drm/i915: Remove misleading CSR firmware loading docs
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51
52 #include "i915_params.h"
53 #include "i915_reg.h"
54
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64 #include "i915_gem_request.h"
65
66 #include "intel_gvt.h"
67
68 /* General customization:
69 */
70
71 #define DRIVER_NAME "i915"
72 #define DRIVER_DESC "Intel Graphics"
73 #define DRIVER_DATE "20160711"
74
75 #undef WARN_ON
76 /* Many gcc seem to no see through this and fall over :( */
77 #if 0
78 #define WARN_ON(x) ({ \
79 bool __i915_warn_cond = (x); \
80 if (__builtin_constant_p(__i915_warn_cond)) \
81 BUILD_BUG_ON(__i915_warn_cond); \
82 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
83 #else
84 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
85 #endif
86
87 #undef WARN_ON_ONCE
88 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
89
90 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
91 (long) (x), __func__);
92
93 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
94 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
95 * which may not necessarily be a user visible problem. This will either
96 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
97 * enable distros and users to tailor their preferred amount of i915 abrt
98 * spam.
99 */
100 #define I915_STATE_WARN(condition, format...) ({ \
101 int __ret_warn_on = !!(condition); \
102 if (unlikely(__ret_warn_on)) \
103 if (!WARN(i915.verbose_state_checks, format)) \
104 DRM_ERROR(format); \
105 unlikely(__ret_warn_on); \
106 })
107
108 #define I915_STATE_WARN_ON(x) \
109 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
110
111 bool __i915_inject_load_failure(const char *func, int line);
112 #define i915_inject_load_failure() \
113 __i915_inject_load_failure(__func__, __LINE__)
114
115 static inline const char *yesno(bool v)
116 {
117 return v ? "yes" : "no";
118 }
119
120 static inline const char *onoff(bool v)
121 {
122 return v ? "on" : "off";
123 }
124
125 enum pipe {
126 INVALID_PIPE = -1,
127 PIPE_A = 0,
128 PIPE_B,
129 PIPE_C,
130 _PIPE_EDP,
131 I915_MAX_PIPES = _PIPE_EDP
132 };
133 #define pipe_name(p) ((p) + 'A')
134
135 enum transcoder {
136 TRANSCODER_A = 0,
137 TRANSCODER_B,
138 TRANSCODER_C,
139 TRANSCODER_EDP,
140 TRANSCODER_DSI_A,
141 TRANSCODER_DSI_C,
142 I915_MAX_TRANSCODERS
143 };
144
145 static inline const char *transcoder_name(enum transcoder transcoder)
146 {
147 switch (transcoder) {
148 case TRANSCODER_A:
149 return "A";
150 case TRANSCODER_B:
151 return "B";
152 case TRANSCODER_C:
153 return "C";
154 case TRANSCODER_EDP:
155 return "EDP";
156 case TRANSCODER_DSI_A:
157 return "DSI A";
158 case TRANSCODER_DSI_C:
159 return "DSI C";
160 default:
161 return "<invalid>";
162 }
163 }
164
165 static inline bool transcoder_is_dsi(enum transcoder transcoder)
166 {
167 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
168 }
169
170 /*
171 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
172 * number of planes per CRTC. Not all platforms really have this many planes,
173 * which means some arrays of size I915_MAX_PLANES may have unused entries
174 * between the topmost sprite plane and the cursor plane.
175 */
176 enum plane {
177 PLANE_A = 0,
178 PLANE_B,
179 PLANE_C,
180 PLANE_CURSOR,
181 I915_MAX_PLANES,
182 };
183 #define plane_name(p) ((p) + 'A')
184
185 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
186
187 enum port {
188 PORT_A = 0,
189 PORT_B,
190 PORT_C,
191 PORT_D,
192 PORT_E,
193 I915_MAX_PORTS
194 };
195 #define port_name(p) ((p) + 'A')
196
197 #define I915_NUM_PHYS_VLV 2
198
199 enum dpio_channel {
200 DPIO_CH0,
201 DPIO_CH1
202 };
203
204 enum dpio_phy {
205 DPIO_PHY0,
206 DPIO_PHY1
207 };
208
209 enum intel_display_power_domain {
210 POWER_DOMAIN_PIPE_A,
211 POWER_DOMAIN_PIPE_B,
212 POWER_DOMAIN_PIPE_C,
213 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
214 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
215 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
216 POWER_DOMAIN_TRANSCODER_A,
217 POWER_DOMAIN_TRANSCODER_B,
218 POWER_DOMAIN_TRANSCODER_C,
219 POWER_DOMAIN_TRANSCODER_EDP,
220 POWER_DOMAIN_TRANSCODER_DSI_A,
221 POWER_DOMAIN_TRANSCODER_DSI_C,
222 POWER_DOMAIN_PORT_DDI_A_LANES,
223 POWER_DOMAIN_PORT_DDI_B_LANES,
224 POWER_DOMAIN_PORT_DDI_C_LANES,
225 POWER_DOMAIN_PORT_DDI_D_LANES,
226 POWER_DOMAIN_PORT_DDI_E_LANES,
227 POWER_DOMAIN_PORT_DSI,
228 POWER_DOMAIN_PORT_CRT,
229 POWER_DOMAIN_PORT_OTHER,
230 POWER_DOMAIN_VGA,
231 POWER_DOMAIN_AUDIO,
232 POWER_DOMAIN_PLLS,
233 POWER_DOMAIN_AUX_A,
234 POWER_DOMAIN_AUX_B,
235 POWER_DOMAIN_AUX_C,
236 POWER_DOMAIN_AUX_D,
237 POWER_DOMAIN_GMBUS,
238 POWER_DOMAIN_MODESET,
239 POWER_DOMAIN_INIT,
240
241 POWER_DOMAIN_NUM,
242 };
243
244 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
245 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
246 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
247 #define POWER_DOMAIN_TRANSCODER(tran) \
248 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
249 (tran) + POWER_DOMAIN_TRANSCODER_A)
250
251 enum hpd_pin {
252 HPD_NONE = 0,
253 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
254 HPD_CRT,
255 HPD_SDVO_B,
256 HPD_SDVO_C,
257 HPD_PORT_A,
258 HPD_PORT_B,
259 HPD_PORT_C,
260 HPD_PORT_D,
261 HPD_PORT_E,
262 HPD_NUM_PINS
263 };
264
265 #define for_each_hpd_pin(__pin) \
266 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
267
268 struct i915_hotplug {
269 struct work_struct hotplug_work;
270
271 struct {
272 unsigned long last_jiffies;
273 int count;
274 enum {
275 HPD_ENABLED = 0,
276 HPD_DISABLED = 1,
277 HPD_MARK_DISABLED = 2
278 } state;
279 } stats[HPD_NUM_PINS];
280 u32 event_bits;
281 struct delayed_work reenable_work;
282
283 struct intel_digital_port *irq_port[I915_MAX_PORTS];
284 u32 long_port_mask;
285 u32 short_port_mask;
286 struct work_struct dig_port_work;
287
288 struct work_struct poll_init_work;
289 bool poll_enabled;
290
291 /*
292 * if we get a HPD irq from DP and a HPD irq from non-DP
293 * the non-DP HPD could block the workqueue on a mode config
294 * mutex getting, that userspace may have taken. However
295 * userspace is waiting on the DP workqueue to run which is
296 * blocked behind the non-DP one.
