u8 idle_freq; /* Frequency to request when we are idle */
1172 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1173 u8 rp1_freq; /* "less than" RP0 power/freqency */
1174 u8 rp0_freq; /* Non-overclocked max frequency. */
1175 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1176
1177 u8 up_threshold; /* Current %busy required to uplock */
1178 u8 down_threshold; /* Current %busy required to downclock */
1179
1180 int last_adj;
1181 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1182
1183 spinlock_t client_lock;
1184 struct list_head clients;
1185 bool client_boost;
1186
1187 bool enabled;
1188 struct delayed_work autoenable_work;
1189 unsigned boosts;
1190
1191 /* manual wa residency calculations */
1192 struct intel_rps_ei up_ei, down_ei;
1193
1194 /*
1195 * Protects RPS/RC6 register access and PCU communication.
1196 * Must be taken after struct_mutex if nested. Note that
1197 * this lock may be held for long periods of time when
1198 * talking to hw - so only take it when talking to hw!
1199 */
1200 struct mutex hw_lock;
1201 };
1202
1203 /* defined intel_pm.c */
1204 extern spinlock_t mchdev_lock;
1205
1206 struct intel_ilk_power_mgmt {
1207 u8 cur_delay;
1208 u8 min_delay;
1209 u8 max_delay;
1210 u8 fmax;
1211 u8 fstart;
1212
1213 u64 last_count1;
1214 unsigned long last_time1;
1215 unsigned long chipset_power;
1216 u64 last_count2;
1217 u64 last_time2;
1218 unsigned long gfx_power;
1219 u8 corr;
1220
1221 int c_m;
1222 int r_t;
1223 };
1224
1225 struct drm_i915_private;
1226 struct i915_power_well;
1227
1228 struct i915_power_well_ops {
1229 /*
1230 * Synchronize the well's hw state to match the current sw state, for
1231 * example enable/disable it based on the current refcount. Called
1232 * during driver init and resume time, possibly after first calling
1233 * the enable/disable handlers.
1234 */
1235 void (*sync_hw)(struct drm_i915_private *dev_priv,
1236 struct i915_power_well *power_well);
1237 /*
1238 * Enable the well and resources that depend on it (for example
1239 * interrupts located on the well). Called after the 0->1 refcount
1240 * transition.
1241 */
1242 void (*enable)(struct drm_i915_private *dev_priv,
1243 struct i915_power_well *power_well);
1244 /*
1245 * Disable the well and resources that depend on it. Called after
1246 * the 1->0 refcount transition.
1247 */
1248 void (*disable)(struct drm_i915_private *dev_priv,
1249 struct i915_power_well *power_well);
1250 /* Returns the hw enabled state. */
1251 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1252 struct i915_power_well *power_well);
1253 };
1254
1255 /* Power well structure for haswell */
1256 struct i915_power_well {
1257 const char *name;
1258 bool always_on;
1259 /* power well enable/disable usage count */
1260 int count;
1261 /* cached hw enabled state */
1262 bool hw_enabled;
1263 unsigned long domains;
1264 unsigned long data;
1265 const struct i915_power_well_ops *ops;
1266 };
1267
1268 struct i915_power_domains {
1269 /*
1270 * Power wells needed for initialization at driver init and suspend
1271 * time are on. They are kept on until after the first modeset.
1272 */
1273 bool init_power_on;
1274 bool initializing;
1275 int power_well_count;
1276
1277 struct mutex lock;
1278 int domain_use_count[POWER_DOMAIN_NUM];
1279 struct i915_power_well *power_wells;
1280 };
1281
1282 #define MAX_L3_SLICES 2
1283 struct intel_l3_parity {
1284 u32 *remap_info[MAX_L3_SLICES];
1285 struct work_struct error_work;
1286 int which_slice;
1287 };
1288
1289 struct i915_gem_mm {
1290 /** Memory allocator for GTT stolen memory */
1291 struct drm_mm stolen;
1292 /** Protects the usage of the GTT stolen memory allocator. This is
1293 * always the inner lock when overlapping with struct_mutex. */
1294 struct mutex stolen_lock;
1295
1296 /** List of all objects in gtt_space. Used to restore gtt
1297 * mappings on resume */
1298 struct list_head bound_list;
1299 /**
1300 * List of objects which are not bound to the GTT (thus
1301 * are idle and not used by the GPU) but still have
1302 * (presumably uncached) pages still attached.
1303 */
1304 struct list_head unbound_list;
1305
1306 /** Usable portion of the GTT for GEM */
1307 unsigned long stolen_base; /* limited to low memory (32-bit) */
1308
1309 /** PPGTT used for aliasing the PPGTT with the GTT */
1310 struct i915_hw_ppgtt *aliasing_ppgtt;
1311
1312 struct notifier_block oom_notifier;
1313 struct notifier_block vmap_notifier;
1314 struct shrinker shrinker;
1315
1316 /** LRU list of objects with fence regs on them. */
1317 struct list_head fence_list;
1318
1319 /**
1320 * Are we in a non-interruptible section of code like
1321 * modesetting?
1322 */
1323 bool interruptible;
1324
1325 /* the indicator for dispatch video commands on two BSD rings */
1326 unsigned int bsd_engine_dispatch_index;
1327
1328 /** Bit 6 swizzling required for X tiling */
1329 uint32_t bit_6_swizzle_x;
1330 /** Bit 6 swizzling required for Y tiling */
1331 uint32_t bit_6_swizzle_y;
1332
1333 /* accounting, useful for userland debugging */
1334 spinlock_t object_stat_lock;
1335 size_t object_memory;
1336 u32 object_count;
1337 };
1338
1339 struct drm_i915_error_state_buf {
1340 struct drm_i915_private *i915;
1341 unsigned bytes;
1342 unsigned size;
1343 int err;
1344 u8 *buf;
1345 loff_t start;
1346 loff_t pos;
1347 };
1348
1349 struct i915_error_state_file_priv {
1350 struct drm_device *dev;
1351 struct drm_i915_error_state *error;
1352 };
1353
1354 struct i915_gpu_error {
1355 /* For hangcheck timer */
1356 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1357 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1358 /* Hang gpu twice in this window and your context gets banned */
1359 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1360
1361 struct delayed_work hangcheck_work;
1362
1363 /* For reset and error_state handling. */
1364 spinlock_t lock;
1365 /* Protected by the above dev->gpu_error.lock. */
1366 struct drm_i915_error_state *first_error;
1367
1368 unsigned long missed_irq_rings;
1369
1370 /**
1371 * State variable controlling the reset flow and count
1372 *
1373 * This is a counter which gets incremented when reset is triggered,
1374 * and again when reset has been handled. So odd values (lowest bit set)
1375 * means that reset is in progress and even values that
1376 * (reset_counter >> 1):th reset was successfully completed.
1377 *
1378 * If reset is not completed succesfully, the I915_WEDGE bit is
1379 * set meaning that hardware is terminally sour and there is no
1380 * recovery. All waiters on the reset_queue will be woken when
1381 * that happens.
1382 *
1383 * This counter is used by the wait_seqno code to notice that reset
1384 * event happened and it needs to restart the entire ioctl (since most
1385 * likely the seqno it waited for won't ever signal anytime soon).
1386 *
1387 * This is important for lock-free wait paths, where no contended lock
1388 * naturally enforces the correct ordering between the bail-out of the
1389 * waiter and the gpu reset work code.
1390 */
1391 atomic_t reset_counter;
1392
1393 #define I915_RESET_IN_PROGRESS_FLAG 1
1394 #define I915_WEDGED (1 << 31)
1395
1396 /**
1397 * Waitqueue to signal when a hang is detected. Used to for waiters
1398 * to release the struct_mutex for the reset to procede.
1399 */
1400 wait_queue_head_t wait_queue;
1401
1402 /**
1403 * Waitqueue to signal when the reset has completed. Used by clients
1404 * that wait for dev_priv->mm.wedged to settle.
1405 */
1406 wait_queue_head_t reset_queue;
1407
1408 /* For missed irq/seqno simulation. */
1409 unsigned long test_irq_rings;
1410 };
1411
1412 enum modeset_restore {
1413 MODESET_ON_LID_OPEN,
1414 MODESET_DONE,
1415 MODESET_SUSPENDED,
1416 };
1417
1418 #define DP_AUX_A 0x40
1419 #define DP_AUX_B 0x10
1420 #define DP_AUX_C 0x20
1421 #define DP_AUX_D 0x30
1422
1423 #define DDC_PIN_B 0x05
1424 #define DDC_PIN_C 0x04
1425 #define DDC_PIN_D 0x06
1426
1427 struct ddi_vbt_port_info {
1428 /*
1429 * This is an index in the HDMI/DVI DDI buffer translation table.
1430 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1431 * populate this field.
