drm/i915: Fix context/engine cleanup order
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <drm/drmP.h>
37 #include "i915_params.h"
38 #include "i915_reg.h"
39 #include "intel_bios.h"
40 #include "intel_ringbuffer.h"
41 #include "intel_lrc.h"
42 #include "i915_gem_gtt.h"
43 #include "i915_gem_render_state.h"
44 #include <linux/io-mapping.h>
45 #include <linux/i2c.h>
46 #include <linux/i2c-algo-bit.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <linux/backlight.h>
51 #include <linux/hashtable.h>
52 #include <linux/intel-iommu.h>
53 #include <linux/kref.h>
54 #include <linux/pm_qos.h>
55 #include "intel_guc.h"
56
57 /* General customization:
58 */
59
60 #define DRIVER_NAME "i915"
61 #define DRIVER_DESC "Intel Graphics"
62 #define DRIVER_DATE "20160124"
63
64 #undef WARN_ON
65 /* Many gcc seem to no see through this and fall over :( */
66 #if 0
67 #define WARN_ON(x) ({ \
68 bool __i915_warn_cond = (x); \
69 if (__builtin_constant_p(__i915_warn_cond)) \
70 BUILD_BUG_ON(__i915_warn_cond); \
71 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
72 #else
73 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
74 #endif
75
76 #undef WARN_ON_ONCE
77 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
78
79 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
80 (long) (x), __func__);
81
82 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
83 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
84 * which may not necessarily be a user visible problem. This will either
85 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
86 * enable distros and users to tailor their preferred amount of i915 abrt
87 * spam.
88 */
89 #define I915_STATE_WARN(condition, format...) ({ \
90 int __ret_warn_on = !!(condition); \
91 if (unlikely(__ret_warn_on)) \
92 if (!WARN(i915.verbose_state_checks, format)) \
93 DRM_ERROR(format); \
94 unlikely(__ret_warn_on); \
95 })
96
97 #define I915_STATE_WARN_ON(x) \
98 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
99
100 static inline const char *yesno(bool v)
101 {
102 return v ? "yes" : "no";
103 }
104
105 static inline const char *onoff(bool v)
106 {
107 return v ? "on" : "off";
108 }
109
110 enum pipe {
111 INVALID_PIPE = -1,
112 PIPE_A = 0,
113 PIPE_B,
114 PIPE_C,
115 _PIPE_EDP,
116 I915_MAX_PIPES = _PIPE_EDP
117 };
118 #define pipe_name(p) ((p) + 'A')
119
120 enum transcoder {
121 TRANSCODER_A = 0,
122 TRANSCODER_B,
123 TRANSCODER_C,
124 TRANSCODER_EDP,
125 I915_MAX_TRANSCODERS
126 };
127 #define transcoder_name(t) ((t) + 'A')
128
129 /*
130 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
131 * number of planes per CRTC. Not all platforms really have this many planes,
132 * which means some arrays of size I915_MAX_PLANES may have unused entries
133 * between the topmost sprite plane and the cursor plane.
134 */
135 enum plane {
136 PLANE_A = 0,
137 PLANE_B,
138 PLANE_C,
139 PLANE_CURSOR,
140 I915_MAX_PLANES,
141 };
142 #define plane_name(p) ((p) + 'A')
143
144 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
145
146 enum port {
147 PORT_A = 0,
148 PORT_B,
149 PORT_C,
150 PORT_D,
151 PORT_E,
152 I915_MAX_PORTS
153 };
154 #define port_name(p) ((p) + 'A')
155
156 #define I915_NUM_PHYS_VLV 2
157
158 enum dpio_channel {
159 DPIO_CH0,
160 DPIO_CH1
161 };
162
163 enum dpio_phy {
164 DPIO_PHY0,
165 DPIO_PHY1
166 };
167
168 enum intel_display_power_domain {
169 POWER_DOMAIN_PIPE_A,
170 POWER_DOMAIN_PIPE_B,
171 POWER_DOMAIN_PIPE_C,
172 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
173 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
174 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
175 POWER_DOMAIN_TRANSCODER_A,
176 POWER_DOMAIN_TRANSCODER_B,
177 POWER_DOMAIN_TRANSCODER_C,
178 POWER_DOMAIN_TRANSCODER_EDP,
179 POWER_DOMAIN_PORT_DDI_A_LANES,
180 POWER_DOMAIN_PORT_DDI_B_LANES,
181 POWER_DOMAIN_PORT_DDI_C_LANES,
182 POWER_DOMAIN_PORT_DDI_D_LANES,
183 POWER_DOMAIN_PORT_DDI_E_LANES,
184 POWER_DOMAIN_PORT_DSI,
185 POWER_DOMAIN_PORT_CRT,
186 POWER_DOMAIN_PORT_OTHER,
187 POWER_DOMAIN_VGA,
188 POWER_DOMAIN_AUDIO,
189 POWER_DOMAIN_PLLS,
190 POWER_DOMAIN_AUX_A,
191 POWER_DOMAIN_AUX_B,
192 POWER_DOMAIN_AUX_C,
193 POWER_DOMAIN_AUX_D,
194 POWER_DOMAIN_GMBUS,
195 POWER_DOMAIN_MODESET,
196 POWER_DOMAIN_INIT,
197
198 POWER_DOMAIN_NUM,
199 };
200
201 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
202 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
203 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
204 #define POWER_DOMAIN_TRANSCODER(tran) \
205 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
206 (tran) + POWER_DOMAIN_TRANSCODER_A)
207
208 enum hpd_pin {
209 HPD_NONE = 0,
210 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
211 HPD_CRT,
212 HPD_SDVO_B,
213 HPD_SDVO_C,
214 HPD_PORT_A,
215 HPD_PORT_B,
216 HPD_PORT_C,
217 HPD_PORT_D,
218 HPD_PORT_E,
219 HPD_NUM_PINS
220 };
221
222 #define for_each_hpd_pin(__pin) \
223 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
224
225 struct i915_hotplug {
226 struct work_struct hotplug_work;
227
228 struct {
229 unsigned long last_jiffies;
230 int count;
231 enum {
232 HPD_ENABLED = 0,
233 HPD_DISABLED = 1,
234 HPD_MARK_DISABLED = 2
235 } state;
236 } stats[HPD_NUM_PINS];
237 u32 event_bits;
238 struct delayed_work reenable_work;
239
240 struct intel_digital_port *irq_port[I915_MAX_PORTS];
241 u32 long_port_mask;
242 u32 short_port_mask;
243 struct work_struct dig_port_work;
244
245 /*
246 * if we get a HPD irq from DP and a HPD irq from non-DP
247 * the non-DP HPD could block the workqueue on a mode config
248 * mutex getting, that userspace may have taken. However
249 * userspace is waiting on the DP workqueue to run which is
250 * blocked behind the non-DP one.
251 */
252 struct workqueue_struct *dp_wq;
253 };
254
255 #define I915_GEM_GPU_DOMAINS \
256 (I915_GEM_DOMAIN_RENDER | \
257 I915_GEM_DOMAIN_SAMPLER | \
258 I915_GEM_DOMAIN_COMMAND | \
259 I915_GEM_DOMAIN_INSTRUCTION | \
260 I915_GEM_DOMAIN_VERTEX)
261
262 #define for_each_pipe(__dev_priv, __p) \
263 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
264 #define for_each_plane(__dev_priv, __pipe, __p) \
265 for ((__p) = 0; \
266 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
267 (__p)++)
268 #define for_each_sprite(__dev_priv, __p, __s) \
269 for ((__s) = 0; \
270 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
271 (__s)++)
272
273 #define for_each_crtc(dev, crtc) \
274 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
275
276 #define for_each_intel_plane(dev, intel_plane) \
277 list_for_each_entry(intel_plane, \
278 &dev->mode_config.plane_list, \
279 base.head)
280
281 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
282 list_for_each_entry(intel_plane, \
283 &(dev)->mode_config.plane_list, \
284 base.head) \
285 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
286
287 #define for_each_intel_crtc(dev, intel_crtc) \
288 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
289
290 #define for_each_intel_encoder(dev, intel_encoder) \
291 list_for_each_entry(intel_encoder, \
292 &(dev)->mode_config.encoder_list, \
293 base.head)
294
295 #define for_each_intel_connector(dev, intel_connector) \
296 list_for_each_entry(intel_connector, \
297 &dev->mode_config.connector_list, \
298 base.head)
299
300 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
301 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
302 for_each_if ((intel_encoder)->base.crtc == (__crtc))
303
304 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
305 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
306 for_each_if ((intel_connector)->base.encoder == (__encoder))
307
308 #define for_each_power_domain(domain, mask) \
309 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
310 for_each_if ((1 << (domain)) & (mask))
311
312 struct drm_i915_private;
313 struct i915_mm_struct;
314 struct i915_mmu_object;
315
316 struct drm_i915_file_private {
317 struct drm_i915_private *dev_priv;
318 struct drm_file *file;
319
320 struct {
321 spinlock_t lock;
322 struct list_head request_list;
323 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
324 * chosen to prevent the CPU getting more than a frame ahead of the GPU
325 * (when using lax throttling for the frontbuffer). We also use it to
326 * offer free GPU waitboosts for severely congested workloads.
327 */
328 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
329 } mm;
330 struct idr context_idr;
331
332 struct intel_rps_client {
333 struct list_head link;
334 unsigned boosts;
335 } rps;
336
337 unsigned int bsd_ring;
338 };
339
340 enum intel_dpll_id {
341 DPLL_ID_PRIVATE = -1, /* non-shared dpll in use */
342 /* real shared dpll ids must be >= 0 */
343 DPLL_ID_PCH_PLL_A = 0,
344 DPLL_ID_PCH_PLL_B = 1,
345 /* hsw/bdw */
346 DPLL_ID_WRPLL1 = 0,
347 DPLL_ID_WRPLL2 = 1,
348 DPLL_ID_SPLL = 2,
349
350 /* skl */
351 DPLL_ID_SKL_DPLL1 = 0,
352 DPLL_ID_SKL_DPLL2 = 1,
353 DPLL_ID_SKL_DPLL3 = 2,
354 };
355 #define I915_NUM_PLLS 3
356
357 struct intel_dpll_hw_state {
358 /* i9xx, pch plls */
359 uint32_t dpll;
360 uint32_t dpll_md;
361 uint32_t fp0;
362 uint32_t fp1;
363
364 /* hsw, bdw */
365 uint32_t wrpll;
366 uint32_t spll;
367
368 /* skl */
369 /*
370 * DPLL_CTRL1 has 6 bits for each each this DPLL. We store those in
371 * lower part of ctrl1 and they get shifted into position when writing
372 * the register. This allows us to easily compare the state to share
373 * the DPLL.
374 */
375 uint32_t ctrl1;
376 /* HDMI only, 0 when used for DP */
377 uint32_t cfgcr1, cfgcr2;
378
379 /* bxt */
380 uint32_t ebb0, ebb4, pll0, pll1, pll2, pll3, pll6, pll8, pll9, pll10,
381 pcsdw12;
382 };
383
384 struct intel_shared_dpll_config {
385 unsigned crtc_mask; /* mask of CRTCs sharing this PLL */
386 struct intel_dpll_hw_state hw_state;
387 };
388
389 struct intel_shared_dpll {
390 struct intel_shared_dpll_config config;
391
392 int active; /* count of number of active CRTCs (i.e. DPMS on) */
393 bool on; /* is the PLL actually active? Disabled during modeset */
394 const char *name;
395 /* should match the index in the dev_priv->shared_dplls array */
396 enum intel_dpll_id id;
397 /* The mode_set hook is optional and should be used together with the
398 * intel_prepare_shared_dpll function. */
399 void (*mode_set)(struct drm_i915_private *dev_priv,
400 struct intel_shared_dpll *pll);
401 void (*enable)(struct drm_i915_private *dev_priv,
402 struct intel_shared_dpll *pll);
403 void (*disable)(struct drm_i915_private *dev_priv,
404 struct intel_shared_dpll *pll);
405 bool (*get_hw_state)(struct drm_i915_private *dev_priv,
406 struct intel_shared_dpll *pll,
407 struct intel_dpll_hw_state *hw_state);
408 };
409
410 #define SKL_DPLL0 0
411 #define SKL_DPLL1 1
412 #define SKL_DPLL2 2
413 #define SKL_DPLL3 3
414
415 /* Used by dp and fdi links */
416 struct intel_link_m_n {
417 uint32_t tu;
418 uint32_t gmch_m;
419 uint32_t gmch_n;
420 uint32_t link_m;
421 uint32_t link_n;
422 };
423
424 void intel_link_compute_m_n(int bpp, int nlanes,
425 int pixel_clock, int link_clock,
426 struct intel_link_m_n *m_n);
427
428 /* Interface history:
429 *
430 * 1.1: Original.