297 */
298 struct workqueue_struct *dp_wq;
299 };
300
301 #define I915_GEM_GPU_DOMAINS \
302 (I915_GEM_DOMAIN_RENDER | \
303 I915_GEM_DOMAIN_SAMPLER | \
304 I915_GEM_DOMAIN_COMMAND | \
305 I915_GEM_DOMAIN_INSTRUCTION | \
306 I915_GEM_DOMAIN_VERTEX)
307
308 #define for_each_pipe(__dev_priv, __p) \
309 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
310 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
311 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
312 for_each_if ((__mask) & (1 << (__p)))
313 #define for_each_plane(__dev_priv, __pipe, __p) \
314 for ((__p) = 0; \
315 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
316 (__p)++)
317 #define for_each_sprite(__dev_priv, __p, __s) \
318 for ((__s) = 0; \
319 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
320 (__s)++)
321
322 #define for_each_port_masked(__port, __ports_mask) \
323 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
324 for_each_if ((__ports_mask) & (1 << (__port)))
325
326 #define for_each_crtc(dev, crtc) \
327 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
328
329 #define for_each_intel_plane(dev, intel_plane) \
330 list_for_each_entry(intel_plane, \
331 &(dev)->mode_config.plane_list, \
332 base.head)
333
334 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
335 list_for_each_entry(intel_plane, \
336 &(dev)->mode_config.plane_list, \
337 base.head) \
338 for_each_if ((plane_mask) & \
339 (1 << drm_plane_index(&intel_plane->base)))
340
341 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
342 list_for_each_entry(intel_plane, \
343 &(dev)->mode_config.plane_list, \
344 base.head) \
345 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
346
347 #define for_each_intel_crtc(dev, intel_crtc) \
348 list_for_each_entry(intel_crtc, \
349 &(dev)->mode_config.crtc_list, \
350 base.head)
351
352 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
353 list_for_each_entry(intel_crtc, \
354 &(dev)->mode_config.crtc_list, \
355 base.head) \
356 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
357
358 #define for_each_intel_encoder(dev, intel_encoder) \
359 list_for_each_entry(intel_encoder, \
360 &(dev)->mode_config.encoder_list, \
361 base.head)
362
363 #define for_each_intel_connector(dev, intel_connector) \
364 list_for_each_entry(intel_connector, \
365 &(dev)->mode_config.connector_list, \
366 base.head)
367
368 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
369 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
370 for_each_if ((intel_encoder)->base.crtc == (__crtc))
371
372 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
373 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
374 for_each_if ((intel_connector)->base.encoder == (__encoder))
375
376 #define for_each_power_domain(domain, mask) \
377 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
378 for_each_if ((1 << (domain)) & (mask))
379
380 struct drm_i915_private;
381 struct i915_mm_struct;
382 struct i915_mmu_object;
383
384 struct drm_i915_file_private {
385 struct drm_i915_private *dev_priv;
386 struct drm_file *file;
387
388 struct {
389 spinlock_t lock;
390 struct list_head request_list;
391 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
392 * chosen to prevent the CPU getting more than a frame ahead of the GPU
393 * (when using lax throttling for the frontbuffer). We also use it to
394 * offer free GPU waitboosts for severely congested workloads.
395 */
396 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
397 } mm;
398 struct idr context_idr;
399
400 struct intel_rps_client {
401 struct list_head link;
402 unsigned boosts;
403 } rps;
404
405 unsigned int bsd_ring;
406 };
407
408 /* Used by dp and fdi links */
409 struct intel_link_m_n {
410 uint32_t tu;
411 uint32_t gmch_m;
412 uint32_t gmch_n;
413 uint32_t link_m;
414 uint32_t link_n;
415 };
416
417 void intel_link_compute_m_n(int bpp, int nlanes,
418 int pixel_clock, int link_clock,
419 struct intel_link_m_n *m_n);
420
421 /* Interface history:
422 *
423 * 1.1: Original.
