Merge tag 'pnp-extra-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51
52 #include "i915_params.h"
53 #include "i915_reg.h"
54
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64
65 #include "intel_gvt.h"
66
67 /* General customization:
68 */
69
70 #define DRIVER_NAME "i915"
71 #define DRIVER_DESC "Intel Graphics"
72 #define DRIVER_DATE "20160711"
73
74 #undef WARN_ON
75 /* Many gcc seem to no see through this and fall over :( */
76 #if 0
77 #define WARN_ON(x) ({ \
78 bool __i915_warn_cond = (x); \
79 if (__builtin_constant_p(__i915_warn_cond)) \
80 BUILD_BUG_ON(__i915_warn_cond); \
81 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
82 #else
83 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
84 #endif
85
86 #undef WARN_ON_ONCE
87 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
88
89 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
90 (long) (x), __func__);
91
92 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
93 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
94 * which may not necessarily be a user visible problem. This will either
95 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
96 * enable distros and users to tailor their preferred amount of i915 abrt
97 * spam.
98 */
99 #define I915_STATE_WARN(condition, format...) ({ \
100 int __ret_warn_on = !!(condition); \
101 if (unlikely(__ret_warn_on)) \
102 if (!WARN(i915.verbose_state_checks, format)) \
103 DRM_ERROR(format); \
104 unlikely(__ret_warn_on); \
105 })
106
107 #define I915_STATE_WARN_ON(x) \
108 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
109
110 bool __i915_inject_load_failure(const char *func, int line);
111 #define i915_inject_load_failure() \
112 __i915_inject_load_failure(__func__, __LINE__)
113
114 static inline const char *yesno(bool v)
115 {
116 return v ? "yes" : "no";
117 }
118
119 static inline const char *onoff(bool v)
120 {
121 return v ? "on" : "off";
122 }
123
124 enum pipe {
125 INVALID_PIPE = -1,
126 PIPE_A = 0,
127 PIPE_B,
128 PIPE_C,
129 _PIPE_EDP,
130 I915_MAX_PIPES = _PIPE_EDP
131 };
132 #define pipe_name(p) ((p) + 'A')
133
134 enum transcoder {
135 TRANSCODER_A = 0,
136 TRANSCODER_B,
137 TRANSCODER_C,
138 TRANSCODER_EDP,
139 TRANSCODER_DSI_A,
140 TRANSCODER_DSI_C,
141 I915_MAX_TRANSCODERS
142 };
143
144 static inline const char *transcoder_name(enum transcoder transcoder)
145 {
146 switch (transcoder) {
147 case TRANSCODER_A:
148 return "A";
149 case TRANSCODER_B:
150 return "B";
151 case TRANSCODER_C:
152 return "C";
153 case TRANSCODER_EDP:
154 return "EDP";
155 case TRANSCODER_DSI_A:
156 return "DSI A";
157 case TRANSCODER_DSI_C:
158 return "DSI C";
159 default:
160 return "<invalid>";
161 }
162 }
163
164 static inline bool transcoder_is_dsi(enum transcoder transcoder)
165 {
166 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
167 }
168
169 /*
170 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
171 * number of planes per CRTC. Not all platforms really have this many planes,
172 * which means some arrays of size I915_MAX_PLANES may have unused entries
173 * between the topmost sprite plane and the cursor plane.
174 */
175 enum plane {
176 PLANE_A = 0,
177 PLANE_B,
178 PLANE_C,
179 PLANE_CURSOR,
180 I915_MAX_PLANES,
181 };
182 #define plane_name(p) ((p) + 'A')
183
184 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
185
186 enum port {
187 PORT_A = 0,
188 PORT_B,
189 PORT_C,
190 PORT_D,
191 PORT_E,
192 I915_MAX_PORTS
193 };
194 #define port_name(p) ((p) + 'A')
195
196 #define I915_NUM_PHYS_VLV 2
197
198 enum dpio_channel {
199 DPIO_CH0,
200 DPIO_CH1
201 };
202
203 enum dpio_phy {
204 DPIO_PHY0,
205 DPIO_PHY1
206 };
207
208 enum intel_display_power_domain {
209 POWER_DOMAIN_PIPE_A,
210 POWER_DOMAIN_PIPE_B,
211 POWER_DOMAIN_PIPE_C,
212 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
213 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
214 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
215 POWER_DOMAIN_TRANSCODER_A,
216 POWER_DOMAIN_TRANSCODER_B,
217 POWER_DOMAIN_TRANSCODER_C,
218 POWER_DOMAIN_TRANSCODER_EDP,
219 POWER_DOMAIN_TRANSCODER_DSI_A,
220 POWER_DOMAIN_TRANSCODER_DSI_C,
221 POWER_DOMAIN_PORT_DDI_A_LANES,
222 POWER_DOMAIN_PORT_DDI_B_LANES,
223 POWER_DOMAIN_PORT_DDI_C_LANES,
224 POWER_DOMAIN_PORT_DDI_D_LANES,
225 POWER_DOMAIN_PORT_DDI_E_LANES,
226 POWER_DOMAIN_PORT_DSI,
227 POWER_DOMAIN_PORT_CRT,
228 POWER_DOMAIN_PORT_OTHER,
229 POWER_DOMAIN_VGA,
230 POWER_DOMAIN_AUDIO,
231 POWER_DOMAIN_PLLS,
232 POWER_DOMAIN_AUX_A,
233 POWER_DOMAIN_AUX_B,
234 POWER_DOMAIN_AUX_C,
235 POWER_DOMAIN_AUX_D,
236 POWER_DOMAIN_GMBUS,
237 POWER_DOMAIN_MODESET,
238 POWER_DOMAIN_INIT,
239
240 POWER_DOMAIN_NUM,
241 };
242
243 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
244 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
245 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
246 #define POWER_DOMAIN_TRANSCODER(tran) \
247 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
248 (tran) + POWER_DOMAIN_TRANSCODER_A)
249
250 enum hpd_pin {
251 HPD_NONE = 0,
252 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
253 HPD_CRT,
254 HPD_SDVO_B,
255 HPD_SDVO_C,
256 HPD_PORT_A,
257 HPD_PORT_B,
258 HPD_PORT_C,
259 HPD_PORT_D,
260 HPD_PORT_E,
261 HPD_NUM_PINS
262 };
263
264 #define for_each_hpd_pin(__pin) \
265 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
266
267 struct i915_hotplug {
268 struct work_struct hotplug_work;
269
270 struct {
271 unsigned long last_jiffies;
272 int count;
273 enum {
274 HPD_ENABLED = 0,
275 HPD_DISABLED = 1,
276 HPD_MARK_DISABLED = 2
277 } state;
278 } stats[HPD_NUM_PINS];
279 u32 event_bits;
280 struct delayed_work reenable_work;
281
282 struct intel_digital_port *irq_port[I915_MAX_PORTS];
283 u32 long_port_mask;
284 u32 short_port_mask;
285 struct work_struct dig_port_work;
286
287 struct work_struct poll_init_work;
288 bool poll_enabled;
289
290 /*
291 * if we get a HPD irq from DP and a HPD irq from non-DP
292 * the non-DP HPD could block the workqueue on a mode config
293 * mutex getting, that userspace may have taken. However
294 * userspace is waiting on the DP workqueue to run which is
295 * blocked behind the non-DP one.
296 */
297 struct workqueue_struct *dp_wq;
298 };
299
300 #define I915_GEM_GPU_DOMAINS \
301 (I915_GEM_DOMAIN_RENDER | \
302 I915_GEM_DOMAIN_SAMPLER | \
303 I915_GEM_DOMAIN_COMMAND | \
304 I915_GEM_DOMAIN_INSTRUCTION | \
305 I915_GEM_DOMAIN_VERTEX)
306
307 #define for_each_pipe(__dev_priv, __p) \
308 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
309 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
310 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
311 for_each_if ((__mask) & (1 << (__p)))
312 #define for_each_plane(__dev_priv, __pipe, __p) \
313 for ((__p) = 0; \
314 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
315 (__p)++)
316 #define for_each_sprite(__dev_priv, __p, __s) \
317 for ((__s) = 0; \
318 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
319 (__s)++)
320
321 #define for_each_port_masked(__port, __ports_mask) \
322 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
323 for_each_if ((__ports_mask) & (1 << (__port)))
324
325 #define for_each_crtc(dev, crtc) \
326 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
327
328 #define for_each_intel_plane(dev, intel_plane) \
329 list_for_each_entry(intel_plane, \
330 &(dev)->mode_config.plane_list, \
331 base.head)
332
333 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
334 list_for_each_entry(intel_plane, \
335 &(dev)->mode_config.plane_list, \
336 base.head) \
337 for_each_if ((plane_mask) & \
338 (1 << drm_plane_index(&intel_plane->base)))
339
340 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
341 list_for_each_entry(intel_plane, \
342 &(dev)->mode_config.plane_list, \
343 base.head) \
344 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
345
346 #define for_each_intel_crtc(dev, intel_crtc) \
347 list_for_each_entry(intel_crtc, \
348 &(dev)->mode_config.crtc_list, \
349 base.head)
350
351 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
352 list_for_each_entry(intel_crtc, \
353 &(dev)->mode_config.crtc_list, \
354 base.head) \
355 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
356
357 #define for_each_intel_encoder(dev, intel_encoder) \
358 list_for_each_entry(intel_encoder, \
359 &(dev)->mode_config.encoder_list, \
360 base.head)
361
362 #define for_each_intel_connector(dev, intel_connector) \
363 list_for_each_entry(intel_connector, \
364 &(dev)->mode_config.connector_list, \
365 base.head)
366
367 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
368 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
369 for_each_if ((intel_encoder)->base.crtc == (__crtc))
370
371 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
372 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
373 for_each_if ((intel_connector)->base.encoder == (__encoder))
374
375 #define for_each_power_domain(domain, mask) \
376 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
377 for_each_if ((1 << (domain)) & (mask))
378
379 struct drm_i915_private;
380 struct i915_mm_struct;
381 struct i915_mmu_object;
382
383 struct drm_i915_file_private {
384 struct drm_i915_private *dev_priv;
385 struct drm_file *file;
386
387 struct {
388 spinlock_t lock;
389 struct list_head request_list;
390 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
391 * chosen to prevent the CPU getting more than a frame ahead of the GPU
392 * (when using lax throttling for the frontbuffer). We also use it to
393 * offer free GPU waitboosts for severely congested workloads.
394 */
395 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
396 } mm;
397 struct idr context_idr;
398
399 struct intel_rps_client {
400 struct list_head link;
401 unsigned boosts;
402 } rps;
403
404 unsigned int bsd_ring;
405 };
406
407 /* Used by dp and fdi links */
408 struct intel_link_m_n {
409 uint32_t tu;
410 uint32_t gmch_m;
411 uint32_t gmch_n;
412 uint32_t link_m;
413 uint32_t link_n;
414 };
415
416 void intel_link_compute_m_n(int bpp, int nlanes,
417 int pixel_clock, int link_clock,
418 struct intel_link_m_n *m_n);
419
420 /* Interface history:
421 *
422 * 1.1: Original.