431 * 1.2: Add Power Management
432 * 1.3: Add vblank support
433 * 1.4: Fix cmdbuffer path, add heap destroy
434 * 1.5: Add vblank pipe configuration
435 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
436 * - Support vertical blank on secondary display pipe
437 */
438 #define DRIVER_MAJOR 1
439 #define DRIVER_MINOR 6
440 #define DRIVER_PATCHLEVEL 0
441
442 #define WATCH_LISTS 0
443
444 struct opregion_header;
445 struct opregion_acpi;
446 struct opregion_swsci;
447 struct opregion_asle;
448
449 struct intel_opregion {
450 struct opregion_header *header;
451 struct opregion_acpi *acpi;
452 struct opregion_swsci *swsci;
453 u32 swsci_gbda_sub_functions;
454 u32 swsci_sbcb_sub_functions;
455 struct opregion_asle *asle;
456 void *rvda;
457 const void *vbt;
458 u32 vbt_size;
459 u32 *lid_state;
460 struct work_struct asle_work;
461 };
462 #define OPREGION_SIZE (8*1024)
463
464 struct intel_overlay;
465 struct intel_overlay_error_state;
466
467 #define I915_FENCE_REG_NONE -1
468 #define I915_MAX_NUM_FENCES 32
469 /* 32 fences + sign bit for FENCE_REG_NONE */
470 #define I915_MAX_NUM_FENCE_BITS 6
471
472 struct drm_i915_fence_reg {
473 struct list_head lru_list;
474 struct drm_i915_gem_object *obj;
475 int pin_count;
476 };
477
478 struct sdvo_device_mapping {
479 u8 initialized;
480 u8 dvo_port;
481 u8 slave_addr;
482 u8 dvo_wiring;
483 u8 i2c_pin;
484 u8 ddc_pin;
485 };
486
487 struct intel_display_error_state;
488
489 struct drm_i915_error_state {
490 struct kref ref;
491 struct timeval time;
492
493 char error_msg[128];
494 int iommu;
495 u32 reset_count;
496 u32 suspend_count;
497
498 /* Generic register state */
499 u32 eir;
500 u32 pgtbl_er;
501 u32 ier;
502 u32 gtier[4];
503 u32 ccid;
504 u32 derrmr;
505 u32 forcewake;
506 u32 error; /* gen6+ */
507 u32 err_int; /* gen7 */
508 u32 fault_data0; /* gen8, gen9 */
509 u32 fault_data1; /* gen8, gen9 */
510 u32 done_reg;
511 u32 gac_eco;
512 u32 gam_ecochk;
513 u32 gab_ctl;
514 u32 gfx_mode;
515 u32 extra_instdone[I915_NUM_INSTDONE_REG];
516 u64 fence[I915_MAX_NUM_FENCES];
517 struct intel_overlay_error_state *overlay;
518 struct intel_display_error_state *display;
519 struct drm_i915_error_object *semaphore_obj;
520
521 struct drm_i915_error_ring {
522 bool valid;
523 /* Software tracked state */
524 bool waiting;
525 int hangcheck_score;
526 enum intel_ring_hangcheck_action hangcheck_action;
527 int num_requests;
528
529 /* our own tracking of ring head and tail */
530 u32 cpu_ring_head;
531 u32 cpu_ring_tail;
532
533 u32 semaphore_seqno[I915_NUM_RINGS - 1];
534
535 /* Register state */
536 u32 start;
537 u32 tail;
538 u32 head;
539 u32 ctl;
540 u32 hws;
541 u32 ipeir;
542 u32 ipehr;
543 u32 instdone;
544 u32 bbstate;
545 u32 instpm;
546 u32 instps;
547 u32 seqno;
548 u64 bbaddr;
549 u64 acthd;
550 u32 fault_reg;
551 u64 faddr;
552 u32 rc_psmi; /* sleep state */
553 u32 semaphore_mboxes[I915_NUM_RINGS - 1];
554
555 struct drm_i915_error_object {
556 int page_count;
557 u64 gtt_offset;
558 u32 *pages[0];
559 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
560
561 struct drm_i915_error_request {
562 long jiffies;
563 u32 seqno;
564 u32 tail;
565 } *requests;
566
567 struct {
568 u32 gfx_mode;
569 union {
570 u64 pdp[4];
571 u32 pp_dir_base;
572 };
573 } vm_info;
574
575 pid_t pid;
576 char comm[TASK_COMM_LEN];
577 } ring[I915_NUM_RINGS];
578
579 struct drm_i915_error_buffer {
580 u32 size;
581 u32 name;
582 u32 rseqno[I915_NUM_RINGS], wseqno;
583 u64 gtt_offset;
584 u32 read_domains;
585 u32 write_domain;
586 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
587 s32 pinned:2;
588 u32 tiling:2;
589 u32 dirty:1;
590 u32 purgeable:1;
591 u32 userptr:1;
592 s32 ring:4;
593 u32 cache_level:3;
594 } **active_bo, **pinned_bo;
595
596 u32 *active_bo_count, *pinned_bo_count;
597 u32 vm_count;
598 };
599
600 struct intel_connector;
601 struct intel_encoder;
602 struct intel_crtc_state;
603 struct intel_initial_plane_config;
604 struct intel_crtc;
605 struct intel_limit;
606 struct dpll;
607
608 struct drm_i915_display_funcs {
609 int (*get_display_clock_speed)(struct drm_device *dev);
610 int (*get_fifo_size)(struct drm_device *dev, int plane);
611 /**
612 * find_dpll() - Find the best values for the PLL
613 * @limit: limits for the PLL
614 * @crtc: current CRTC
615 * @target: target frequency in kHz
616 * @refclk: reference clock frequency in kHz
617 * @match_clock: if provided, @best_clock P divider must
618 * match the P divider from @match_clock
619 * used for LVDS downclocking
620 * @best_clock: best PLL values found
621 *
622 * Returns true on success, false on failure.
623 */
624 bool (*find_dpll)(const struct intel_limit *limit,
625 struct intel_crtc_state *crtc_state,
626 int target, int refclk,
627 struct dpll *match_clock,
628 struct dpll *best_clock);
629 int (*compute_pipe_wm)(struct intel_crtc *crtc,
630 struct drm_atomic_state *state);
631 void (*program_watermarks)(struct intel_crtc_state *cstate);
632 void (*update_wm)(struct drm_crtc *crtc);
633 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
634 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
635 /* Returns the active state of the crtc, and if the crtc is active,
636 * fills out the pipe-config with the hw state. */
637 bool (*get_pipe_config)(struct intel_crtc *,
638 struct intel_crtc_state *);
639 void (*get_initial_plane_config)(struct intel_crtc *,
640 struct intel_initial_plane_config *);
641 int (*crtc_compute_clock)(struct intel_crtc *crtc,
642 struct intel_crtc_state *crtc_state);
643 void (*crtc_enable)(struct drm_crtc *crtc);
644 void (*crtc_disable)(struct drm_crtc *crtc);
645 void (*audio_codec_enable)(struct drm_connector *connector,
646 struct intel_encoder *encoder,
647 const struct drm_display_mode *adjusted_mode);
648 void (*audio_codec_disable)(struct intel_encoder *encoder);
649 void (*fdi_link_train)(struct drm_crtc *crtc);
650 void (*init_clock_gating)(struct drm_device *dev);
651 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
652 struct drm_framebuffer *fb,
653 struct drm_i915_gem_object *obj,
654 struct drm_i915_gem_request *req,
655 uint32_t flags);
656 void (*hpd_irq_setup)(struct drm_device *dev);
657 /* clock updates for mode set */
658 /* cursor updates */
659 /* render clock increase/decrease */
660 /* display clock increase/decrease */
661 /* pll clock increase/decrease */
662 };
663
664 enum forcewake_domain_id {
665 FW_DOMAIN_ID_RENDER = 0,
666 FW_DOMAIN_ID_BLITTER,
667 FW_DOMAIN_ID_MEDIA,
668
669 FW_DOMAIN_ID_COUNT
670 };
671
672 enum forcewake_domains {
673 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
674 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
675 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
676 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
677 FORCEWAKE_BLITTER |
678 FORCEWAKE_MEDIA)
679 };
680
681 struct intel_uncore_funcs {
682 void (*force_wake_get)(struct drm_i915_private *dev_priv,
683 enum forcewake_domains domains);
684 void (*force_wake_put)(struct drm_i915_private *dev_priv,
685 enum forcewake_domains domains);
686
687 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
688 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
689 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
690 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
691
692 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
693 uint8_t val, bool trace);
694 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
695 uint16_t val, bool trace);
696 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
697 uint32_t val, bool trace);
698 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
699 uint64_t val, bool trace);
700 };
701
702 struct intel_uncore {
703 spinlock_t lock; /** lock is also taken in irq contexts. */
704
705 struct intel_uncore_funcs funcs;
706
707 unsigned fifo_count;
708 enum forcewake_domains fw_domains;
709
710 struct intel_uncore_forcewake_domain {
711 struct drm_i915_private *i915;
712 enum forcewake_domain_id id;
713 unsigned wake_count;
714 struct timer_list timer;
715 i915_reg_t reg_set;
716 u32 val_set;
717 u32 val_clear;
718 i915_reg_t reg_ack;
719 i915_reg_t reg_post;
720 u32 val_reset;
721 } fw_domain[FW_DOMAIN_ID_COUNT];
722
723 int unclaimed_mmio_check;
724 };
725
726 /* Iterate over initialised fw domains */
727 #define for_each_fw_domain_mask(domain__, mask__, dev_priv__, i__) \
728 for ((i__) = 0, (domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
729 (i__) < FW_DOMAIN_ID_COUNT; \
730 (i__)++, (domain__) = &(dev_priv__)->uncore.fw_domain[i__]) \
731 for_each_if (((mask__) & (dev_priv__)->uncore.fw_domains) & (1 << (i__)))
732
733 #define for_each_fw_domain(domain__, dev_priv__, i__) \
734 for_each_fw_domain_mask(domain__, FORCEWAKE_ALL, dev_priv__, i__)
735
736 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
737 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
738 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
739
740 struct intel_csr {
741 struct work_struct work;
742 const char *fw_path;
743 uint32_t *dmc_payload;
744 uint32_t dmc_fw_size;
745 uint32_t version;
746 uint32_t mmio_count;
747 i915_reg_t mmioaddr[8];
748 uint32_t mmiodata[8];
749 };
750
751 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
752 func(is_mobile) sep \
753 func(is_i85x) sep \
754 func(is_i915g) sep \
755 func(is_i945gm) sep \
756 func(is_g33) sep \
757 func(need_gfx_hws) sep \
758 func(is_g4x) sep \
759 func(is_pineview) sep \
760 func(is_broadwater) sep \
761 func(is_crestline) sep \
762 func(is_ivybridge) sep \
763 func(is_valleyview) sep \
764 func(is_cherryview) sep \
765 func(is_haswell) sep \
766 func(is_skylake) sep \
767 func(is_broxton) sep \
768 func(is_kabylake) sep \
769 func(is_preliminary) sep \
770 func(has_fbc) sep \
771 func(has_pipe_cxsr) sep \
772 func(has_hotplug) sep \
773 func(cursor_needs_physical) sep \
774 func(has_overlay) sep \
775 func(overlay_needs_physical) sep \
776 func(supports_tv) sep \
777 func(has_llc) sep \
778 func(has_ddi) sep \
779 func(has_fpga_dbg)
780
781 #define DEFINE_FLAG(name) u8 name:1
782 #define SEP_SEMICOLON ;
783
784 struct intel_device_info {
785 u32 display_mmio_offset;
786 u16 device_id;
787 u8 num_pipes:3;
788 u8 num_sprites[I915_MAX_PIPES];
789 u8 gen;
790 u8 ring_mask; /* Rings supported by the HW */
791 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
792 /* Register offsets for the various display pipes and transcoders */
793 int pipe_offsets[I915_MAX_TRANSCODERS];
794 int trans_offsets[I915_MAX_TRANSCODERS];
795 int palette_offsets[I915_MAX_PIPES];
796 int cursor_offsets[I915_MAX_PIPES];
797
798 /* Slice/subslice/EU info */
799 u8 slice_total;
800 u8 subslice_total;
801 u8 subslice_per_slice;
802 u8 eu_total;
803 u8 eu_per_subslice;
804 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
805 u8 subslice_7eu[3];
806 u8 has_slice_pg:1;
807 u8 has_subslice_pg:1;
808 u8 has_eu_pg:1;
809 };
810
811 #undef DEFINE_FLAG
812 #undef SEP_SEMICOLON
813
814 enum i915_cache_level {
815 I915_CACHE_NONE = 0,
816 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
817 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
818 caches, eg sampler/render caches, and the
819 large Last-Level-Cache. LLC is coherent with
820 the CPU, but L3 is only visible to the GPU. */
821 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
822 };
823
824 struct i915_ctx_hang_stats {
825 /* This context had batch pending when hang was declared */
826 unsigned batch_pending;
827
828 /* This context had batch active when hang was declared */
829 unsigned batch_active;
830
831 /* Time when this context was last blamed for a GPU reset */
832 unsigned long guilty_ts;
833
834 /* If the contexts causes a second GPU hang within this time,
835 * it is permanently banned from submitting any more work.
836 */
837 unsigned long ban_period_seconds;
838
839 /* This context is banned to submit more work */
840 bool banned;
841 };
842
843 /* This must match up with the value previously used for execbuf2.rsvd1. */
844 #define DEFAULT_CONTEXT_HANDLE 0
845
846 #define CONTEXT_NO_ZEROMAP (1<<0)
847 /**
848 * struct intel_context - as the name implies, represents a context.
849 * @ref: reference count.
850 * @user_handle: userspace tracking identity for this context.
851 * @remap_slice: l3 row remapping information.
852 * @flags: context specific flags:
853 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
854 * @file_priv: filp associated with this context (NULL for global default
855 * context).
856 * @hang_stats: information about the role of this context in possible GPU
857 * hangs.
858 * @ppgtt: virtual memory space used by this context.
859 * @legacy_hw_ctx: render context backing object and whether it is correctly
860 * initialized (legacy ring submission mechanism only).
861 * @link: link in the global list of contexts.
862 *
863 * Contexts are memory images used by the hardware to store copies of their
864 * internal state.