424 * 1.2: Add Power Management
425 * 1.3: Add vblank support
426 * 1.4: Fix cmdbuffer path, add heap destroy
427 * 1.5: Add vblank pipe configuration
428 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
429 * - Support vertical blank on secondary display pipe
430 */
431 #define DRIVER_MAJOR 1
432 #define DRIVER_MINOR 6
433 #define DRIVER_PATCHLEVEL 0
434
435 #define WATCH_LISTS 0
436
437 struct opregion_header;
438 struct opregion_acpi;
439 struct opregion_swsci;
440 struct opregion_asle;
441
442 struct intel_opregion {
443 struct opregion_header *header;
444 struct opregion_acpi *acpi;
445 struct opregion_swsci *swsci;
446 u32 swsci_gbda_sub_functions;
447 u32 swsci_sbcb_sub_functions;
448 struct opregion_asle *asle;
449 void *rvda;
450 const void *vbt;
451 u32 vbt_size;
452 u32 *lid_state;
453 struct work_struct asle_work;
454 };
455 #define OPREGION_SIZE (8*1024)
456
457 struct intel_overlay;
458 struct intel_overlay_error_state;
459
460 #define I915_FENCE_REG_NONE -1
461 #define I915_MAX_NUM_FENCES 32
462 /* 32 fences + sign bit for FENCE_REG_NONE */
463 #define I915_MAX_NUM_FENCE_BITS 6
464
465 struct drm_i915_fence_reg {
466 struct list_head lru_list;
467 struct drm_i915_gem_object *obj;
468 int pin_count;
469 };
470
471 struct sdvo_device_mapping {
472 u8 initialized;
473 u8 dvo_port;
474 u8 slave_addr;
475 u8 dvo_wiring;
476 u8 i2c_pin;
477 u8 ddc_pin;
478 };
479
480 struct intel_display_error_state;
481
482 struct drm_i915_error_state {
483 struct kref ref;
484 struct timeval time;
485
486 char error_msg[128];
487 bool simulated;
488 int iommu;
489 u32 reset_count;
490 u32 suspend_count;
491
492 /* Generic register state */
493 u32 eir;
494 u32 pgtbl_er;
495 u32 ier;
496 u32 gtier[4];
497 u32 ccid;
498 u32 derrmr;
499 u32 forcewake;
500 u32 error; /* gen6+ */
501 u32 err_int; /* gen7 */
502 u32 fault_data0; /* gen8, gen9 */
503 u32 fault_data1; /* gen8, gen9 */
504 u32 done_reg;
505 u32 gac_eco;
506 u32 gam_ecochk;
507 u32 gab_ctl;
508 u32 gfx_mode;
509 u32 extra_instdone[I915_NUM_INSTDONE_REG];
510 u64 fence[I915_MAX_NUM_FENCES];
511 struct intel_overlay_error_state *overlay;
512 struct intel_display_error_state *display;
513 struct drm_i915_error_object *semaphore_obj;
514
515 struct drm_i915_error_ring {
516 bool valid;
517 /* Software tracked state */
518 bool waiting;
519 int num_waiters;
520 int hangcheck_score;
521 enum intel_ring_hangcheck_action hangcheck_action;
522 int num_requests;
523
524 /* our own tracking of ring head and tail */
525 u32 cpu_ring_head;
526 u32 cpu_ring_tail;
527
528 u32 last_seqno;
529 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
530
531 /* Register state */
532 u32 start;
533 u32 tail;
534 u32 head;
535 u32 ctl;
536 u32 hws;
537 u32 ipeir;
538 u32 ipehr;
539 u32 instdone;
540 u32 bbstate;
541 u32 instpm;
542 u32 instps;
543 u32 seqno;
544 u64 bbaddr;
545 u64 acthd;
546 u32 fault_reg;
547 u64 faddr;
548 u32 rc_psmi; /* sleep state */
549 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
550
551 struct drm_i915_error_object {
552 int page_count;
553 u64 gtt_offset;
554 u32 *pages[0];
555 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
556
557 struct drm_i915_error_object *wa_ctx;
558
559 struct drm_i915_error_request {
560 long jiffies;
561 u32 seqno;
562 u32 tail;
563 } *requests;
564
565 struct drm_i915_error_waiter {
566 char comm[TASK_COMM_LEN];
567 pid_t pid;
568 u32 seqno;
569 } *waiters;
570
571 struct {
572 u32 gfx_mode;
573 union {
574 u64 pdp[4];
575 u32 pp_dir_base;
576 };
577 } vm_info;
578
579 pid_t pid;
580 char comm[TASK_COMM_LEN];
581 } ring[I915_NUM_ENGINES];
582
583 struct drm_i915_error_buffer {
584 u32 size;
585 u32 name;
586 u32 rseqno[I915_NUM_ENGINES], wseqno;
587 u64 gtt_offset;
588 u32 read_domains;
589 u32 write_domain;
590 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
591 s32 pinned:2;
592 u32 tiling:2;
593 u32 dirty:1;
594 u32 purgeable:1;
595 u32 userptr:1;
596 s32 ring:4;
597 u32 cache_level:3;
598 } **active_bo, **pinned_bo;
599
600 u32 *active_bo_count, *pinned_bo_count;
601 u32 vm_count;
602 };
603
604 struct intel_connector;
605 struct intel_encoder;
606 struct intel_crtc_state;
607 struct intel_initial_plane_config;
608 struct intel_crtc;
609 struct intel_limit;
610 struct dpll;
611
612 struct drm_i915_display_funcs {
613 int (*get_display_clock_speed)(struct drm_device *dev);
614 int (*get_fifo_size)(struct drm_device *dev, int plane);
615 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
616 int (*compute_intermediate_wm)(struct drm_device *dev,
617 struct intel_crtc *intel_crtc,
618 struct intel_crtc_state *newstate);
619 void (*initial_watermarks)(struct intel_crtc_state *cstate);
620 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
621 int (*compute_global_watermarks)(struct drm_atomic_state *state);
622 void (*update_wm)(struct drm_crtc *crtc);
623 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
624 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
625 /* Returns the active state of the crtc, and if the crtc is active,
626 * fills out the pipe-config with the hw state. */
627 bool (*get_pipe_config)(struct intel_crtc *,
628 struct intel_crtc_state *);
629 void (*get_initial_plane_config)(struct intel_crtc *,
630 struct intel_initial_plane_config *);
631 int (*crtc_compute_clock)(struct intel_crtc *crtc,
632 struct intel_crtc_state *crtc_state);
633 void (*crtc_enable)(struct drm_crtc *crtc);
634 void (*crtc_disable)(struct drm_crtc *crtc);
635 void (*audio_codec_enable)(struct drm_connector *connector,
636 struct intel_encoder *encoder,
637 const struct drm_display_mode *adjusted_mode);
638 void (*audio_codec_disable)(struct intel_encoder *encoder);
639 void (*fdi_link_train)(struct drm_crtc *crtc);
640 void (*init_clock_gating)(struct drm_device *dev);
641 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
642 struct drm_framebuffer *fb,
643 struct drm_i915_gem_object *obj,
644 struct drm_i915_gem_request *req,
645 uint32_t flags);
646 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
647 /* clock updates for mode set */
648 /* cursor updates */
649 /* render clock increase/decrease */
650 /* display clock increase/decrease */
651 /* pll clock increase/decrease */
652
653 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
654 void (*load_luts)(struct drm_crtc_state *crtc_state);
655 };
656
657 enum forcewake_domain_id {
658 FW_DOMAIN_ID_RENDER = 0,
659 FW_DOMAIN_ID_BLITTER,
660 FW_DOMAIN_ID_MEDIA,
661
662 FW_DOMAIN_ID_COUNT
663 };
664
665 enum forcewake_domains {
666 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
667 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