1432 */
1433 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1434 uint8_t hdmi_level_shift;
1435
1436 uint8_t supports_dvi:1;
1437 uint8_t supports_hdmi:1;
1438 uint8_t supports_dp:1;
1439
1440 uint8_t alternate_aux_channel;
1441 uint8_t alternate_ddc_pin;
1442
1443 uint8_t dp_boost_level;
1444 uint8_t hdmi_boost_level;
1445 };
1446
1447 enum psr_lines_to_wait {
1448 PSR_0_LINES_TO_WAIT = 0,
1449 PSR_1_LINE_TO_WAIT,
1450 PSR_4_LINES_TO_WAIT,
1451 PSR_8_LINES_TO_WAIT
1452 };
1453
1454 struct intel_vbt_data {
1455 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1456 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1457
1458 /* Feature bits */
1459 unsigned int int_tv_support:1;
1460 unsigned int lvds_dither:1;
1461 unsigned int lvds_vbt:1;
1462 unsigned int int_crt_support:1;
1463 unsigned int lvds_use_ssc:1;
1464 unsigned int display_clock_mode:1;
1465 unsigned int fdi_rx_polarity_inverted:1;
1466 unsigned int panel_type:4;
1467 int lvds_ssc_freq;
1468 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1469
1470 enum drrs_support_type drrs_type;
1471
1472 struct {
1473 int rate;
1474 int lanes;
1475 int preemphasis;
1476 int vswing;
1477 bool low_vswing;
1478 bool initialized;
1479 bool support;
1480 int bpp;
1481 struct edp_power_seq pps;
1482 } edp;
1483
1484 struct {
1485 bool full_link;
1486 bool require_aux_wakeup;
1487 int idle_frames;
1488 enum psr_lines_to_wait lines_to_wait;
1489 int tp1_wakeup_time;
1490 int tp2_tp3_wakeup_time;
1491 } psr;
1492
1493 struct {
1494 u16 pwm_freq_hz;
1495 bool present;
1496 bool active_low_pwm;
1497 u8 min_brightness; /* min_brightness/255 of max */
1498 enum intel_backlight_type type;
1499 } backlight;
1500
1501 /* MIPI DSI */
1502 struct {
1503 u16 panel_id;
1504 struct mipi_config *config;
1505 struct mipi_pps_data *pps;
1506 u8 seq_version;
1507 u32 size;
1508 u8 *data;
1509 const u8 *sequence[MIPI_SEQ_MAX];
1510 } dsi;
1511
1512 int crt_ddc_pin;
1513
1514 int child_dev_num;
1515 union child_device_config *child_dev;
1516
1517 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1518 struct sdvo_device_mapping sdvo_mappings[2];
1519 };
1520
1521 enum intel_ddb_partitioning {
1522 INTEL_DDB_PART_1_2,
1523 INTEL_DDB_PART_5_6, /* IVB+ */
1524 };
1525
1526 struct intel_wm_level {
1527 bool enable;
1528 uint32_t pri_val;
1529 uint32_t spr_val;
1530 uint32_t cur_val;
1531 uint32_t fbc_val;
1532 };
1533
1534 struct ilk_wm_values {
1535 uint32_t wm_pipe[3];
1536 uint32_t wm_lp[3];
1537 uint32_t wm_lp_spr[3];
1538 uint32_t wm_linetime[3];
1539 bool enable_fbc_wm;
1540 enum intel_ddb_partitioning partitioning;
1541 };
1542
1543 struct vlv_pipe_wm {
1544 uint16_t primary;
1545 uint16_t sprite[2];
1546 uint8_t cursor;
1547 };
1548
1549 struct vlv_sr_wm {
1550 uint16_t plane;
1551 uint8_t cursor;
1552 };
1553
1554 struct vlv_wm_values {
1555 struct vlv_pipe_wm pipe[3];
1556 struct vlv_sr_wm sr;
1557 struct {
1558 uint8_t cursor;
1559 uint8_t sprite[2];
1560 uint8_t primary;
1561 } ddl[3];
1562 uint8_t level;
1563 bool cxsr;
1564 };
1565
1566 struct skl_ddb_entry {
1567 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1568 };
1569
1570 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1571 {
1572 return entry->end - entry->start;
1573 }
1574
1575 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1576 const struct skl_ddb_entry *e2)
1577 {
1578 if (e1->start == e2->start && e1->end == e2->end)
1579 return true;
1580
1581 return false;
1582 }
1583
1584 struct skl_ddb_allocation {
1585 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1586 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1587 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1588 };
1589
1590 struct skl_wm_values {
1591 unsigned dirty_pipes;
1592 struct skl_ddb_allocation ddb;
1593 uint32_t wm_linetime[I915_MAX_PIPES];
1594 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1595 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1596 };
1597
1598 struct skl_wm_level {
1599 bool plane_en[I915_MAX_PLANES];
1600 uint16_t plane_res_b[I915_MAX_PLANES];
1601 uint8_t plane_res_l[I915_MAX_PLANES];
1602 };
1603
1604 /*
1605 * This struct helps tracking the state needed for runtime PM, which puts the
1606 * device in PCI D3 state. Notice that when this happens, nothing on the
1607 * graphics device works, even register access, so we don't get interrupts nor
1608 * anything else.
1609 *
1610 * Every piece of our code that needs to actually touch the hardware needs to
1611 * either call intel_runtime_pm_get or call intel_display_power_get with the
1612 * appropriate power domain.
1613 *
1614 * Our driver uses the autosuspend delay feature, which means we'll only really
1615 * suspend if we stay with zero refcount for a certain amount of time. The
1616 * default value is currently very conservative (see intel_runtime_pm_enable), but
1617 * it can be changed with the standard runtime PM files from sysfs.
1618 *
1619 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1620 * goes back to false exactly before we reenable the IRQs. We use this variable
1621 * to check if someone is trying to enable/disable IRQs while they're supposed
1622 * to be disabled. This shouldn't happen and we'll print some error messages in
1623 * case it happens.
1624 *
1625 * For more, read the Documentation/power/runtime_pm.txt.
1626 */
1627 struct i915_runtime_pm {
1628 atomic_t wakeref_count;
1629 atomic_t atomic_seq;
1630 bool suspended;
1631 bool irqs_enabled;
1632 };
1633
1634 enum intel_pipe_crc_source {
1635 INTEL_PIPE_CRC_SOURCE_NONE,
1636 INTEL_PIPE_CRC_SOURCE_PLANE1,
1637 INTEL_PIPE_CRC_SOURCE_PLANE2,
1638 INTEL_PIPE_CRC_SOURCE_PF,
1639 INTEL_PIPE_CRC_SOURCE_PIPE,
1640 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1641 INTEL_PIPE_CRC_SOURCE_TV,
1642 INTEL_PIPE_CRC_SOURCE_DP_B,
1643 INTEL_PIPE_CRC_SOURCE_DP_C,
1644 INTEL_PIPE_CRC_SOURCE_DP_D,
1645 INTEL_PIPE_CRC_SOURCE_AUTO,
1646 INTEL_PIPE_CRC_SOURCE_MAX,
1647 };
1648
1649 struct intel_pipe_crc_entry {
1650 uint32_t frame;
1651 uint32_t crc[5];
1652 };
1653
1654 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1655 struct intel_pipe_crc {
1656 spinlock_t lock;
1657 bool opened; /* exclusive access to the result file */
1658 struct intel_pipe_crc_entry *entries;
1659 enum intel_pipe_crc_source source;
1660 int head, tail;
1661 wait_queue_head_t wq;
1662 };
1663
1664 struct i915_frontbuffer_tracking {
1665 spinlock_t lock;
1666
1667 /*
1668 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1669 * scheduled flips.
1670 */
1671 unsigned busy_bits;
1672 unsigned flip_bits;
1673 };
1674
1675 struct i915_wa_reg {
1676 i915_reg_t addr;
1677 u32 value;
1678 /* bitmask representing WA bits */
1679 u32 mask;
1680 };
1681
1682 /*
1683 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1684 * allowing it for RCS as we don't foresee any requirement of having
1685 * a whitelist for other engines. When it is really required for
1686 * other engines then the limit need to be increased.
1687 */
1688 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1689
1690 struct i915_workarounds {
1691 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1692 u32 count;
1693 u32 hw_whitelist_count[I915_NUM_ENGINES];
1694 };
1695
1696 struct i915_virtual_gpu {
1697 bool active;
1698 };
1699
1700 /* used in computing the new watermarks state */
1701 struct intel_wm_config {
1702 unsigned int num_pipes_active;
1703 bool sprites_enabled;
1704 bool sprites_scaled;
1705 };
1706
1707 struct drm_i915_private {
1708 struct drm_device drm;
1709
1710 struct kmem_cache *objects;
1711 struct kmem_cache *vmas;
1712 struct kmem_cache *requests;
1713
1714 const struct intel_device_info info;
1715
1716 int relative_constants_mode;
1717
1718 void __iomem *regs;
1719
1720 struct intel_uncore uncore;
1721
1722 struct i915_virtual_gpu vgpu;
1723
1724 struct intel_gvt gvt;
1725
1726 struct intel_guc guc;
1727
1728 struct intel_csr csr;
1729
1730 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1731
1732 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1733 * controller on different i2c buses. */
1734 struct mutex gmbus_mutex;
1735
1736 /**
1737 * Base address of the gmbus and gpio block.
1738 */
1739 uint32_t gpio_mmio_base;
1740
1741 /* MMIO base address for MIPI regs */
1742 uint32_t mipi_mmio_base;
1743
1744 uint32_t psr_mmio_base;
1745
1746 uint32_t pps_mmio_base;
1747
1748 wait_queue_head_t gmbus_wait_queue;
1749
1750 struct pci_dev *bridge_dev;
1751 struct i915_gem_context *kernel_context;
1752 struct intel_engine_cs engine[I915_NUM_ENGINES];
1753 struct drm_i915_gem_object *semaphore_obj;
1754 u32 next_seqno;
1755
1756 struct drm_dma_handle *status_page_dmah;
1757 struct resource mch_res;
1758
1759 /* protects the irq masks */
1760 spinlock_t irq_lock;
1761
1762 /* protects the mmio flip data */
1763 spinlock_t mmio_flip_lock;
1764
1765 bool display_irqs_enabled;
1766
1767 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1768 struct pm_qos_request pm_qos;
1769
1770 /* Sideband mailbox protection */
1771 struct mutex sb_lock;
1772
1773 /** Cached value of IMR to avoid reads in updating the bitfield */
1774 union {
1775 u32 irq_mask;
1776 u32 de_irq_mask[I915_MAX_PIPES];
1777 };
1778 u32 gt_irq_mask;
1779 u32 pm_irq_mask;
1780 u32 pm_rps_events;
1781 u32 pipestat_irq_mask[I915_MAX_PIPES];
1782
1783 struct i915_hotplug hotplug;
1784 struct intel_fbc fbc;
1785 struct i915_drrs drrs;
1786 struct intel_opregion opregion;
1787 struct intel_vbt_data vbt;
1788
1789 bool preserve_bios_swizzle;
1790
1791 /* overlay */
1792 struct intel_overlay *overlay;
1793
1794 /* backlight registers and fields in struct intel_panel */
1795 struct mutex backlight_lock;
1796
1797 /* LVDS info */
1798 bool no_aux_handshake;
1799
1800 /* protects panel power sequencer state */
1801 struct mutex pps_mutex;
1802
1803 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1804 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1805
1806 unsigned int fsb_freq, mem_freq, is_ddr3;
1807 unsigned int skl_preferred_vco_freq;
1808 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1809 unsigned int max_dotclk_freq;
1810 unsigned int rawclk_freq;
1811 unsigned int hpll_freq;
1812 unsigned int czclk_freq;
1813
1814 struct {
1815 unsigned int vco, ref;
1816 } cdclk_pll;
1817
1818 /**
1819 * wq - Driver workqueue for GEM.