423 * 1.2: Add Power Management
424 * 1.3: Add vblank support
425 * 1.4: Fix cmdbuffer path, add heap destroy
426 * 1.5: Add vblank pipe configuration
427 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
428 * - Support vertical blank on secondary display pipe
429 */
430 #define DRIVER_MAJOR 1
431 #define DRIVER_MINOR 6
432 #define DRIVER_PATCHLEVEL 0
433
434 #define WATCH_LISTS 0
435
436 struct opregion_header;
437 struct opregion_acpi;
438 struct opregion_swsci;
439 struct opregion_asle;
440
441 struct intel_opregion {
442 struct opregion_header *header;
443 struct opregion_acpi *acpi;
444 struct opregion_swsci *swsci;
445 u32 swsci_gbda_sub_functions;
446 u32 swsci_sbcb_sub_functions;
447 struct opregion_asle *asle;
448 void *rvda;
449 const void *vbt;
450 u32 vbt_size;
451 u32 *lid_state;
452 struct work_struct asle_work;
453 };
454 #define OPREGION_SIZE (8*1024)
455
456 struct intel_overlay;
457 struct intel_overlay_error_state;
458
459 #define I915_FENCE_REG_NONE -1
460 #define I915_MAX_NUM_FENCES 32
461 /* 32 fences + sign bit for FENCE_REG_NONE */
462 #define I915_MAX_NUM_FENCE_BITS 6
463
464 struct drm_i915_fence_reg {
465 struct list_head lru_list;
466 struct drm_i915_gem_object *obj;
467 int pin_count;
468 };
469
470 struct sdvo_device_mapping {
471 u8 initialized;
472 u8 dvo_port;
473 u8 slave_addr;
474 u8 dvo_wiring;
475 u8 i2c_pin;
476 u8 ddc_pin;
477 };
478
479 struct intel_display_error_state;
480
481 struct drm_i915_error_state {
482 struct kref ref;
483 struct timeval time;
484
485 char error_msg[128];
486 bool simulated;
487 int iommu;
488 u32 reset_count;
489 u32 suspend_count;
490
491 /* Generic register state */
492 u32 eir;
493 u32 pgtbl_er;
494 u32 ier;
495 u32 gtier[4];
496 u32 ccid;
497 u32 derrmr;
498 u32 forcewake;
499 u32 error; /* gen6+ */
500 u32 err_int; /* gen7 */
501 u32 fault_data0; /* gen8, gen9 */
502 u32 fault_data1; /* gen8, gen9 */
503 u32 done_reg;
504 u32 gac_eco;
505 u32 gam_ecochk;
506 u32 gab_ctl;
507 u32 gfx_mode;
508 u32 extra_instdone[I915_NUM_INSTDONE_REG];
509 u64 fence[I915_MAX_NUM_FENCES];
510 struct intel_overlay_error_state *overlay;
511 struct intel_display_error_state *display;
512 struct drm_i915_error_object *semaphore_obj;
513
514 struct drm_i915_error_ring {
515 bool valid;
516 /* Software tracked state */
517 bool waiting;
518 int num_waiters;
519 int hangcheck_score;
520 enum intel_ring_hangcheck_action hangcheck_action;
521 int num_requests;
522
523 /* our own tracking of ring head and tail */
524 u32 cpu_ring_head;
525 u32 cpu_ring_tail;
526
527 u32 last_seqno;
528 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
529
530 /* Register state */
531 u32 start;
532 u32 tail;
533 u32 head;
534 u32 ctl;
535 u32 hws;
536 u32 ipeir;
537 u32 ipehr;
538 u32 instdone;
539 u32 bbstate;
540 u32 instpm;
541 u32 instps;
542 u32 seqno;
543 u64 bbaddr;
544 u64 acthd;
545 u32 fault_reg;
546 u64 faddr;
547 u32 rc_psmi; /* sleep state */
548 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
549
550 struct drm_i915_error_object {
551 int page_count;
552 u64 gtt_offset;
553 u32 *pages[0];
554 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
555
556 struct drm_i915_error_object *wa_ctx;
557
558 struct drm_i915_error_request {
559 long jiffies;
560 u32 seqno;
561 u32 tail;
562 } *requests;
563
564 struct drm_i915_error_waiter {
565 char comm[TASK_COMM_LEN];
566 pid_t pid;
567 u32 seqno;
568 } *waiters;
569
570 struct {
571 u32 gfx_mode;
572 union {
573 u64 pdp[4];
574 u32 pp_dir_base;
575 };
576 } vm_info;
577
578 pid_t pid;
579 char comm[TASK_COMM_LEN];
580 } ring[I915_NUM_ENGINES];
581
582 struct drm_i915_error_buffer {
583 u32 size;
584 u32 name;
585 u32 rseqno[I915_NUM_ENGINES], wseqno;
586 u64 gtt_offset;
587 u32 read_domains;
588 u32 write_domain;
589 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
590 s32 pinned:2;
591 u32 tiling:2;
592 u32 dirty:1;
593 u32 purgeable:1;
594 u32 userptr:1;
595 s32 ring:4;
596 u32 cache_level:3;
597 } **active_bo, **pinned_bo;
598
599 u32 *active_bo_count, *pinned_bo_count;
600 u32 vm_count;
601 };
602
603 struct intel_connector;
604 struct intel_encoder;
605 struct intel_crtc_state;
606 struct intel_initial_plane_config;
607 struct intel_crtc;
608 struct intel_limit;
609 struct dpll;
610
611 struct drm_i915_display_funcs {
612 int (*get_display_clock_speed)(struct drm_device *dev);
613 int (*get_fifo_size)(struct drm_device *dev, int plane);
614 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
615 int (*compute_intermediate_wm)(struct drm_device *dev,
616 struct intel_crtc *intel_crtc,
617 struct intel_crtc_state *newstate);
618 void (*initial_watermarks)(struct intel_crtc_state *cstate);
619 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
620 int (*compute_global_watermarks)(struct drm_atomic_state *state);
621 void (*update_wm)(struct drm_crtc *crtc);
622 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
623 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
624 /* Returns the active state of the crtc, and if the crtc is active,
625 * fills out the pipe-config with the hw state. */
626 bool (*get_pipe_config)(struct intel_crtc *,
627 struct intel_crtc_state *);
628 void (*get_initial_plane_config)(struct intel_crtc *,
629 struct intel_initial_plane_config *);
630 int (*crtc_compute_clock)(struct intel_crtc *crtc,
631 struct intel_crtc_state *crtc_state);
632 void (*crtc_enable)(struct drm_crtc *crtc);
633 void (*crtc_disable)(struct drm_crtc *crtc);
634 void (*audio_codec_enable)(struct drm_connector *connector,
635 struct intel_encoder *encoder,
636 const struct drm_display_mode *adjusted_mode);
637 void (*audio_codec_disable)(struct intel_encoder *encoder);
638 void (*fdi_link_train)(struct drm_crtc *crtc);
639 void (*init_clock_gating)(struct drm_device *dev);
640 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
641 struct drm_framebuffer *fb,
642 struct drm_i915_gem_object *obj,
643 struct drm_i915_gem_request *req,
644 uint32_t flags);
645 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
646 /* clock updates for mode set */
647 /* cursor updates */
648 /* render clock increase/decrease */
649 /* display clock increase/decrease */
650 /* pll clock increase/decrease */
651
652 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
653 void (*load_luts)(struct drm_crtc_state *crtc_state);
654 };
655
656 enum forcewake_domain_id {
657 FW_DOMAIN_ID_RENDER = 0,
658 FW_DOMAIN_ID_BLITTER,
659 FW_DOMAIN_ID_MEDIA,
660
661 FW_DOMAIN_ID_COUNT
662 };
663
664 enum forcewake_domains {
665 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
666 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
667 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
668 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
669 FORCEWAKE_BLITTER |
670 FORCEWAKE_MEDIA)
671 };
672
673 #define FW_REG_READ (1)
674 #define FW_REG_WRITE (2)
675
676 enum forcewake_domains
677 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
678 i915_reg_t reg, unsigned int op);
679
680 struct intel_uncore_funcs {
681 void (*force_wake_get)(struct drm_i915_private *dev_priv,
682 enum forcewake_domains domains);
683 void (*force_wake_put)(struct drm_i915_private *dev_priv,
684 enum forcewake_domains domains);
685
686 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
687 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
688 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
689 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
690
691 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
692 uint8_t val, bool trace);
693 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
694 uint16_t val, bool trace);
695 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
696 uint32_t val, bool trace);
697 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
698 uint64_t val, bool trace);
699 };
700
701 struct intel_uncore {
702 spinlock_t lock; /** lock is also taken in irq contexts. */
703
704 struct intel_uncore_funcs funcs;
705
706 unsigned fifo_count;
707 enum forcewake_domains fw_domains;
708
709 struct intel_uncore_forcewake_domain {
710 struct drm_i915_private *i915;
711 enum forcewake_domain_id id;
712 enum forcewake_domains mask;
713 unsigned wake_count;
714 struct hrtimer timer;
715 i915_reg_t reg_set;
716 u32 val_set;
717 u32 val_clear;
718 i915_reg_t reg_ack;
719 i915_reg_t reg_post;
720 u32 val_reset;
721 } fw_domain[FW_DOMAIN_ID_COUNT];
722
723 int unclaimed_mmio_check;
724 };
725
726 /* Iterate over initialised fw domains */
727 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
728 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
729 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
730 (domain__)++) \
731 for_each_if ((mask__) & (domain__)->mask)
732
733 #define for_each_fw_domain(domain__, dev_priv__) \
734 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
735
736 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
737 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
738 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
739
740 struct intel_csr {
741 struct work_struct work;
742 const char *fw_path;
743 uint32_t *dmc_payload;
744 uint32_t dmc_fw_size;
745 uint32_t version;
746 uint32_t mmio_count;
747 i915_reg_t mmioaddr[8];
748 uint32_t mmiodata[8];
749 uint32_t dc_state;
750 uint32_t allowed_dc_mask;
751 };
752
753 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
754 func(is_mobile) sep \
755 func(is_i85x) sep \
756 func(is_i915g) sep \
757 func(is_i945gm) sep \
758 func(is_g33) sep \
759 func(need_gfx_hws) sep \
760 func(is_g4x) sep \
761 func(is_pineview) sep \
762 func(is_broadwater) sep \
763 func(is_crestline) sep \
764 func(is_ivybridge) sep \
765 func(is_valleyview) sep \
766 func(is_cherryview) sep \
767 func(is_haswell) sep \
768 func(is_broadwell) sep \
769 func(is_skylake) sep \
770 func(is_broxton) sep \
771 func(is_kabylake) sep \
772 func(is_preliminary) sep \
773 func(has_fbc) sep \
774 func(has_pipe_cxsr) sep \
775 func(has_hotplug) sep \
776 func(cursor_needs_physical) sep \
777 func(has_overlay) sep \
778 func(overlay_needs_physical) sep \
779 func(supports_tv) sep \
780 func(has_llc) sep \
781 func(has_snoop) sep \
782 func(has_ddi) sep \
783 func(has_fpga_dbg) sep \
784 func(has_pooled_eu)
785
786 #define DEFINE_FLAG(name) u8 name:1
787 #define SEP_SEMICOLON ;
788
789 struct intel_device_info {
790 u32 display_mmio_offset;
791 u16 device_id;
792 u8 num_pipes;
793 u8 num_sprites[I915_MAX_PIPES];
794 u8 gen;
795 u16 gen_mask;
796 u8 ring_mask; /* Rings supported by the HW */
797 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
798 /* Register offsets for the various display pipes and transcoders */
799 int pipe_offsets[I915_MAX_TRANSCODERS];
800 int trans_offsets[I915_MAX_TRANSCODERS];
801 int palette_offsets[I915_MAX_PIPES];
802 int cursor_offsets[I915_MAX_PIPES];
803
804 /* Slice/subslice/EU info */
805 u8 slice_total;
806 u8 subslice_total;
807 u8 subslice_per_slice;
808 u8 eu_total;
809 u8 eu_per_subslice;
810 u8 min_eu_in_pool;
811 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
812 u8 subslice_7eu[3];
813 u8 has_slice_pg:1;
814 u8 has_subslice_pg:1;
815 u8 has_eu_pg:1;
816
817 struct color_luts {
818 u16 degamma_lut_size;
819 u16 gamma_lut_size;
820 } color;
821 };
822
823 #undef DEFINE_FLAG
824 #undef SEP_SEMICOLON
825
826 enum i915_cache_level {
827 I915_CACHE_NONE = 0,
828 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
829 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
830 caches, eg sampler/render caches, and the
831 large Last-Level-Cache. LLC is coherent with
832 the CPU, but L3 is only visible to the GPU. */
833 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
834 };
835
836 struct i915_ctx_hang_stats {
837 /* This context had batch pending when hang was declared */
838 unsigned batch_pending;
839
840 /* This context had batch active when hang was declared */
841 unsigned batch_active;
842
843 /* Time when this context was last blamed for a GPU reset */
844 unsigned long guilty_ts;
845
846 /* If the contexts causes a second GPU hang within this time,
847 * it is permanently banned from submitting any more work.
848 */
849 unsigned long ban_period_seconds;
850
851 /* This context is banned to submit more work */
852 bool banned;
853 };
854
855 /* This must match up with the value previously used for execbuf2.rsvd1. */
856 #define DEFAULT_CONTEXT_HANDLE 0
857
858 /**
859 * struct i915_gem_context - as the name implies, represents a context.
860 * @ref: reference count.
861 * @user_handle: userspace tracking identity for this context.
862 * @remap_slice: l3 row remapping information.
863 * @flags: context specific flags:
864 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
865 * @file_priv: filp associated with this context (NULL for global default
866 * context).
867 * @hang_stats: information about the role of this context in possible GPU
868 * hangs.
869 * @ppgtt: virtual memory space used by this context.
870 * @legacy_hw_ctx: render context backing object and whether it is correctly
871 * initialized (legacy ring submission mechanism only).
872 * @link: link in the global list of contexts.
873 *
874 * Contexts are memory images used by the hardware to store copies of their
875 * internal state.
876 */
877 struct i915_gem_context {
878 struct kref ref;
879 struct drm_i915_private *i915;
880 struct drm_i915_file_private *file_priv;
881 struct i915_hw_ppgtt *ppgtt;
882
883 struct i915_ctx_hang_stats hang_stats;
884
885 /* Unique identifier for this context, used by the hw for tracking */
886 unsigned long flags;
887 #define CONTEXT_NO_ZEROMAP BIT(0)
888 #define CONTEXT_NO_ERROR_CAPTURE BIT(1)
889 unsigned hw_id;
890 u32 user_handle;
891
892 u32 ggtt_alignment;
893
894 struct intel_context {
895 struct drm_i915_gem_object *state;
896 struct intel_ringbuffer *ringbuf;
897 struct i915_vma *lrc_vma;
898 uint32_t *lrc_reg_state;
899 u64 lrc_desc;
900 int pin_count;
901 bool initialised;
902 } engine[I915_NUM_ENGINES];
903 u32 ring_size;
904 u32 desc_template;
905 struct atomic_notifier_head status_notifier;
906 bool execlists_force_single_submission;
907
908 struct list_head link;
909
910 u8 remap_slice;
911 };
912
913 enum fb_op_origin {
914 ORIGIN_GTT,
915 ORIGIN_CPU,
916 ORIGIN_CS,
917 ORIGIN_FLIP,
918 ORIGIN_DIRTYFB,
919 };
920
921 struct intel_fbc {
922 /* This is always the inner lock when overlapping with struct_mutex and
923 * it's the outer lock when overlapping with stolen_lock. */
924 struct mutex lock;
925 unsigned threshold;
926 unsigned int possible_framebuffer_bits;
927 unsigned int busy_bits;
928 unsigned int visible_pipes_mask;
929 struct intel_crtc *crtc;
930
931 struct drm_mm_node compressed_fb;
932 struct drm_mm_node *compressed_llb;
933
934 bool false_color;
935
936 bool enabled;
937 bool active;
938
939 struct intel_fbc_state_cache {
940 struct {
941 unsigned int mode_flags;
942 uint32_t hsw_bdw_pixel_rate;
943 } crtc;
944
945 struct {
946 unsigned int rotation;
947 int src_w;
948 int src_h;
949 bool visible;
950 } plane;
951
952 struct {
953 u64 ilk_ggtt_offset;
954 uint32_t pixel_format;
955 unsigned int stride;
956 int fence_reg;
957 unsigned int tiling_mode;
958 } fb;
959 } state_cache;
960
961 struct intel_fbc_reg_params {
962 struct {
963 enum pipe pipe;
964 enum plane plane;
965 unsigned int fence_y_offset;
966 } crtc;
967
968 struct {
969 u64 ggtt_offset;
970 uint32_t pixel_format;
971 unsigned int stride;
972 int fence_reg;
973 } fb;
974
975 int cfb_size;
976 } params;
977
978 struct intel_fbc_work {
979 bool scheduled;
980 u32 scheduled_vblank;
981 struct work_struct work;
982 } work;
983
984 const char *no_fbc_reason;
985 };
986
987 /**
988 * HIGH_RR is the highest eDP panel refresh rate read from EDID
989 * LOW_RR is the lowest eDP panel refresh rate found from EDID
990 * parsing for same resolution.