668 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
669 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
670 FORCEWAKE_BLITTER |
671 FORCEWAKE_MEDIA)
672 };
673
674 #define FW_REG_READ (1)
675 #define FW_REG_WRITE (2)
676
677 enum forcewake_domains
678 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
679 i915_reg_t reg, unsigned int op);
680
681 struct intel_uncore_funcs {
682 void (*force_wake_get)(struct drm_i915_private *dev_priv,
683 enum forcewake_domains domains);
684 void (*force_wake_put)(struct drm_i915_private *dev_priv,
685 enum forcewake_domains domains);
686
687 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
688 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
689 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
690 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
691
692 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
693 uint8_t val, bool trace);
694 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
695 uint16_t val, bool trace);
696 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
697 uint32_t val, bool trace);
698 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
699 uint64_t val, bool trace);
700 };
701
702 struct intel_uncore {
703 spinlock_t lock; /** lock is also taken in irq contexts. */
704
705 struct intel_uncore_funcs funcs;
706
707 unsigned fifo_count;
708 enum forcewake_domains fw_domains;
709
710 struct intel_uncore_forcewake_domain {
711 struct drm_i915_private *i915;
712 enum forcewake_domain_id id;
713 enum forcewake_domains mask;
714 unsigned wake_count;
715 struct hrtimer timer;
716 i915_reg_t reg_set;
717 u32 val_set;
718 u32 val_clear;
719 i915_reg_t reg_ack;
720 i915_reg_t reg_post;
721 u32 val_reset;
722 } fw_domain[FW_DOMAIN_ID_COUNT];
723
724 int unclaimed_mmio_check;
725 };
726
727 /* Iterate over initialised fw domains */
728 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
729 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
730 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
731 (domain__)++) \
732 for_each_if ((mask__) & (domain__)->mask)
733
734 #define for_each_fw_domain(domain__, dev_priv__) \
735 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
736
737 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
738 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
739 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
740
741 struct intel_csr {
742 struct work_struct work;
743 const char *fw_path;
744 uint32_t *dmc_payload;
745 uint32_t dmc_fw_size;
746 uint32_t version;
747 uint32_t mmio_count;
748 i915_reg_t mmioaddr[8];
749 uint32_t mmiodata[8];
750 uint32_t dc_state;
751 uint32_t allowed_dc_mask;
752 };
753
754 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
755 func(is_mobile) sep \
756 func(is_i85x) sep \
757 func(is_i915g) sep \
758 func(is_i945gm) sep \
759 func(is_g33) sep \
760 func(need_gfx_hws) sep \
761 func(is_g4x) sep \
762 func(is_pineview) sep \
763 func(is_broadwater) sep \
764 func(is_crestline) sep \
765 func(is_ivybridge) sep \
766 func(is_valleyview) sep \
767 func(is_cherryview) sep \
768 func(is_haswell) sep \
769 func(is_broadwell) sep \
770 func(is_skylake) sep \
771 func(is_broxton) sep \
772 func(is_kabylake) sep \
773 func(is_preliminary) sep \
774 func(has_fbc) sep \
775 func(has_pipe_cxsr) sep \
776 func(has_hotplug) sep \
777 func(cursor_needs_physical) sep \
778 func(has_overlay) sep \
779 func(overlay_needs_physical) sep \
780 func(supports_tv) sep \
781 func(has_llc) sep \
782 func(has_snoop) sep \
783 func(has_ddi) sep \
784 func(has_fpga_dbg) sep \
785 func(has_pooled_eu)
786
787 #define DEFINE_FLAG(name) u8 name:1
788 #define SEP_SEMICOLON ;
789
790 struct intel_device_info {
791 u32 display_mmio_offset;
792 u16 device_id;
793 u8 num_pipes;
794 u8 num_sprites[I915_MAX_PIPES];
795 u8 gen;
796 u16 gen_mask;
797 u8 ring_mask; /* Rings supported by the HW */
798 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
799 /* Register offsets for the various display pipes and transcoders */
800 int pipe_offsets[I915_MAX_TRANSCODERS];
801 int trans_offsets[I915_MAX_TRANSCODERS];
802 int palette_offsets[I915_MAX_PIPES];
803 int cursor_offsets[I915_MAX_PIPES];
804
805 /* Slice/subslice/EU info */
806 u8 slice_total;
807 u8 subslice_total;
808 u8 subslice_per_slice;
809 u8 eu_total;
810 u8 eu_per_subslice;
811 u8 min_eu_in_pool;
812 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
813 u8 subslice_7eu[3];
814 u8 has_slice_pg:1;
815 u8 has_subslice_pg:1;
816 u8 has_eu_pg:1;
817
818 struct color_luts {
819 u16 degamma_lut_size;
820 u16 gamma_lut_size;
821 } color;
822 };
823
824 #undef DEFINE_FLAG
825 #undef SEP_SEMICOLON
826
827 enum i915_cache_level {
828 I915_CACHE_NONE = 0,
829 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
830 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
831 caches, eg sampler/render caches, and the
832 large Last-Level-Cache. LLC is coherent with
833 the CPU, but L3 is only visible to the GPU. */
834 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
835 };
836
837 struct i915_ctx_hang_stats {
838 /* This context had batch pending when hang was declared */
839 unsigned batch_pending;
840
841 /* This context had batch active when hang was declared */
842 unsigned batch_active;
843
844 /* Time when this context was last blamed for a GPU reset */
845 unsigned long guilty_ts;
846
847 /* If the contexts causes a second GPU hang within this time,
848 * it is permanently banned from submitting any more work.
849 */
850 unsigned long ban_period_seconds;
851
852 /* This context is banned to submit more work */
853 bool banned;
854 };
855
856 /* This must match up with the value previously used for execbuf2.rsvd1. */
857 #define DEFAULT_CONTEXT_HANDLE 0
858
859 /**
860 * struct i915_gem_context - as the name implies, represents a context.
861 * @ref: reference count.
862 * @user_handle: userspace tracking identity for this context.
863 * @remap_slice: l3 row remapping information.
864 * @flags: context specific flags:
865 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
866 * @file_priv: filp associated with this context (NULL for global default
867 * context).
868 * @hang_stats: information about the role of this context in possible GPU
869 * hangs.
870 * @ppgtt: virtual memory space used by this context.
871 * @legacy_hw_ctx: render context backing object and whether it is correctly
872 * initialized (legacy ring submission mechanism only).
873 * @link: link in the global list of contexts.
874 *
875 * Contexts are memory images used by the hardware to store copies of their
876 * internal state.