1820 *
1821 * NOTE: Work items scheduled here are not allowed to grab any modeset
1822 * locks, for otherwise the flushing done in the pageflip code will
1823 * result in deadlocks.
1824 */
1825 struct workqueue_struct *wq;
1826
1827 /* Display functions */
1828 struct drm_i915_display_funcs display;
1829
1830 /* PCH chipset type */
1831 enum intel_pch pch_type;
1832 unsigned short pch_id;
1833
1834 unsigned long quirks;
1835
1836 enum modeset_restore modeset_restore;
1837 struct mutex modeset_restore_lock;
1838 struct drm_atomic_state *modeset_restore_state;
1839 struct drm_modeset_acquire_ctx reset_ctx;
1840
1841 struct list_head vm_list; /* Global list of all address spaces */
1842 struct i915_ggtt ggtt; /* VM representing the global address space */
1843
1844 struct i915_gem_mm mm;
1845 DECLARE_HASHTABLE(mm_structs, 7);
1846 struct mutex mm_lock;
1847
1848 /* The hw wants to have a stable context identifier for the lifetime
1849 * of the context (for OA, PASID, faults, etc). This is limited
1850 * in execlists to 21 bits.
1851 */
1852 struct ida context_hw_ida;
1853 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1854
1855 /* Kernel Modesetting */
1856
1857 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1858 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1859 wait_queue_head_t pending_flip_queue;
1860
1861 #ifdef CONFIG_DEBUG_FS
1862 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1863 #endif
1864
1865 /* dpll and cdclk state is protected by connection_mutex */
1866 int num_shared_dpll;
1867 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1868 const struct intel_dpll_mgr *dpll_mgr;
1869
1870 /*
1871 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1872 * Must be global rather than per dpll, because on some platforms
1873 * plls share registers.
1874 */
1875 struct mutex dpll_lock;
1876
1877 unsigned int active_crtcs;
1878 unsigned int min_pixclk[I915_MAX_PIPES];
1879
1880 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1881
1882 struct i915_workarounds workarounds;
1883
1884 struct i915_frontbuffer_tracking fb_tracking;
1885
1886 u16 orig_clock;
1887
1888 bool mchbar_need_disable;
1889
1890 struct intel_l3_parity l3_parity;
1891
1892 /* Cannot be determined by PCIID. You must always read a register. */
1893 u32 edram_cap;
1894
1895 /* gen6+ rps state */
1896 struct intel_gen6_power_mgmt rps;
1897
1898 /* ilk-only ips/rps state. Everything in here is protected by the global
1899 * mchdev_lock in intel_pm.c */
1900 struct intel_ilk_power_mgmt ips;
1901
1902 struct i915_power_domains power_domains;
1903
1904 struct i915_psr psr;
1905
1906 struct i915_gpu_error gpu_error;
1907
1908 struct drm_i915_gem_object *vlv_pctx;
1909
1910 #ifdef CONFIG_DRM_FBDEV_EMULATION
1911 /* list of fbdev register on this device */
1912 struct intel_fbdev *fbdev;
1913 struct work_struct fbdev_suspend_work;
1914 #endif
1915
1916 struct drm_property *broadcast_rgb_property;
1917 struct drm_property *force_audio_property;
1918
1919 /* hda/i915 audio component */
1920 struct i915_audio_component *audio_component;
1921 bool audio_component_registered;
1922 /**
1923 * av_mutex - mutex for audio/video sync
1924 *
1925 */
1926 struct mutex av_mutex;
1927
1928 uint32_t hw_context_size;
1929 struct list_head context_list;
1930
1931 u32 fdi_rx_config;
1932
1933 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1934 u32 chv_phy_control;
1935 /*
1936 * Shadows for CHV DPLL_MD regs to keep the state
1937 * checker somewhat working in the presence hardware
1938 * crappiness (can't read out DPLL_MD for pipes B & C).
1939 */
1940 u32 chv_dpll_md[I915_MAX_PIPES];
1941 u32 bxt_phy_grc;
1942
1943 u32 suspend_count;
1944 bool suspended_to_idle;
1945 struct i915_suspend_saved_registers regfile;
1946 struct vlv_s0ix_state vlv_s0ix_state;
1947
1948 struct {
1949 /*
1950 * Raw watermark latency values:
1951 * in 0.1us units for WM0,
1952 * in 0.5us units for WM1+.
1953 */
1954 /* primary */
1955 uint16_t pri_latency[5];
1956 /* sprite */
1957 uint16_t spr_latency[5];
1958 /* cursor */
1959 uint16_t cur_latency[5];
1960 /*
1961 * Raw watermark memory latency values
1962 * for SKL for all 8 levels
1963 * in 1us units.
1964 */
1965 uint16_t skl_latency[8];
1966
1967 /*
1968 * The skl_wm_values structure is a bit too big for stack
1969 * allocation, so we keep the staging struct where we store
1970 * intermediate results here instead.
1971 */
1972 struct skl_wm_values skl_results;
1973
1974 /* current hardware state */
1975 union {
1976 struct ilk_wm_values hw;
1977 struct skl_wm_values skl_hw;
1978 struct vlv_wm_values vlv;
1979 };
1980
1981 uint8_t max_level;
1982
1983 /*
1984 * Should be held around atomic WM register writing; also
1985 * protects * intel_crtc->wm.active and
1986 * cstate->wm.need_postvbl_update.
1987 */
1988 struct mutex wm_mutex;
1989
1990 /*
1991 * Set during HW readout of watermarks/DDB. Some platforms
1992 * need to know when we're still using BIOS-provided values
1993 * (which we don't fully trust).
1994 */
1995 bool distrust_bios_wm;
1996 } wm;
1997
1998 struct i915_runtime_pm pm;
1999
2000 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2001 struct {
2002 void (*cleanup_engine)(struct intel_engine_cs *engine);
2003
2004 /**
2005 * Is the GPU currently considered idle, or busy executing
2006 * userspace requests? Whilst idle, we allow runtime power
2007 * management to power down the hardware and display clocks.
2008 * In order to reduce the effect on performance, there
2009 * is a slight delay before we do so.
2010 */
2011 unsigned int active_engines;
2012 bool awake;
2013
2014 /**
2015 * We leave the user IRQ off as much as possible,
2016 * but this means that requests will finish and never
2017 * be retired once the system goes idle. Set a timer to
2018 * fire periodically while the ring is running. When it
2019 * fires, go retire requests.
2020 */
2021 struct delayed_work retire_work;
2022
2023 /**
2024 * When we detect an idle GPU, we want to turn on
2025 * powersaving features. So once we see that there
2026 * are no more requests outstanding and no more
2027 * arrive within a small period of time, we fire
2028 * off the idle_work.
2029 */
2030 struct delayed_work idle_work;
2031 } gt;
2032
2033 /* perform PHY state sanity checks? */
2034 bool chv_phy_assert[2];
2035
2036 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2037
2038 /*
2039 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2040 * will be rejected. Instead look for a better place.
2041 */
2042 };
2043
2044 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2045 {
2046 return container_of(dev, struct drm_i915_private, drm);
2047 }
2048
2049 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2050 {
2051 return to_i915(dev_get_drvdata(dev));
2052 }
2053
2054 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2055 {
2056 return container_of(guc, struct drm_i915_private, guc);
2057 }
2058
2059 /* Simple iterator over all initialised engines */
2060 #define for_each_engine(engine__, dev_priv__) \
2061 for ((engine__) = &(dev_priv__)->engine[0]; \
2062 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2063 (engine__)++) \
2064 for_each_if (intel_engine_initialized(engine__))
2065
2066 /* Iterator with engine_id */
2067 #define for_each_engine_id(engine__, dev_priv__, id__) \
2068 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2069 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2070 (engine__)++) \
2071 for_each_if (((id__) = (engine__)->id, \
2072 intel_engine_initialized(engine__)))
2073
2074 /* Iterator over subset of engines selected by mask */
2075 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2076 for ((engine__) = &(dev_priv__)->engine[0]; \
2077 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2078 (engine__)++) \
2079 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2080 intel_engine_initialized(engine__))
2081
2082 enum hdmi_force_audio {
2083 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2084 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2085 HDMI_AUDIO_AUTO, /* trust EDID */
2086 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2087 };
2088
2089 #define I915_GTT_OFFSET_NONE ((u32)-1)
2090
2091 struct drm_i915_gem_object_ops {
2092 unsigned int flags;
2093 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2094
2095 /* Interface between the GEM object and its backing storage.
2096 * get_pages() is called once prior to the use of the associated set
2097 * of pages before to binding them into the GTT, and put_pages() is
2098 * called after we no longer need them. As we expect there to be
2099 * associated cost with migrating pages between the backing storage
2100 * and making them available for the GPU (e.g. clflush), we may hold
2101 * onto the pages after they are no longer referenced by the GPU
2102 * in case they may be used again shortly (for example migrating the
2103 * pages to a different memory domain within the GTT). put_pages()
2104 * will therefore most likely be called when the object itself is
2105 * being released or under memory pressure (where we attempt to
2106 * reap pages for the shrinker).