865 */
866 struct intel_context {
867 struct kref ref;
868 int user_handle;
869 uint8_t remap_slice;
870 struct drm_i915_private *i915;
871 int flags;
872 struct drm_i915_file_private *file_priv;
873 struct i915_ctx_hang_stats hang_stats;
874 struct i915_hw_ppgtt *ppgtt;
875
876 /* Legacy ring buffer submission */
877 struct {
878 struct drm_i915_gem_object *rcs_state;
879 bool initialized;
880 } legacy_hw_ctx;
881
882 /* Execlists */
883 struct {
884 struct drm_i915_gem_object *state;
885 struct intel_ringbuffer *ringbuf;
886 int pin_count;
887 struct i915_vma *lrc_vma;
888 u64 lrc_desc;
889 uint32_t *lrc_reg_state;
890 } engine[I915_NUM_RINGS];
891
892 struct list_head link;
893 };
894
895 enum fb_op_origin {
896 ORIGIN_GTT,
897 ORIGIN_CPU,
898 ORIGIN_CS,
899 ORIGIN_FLIP,
900 ORIGIN_DIRTYFB,
901 };
902
903 struct i915_fbc {
904 /* This is always the inner lock when overlapping with struct_mutex and
905 * it's the outer lock when overlapping with stolen_lock. */
906 struct mutex lock;
907 unsigned threshold;
908 unsigned int fb_id;
909 unsigned int possible_framebuffer_bits;
910 unsigned int busy_bits;
911 struct intel_crtc *crtc;
912 int y;
913
914 struct drm_mm_node compressed_fb;
915 struct drm_mm_node *compressed_llb;
916
917 bool false_color;
918
919 bool enabled;
920 bool active;
921
922 struct intel_fbc_work {
923 bool scheduled;
924 struct work_struct work;
925 struct drm_framebuffer *fb;
926 unsigned long enable_jiffies;
927 } work;
928
929 const char *no_fbc_reason;
930
931 bool (*is_active)(struct drm_i915_private *dev_priv);
932 void (*activate)(struct intel_crtc *crtc);
933 void (*deactivate)(struct drm_i915_private *dev_priv);
934 };
935
936 /**
937 * HIGH_RR is the highest eDP panel refresh rate read from EDID
938 * LOW_RR is the lowest eDP panel refresh rate found from EDID
939 * parsing for same resolution.
940 */
941 enum drrs_refresh_rate_type {
942 DRRS_HIGH_RR,
943 DRRS_LOW_RR,
944 DRRS_MAX_RR, /* RR count */
945 };
946
947 enum drrs_support_type {
948 DRRS_NOT_SUPPORTED = 0,
949 STATIC_DRRS_SUPPORT = 1,
950 SEAMLESS_DRRS_SUPPORT = 2
951 };
952
953 struct intel_dp;
954 struct i915_drrs {
955 struct mutex mutex;
956 struct delayed_work work;
957 struct intel_dp *dp;
958 unsigned busy_frontbuffer_bits;
959 enum drrs_refresh_rate_type refresh_rate_type;
960 enum drrs_support_type type;
961 };
962
963 struct i915_psr {
964 struct mutex lock;
965 bool sink_support;
966 bool source_ok;
967 struct intel_dp *enabled;
968 bool active;
969 struct delayed_work work;
970 unsigned busy_frontbuffer_bits;
971 bool psr2_support;
972 bool aux_frame_sync;
973 };
974
975 enum intel_pch {
976 PCH_NONE = 0, /* No PCH present */
977 PCH_IBX, /* Ibexpeak PCH */
978 PCH_CPT, /* Cougarpoint PCH */
979 PCH_LPT, /* Lynxpoint PCH */
980 PCH_SPT, /* Sunrisepoint PCH */
981 PCH_NOP,
982 };
983
984 enum intel_sbi_destination {
985 SBI_ICLK,
986 SBI_MPHY,
987 };
988
989 #define QUIRK_PIPEA_FORCE (1<<0)
990 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
991 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
992 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
993 #define QUIRK_PIPEB_FORCE (1<<4)
994 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
995
996 struct intel_fbdev;
997 struct intel_fbc_work;
998
999 struct intel_gmbus {
1000 struct i2c_adapter adapter;
1001 u32 force_bit;
1002 u32 reg0;
1003 i915_reg_t gpio_reg;
1004 struct i2c_algo_bit_data bit_algo;
1005 struct drm_i915_private *dev_priv;
1006 };
1007
1008 struct i915_suspend_saved_registers {
1009 u32 saveDSPARB;
1010 u32 saveLVDS;
1011 u32 savePP_ON_DELAYS;
1012 u32 savePP_OFF_DELAYS;
1013 u32 savePP_ON;
1014 u32 savePP_OFF;
1015 u32 savePP_CONTROL;
1016 u32 savePP_DIVISOR;
1017 u32 saveFBC_CONTROL;
1018 u32 saveCACHE_MODE_0;
1019 u32 saveMI_ARB_STATE;
1020 u32 saveSWF0[16];
1021 u32 saveSWF1[16];
1022 u32 saveSWF3[3];
1023 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1024 u32 savePCH_PORT_HOTPLUG;
1025 u16 saveGCDGMBUS;
1026 };
1027
1028 struct vlv_s0ix_state {
1029 /* GAM */
1030 u32 wr_watermark;
1031 u32 gfx_prio_ctrl;
1032 u32 arb_mode;
1033 u32 gfx_pend_tlb0;
1034 u32 gfx_pend_tlb1;
1035 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1036 u32 media_max_req_count;
1037 u32 gfx_max_req_count;
1038 u32 render_hwsp;
1039 u32 ecochk;
1040 u32 bsd_hwsp;
1041 u32 blt_hwsp;
1042 u32 tlb_rd_addr;
1043
1044 /* MBC */
1045 u32 g3dctl;
1046 u32 gsckgctl;
1047 u32 mbctl;
1048
1049 /* GCP */
1050 u32 ucgctl1;
1051 u32 ucgctl3;
1052 u32 rcgctl1;
1053 u32 rcgctl2;
1054 u32 rstctl;
1055 u32 misccpctl;
1056
1057 /* GPM */
1058 u32 gfxpause;
1059 u32 rpdeuhwtc;
1060 u32 rpdeuc;
1061 u32 ecobus;
1062 u32 pwrdwnupctl;
1063 u32 rp_down_timeout;
1064 u32 rp_deucsw;
1065 u32 rcubmabdtmr;
1066 u32 rcedata;
1067 u32 spare2gh;
1068
1069 /* Display 1 CZ domain */
1070 u32 gt_imr;
1071 u32 gt_ier;
1072 u32 pm_imr;
1073 u32 pm_ier;
1074 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1075
1076 /* GT SA CZ domain */
1077 u32 tilectl;
1078 u32 gt_fifoctl;
1079 u32 gtlc_wake_ctrl;
1080 u32 gtlc_survive;
1081 u32 pmwgicz;
1082
1083 /* Display 2 CZ domain */
1084 u32 gu_ctl0;
1085 u32 gu_ctl1;
1086 u32 pcbr;
1087 u32 clock_gate_dis2;
1088 };
1089
1090 struct intel_rps_ei {
1091 u32 cz_clock;
1092 u32 render_c0;
1093 u32 media_c0;
1094 };
1095
1096 struct intel_gen6_power_mgmt {
1097 /*
1098 * work, interrupts_enabled and pm_iir are protected by
1099 * dev_priv->irq_lock
1100 */
1101 struct work_struct work;
1102 bool interrupts_enabled;
1103 u32 pm_iir;
1104
1105 /* Frequencies are stored in potentially platform dependent multiples.
1106 * In other words, *_freq needs to be multiplied by X to be interesting.
1107 * Soft limits are those which are used for the dynamic reclocking done
1108 * by the driver (raise frequencies under heavy loads, and lower for
1109 * lighter loads). Hard limits are those imposed by the hardware.
1110 *
1111 * A distinction is made for overclocking, which is never enabled by
1112 * default, and is considered to be above the hard limit if it's
1113 * possible at all.
1114 */
1115 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1116 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1117 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1118 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1119 u8 min_freq; /* AKA RPn. Minimum frequency */
1120 u8 idle_freq; /* Frequency to request when we are idle */
1121 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1122 u8 rp1_freq; /* "less than" RP0 power/freqency */
1123 u8 rp0_freq; /* Non-overclocked max frequency. */
1124
1125 u8 up_threshold; /* Current %busy required to uplock */
1126 u8 down_threshold; /* Current %busy required to downclock */
1127
1128 int last_adj;
1129 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1130
1131 spinlock_t client_lock;
1132 struct list_head clients;
1133 bool client_boost;
1134
1135 bool enabled;
1136 struct delayed_work delayed_resume_work;
1137 unsigned boosts;
1138
1139 struct intel_rps_client semaphores, mmioflips;
1140
1141 /* manual wa residency calculations */
1142 struct intel_rps_ei up_ei, down_ei;
1143
1144 /*
1145 * Protects RPS/RC6 register access and PCU communication.
1146 * Must be taken after struct_mutex if nested. Note that
1147 * this lock may be held for long periods of time when
1148 * talking to hw - so only take it when talking to hw!
1149 */
1150 struct mutex hw_lock;
1151 };
1152
1153 /* defined intel_pm.c */
1154 extern spinlock_t mchdev_lock;
1155
1156 struct intel_ilk_power_mgmt {
1157 u8 cur_delay;
1158 u8 min_delay;
1159 u8 max_delay;
1160 u8 fmax;
1161 u8 fstart;
1162
1163 u64 last_count1;
1164 unsigned long last_time1;
1165 unsigned long chipset_power;
1166 u64 last_count2;
1167 u64 last_time2;
1168 unsigned long gfx_power;
1169 u8 corr;
1170
1171 int c_m;
1172 int r_t;
1173 };
1174
1175 struct drm_i915_private;
1176 struct i915_power_well;
1177
1178 struct i915_power_well_ops {
1179 /*
1180 * Synchronize the well's hw state to match the current sw state, for
1181 * example enable/disable it based on the current refcount. Called
1182 * during driver init and resume time, possibly after first calling
1183 * the enable/disable handlers.
1184 */
1185 void (*sync_hw)(struct drm_i915_private *dev_priv,
1186 struct i915_power_well *power_well);
1187 /*
1188 * Enable the well and resources that depend on it (for example
1189 * interrupts located on the well). Called after the 0->1 refcount
1190 * transition.
1191 */
1192 void (*enable)(struct drm_i915_private *dev_priv,
1193 struct i915_power_well *power_well);
1194 /*
1195 * Disable the well and resources that depend on it. Called after
1196 * the 1->0 refcount transition.
1197 */
1198 void (*disable)(struct drm_i915_private *dev_priv,
1199 struct i915_power_well *power_well);
1200 /* Returns the hw enabled state. */
1201 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1202 struct i915_power_well *power_well);
1203 };
1204
1205 /* Power well structure for haswell */
1206 struct i915_power_well {
1207 const char *name;
1208 bool always_on;
1209 /* power well enable/disable usage count */
1210 int count;
1211 /* cached hw enabled state */
1212 bool hw_enabled;
1213 unsigned long domains;
1214 unsigned long data;
1215 const struct i915_power_well_ops *ops;
1216 };
1217
1218 struct i915_power_domains {
1219 /*
1220 * Power wells needed for initialization at driver init and suspend
1221 * time are on. They are kept on until after the first modeset.
1222 */
1223 bool init_power_on;
1224 bool initializing;
1225 int power_well_count;
1226
1227 struct mutex lock;
1228 int domain_use_count[POWER_DOMAIN_NUM];
1229 struct i915_power_well *power_wells;
1230 };
1231
1232 #define MAX_L3_SLICES 2
1233 struct intel_l3_parity {
1234 u32 *remap_info[MAX_L3_SLICES];
1235 struct work_struct error_work;
1236 int which_slice;
1237 };
1238
1239 struct i915_gem_mm {
1240 /** Memory allocator for GTT stolen memory */
1241 struct drm_mm stolen;
1242 /** Protects the usage of the GTT stolen memory allocator. This is
1243 * always the inner lock when overlapping with struct_mutex. */
1244 struct mutex stolen_lock;
1245
1246 /** List of all objects in gtt_space. Used to restore gtt
1247 * mappings on resume */
1248 struct list_head bound_list;
1249 /**
1250 * List of objects which are not bound to the GTT (thus
1251 * are idle and not used by the GPU) but still have
1252 * (presumably uncached) pages still attached.
1253 */
1254 struct list_head unbound_list;
1255
1256 /** Usable portion of the GTT for GEM */
1257 unsigned long stolen_base; /* limited to low memory (32-bit) */
1258
1259 /** PPGTT used for aliasing the PPGTT with the GTT */
1260 struct i915_hw_ppgtt *aliasing_ppgtt;
1261
1262 struct notifier_block oom_notifier;
1263 struct shrinker shrinker;
1264 bool shrinker_no_lock_stealing;
1265
1266 /** LRU list of objects with fence regs on them. */
1267 struct list_head fence_list;
1268
1269 /**
1270 * We leave the user IRQ off as much as possible,
1271 * but this means that requests will finish and never
1272 * be retired once the system goes idle. Set a timer to
1273 * fire periodically while the ring is running. When it
1274 * fires, go retire requests.
1275 */
1276 struct delayed_work retire_work;
1277
1278 /**
1279 * When we detect an idle GPU, we want to turn on
1280 * powersaving features. So once we see that there
1281 * are no more requests outstanding and no more
1282 * arrive within a small period of time, we fire
1283 * off the idle_work.
1284 */
1285 struct delayed_work idle_work;
1286
1287 /**
1288 * Are we in a non-interruptible section of code like
1289 * modesetting?
1290 */
1291 bool interruptible;
1292
1293 /**
1294 * Is the GPU currently considered idle, or busy executing userspace
1295 * requests? Whilst idle, we attempt to power down the hardware and
1296 * display clocks. In order to reduce the effect on performance, there
1297 * is a slight delay before we do so.
1298 */
1299 bool busy;
1300
1301 /* the indicator for dispatch video commands on two BSD rings */
1302 unsigned int bsd_ring_dispatch_index;
1303
1304 /** Bit 6 swizzling required for X tiling */
1305 uint32_t bit_6_swizzle_x;
1306 /** Bit 6 swizzling required for Y tiling */
1307 uint32_t bit_6_swizzle_y;
1308
1309 /* accounting, useful for userland debugging */
1310 spinlock_t object_stat_lock;
1311 size_t object_memory;
1312 u32 object_count;
1313 };
1314
1315 struct drm_i915_error_state_buf {
1316 struct drm_i915_private *i915;
1317 unsigned bytes;
1318 unsigned size;
1319 int err;
1320 u8 *buf;
1321 loff_t start;
1322 loff_t pos;
1323 };
1324
1325 struct i915_error_state_file_priv {
1326 struct drm_device *dev;
1327 struct drm_i915_error_state *error;
1328 };
1329
1330 struct i915_gpu_error {
1331 /* For hangcheck timer */
1332 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1333 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1334 /* Hang gpu twice in this window and your context gets banned */
1335 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1336
1337 struct workqueue_struct *hangcheck_wq;
1338 struct delayed_work hangcheck_work;
1339
1340 /* For reset and error_state handling. */
1341 spinlock_t lock;
1342 /* Protected by the above dev->gpu_error.lock. */
1343 struct drm_i915_error_state *first_error;
1344
1345 unsigned long missed_irq_rings;
1346
1347 /**
1348 * State variable controlling the reset flow and count
1349 *
1350 * This is a counter which gets incremented when reset is triggered,
1351 * and again when reset has been handled. So odd values (lowest bit set)
1352 * means that reset is in progress and even values that
1353 * (reset_counter >> 1):th reset was successfully completed.