991 */
992 enum drrs_refresh_rate_type {
993 DRRS_HIGH_RR,
994 DRRS_LOW_RR,
995 DRRS_MAX_RR, /* RR count */
996 };
997
998 enum drrs_support_type {
999 DRRS_NOT_SUPPORTED = 0,
1000 STATIC_DRRS_SUPPORT = 1,
1001 SEAMLESS_DRRS_SUPPORT = 2
1002 };
1003
1004 struct intel_dp;
1005 struct i915_drrs {
1006 struct mutex mutex;
1007 struct delayed_work work;
1008 struct intel_dp *dp;
1009 unsigned busy_frontbuffer_bits;
1010 enum drrs_refresh_rate_type refresh_rate_type;
1011 enum drrs_support_type type;
1012 };
1013
1014 struct i915_psr {
1015 struct mutex lock;
1016 bool sink_support;
1017 bool source_ok;
1018 struct intel_dp *enabled;
1019 bool active;
1020 struct delayed_work work;
1021 unsigned busy_frontbuffer_bits;
1022 bool psr2_support;
1023 bool aux_frame_sync;
1024 bool link_standby;
1025 };
1026
1027 enum intel_pch {
1028 PCH_NONE = 0, /* No PCH present */
1029 PCH_IBX, /* Ibexpeak PCH */
1030 PCH_CPT, /* Cougarpoint PCH */
1031 PCH_LPT, /* Lynxpoint PCH */
1032 PCH_SPT, /* Sunrisepoint PCH */
1033 PCH_KBP, /* Kabypoint PCH */
1034 PCH_NOP,
1035 };
1036
1037 enum intel_sbi_destination {
1038 SBI_ICLK,
1039 SBI_MPHY,
1040 };
1041
1042 #define QUIRK_PIPEA_FORCE (1<<0)
1043 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1044 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1045 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1046 #define QUIRK_PIPEB_FORCE (1<<4)
1047 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1048
1049 struct intel_fbdev;
1050 struct intel_fbc_work;
1051
1052 struct intel_gmbus {
1053 struct i2c_adapter adapter;
1054 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1055 u32 force_bit;
1056 u32 reg0;
1057 i915_reg_t gpio_reg;
1058 struct i2c_algo_bit_data bit_algo;
1059 struct drm_i915_private *dev_priv;
1060 };
1061
1062 struct i915_suspend_saved_registers {
1063 u32 saveDSPARB;
1064 u32 saveLVDS;
1065 u32 savePP_ON_DELAYS;
1066 u32 savePP_OFF_DELAYS;
1067 u32 savePP_ON;
1068 u32 savePP_OFF;
1069 u32 savePP_CONTROL;
1070 u32 savePP_DIVISOR;
1071 u32 saveFBC_CONTROL;
1072 u32 saveCACHE_MODE_0;
1073 u32 saveMI_ARB_STATE;
1074 u32 saveSWF0[16];
1075 u32 saveSWF1[16];
1076 u32 saveSWF3[3];
1077 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1078 u32 savePCH_PORT_HOTPLUG;
1079 u16 saveGCDGMBUS;
1080 };
1081
1082 struct vlv_s0ix_state {
1083 /* GAM */
1084 u32 wr_watermark;
1085 u32 gfx_prio_ctrl;
1086 u32 arb_mode;
1087 u32 gfx_pend_tlb0;
1088 u32 gfx_pend_tlb1;
1089 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1090 u32 media_max_req_count;
1091 u32 gfx_max_req_count;
1092 u32 render_hwsp;
1093 u32 ecochk;
1094 u32 bsd_hwsp;
1095 u32 blt_hwsp;
1096 u32 tlb_rd_addr;
1097
1098 /* MBC */
1099 u32 g3dctl;
1100 u32 gsckgctl;
1101 u32 mbctl;
1102
1103 /* GCP */
1104 u32 ucgctl1;
1105 u32 ucgctl3;
1106 u32 rcgctl1;
1107 u32 rcgctl2;
1108 u32 rstctl;
1109 u32 misccpctl;
1110
1111 /* GPM */
1112 u32 gfxpause;
1113 u32 rpdeuhwtc;
1114 u32 rpdeuc;
1115 u32 ecobus;
1116 u32 pwrdwnupctl;
1117 u32 rp_down_timeout;
1118 u32 rp_deucsw;
1119 u32 rcubmabdtmr;
1120 u32 rcedata;
1121 u32 spare2gh;
1122
1123 /* Display 1 CZ domain */
1124 u32 gt_imr;
1125 u32 gt_ier;
1126 u32 pm_imr;
1127 u32 pm_ier;
1128 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1129
1130 /* GT SA CZ domain */
1131 u32 tilectl;
1132 u32 gt_fifoctl;
1133 u32 gtlc_wake_ctrl;
1134 u32 gtlc_survive;
1135 u32 pmwgicz;
1136
1137 /* Display 2 CZ domain */
1138 u32 gu_ctl0;
1139 u32 gu_ctl1;
1140 u32 pcbr;
1141 u32 clock_gate_dis2;
1142 };
1143
1144 struct intel_rps_ei {
1145 u32 cz_clock;
1146 u32 render_c0;
1147 u32 media_c0;
1148 };
1149
1150 struct intel_gen6_power_mgmt {
1151 /*
1152 * work, interrupts_enabled and pm_iir are protected by
1153 * dev_priv->irq_lock
1154 */
1155 struct work_struct work;
1156 bool interrupts_enabled;
1157 u32 pm_iir;
1158
1159 u32 pm_intr_keep;
1160
1161 /* Frequencies are stored in potentially platform dependent multiples.
1162 * In other words, *_freq needs to be multiplied by X to be interesting.
1163 * Soft limits are those which are used for the dynamic reclocking done
1164 * by the driver (raise frequencies under heavy loads, and lower for
1165 * lighter loads). Hard limits are those imposed by the hardware.
1166 *
1167 * A distinction is made for overclocking, which is never enabled by
1168 * default, and is considered to be above the hard limit if it's
1169 * possible at all.
1170 */
1171 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1172 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1173 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1174 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1175 u8 min_freq; /* AKA RPn. Minimum frequency */
1176 u8 idle_freq; /* Frequency to request when we are idle */
1177 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1178 u8 rp1_freq; /* "less than" RP0 power/freqency */
1179 u8 rp0_freq; /* Non-overclocked max frequency. */
1180 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1181
1182 u8 up_threshold; /* Current %busy required to uplock */
1183 u8 down_threshold; /* Current %busy required to downclock */
1184
1185 int last_adj;
1186 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1187
1188 spinlock_t client_lock;
1189 struct list_head clients;
1190 bool client_boost;
1191
1192 bool enabled;
1193 struct delayed_work delayed_resume_work;
1194 unsigned boosts;
1195
1196 struct intel_rps_client semaphores, mmioflips;
1197
1198 /* manual wa residency calculations */
1199 struct intel_rps_ei up_ei, down_ei;
1200
1201 /*
1202 * Protects RPS/RC6 register access and PCU communication.
1203 * Must be taken after struct_mutex if nested. Note that
1204 * this lock may be held for long periods of time when
1205 * talking to hw - so only take it when talking to hw!
1206 */
1207 struct mutex hw_lock;
1208 };
1209
1210 /* defined intel_pm.c */
1211 extern spinlock_t mchdev_lock;
1212
1213 struct intel_ilk_power_mgmt {
1214 u8 cur_delay;
1215 u8 min_delay;
1216 u8 max_delay;
1217 u8 fmax;
1218 u8 fstart;
1219
1220 u64 last_count1;
1221 unsigned long last_time1;
1222 unsigned long chipset_power;
1223 u64 last_count2;
1224 u64 last_time2;
1225 unsigned long gfx_power;
1226 u8 corr;
1227
1228 int c_m;
1229 int r_t;
1230 };
1231
1232 struct drm_i915_private;
1233 struct i915_power_well;
1234
1235 struct i915_power_well_ops {
1236 /*
1237 * Synchronize the well's hw state to match the current sw state, for
1238 * example enable/disable it based on the current refcount. Called
1239 * during driver init and resume time, possibly after first calling
1240 * the enable/disable handlers.
1241 */
1242 void (*sync_hw)(struct drm_i915_private *dev_priv,
1243 struct i915_power_well *power_well);
1244 /*
1245 * Enable the well and resources that depend on it (for example
1246 * interrupts located on the well). Called after the 0->1 refcount
1247 * transition.
1248 */
1249 void (*enable)(struct drm_i915_private *dev_priv,
1250 struct i915_power_well *power_well);
1251 /*
1252 * Disable the well and resources that depend on it. Called after
1253 * the 1->0 refcount transition.
1254 */
1255 void (*disable)(struct drm_i915_private *dev_priv,
1256 struct i915_power_well *power_well);
1257 /* Returns the hw enabled state. */
1258 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1259 struct i915_power_well *power_well);
1260 };
1261
1262 /* Power well structure for haswell */
1263 struct i915_power_well {
1264 const char *name;
1265 bool always_on;
1266 /* power well enable/disable usage count */
1267 int count;
1268 /* cached hw enabled state */
1269 bool hw_enabled;
1270 unsigned long domains;
1271 unsigned long data;
1272 const struct i915_power_well_ops *ops;
1273 };
1274
1275 struct i915_power_domains {
1276 /*
1277 * Power wells needed for initialization at driver init and suspend
1278 * time are on. They are kept on until after the first modeset.
1279 */
1280 bool init_power_on;
1281 bool initializing;
1282 int power_well_count;
1283
1284 struct mutex lock;
1285 int domain_use_count[POWER_DOMAIN_NUM];
1286 struct i915_power_well *power_wells;
1287 };
1288
1289 #define MAX_L3_SLICES 2
1290 struct intel_l3_parity {
1291 u32 *remap_info[MAX_L3_SLICES];
1292 struct work_struct error_work;
1293 int which_slice;
1294 };
1295
1296 struct i915_gem_mm {
1297 /** Memory allocator for GTT stolen memory */
1298 struct drm_mm stolen;
1299 /** Protects the usage of the GTT stolen memory allocator. This is
1300 * always the inner lock when overlapping with struct_mutex. */
1301 struct mutex stolen_lock;
1302
1303 /** List of all objects in gtt_space. Used to restore gtt
1304 * mappings on resume */
1305 struct list_head bound_list;
1306 /**
1307 * List of objects which are not bound to the GTT (thus
1308 * are idle and not used by the GPU) but still have
1309 * (presumably uncached) pages still attached.
1310 */
1311 struct list_head unbound_list;
1312
1313 /** Usable portion of the GTT for GEM */
1314 unsigned long stolen_base; /* limited to low memory (32-bit) */
1315
1316 /** PPGTT used for aliasing the PPGTT with the GTT */
1317 struct i915_hw_ppgtt *aliasing_ppgtt;
1318
1319 struct notifier_block oom_notifier;
1320 struct notifier_block vmap_notifier;
1321 struct shrinker shrinker;
1322 bool shrinker_no_lock_stealing;
1323
1324 /** LRU list of objects with fence regs on them. */
1325 struct list_head fence_list;
1326
1327 /**
1328 * Are we in a non-interruptible section of code like
1329 * modesetting?
1330 */
1331 bool interruptible;
1332
1333 /* the indicator for dispatch video commands on two BSD rings */
1334 unsigned int bsd_ring_dispatch_index;
1335
1336 /** Bit 6 swizzling required for X tiling */
1337 uint32_t bit_6_swizzle_x;
1338 /** Bit 6 swizzling required for Y tiling */
1339 uint32_t bit_6_swizzle_y;
1340
1341 /* accounting, useful for userland debugging */
1342 spinlock_t object_stat_lock;
1343 size_t object_memory;
1344 u32 object_count;
1345 };
1346
1347 struct drm_i915_error_state_buf {
1348 struct drm_i915_private *i915;
1349 unsigned bytes;
1350 unsigned size;
1351 int err;
1352 u8 *buf;
1353 loff_t start;
1354 loff_t pos;
1355 };
1356
1357 struct i915_error_state_file_priv {
1358 struct drm_device *dev;
1359 struct drm_i915_error_state *error;
1360 };
1361
1362 struct i915_gpu_error {
1363 /* For hangcheck timer */
1364 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1365 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1366 /* Hang gpu twice in this window and your context gets banned */
1367 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1368
1369 struct delayed_work hangcheck_work;
1370
1371 /* For reset and error_state handling. */
1372 spinlock_t lock;
1373 /* Protected by the above dev->gpu_error.lock. */
1374 struct drm_i915_error_state *first_error;
1375
1376 unsigned long missed_irq_rings;
1377
1378 /**
1379 * State variable controlling the reset flow and count
1380 *
1381 * This is a counter which gets incremented when reset is triggered,
1382 * and again when reset has been handled. So odd values (lowest bit set)
1383 * means that reset is in progress and even values that
1384 * (reset_counter >> 1):th reset was successfully completed.
1385 *
1386 * If reset is not completed succesfully, the I915_WEDGE bit is
1387 * set meaning that hardware is terminally sour and there is no
1388 * recovery. All waiters on the reset_queue will be woken when
1389 * that happens.
1390 *
1391 * This counter is used by the wait_seqno code to notice that reset
1392 * event happened and it needs to restart the entire ioctl (since most
1393 * likely the seqno it waited for won't ever signal anytime soon).
1394 *
1395 * This is important for lock-free wait paths, where no contended lock
1396 * naturally enforces the correct ordering between the bail-out of the
1397 * waiter and the gpu reset work code.
1398 */
1399 atomic_t reset_counter;
1400
1401 #define I915_RESET_IN_PROGRESS_FLAG 1
1402 #define I915_WEDGED (1 << 31)
1403
1404 /**
1405 * Waitqueue to signal when a hang is detected. Used to for waiters
1406 * to release the struct_mutex for the reset to procede.
1407 */
1408 wait_queue_head_t wait_queue;
1409
1410 /**
1411 * Waitqueue to signal when the reset has completed. Used by clients
1412 * that wait for dev_priv->mm.wedged to settle.
1413 */
1414 wait_queue_head_t reset_queue;
1415
1416 /* For missed irq/seqno simulation. */
1417 unsigned long test_irq_rings;
1418 };
1419
1420 enum modeset_restore {
1421 MODESET_ON_LID_OPEN,
1422 MODESET_DONE,
1423 MODESET_SUSPENDED,
1424 };
1425
1426 #define DP_AUX_A 0x40
1427 #define DP_AUX_B 0x10
1428 #define DP_AUX_C 0x20
1429 #define DP_AUX_D 0x30
1430
1431 #define DDC_PIN_B 0x05
1432 #define DDC_PIN_C 0x04
1433 #define DDC_PIN_D 0x06
1434
1435 struct ddi_vbt_port_info {
1436 /*
1437 * This is an index in the HDMI/DVI DDI buffer translation table.
1438 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1439 * populate this field.