2107 */
2108 int (*get_pages)(struct drm_i915_gem_object *);
2109 void (*put_pages)(struct drm_i915_gem_object *);
2110
2111 int (*dmabuf_export)(struct drm_i915_gem_object *);
2112 void (*release)(struct drm_i915_gem_object *);
2113 };
2114
2115 /*
2116 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2117 * considered to be the frontbuffer for the given plane interface-wise. This
2118 * doesn't mean that the hw necessarily already scans it out, but that any
2119 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2120 *
2121 * We have one bit per pipe and per scanout plane type.
2122 */
2123 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2124 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2125 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2126 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2127 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2128 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2129 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2130 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2131 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2132 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2133 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2134 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2135
2136 struct drm_i915_gem_object {
2137 struct drm_gem_object base;
2138
2139 const struct drm_i915_gem_object_ops *ops;
2140
2141 /** List of VMAs backed by this object */
2142 struct list_head vma_list;
2143
2144 /** Stolen memory for this object, instead of being backed by shmem. */
2145 struct drm_mm_node *stolen;
2146 struct list_head global_list;
2147
2148 /** Used in execbuf to temporarily hold a ref */
2149 struct list_head obj_exec_link;
2150
2151 struct list_head batch_pool_link;
2152
2153 unsigned long flags;
2154 /**
2155 * This is set if the object is on the active lists (has pending
2156 * rendering and so a non-zero seqno), and is not set if it i s on
2157 * inactive (ready to be unbound) list.
2158 */
2159 #define I915_BO_ACTIVE_SHIFT 0
2160 #define I915_BO_ACTIVE_MASK ((1 << I915_NUM_ENGINES) - 1)
2161 #define __I915_BO_ACTIVE(bo) \
2162 ((READ_ONCE((bo)->flags) >> I915_BO_ACTIVE_SHIFT) & I915_BO_ACTIVE_MASK)
2163
2164 /**
2165 * This is set if the object has been written to since last bound
2166 * to the GTT
2167 */
2168 unsigned int dirty:1;
2169
2170 /**
2171 * Fence register bits (if any) for this object. Will be set
2172 * as needed when mapped into the GTT.
2173 * Protected by dev->struct_mutex.
2174 */
2175 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2176
2177 /**
2178 * Advice: are the backing pages purgeable?
2179 */
2180 unsigned int madv:2;
2181
2182 /**
2183 * Whether the tiling parameters for the currently associated fence
2184 * register have changed. Note that for the purposes of tracking
2185 * tiling changes we also treat the unfenced register, the register
2186 * slot that the object occupies whilst it executes a fenced
2187 * command (such as BLT on gen2/3), as a "fence".
2188 */
2189 unsigned int fence_dirty:1;
2190
2191 /**
2192 * Is the object at the current location in the gtt mappable and
2193 * fenceable? Used to avoid costly recalculations.
2194 */
2195 unsigned int map_and_fenceable:1;
2196
2197 /**
2198 * Whether the current gtt mapping needs to be mappable (and isn't just
2199 * mappable by accident). Track pin and fault separate for a more
2200 * accurate mappable working set.
2201 */
2202 unsigned int fault_mappable:1;
2203
2204 /*
2205 * Is the object to be mapped as read-only to the GPU
2206 * Only honoured if hardware has relevant pte bit
2207 */
2208 unsigned long gt_ro:1;
2209 unsigned int cache_level:3;
2210 unsigned int cache_dirty:1;
2211
2212 atomic_t frontbuffer_bits;
2213
2214 /** Current tiling stride for the object, if it's tiled. */
2215 unsigned int tiling_and_stride;
2216 #define FENCE_MINIMUM_STRIDE 128 /* See i915_tiling_ok() */
2217 #define TILING_MASK (FENCE_MINIMUM_STRIDE-1)
2218 #define STRIDE_MASK (~TILING_MASK)
2219
2220 unsigned int has_wc_mmap;
2221 /** Count of VMA actually bound by this object */
2222 unsigned int bind_count;
2223 unsigned int pin_display;
2224
2225 struct sg_table *pages;
2226 int pages_pin_count;
2227 struct get_page {
2228 struct scatterlist *sg;
2229 int last;
2230 } get_page;
2231 void *mapping;
2232
2233 /** Breadcrumb of last rendering to the buffer.
2234 * There can only be one writer, but we allow for multiple readers.
2235 * If there is a writer that necessarily implies that all other
2236 * read requests are complete - but we may only be lazily clearing
2237 * the read requests. A read request is naturally the most recent
2238 * request on a ring, so we may have two different write and read
2239 * requests on one ring where the write request is older than the
2240 * read request. This allows for the CPU to read from an active
2241 * buffer by only waiting for the write to complete.
2242 */
2243 struct i915_gem_active last_read[I915_NUM_ENGINES];
2244 struct i915_gem_active last_write;
2245 struct i915_gem_active last_fence;
2246
2247 /** References from framebuffers, locks out tiling changes. */
2248 unsigned long framebuffer_references;
2249
2250 /** Record of address bit 17 of each page at last unbind. */
2251 unsigned long *bit_17;
2252
2253 union {
2254 /** for phy allocated objects */
2255 struct drm_dma_handle *phys_handle;
2256
2257 struct i915_gem_userptr {
2258 uintptr_t ptr;
2259 unsigned read_only :1;
2260 unsigned workers :4;
2261 #define I915_GEM_USERPTR_MAX_WORKERS 15
2262
2263 struct i915_mm_struct *mm;
2264 struct i915_mmu_object *mmu_object;
2265 struct work_struct *work;
2266 } userptr;
2267 };
2268 };
2269
2270 static inline struct drm_i915_gem_object *
2271 to_intel_bo(struct drm_gem_object *gem)
2272 {
2273 /* Assert that to_intel_bo(NULL) == NULL */
2274 BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
2275
2276 return container_of(gem, struct drm_i915_gem_object, base);
2277 }
2278
2279 static inline struct drm_i915_gem_object *
2280 i915_gem_object_lookup(struct drm_file *file, u32 handle)
2281 {
2282 return to_intel_bo(drm_gem_object_lookup(file, handle));
2283 }
2284
2285 __deprecated
2286 extern struct drm_gem_object *
2287 drm_gem_object_lookup(struct drm_file *file, u32 handle);
2288
2289 __attribute__((nonnull))
2290 static inline struct drm_i915_gem_object *
2291 i915_gem_object_get(struct drm_i915_gem_object *obj)
2292 {
2293 drm_gem_object_reference(&obj->base);
2294 return obj;
2295 }
2296
2297 __deprecated
2298 extern void drm_gem_object_reference(struct drm_gem_object *);
2299
2300 __attribute__((nonnull))
2301 static inline void
2302 i915_gem_object_put(struct drm_i915_gem_object *obj)
2303 {
2304 drm_gem_object_unreference(&obj->base);
2305 }
2306
2307 __deprecated
2308 extern void drm_gem_object_unreference(struct drm_gem_object *);
2309
2310 __attribute__((nonnull))
2311 static inline void
2312 i915_gem_object_put_unlocked(struct drm_i915_gem_object *obj)
2313 {
2314 drm_gem_object_unreference_unlocked(&obj->base);
2315 }
2316
2317 __deprecated
2318 extern void drm_gem_object_unreference_unlocked(struct drm_gem_object *);
2319
2320 static inline bool
2321 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2322 {
2323 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2324 }
2325
2326 static inline unsigned long
2327 i915_gem_object_get_active(const struct drm_i915_gem_object *obj)
2328 {
2329 return (obj->flags >> I915_BO_ACTIVE_SHIFT) & I915_BO_ACTIVE_MASK;
2330 }
2331
2332 static inline bool
2333 i915_gem_object_is_active(const struct drm_i915_gem_object *obj)
2334 {
2335 return i915_gem_object_get_active(obj);
2336 }
2337
2338 static inline void
2339 i915_gem_object_set_active(struct drm_i915_gem_object *obj, int engine)
2340 {
2341 obj->flags |= BIT(engine + I915_BO_ACTIVE_SHIFT);
2342 }
2343
2344 static inline void
2345 i915_gem_object_clear_active(struct drm_i915_gem_object *obj, int engine)
2346 {
2347 obj->flags &= ~BIT(engine + I915_BO_ACTIVE_SHIFT);
2348 }
2349
2350 static inline bool
2351 i915_gem_object_has_active_engine(const struct drm_i915_gem_object *obj,
2352 int engine)
2353 {
2354 return obj->flags & BIT(engine + I915_BO_ACTIVE_SHIFT);
2355 }
2356
2357 static inline unsigned int
2358 i915_gem_object_get_tiling(struct drm_i915_gem_object *obj)
2359 {
2360 return obj->tiling_and_stride & TILING_MASK;
2361 }
2362
2363 static inline bool
2364 i915_gem_object_is_tiled(struct drm_i915_gem_object *obj)
2365 {
2366 return i915_gem_object_get_tiling(obj) != I915_TILING_NONE;
2367 }
2368
2369 static inline unsigned int
2370 i915_gem_object_get_stride(struct drm_i915_gem_object *obj)
2371 {
2372 return obj->tiling_and_stride & STRIDE_MASK;
2373 }
2374
2375 /*
2376 * Optimised SGL iterator for GEM objects
2377 */
2378 static __always_inline struct sgt_iter {
2379 struct scatterlist *sgp;
2380 union {
2381 unsigned long pfn;
2382 dma_addr_t dma;
2383 };
2384 unsigned int curr;
2385 unsigned int max;
2386 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2387 struct sgt_iter s = { .sgp = sgl };
2388
2389 if (s.sgp) {
2390 s.max = s.curr = s.sgp->offset;
2391 s.max += s.sgp->length;
2392 if (dma)
2393 s.dma = sg_dma_address(s.sgp);
2394 else
2395 s.pfn = page_to_pfn(sg_page(s.sgp));
2396 }
2397
2398 return s;
2399 }
2400
2401 /**
2402 * __sg_next - return the next scatterlist entry in a list
2403 * @sg: The current sg entry
2404 *
2405 * Description:
2406 * If the entry is the last, return NULL; otherwise, step to the next
2407 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2408 * otherwise just return the pointer to the current element.