1354 *
1355 * If reset is not completed succesfully, the I915_WEDGE bit is
1356 * set meaning that hardware is terminally sour and there is no
1357 * recovery. All waiters on the reset_queue will be woken when
1358 * that happens.
1359 *
1360 * This counter is used by the wait_seqno code to notice that reset
1361 * event happened and it needs to restart the entire ioctl (since most
1362 * likely the seqno it waited for won't ever signal anytime soon).
1363 *
1364 * This is important for lock-free wait paths, where no contended lock
1365 * naturally enforces the correct ordering between the bail-out of the
1366 * waiter and the gpu reset work code.
1367 */
1368 atomic_t reset_counter;
1369
1370 #define I915_RESET_IN_PROGRESS_FLAG 1
1371 #define I915_WEDGED (1 << 31)
1372
1373 /**
1374 * Waitqueue to signal when the reset has completed. Used by clients
1375 * that wait for dev_priv->mm.wedged to settle.
1376 */
1377 wait_queue_head_t reset_queue;
1378
1379 /* Userspace knobs for gpu hang simulation;
1380 * combines both a ring mask, and extra flags
1381 */
1382 u32 stop_rings;
1383 #define I915_STOP_RING_ALLOW_BAN (1 << 31)
1384 #define I915_STOP_RING_ALLOW_WARN (1 << 30)
1385
1386 /* For missed irq/seqno simulation. */
1387 unsigned int test_irq_rings;
1388
1389 /* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */
1390 bool reload_in_reset;
1391 };
1392
1393 enum modeset_restore {
1394 MODESET_ON_LID_OPEN,
1395 MODESET_DONE,
1396 MODESET_SUSPENDED,
1397 };
1398
1399 #define DP_AUX_A 0x40
1400 #define DP_AUX_B 0x10
1401 #define DP_AUX_C 0x20
1402 #define DP_AUX_D 0x30
1403
1404 #define DDC_PIN_B 0x05
1405 #define DDC_PIN_C 0x04
1406 #define DDC_PIN_D 0x06
1407
1408 struct ddi_vbt_port_info {
1409 /*
1410 * This is an index in the HDMI/DVI DDI buffer translation table.
1411 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1412 * populate this field.
1413 */
1414 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1415 uint8_t hdmi_level_shift;
1416
1417 uint8_t supports_dvi:1;
1418 uint8_t supports_hdmi:1;
1419 uint8_t supports_dp:1;
1420
1421 uint8_t alternate_aux_channel;
1422 uint8_t alternate_ddc_pin;
1423
1424 uint8_t dp_boost_level;
1425 uint8_t hdmi_boost_level;
1426 };
1427
1428 enum psr_lines_to_wait {
1429 PSR_0_LINES_TO_WAIT = 0,
1430 PSR_1_LINE_TO_WAIT,
1431 PSR_4_LINES_TO_WAIT,
1432 PSR_8_LINES_TO_WAIT
1433 };
1434
1435 struct intel_vbt_data {
1436 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1437 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1438
1439 /* Feature bits */
1440 unsigned int int_tv_support:1;
1441 unsigned int lvds_dither:1;
1442 unsigned int lvds_vbt:1;
1443 unsigned int int_crt_support:1;
1444 unsigned int lvds_use_ssc:1;
1445 unsigned int display_clock_mode:1;
1446 unsigned int fdi_rx_polarity_inverted:1;
1447 unsigned int has_mipi:1;
1448 int lvds_ssc_freq;
1449 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1450
1451 enum drrs_support_type drrs_type;
1452
1453 /* eDP */
1454 int edp_rate;
1455 int edp_lanes;
1456 int edp_preemphasis;
1457 int edp_vswing;
1458 bool edp_initialized;
1459 bool edp_support;
1460 int edp_bpp;
1461 struct edp_power_seq edp_pps;
1462
1463 struct {
1464 bool full_link;
1465 bool require_aux_wakeup;
1466 int idle_frames;
1467 enum psr_lines_to_wait lines_to_wait;
1468 int tp1_wakeup_time;
1469 int tp2_tp3_wakeup_time;
1470 } psr;
1471
1472 struct {
1473 u16 pwm_freq_hz;
1474 bool present;
1475 bool active_low_pwm;
1476 u8 min_brightness; /* min_brightness/255 of max */
1477 } backlight;
1478
1479 /* MIPI DSI */
1480 struct {
1481 u16 port;
1482 u16 panel_id;
1483 struct mipi_config *config;
1484 struct mipi_pps_data *pps;
1485 u8 seq_version;
1486 u32 size;
1487 u8 *data;
1488 const u8 *sequence[MIPI_SEQ_MAX];
1489 } dsi;
1490
1491 int crt_ddc_pin;
1492
1493 int child_dev_num;
1494 union child_device_config *child_dev;
1495
1496 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1497 };
1498
1499 enum intel_ddb_partitioning {
1500 INTEL_DDB_PART_1_2,
1501 INTEL_DDB_PART_5_6, /* IVB+ */
1502 };
1503
1504 struct intel_wm_level {
1505 bool enable;
1506 uint32_t pri_val;
1507 uint32_t spr_val;
1508 uint32_t cur_val;
1509 uint32_t fbc_val;
1510 };
1511
1512 struct ilk_wm_values {
1513 uint32_t wm_pipe[3];
1514 uint32_t wm_lp[3];
1515 uint32_t wm_lp_spr[3];
1516 uint32_t wm_linetime[3];
1517 bool enable_fbc_wm;
1518 enum intel_ddb_partitioning partitioning;
1519 };
1520
1521 struct vlv_pipe_wm {
1522 uint16_t primary;
1523 uint16_t sprite[2];
1524 uint8_t cursor;
1525 };
1526
1527 struct vlv_sr_wm {
1528 uint16_t plane;
1529 uint8_t cursor;
1530 };
1531
1532 struct vlv_wm_values {
1533 struct vlv_pipe_wm pipe[3];
1534 struct vlv_sr_wm sr;
1535 struct {
1536 uint8_t cursor;
1537 uint8_t sprite[2];
1538 uint8_t primary;
1539 } ddl[3];
1540 uint8_t level;
1541 bool cxsr;
1542 };
1543
1544 struct skl_ddb_entry {
1545 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1546 };
1547
1548 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1549 {
1550 return entry->end - entry->start;
1551 }
1552
1553 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1554 const struct skl_ddb_entry *e2)
1555 {
1556 if (e1->start == e2->start && e1->end == e2->end)
1557 return true;
1558
1559 return false;
1560 }
1561
1562 struct skl_ddb_allocation {
1563 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1564 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1565 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1566 };
1567
1568 struct skl_wm_values {
1569 bool dirty[I915_MAX_PIPES];
1570 struct skl_ddb_allocation ddb;
1571 uint32_t wm_linetime[I915_MAX_PIPES];
1572 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1573 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1574 };
1575
1576 struct skl_wm_level {
1577 bool plane_en[I915_MAX_PLANES];
1578 uint16_t plane_res_b[I915_MAX_PLANES];
1579 uint8_t plane_res_l[I915_MAX_PLANES];
1580 };
1581
1582 /*
1583 * This struct helps tracking the state needed for runtime PM, which puts the
1584 * device in PCI D3 state. Notice that when this happens, nothing on the
1585 * graphics device works, even register access, so we don't get interrupts nor
1586 * anything else.
1587 *
1588 * Every piece of our code that needs to actually touch the hardware needs to
1589 * either call intel_runtime_pm_get or call intel_display_power_get with the
1590 * appropriate power domain.
1591 *
1592 * Our driver uses the autosuspend delay feature, which means we'll only really
1593 * suspend if we stay with zero refcount for a certain amount of time. The
1594 * default value is currently very conservative (see intel_runtime_pm_enable), but
1595 * it can be changed with the standard runtime PM files from sysfs.
1596 *
1597 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1598 * goes back to false exactly before we reenable the IRQs. We use this variable
1599 * to check if someone is trying to enable/disable IRQs while they're supposed
1600 * to be disabled. This shouldn't happen and we'll print some error messages in
1601 * case it happens.
1602 *
1603 * For more, read the Documentation/power/runtime_pm.txt.
1604 */
1605 struct i915_runtime_pm {
1606 atomic_t wakeref_count;
1607 atomic_t atomic_seq;
1608 bool suspended;
1609 bool irqs_enabled;
1610 };
1611
1612 enum intel_pipe_crc_source {
1613 INTEL_PIPE_CRC_SOURCE_NONE,
1614 INTEL_PIPE_CRC_SOURCE_PLANE1,
1615 INTEL_PIPE_CRC_SOURCE_PLANE2,
1616 INTEL_PIPE_CRC_SOURCE_PF,
1617 INTEL_PIPE_CRC_SOURCE_PIPE,
1618 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1619 INTEL_PIPE_CRC_SOURCE_TV,
1620 INTEL_PIPE_CRC_SOURCE_DP_B,
1621 INTEL_PIPE_CRC_SOURCE_DP_C,
1622 INTEL_PIPE_CRC_SOURCE_DP_D,
1623 INTEL_PIPE_CRC_SOURCE_AUTO,
1624 INTEL_PIPE_CRC_SOURCE_MAX,
1625 };
1626
1627 struct intel_pipe_crc_entry {
1628 uint32_t frame;
1629 uint32_t crc[5];
1630 };
1631
1632 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1633 struct intel_pipe_crc {
1634 spinlock_t lock;
1635 bool opened; /* exclusive access to the result file */
1636 struct intel_pipe_crc_entry *entries;
1637 enum intel_pipe_crc_source source;
1638 int head, tail;
1639 wait_queue_head_t wq;
1640 };
1641
1642 struct i915_frontbuffer_tracking {
1643 struct mutex lock;
1644
1645 /*
1646 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1647 * scheduled flips.
1648 */
1649 unsigned busy_bits;
1650 unsigned flip_bits;
1651 };
1652
1653 struct i915_wa_reg {
1654 i915_reg_t addr;
1655 u32 value;
1656 /* bitmask representing WA bits */
1657 u32 mask;
1658 };
1659
1660 /*
1661 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1662 * allowing it for RCS as we don't foresee any requirement of having
1663 * a whitelist for other engines. When it is really required for
1664 * other engines then the limit need to be increased.
1665 */
1666 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1667
1668 struct i915_workarounds {
1669 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1670 u32 count;
1671 u32 hw_whitelist_count[I915_NUM_RINGS];
1672 };
1673
1674 struct i915_virtual_gpu {
1675 bool active;
1676 };
1677
1678 struct i915_execbuffer_params {
1679 struct drm_device *dev;
1680 struct drm_file *file;
1681 uint32_t dispatch_flags;
1682 uint32_t args_batch_start_offset;
1683 uint64_t batch_obj_vm_offset;
1684 struct intel_engine_cs *ring;
1685 struct drm_i915_gem_object *batch_obj;
1686 struct intel_context *ctx;
1687 struct drm_i915_gem_request *request;
1688 };
1689
1690 /* used in computing the new watermarks state */
1691 struct intel_wm_config {
1692 unsigned int num_pipes_active;
1693 bool sprites_enabled;
1694 bool sprites_scaled;
1695 };
1696
1697 struct drm_i915_private {
1698 struct drm_device *dev;
1699 struct kmem_cache *objects;
1700 struct kmem_cache *vmas;
1701 struct kmem_cache *requests;
1702
1703 const struct intel_device_info info;
1704
1705 int relative_constants_mode;
1706
1707 void __iomem *regs;
1708
1709 struct intel_uncore uncore;
1710
1711 struct i915_virtual_gpu vgpu;
1712
1713 struct intel_guc guc;
1714
1715 struct intel_csr csr;
1716
1717 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1718
1719 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1720 * controller on different i2c buses. */
1721 struct mutex gmbus_mutex;
1722
1723 /**
1724 * Base address of the gmbus and gpio block.
1725 */
1726 uint32_t gpio_mmio_base;
1727
1728 /* MMIO base address for MIPI regs */
1729 uint32_t mipi_mmio_base;
1730
1731 uint32_t psr_mmio_base;
1732
1733 wait_queue_head_t gmbus_wait_queue;
1734
1735 struct pci_dev *bridge_dev;
1736 struct intel_engine_cs ring[I915_NUM_RINGS];
1737 struct drm_i915_gem_object *semaphore_obj;
1738 uint32_t last_seqno, next_seqno;
1739
1740 struct drm_dma_handle *status_page_dmah;
1741 struct resource mch_res;
1742
1743 /* protects the irq masks */
1744 spinlock_t irq_lock;
1745
1746 /* protects the mmio flip data */
1747 spinlock_t mmio_flip_lock;
1748
1749 bool display_irqs_enabled;
1750
1751 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1752 struct pm_qos_request pm_qos;
1753
1754 /* Sideband mailbox protection */
1755 struct mutex sb_lock;
1756
1757 /** Cached value of IMR to avoid reads in updating the bitfield */
1758 union {
1759 u32 irq_mask;
1760 u32 de_irq_mask[I915_MAX_PIPES];
1761 };
1762 u32 gt_irq_mask;
1763 u32 pm_irq_mask;
1764 u32 pm_rps_events;
1765 u32 pipestat_irq_mask[I915_MAX_PIPES];
1766
1767 struct i915_hotplug hotplug;
1768 struct i915_fbc fbc;
1769 struct i915_drrs drrs;
1770 struct intel_opregion opregion;
1771 struct intel_vbt_data vbt;
1772
1773 bool preserve_bios_swizzle;
1774
1775 /* overlay */
1776 struct intel_overlay *overlay;
1777
1778 /* backlight registers and fields in struct intel_panel */
1779 struct mutex backlight_lock;
1780
1781 /* LVDS info */
1782 bool no_aux_handshake;
1783
1784 /* protects panel power sequencer state */
1785 struct mutex pps_mutex;
1786
1787 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1788 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1789
1790 unsigned int fsb_freq, mem_freq, is_ddr3;
1791 unsigned int skl_boot_cdclk;
1792 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1793 unsigned int max_dotclk_freq;
1794 unsigned int hpll_freq;
1795 unsigned int czclk_freq;
1796
1797 /**
1798 * wq - Driver workqueue for GEM.