877 */
878 struct i915_gem_context {
879 struct kref ref;
880 struct drm_i915_private *i915;
881 struct drm_i915_file_private *file_priv;
882 struct i915_hw_ppgtt *ppgtt;
883
884 struct i915_ctx_hang_stats hang_stats;
885
886 /* Unique identifier for this context, used by the hw for tracking */
887 unsigned long flags;
888 #define CONTEXT_NO_ZEROMAP BIT(0)
889 #define CONTEXT_NO_ERROR_CAPTURE BIT(1)
890 unsigned hw_id;
891 u32 user_handle;
892
893 u32 ggtt_alignment;
894
895 struct intel_context {
896 struct drm_i915_gem_object *state;
897 struct intel_ringbuffer *ringbuf;
898 struct i915_vma *lrc_vma;
899 uint32_t *lrc_reg_state;
900 u64 lrc_desc;
901 int pin_count;
902 bool initialised;
903 } engine[I915_NUM_ENGINES];
904 u32 ring_size;
905 u32 desc_template;
906 struct atomic_notifier_head status_notifier;
907 bool execlists_force_single_submission;
908
909 struct list_head link;
910
911 u8 remap_slice;
912 };
913
914 enum fb_op_origin {
915 ORIGIN_GTT,
916 ORIGIN_CPU,
917 ORIGIN_CS,
918 ORIGIN_FLIP,
919 ORIGIN_DIRTYFB,
920 };
921
922 struct intel_fbc {
923 /* This is always the inner lock when overlapping with struct_mutex and
924 * it's the outer lock when overlapping with stolen_lock. */
925 struct mutex lock;
926 unsigned threshold;
927 unsigned int possible_framebuffer_bits;
928 unsigned int busy_bits;
929 unsigned int visible_pipes_mask;
930 struct intel_crtc *crtc;
931
932 struct drm_mm_node compressed_fb;
933 struct drm_mm_node *compressed_llb;
934
935 bool false_color;
936
937 bool enabled;
938 bool active;
939
940 struct intel_fbc_state_cache {
941 struct {
942 unsigned int mode_flags;
943 uint32_t hsw_bdw_pixel_rate;
944 } crtc;
945
946 struct {
947 unsigned int rotation;
948 int src_w;
949 int src_h;
950 bool visible;
951 } plane;
952
953 struct {
954 u64 ilk_ggtt_offset;
955 uint32_t pixel_format;
956 unsigned int stride;
957 int fence_reg;
958 unsigned int tiling_mode;
959 } fb;
960 } state_cache;
961
962 struct intel_fbc_reg_params {
963 struct {
964 enum pipe pipe;
965 enum plane plane;
966 unsigned int fence_y_offset;
967 } crtc;
968
969 struct {
970 u64 ggtt_offset;
971 uint32_t pixel_format;
972 unsigned int stride;
973 int fence_reg;
974 } fb;
975
976 int cfb_size;
977 } params;
978
979 struct intel_fbc_work {
980 bool scheduled;
981 u32 scheduled_vblank;
982 struct work_struct work;
983 } work;
984
985 const char *no_fbc_reason;
986 };
987
988 /**
989 * HIGH_RR is the highest eDP panel refresh rate read from EDID
990 * LOW_RR is the lowest eDP panel refresh rate found from EDID
991 * parsing for same resolution.
992 */
993 enum drrs_refresh_rate_type {
994 DRRS_HIGH_RR,
995 DRRS_LOW_RR,
996 DRRS_MAX_RR, /* RR count */
997 };
998
999 enum drrs_support_type {
1000 DRRS_NOT_SUPPORTED = 0,
1001 STATIC_DRRS_SUPPORT = 1,
1002 SEAMLESS_DRRS_SUPPORT = 2
1003 };
1004
1005 struct intel_dp;
1006 struct i915_drrs {
1007 struct mutex mutex;
1008 struct delayed_work work;
1009 struct intel_dp *dp;
1010 unsigned busy_frontbuffer_bits;
1011 enum drrs_refresh_rate_type refresh_rate_type;
1012 enum drrs_support_type type;
1013 };
1014
1015 struct i915_psr {
1016 struct mutex lock;
1017 bool sink_support;
1018 bool source_ok;
1019 struct intel_dp *enabled;
1020 bool active;
1021 struct delayed_work work;
1022 unsigned busy_frontbuffer_bits;
1023 bool psr2_support;
1024 bool aux_frame_sync;
1025 bool link_standby;
1026 };
1027
1028 enum intel_pch {
1029 PCH_NONE = 0, /* No PCH present */
1030 PCH_IBX, /* Ibexpeak PCH */
1031 PCH_CPT, /* Cougarpoint PCH */
1032 PCH_LPT, /* Lynxpoint PCH */
1033 PCH_SPT, /* Sunrisepoint PCH */
1034 PCH_KBP, /* Kabypoint PCH */
1035 PCH_NOP,
1036 };
1037
1038 enum intel_sbi_destination {
1039 SBI_ICLK,
1040 SBI_MPHY,
1041 };
1042
1043 #define QUIRK_PIPEA_FORCE (1<<0)
1044 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1045 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1046 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1047 #define QUIRK_PIPEB_FORCE (1<<4)
1048 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1049
1050 struct intel_fbdev;
1051 struct intel_fbc_work;
1052
1053 struct intel_gmbus {
1054 struct i2c_adapter adapter;
1055 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1056 u32 force_bit;
1057 u32 reg0;
1058 i915_reg_t gpio_reg;
1059 struct i2c_algo_bit_data bit_algo;
1060 struct drm_i915_private *dev_priv;
1061 };
1062
1063 struct i915_suspend_saved_registers {
1064 u32 saveDSPARB;
1065 u32 saveLVDS;
1066 u32 savePP_ON_DELAYS;
1067 u32 savePP_OFF_DELAYS;
1068 u32 savePP_ON;
1069 u32 savePP_OFF;
1070 u32 savePP_CONTROL;
1071 u32 savePP_DIVISOR;
1072 u32 saveFBC_CONTROL;
1073 u32 saveCACHE_MODE_0;
1074 u32 saveMI_ARB_STATE;
1075 u32 saveSWF0[16];
1076 u32 saveSWF1[16];
1077 u32 saveSWF3[3];
1078 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1079 u32 savePCH_PORT_HOTPLUG;
1080 u16 saveGCDGMBUS;
1081 };
1082
1083 struct vlv_s0ix_state {
1084 /* GAM */
1085 u32 wr_watermark;
1086 u32 gfx_prio_ctrl;
1087 u32 arb_mode;
1088 u32 gfx_pend_tlb0;
1089 u32 gfx_pend_tlb1;
1090 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1091 u32 media_max_req_count;
1092 u32 gfx_max_req_count;
1093 u32 render_hwsp;
1094 u32 ecochk;
1095 u32 bsd_hwsp;
1096 u32 blt_hwsp;
1097 u32 tlb_rd_addr;
1098
1099 /* MBC */
1100 u32 g3dctl;
1101 u32 gsckgctl;
1102 u32 mbctl;
1103
1104 /* GCP */
1105 u32 ucgctl1;
1106 u32 ucgctl3;
1107 u32 rcgctl1;
1108 u32 rcgctl2;
1109 u32 rstctl;
1110 u32 misccpctl;
1111
1112 /* GPM */
1113 u32 gfxpause;
1114 u32 rpdeuhwtc;
1115 u32 rpdeuc;
1116 u32 ecobus;
1117 u32 pwrdwnupctl;
1118 u32 rp_down_timeout;
1119 u32 rp_deucsw;
1120 u32 rcubmabdtmr;
1121 u32 rcedata;
1122 u32 spare2gh;
1123
1124 /* Display 1 CZ domain */
1125 u32 gt_imr;
1126 u32 gt_ier;
1127 u32 pm_imr;
1128 u32 pm_ier;
1129 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1130
1131 /* GT SA CZ domain */
1132 u32 tilectl;
1133 u32 gt_fifoctl;
1134 u32 gtlc_wake_ctrl;
1135 u32 gtlc_survive;
1136 u32 pmwgicz;
1137
1138 /* Display 2 CZ domain */
1139 u32 gu_ctl0;
1140 u32 gu_ctl1;
1141 u32 pcbr;
1142 u32 clock_gate_dis2;
1143 };
1144
1145 struct intel_rps_ei {
1146 u32 cz_clock;
1147 u32 render_c0;
1148 u32 media_c0;
1149 };
1150
1151 struct intel_gen6_power_mgmt {
1152 /*
1153 * work, interrupts_enabled and pm_iir are protected by
1154 * dev_priv->irq_lock
1155 */
1156 struct work_struct work;
1157 bool interrupts_enabled;
1158 u32 pm_iir;
1159
1160 u32 pm_intr_keep;
1161
1162 /* Frequencies are stored in potentially platform dependent multiples.