2409 **/
2410 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2411 {
2412 #ifdef CONFIG_DEBUG_SG
2413 BUG_ON(sg->sg_magic != SG_MAGIC);
2414 #endif
2415 return sg_is_last(sg) ? NULL :
2416 likely(!sg_is_chain(++sg)) ? sg :
2417 sg_chain_ptr(sg);
2418 }
2419
2420 /**
2421 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2422 * @__dmap: DMA address (output)
2423 * @__iter: 'struct sgt_iter' (iterator state, internal)
2424 * @__sgt: sg_table to iterate over (input)
2425 */
2426 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2427 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2428 ((__dmap) = (__iter).dma + (__iter).curr); \
2429 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2430 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2431
2432 /**
2433 * for_each_sgt_page - iterate over the pages of the given sg_table
2434 * @__pp: page pointer (output)
2435 * @__iter: 'struct sgt_iter' (iterator state, internal)
2436 * @__sgt: sg_table to iterate over (input)
2437 */
2438 #define for_each_sgt_page(__pp, __iter, __sgt) \
2439 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2440 ((__pp) = (__iter).pfn == 0 ? NULL : \
2441 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2442 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2443 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2444
2445 /*
2446 * A command that requires special handling by the command parser.
2447 */
2448 struct drm_i915_cmd_descriptor {
2449 /*
2450 * Flags describing how the command parser processes the command.
2451 *
2452 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2453 * a length mask if not set
2454 * CMD_DESC_SKIP: The command is allowed but does not follow the
2455 * standard length encoding for the opcode range in
2456 * which it falls
2457 * CMD_DESC_REJECT: The command is never allowed
2458 * CMD_DESC_REGISTER: The command should be checked against the
2459 * register whitelist for the appropriate ring
2460 * CMD_DESC_MASTER: The command is allowed if the submitting process
2461 * is the DRM master
2462 */
2463 u32 flags;
2464 #define CMD_DESC_FIXED (1<<0)
2465 #define CMD_DESC_SKIP (1<<1)
2466 #define CMD_DESC_REJECT (1<<2)
2467 #define CMD_DESC_REGISTER (1<<3)
2468 #define CMD_DESC_BITMASK (1<<4)
2469 #define CMD_DESC_MASTER (1<<5)
2470
2471 /*
2472 * The command's unique identification bits and the bitmask to get them.
2473 * This isn't strictly the opcode field as defined in the spec and may
2474 * also include type, subtype, and/or subop fields.
2475 */
2476 struct {
2477 u32 value;
2478 u32 mask;
2479 } cmd;
2480
2481 /*
2482 * The command's length. The command is either fixed length (i.e. does
2483 * not include a length field) or has a length field mask. The flag
2484 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2485 * a length mask. All command entries in a command table must include
2486 * length information.
2487 */
2488 union {
2489 u32 fixed;
2490 u32 mask;
2491 } length;
2492
2493 /*
2494 * Describes where to find a register address in the command to check
2495 * against the ring's register whitelist. Only valid if flags has the
2496 * CMD_DESC_REGISTER bit set.
2497 *
2498 * A non-zero step value implies that the command may access multiple
2499 * registers in sequence (e.g. LRI), in that case step gives the
2500 * distance in dwords between individual offset fields.
2501 */
2502 struct {
2503 u32 offset;
2504 u32 mask;
2505 u32 step;
2506 } reg;
2507
2508 #define MAX_CMD_DESC_BITMASKS 3
2509 /*
2510 * Describes command checks where a particular dword is masked and
2511 * compared against an expected value. If the command does not match
2512 * the expected value, the parser rejects it. Only valid if flags has
2513 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2514 * are valid.
2515 *
2516 * If the check specifies a non-zero condition_mask then the parser
2517 * only performs the check when the bits specified by condition_mask
2518 * are non-zero.
2519 */
2520 struct {
2521 u32 offset;
2522 u32 mask;
2523 u32 expected;
2524 u32 condition_offset;
2525 u32 condition_mask;
2526 } bits[MAX_CMD_DESC_BITMASKS];
2527 };
2528
2529 /*
2530 * A table of commands requiring special handling by the command parser.
2531 *
2532 * Each engine has an array of tables. Each table consists of an array of
2533 * command descriptors, which must be sorted with command opcodes in
2534 * ascending order.
2535 */
2536 struct drm_i915_cmd_table {
2537 const struct drm_i915_cmd_descriptor *table;
2538 int count;
2539 };
2540
2541 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2542 #define __I915__(p) ({ \
2543 struct drm_i915_private *__p; \
2544 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2545 __p = (struct drm_i915_private *)p; \
2546 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2547 __p = to_i915((struct drm_device *)p); \
2548 else \
2549 BUILD_BUG(); \
2550 __p; \
2551 })
2552 #define INTEL_INFO(p) (&__I915__(p)->info)
2553 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2554 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2555
2556 #define REVID_FOREVER 0xff
2557 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2558
2559 #define GEN_FOREVER (0)
2560 /*
2561 * Returns true if Gen is in inclusive range [Start, End].
2562 *
2563 * Use GEN_FOREVER for unbound start and or end.
2564 */
2565 #define IS_GEN(p, s, e) ({ \
2566 unsigned int __s = (s), __e = (e); \
2567 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2568 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2569 if ((__s) != GEN_FOREVER) \
2570 __s = (s) - 1; \
2571 if ((__e) == GEN_FOREVER) \
2572 __e = BITS_PER_LONG - 1; \
2573 else \
2574 __e = (e) - 1; \
2575 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2576 })
2577
2578 /*
2579 * Return true if revision is in range [since,until] inclusive.
2580 *
2581 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2582 */
2583 #define IS_REVID(p, since, until) \
2584 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2585
2586 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2587 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2588 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2589 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2590 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2591 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2592 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2593 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2594 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2595 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2596 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2597 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2598 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2599 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2600 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2601 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2602 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2603 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2604 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2605 INTEL_DEVID(dev) == 0x0152 || \
2606 INTEL_DEVID(dev) == 0x015a)
2607 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2608 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2609 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2610 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2611 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2612 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2613 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2614 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2615 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2616 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2617 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2618 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2619 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2620 (INTEL_DEVID(dev) & 0xf) == 0xe))
2621 /* ULX machines are also considered ULT. */
2622 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2623 (INTEL_DEVID(dev) & 0xf) == 0xe)
2624 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2625 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2626 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2627 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2628 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2629 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2630 /* ULX machines are also considered ULT. */
2631 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2632 INTEL_DEVID(dev) == 0x0A1E)
2633 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2634 INTEL_DEVID(dev) == 0x1913 || \
2635 INTEL_DEVID(dev) == 0x1916 || \
2636 INTEL_DEVID(dev) == 0x1921 || \
2637 INTEL_DEVID(dev) == 0x1926)
2638 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2639 INTEL_DEVID(dev) == 0x1915 || \
2640 INTEL_DEVID(dev) == 0x191E)
2641 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2642 INTEL_DEVID(dev) == 0x5913 || \
2643 INTEL_DEVID(dev) == 0x5916 || \
2644 INTEL_DEVID(dev) == 0x5921 || \
2645 INTEL_DEVID(dev) == 0x5926)
2646 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2647 INTEL_DEVID(dev) == 0x5915 || \
2648 INTEL_DEVID(dev) == 0x591E)
2649 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2650 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2651 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2652 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2653
2654 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2655
2656 #define SKL_REVID_A0 0x0
2657 #define SKL_REVID_B0 0x1
2658 #define SKL_REVID_C0 0x2
2659 #define SKL_REVID_D0 0x3
2660 #define SKL_REVID_E0 0x4
2661 #define SKL_REVID_F0 0x5
2662 #define SKL_REVID_G0 0x6
2663 #define SKL_REVID_H0 0x7
2664
2665 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2666
2667 #define BXT_REVID_A0 0x0
2668 #define BXT_REVID_A1 0x1
2669 #define BXT_REVID_B0 0x3
2670 #define BXT_REVID_C0 0x9
2671
2672 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2673
2674 #define KBL_REVID_A0 0x0
2675 #define KBL_REVID_B0 0x1
2676 #define KBL_REVID_C0 0x2
2677 #define KBL_REVID_D0 0x3
2678 #define KBL_REVID_E0 0x4
2679
2680 #define IS_KBL_REVID(p, since, until) \
2681 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2682
2683 /*
2684 * The genX designation typically refers to the render engine, so render
2685 * capability related checks should use IS_GEN, while display and other checks
2686 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2687 * chips, etc.).
2688 */
2689 #define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1)))
2690 #define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2)))
2691 #define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3)))
2692 #define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4)))
2693 #define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5)))
2694 #define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6)))
2695 #define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7)))
2696 #define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8)))
2697
2698 #define ENGINE_MASK(id) BIT(id)
2699 #define RENDER_RING ENGINE_MASK(RCS)
2700 #define BSD_RING ENGINE_MASK(VCS)
2701 #define BLT_RING ENGINE_MASK(BCS)
2702 #define VEBOX_RING ENGINE_MASK(VECS)
2703 #define BSD2_RING ENGINE_MASK(VCS2)
2704 #define ALL_ENGINES (~0)
2705
2706 #define HAS_ENGINE(dev_priv, id) \
2707 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2708
2709 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2710 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2711 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2712 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2713
2714 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2715 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2716 #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2717 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2718 HAS_EDRAM(dev))
2719 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2720
2721 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2722 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2723 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2724 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2725 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2726
2727 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2728 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2729
2730 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2731 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2732
2733 /* WaRsDisableCoarsePowerGating:skl,bxt */
2734 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2735 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2736 IS_SKL_GT3(dev_priv) || \
2737 IS_SKL_GT4(dev_priv))
2738
2739 /*
2740 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2741 * even when in MSI mode. This results in spurious interrupt warnings if the
2742 * legacy irq no. is shared with another device. The kernel then disables that
2743 * interrupt source and so prevents the other device from working properly.