1799 *
1800 * NOTE: Work items scheduled here are not allowed to grab any modeset
1801 * locks, for otherwise the flushing done in the pageflip code will
1802 * result in deadlocks.
1803 */
1804 struct workqueue_struct *wq;
1805
1806 /* Display functions */
1807 struct drm_i915_display_funcs display;
1808
1809 /* PCH chipset type */
1810 enum intel_pch pch_type;
1811 unsigned short pch_id;
1812
1813 unsigned long quirks;
1814
1815 enum modeset_restore modeset_restore;
1816 struct mutex modeset_restore_lock;
1817
1818 struct list_head vm_list; /* Global list of all address spaces */
1819 struct i915_gtt gtt; /* VM representing the global address space */
1820
1821 struct i915_gem_mm mm;
1822 DECLARE_HASHTABLE(mm_structs, 7);
1823 struct mutex mm_lock;
1824
1825 /* Kernel Modesetting */
1826
1827 struct sdvo_device_mapping sdvo_mappings[2];
1828
1829 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1830 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1831 wait_queue_head_t pending_flip_queue;
1832
1833 #ifdef CONFIG_DEBUG_FS
1834 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1835 #endif
1836
1837 /* dpll and cdclk state is protected by connection_mutex */
1838 int num_shared_dpll;
1839 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1840
1841 unsigned int active_crtcs;
1842 unsigned int min_pixclk[I915_MAX_PIPES];
1843
1844 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1845
1846 struct i915_workarounds workarounds;
1847
1848 /* Reclocking support */
1849 bool render_reclock_avail;
1850
1851 struct i915_frontbuffer_tracking fb_tracking;
1852
1853 u16 orig_clock;
1854
1855 bool mchbar_need_disable;
1856
1857 struct intel_l3_parity l3_parity;
1858
1859 /* Cannot be determined by PCIID. You must always read a register. */
1860 size_t ellc_size;
1861
1862 /* gen6+ rps state */
1863 struct intel_gen6_power_mgmt rps;
1864
1865 /* ilk-only ips/rps state. Everything in here is protected by the global
1866 * mchdev_lock in intel_pm.c */
1867 struct intel_ilk_power_mgmt ips;
1868
1869 struct i915_power_domains power_domains;
1870
1871 struct i915_psr psr;
1872
1873 struct i915_gpu_error gpu_error;
1874
1875 struct drm_i915_gem_object *vlv_pctx;
1876
1877 #ifdef CONFIG_DRM_FBDEV_EMULATION
1878 /* list of fbdev register on this device */
1879 struct intel_fbdev *fbdev;
1880 struct work_struct fbdev_suspend_work;
1881 #endif
1882
1883 struct drm_property *broadcast_rgb_property;
1884 struct drm_property *force_audio_property;
1885
1886 /* hda/i915 audio component */
1887 struct i915_audio_component *audio_component;
1888 bool audio_component_registered;
1889 /**
1890 * av_mutex - mutex for audio/video sync
1891 *
1892 */
1893 struct mutex av_mutex;
1894
1895 uint32_t hw_context_size;
1896 struct list_head context_list;
1897
1898 u32 fdi_rx_config;
1899
1900 u32 chv_phy_control;
1901
1902 u32 suspend_count;
1903 bool suspended_to_idle;
1904 struct i915_suspend_saved_registers regfile;
1905 struct vlv_s0ix_state vlv_s0ix_state;
1906
1907 struct {
1908 /*
1909 * Raw watermark latency values:
1910 * in 0.1us units for WM0,
1911 * in 0.5us units for WM1+.
1912 */
1913 /* primary */
1914 uint16_t pri_latency[5];
1915 /* sprite */
1916 uint16_t spr_latency[5];
1917 /* cursor */
1918 uint16_t cur_latency[5];
1919 /*
1920 * Raw watermark memory latency values
1921 * for SKL for all 8 levels
1922 * in 1us units.
1923 */
1924 uint16_t skl_latency[8];
1925
1926 /* Committed wm config */
1927 struct intel_wm_config config;
1928
1929 /*
1930 * The skl_wm_values structure is a bit too big for stack
1931 * allocation, so we keep the staging struct where we store
1932 * intermediate results here instead.
1933 */
1934 struct skl_wm_values skl_results;
1935
1936 /* current hardware state */
1937 union {
1938 struct ilk_wm_values hw;
1939 struct skl_wm_values skl_hw;
1940 struct vlv_wm_values vlv;
1941 };
1942
1943 uint8_t max_level;
1944 } wm;
1945
1946 struct i915_runtime_pm pm;
1947
1948 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1949 struct {
1950 int (*execbuf_submit)(struct i915_execbuffer_params *params,
1951 struct drm_i915_gem_execbuffer2 *args,
1952 struct list_head *vmas);
1953 int (*init_rings)(struct drm_device *dev);
1954 void (*cleanup_ring)(struct intel_engine_cs *ring);
1955 void (*stop_ring)(struct intel_engine_cs *ring);
1956 } gt;
1957
1958 struct intel_context *kernel_context;
1959
1960 bool edp_low_vswing;
1961
1962 /* perform PHY state sanity checks? */
1963 bool chv_phy_assert[2];
1964
1965 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
1966
1967 /*
1968 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
1969 * will be rejected. Instead look for a better place.
1970 */
1971 };
1972
1973 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
1974 {
1975 return dev->dev_private;
1976 }
1977
1978 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
1979 {
1980 return to_i915(dev_get_drvdata(dev));
1981 }
1982
1983 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
1984 {
1985 return container_of(guc, struct drm_i915_private, guc);
1986 }
1987
1988 /* Iterate over initialised rings */
1989 #define for_each_ring(ring__, dev_priv__, i__) \
1990 for ((i__) = 0; (i__) < I915_NUM_RINGS; (i__)++) \
1991 for_each_if ((((ring__) = &(dev_priv__)->ring[(i__)]), intel_ring_initialized((ring__))))
1992
1993 enum hdmi_force_audio {
1994 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
1995 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
1996 HDMI_AUDIO_AUTO, /* trust EDID */
1997 HDMI_AUDIO_ON, /* force turn on HDMI audio */
1998 };
1999
2000 #define I915_GTT_OFFSET_NONE ((u32)-1)
2001
2002 struct drm_i915_gem_object_ops {
2003 /* Interface between the GEM object and its backing storage.
2004 * get_pages() is called once prior to the use of the associated set
2005 * of pages before to binding them into the GTT, and put_pages() is
2006 * called after we no longer need them. As we expect there to be
2007 * associated cost with migrating pages between the backing storage
2008 * and making them available for the GPU (e.g. clflush), we may hold
2009 * onto the pages after they are no longer referenced by the GPU
2010 * in case they may be used again shortly (for example migrating the
2011 * pages to a different memory domain within the GTT). put_pages()
2012 * will therefore most likely be called when the object itself is
2013 * being released or under memory pressure (where we attempt to
2014 * reap pages for the shrinker).
2015 */
2016 int (*get_pages)(struct drm_i915_gem_object *);
2017 void (*put_pages)(struct drm_i915_gem_object *);
2018 int (*dmabuf_export)(struct drm_i915_gem_object *);
2019 void (*release)(struct drm_i915_gem_object *);
2020 };
2021
2022 /*
2023 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2024 * considered to be the frontbuffer for the given plane interface-wise. This
2025 * doesn't mean that the hw necessarily already scans it out, but that any
2026 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2027 *
2028 * We have one bit per pipe and per scanout plane type.
2029 */
2030 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2031 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2032 #define INTEL_FRONTBUFFER_BITS \
2033 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2034 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2035 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2036 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2037 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2038 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2039 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2040 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2041 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2042 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2043 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2044
2045 struct drm_i915_gem_object {
2046 struct drm_gem_object base;
2047
2048 const struct drm_i915_gem_object_ops *ops;
2049
2050 /** List of VMAs backed by this object */
2051 struct list_head vma_list;
2052
2053 /** Stolen memory for this object, instead of being backed by shmem. */
2054 struct drm_mm_node *stolen;
2055 struct list_head global_list;
2056
2057 struct list_head ring_list[I915_NUM_RINGS];
2058 /** Used in execbuf to temporarily hold a ref */
2059 struct list_head obj_exec_link;
2060
2061 struct list_head batch_pool_link;
2062
2063 /**
2064 * This is set if the object is on the active lists (has pending
2065 * rendering and so a non-zero seqno), and is not set if it i s on
2066 * inactive (ready to be unbound) list.
2067 */
2068 unsigned int active:I915_NUM_RINGS;
2069
2070 /**
2071 * This is set if the object has been written to since last bound
2072 * to the GTT
2073 */
2074 unsigned int dirty:1;
2075
2076 /**
2077 * Fence register bits (if any) for this object. Will be set
2078 * as needed when mapped into the GTT.
2079 * Protected by dev->struct_mutex.
2080 */
2081 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2082
2083 /**
2084 * Advice: are the backing pages purgeable?
2085 */
2086 unsigned int madv:2;
2087
2088 /**
2089 * Current tiling mode for the object.
2090 */
2091 unsigned int tiling_mode:2;
2092 /**
2093 * Whether the tiling parameters for the currently associated fence
2094 * register have changed. Note that for the purposes of tracking
2095 * tiling changes we also treat the unfenced register, the register
2096 * slot that the object occupies whilst it executes a fenced
2097 * command (such as BLT on gen2/3), as a "fence".
2098 */
2099 unsigned int fence_dirty:1;
2100
2101 /**
2102 * Is the object at the current location in the gtt mappable and
2103 * fenceable? Used to avoid costly recalculations.
2104 */
2105 unsigned int map_and_fenceable:1;
2106
2107 /**
2108 * Whether the current gtt mapping needs to be mappable (and isn't just
2109 * mappable by accident). Track pin and fault separate for a more
2110 * accurate mappable working set.
2111 */
2112 unsigned int fault_mappable:1;
2113
2114 /*
2115 * Is the object to be mapped as read-only to the GPU
2116 * Only honoured if hardware has relevant pte bit
2117 */
2118 unsigned long gt_ro:1;
2119 unsigned int cache_level:3;
2120 unsigned int cache_dirty:1;
2121
2122 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2123
2124 unsigned int pin_display;
2125
2126 struct sg_table *pages;
2127 int pages_pin_count;
2128 struct get_page {
2129 struct scatterlist *sg;
2130 int last;
2131 } get_page;
2132
2133 /* prime dma-buf support */
2134 void *dma_buf_vmapping;
2135 int vmapping_count;
2136
2137 /** Breadcrumb of last rendering to the buffer.
2138 * There can only be one writer, but we allow for multiple readers.
2139 * If there is a writer that necessarily implies that all other
2140 * read requests are complete - but we may only be lazily clearing
2141 * the read requests. A read request is naturally the most recent
2142 * request on a ring, so we may have two different write and read
2143 * requests on one ring where the write request is older than the
2144 * read request. This allows for the CPU to read from an active
2145 * buffer by only waiting for the write to complete.
2146 * */
2147 struct drm_i915_gem_request *last_read_req[I915_NUM_RINGS];
2148 struct drm_i915_gem_request *last_write_req;
2149 /** Breadcrumb of last fenced GPU access to the buffer. */
2150 struct drm_i915_gem_request *last_fenced_req;
2151
2152 /** Current tiling stride for the object, if it's tiled. */
2153 uint32_t stride;
2154
2155 /** References from framebuffers, locks out tiling changes. */
2156 unsigned long framebuffer_references;
2157
2158 /** Record of address bit 17 of each page at last unbind. */
2159 unsigned long *bit_17;
2160
2161 union {
2162 /** for phy allocated objects */
2163 struct drm_dma_handle *phys_handle;
2164
2165 struct i915_gem_userptr {
2166 uintptr_t ptr;
2167 unsigned read_only :1;
2168 unsigned workers :4;
2169 #define I915_GEM_USERPTR_MAX_WORKERS 15
2170
2171 struct i915_mm_struct *mm;
2172 struct i915_mmu_object *mmu_object;
2173 struct work_struct *work;
2174 } userptr;
2175 };
2176 };
2177 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2178
2179 void i915_gem_track_fb(struct drm_i915_gem_object *old,
2180 struct drm_i915_gem_object *new,
2181 unsigned frontbuffer_bits);
2182
2183 /**
2184 * Request queue structure.
2185 *
2186 * The request queue allows us to note sequence numbers that have been emitted
2187 * and may be associated with active buffers to be retired.
2188 *
2189 * By keeping this list, we can avoid having to do questionable sequence
2190 * number comparisons on buffer last_read|write_seqno. It also allows an
2191 * emission time to be associated with the request for tracking how far ahead
2192 * of the GPU the submission is.
2193 *
2194 * The requests are reference counted, so upon creation they should have an
2195 * initial reference taken using kref_init
2196 */
2197 struct drm_i915_gem_request {
2198 struct kref ref;
2199
2200 /** On Which ring this request was generated */
2201 struct drm_i915_private *i915;
2202 struct intel_engine_cs *ring;
2203
2204 /** GEM sequence number associated with the previous request,
2205 * when the HWS breadcrumb is equal to this the GPU is processing
2206 * this request.
2207 */
2208 u32 previous_seqno;
2209
2210 /** GEM sequence number associated with this request,
2211 * when the HWS breadcrumb is equal or greater than this the GPU
2212 * has finished processing this request.
2213 */
2214 u32 seqno;
2215
2216 /** Position in the ringbuffer of the start of the request */
2217 u32 head;
2218
2219 /**
2220 * Position in the ringbuffer of the start of the postfix.