1440 */
1441 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1442 uint8_t hdmi_level_shift;
1443
1444 uint8_t supports_dvi:1;
1445 uint8_t supports_hdmi:1;
1446 uint8_t supports_dp:1;
1447
1448 uint8_t alternate_aux_channel;
1449 uint8_t alternate_ddc_pin;
1450
1451 uint8_t dp_boost_level;
1452 uint8_t hdmi_boost_level;
1453 };
1454
1455 enum psr_lines_to_wait {
1456 PSR_0_LINES_TO_WAIT = 0,
1457 PSR_1_LINE_TO_WAIT,
1458 PSR_4_LINES_TO_WAIT,
1459 PSR_8_LINES_TO_WAIT
1460 };
1461
1462 struct intel_vbt_data {
1463 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1464 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1465
1466 /* Feature bits */
1467 unsigned int int_tv_support:1;
1468 unsigned int lvds_dither:1;
1469 unsigned int lvds_vbt:1;
1470 unsigned int int_crt_support:1;
1471 unsigned int lvds_use_ssc:1;
1472 unsigned int display_clock_mode:1;
1473 unsigned int fdi_rx_polarity_inverted:1;
1474 unsigned int panel_type:4;
1475 int lvds_ssc_freq;
1476 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1477
1478 enum drrs_support_type drrs_type;
1479
1480 struct {
1481 int rate;
1482 int lanes;
1483 int preemphasis;
1484 int vswing;
1485 bool low_vswing;
1486 bool initialized;
1487 bool support;
1488 int bpp;
1489 struct edp_power_seq pps;
1490 } edp;
1491
1492 struct {
1493 bool full_link;
1494 bool require_aux_wakeup;
1495 int idle_frames;
1496 enum psr_lines_to_wait lines_to_wait;
1497 int tp1_wakeup_time;
1498 int tp2_tp3_wakeup_time;
1499 } psr;
1500
1501 struct {
1502 u16 pwm_freq_hz;
1503 bool present;
1504 bool active_low_pwm;
1505 u8 min_brightness; /* min_brightness/255 of max */
1506 enum intel_backlight_type type;
1507 } backlight;
1508
1509 /* MIPI DSI */
1510 struct {
1511 u16 panel_id;
1512 struct mipi_config *config;
1513 struct mipi_pps_data *pps;
1514 u8 seq_version;
1515 u32 size;
1516 u8 *data;
1517 const u8 *sequence[MIPI_SEQ_MAX];
1518 } dsi;
1519
1520 int crt_ddc_pin;
1521
1522 int child_dev_num;
1523 union child_device_config *child_dev;
1524
1525 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1526 struct sdvo_device_mapping sdvo_mappings[2];
1527 };
1528
1529 enum intel_ddb_partitioning {
1530 INTEL_DDB_PART_1_2,
1531 INTEL_DDB_PART_5_6, /* IVB+ */
1532 };
1533
1534 struct intel_wm_level {
1535 bool enable;
1536 uint32_t pri_val;
1537 uint32_t spr_val;
1538 uint32_t cur_val;
1539 uint32_t fbc_val;
1540 };
1541
1542 struct ilk_wm_values {
1543 uint32_t wm_pipe[3];
1544 uint32_t wm_lp[3];
1545 uint32_t wm_lp_spr[3];
1546 uint32_t wm_linetime[3];
1547 bool enable_fbc_wm;
1548 enum intel_ddb_partitioning partitioning;
1549 };
1550
1551 struct vlv_pipe_wm {
1552 uint16_t primary;
1553 uint16_t sprite[2];
1554 uint8_t cursor;
1555 };
1556
1557 struct vlv_sr_wm {
1558 uint16_t plane;
1559 uint8_t cursor;
1560 };
1561
1562 struct vlv_wm_values {
1563 struct vlv_pipe_wm pipe[3];
1564 struct vlv_sr_wm sr;
1565 struct {
1566 uint8_t cursor;
1567 uint8_t sprite[2];
1568 uint8_t primary;
1569 } ddl[3];
1570 uint8_t level;
1571 bool cxsr;
1572 };
1573
1574 struct skl_ddb_entry {
1575 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1576 };
1577
1578 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1579 {
1580 return entry->end - entry->start;
1581 }
1582
1583 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1584 const struct skl_ddb_entry *e2)
1585 {
1586 if (e1->start == e2->start && e1->end == e2->end)
1587 return true;
1588
1589 return false;
1590 }
1591
1592 struct skl_ddb_allocation {
1593 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1594 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1595 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1596 };
1597
1598 struct skl_wm_values {
1599 unsigned dirty_pipes;
1600 struct skl_ddb_allocation ddb;
1601 uint32_t wm_linetime[I915_MAX_PIPES];
1602 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1603 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1604 };
1605
1606 struct skl_wm_level {
1607 bool plane_en[I915_MAX_PLANES];
1608 uint16_t plane_res_b[I915_MAX_PLANES];
1609 uint8_t plane_res_l[I915_MAX_PLANES];
1610 };
1611
1612 /*
1613 * This struct helps tracking the state needed for runtime PM, which puts the
1614 * device in PCI D3 state. Notice that when this happens, nothing on the
1615 * graphics device works, even register access, so we don't get interrupts nor
1616 * anything else.
1617 *
1618 * Every piece of our code that needs to actually touch the hardware needs to
1619 * either call intel_runtime_pm_get or call intel_display_power_get with the
1620 * appropriate power domain.
1621 *
1622 * Our driver uses the autosuspend delay feature, which means we'll only really
1623 * suspend if we stay with zero refcount for a certain amount of time. The
1624 * default value is currently very conservative (see intel_runtime_pm_enable), but
1625 * it can be changed with the standard runtime PM files from sysfs.
1626 *
1627 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1628 * goes back to false exactly before we reenable the IRQs. We use this variable
1629 * to check if someone is trying to enable/disable IRQs while they're supposed
1630 * to be disabled. This shouldn't happen and we'll print some error messages in
1631 * case it happens.
1632 *
1633 * For more, read the Documentation/power/runtime_pm.txt.
1634 */
1635 struct i915_runtime_pm {
1636 atomic_t wakeref_count;
1637 atomic_t atomic_seq;
1638 bool suspended;
1639 bool irqs_enabled;
1640 };
1641
1642 enum intel_pipe_crc_source {
1643 INTEL_PIPE_CRC_SOURCE_NONE,
1644 INTEL_PIPE_CRC_SOURCE_PLANE1,
1645 INTEL_PIPE_CRC_SOURCE_PLANE2,
1646 INTEL_PIPE_CRC_SOURCE_PF,
1647 INTEL_PIPE_CRC_SOURCE_PIPE,
1648 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1649 INTEL_PIPE_CRC_SOURCE_TV,
1650 INTEL_PIPE_CRC_SOURCE_DP_B,
1651 INTEL_PIPE_CRC_SOURCE_DP_C,
1652 INTEL_PIPE_CRC_SOURCE_DP_D,
1653 INTEL_PIPE_CRC_SOURCE_AUTO,
1654 INTEL_PIPE_CRC_SOURCE_MAX,
1655 };
1656
1657 struct intel_pipe_crc_entry {
1658 uint32_t frame;
1659 uint32_t crc[5];
1660 };
1661
1662 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1663 struct intel_pipe_crc {
1664 spinlock_t lock;
1665 bool opened; /* exclusive access to the result file */
1666 struct intel_pipe_crc_entry *entries;
1667 enum intel_pipe_crc_source source;
1668 int head, tail;
1669 wait_queue_head_t wq;
1670 };
1671
1672 struct i915_frontbuffer_tracking {
1673 struct mutex lock;
1674
1675 /*
1676 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1677 * scheduled flips.
1678 */
1679 unsigned busy_bits;
1680 unsigned flip_bits;
1681 };
1682
1683 struct i915_wa_reg {
1684 i915_reg_t addr;
1685 u32 value;
1686 /* bitmask representing WA bits */
1687 u32 mask;
1688 };
1689
1690 /*
1691 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1692 * allowing it for RCS as we don't foresee any requirement of having
1693 * a whitelist for other engines. When it is really required for
1694 * other engines then the limit need to be increased.
1695 */
1696 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1697
1698 struct i915_workarounds {
1699 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1700 u32 count;
1701 u32 hw_whitelist_count[I915_NUM_ENGINES];
1702 };
1703
1704 struct i915_virtual_gpu {
1705 bool active;
1706 };
1707
1708 struct i915_execbuffer_params {
1709 struct drm_device *dev;
1710 struct drm_file *file;
1711 uint32_t dispatch_flags;
1712 uint32_t args_batch_start_offset;
1713 uint64_t batch_obj_vm_offset;
1714 struct intel_engine_cs *engine;
1715 struct drm_i915_gem_object *batch_obj;
1716 struct i915_gem_context *ctx;
1717 struct drm_i915_gem_request *request;
1718 };
1719
1720 /* used in computing the new watermarks state */
1721 struct intel_wm_config {
1722 unsigned int num_pipes_active;
1723 bool sprites_enabled;
1724 bool sprites_scaled;
1725 };
1726
1727 struct drm_i915_private {
1728 struct drm_device drm;
1729
1730 struct kmem_cache *objects;
1731 struct kmem_cache *vmas;
1732 struct kmem_cache *requests;
1733
1734 const struct intel_device_info info;
1735
1736 int relative_constants_mode;
1737
1738 void __iomem *regs;
1739
1740 struct intel_uncore uncore;
1741
1742 struct i915_virtual_gpu vgpu;
1743
1744 struct intel_gvt gvt;
1745
1746 struct intel_guc guc;
1747
1748 struct intel_csr csr;
1749
1750 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1751
1752 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1753 * controller on different i2c buses. */
1754 struct mutex gmbus_mutex;
1755
1756 /**
1757 * Base address of the gmbus and gpio block.
1758 */
1759 uint32_t gpio_mmio_base;
1760
1761 /* MMIO base address for MIPI regs */
1762 uint32_t mipi_mmio_base;
1763
1764 uint32_t psr_mmio_base;
1765
1766 wait_queue_head_t gmbus_wait_queue;
1767
1768 struct pci_dev *bridge_dev;
1769 struct i915_gem_context *kernel_context;
1770 struct intel_engine_cs engine[I915_NUM_ENGINES];
1771 struct drm_i915_gem_object *semaphore_obj;
1772 uint32_t last_seqno, next_seqno;
1773
1774 struct drm_dma_handle *status_page_dmah;
1775 struct resource mch_res;
1776
1777 /* protects the irq masks */
1778 spinlock_t irq_lock;
1779
1780 /* protects the mmio flip data */
1781 spinlock_t mmio_flip_lock;
1782
1783 bool display_irqs_enabled;
1784
1785 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1786 struct pm_qos_request pm_qos;
1787
1788 /* Sideband mailbox protection */
1789 struct mutex sb_lock;
1790
1791 /** Cached value of IMR to avoid reads in updating the bitfield */
1792 union {
1793 u32 irq_mask;
1794 u32 de_irq_mask[I915_MAX_PIPES];
1795 };
1796 u32 gt_irq_mask;
1797 u32 pm_irq_mask;
1798 u32 pm_rps_events;
1799 u32 pipestat_irq_mask[I915_MAX_PIPES];
1800
1801 struct i915_hotplug hotplug;
1802 struct intel_fbc fbc;
1803 struct i915_drrs drrs;
1804 struct intel_opregion opregion;
1805 struct intel_vbt_data vbt;
1806
1807 bool preserve_bios_swizzle;
1808
1809 /* overlay */
1810 struct intel_overlay *overlay;
1811
1812 /* backlight registers and fields in struct intel_panel */
1813 struct mutex backlight_lock;
1814
1815 /* LVDS info */
1816 bool no_aux_handshake;
1817
1818 /* protects panel power sequencer state */
1819 struct mutex pps_mutex;
1820
1821 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1822 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1823
1824 unsigned int fsb_freq, mem_freq, is_ddr3;
1825 unsigned int skl_preferred_vco_freq;
1826 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1827 unsigned int max_dotclk_freq;
1828 unsigned int rawclk_freq;
1829 unsigned int hpll_freq;
1830 unsigned int czclk_freq;
1831
1832 struct {
1833 unsigned int vco, ref;
1834 } cdclk_pll;
1835
1836 /**
1837 * wq - Driver workqueue for GEM.
1838 *
1839 * NOTE: Work items scheduled here are not allowed to grab any modeset
1840 * locks, for otherwise the flushing done in the pageflip code will
1841 * result in deadlocks.
1842 */
1843 struct workqueue_struct *wq;
1844
1845 /* Display functions */
1846 struct drm_i915_display_funcs display;
1847
1848 /* PCH chipset type */
1849 enum intel_pch pch_type;
1850 unsigned short pch_id;
1851
1852 unsigned long quirks;
1853
1854 enum modeset_restore modeset_restore;
1855 struct mutex modeset_restore_lock;
1856 struct drm_atomic_state *modeset_restore_state;
1857
1858 struct list_head vm_list; /* Global list of all address spaces */
1859 struct i915_ggtt ggtt; /* VM representing the global address space */
1860
1861 struct i915_gem_mm mm;
1862 DECLARE_HASHTABLE(mm_structs, 7);
1863 struct mutex mm_lock;
1864
1865 /* The hw wants to have a stable context identifier for the lifetime
1866 * of the context (for OA, PASID, faults, etc). This is limited
1867 * in execlists to 21 bits.
1868 */
1869 struct ida context_hw_ida;
1870 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1871
1872 /* Kernel Modesetting */
1873
1874 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1875 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1876 wait_queue_head_t pending_flip_queue;
1877
1878 #ifdef CONFIG_DEBUG_FS
1879 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1880 #endif
1881
1882 /* dpll and cdclk state is protected by connection_mutex */
1883 int num_shared_dpll;
1884 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1885 const struct intel_dpll_mgr *dpll_mgr;
1886
1887 /*
1888 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1889 * Must be global rather than per dpll, because on some platforms
1890 * plls share registers.
1891 */
1892 struct mutex dpll_lock;
1893
1894 unsigned int active_crtcs;
1895 unsigned int min_pixclk[I915_MAX_PIPES];
1896
1897 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1898
1899 struct i915_workarounds workarounds;
1900
1901 struct i915_frontbuffer_tracking fb_tracking;
1902
1903 u16 orig_clock;
1904
1905 bool mchbar_need_disable;
1906
1907 struct intel_l3_parity l3_parity;
1908
1909 /* Cannot be determined by PCIID. You must always read a register. */
1910 u32 edram_cap;
1911
1912 /* gen6+ rps state */
1913 struct intel_gen6_power_mgmt rps;
1914
1915 /* ilk-only ips/rps state. Everything in here is protected by the global
1916 * mchdev_lock in intel_pm.c */
1917 struct intel_ilk_power_mgmt ips;
1918
1919 struct i915_power_domains power_domains;
1920
1921 struct i915_psr psr;
1922
1923 struct i915_gpu_error gpu_error;
1924
1925 struct drm_i915_gem_object *vlv_pctx;
1926
1927 #ifdef CONFIG_DRM_FBDEV_EMULATION
1928 /* list of fbdev register on this device */
1929 struct intel_fbdev *fbdev;
1930 struct work_struct fbdev_suspend_work;
1931 #endif
1932
1933 struct drm_property *broadcast_rgb_property;
1934 struct drm_property *force_audio_property;
1935
1936 /* hda/i915 audio component */
1937 struct i915_audio_component *audio_component;
1938 bool audio_component_registered;
1939 /**
1940 * av_mutex - mutex for audio/video sync
1941 *
1942 */
1943 struct mutex av_mutex;
1944
1945 uint32_t hw_context_size;
1946 struct list_head context_list;
1947
1948 u32 fdi_rx_config;
1949
1950 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1951 u32 chv_phy_control;
1952 /*
1953 * Shadows for CHV DPLL_MD regs to keep the state
1954 * checker somewhat working in the presence hardware
1955 * crappiness (can't read out DPLL_MD for pipes B & C).