2744 */
2745 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2746 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2747
2748 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2749 * rows, which changed the alignment requirements and fence programming.
2750 */
2751 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2752 IS_I915GM(dev)))
2753 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2754 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2755
2756 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2757 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2758 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2759
2760 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2761
2762 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2763 INTEL_INFO(dev)->gen >= 9)
2764
2765 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2766 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2767 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2768 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2769 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2770 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2771 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2772 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2773 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2774 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2775 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2776
2777 #define HAS_CSR(dev) (IS_GEN9(dev))
2778
2779 /*
2780 * For now, anything with a GuC requires uCode loading, and then supports
2781 * command submission once loaded. But these are logically independent
2782 * properties, so we have separate macros to test them.
2783 */
2784 #define HAS_GUC(dev) (IS_GEN9(dev))
2785 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2786 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2787
2788 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2789 INTEL_INFO(dev)->gen >= 8)
2790
2791 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2792 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2793 !IS_BROXTON(dev))
2794
2795 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2796
2797 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2798 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2799 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2800 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2801 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2802 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2803 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2804 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2805 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2806 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2807 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2808 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2809
2810 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2811 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
2812 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2813 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2814 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2815 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2816 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2817 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2818 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2819 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2820
2821 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2822 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2823
2824 /* DPF == dynamic parity feature */
2825 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2826 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2827
2828 #define GT_FREQUENCY_MULTIPLIER 50
2829 #define GEN9_FREQ_SCALER 3
2830
2831 #include "i915_trace.h"
2832
2833 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2834 {
2835 #ifdef CONFIG_INTEL_IOMMU
2836 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2837 return true;
2838 #endif
2839 return false;
2840 }
2841
2842 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2843 extern int i915_resume_switcheroo(struct drm_device *dev);
2844
2845 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2846 int enable_ppgtt);
2847
2848 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2849
2850 /* i915_drv.c */
2851 void __printf(3, 4)
2852 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2853 const char *fmt, ...);
2854
2855 #define i915_report_error(dev_priv, fmt, ...) \
2856 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2857
2858 #ifdef CONFIG_COMPAT
2859 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2860 unsigned long arg);
2861 #endif
2862 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2863 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2864 extern int i915_reset(struct drm_i915_private *dev_priv);
2865 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2866 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2867 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2868 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2869 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2870 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2871 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2872
2873 /* intel_hotplug.c */
2874 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2875 u32 pin_mask, u32 long_mask);
2876 void intel_hpd_init(struct drm_i915_private *dev_priv);
2877 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2878 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2879 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2880 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2881 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2882
2883 /* i915_irq.c */
2884 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2885 {
2886 unsigned long delay;
2887
2888 if (unlikely(!i915.enable_hangcheck))
2889 return;
2890
2891 /* Don't continually defer the hangcheck so that it is always run at
2892 * least once after work has been scheduled on any ring. Otherwise,
2893 * we will ignore a hung ring if a second ring is kept busy.
2894 */
2895
2896 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2897 queue_delayed_work(system_long_wq,
2898 &dev_priv->gpu_error.hangcheck_work, delay);
2899 }
2900
2901 __printf(3, 4)
2902 void i915_handle_error(struct drm_i915_private *dev_priv,
2903 u32 engine_mask,
2904 const char *fmt, ...);
2905
2906 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2907 int intel_irq_install(struct drm_i915_private *dev_priv);
2908 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2909
2910 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2911 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2912 bool restore_forcewake);
2913 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2914 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2915 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2916 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2917 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2918 bool restore);
2919 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2920 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2921 enum forcewake_domains domains);
2922 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2923 enum forcewake_domains domains);
2924 /* Like above but the caller must manage the uncore.lock itself.
2925 * Must be used with I915_READ_FW and friends.
2926 */
2927 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2928 enum forcewake_domains domains);
2929 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2930 enum forcewake_domains domains);
2931 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2932
2933 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2934
2935 int intel_wait_for_register(struct drm_i915_private *dev_priv,
2936 i915_reg_t reg,
2937 const u32 mask,
2938 const u32 value,
2939 const unsigned long timeout_ms);
2940 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
2941 i915_reg_t reg,
2942 const u32 mask,
2943 const u32 value,
2944 const unsigned long timeout_ms);
2945
2946 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2947 {
2948 return dev_priv->gvt.initialized;
2949 }
2950
2951 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2952 {
2953 return dev_priv->vgpu.active;
2954 }
2955
2956 void
2957 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2958 u32 status_mask);
2959
2960 void
2961 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2962 u32 status_mask);
2963
2964 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2965 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2966 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2967 uint32_t mask,
2968 uint32_t bits);
2969 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2970 uint32_t interrupt_mask,
2971 uint32_t enabled_irq_mask);
2972 static inline void
2973 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2974 {
2975 ilk_update_display_irq(dev_priv, bits, bits);
2976 }
2977 static inline void
2978 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2979 {
2980 ilk_update_display_irq(dev_priv, bits, 0);
2981 }
2982 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2983 enum pipe pipe,
2984 uint32_t interrupt_mask,
2985 uint32_t enabled_irq_mask);
2986 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2987 enum pipe pipe, uint32_t bits)
2988 {
2989 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2990 }
2991 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2992 enum pipe pipe, uint32_t bits)
2993 {
2994 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2995 }
2996 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2997 uint32_t interrupt_mask,
2998 uint32_t enabled_irq_mask);
2999 static inline void
3000 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3001 {
3002 ibx_display_interrupt_update(dev_priv, bits, bits);
3003 }
3004 static inline void
3005 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3006 {
3007 ibx_display_interrupt_update(dev_priv, bits, 0);
3008 }
3009
3010 /* i915_gem.c */
3011 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3012 struct drm_file *file_priv);
3013 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3014 struct drm_file *file_priv);
3015 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3016 struct drm_file *file_priv);
3017 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3018 struct drm_file *file_priv);
3019 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3020 struct drm_file *file_priv);
3021 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3022 struct drm_file *file_priv);
3023 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3024 struct drm_file *file_priv);
3025 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3026 struct drm_file *file_priv);
3027 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3028 struct drm_file *file_priv);
3029 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3030 struct drm_file *file_priv);
3031 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3032 struct drm_file *file);
3033 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3034 struct drm_file *file);
3035 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3036 struct drm_file *file_priv);
3037 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3038 struct drm_file *file_priv);
3039 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3040 struct drm_file *file_priv);
3041 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3042 struct drm_file *file_priv);
3043 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3044 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3045 struct drm_file *file);
3046 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3047 struct drm_file *file_priv);
3048 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3049 struct drm_file *file_priv);
3050 void i915_gem_load_init(struct drm_device *dev);
3051 void i915_gem_load_cleanup(struct drm_device *dev);
3052 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3053 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3054
3055 void *i915_gem_object_alloc(struct drm_device *dev);
3056 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3057 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3058 const struct drm_i915_gem_object_ops *ops);
3059 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3060 size_t size);
3061 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3062 struct drm_device *dev, const void *data, size_t size);
3063 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3064 void i915_gem_free_object(struct drm_gem_object *obj);
3065
3066 int __must_check
3067 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3068 const struct i915_ggtt_view *view,
3069 u64 size,
3070 u64 alignment,
3071 u64 flags);
3072
3073 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3074 u32 flags);
3075 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3076 int __must_check i915_vma_unbind(struct i915_vma *vma);
3077 void i915_vma_close(struct i915_vma *vma);
3078 void i915_vma_destroy(struct i915_vma *vma);
3079
3080 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3081 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3082 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3083 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3084
3085 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3086 int *needs_clflush);
3087
3088 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3089
3090 static inline int __sg_page_count(struct scatterlist *sg)
3091 {
3092 return sg->length >> PAGE_SHIFT;
3093 }
3094
3095 struct page *
3096 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3097
3098 static inline dma_addr_t
3099 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3100 {
3101 if (n < obj->get_page.last) {
3102 obj->get_page.sg = obj->pages->sgl;
3103 obj->get_page.last = 0;
3104 }
3105
3106 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3107 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3108 if (unlikely(sg_is_chain(obj->get_page.sg)))
3109 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3110 }
3111
3112 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3113 }
3114
3115 static inline struct page *
3116 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3117 {
3118 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3119 return NULL;
3120
3121 if (n < obj->get_page.last) {
3122 obj->get_page.sg = obj->pages->sgl;
3123 obj->get_page.last = 0;
3124 }
3125
3126 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3127 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3128 if (unlikely(sg_is_chain(obj->get_page.sg)))
3129 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3130 }
3131
3132 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3133 }
3134
3135 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3136 {
3137 BUG_ON(obj->pages == NULL);
3138 obj->pages_pin_count++;
3139 }
3140
3141 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3142 {
3143 BUG_ON(obj->pages_pin_count == 0);
3144 obj->pages_pin_count--;
3145 }
3146
3147 enum i915_map_type {
3148 I915_MAP_WB = 0,
3149 I915_MAP_WC,
3150 };
3151
3152 /**
3153 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3154 * @obj - the object to map into kernel address space
3155 * @type - the type of mapping, used to select pgprot_t
3156 *
3157 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3158 * pages and then returns a contiguous mapping of the backing storage into
3159 * the kernel address space. Based on the @type of mapping, the PTE will be
3160 * set to either WriteBack or WriteCombine (via pgprot_t).
3161 *
3162 * The caller must hold the struct_mutex, and is responsible for calling
3163 * i915_gem_object_unpin_map() when the mapping is no longer required.
3164 *
3165 * Returns the pointer through which to access the mapped object, or an
3166 * ERR_PTR() on error.
3167 */
3168 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3169 enum i915_map_type type);
3170
3171 /**
3172 * i915_gem_object_unpin_map - releases an earlier mapping
3173 * @obj - the object to unmap
3174 *
3175 * After pinning the object and mapping its pages, once you are finished
3176 * with your access, call i915_gem_object_unpin_map() to release the pin
3177 * upon the mapping. Once the pin count reaches zero, that mapping may be
3178 * removed.