2221 * This is required to calculate the maximum available ringbuffer
2222 * space without overwriting the postfix.
2223 */
2224 u32 postfix;
2225
2226 /** Position in the ringbuffer of the end of the whole request */
2227 u32 tail;
2228
2229 /**
2230 * Context and ring buffer related to this request
2231 * Contexts are refcounted, so when this request is associated with a
2232 * context, we must increment the context's refcount, to guarantee that
2233 * it persists while any request is linked to it. Requests themselves
2234 * are also refcounted, so the request will only be freed when the last
2235 * reference to it is dismissed, and the code in
2236 * i915_gem_request_free() will then decrement the refcount on the
2237 * context.
2238 */
2239 struct intel_context *ctx;
2240 struct intel_ringbuffer *ringbuf;
2241
2242 /** Batch buffer related to this request if any (used for
2243 error state dump only) */
2244 struct drm_i915_gem_object *batch_obj;
2245
2246 /** Time at which this request was emitted, in jiffies. */
2247 unsigned long emitted_jiffies;
2248
2249 /** global list entry for this request */
2250 struct list_head list;
2251
2252 struct drm_i915_file_private *file_priv;
2253 /** file_priv list entry for this request */
2254 struct list_head client_list;
2255
2256 /** process identifier submitting this request */
2257 struct pid *pid;
2258
2259 /**
2260 * The ELSP only accepts two elements at a time, so we queue
2261 * context/tail pairs on a given queue (ring->execlist_queue) until the
2262 * hardware is available. The queue serves a double purpose: we also use
2263 * it to keep track of the up to 2 contexts currently in the hardware
2264 * (usually one in execution and the other queued up by the GPU): We
2265 * only remove elements from the head of the queue when the hardware
2266 * informs us that an element has been completed.
2267 *
2268 * All accesses to the queue are mediated by a spinlock
2269 * (ring->execlist_lock).
2270 */
2271
2272 /** Execlist link in the submission queue.*/
2273 struct list_head execlist_link;
2274
2275 /** Execlists no. of times this request has been sent to the ELSP */
2276 int elsp_submitted;
2277
2278 };
2279
2280 struct drm_i915_gem_request * __must_check
2281 i915_gem_request_alloc(struct intel_engine_cs *engine,
2282 struct intel_context *ctx);
2283 void i915_gem_request_cancel(struct drm_i915_gem_request *req);
2284 void i915_gem_request_free(struct kref *req_ref);
2285 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2286 struct drm_file *file);
2287
2288 static inline uint32_t
2289 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2290 {
2291 return req ? req->seqno : 0;
2292 }
2293
2294 static inline struct intel_engine_cs *
2295 i915_gem_request_get_ring(struct drm_i915_gem_request *req)
2296 {
2297 return req ? req->ring : NULL;
2298 }
2299
2300 static inline struct drm_i915_gem_request *
2301 i915_gem_request_reference(struct drm_i915_gem_request *req)
2302 {
2303 if (req)
2304 kref_get(&req->ref);
2305 return req;
2306 }
2307
2308 static inline void
2309 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2310 {
2311 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
2312 kref_put(&req->ref, i915_gem_request_free);
2313 }
2314
2315 static inline void
2316 i915_gem_request_unreference__unlocked(struct drm_i915_gem_request *req)
2317 {
2318 struct drm_device *dev;
2319
2320 if (!req)
2321 return;
2322
2323 dev = req->ring->dev;
2324 if (kref_put_mutex(&req->ref, i915_gem_request_free, &dev->struct_mutex))
2325 mutex_unlock(&dev->struct_mutex);
2326 }
2327
2328 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2329 struct drm_i915_gem_request *src)
2330 {
2331 if (src)
2332 i915_gem_request_reference(src);
2333
2334 if (*pdst)
2335 i915_gem_request_unreference(*pdst);
2336
2337 *pdst = src;
2338 }
2339
2340 /*
2341 * XXX: i915_gem_request_completed should be here but currently needs the
2342 * definition of i915_seqno_passed() which is below. It will be moved in
2343 * a later patch when the call to i915_seqno_passed() is obsoleted...
2344 */
2345
2346 /*
2347 * A command that requires special handling by the command parser.
2348 */
2349 struct drm_i915_cmd_descriptor {
2350 /*
2351 * Flags describing how the command parser processes the command.
2352 *
2353 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2354 * a length mask if not set
2355 * CMD_DESC_SKIP: The command is allowed but does not follow the
2356 * standard length encoding for the opcode range in
2357 * which it falls
2358 * CMD_DESC_REJECT: The command is never allowed
2359 * CMD_DESC_REGISTER: The command should be checked against the
2360 * register whitelist for the appropriate ring
2361 * CMD_DESC_MASTER: The command is allowed if the submitting process
2362 * is the DRM master
2363 */
2364 u32 flags;
2365 #define CMD_DESC_FIXED (1<<0)
2366 #define CMD_DESC_SKIP (1<<1)
2367 #define CMD_DESC_REJECT (1<<2)
2368 #define CMD_DESC_REGISTER (1<<3)
2369 #define CMD_DESC_BITMASK (1<<4)
2370 #define CMD_DESC_MASTER (1<<5)
2371
2372 /*
2373 * The command's unique identification bits and the bitmask to get them.
2374 * This isn't strictly the opcode field as defined in the spec and may
2375 * also include type, subtype, and/or subop fields.
2376 */
2377 struct {
2378 u32 value;
2379 u32 mask;
2380 } cmd;
2381
2382 /*
2383 * The command's length. The command is either fixed length (i.e. does
2384 * not include a length field) or has a length field mask. The flag
2385 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2386 * a length mask. All command entries in a command table must include
2387 * length information.
2388 */
2389 union {
2390 u32 fixed;
2391 u32 mask;
2392 } length;
2393
2394 /*
2395 * Describes where to find a register address in the command to check
2396 * against the ring's register whitelist. Only valid if flags has the
2397 * CMD_DESC_REGISTER bit set.
2398 *
2399 * A non-zero step value implies that the command may access multiple
2400 * registers in sequence (e.g. LRI), in that case step gives the
2401 * distance in dwords between individual offset fields.
2402 */
2403 struct {
2404 u32 offset;
2405 u32 mask;
2406 u32 step;
2407 } reg;
2408
2409 #define MAX_CMD_DESC_BITMASKS 3
2410 /*
2411 * Describes command checks where a particular dword is masked and
2412 * compared against an expected value. If the command does not match
2413 * the expected value, the parser rejects it. Only valid if flags has
2414 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2415 * are valid.
2416 *
2417 * If the check specifies a non-zero condition_mask then the parser
2418 * only performs the check when the bits specified by condition_mask
2419 * are non-zero.
2420 */
2421 struct {
2422 u32 offset;
2423 u32 mask;
2424 u32 expected;
2425 u32 condition_offset;
2426 u32 condition_mask;
2427 } bits[MAX_CMD_DESC_BITMASKS];
2428 };
2429
2430 /*
2431 * A table of commands requiring special handling by the command parser.
2432 *
2433 * Each ring has an array of tables. Each table consists of an array of command
2434 * descriptors, which must be sorted with command opcodes in ascending order.
2435 */
2436 struct drm_i915_cmd_table {
2437 const struct drm_i915_cmd_descriptor *table;
2438 int count;
2439 };
2440
2441 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2442 #define __I915__(p) ({ \
2443 struct drm_i915_private *__p; \
2444 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2445 __p = (struct drm_i915_private *)p; \
2446 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2447 __p = to_i915((struct drm_device *)p); \
2448 else \
2449 BUILD_BUG(); \
2450 __p; \
2451 })
2452 #define INTEL_INFO(p) (&__I915__(p)->info)
2453 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2454 #define INTEL_REVID(p) (__I915__(p)->dev->pdev->revision)
2455
2456 #define REVID_FOREVER 0xff
2457 /*
2458 * Return true if revision is in range [since,until] inclusive.
2459 *
2460 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2461 */
2462 #define IS_REVID(p, since, until) \
2463 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2464
2465 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2466 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2467 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2468 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2469 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2470 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2471 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2472 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2473 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2474 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2475 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2476 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2477 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2478 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2479 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2480 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2481 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2482 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2483 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2484 INTEL_DEVID(dev) == 0x0152 || \
2485 INTEL_DEVID(dev) == 0x015a)
2486 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2487 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2488 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2489 #define IS_BROADWELL(dev) (!INTEL_INFO(dev)->is_cherryview && IS_GEN8(dev))
2490 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2491 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2492 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2493 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2494 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2495 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2496 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2497 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2498 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2499 (INTEL_DEVID(dev) & 0xf) == 0xe))
2500 /* ULX machines are also considered ULT. */
2501 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2502 (INTEL_DEVID(dev) & 0xf) == 0xe)
2503 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2504 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2505 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2506 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2507 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2508 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2509 /* ULX machines are also considered ULT. */
2510 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2511 INTEL_DEVID(dev) == 0x0A1E)
2512 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2513 INTEL_DEVID(dev) == 0x1913 || \
2514 INTEL_DEVID(dev) == 0x1916 || \
2515 INTEL_DEVID(dev) == 0x1921 || \
2516 INTEL_DEVID(dev) == 0x1926)
2517 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2518 INTEL_DEVID(dev) == 0x1915 || \
2519 INTEL_DEVID(dev) == 0x191E)
2520 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2521 INTEL_DEVID(dev) == 0x5913 || \
2522 INTEL_DEVID(dev) == 0x5916 || \
2523 INTEL_DEVID(dev) == 0x5921 || \
2524 INTEL_DEVID(dev) == 0x5926)
2525 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2526 INTEL_DEVID(dev) == 0x5915 || \
2527 INTEL_DEVID(dev) == 0x591E)
2528 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2529 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2530 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2531 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2532
2533 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2534
2535 #define SKL_REVID_A0 0x0
2536 #define SKL_REVID_B0 0x1
2537 #define SKL_REVID_C0 0x2
2538 #define SKL_REVID_D0 0x3
2539 #define SKL_REVID_E0 0x4
2540 #define SKL_REVID_F0 0x5
2541
2542 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2543
2544 #define BXT_REVID_A0 0x0
2545 #define BXT_REVID_A1 0x1
2546 #define BXT_REVID_B0 0x3
2547 #define BXT_REVID_C0 0x9
2548
2549 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2550
2551 /*
2552 * The genX designation typically refers to the render engine, so render
2553 * capability related checks should use IS_GEN, while display and other checks
2554 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2555 * chips, etc.).
2556 */
2557 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen == 2)
2558 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen == 3)
2559 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen == 4)
2560 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen == 5)
2561 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen == 6)
2562 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen == 7)
2563 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen == 8)
2564 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen == 9)
2565
2566 #define RENDER_RING (1<<RCS)
2567 #define BSD_RING (1<<VCS)
2568 #define BLT_RING (1<<BCS)
2569 #define VEBOX_RING (1<<VECS)
2570 #define BSD2_RING (1<<VCS2)
2571 #define HAS_BSD(dev) (INTEL_INFO(dev)->ring_mask & BSD_RING)
2572 #define HAS_BSD2(dev) (INTEL_INFO(dev)->ring_mask & BSD2_RING)
2573 #define HAS_BLT(dev) (INTEL_INFO(dev)->ring_mask & BLT_RING)
2574 #define HAS_VEBOX(dev) (INTEL_INFO(dev)->ring_mask & VEBOX_RING)
2575 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2576 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2577 __I915__(dev)->ellc_size)
2578 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2579
2580 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2581 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2582 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2583 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2584 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2585
2586 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2587 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2588
2589 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2590 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2591
2592 /* WaRsDisableCoarsePowerGating:skl,bxt */
2593 #define NEEDS_WaRsDisableCoarsePowerGating(dev) (IS_BXT_REVID(dev, 0, BXT_REVID_A1) || \
2594 ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && \
2595 IS_SKL_REVID(dev, 0, SKL_REVID_F0)))
2596 /*
2597 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2598 * even when in MSI mode. This results in spurious interrupt warnings if the
2599 * legacy irq no. is shared with another device. The kernel then disables that
2600 * interrupt source and so prevents the other device from working properly.
2601 */
2602 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2603 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2604
2605 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2606 * rows, which changed the alignment requirements and fence programming.
2607 */
2608 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2609 IS_I915GM(dev)))
2610 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2611 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2612
2613 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2614 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2615 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2616
2617 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2618
2619 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2620 INTEL_INFO(dev)->gen >= 9)
2621
2622 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2623 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2624 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2625 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2626 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2627 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2628 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2629 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2630 IS_KABYLAKE(dev))
2631 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2632 #define HAS_RC6p(dev) (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
2633
2634 #define HAS_CSR(dev) (IS_GEN9(dev))
2635
2636 #define HAS_GUC_UCODE(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev))
2637 #define HAS_GUC_SCHED(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev))
2638
2639 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2640 INTEL_INFO(dev)->gen >= 8)
2641
2642 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2643 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2644 !IS_BROXTON(dev))
2645
2646 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2647 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2648 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2649 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2650 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2651 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2652 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2653 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2654 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2655 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2656
2657 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2658 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2659 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2660 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2661 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2662 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2663 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2664 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2665 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2666
2667 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2668 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2669
2670 /* DPF == dynamic parity feature */
2671 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2672 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2673
2674 #define GT_FREQUENCY_MULTIPLIER 50
2675 #define GEN9_FREQ_SCALER 3
2676
2677 #include "i915_trace.h"
2678
2679 extern const struct drm_ioctl_desc i915_ioctls[];
2680 extern int i915_max_ioctl;
2681
2682 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2683 extern int i915_resume_switcheroo(struct drm_device *dev);
2684
2685 /* i915_dma.c */
2686 extern int i915_driver_load(struct drm_device *, unsigned long flags);
2687 extern int i915_driver_unload(struct drm_device *);
2688 extern int i915_driver_open(struct drm_device *dev, struct drm_file *file);
2689 extern void i915_driver_lastclose(struct drm_device * dev);
2690 extern void i915_driver_preclose(struct drm_device *dev,
2691 struct drm_file *file);
2692 extern void i915_driver_postclose(struct drm_device *dev,
2693 struct drm_file *file);
2694 #ifdef CONFIG_COMPAT
2695 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2696 unsigned long arg);
2697 #endif
2698 extern int intel_gpu_reset(struct drm_device *dev);
2699 extern bool intel_has_gpu_reset(struct drm_device *dev);
2700 extern int i915_reset(struct drm_device *dev);
2701 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2702 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2703 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2704 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2705 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2706
2707 /* intel_hotplug.c */
2708 void intel_hpd_irq_handler(struct drm_device *dev, u32 pin_mask, u32 long_mask);
2709 void intel_hpd_init(struct drm_i915_private *dev_priv);
2710 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2711 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2712 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2713
2714 /* i915_irq.c */
2715 void i915_queue_hangcheck(struct drm_device *dev);
2716 __printf(3, 4)
2717 void i915_handle_error(struct drm_device *dev, bool wedged,
2718 const char *fmt, ...);
2719
2720 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2721 int intel_irq_install(struct drm_i915_private *dev_priv);
2722 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2723
2724 extern void intel_uncore_sanitize(struct drm_device *dev);
2725 extern void intel_uncore_early_sanitize(struct drm_device *dev,
2726 bool restore_forcewake);
2727 extern void intel_uncore_init(struct drm_device *dev);
2728 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2729 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2730 extern void intel_uncore_fini(struct drm_device *dev);
2731 extern void intel_uncore_forcewake_reset(struct drm_device *dev, bool restore);
2732 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2733 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2734 enum forcewake_domains domains);
2735 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2736 enum forcewake_domains domains);
2737 /* Like above but the caller must manage the uncore.lock itself.