1163 * In other words, *_freq needs to be multiplied by X to be interesting.
1164 * Soft limits are those which are used for the dynamic reclocking done
1165 * by the driver (raise frequencies under heavy loads, and lower for
1166 * lighter loads). Hard limits are those imposed by the hardware.
1167 *
1168 * A distinction is made for overclocking, which is never enabled by
1169 * default, and is considered to be above the hard limit if it's
1170 * possible at all.
1171 */
1172 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1173 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1174 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1175 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1176 u8 min_freq; /* AKA RPn. Minimum frequency */
1177 u8 boost_freq; /* Frequency to request when wait boosting */
1178 u8 idle_freq; /* Frequency to request when we are idle */
1179 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1180 u8 rp1_freq; /* "less than" RP0 power/freqency */
1181 u8 rp0_freq; /* Non-overclocked max frequency. */
1182 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1183
1184 u8 up_threshold; /* Current %busy required to uplock */
1185 u8 down_threshold; /* Current %busy required to downclock */
1186
1187 int last_adj;
1188 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1189
1190 spinlock_t client_lock;
1191 struct list_head clients;
1192 bool client_boost;
1193
1194 bool enabled;
1195 unsigned boosts;
1196
1197 /* manual wa residency calculations */
1198 struct intel_rps_ei up_ei, down_ei;
1199
1200 /*
1201 * Protects RPS/RC6 register access and PCU communication.
1202 * Must be taken after struct_mutex if nested. Note that
1203 * this lock may be held for long periods of time when
1204 * talking to hw - so only take it when talking to hw!
1205 */
1206 struct mutex hw_lock;
1207 };
1208
1209 /* defined intel_pm.c */
1210 extern spinlock_t mchdev_lock;
1211
1212 struct intel_ilk_power_mgmt {
1213 u8 cur_delay;
1214 u8 min_delay;
1215 u8 max_delay;
1216 u8 fmax;
1217 u8 fstart;
1218
1219 u64 last_count1;
1220 unsigned long last_time1;
1221 unsigned long chipset_power;
1222 u64 last_count2;
1223 u64 last_time2;
1224 unsigned long gfx_power;
1225 u8 corr;
1226
1227 int c_m;
1228 int r_t;
1229 };
1230
1231 struct drm_i915_private;
1232 struct i915_power_well;
1233
1234 struct i915_power_well_ops {
1235 /*
1236 * Synchronize the well's hw state to match the current sw state, for
1237 * example enable/disable it based on the current refcount. Called
1238 * during driver init and resume time, possibly after first calling
1239 * the enable/disable handlers.
1240 */
1241 void (*sync_hw)(struct drm_i915_private *dev_priv,
1242 struct i915_power_well *power_well);
1243 /*
1244 * Enable the well and resources that depend on it (for example
1245 * interrupts located on the well). Called after the 0->1 refcount
1246 * transition.
1247 */
1248 void (*enable)(struct drm_i915_private *dev_priv,
1249 struct i915_power_well *power_well);
1250 /*
1251 * Disable the well and resources that depend on it. Called after
1252 * the 1->0 refcount transition.
1253 */
1254 void (*disable)(struct drm_i915_private *dev_priv,
1255 struct i915_power_well *power_well);
1256 /* Returns the hw enabled state. */
1257 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1258 struct i915_power_well *power_well);
1259 };
1260
1261 /* Power well structure for haswell */
1262 struct i915_power_well {
1263 const char *name;
1264 bool always_on;
1265 /* power well enable/disable usage count */
1266 int count;
1267 /* cached hw enabled state */
1268 bool hw_enabled;
1269 unsigned long domains;
1270 unsigned long data;
1271 const struct i915_power_well_ops *ops;
1272 };
1273
1274 struct i915_power_domains {
1275 /*
1276 * Power wells needed for initialization at driver init and suspend
1277 * time are on. They are kept on until after the first modeset.
1278 */
1279 bool init_power_on;
1280 bool initializing;
1281 int power_well_count;
1282
1283 struct mutex lock;
1284 int domain_use_count[POWER_DOMAIN_NUM];
1285 struct i915_power_well *power_wells;
1286 };
1287
1288 #define MAX_L3_SLICES 2
1289 struct intel_l3_parity {
1290 u32 *remap_info[MAX_L3_SLICES];
1291 struct work_struct error_work;
1292 int which_slice;
1293 };
1294
1295 struct i915_gem_mm {
1296 /** Memory allocator for GTT stolen memory */
1297 struct drm_mm stolen;
1298 /** Protects the usage of the GTT stolen memory allocator. This is
1299 * always the inner lock when overlapping with struct_mutex. */
1300 struct mutex stolen_lock;
1301
1302 /** List of all objects in gtt_space. Used to restore gtt
1303 * mappings on resume */
1304 struct list_head bound_list;
1305 /**
1306 * List of objects which are not bound to the GTT (thus
1307 * are idle and not used by the GPU) but still have
1308 * (presumably uncached) pages still attached.