1956 */
1957 u32 chv_dpll_md[I915_MAX_PIPES];
1958 u32 bxt_phy_grc;
1959
1960 u32 suspend_count;
1961 bool suspended_to_idle;
1962 struct i915_suspend_saved_registers regfile;
1963 struct vlv_s0ix_state vlv_s0ix_state;
1964
1965 struct {
1966 /*
1967 * Raw watermark latency values:
1968 * in 0.1us units for WM0,
1969 * in 0.5us units for WM1+.
1970 */
1971 /* primary */
1972 uint16_t pri_latency[5];
1973 /* sprite */
1974 uint16_t spr_latency[5];
1975 /* cursor */
1976 uint16_t cur_latency[5];
1977 /*
1978 * Raw watermark memory latency values
1979 * for SKL for all 8 levels
1980 * in 1us units.
1981 */
1982 uint16_t skl_latency[8];
1983
1984 /*
1985 * The skl_wm_values structure is a bit too big for stack
1986 * allocation, so we keep the staging struct where we store
1987 * intermediate results here instead.
1988 */
1989 struct skl_wm_values skl_results;
1990
1991 /* current hardware state */
1992 union {
1993 struct ilk_wm_values hw;
1994 struct skl_wm_values skl_hw;
1995 struct vlv_wm_values vlv;
1996 };
1997
1998 uint8_t max_level;
1999
2000 /*
2001 * Should be held around atomic WM register writing; also
2002 * protects * intel_crtc->wm.active and
2003 * cstate->wm.need_postvbl_update.
2004 */
2005 struct mutex wm_mutex;
2006
2007 /*
2008 * Set during HW readout of watermarks/DDB. Some platforms
2009 * need to know when we're still using BIOS-provided values
2010 * (which we don't fully trust).
2011 */
2012 bool distrust_bios_wm;
2013 } wm;
2014
2015 struct i915_runtime_pm pm;
2016
2017 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2018 struct {
2019 int (*execbuf_submit)(struct i915_execbuffer_params *params,
2020 struct drm_i915_gem_execbuffer2 *args,
2021 struct list_head *vmas);
2022 int (*init_engines)(struct drm_device *dev);
2023 void (*cleanup_engine)(struct intel_engine_cs *engine);
2024 void (*stop_engine)(struct intel_engine_cs *engine);
2025
2026 /**
2027 * Is the GPU currently considered idle, or busy executing
2028 * userspace requests? Whilst idle, we allow runtime power
2029 * management to power down the hardware and display clocks.
2030 * In order to reduce the effect on performance, there
2031 * is a slight delay before we do so.
2032 */
2033 unsigned int active_engines;
2034 bool awake;
2035
2036 /**
2037 * We leave the user IRQ off as much as possible,
2038 * but this means that requests will finish and never
2039 * be retired once the system goes idle. Set a timer to
2040 * fire periodically while the ring is running. When it
2041 * fires, go retire requests.
2042 */
2043 struct delayed_work retire_work;
2044
2045 /**
2046 * When we detect an idle GPU, we want to turn on
2047 * powersaving features. So once we see that there
2048 * are no more requests outstanding and no more
2049 * arrive within a small period of time, we fire
2050 * off the idle_work.
2051 */
2052 struct delayed_work idle_work;
2053 } gt;
2054
2055 /* perform PHY state sanity checks? */
2056 bool chv_phy_assert[2];
2057
2058 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2059
2060 /*
2061 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2062 * will be rejected. Instead look for a better place.
2063 */
2064 };
2065
2066 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2067 {
2068 return container_of(dev, struct drm_i915_private, drm);
2069 }
2070
2071 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2072 {
2073 return to_i915(dev_get_drvdata(dev));
2074 }
2075
2076 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2077 {
2078 return container_of(guc, struct drm_i915_private, guc);
2079 }
2080
2081 /* Simple iterator over all initialised engines */
2082 #define for_each_engine(engine__, dev_priv__) \
2083 for ((engine__) = &(dev_priv__)->engine[0]; \
2084 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2085 (engine__)++) \
2086 for_each_if (intel_engine_initialized(engine__))
2087
2088 /* Iterator with engine_id */
2089 #define for_each_engine_id(engine__, dev_priv__, id__) \
2090 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2091 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2092 (engine__)++) \
2093 for_each_if (((id__) = (engine__)->id, \
2094 intel_engine_initialized(engine__)))
2095
2096 /* Iterator over subset of engines selected by mask */
2097 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2098 for ((engine__) = &(dev_priv__)->engine[0]; \
2099 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2100 (engine__)++) \
2101 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2102 intel_engine_initialized(engine__))
2103
2104 enum hdmi_force_audio {
2105 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2106 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2107 HDMI_AUDIO_AUTO, /* trust EDID */
2108 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2109 };
2110
2111 #define I915_GTT_OFFSET_NONE ((u32)-1)
2112
2113 struct drm_i915_gem_object_ops {
2114 unsigned int flags;
2115 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2116
2117 /* Interface between the GEM object and its backing storage.
2118 * get_pages() is called once prior to the use of the associated set
2119 * of pages before to binding them into the GTT, and put_pages() is
2120 * called after we no longer need them. As we expect there to be
2121 * associated cost with migrating pages between the backing storage
2122 * and making them available for the GPU (e.g. clflush), we may hold
2123 * onto the pages after they are no longer referenced by the GPU
2124 * in case they may be used again shortly (for example migrating the
2125 * pages to a different memory domain within the GTT). put_pages()
2126 * will therefore most likely be called when the object itself is
2127 * being released or under memory pressure (where we attempt to
2128 * reap pages for the shrinker).
2129 */
2130 int (*get_pages)(struct drm_i915_gem_object *);
2131 void (*put_pages)(struct drm_i915_gem_object *);
2132
2133 int (*dmabuf_export)(struct drm_i915_gem_object *);
2134 void (*release)(struct drm_i915_gem_object *);
2135 };
2136
2137 /*
2138 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2139 * considered to be the frontbuffer for the given plane interface-wise. This
2140 * doesn't mean that the hw necessarily already scans it out, but that any
2141 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2142 *
2143 * We have one bit per pipe and per scanout plane type.
2144 */
2145 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2146 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2147 #define INTEL_FRONTBUFFER_BITS \
2148 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2149 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2150 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2151 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2152 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2153 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2154 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2155 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2156 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2157 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2158 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2159
2160 struct drm_i915_gem_object {
2161 struct drm_gem_object base;
2162
2163 const struct drm_i915_gem_object_ops *ops;
2164
2165 /** List of VMAs backed by this object */
2166 struct list_head vma_list;
2167
2168 /** Stolen memory for this object, instead of being backed by shmem. */
2169 struct drm_mm_node *stolen;
2170 struct list_head global_list;
2171
2172 struct list_head engine_list[I915_NUM_ENGINES];
2173 /** Used in execbuf to temporarily hold a ref */
2174 struct list_head obj_exec_link;
2175
2176 struct list_head batch_pool_link;
2177
2178 /**
2179 * This is set if the object is on the active lists (has pending
2180 * rendering and so a non-zero seqno), and is not set if it i s on
2181 * inactive (ready to be unbound) list.
2182 */
2183 unsigned int active:I915_NUM_ENGINES;
2184
2185 /**
2186 * This is set if the object has been written to since last bound
2187 * to the GTT
2188 */
2189 unsigned int dirty:1;
2190
2191 /**
2192 * Fence register bits (if any) for this object. Will be set
2193 * as needed when mapped into the GTT.
2194 * Protected by dev->struct_mutex.
2195 */
2196 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2197
2198 /**
2199 * Advice: are the backing pages purgeable?
2200 */
2201 unsigned int madv:2;
2202
2203 /**
2204 * Current tiling mode for the object.
2205 */
2206 unsigned int tiling_mode:2;
2207 /**
2208 * Whether the tiling parameters for the currently associated fence
2209 * register have changed. Note that for the purposes of tracking
2210 * tiling changes we also treat the unfenced register, the register
2211 * slot that the object occupies whilst it executes a fenced
2212 * command (such as BLT on gen2/3), as a "fence".
2213 */
2214 unsigned int fence_dirty:1;
2215
2216 /**
2217 * Is the object at the current location in the gtt mappable and
2218 * fenceable? Used to avoid costly recalculations.
2219 */
2220 unsigned int map_and_fenceable:1;
2221
2222 /**
2223 * Whether the current gtt mapping needs to be mappable (and isn't just
2224 * mappable by accident). Track pin and fault separate for a more
2225 * accurate mappable working set.
2226 */
2227 unsigned int fault_mappable:1;
2228
2229 /*
2230 * Is the object to be mapped as read-only to the GPU
2231 * Only honoured if hardware has relevant pte bit
2232 */
2233 unsigned long gt_ro:1;
2234 unsigned int cache_level:3;
2235 unsigned int cache_dirty:1;
2236
2237 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2238
2239 unsigned int has_wc_mmap;
2240 unsigned int pin_display;
2241
2242 struct sg_table *pages;
2243 int pages_pin_count;
2244 struct get_page {
2245 struct scatterlist *sg;
2246 int last;
2247 } get_page;
2248 void *mapping;
2249
2250 /** Breadcrumb of last rendering to the buffer.
2251 * There can only be one writer, but we allow for multiple readers.
2252 * If there is a writer that necessarily implies that all other
2253 * read requests are complete - but we may only be lazily clearing
2254 * the read requests. A read request is naturally the most recent
2255 * request on a ring, so we may have two different write and read
2256 * requests on one ring where the write request is older than the
2257 * read request. This allows for the CPU to read from an active
2258 * buffer by only waiting for the write to complete.
2259 * */
2260 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
2261 struct drm_i915_gem_request *last_write_req;
2262 /** Breadcrumb of last fenced GPU access to the buffer. */
2263 struct drm_i915_gem_request *last_fenced_req;
2264
2265 /** Current tiling stride for the object, if it's tiled. */
2266 uint32_t stride;
2267
2268 /** References from framebuffers, locks out tiling changes. */
2269 unsigned long framebuffer_references;
2270
2271 /** Record of address bit 17 of each page at last unbind. */
2272 unsigned long *bit_17;
2273
2274 union {
2275 /** for phy allocated objects */
2276 struct drm_dma_handle *phys_handle;
2277
2278 struct i915_gem_userptr {
2279 uintptr_t ptr;
2280 unsigned read_only :1;
2281 unsigned workers :4;
2282 #define I915_GEM_USERPTR_MAX_WORKERS 15
2283
2284 struct i915_mm_struct *mm;
2285 struct i915_mmu_object *mmu_object;
2286 struct work_struct *work;
2287 } userptr;
2288 };
2289 };
2290 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2291
2292 static inline bool
2293 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2294 {
2295 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2296 }
2297
2298 /*
2299 * Optimised SGL iterator for GEM objects
2300 */
2301 static __always_inline struct sgt_iter {
2302 struct scatterlist *sgp;
2303 union {
2304 unsigned long pfn;
2305 dma_addr_t dma;
2306 };
2307 unsigned int curr;
2308 unsigned int max;
2309 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2310 struct sgt_iter s = { .sgp = sgl };
2311
2312 if (s.sgp) {
2313 s.max = s.curr = s.sgp->offset;
2314 s.max += s.sgp->length;
2315 if (dma)
2316 s.dma = sg_dma_address(s.sgp);
2317 else
2318 s.pfn = page_to_pfn(sg_page(s.sgp));
2319 }
2320
2321 return s;
2322 }
2323
2324 /**
2325 * __sg_next - return the next scatterlist entry in a list
2326 * @sg: The current sg entry
2327 *
2328 * Description:
2329 * If the entry is the last, return NULL; otherwise, step to the next
2330 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2331 * otherwise just return the pointer to the current element.
2332 **/
2333 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2334 {
2335 #ifdef CONFIG_DEBUG_SG
2336 BUG_ON(sg->sg_magic != SG_MAGIC);
2337 #endif
2338 return sg_is_last(sg) ? NULL :
2339 likely(!sg_is_chain(++sg)) ? sg :
2340 sg_chain_ptr(sg);
2341 }
2342
2343 /**
2344 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2345 * @__dmap: DMA address (output)
2346 * @__iter: 'struct sgt_iter' (iterator state, internal)
2347 * @__sgt: sg_table to iterate over (input)
2348 */
2349 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2350 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2351 ((__dmap) = (__iter).dma + (__iter).curr); \
2352 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2353 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2354
2355 /**
2356 * for_each_sgt_page - iterate over the pages of the given sg_table
2357 * @__pp: page pointer (output)
2358 * @__iter: 'struct sgt_iter' (iterator state, internal)
2359 * @__sgt: sg_table to iterate over (input)
2360 */
2361 #define for_each_sgt_page(__pp, __iter, __sgt) \
2362 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2363 ((__pp) = (__iter).pfn == 0 ? NULL : \
2364 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2365 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2366 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2367
2368 /**
2369 * Request queue structure.
2370 *
2371 * The request queue allows us to note sequence numbers that have been emitted
2372 * and may be associated with active buffers to be retired.
2373 *
2374 * By keeping this list, we can avoid having to do questionable sequence
2375 * number comparisons on buffer last_read|write_seqno. It also allows an
2376 * emission time to be associated with the request for tracking how far ahead
2377 * of the GPU the submission is.
2378 *
2379 * The requests are reference counted, so upon creation they should have an
2380 * initial reference taken using kref_init
2381 */
2382 struct drm_i915_gem_request {
2383 struct kref ref;
2384
2385 /** On Which ring this request was generated */
2386 struct drm_i915_private *i915;
2387 struct intel_engine_cs *engine;
2388 struct intel_signal_node signaling;
2389
2390 /** GEM sequence number associated with the previous request,
2391 * when the HWS breadcrumb is equal to this the GPU is processing
2392 * this request.
2393 */
2394 u32 previous_seqno;
2395
2396 /** GEM sequence number associated with this request,
2397 * when the HWS breadcrumb is equal or greater than this the GPU
2398 * has finished processing this request.
2399 */
2400 u32 seqno;
2401
2402 /** Position in the ringbuffer of the start of the request */
2403 u32 head;
2404
2405 /**
2406 * Position in the ringbuffer of the start of the postfix.
2407 * This is required to calculate the maximum available ringbuffer
2408 * space without overwriting the postfix.
2409 */
2410 u32 postfix;
2411
2412 /** Position in the ringbuffer of the end of the whole request */
2413 u32 tail;
2414
2415 /** Preallocate space in the ringbuffer for the emitting the request */
2416 u32 reserved_space;
2417
2418 /**
2419 * Context and ring buffer related to this request
2420 * Contexts are refcounted, so when this request is associated with a
2421 * context, we must increment the context's refcount, to guarantee that
2422 * it persists while any request is linked to it. Requests themselves
2423 * are also refcounted, so the request will only be freed when the last
2424 * reference to it is dismissed, and the code in
2425 * i915_gem_request_free() will then decrement the refcount on the
2426 * context.