2738 * Must be used with I915_READ_FW and friends.
2739 */
2740 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2741 enum forcewake_domains domains);
2742 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2743 enum forcewake_domains domains);
2744 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2745 static inline bool intel_vgpu_active(struct drm_device *dev)
2746 {
2747 return to_i915(dev)->vgpu.active;
2748 }
2749
2750 void
2751 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2752 u32 status_mask);
2753
2754 void
2755 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2756 u32 status_mask);
2757
2758 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2759 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2760 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2761 uint32_t mask,
2762 uint32_t bits);
2763 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2764 uint32_t interrupt_mask,
2765 uint32_t enabled_irq_mask);
2766 static inline void
2767 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2768 {
2769 ilk_update_display_irq(dev_priv, bits, bits);
2770 }
2771 static inline void
2772 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2773 {
2774 ilk_update_display_irq(dev_priv, bits, 0);
2775 }
2776 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2777 enum pipe pipe,
2778 uint32_t interrupt_mask,
2779 uint32_t enabled_irq_mask);
2780 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2781 enum pipe pipe, uint32_t bits)
2782 {
2783 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2784 }
2785 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2786 enum pipe pipe, uint32_t bits)
2787 {
2788 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2789 }
2790 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2791 uint32_t interrupt_mask,
2792 uint32_t enabled_irq_mask);
2793 static inline void
2794 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2795 {
2796 ibx_display_interrupt_update(dev_priv, bits, bits);
2797 }
2798 static inline void
2799 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2800 {
2801 ibx_display_interrupt_update(dev_priv, bits, 0);
2802 }
2803
2804
2805 /* i915_gem.c */
2806 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2807 struct drm_file *file_priv);
2808 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2809 struct drm_file *file_priv);
2810 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2811 struct drm_file *file_priv);
2812 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2813 struct drm_file *file_priv);
2814 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2815 struct drm_file *file_priv);
2816 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2817 struct drm_file *file_priv);
2818 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2819 struct drm_file *file_priv);
2820 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
2821 struct drm_i915_gem_request *req);
2822 void i915_gem_execbuffer_retire_commands(struct i915_execbuffer_params *params);
2823 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
2824 struct drm_i915_gem_execbuffer2 *args,
2825 struct list_head *vmas);
2826 int i915_gem_execbuffer(struct drm_device *dev, void *data,
2827 struct drm_file *file_priv);
2828 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
2829 struct drm_file *file_priv);
2830 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2831 struct drm_file *file_priv);
2832 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2833 struct drm_file *file);
2834 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2835 struct drm_file *file);
2836 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2837 struct drm_file *file_priv);
2838 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2839 struct drm_file *file_priv);
2840 int i915_gem_set_tiling(struct drm_device *dev, void *data,
2841 struct drm_file *file_priv);
2842 int i915_gem_get_tiling(struct drm_device *dev, void *data,
2843 struct drm_file *file_priv);
2844 int i915_gem_init_userptr(struct drm_device *dev);
2845 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2846 struct drm_file *file);
2847 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2848 struct drm_file *file_priv);
2849 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2850 struct drm_file *file_priv);
2851 void i915_gem_load(struct drm_device *dev);
2852 void *i915_gem_object_alloc(struct drm_device *dev);
2853 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2854 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2855 const struct drm_i915_gem_object_ops *ops);
2856 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
2857 size_t size);
2858 struct drm_i915_gem_object *i915_gem_object_create_from_data(
2859 struct drm_device *dev, const void *data, size_t size);
2860 void i915_gem_free_object(struct drm_gem_object *obj);
2861 void i915_gem_vma_destroy(struct i915_vma *vma);
2862
2863 /* Flags used by pin/bind&friends. */
2864 #define PIN_MAPPABLE (1<<0)
2865 #define PIN_NONBLOCK (1<<1)
2866 #define PIN_GLOBAL (1<<2)
2867 #define PIN_OFFSET_BIAS (1<<3)
2868 #define PIN_USER (1<<4)
2869 #define PIN_UPDATE (1<<5)
2870 #define PIN_ZONE_4G (1<<6)
2871 #define PIN_HIGH (1<<7)
2872 #define PIN_OFFSET_FIXED (1<<8)
2873 #define PIN_OFFSET_MASK (~4095)
2874 int __must_check
2875 i915_gem_object_pin(struct drm_i915_gem_object *obj,
2876 struct i915_address_space *vm,
2877 uint32_t alignment,
2878 uint64_t flags);
2879 int __must_check
2880 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2881 const struct i915_ggtt_view *view,
2882 uint32_t alignment,
2883 uint64_t flags);
2884
2885 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2886 u32 flags);
2887 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
2888 int __must_check i915_vma_unbind(struct i915_vma *vma);
2889 /*
2890 * BEWARE: Do not use the function below unless you can _absolutely_
2891 * _guarantee_ VMA in question is _not in use_ anywhere.
2892 */
2893 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
2894 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
2895 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
2896 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2897
2898 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
2899 int *needs_clflush);
2900
2901 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2902
2903 static inline int __sg_page_count(struct scatterlist *sg)
2904 {
2905 return sg->length >> PAGE_SHIFT;
2906 }
2907
2908 struct page *
2909 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
2910
2911 static inline struct page *
2912 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
2913 {
2914 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
2915 return NULL;
2916
2917 if (n < obj->get_page.last) {
2918 obj->get_page.sg = obj->pages->sgl;
2919 obj->get_page.last = 0;
2920 }
2921
2922 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
2923 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
2924 if (unlikely(sg_is_chain(obj->get_page.sg)))
2925 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
2926 }
2927
2928 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
2929 }
2930
2931 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2932 {
2933 BUG_ON(obj->pages == NULL);
2934 obj->pages_pin_count++;
2935 }
2936 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2937 {
2938 BUG_ON(obj->pages_pin_count == 0);
2939 obj->pages_pin_count--;
2940 }
2941
2942 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
2943 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
2944 struct intel_engine_cs *to,
2945 struct drm_i915_gem_request **to_req);
2946 void i915_vma_move_to_active(struct i915_vma *vma,
2947 struct drm_i915_gem_request *req);
2948 int i915_gem_dumb_create(struct drm_file *file_priv,
2949 struct drm_device *dev,
2950 struct drm_mode_create_dumb *args);
2951 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
2952 uint32_t handle, uint64_t *offset);
2953 /**
2954 * Returns true if seq1 is later than seq2.
2955 */
2956 static inline bool
2957 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
2958 {
2959 return (int32_t)(seq1 - seq2) >= 0;
2960 }
2961
2962 static inline bool i915_gem_request_started(struct drm_i915_gem_request *req,
2963 bool lazy_coherency)
2964 {
2965 u32 seqno = req->ring->get_seqno(req->ring, lazy_coherency);
2966 return i915_seqno_passed(seqno, req->previous_seqno);
2967 }
2968
2969 static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req,
2970 bool lazy_coherency)
2971 {
2972 u32 seqno = req->ring->get_seqno(req->ring, lazy_coherency);
2973 return i915_seqno_passed(seqno, req->seqno);
2974 }
2975
2976 int __must_check i915_gem_get_seqno(struct drm_device *dev, u32 *seqno);
2977 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
2978
2979 struct drm_i915_gem_request *
2980 i915_gem_find_active_request(struct intel_engine_cs *ring);
2981
2982 bool i915_gem_retire_requests(struct drm_device *dev);
2983 void i915_gem_retire_requests_ring(struct intel_engine_cs *ring);
2984 int __must_check i915_gem_check_wedge(struct i915_gpu_error *error,
2985 bool interruptible);
2986
2987 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
2988 {
2989 return unlikely(atomic_read(&error->reset_counter)
2990 & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
2991 }
2992
2993 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
2994 {
2995 return atomic_read(&error->reset_counter) & I915_WEDGED;
2996 }
2997
2998 static inline u32 i915_reset_count(struct i915_gpu_error *error)
2999 {
3000 return ((atomic_read(&error->reset_counter) & ~I915_WEDGED) + 1) / 2;
3001 }
3002
3003 static inline bool i915_stop_ring_allow_ban(struct drm_i915_private *dev_priv)
3004 {
3005 return dev_priv->gpu_error.stop_rings == 0 ||
3006 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_BAN;
3007 }
3008
3009 static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv)
3010 {
3011 return dev_priv->gpu_error.stop_rings == 0 ||
3012 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_WARN;
3013 }
3014
3015 void i915_gem_reset(struct drm_device *dev);
3016 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3017 int __must_check i915_gem_init(struct drm_device *dev);
3018 int i915_gem_init_rings(struct drm_device *dev);
3019 int __must_check i915_gem_init_hw(struct drm_device *dev);
3020 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice);
3021 void i915_gem_init_swizzling(struct drm_device *dev);
3022 void i915_gem_cleanup_engines(struct drm_device *dev);
3023 int __must_check i915_gpu_idle(struct drm_device *dev);
3024 int __must_check i915_gem_suspend(struct drm_device *dev);
3025 void __i915_add_request(struct drm_i915_gem_request *req,
3026 struct drm_i915_gem_object *batch_obj,
3027 bool flush_caches);
3028 #define i915_add_request(req) \
3029 __i915_add_request(req, NULL, true)
3030 #define i915_add_request_no_flush(req) \
3031 __i915_add_request(req, NULL, false)
3032 int __i915_wait_request(struct drm_i915_gem_request *req,
3033 unsigned reset_counter,
3034 bool interruptible,
3035 s64 *timeout,
3036 struct intel_rps_client *rps);
3037 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
3038 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3039 int __must_check
3040 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3041 bool readonly);
3042 int __must_check
3043 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3044 bool write);
3045 int __must_check
3046 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3047 int __must_check
3048 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3049 u32 alignment,
3050 const struct i915_ggtt_view *view);
3051 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3052 const struct i915_ggtt_view *view);
3053 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3054 int align);
3055 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3056 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3057
3058 uint32_t
3059 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3060 uint32_t
3061 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3062 int tiling_mode, bool fenced);
3063
3064 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3065 enum i915_cache_level cache_level);
3066
3067 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3068 struct dma_buf *dma_buf);
3069
3070 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3071 struct drm_gem_object *gem_obj, int flags);
3072
3073 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3074 const struct i915_ggtt_view *view);
3075 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3076 struct i915_address_space *vm);
3077 static inline u64
3078 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3079 {
3080 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3081 }
3082
3083 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3084 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3085 const struct i915_ggtt_view *view);
3086 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3087 struct i915_address_space *vm);
3088
3089 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
3090 struct i915_address_space *vm);
3091 struct i915_vma *
3092 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3093 struct i915_address_space *vm);
3094 struct i915_vma *
3095 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3096 const struct i915_ggtt_view *view);
3097
3098 struct i915_vma *
3099 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3100 struct i915_address_space *vm);
3101 struct i915_vma *
3102 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3103 const struct i915_ggtt_view *view);
3104
3105 static inline struct i915_vma *
3106 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3107 {
3108 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3109 }
3110 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3111
3112 /* Some GGTT VM helpers */
3113 #define i915_obj_to_ggtt(obj) \
3114 (&((struct drm_i915_private *)(obj)->base.dev->dev_private)->gtt.base)
3115 static inline bool i915_is_ggtt(struct i915_address_space *vm)
3116 {
3117 struct i915_address_space *ggtt =
3118 &((struct drm_i915_private *)(vm)->dev->dev_private)->gtt.base;
3119 return vm == ggtt;
3120 }
3121
3122 static inline struct i915_hw_ppgtt *
3123 i915_vm_to_ppgtt(struct i915_address_space *vm)
3124 {
3125 WARN_ON(i915_is_ggtt(vm));
3126
3127 return container_of(vm, struct i915_hw_ppgtt, base);
3128 }
3129
3130
3131 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3132 {
3133 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3134 }
3135
3136 static inline unsigned long
3137 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj)
3138 {
3139 return i915_gem_obj_size(obj, i915_obj_to_ggtt(obj));
3140 }
3141
3142 static inline int __must_check
3143 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3144 uint32_t alignment,
3145 unsigned flags)
3146 {
3147 return i915_gem_object_pin(obj, i915_obj_to_ggtt(obj),
3148 alignment, flags | PIN_GLOBAL);
3149 }
3150
3151 static inline int
3152 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
3153 {
3154 return i915_vma_unbind(i915_gem_obj_to_ggtt(obj));
3155 }
3156
3157 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3158 const struct i915_ggtt_view *view);
3159 static inline void
3160 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3161 {
3162 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3163 }
3164
3165 /* i915_gem_fence.c */
3166 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3167 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3168
3169 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3170 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3171
3172 void i915_gem_restore_fences(struct drm_device *dev);
3173
3174 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3175 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3176 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3177
3178 /* i915_gem_context.c */
3179 int __must_check i915_gem_context_init(struct drm_device *dev);
3180 void i915_gem_context_fini(struct drm_device *dev);
3181 void i915_gem_context_reset(struct drm_device *dev);