1309 */
1310 struct list_head unbound_list;
1311
1312 /** Usable portion of the GTT for GEM */
1313 unsigned long stolen_base; /* limited to low memory (32-bit) */
1314
1315 /** PPGTT used for aliasing the PPGTT with the GTT */
1316 struct i915_hw_ppgtt *aliasing_ppgtt;
1317
1318 struct notifier_block oom_notifier;
1319 struct notifier_block vmap_notifier;
1320 struct shrinker shrinker;
1321 bool shrinker_no_lock_stealing;
1322
1323 /** LRU list of objects with fence regs on them. */
1324 struct list_head fence_list;
1325
1326 /**
1327 * Are we in a non-interruptible section of code like
1328 * modesetting?
1329 */
1330 bool interruptible;
1331
1332 /* the indicator for dispatch video commands on two BSD rings */
1333 unsigned int bsd_ring_dispatch_index;
1334
1335 /** Bit 6 swizzling required for X tiling */
1336 uint32_t bit_6_swizzle_x;
1337 /** Bit 6 swizzling required for Y tiling */
1338 uint32_t bit_6_swizzle_y;
1339
1340 /* accounting, useful for userland debugging */
1341 spinlock_t object_stat_lock;
1342 size_t object_memory;
1343 u32 object_count;
1344 };
1345
1346 struct drm_i915_error_state_buf {
1347 struct drm_i915_private *i915;
1348 unsigned bytes;
1349 unsigned size;
1350 int err;
1351 u8 *buf;
1352 loff_t start;
1353 loff_t pos;
1354 };
1355
1356 struct i915_error_state_file_priv {
1357 struct drm_device *dev;
1358 struct drm_i915_error_state *error;
1359 };
1360
1361 struct i915_gpu_error {
1362 /* For hangcheck timer */
1363 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1364 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1365 /* Hang gpu twice in this window and your context gets banned */
1366 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1367
1368 struct delayed_work hangcheck_work;
1369
1370 /* For reset and error_state handling. */
1371 spinlock_t lock;
1372 /* Protected by the above dev->gpu_error.lock. */
1373 struct drm_i915_error_state *first_error;
1374
1375 unsigned long missed_irq_rings;
1376
1377 /**
1378 * State variable controlling the reset flow and count
1379 *
1380 * This is a counter which gets incremented when reset is triggered,
1381 * and again when reset has been handled. So odd values (lowest bit set)
1382 * means that reset is in progress and even values that
1383 * (reset_counter >> 1):th reset was successfully completed.
1384 *
1385 * If reset is not completed succesfully, the I915_WEDGE bit is
1386 * set meaning that hardware is terminally sour and there is no
1387 * recovery. All waiters on the reset_queue will be woken when
1388 * that happens.
1389 *
1390 * This counter is used by the wait_seqno code to notice that reset
1391 * event happened and it needs to restart the entire ioctl (since most
1392 * likely the seqno it waited for won't ever signal anytime soon).
1393 *
1394 * This is important for lock-free wait paths, where no contended lock
1395 * naturally enforces the correct ordering between the bail-out of the
1396 * waiter and the gpu reset work code.
1397 */
1398 atomic_t reset_counter;
1399
1400 #define I915_RESET_IN_PROGRESS_FLAG 1
1401 #define I915_WEDGED (1 << 31)
1402
1403 /**
1404 * Waitqueue to signal when a hang is detected. Used to for waiters
1405 * to release the struct_mutex for the reset to procede.
1406 */
1407 wait_queue_head_t wait_queue;
1408
1409 /**
1410 * Waitqueue to signal when the reset has completed. Used by clients
1411 * that wait for dev_priv->mm.wedged to settle.
1412 */
1413 wait_queue_head_t reset_queue;
1414
1415 /* For missed irq/seqno simulation. */
1416 unsigned long test_irq_rings;
1417 };
1418
1419 enum modeset_restore {
1420 MODESET_ON_LID_OPEN,
1421 MODESET_DONE,
1422 MODESET_SUSPENDED,
1423 };
1424
1425 #define DP_AUX_A 0x40
1426 #define DP_AUX_B 0x10
1427 #define DP_AUX_C 0x20
1428 #define DP_AUX_D 0x30
1429
1430 #define DDC_PIN_B 0x05
1431 #define DDC_PIN_C 0x04
1432 #define DDC_PIN_D 0x06
1433
1434 struct ddi_vbt_port_info {
1435 /*
1436 * This is an index in the HDMI/DVI DDI buffer translation table.
1437 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1438 * populate this field.
1439 */
1440 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1441 uint8_t hdmi_level_shift;
1442
1443 uint8_t supports_dvi:1;
1444 uint8_t supports_hdmi:1;
1445 uint8_t supports_dp:1;
1446
1447 uint8_t alternate_aux_channel;
1448 uint8_t alternate_ddc_pin;
1449
1450 uint8_t dp_boost_level;
1451 uint8_t hdmi_boost_level;
1452 };
1453
1454 enum psr_lines_to_wait {
1455 PSR_0_LINES_TO_WAIT = 0,
1456 PSR_1_LINE_TO_WAIT,
1457 PSR_4_LINES_TO_WAIT,
1458 PSR_8_LINES_TO_WAIT
1459 };
1460
1461 struct intel_vbt_data {
1462 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1463 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1464
1465 /* Feature bits */
1466 unsigned int int_tv_support:1;
1467 unsigned int lvds_dither:1;
1468 unsigned int lvds_vbt:1;
1469 unsigned int int_crt_support:1;
1470 unsigned int lvds_use_ssc:1;
1471 unsigned int display_clock_mode:1;
1472 unsigned int fdi_rx_polarity_inverted:1;
1473 unsigned int panel_type:4;
1474 int lvds_ssc_freq;
1475 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1476
1477 enum drrs_support_type drrs_type;
1478
1479 struct {
1480 int rate;
1481 int lanes;
1482 int preemphasis;
1483 int vswing;
1484 bool low_vswing;
1485 bool initialized;
1486 bool support;
1487 int bpp;
1488 struct edp_power_seq pps;
1489 } edp;
1490
1491 struct {
1492 bool full_link;
1493 bool require_aux_wakeup;
1494 int idle_frames;
1495 enum psr_lines_to_wait lines_to_wait;
1496 int tp1_wakeup_time;
1497 int tp2_tp3_wakeup_time;
1498 } psr;
1499
1500 struct {
1501 u16 pwm_freq_hz;
1502 bool present;
1503 bool active_low_pwm;
1504 u8 min_brightness; /* min_brightness/255 of max */
1505 enum intel_backlight_type type;
1506 } backlight;
1507
1508 /* MIPI DSI */
1509 struct {
1510 u16 panel_id;
1511 struct mipi_config *config;