2427 */
2428 struct i915_gem_context *ctx;
2429 struct intel_ringbuffer *ringbuf;
2430
2431 /**
2432 * Context related to the previous request.
2433 * As the contexts are accessed by the hardware until the switch is
2434 * completed to a new context, the hardware may still be writing
2435 * to the context object after the breadcrumb is visible. We must
2436 * not unpin/unbind/prune that object whilst still active and so
2437 * we keep the previous context pinned until the following (this)
2438 * request is retired.
2439 */
2440 struct i915_gem_context *previous_context;
2441
2442 /** Batch buffer related to this request if any (used for
2443 error state dump only) */
2444 struct drm_i915_gem_object *batch_obj;
2445
2446 /** Time at which this request was emitted, in jiffies. */
2447 unsigned long emitted_jiffies;
2448
2449 /** global list entry for this request */
2450 struct list_head list;
2451
2452 struct drm_i915_file_private *file_priv;
2453 /** file_priv list entry for this request */
2454 struct list_head client_list;
2455
2456 /** process identifier submitting this request */
2457 struct pid *pid;
2458
2459 /**
2460 * The ELSP only accepts two elements at a time, so we queue
2461 * context/tail pairs on a given queue (ring->execlist_queue) until the
2462 * hardware is available. The queue serves a double purpose: we also use
2463 * it to keep track of the up to 2 contexts currently in the hardware
2464 * (usually one in execution and the other queued up by the GPU): We
2465 * only remove elements from the head of the queue when the hardware
2466 * informs us that an element has been completed.
2467 *
2468 * All accesses to the queue are mediated by a spinlock
2469 * (ring->execlist_lock).
2470 */
2471
2472 /** Execlist link in the submission queue.*/
2473 struct list_head execlist_link;
2474
2475 /** Execlists no. of times this request has been sent to the ELSP */
2476 int elsp_submitted;
2477
2478 /** Execlists context hardware id. */
2479 unsigned ctx_hw_id;
2480 };
2481
2482 struct drm_i915_gem_request * __must_check
2483 i915_gem_request_alloc(struct intel_engine_cs *engine,
2484 struct i915_gem_context *ctx);
2485 void i915_gem_request_free(struct kref *req_ref);
2486 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2487 struct drm_file *file);
2488
2489 static inline uint32_t
2490 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2491 {
2492 return req ? req->seqno : 0;
2493 }
2494
2495 static inline struct intel_engine_cs *
2496 i915_gem_request_get_engine(struct drm_i915_gem_request *req)
2497 {
2498 return req ? req->engine : NULL;
2499 }
2500
2501 static inline struct drm_i915_gem_request *
2502 i915_gem_request_reference(struct drm_i915_gem_request *req)
2503 {
2504 if (req)
2505 kref_get(&req->ref);
2506 return req;
2507 }
2508
2509 static inline void
2510 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2511 {
2512 kref_put(&req->ref, i915_gem_request_free);
2513 }
2514
2515 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2516 struct drm_i915_gem_request *src)
2517 {
2518 if (src)
2519 i915_gem_request_reference(src);
2520
2521 if (*pdst)
2522 i915_gem_request_unreference(*pdst);
2523
2524 *pdst = src;
2525 }
2526
2527 /*
2528 * XXX: i915_gem_request_completed should be here but currently needs the
2529 * definition of i915_seqno_passed() which is below. It will be moved in
2530 * a later patch when the call to i915_seqno_passed() is obsoleted...
2531 */
2532
2533 /*
2534 * A command that requires special handling by the command parser.
2535 */
2536 struct drm_i915_cmd_descriptor {
2537 /*
2538 * Flags describing how the command parser processes the command.
2539 *
2540 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2541 * a length mask if not set
2542 * CMD_DESC_SKIP: The command is allowed but does not follow the
2543 * standard length encoding for the opcode range in
2544 * which it falls
2545 * CMD_DESC_REJECT: The command is never allowed
2546 * CMD_DESC_REGISTER: The command should be checked against the
2547 * register whitelist for the appropriate ring
2548 * CMD_DESC_MASTER: The command is allowed if the submitting process
2549 * is the DRM master
2550 */
2551 u32 flags;
2552 #define CMD_DESC_FIXED (1<<0)
2553 #define CMD_DESC_SKIP (1<<1)
2554 #define CMD_DESC_REJECT (1<<2)
2555 #define CMD_DESC_REGISTER (1<<3)
2556 #define CMD_DESC_BITMASK (1<<4)
2557 #define CMD_DESC_MASTER (1<<5)
2558
2559 /*
2560 * The command's unique identification bits and the bitmask to get them.
2561 * This isn't strictly the opcode field as defined in the spec and may
2562 * also include type, subtype, and/or subop fields.
2563 */
2564 struct {
2565 u32 value;
2566 u32 mask;
2567 } cmd;
2568
2569 /*
2570 * The command's length. The command is either fixed length (i.e. does
2571 * not include a length field) or has a length field mask. The flag
2572 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2573 * a length mask. All command entries in a command table must include
2574 * length information.
2575 */
2576 union {
2577 u32 fixed;
2578 u32 mask;
2579 } length;
2580
2581 /*
2582 * Describes where to find a register address in the command to check
2583 * against the ring's register whitelist. Only valid if flags has the
2584 * CMD_DESC_REGISTER bit set.
2585 *
2586 * A non-zero step value implies that the command may access multiple
2587 * registers in sequence (e.g. LRI), in that case step gives the
2588 * distance in dwords between individual offset fields.
2589 */
2590 struct {
2591 u32 offset;
2592 u32 mask;
2593 u32 step;
2594 } reg;
2595
2596 #define MAX_CMD_DESC_BITMASKS 3
2597 /*
2598 * Describes command checks where a particular dword is masked and
2599 * compared against an expected value. If the command does not match
2600 * the expected value, the parser rejects it. Only valid if flags has
2601 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2602 * are valid.
2603 *
2604 * If the check specifies a non-zero condition_mask then the parser
2605 * only performs the check when the bits specified by condition_mask
2606 * are non-zero.
2607 */
2608 struct {
2609 u32 offset;
2610 u32 mask;
2611 u32 expected;
2612 u32 condition_offset;
2613 u32 condition_mask;
2614 } bits[MAX_CMD_DESC_BITMASKS];
2615 };
2616
2617 /*
2618 * A table of commands requiring special handling by the command parser.
2619 *
2620 * Each ring has an array of tables. Each table consists of an array of command
2621 * descriptors, which must be sorted with command opcodes in ascending order.
2622 */
2623 struct drm_i915_cmd_table {
2624 const struct drm_i915_cmd_descriptor *table;
2625 int count;
2626 };
2627
2628 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2629 #define __I915__(p) ({ \
2630 struct drm_i915_private *__p; \
2631 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2632 __p = (struct drm_i915_private *)p; \
2633 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2634 __p = to_i915((struct drm_device *)p); \
2635 else \
2636 BUILD_BUG(); \
2637 __p; \
2638 })
2639 #define INTEL_INFO(p) (&__I915__(p)->info)
2640 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2641 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2642
2643 #define REVID_FOREVER 0xff
2644 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2645
2646 #define GEN_FOREVER (0)
2647 /*
2648 * Returns true if Gen is in inclusive range [Start, End].
2649 *
2650 * Use GEN_FOREVER for unbound start and or end.
2651 */
2652 #define IS_GEN(p, s, e) ({ \
2653 unsigned int __s = (s), __e = (e); \
2654 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2655 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2656 if ((__s) != GEN_FOREVER) \
2657 __s = (s) - 1; \
2658 if ((__e) == GEN_FOREVER) \
2659 __e = BITS_PER_LONG - 1; \
2660 else \
2661 __e = (e) - 1; \
2662 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2663 })
2664
2665 /*
2666 * Return true if revision is in range [since,until] inclusive.
2667 *
2668 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2669 */
2670 #define IS_REVID(p, since, until) \
2671 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2672
2673 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2674 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2675 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2676 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2677 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2678 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2679 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2680 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2681 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2682 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2683 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2684 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2685 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2686 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2687 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2688 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2689 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2690 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2691 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2692 INTEL_DEVID(dev) == 0x0152 || \
2693 INTEL_DEVID(dev) == 0x015a)
2694 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2695 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2696 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2697 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2698 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2699 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2700 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2701 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2702 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2703 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2704 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2705 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2706 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2707 (INTEL_DEVID(dev) & 0xf) == 0xe))
2708 /* ULX machines are also considered ULT. */
2709 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2710 (INTEL_DEVID(dev) & 0xf) == 0xe)
2711 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2712 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2713 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2714 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2715 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2716 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2717 /* ULX machines are also considered ULT. */
2718 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2719 INTEL_DEVID(dev) == 0x0A1E)
2720 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2721 INTEL_DEVID(dev) == 0x1913 || \
2722 INTEL_DEVID(dev) == 0x1916 || \
2723 INTEL_DEVID(dev) == 0x1921 || \
2724 INTEL_DEVID(dev) == 0x1926)
2725 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2726 INTEL_DEVID(dev) == 0x1915 || \
2727 INTEL_DEVID(dev) == 0x191E)
2728 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2729 INTEL_DEVID(dev) == 0x5913 || \
2730 INTEL_DEVID(dev) == 0x5916 || \
2731 INTEL_DEVID(dev) == 0x5921 || \
2732 INTEL_DEVID(dev) == 0x5926)
2733 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2734 INTEL_DEVID(dev) == 0x5915 || \
2735 INTEL_DEVID(dev) == 0x591E)
2736 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2737 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2738 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2739 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2740
2741 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2742
2743 #define SKL_REVID_A0 0x0
2744 #define SKL_REVID_B0 0x1
2745 #define SKL_REVID_C0 0x2
2746 #define SKL_REVID_D0 0x3
2747 #define SKL_REVID_E0 0x4
2748 #define SKL_REVID_F0 0x5
2749 #define SKL_REVID_G0 0x6
2750 #define SKL_REVID_H0 0x7
2751
2752 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2753
2754 #define BXT_REVID_A0 0x0
2755 #define BXT_REVID_A1 0x1
2756 #define BXT_REVID_B0 0x3
2757 #define BXT_REVID_C0 0x9
2758
2759 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2760
2761 #define KBL_REVID_A0 0x0
2762 #define KBL_REVID_B0 0x1
2763 #define KBL_REVID_C0 0x2
2764 #define KBL_REVID_D0 0x3
2765 #define KBL_REVID_E0 0x4
2766
2767 #define IS_KBL_REVID(p, since, until) \
2768 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2769
2770 /*
2771 * The genX designation typically refers to the render engine, so render
2772 * capability related checks should use IS_GEN, while display and other checks
2773 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2774 * chips, etc.).
2775 */
2776 #define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1)))
2777 #define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2)))
2778 #define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3)))
2779 #define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4)))
2780 #define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5)))
2781 #define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6)))
2782 #define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7)))
2783 #define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8)))
2784
2785 #define ENGINE_MASK(id) BIT(id)
2786 #define RENDER_RING ENGINE_MASK(RCS)
2787 #define BSD_RING ENGINE_MASK(VCS)
2788 #define BLT_RING ENGINE_MASK(BCS)
2789 #define VEBOX_RING ENGINE_MASK(VECS)
2790 #define BSD2_RING ENGINE_MASK(VCS2)
2791 #define ALL_ENGINES (~0)
2792
2793 #define HAS_ENGINE(dev_priv, id) \
2794 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2795
2796 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2797 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2798 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2799 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2800
2801 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2802 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2803 #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2804 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2805 HAS_EDRAM(dev))
2806 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2807
2808 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2809 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2810 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2811 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2812 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2813
2814 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2815 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2816
2817 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2818 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2819
2820 /* WaRsDisableCoarsePowerGating:skl,bxt */
2821 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2822 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2823 IS_SKL_GT3(dev_priv) || \
2824 IS_SKL_GT4(dev_priv))
2825
2826 /*
2827 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2828 * even when in MSI mode. This results in spurious interrupt warnings if the
2829 * legacy irq no. is shared with another device. The kernel then disables that
2830 * interrupt source and so prevents the other device from working properly.
2831 */
2832 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2833 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2834
2835 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2836 * rows, which changed the alignment requirements and fence programming.
2837 */
2838 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2839 IS_I915GM(dev)))
2840 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2841 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2842
2843 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2844 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2845 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2846
2847 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2848
2849 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2850 INTEL_INFO(dev)->gen >= 9)
2851
2852 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2853 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2854 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2855 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2856 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2857 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2858 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2859 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2860 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2861 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2862 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2863
2864 #define HAS_CSR(dev) (IS_GEN9(dev))
2865
2866 /*
2867 * For now, anything with a GuC requires uCode loading, and then supports
2868 * command submission once loaded. But these are logically independent
2869 * properties, so we have separate macros to test them.
2870 */
2871 #define HAS_GUC(dev) (IS_GEN9(dev))
2872 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2873 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2874
2875 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2876 INTEL_INFO(dev)->gen >= 8)
2877
2878 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2879 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2880 !IS_BROXTON(dev))
2881
2882 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2883
2884 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2885 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2886 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2887 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2888 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2889 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2890 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2891 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2892 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2893 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2894 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2895 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2896
2897 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2898 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
2899 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2900 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2901 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2902 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2903 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2904 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2905 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2906 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2907
2908 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2909 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2910
2911 /* DPF == dynamic parity feature */
2912 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2913 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2914
2915 #define GT_FREQUENCY_MULTIPLIER 50
2916 #define GEN9_FREQ_SCALER 3
2917
2918 #include "i915_trace.h"
2919
2920 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2921 {
2922 #ifdef CONFIG_INTEL_IOMMU
2923 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2924 return true;
2925 #endif
2926 return false;
2927 }
2928
2929 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2930 extern int i915_resume_switcheroo(struct drm_device *dev);
2931
2932 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2933 int enable_ppgtt);
2934
2935 /* i915_drv.c */
2936 void __printf(3, 4)
2937 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2938 const char *fmt, ...);
2939
2940 #define i915_report_error(dev_priv, fmt, ...) \
2941 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2942
2943 #ifdef CONFIG_COMPAT
2944 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2945 unsigned long arg);
2946 #endif
2947 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2948 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2949 extern int i915_reset(struct drm_i915_private *dev_priv);
2950 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2951 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2952 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2953 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2954 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2955 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2956 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2957
2958 /* intel_hotplug.c */
2959 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2960 u32 pin_mask, u32 long_mask);
2961 void intel_hpd_init(struct drm_i915_private *dev_priv);
2962 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2963 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2964 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2965 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2966 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2967
2968 /* i915_irq.c */
2969 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2970 {
2971 unsigned long delay;
2972
2973 if (unlikely(!i915.enable_hangcheck))
2974 return;
2975
2976 /* Don't continually defer the hangcheck so that it is always run at
2977 * least once after work has been scheduled on any ring. Otherwise,
2978 * we will ignore a hung ring if a second ring is kept busy.