3182 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3183 int i915_gem_context_enable(struct drm_i915_gem_request *req);
3184 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3185 int i915_switch_context(struct drm_i915_gem_request *req);
3186 struct intel_context *
3187 i915_gem_context_get(struct drm_i915_file_private *file_priv, u32 id);
3188 void i915_gem_context_free(struct kref *ctx_ref);
3189 struct drm_i915_gem_object *
3190 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3191 static inline void i915_gem_context_reference(struct intel_context *ctx)
3192 {
3193 kref_get(&ctx->ref);
3194 }
3195
3196 static inline void i915_gem_context_unreference(struct intel_context *ctx)
3197 {
3198 kref_put(&ctx->ref, i915_gem_context_free);
3199 }
3200
3201 static inline bool i915_gem_context_is_default(const struct intel_context *c)
3202 {
3203 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3204 }
3205
3206 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3207 struct drm_file *file);
3208 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3209 struct drm_file *file);
3210 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3211 struct drm_file *file_priv);
3212 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3213 struct drm_file *file_priv);
3214
3215 /* i915_gem_evict.c */
3216 int __must_check i915_gem_evict_something(struct drm_device *dev,
3217 struct i915_address_space *vm,
3218 int min_size,
3219 unsigned alignment,
3220 unsigned cache_level,
3221 unsigned long start,
3222 unsigned long end,
3223 unsigned flags);
3224 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3225 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3226
3227 /* belongs in i915_gem_gtt.h */
3228 static inline void i915_gem_chipset_flush(struct drm_device *dev)
3229 {
3230 if (INTEL_INFO(dev)->gen < 6)
3231 intel_gtt_chipset_flush();
3232 }
3233
3234 /* i915_gem_stolen.c */
3235 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3236 struct drm_mm_node *node, u64 size,
3237 unsigned alignment);
3238 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3239 struct drm_mm_node *node, u64 size,
3240 unsigned alignment, u64 start,
3241 u64 end);
3242 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3243 struct drm_mm_node *node);
3244 int i915_gem_init_stolen(struct drm_device *dev);
3245 void i915_gem_cleanup_stolen(struct drm_device *dev);
3246 struct drm_i915_gem_object *
3247 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3248 struct drm_i915_gem_object *
3249 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3250 u32 stolen_offset,
3251 u32 gtt_offset,
3252 u32 size);
3253
3254 /* i915_gem_shrinker.c */
3255 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3256 unsigned long target,
3257 unsigned flags);
3258 #define I915_SHRINK_PURGEABLE 0x1
3259 #define I915_SHRINK_UNBOUND 0x2
3260 #define I915_SHRINK_BOUND 0x4
3261 #define I915_SHRINK_ACTIVE 0x8
3262 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3263 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3264
3265
3266 /* i915_gem_tiling.c */
3267 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3268 {
3269 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3270
3271 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3272 obj->tiling_mode != I915_TILING_NONE;
3273 }
3274
3275 /* i915_gem_debug.c */
3276 #if WATCH_LISTS
3277 int i915_verify_lists(struct drm_device *dev);
3278 #else
3279 #define i915_verify_lists(dev) 0
3280 #endif
3281
3282 /* i915_debugfs.c */
3283 int i915_debugfs_init(struct drm_minor *minor);
3284 void i915_debugfs_cleanup(struct drm_minor *minor);
3285 #ifdef CONFIG_DEBUG_FS
3286 int i915_debugfs_connector_add(struct drm_connector *connector);
3287 void intel_display_crc_init(struct drm_device *dev);
3288 #else
3289 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3290 { return 0; }
3291 static inline void intel_display_crc_init(struct drm_device *dev) {}
3292 #endif
3293
3294 /* i915_gpu_error.c */
3295 __printf(2, 3)
3296 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3297 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3298 const struct i915_error_state_file_priv *error);
3299 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3300 struct drm_i915_private *i915,
3301 size_t count, loff_t pos);
3302 static inline void i915_error_state_buf_release(
3303 struct drm_i915_error_state_buf *eb)
3304 {
3305 kfree(eb->buf);
3306 }
3307 void i915_capture_error_state(struct drm_device *dev, bool wedge,
3308 const char *error_msg);
3309 void i915_error_state_get(struct drm_device *dev,
3310 struct i915_error_state_file_priv *error_priv);
3311 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3312 void i915_destroy_error_state(struct drm_device *dev);
3313
3314 void i915_get_extra_instdone(struct drm_device *dev, uint32_t *instdone);
3315 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3316
3317 /* i915_cmd_parser.c */
3318 int i915_cmd_parser_get_version(void);
3319 int i915_cmd_parser_init_ring(struct intel_engine_cs *ring);
3320 void i915_cmd_parser_fini_ring(struct intel_engine_cs *ring);
3321 bool i915_needs_cmd_parser(struct intel_engine_cs *ring);
3322 int i915_parse_cmds(struct intel_engine_cs *ring,
3323 struct drm_i915_gem_object *batch_obj,
3324 struct drm_i915_gem_object *shadow_batch_obj,
3325 u32 batch_start_offset,
3326 u32 batch_len,
3327 bool is_master);
3328
3329 /* i915_suspend.c */
3330 extern int i915_save_state(struct drm_device *dev);
3331 extern int i915_restore_state(struct drm_device *dev);
3332
3333 /* i915_sysfs.c */
3334 void i915_setup_sysfs(struct drm_device *dev_priv);
3335 void i915_teardown_sysfs(struct drm_device *dev_priv);
3336
3337 /* intel_i2c.c */
3338 extern int intel_setup_gmbus(struct drm_device *dev);
3339 extern void intel_teardown_gmbus(struct drm_device *dev);
3340 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3341 unsigned int pin);
3342
3343 extern struct i2c_adapter *
3344 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3345 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3346 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3347 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3348 {
3349 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3350 }
3351 extern void intel_i2c_reset(struct drm_device *dev);
3352
3353 /* intel_bios.c */
3354 int intel_bios_init(struct drm_i915_private *dev_priv);
3355 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3356
3357 /* intel_opregion.c */
3358 #ifdef CONFIG_ACPI
3359 extern int intel_opregion_setup(struct drm_device *dev);
3360 extern void intel_opregion_init(struct drm_device *dev);
3361 extern void intel_opregion_fini(struct drm_device *dev);
3362 extern void intel_opregion_asle_intr(struct drm_device *dev);
3363 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3364 bool enable);
3365 extern int intel_opregion_notify_adapter(struct drm_device *dev,
3366 pci_power_t state);
3367 #else
3368 static inline int intel_opregion_setup(struct drm_device *dev) { return 0; }
3369 static inline void intel_opregion_init(struct drm_device *dev) { return; }
3370 static inline void intel_opregion_fini(struct drm_device *dev) { return; }
3371 static inline void intel_opregion_asle_intr(struct drm_device *dev) { return; }
3372 static inline int
3373 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3374 {
3375 return 0;
3376 }
3377 static inline int
3378 intel_opregion_notify_adapter(struct drm_device *dev, pci_power_t state)
3379 {
3380 return 0;
3381 }
3382 #endif
3383
3384 /* intel_acpi.c */
3385 #ifdef CONFIG_ACPI
3386 extern void intel_register_dsm_handler(void);
3387 extern void intel_unregister_dsm_handler(void);
3388 #else
3389 static inline void intel_register_dsm_handler(void) { return; }
3390 static inline void intel_unregister_dsm_handler(void) { return; }
3391 #endif /* CONFIG_ACPI */
3392
3393 /* modesetting */
3394 extern void intel_modeset_init_hw(struct drm_device *dev);
3395 extern void intel_modeset_init(struct drm_device *dev);
3396 extern void intel_modeset_gem_init(struct drm_device *dev);
3397 extern void intel_modeset_cleanup(struct drm_device *dev);
3398 extern void intel_connector_unregister(struct intel_connector *);
3399 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3400 extern void intel_display_resume(struct drm_device *dev);
3401 extern void i915_redisable_vga(struct drm_device *dev);
3402 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3403 extern bool ironlake_set_drps(struct drm_device *dev, u8 val);
3404 extern void intel_init_pch_refclk(struct drm_device *dev);
3405 extern void intel_set_rps(struct drm_device *dev, u8 val);
3406 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3407 bool enable);
3408 extern void intel_detect_pch(struct drm_device *dev);
3409 extern int intel_enable_rc6(const struct drm_device *dev);
3410
3411 extern bool i915_semaphore_is_enabled(struct drm_device *dev);
3412 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3413 struct drm_file *file);
3414 int i915_get_reset_stats_ioctl(struct drm_device *dev, void *data,
3415 struct drm_file *file);
3416
3417 /* overlay */
3418 extern struct intel_overlay_error_state *intel_overlay_capture_error_state(struct drm_device *dev);
3419 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3420 struct intel_overlay_error_state *error);
3421
3422 extern struct intel_display_error_state *intel_display_capture_error_state(struct drm_device *dev);
3423 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3424 struct drm_device *dev,
3425 struct intel_display_error_state *error);
3426
3427 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3428 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3429
3430 /* intel_sideband.c */
3431 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3432 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3433 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3434 u32 vlv_gpio_nc_read(struct drm_i915_private *dev_priv, u32 reg);
3435 void vlv_gpio_nc_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3436 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3437 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3438 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3439 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3440 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3441 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3442 u32 vlv_gps_core_read(struct drm_i915_private *dev_priv, u32 reg);
3443 void vlv_gps_core_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3444 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3445 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3446 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3447 enum intel_sbi_destination destination);
3448 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3449 enum intel_sbi_destination destination);
3450 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3451 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3452
3453 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3454 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3455
3456 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3457 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3458
3459 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3460 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3461 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3462 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3463
3464 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3465 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3466 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3467 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3468
3469 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3470 * will be implemented using 2 32-bit writes in an arbitrary order with
3471 * an arbitrary delay between them. This can cause the hardware to
3472 * act upon the intermediate value, possibly leading to corruption and
3473 * machine death. You have been warned.
3474 */
3475 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3476 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3477
3478 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3479 u32 upper, lower, old_upper, loop = 0; \
3480 upper = I915_READ(upper_reg); \
3481 do { \
3482 old_upper = upper; \
3483 lower = I915_READ(lower_reg); \
3484 upper = I915_READ(upper_reg); \
3485 } while (upper != old_upper && loop++ < 2); \
3486 (u64)upper << 32 | lower; })
3487
3488 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3489 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3490
3491 #define __raw_read(x, s) \
3492 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3493 i915_reg_t reg) \
3494 { \
3495 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3496 }
3497
3498 #define __raw_write(x, s) \
3499 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3500 i915_reg_t reg, uint##x##_t val) \
3501 { \
3502 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3503 }
3504 __raw_read(8, b)
3505 __raw_read(16, w)
3506 __raw_read(32, l)
3507 __raw_read(64, q)
3508
3509 __raw_write(8, b)
3510 __raw_write(16, w)
3511 __raw_write(32, l)
3512 __raw_write(64, q)
3513
3514 #undef __raw_read
3515 #undef __raw_write
3516
3517 /* These are untraced mmio-accessors that are only valid to be used inside
3518 * criticial sections inside IRQ handlers where forcewake is explicitly
3519 * controlled.
3520 * Think twice, and think again, before using these.
3521 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3522 * intel_uncore_forcewake_irqunlock().
3523 */
3524 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3525 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3526 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3527
3528 /* "Broadcast RGB" property */
3529 #define INTEL_BROADCAST_RGB_AUTO 0
3530 #define INTEL_BROADCAST_RGB_FULL 1
3531 #define INTEL_BROADCAST_RGB_LIMITED 2
3532
3533 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3534 {
3535 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3536 return VLV_VGACNTRL;
3537 else if (INTEL_INFO(dev)->gen >= 5)
3538 return CPU_VGACNTRL;
3539 else
3540 return VGACNTRL;
3541 }
3542
3543 static inline void __user *to_user_ptr(u64 address)
3544 {
3545 return (void __user *)(uintptr_t)address;
3546 }
3547
3548 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3549 {
3550 unsigned long j = msecs_to_jiffies(m);
3551
3552 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3553 }
3554
3555 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3556 {
3557 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3558 }
3559
3560 static inline unsigned long
3561 timespec_to_jiffies_timeout(const struct timespec *value)
3562 {
3563 unsigned long j = timespec_to_jiffies(value);
3564
3565 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3566 }
3567
3568 /*
3569 * If you need to wait X milliseconds between events A and B, but event B
3570 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3571 * when event A happened, then just before event B you call this function and
3572 * pass the timestamp as the first argument, and X as the second argument.
3573 */
3574 static inline void
3575 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3576 {
3577 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3578
3579 /*
3580 * Don't re-read the value of "jiffies" every time since it may change
3581 * behind our back and break the math.
3582 */
3583 tmp_jiffies = jiffies;
3584 target_jiffies = timestamp_jiffies +
3585 msecs_to_jiffies_timeout(to_wait_ms);
3586
3587 if (time_after(target_jiffies, tmp_jiffies)) {
3588 remaining_jiffies = target_jiffies - tmp_jiffies;
3589 while (remaining_jiffies)
3590 remaining_jiffies =
3591 schedule_timeout_uninterruptible(remaining_jiffies);
3592 }
3593 }
3594
3595 static inline void i915_trace_irq_get(struct intel_engine_cs *ring,
3596 struct drm_i915_gem_request *req)
3597 {
3598 if (ring->trace_irq_req == NULL && ring->irq_get(ring))
3599 i915_gem_request_assign(&ring->trace_irq_req, req);
3600 }
3601
3602 #endif
This page took 0.101519 seconds and 6 git commands to generate.