3179 *
3180 * The caller must hold the struct_mutex.
3181 */
3182 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3183 {
3184 lockdep_assert_held(&obj->base.dev->struct_mutex);
3185 i915_gem_object_unpin_pages(obj);
3186 }
3187
3188 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3189 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3190 struct drm_i915_gem_request *to);
3191 void i915_vma_move_to_active(struct i915_vma *vma,
3192 struct drm_i915_gem_request *req,
3193 unsigned int flags);
3194 int i915_gem_dumb_create(struct drm_file *file_priv,
3195 struct drm_device *dev,
3196 struct drm_mode_create_dumb *args);
3197 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3198 uint32_t handle, uint64_t *offset);
3199
3200 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3201 struct drm_i915_gem_object *new,
3202 unsigned frontbuffer_bits);
3203
3204 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3205
3206 struct drm_i915_gem_request *
3207 i915_gem_find_active_request(struct intel_engine_cs *engine);
3208
3209 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3210
3211 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3212 {
3213 return atomic_read(&error->reset_counter);
3214 }
3215
3216 static inline bool __i915_reset_in_progress(u32 reset)
3217 {
3218 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3219 }
3220
3221 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3222 {
3223 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3224 }
3225
3226 static inline bool __i915_terminally_wedged(u32 reset)
3227 {
3228 return unlikely(reset & I915_WEDGED);
3229 }
3230
3231 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3232 {
3233 return __i915_reset_in_progress(i915_reset_counter(error));
3234 }
3235
3236 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3237 {
3238 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3239 }
3240
3241 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3242 {
3243 return __i915_terminally_wedged(i915_reset_counter(error));
3244 }
3245
3246 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3247 {
3248 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3249 }
3250
3251 void i915_gem_reset(struct drm_device *dev);
3252 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3253 int __must_check i915_gem_init(struct drm_device *dev);
3254 int __must_check i915_gem_init_hw(struct drm_device *dev);
3255 void i915_gem_init_swizzling(struct drm_device *dev);
3256 void i915_gem_cleanup_engines(struct drm_device *dev);
3257 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3258 bool interruptible);
3259 int __must_check i915_gem_suspend(struct drm_device *dev);
3260 void i915_gem_resume(struct drm_device *dev);
3261 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3262 int __must_check
3263 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3264 bool readonly);
3265 int __must_check
3266 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3267 bool write);
3268 int __must_check
3269 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3270 int __must_check
3271 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3272 u32 alignment,
3273 const struct i915_ggtt_view *view);
3274 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3275 const struct i915_ggtt_view *view);
3276 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3277 int align);
3278 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3279 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3280
3281 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv, u64 size,
3282 int tiling_mode);
3283 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
3284 int tiling_mode, bool fenced);
3285
3286 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3287 enum i915_cache_level cache_level);
3288
3289 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3290 struct dma_buf *dma_buf);
3291
3292 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3293 struct drm_gem_object *gem_obj, int flags);
3294
3295 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3296 const struct i915_ggtt_view *view);
3297 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3298 struct i915_address_space *vm);
3299 static inline u64
3300 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3301 {
3302 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3303 }
3304
3305 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3306 const struct i915_ggtt_view *view);
3307 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3308 struct i915_address_space *vm);
3309
3310 struct i915_vma *
3311 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3312 struct i915_address_space *vm);
3313 struct i915_vma *
3314 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3315 const struct i915_ggtt_view *view);
3316
3317 struct i915_vma *
3318 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3319 struct i915_address_space *vm);
3320 struct i915_vma *
3321 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3322 const struct i915_ggtt_view *view);
3323
3324 static inline struct i915_vma *
3325 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3326 {
3327 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3328 }
3329 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3330
3331 /* Some GGTT VM helpers */
3332 static inline struct i915_hw_ppgtt *
3333 i915_vm_to_ppgtt(struct i915_address_space *vm)
3334 {
3335 return container_of(vm, struct i915_hw_ppgtt, base);
3336 }
3337
3338 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3339 {
3340 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3341 }
3342
3343 unsigned long
3344 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj);
3345
3346 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3347 const struct i915_ggtt_view *view);
3348 static inline void
3349 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3350 {
3351 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3352 }
3353
3354 /* i915_gem_fence.c */
3355 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3356 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3357
3358 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3359 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3360
3361 void i915_gem_restore_fences(struct drm_device *dev);
3362
3363 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3364 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3365 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3366
3367 /* i915_gem_context.c */
3368 int __must_check i915_gem_context_init(struct drm_device *dev);
3369 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3370 void i915_gem_context_fini(struct drm_device *dev);
3371 void i915_gem_context_reset(struct drm_device *dev);
3372 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3373 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3374 int i915_switch_context(struct drm_i915_gem_request *req);
3375 int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv);
3376 void i915_gem_context_free(struct kref *ctx_ref);
3377 struct drm_i915_gem_object *
3378 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3379 struct i915_gem_context *
3380 i915_gem_context_create_gvt(struct drm_device *dev);
3381
3382 static inline struct i915_gem_context *
3383 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3384 {
3385 struct i915_gem_context *ctx;
3386
3387 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3388
3389 ctx = idr_find(&file_priv->context_idr, id);
3390 if (!ctx)
3391 return ERR_PTR(-ENOENT);
3392
3393 return ctx;
3394 }
3395
3396 static inline struct i915_gem_context *
3397 i915_gem_context_get(struct i915_gem_context *ctx)
3398 {
3399 kref_get(&ctx->ref);
3400 return ctx;
3401 }
3402
3403 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3404 {
3405 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3406 kref_put(&ctx->ref, i915_gem_context_free);
3407 }
3408
3409 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3410 {
3411 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3412 }
3413
3414 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3415 struct drm_file *file);
3416 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3417 struct drm_file *file);
3418 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3419 struct drm_file *file_priv);
3420 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3421 struct drm_file *file_priv);
3422 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3423 struct drm_file *file);
3424
3425 /* i915_gem_evict.c */
3426 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3427 u64 min_size, u64 alignment,
3428 unsigned cache_level,
3429 u64 start, u64 end,
3430 unsigned flags);
3431 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3432 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3433
3434 /* belongs in i915_gem_gtt.h */
3435 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3436 {
3437 if (INTEL_GEN(dev_priv) < 6)
3438 intel_gtt_chipset_flush();
3439 }
3440
3441 /* i915_gem_stolen.c */
3442 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3443 struct drm_mm_node *node, u64 size,
3444 unsigned alignment);
3445 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3446 struct drm_mm_node *node, u64 size,
3447 unsigned alignment, u64 start,
3448 u64 end);
3449 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3450 struct drm_mm_node *node);
3451 int i915_gem_init_stolen(struct drm_device *dev);
3452 void i915_gem_cleanup_stolen(struct drm_device *dev);
3453 struct drm_i915_gem_object *
3454 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3455 struct drm_i915_gem_object *
3456 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3457 u32 stolen_offset,
3458 u32 gtt_offset,
3459 u32 size);
3460
3461 /* i915_gem_shrinker.c */
3462 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3463 unsigned long target,
3464 unsigned flags);
3465 #define I915_SHRINK_PURGEABLE 0x1
3466 #define I915_SHRINK_UNBOUND 0x2
3467 #define I915_SHRINK_BOUND 0x4
3468 #define I915_SHRINK_ACTIVE 0x8
3469 #define I915_SHRINK_VMAPS 0x10
3470 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3471 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3472 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3473
3474
3475 /* i915_gem_tiling.c */
3476 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3477 {
3478 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3479
3480 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3481 i915_gem_object_is_tiled(obj);
3482 }
3483
3484 /* i915_debugfs.c */
3485 #ifdef CONFIG_DEBUG_FS
3486 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3487 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3488 int i915_debugfs_connector_add(struct drm_connector *connector);
3489 void intel_display_crc_init(struct drm_device *dev);
3490 #else
3491 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3492 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3493 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3494 { return 0; }
3495 static inline void intel_display_crc_init(struct drm_device *dev) {}
3496 #endif
3497
3498 /* i915_gpu_error.c */
3499 __printf(2, 3)
3500 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3501 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3502 const struct i915_error_state_file_priv *error);
3503 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3504 struct drm_i915_private *i915,
3505 size_t count, loff_t pos);
3506 static inline void i915_error_state_buf_release(
3507 struct drm_i915_error_state_buf *eb)
3508 {
3509 kfree(eb->buf);
3510 }
3511 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3512 u32 engine_mask,
3513 const char *error_msg);
3514 void i915_error_state_get(struct drm_device *dev,
3515 struct i915_error_state_file_priv *error_priv);
3516 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3517 void i915_destroy_error_state(struct drm_device *dev);
3518
3519 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3520 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3521
3522 /* i915_cmd_parser.c */
3523 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3524 int intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3525 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3526 bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine);
3527 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3528 struct drm_i915_gem_object *batch_obj,
3529 struct drm_i915_gem_object *shadow_batch_obj,
3530 u32 batch_start_offset,
3531 u32 batch_len,
3532 bool is_master);
3533
3534 /* i915_suspend.c */
3535 extern int i915_save_state(struct drm_device *dev);
3536 extern int i915_restore_state(struct drm_device *dev);
3537
3538 /* i915_sysfs.c */
3539 void i915_setup_sysfs(struct drm_device *dev_priv);
3540 void i915_teardown_sysfs(struct drm_device *dev_priv);
3541
3542 /* intel_i2c.c */
3543 extern int intel_setup_gmbus(struct drm_device *dev);
3544 extern void intel_teardown_gmbus(struct drm_device *dev);
3545 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3546 unsigned int pin);
3547
3548 extern struct i2c_adapter *
3549 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3550 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3551 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3552 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3553 {
3554 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3555 }
3556 extern void intel_i2c_reset(struct drm_device *dev);
3557
3558 /* intel_bios.c */
3559 int intel_bios_init(struct drm_i915_private *dev_priv);
3560 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3561 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3562 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3563 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3564 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3565 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3566 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3567 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3568 enum port port);