2979 */
2980
2981 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2982 queue_delayed_work(system_long_wq,
2983 &dev_priv->gpu_error.hangcheck_work, delay);
2984 }
2985
2986 __printf(3, 4)
2987 void i915_handle_error(struct drm_i915_private *dev_priv,
2988 u32 engine_mask,
2989 const char *fmt, ...);
2990
2991 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2992 int intel_irq_install(struct drm_i915_private *dev_priv);
2993 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2994
2995 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2996 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2997 bool restore_forcewake);
2998 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2999 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
3000 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
3001 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
3002 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
3003 bool restore);
3004 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
3005 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
3006 enum forcewake_domains domains);
3007 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
3008 enum forcewake_domains domains);
3009 /* Like above but the caller must manage the uncore.lock itself.
3010 * Must be used with I915_READ_FW and friends.
3011 */
3012 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
3013 enum forcewake_domains domains);
3014 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
3015 enum forcewake_domains domains);
3016 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
3017
3018 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
3019
3020 int intel_wait_for_register(struct drm_i915_private *dev_priv,
3021 i915_reg_t reg,
3022 const u32 mask,
3023 const u32 value,
3024 const unsigned long timeout_ms);
3025 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
3026 i915_reg_t reg,
3027 const u32 mask,
3028 const u32 value,
3029 const unsigned long timeout_ms);
3030
3031 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3032 {
3033 return dev_priv->gvt.initialized;
3034 }
3035
3036 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3037 {
3038 return dev_priv->vgpu.active;
3039 }
3040
3041 void
3042 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3043 u32 status_mask);
3044
3045 void
3046 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3047 u32 status_mask);
3048
3049 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3050 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3051 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3052 uint32_t mask,
3053 uint32_t bits);
3054 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3055 uint32_t interrupt_mask,
3056 uint32_t enabled_irq_mask);
3057 static inline void
3058 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3059 {
3060 ilk_update_display_irq(dev_priv, bits, bits);
3061 }
3062 static inline void
3063 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3064 {
3065 ilk_update_display_irq(dev_priv, bits, 0);
3066 }
3067 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3068 enum pipe pipe,
3069 uint32_t interrupt_mask,
3070 uint32_t enabled_irq_mask);
3071 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3072 enum pipe pipe, uint32_t bits)
3073 {
3074 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3075 }
3076 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3077 enum pipe pipe, uint32_t bits)
3078 {
3079 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3080 }
3081 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3082 uint32_t interrupt_mask,
3083 uint32_t enabled_irq_mask);
3084 static inline void
3085 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3086 {
3087 ibx_display_interrupt_update(dev_priv, bits, bits);
3088 }
3089 static inline void
3090 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3091 {
3092 ibx_display_interrupt_update(dev_priv, bits, 0);
3093 }
3094
3095 /* i915_gem.c */
3096 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3097 struct drm_file *file_priv);
3098 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3099 struct drm_file *file_priv);
3100 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3101 struct drm_file *file_priv);
3102 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3103 struct drm_file *file_priv);
3104 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3105 struct drm_file *file_priv);
3106 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3107 struct drm_file *file_priv);
3108 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3109 struct drm_file *file_priv);
3110 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
3111 struct drm_i915_gem_request *req);
3112 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
3113 struct drm_i915_gem_execbuffer2 *args,
3114 struct list_head *vmas);
3115 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3116 struct drm_file *file_priv);
3117 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3118 struct drm_file *file_priv);
3119 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3120 struct drm_file *file_priv);
3121 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3122 struct drm_file *file);
3123 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3124 struct drm_file *file);
3125 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3126 struct drm_file *file_priv);
3127 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3128 struct drm_file *file_priv);
3129 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3130 struct drm_file *file_priv);
3131 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3132 struct drm_file *file_priv);
3133 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3134 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3135 struct drm_file *file);
3136 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3137 struct drm_file *file_priv);
3138 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3139 struct drm_file *file_priv);
3140 void i915_gem_load_init(struct drm_device *dev);
3141 void i915_gem_load_cleanup(struct drm_device *dev);
3142 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3143 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3144
3145 void *i915_gem_object_alloc(struct drm_device *dev);
3146 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3147 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3148 const struct drm_i915_gem_object_ops *ops);
3149 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3150 size_t size);
3151 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3152 struct drm_device *dev, const void *data, size_t size);
3153 void i915_gem_free_object(struct drm_gem_object *obj);
3154 void i915_gem_vma_destroy(struct i915_vma *vma);
3155
3156 /* Flags used by pin/bind&friends. */
3157 #define PIN_MAPPABLE (1<<0)
3158 #define PIN_NONBLOCK (1<<1)
3159 #define PIN_GLOBAL (1<<2)
3160 #define PIN_OFFSET_BIAS (1<<3)
3161 #define PIN_USER (1<<4)
3162 #define PIN_UPDATE (1<<5)
3163 #define PIN_ZONE_4G (1<<6)
3164 #define PIN_HIGH (1<<7)
3165 #define PIN_OFFSET_FIXED (1<<8)
3166 #define PIN_OFFSET_MASK (~4095)
3167 int __must_check
3168 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3169 struct i915_address_space *vm,
3170 uint32_t alignment,
3171 uint64_t flags);
3172 int __must_check
3173 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3174 const struct i915_ggtt_view *view,
3175 uint32_t alignment,
3176 uint64_t flags);
3177
3178 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3179 u32 flags);
3180 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3181 int __must_check i915_vma_unbind(struct i915_vma *vma);
3182 /*
3183 * BEWARE: Do not use the function below unless you can _absolutely_
3184 * _guarantee_ VMA in question is _not in use_ anywhere.
3185 */
3186 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
3187 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3188 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3189 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3190
3191 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3192 int *needs_clflush);
3193
3194 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3195
3196 static inline int __sg_page_count(struct scatterlist *sg)
3197 {
3198 return sg->length >> PAGE_SHIFT;
3199 }
3200
3201 struct page *
3202 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3203
3204 static inline dma_addr_t
3205 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3206 {
3207 if (n < obj->get_page.last) {
3208 obj->get_page.sg = obj->pages->sgl;
3209 obj->get_page.last = 0;
3210 }
3211
3212 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3213 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3214 if (unlikely(sg_is_chain(obj->get_page.sg)))
3215 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3216 }
3217
3218 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3219 }
3220
3221 static inline struct page *
3222 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3223 {
3224 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3225 return NULL;
3226
3227 if (n < obj->get_page.last) {
3228 obj->get_page.sg = obj->pages->sgl;
3229 obj->get_page.last = 0;
3230 }
3231
3232 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3233 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3234 if (unlikely(sg_is_chain(obj->get_page.sg)))
3235 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3236 }
3237
3238 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3239 }
3240
3241 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3242 {
3243 BUG_ON(obj->pages == NULL);
3244 obj->pages_pin_count++;
3245 }
3246
3247 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3248 {
3249 BUG_ON(obj->pages_pin_count == 0);
3250 obj->pages_pin_count--;
3251 }
3252
3253 /**
3254 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3255 * @obj - the object to map into kernel address space
3256 *
3257 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3258 * pages and then returns a contiguous mapping of the backing storage into
3259 * the kernel address space.
3260 *
3261 * The caller must hold the struct_mutex, and is responsible for calling
3262 * i915_gem_object_unpin_map() when the mapping is no longer required.
3263 *
3264 * Returns the pointer through which to access the mapped object, or an
3265 * ERR_PTR() on error.
3266 */
3267 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
3268
3269 /**
3270 * i915_gem_object_unpin_map - releases an earlier mapping
3271 * @obj - the object to unmap
3272 *
3273 * After pinning the object and mapping its pages, once you are finished
3274 * with your access, call i915_gem_object_unpin_map() to release the pin
3275 * upon the mapping. Once the pin count reaches zero, that mapping may be
3276 * removed.
3277 *
3278 * The caller must hold the struct_mutex.
3279 */
3280 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3281 {
3282 lockdep_assert_held(&obj->base.dev->struct_mutex);
3283 i915_gem_object_unpin_pages(obj);
3284 }
3285
3286 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3287 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3288 struct intel_engine_cs *to,
3289 struct drm_i915_gem_request **to_req);
3290 void i915_vma_move_to_active(struct i915_vma *vma,
3291 struct drm_i915_gem_request *req);
3292 int i915_gem_dumb_create(struct drm_file *file_priv,
3293 struct drm_device *dev,
3294 struct drm_mode_create_dumb *args);
3295 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3296 uint32_t handle, uint64_t *offset);
3297
3298 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3299 struct drm_i915_gem_object *new,
3300 unsigned frontbuffer_bits);
3301
3302 /**
3303 * Returns true if seq1 is later than seq2.
3304 */
3305 static inline bool
3306 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
3307 {
3308 return (int32_t)(seq1 - seq2) >= 0;
3309 }
3310
3311 static inline bool i915_gem_request_started(const struct drm_i915_gem_request *req)
3312 {
3313 return i915_seqno_passed(intel_engine_get_seqno(req->engine),
3314 req->previous_seqno);
3315 }
3316
3317 static inline bool i915_gem_request_completed(const struct drm_i915_gem_request *req)
3318 {
3319 return i915_seqno_passed(intel_engine_get_seqno(req->engine),
3320 req->seqno);
3321 }
3322
3323 bool __i915_spin_request(const struct drm_i915_gem_request *request,
3324 int state, unsigned long timeout_us);
3325 static inline bool i915_spin_request(const struct drm_i915_gem_request *request,
3326 int state, unsigned long timeout_us)
3327 {
3328 return (i915_gem_request_started(request) &&
3329 __i915_spin_request(request, state, timeout_us));
3330 }
3331
3332 int __must_check i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno);
3333 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3334
3335 struct drm_i915_gem_request *
3336 i915_gem_find_active_request(struct intel_engine_cs *engine);
3337
3338 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3339 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
3340
3341 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3342 {
3343 return atomic_read(&error->reset_counter);
3344 }
3345
3346 static inline bool __i915_reset_in_progress(u32 reset)
3347 {
3348 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3349 }
3350
3351 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3352 {
3353 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3354 }
3355
3356 static inline bool __i915_terminally_wedged(u32 reset)
3357 {
3358 return unlikely(reset & I915_WEDGED);
3359 }
3360
3361 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3362 {
3363 return __i915_reset_in_progress(i915_reset_counter(error));
3364 }
3365
3366 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3367 {
3368 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3369 }
3370
3371 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3372 {
3373 return __i915_terminally_wedged(i915_reset_counter(error));
3374 }
3375
3376 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3377 {
3378 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3379 }
3380
3381 void i915_gem_reset(struct drm_device *dev);
3382 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3383 int __must_check i915_gem_init(struct drm_device *dev);
3384 int i915_gem_init_engines(struct drm_device *dev);
3385 int __must_check i915_gem_init_hw(struct drm_device *dev);
3386 void i915_gem_init_swizzling(struct drm_device *dev);
3387 void i915_gem_cleanup_engines(struct drm_device *dev);
3388 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv);
3389 int __must_check i915_gem_suspend(struct drm_device *dev);
3390 void __i915_add_request(struct drm_i915_gem_request *req,
3391 struct drm_i915_gem_object *batch_obj,
3392 bool flush_caches);
3393 #define i915_add_request(req) \
3394 __i915_add_request(req, NULL, true)
3395 #define i915_add_request_no_flush(req) \
3396 __i915_add_request(req, NULL, false)
3397 int __i915_wait_request(struct drm_i915_gem_request *req,
3398 bool interruptible,
3399 s64 *timeout,
3400 struct intel_rps_client *rps);
3401 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
3402 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3403 int __must_check
3404 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3405 bool readonly);
3406 int __must_check
3407 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3408 bool write);
3409 int __must_check
3410 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3411 int __must_check
3412 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3413 u32 alignment,
3414 const struct i915_ggtt_view *view);
3415 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3416 const struct i915_ggtt_view *view);
3417 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3418 int align);
3419 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3420 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3421
3422 uint32_t
3423 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3424 uint32_t
3425 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3426 int tiling_mode, bool fenced);
3427
3428 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3429 enum i915_cache_level cache_level);
3430
3431 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3432 struct dma_buf *dma_buf);
3433
3434 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3435 struct drm_gem_object *gem_obj, int flags);
3436
3437 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3438 const struct i915_ggtt_view *view);
3439 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3440 struct i915_address_space *vm);
3441 static inline u64
3442 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3443 {
3444 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3445 }
3446
3447 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3448 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3449 const struct i915_ggtt_view *view);
3450 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3451 struct i915_address_space *vm);
3452
3453 struct i915_vma *
3454 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3455 struct i915_address_space *vm);
3456 struct i915_vma *
3457 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3458 const struct i915_ggtt_view *view);
3459
3460 struct i915_vma *
3461 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3462 struct i915_address_space *vm);
3463 struct i915_vma *
3464 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3465 const struct i915_ggtt_view *view);
3466
3467 static inline struct i915_vma *
3468 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3469 {
3470 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3471 }
3472 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3473
3474 /* Some GGTT VM helpers */
3475 static inline struct i915_hw_ppgtt *
3476 i915_vm_to_ppgtt(struct i915_address_space *vm)
3477 {
3478 return container_of(vm, struct i915_hw_ppgtt, base);
3479 }
3480
3481
3482 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3483 {
3484 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3485 }
3486
3487 unsigned long
3488 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj);
3489
3490 static inline int __must_check
3491 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3492 uint32_t alignment,
3493 unsigned flags)
3494 {
3495 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3496 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3497
3498 return i915_gem_object_pin(obj, &ggtt->base,
3499 alignment, flags | PIN_GLOBAL);
3500 }
3501
3502 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3503 const struct i915_ggtt_view *view);
3504 static inline void
3505 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3506 {
3507 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3508 }
3509
3510 /* i915_gem_fence.c */
3511 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3512 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3513
3514 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3515 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3516
3517 void i915_gem_restore_fences(struct drm_device *dev);
3518
3519 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3520 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3521 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3522
3523 /* i915_gem_context.c */
3524 int __must_check i915_gem_context_init(struct drm_device *dev);
3525 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3526 void i915_gem_context_fini(struct drm_device *dev);
3527 void i915_gem_context_reset(struct drm_device *dev);
3528 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3529 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3530 int i915_switch_context(struct drm_i915_gem_request *req);
3531 void i915_gem_context_free(struct kref *ctx_ref);
3532 struct drm_i915_gem_object *
3533 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3534 struct i915_gem_context *
3535 i915_gem_context_create_gvt(struct drm_device *dev);
3536
3537 static inline struct i915_gem_context *
3538 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3539 {
3540 struct i915_gem_context *ctx;
3541
3542 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3543
3544 ctx = idr_find(&file_priv->context_idr, id);
3545 if (!ctx)
3546 return ERR_PTR(-ENOENT);
3547
3548 return ctx;
3549 }
3550
3551 static inline void i915_gem_context_reference(struct i915_gem_context *ctx)
3552 {
3553 kref_get(&ctx->ref);
3554 }
3555
3556 static inline void i915_gem_context_unreference(struct i915_gem_context *ctx)
3557 {
3558 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3559 kref_put(&ctx->ref, i915_gem_context_free);
3560 }
3561
3562 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3563 {
3564 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3565 }
3566
3567 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3568 struct drm_file *file);
3569 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3570 struct drm_file *file);
3571 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3572 struct drm_file *file_priv);
3573 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3574 struct drm_file *file_priv);
3575 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3576 struct drm_file *file);
3577
3578 /* i915_gem_evict.c */
3579 int __must_check i915_gem_evict_something(struct drm_device *dev,
3580 struct i915_address_space *vm,
3581 int min_size,
3582 unsigned alignment,
3583 unsigned cache_level,
3584 unsigned long start,
3585 unsigned long end,
3586 unsigned flags);
3587 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3588 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3589
3590 /* belongs in i915_gem_gtt.h */
3591 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3592 {
3593 if (INTEL_GEN(dev_priv) < 6)
3594 intel_gtt_chipset_flush();
3595 }
3596
3597 /* i915_gem_stolen.c */
3598 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3599 struct drm_mm_node *node, u64 size,
3600 unsigned alignment);
3601 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3602 struct drm_mm_node *node, u64 size,
3603 unsigned alignment, u64 start,
3604 u64 end);
3605 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3606 struct drm_mm_node *node);
3607 int i915_gem_init_stolen(struct drm_device *dev);
3608 void i915_gem_cleanup_stolen(struct drm_device *dev);
3609 struct drm_i915_gem_object *
3610 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3611 struct drm_i915_gem_object *
3612 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3613 u32 stolen_offset,
3614 u32 gtt_offset,
3615 u32 size);
3616
3617 /* i915_gem_shrinker.c */
3618 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3619 unsigned long target,
3620 unsigned flags);
3621 #define I915_SHRINK_PURGEABLE 0x1
3622 #define I915_SHRINK_UNBOUND 0x2
3623 #define I915_SHRINK_BOUND 0x4
3624 #define I915_SHRINK_ACTIVE 0x8
3625 #define I915_SHRINK_VMAPS 0x10
3626 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3627 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3628 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3629
3630
3631 /* i915_gem_tiling.c */
3632 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3633 {
3634 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3635
3636 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3637 obj->tiling_mode != I915_TILING_NONE;
3638 }
3639
3640 /* i915_gem_debug.c */
3641 #if WATCH_LISTS
3642 int i915_verify_lists(struct drm_device *dev);
3643 #else
3644 #define i915_verify_lists(dev) 0
3645 #endif
3646
3647 /* i915_debugfs.c */
3648 #ifdef CONFIG_DEBUG_FS
3649 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3650 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3651 int i915_debugfs_connector_add(struct drm_connector *connector);
3652 void intel_display_crc_init(struct drm_device *dev);
3653 #else
3654 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3655 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3656 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3657 { return 0; }
3658 static inline void intel_display_crc_init(struct drm_device *dev) {}
3659 #endif
3660
3661 /* i915_gpu_error.c */
3662 __printf(2, 3)
3663 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3664 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3665 const struct i915_error_state_file_priv *error);
3666 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3667 struct drm_i915_private *i915,
3668 size_t count, loff_t pos);
3669 static inline void i915_error_state_buf_release(
3670 struct drm_i915_error_state_buf *eb)
3671 {
3672 kfree(eb->buf);
3673 }
3674 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3675 u32 engine_mask,
3676 const char *error_msg);
3677 void i915_error_state_get(struct drm_device *dev,
3678 struct i915_error_state_file_priv *error_priv);
3679 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3680 void i915_destroy_error_state(struct drm_device *dev);
3681
3682 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3683 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3684
3685 /* i915_cmd_parser.c */
3686 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3687 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine);
3688 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine);
3689 bool i915_needs_cmd_parser(struct intel_engine_cs *engine);
3690 int i915_parse_cmds(struct intel_engine_cs *engine,
3691 struct drm_i915_gem_object *batch_obj,
3692 struct drm_i915_gem_object *shadow_batch_obj,
3693 u32 batch_start_offset,
3694 u32 batch_len,
3695 bool is_master);
3696
3697 /* i915_suspend.c */
3698 extern int i915_save_state(struct drm_device *dev);
3699 extern int i915_restore_state(struct drm_device *dev);
3700
3701 /* i915_sysfs.c */
3702 void i915_setup_sysfs(struct drm_device *dev_priv);
3703 void i915_teardown_sysfs(struct drm_device *dev_priv);
3704
3705 /* intel_i2c.c */
3706 extern int intel_setup_gmbus(struct drm_device *dev);
3707 extern void intel_teardown_gmbus(struct drm_device *dev);
3708 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3709 unsigned int pin);
3710
3711 extern struct i2c_adapter *
3712 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3713 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3714 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3715 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3716 {
3717 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3718 }
3719 extern void intel_i2c_reset(struct drm_device *dev);
3720
3721 /* intel_bios.c */
3722 int intel_bios_init(struct drm_i915_private *dev_priv);
3723 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3724 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3725 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3726 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3727 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3728 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3729 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3730 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3731 enum port port);
3732
3733 /* intel_opregion.c */
3734 #ifdef CONFIG_ACPI
3735 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3736 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3737 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3738 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3739 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3740 bool enable);
3741 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3742 pci_power_t state);
3743 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3744 #else
3745 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3746 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3747 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3748 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3749 {
3750 }
3751 static inline int
3752 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3753 {
3754 return 0;
3755 }
3756 static inline int
3757 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3758 {
3759 return 0;
3760 }
3761 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3762 {
3763 return -ENODEV;
3764 }
3765 #endif
3766
3767 /* intel_acpi.c */
3768 #ifdef CONFIG_ACPI
3769 extern void intel_register_dsm_handler(void);
3770 extern void intel_unregister_dsm_handler(void);
3771 #else
3772 static inline void intel_register_dsm_handler(void) { return; }
3773 static inline void intel_unregister_dsm_handler(void) { return; }
3774 #endif /* CONFIG_ACPI */
3775
3776 /* intel_device_info.c */
3777 static inline struct intel_device_info *
3778 mkwrite_device_info(struct drm_i915_private *dev_priv)
3779 {
3780 return (struct intel_device_info *)&dev_priv->info;
3781 }
3782
3783 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3784 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3785
3786 /* modesetting */
3787 extern void intel_modeset_init_hw(struct drm_device *dev);
3788 extern void intel_modeset_init(struct drm_device *dev);
3789 extern void intel_modeset_gem_init(struct drm_device *dev);
3790 extern void intel_modeset_cleanup(struct drm_device *dev);
3791 extern int intel_connector_register(struct drm_connector *);
3792 extern void intel_connector_unregister(struct drm_connector *);
3793 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3794 extern void intel_display_resume(struct drm_device *dev);
3795 extern void i915_redisable_vga(struct drm_device *dev);
3796 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3797 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3798 extern void intel_init_pch_refclk(struct drm_device *dev);
3799 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3800 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3801 bool enable);
3802
3803 extern bool i915_semaphore_is_enabled(struct drm_i915_private *dev_priv);
3804 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3805 struct drm_file *file);
3806
3807 /* overlay */
3808 extern struct intel_overlay_error_state *
3809 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3810 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3811 struct intel_overlay_error_state *error);
3812
3813 extern struct intel_display_error_state *
3814 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3815 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3816 struct drm_device *dev,
3817 struct intel_display_error_state *error);
3818
3819 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3820 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3821
3822 /* intel_sideband.c */
3823 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3824 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3825 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3826 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3827 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3828 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3829 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3830 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3831 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3832 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3833 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3834 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3835 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3836 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3837 enum intel_sbi_destination destination);
3838 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3839 enum intel_sbi_destination destination);
3840 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3841 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3842
3843 /* intel_dpio_phy.c */
3844 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3845 u32 deemph_reg_value, u32 margin_reg_value,
3846 bool uniq_trans_scale);
3847 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3848 bool reset);
3849 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3850 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3851 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3852 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3853
3854 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3855 u32 demph_reg_value, u32 preemph_reg_value,
3856 u32 uniqtranscale_reg_value, u32 tx3_demph);
3857 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3858 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3859 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3860
3861 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3862 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3863
3864 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3865 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3866
3867 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3868 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3869 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3870 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3871
3872 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3873 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3874 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3875 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3876
3877 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3878 * will be implemented using 2 32-bit writes in an arbitrary order with
3879 * an arbitrary delay between them. This can cause the hardware to
3880 * act upon the intermediate value, possibly leading to corruption and
3881 * machine death. You have been warned.
3882 */
3883 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3884 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3885
3886 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3887 u32 upper, lower, old_upper, loop = 0; \
3888 upper = I915_READ(upper_reg); \
3889 do { \
3890 old_upper = upper; \
3891 lower = I915_READ(lower_reg); \
3892 upper = I915_READ(upper_reg); \
3893 } while (upper != old_upper && loop++ < 2); \
3894 (u64)upper << 32 | lower; })
3895
3896 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3897 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3898
3899 #define __raw_read(x, s) \
3900 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3901 i915_reg_t reg) \
3902 { \
3903 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3904 }
3905
3906 #define __raw_write(x, s) \
3907 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3908 i915_reg_t reg, uint##x##_t val) \
3909 { \
3910 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3911 }
3912 __raw_read(8, b)
3913 __raw_read(16, w)
3914 __raw_read(32, l)
3915 __raw_read(64, q)
3916
3917 __raw_write(8, b)
3918 __raw_write(16, w)
3919 __raw_write(32, l)
3920 __raw_write(64, q)
3921
3922 #undef __raw_read
3923 #undef __raw_write
3924
3925 /* These are untraced mmio-accessors that are only valid to be used inside
3926 * criticial sections inside IRQ handlers where forcewake is explicitly
3927 * controlled.
3928 * Think twice, and think again, before using these.
3929 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3930 * intel_uncore_forcewake_irqunlock().
3931 */
3932 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3933 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3934 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3935 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3936
3937 /* "Broadcast RGB" property */
3938 #define INTEL_BROADCAST_RGB_AUTO 0
3939 #define INTEL_BROADCAST_RGB_FULL 1
3940 #define INTEL_BROADCAST_RGB_LIMITED 2
3941
3942 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3943 {
3944 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3945 return VLV_VGACNTRL;
3946 else if (INTEL_INFO(dev)->gen >= 5)
3947 return CPU_VGACNTRL;
3948 else
3949 return VGACNTRL;
3950 }
3951
3952 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3953 {
3954 unsigned long j = msecs_to_jiffies(m);
3955
3956 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3957 }
3958
3959 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3960 {
3961 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3962 }
3963
3964 static inline unsigned long
3965 timespec_to_jiffies_timeout(const struct timespec *value)
3966 {
3967 unsigned long j = timespec_to_jiffies(value);
3968
3969 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3970 }
3971
3972 /*
3973 * If you need to wait X milliseconds between events A and B, but event B
3974 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3975 * when event A happened, then just before event B you call this function and
3976 * pass the timestamp as the first argument, and X as the second argument.
3977 */
3978 static inline void
3979 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3980 {
3981 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3982
3983 /*
3984 * Don't re-read the value of "jiffies" every time since it may change
3985 * behind our back and break the math.
3986 */
3987 tmp_jiffies = jiffies;
3988 target_jiffies = timestamp_jiffies +
3989 msecs_to_jiffies_timeout(to_wait_ms);
3990
3991 if (time_after(target_jiffies, tmp_jiffies)) {
3992 remaining_jiffies = target_jiffies - tmp_jiffies;
3993 while (remaining_jiffies)
3994 remaining_jiffies =
3995 schedule_timeout_uninterruptible(remaining_jiffies);
3996 }
3997 }
3998 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req)
3999 {
4000 struct intel_engine_cs *engine = req->engine;
4001
4002 /* Before we do the heavier coherent read of the seqno,
4003 * check the value (hopefully) in the CPU cacheline.
4004 */
4005 if (i915_gem_request_completed(req))
4006 return true;
4007
4008 /* Ensure our read of the seqno is coherent so that we
4009 * do not "miss an interrupt" (i.e. if this is the last
4010 * request and the seqno write from the GPU is not visible
4011 * by the time the interrupt fires, we will see that the
4012 * request is incomplete and go back to sleep awaiting
4013 * another interrupt that will never come.)
4014 *
4015 * Strictly, we only need to do this once after an interrupt,
4016 * but it is easier and safer to do it every time the waiter
4017 * is woken.
4018 */
4019 if (engine->irq_seqno_barrier &&
4020 READ_ONCE(engine->breadcrumbs.irq_seqno_bh) == current &&
4021 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
4022 struct task_struct *tsk;
4023
4024 /* The ordering of irq_posted versus applying the barrier
4025 * is crucial. The clearing of the current irq_posted must
4026 * be visible before we perform the barrier operation,
4027 * such that if a subsequent interrupt arrives, irq_posted
4028 * is reasserted and our task rewoken (which causes us to
4029 * do another __i915_request_irq_complete() immediately
4030 * and reapply the barrier). Conversely, if the clear
4031 * occurs after the barrier, then an interrupt that arrived
4032 * whilst we waited on the barrier would not trigger a
4033 * barrier on the next pass, and the read may not see the
4034 * seqno update.
4035 */
4036 engine->irq_seqno_barrier(engine);
4037
4038 /* If we consume the irq, but we are no longer the bottom-half,
4039 * the real bottom-half may not have serialised their own
4040 * seqno check with the irq-barrier (i.e. may have inspected
4041 * the seqno before we believe it coherent since they see
4042 * irq_posted == false but we are still running).
4043 */
4044 rcu_read_lock();
4045 tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
4046 if (tsk && tsk != current)
4047 /* Note that if the bottom-half is changed as we
4048 * are sending the wake-up, the new bottom-half will
4049 * be woken by whomever made the change. We only have
4050 * to worry about when we steal the irq-posted for
4051 * ourself.
4052 */
4053 wake_up_process(tsk);
4054 rcu_read_unlock();
4055
4056 if (i915_gem_request_completed(req))
4057 return true;
4058 }
4059
4060 /* We need to check whether any gpu reset happened in between
4061 * the request being submitted and now. If a reset has occurred,
4062 * the seqno will have been advance past ours and our request
4063 * is complete. If we are in the process of handling a reset,
4064 * the request is effectively complete as the rendering will
4065 * be discarded, but we need to return in order to drop the
4066 * struct_mutex.
4067 */
4068 if (i915_reset_in_progress(&req->i915->gpu_error))
4069 return true;
4070
4071 return false;
4072 }
4073
4074 #endif
This page took 0.126461 seconds and 6 git commands to generate.