3569
3570 /* intel_opregion.c */
3571 #ifdef CONFIG_ACPI
3572 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3573 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3574 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3575 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3576 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3577 bool enable);
3578 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3579 pci_power_t state);
3580 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3581 #else
3582 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3583 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3584 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3585 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3586 {
3587 }
3588 static inline int
3589 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3590 {
3591 return 0;
3592 }
3593 static inline int
3594 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3595 {
3596 return 0;
3597 }
3598 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3599 {
3600 return -ENODEV;
3601 }
3602 #endif
3603
3604 /* intel_acpi.c */
3605 #ifdef CONFIG_ACPI
3606 extern void intel_register_dsm_handler(void);
3607 extern void intel_unregister_dsm_handler(void);
3608 #else
3609 static inline void intel_register_dsm_handler(void) { return; }
3610 static inline void intel_unregister_dsm_handler(void) { return; }
3611 #endif /* CONFIG_ACPI */
3612
3613 /* intel_device_info.c */
3614 static inline struct intel_device_info *
3615 mkwrite_device_info(struct drm_i915_private *dev_priv)
3616 {
3617 return (struct intel_device_info *)&dev_priv->info;
3618 }
3619
3620 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3621 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3622
3623 /* modesetting */
3624 extern void intel_modeset_init_hw(struct drm_device *dev);
3625 extern void intel_modeset_init(struct drm_device *dev);
3626 extern void intel_modeset_gem_init(struct drm_device *dev);
3627 extern void intel_modeset_cleanup(struct drm_device *dev);
3628 extern int intel_connector_register(struct drm_connector *);
3629 extern void intel_connector_unregister(struct drm_connector *);
3630 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3631 extern void intel_display_resume(struct drm_device *dev);
3632 extern void i915_redisable_vga(struct drm_device *dev);
3633 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3634 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3635 extern void intel_init_pch_refclk(struct drm_device *dev);
3636 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3637 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3638 bool enable);
3639
3640 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3641 struct drm_file *file);
3642
3643 /* overlay */
3644 extern struct intel_overlay_error_state *
3645 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3646 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3647 struct intel_overlay_error_state *error);
3648
3649 extern struct intel_display_error_state *
3650 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3651 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3652 struct drm_device *dev,
3653 struct intel_display_error_state *error);
3654
3655 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3656 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3657
3658 /* intel_sideband.c */
3659 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3660 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3661 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3662 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3663 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3664 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3665 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3666 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3667 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3668 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3669 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3670 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3671 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3672 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3673 enum intel_sbi_destination destination);
3674 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3675 enum intel_sbi_destination destination);
3676 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3677 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3678
3679 /* intel_dpio_phy.c */
3680 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3681 u32 deemph_reg_value, u32 margin_reg_value,
3682 bool uniq_trans_scale);
3683 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3684 bool reset);
3685 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3686 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3687 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3688 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3689
3690 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3691 u32 demph_reg_value, u32 preemph_reg_value,
3692 u32 uniqtranscale_reg_value, u32 tx3_demph);
3693 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3694 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3695 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3696
3697 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3698 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3699
3700 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3701 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3702
3703 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3704 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3705 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3706 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3707
3708 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3709 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3710 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3711 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3712
3713 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3714 * will be implemented using 2 32-bit writes in an arbitrary order with
3715 * an arbitrary delay between them. This can cause the hardware to
3716 * act upon the intermediate value, possibly leading to corruption and
3717 * machine death. You have been warned.
3718 */
3719 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3720 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3721
3722 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3723 u32 upper, lower, old_upper, loop = 0; \
3724 upper = I915_READ(upper_reg); \
3725 do { \
3726 old_upper = upper; \
3727 lower = I915_READ(lower_reg); \
3728 upper = I915_READ(upper_reg); \
3729 } while (upper != old_upper && loop++ < 2); \
3730 (u64)upper << 32 | lower; })
3731
3732 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3733 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3734
3735 #define __raw_read(x, s) \
3736 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3737 i915_reg_t reg) \
3738 { \
3739 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3740 }
3741
3742 #define __raw_write(x, s) \
3743 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3744 i915_reg_t reg, uint##x##_t val) \
3745 { \
3746 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3747 }
3748 __raw_read(8, b)
3749 __raw_read(16, w)
3750 __raw_read(32, l)
3751 __raw_read(64, q)
3752
3753 __raw_write(8, b)
3754 __raw_write(16, w)
3755 __raw_write(32, l)
3756 __raw_write(64, q)
3757
3758 #undef __raw_read
3759 #undef __raw_write
3760
3761 /* These are untraced mmio-accessors that are only valid to be used inside
3762 * criticial sections inside IRQ handlers where forcewake is explicitly
3763 * controlled.
3764 * Think twice, and think again, before using these.
3765 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3766 * intel_uncore_forcewake_irqunlock().
3767 */
3768 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3769 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3770 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3771 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3772
3773 /* "Broadcast RGB" property */
3774 #define INTEL_BROADCAST_RGB_AUTO 0
3775 #define INTEL_BROADCAST_RGB_FULL 1
3776 #define INTEL_BROADCAST_RGB_LIMITED 2
3777
3778 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3779 {
3780 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3781 return VLV_VGACNTRL;
3782 else if (INTEL_INFO(dev)->gen >= 5)
3783 return CPU_VGACNTRL;
3784 else
3785 return VGACNTRL;
3786 }
3787
3788 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3789 {
3790 unsigned long j = msecs_to_jiffies(m);
3791
3792 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3793 }
3794
3795 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3796 {
3797 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3798 }
3799
3800 static inline unsigned long
3801 timespec_to_jiffies_timeout(const struct timespec *value)
3802 {
3803 unsigned long j = timespec_to_jiffies(value);
3804
3805 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3806 }
3807
3808 /*
3809 * If you need to wait X milliseconds between events A and B, but event B
3810 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3811 * when event A happened, then just before event B you call this function and
3812 * pass the timestamp as the first argument, and X as the second argument.
3813 */
3814 static inline void
3815 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3816 {
3817 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3818
3819 /*
3820 * Don't re-read the value of "jiffies" every time since it may change
3821 * behind our back and break the math.
3822 */
3823 tmp_jiffies = jiffies;
3824 target_jiffies = timestamp_jiffies +
3825 msecs_to_jiffies_timeout(to_wait_ms);
3826
3827 if (time_after(target_jiffies, tmp_jiffies)) {
3828 remaining_jiffies = target_jiffies - tmp_jiffies;
3829 while (remaining_jiffies)
3830 remaining_jiffies =
3831 schedule_timeout_uninterruptible(remaining_jiffies);
3832 }
3833 }
3834 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req)
3835 {
3836 struct intel_engine_cs *engine = req->engine;
3837
3838 /* Before we do the heavier coherent read of the seqno,
3839 * check the value (hopefully) in the CPU cacheline.
3840 */
3841 if (i915_gem_request_completed(req))
3842 return true;
3843
3844 /* Ensure our read of the seqno is coherent so that we
3845 * do not "miss an interrupt" (i.e. if this is the last
3846 * request and the seqno write from the GPU is not visible
3847 * by the time the interrupt fires, we will see that the
3848 * request is incomplete and go back to sleep awaiting
3849 * another interrupt that will never come.)
3850 *
3851 * Strictly, we only need to do this once after an interrupt,
3852 * but it is easier and safer to do it every time the waiter
3853 * is woken.
3854 */
3855 if (engine->irq_seqno_barrier &&
3856 rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh) == current &&
3857 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
3858 struct task_struct *tsk;
3859
3860 /* The ordering of irq_posted versus applying the barrier
3861 * is crucial. The clearing of the current irq_posted must
3862 * be visible before we perform the barrier operation,
3863 * such that if a subsequent interrupt arrives, irq_posted
3864 * is reasserted and our task rewoken (which causes us to
3865 * do another __i915_request_irq_complete() immediately
3866 * and reapply the barrier). Conversely, if the clear
3867 * occurs after the barrier, then an interrupt that arrived
3868 * whilst we waited on the barrier would not trigger a
3869 * barrier on the next pass, and the read may not see the
3870 * seqno update.
3871 */
3872 engine->irq_seqno_barrier(engine);
3873
3874 /* If we consume the irq, but we are no longer the bottom-half,
3875 * the real bottom-half may not have serialised their own
3876 * seqno check with the irq-barrier (i.e. may have inspected
3877 * the seqno before we believe it coherent since they see
3878 * irq_posted == false but we are still running).
3879 */
3880 rcu_read_lock();
3881 tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
3882 if (tsk && tsk != current)
3883 /* Note that if the bottom-half is changed as we
3884 * are sending the wake-up, the new bottom-half will
3885 * be woken by whomever made the change. We only have
3886 * to worry about when we steal the irq-posted for
3887 * ourself.
3888 */
3889 wake_up_process(tsk);
3890 rcu_read_unlock();
3891
3892 if (i915_gem_request_completed(req))
3893 return true;
3894 }
3895
3896 /* We need to check whether any gpu reset happened in between
3897 * the request being submitted and now. If a reset has occurred,
3898 * the seqno will have been advance past ours and our request
3899 * is complete. If we are in the process of handling a reset,
3900 * the request is effectively complete as the rendering will
3901 * be discarded, but we need to return in order to drop the
3902 * struct_mutex.
3903 */
3904 if (i915_reset_in_progress(&req->i915->gpu_error))
3905 return true;
3906
3907 return false;
3908 }
3909
3910 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3911 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3912
3913 #define ptr_unpack_bits(ptr, bits) ({ \
3914 unsigned long __v = (unsigned long)(ptr); \
3915 (bits) = __v & ~PAGE_MASK; \
3916 (typeof(ptr))(__v & PAGE_MASK); \
3917 })
3918
3919 #define ptr_pack_bits(ptr, bits) \
3920 ((typeof(ptr))((unsigned long)(ptr) | (bits)))
3921
3922 #endif
This page took 0.200599 seconds and 6 git commands to generate.