1512 struct mipi_pps_data *pps;
1513 u8 seq_version;
1514 u32 size;
1515 u8 *data;
1516 const u8 *sequence[MIPI_SEQ_MAX];
1517 } dsi;
1518
1519 int crt_ddc_pin;
1520
1521 int child_dev_num;
1522 union child_device_config *child_dev;
1523
1524 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1525 struct sdvo_device_mapping sdvo_mappings[2];
1526 };
1527
1528 enum intel_ddb_partitioning {
1529 INTEL_DDB_PART_1_2,
1530 INTEL_DDB_PART_5_6, /* IVB+ */
1531 };
1532
1533 struct intel_wm_level {
1534 bool enable;
1535 uint32_t pri_val;
1536 uint32_t spr_val;
1537 uint32_t cur_val;
1538 uint32_t fbc_val;
1539 };
1540
1541 struct ilk_wm_values {
1542 uint32_t wm_pipe[3];
1543 uint32_t wm_lp[3];
1544 uint32_t wm_lp_spr[3];
1545 uint32_t wm_linetime[3];
1546 bool enable_fbc_wm;
1547 enum intel_ddb_partitioning partitioning;
1548 };
1549
1550 struct vlv_pipe_wm {
1551 uint16_t primary;
1552 uint16_t sprite[2];
1553 uint8_t cursor;
1554 };
1555
1556 struct vlv_sr_wm {
1557 uint16_t plane;
1558 uint8_t cursor;
1559 };
1560
1561 struct vlv_wm_values {
1562 struct vlv_pipe_wm pipe[3];
1563 struct vlv_sr_wm sr;
1564 struct {
1565 uint8_t cursor;
1566 uint8_t sprite[2];
1567 uint8_t primary;
1568 } ddl[3];
1569 uint8_t level;
1570 bool cxsr;
1571 };
1572
1573 struct skl_ddb_entry {
1574 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1575 };
1576
1577 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1578 {
1579 return entry->end - entry->start;
1580 }
1581
1582 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1583 const struct skl_ddb_entry *e2)
1584 {
1585 if (e1->start == e2->start && e1->end == e2->end)
1586 return true;
1587
1588 return false;
1589 }
1590
1591 struct skl_ddb_allocation {
1592 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1593 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1594 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1595 };
1596
1597 struct skl_wm_values {
1598 unsigned dirty_pipes;
1599 struct skl_ddb_allocation ddb;
1600 uint32_t wm_linetime[I915_MAX_PIPES];
1601 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1602 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1603 };
1604
1605 struct skl_wm_level {
1606 bool plane_en[I915_MAX_PLANES];
1607 uint16_t plane_res_b[I915_MAX_PLANES];
1608 uint8_t plane_res_l[I915_MAX_PLANES];
1609 };
1610
1611 /*
1612 * This struct helps tracking the state needed for runtime PM, which puts the
1613 * device in PCI D3 state. Notice that when this happens, nothing on the
1614 * graphics device works, even register access, so we don't get interrupts nor
1615 * anything else.
1616 *
1617 * Every piece of our code that needs to actually touch the hardware needs to
1618 * either call intel_runtime_pm_get or call intel_display_power_get with the
1619 * appropriate power domain.
1620 *
1621 * Our driver uses the autosuspend delay feature, which means we'll only really
1622 * suspend if we stay with zero refcount for a certain amount of time. The
1623 * default value is currently very conservative (see intel_runtime_pm_enable), but
1624 * it can be changed with the standard runtime PM files from sysfs.
1625 *
1626 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1627 * goes back to false exactly before we reenable the IRQs. We use this variable
1628 * to check if someone is trying to enable/disable IRQs while they're supposed
1629 * to be disabled. This shouldn't happen and we'll print some error messages in
1630 * case it happens.
1631 *
1632 * For more, read the Documentation/power/runtime_pm.txt.
1633 */
1634 struct i915_runtime_pm {
1635 atomic_t wakeref_count;
1636 atomic_t atomic_seq;
1637 bool suspended;
1638 bool irqs_enabled;
1639 };
1640
1641 enum intel_pipe_crc_source {
1642 INTEL_PIPE_CRC_SOURCE_NONE,
1643 INTEL_PIPE_CRC_SOURCE_PLANE1,
1644 INTEL_PIPE_CRC_SOURCE_PLANE2,
1645 INTEL_PIPE_CRC_SOURCE_PF,
1646 INTEL_PIPE_CRC_SOURCE_PIPE,
1647 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1648 INTEL_PIPE_CRC_SOURCE_TV,
1649 INTEL_PIPE_CRC_SOURCE_DP_B,
1650 INTEL_PIPE_CRC_SOURCE_DP_C,
1651 INTEL_PIPE_CRC_SOURCE_DP_D,
1652 INTEL_PIPE_CRC_SOURCE_AUTO,
1653 INTEL_PIPE_CRC_SOURCE_MAX,
1654 };
1655
1656 struct intel_pipe_crc_entry {
1657 uint32_t frame;
1658 uint32_t crc[5];
1659 };
1660
1661 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1662 struct intel_pipe_crc {
1663 spinlock_t lock;
1664 bool opened; /* exclusive access to the result file */
1665 struct intel_pipe_crc_entry *entries;
1666 enum intel_pipe_crc_source source;
1667 int head, tail;
1668 wait_queue_head_t wq;
1669 };
1670
1671 struct i915_frontbuffer_tracking {
1672 struct mutex lock;
1673
1674 /*
1675 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1676 * scheduled flips.
1677 */
1678 unsigned busy_bits;
1679 unsigned flip_bits;
1680 };
1681
1682 struct i915_wa_reg {
1683 i915_reg_t addr;
1684 u32 value;
1685 /* bitmask representing WA bits */
1686 u32 mask;
1687 };
1688
1689 /*
1690 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1691 * allowing it for RCS as we don't foresee any requirement of having
1692 * a whitelist for other engines. When it is really required for
1693 * other engines then the limit need to be increased.
1694 */
1695 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1696
1697 struct i915_workarounds {
1698 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1699 u32 count;
1700 u32 hw_whitelist_count[I915_NUM_ENGINES];
1701 };
1702
1703 struct i915_virtual_gpu {
1704 bool active;
1705 };
1706
1707 struct i915_execbuffer_params {
1708 struct drm_device *dev;
1709 struct drm_file *file;
1710 uint32_t dispatch_flags;
1711 uint32_t args_batch_start_offset;
1712 uint64_t batch_obj_vm_offset;
1713 struct intel_engine_cs *engine;
1714 struct drm_i915_gem_object *batch_obj;
1715 struct i915_gem_context *ctx;
1716 struct drm_i915_gem_request *request;
1717 };
1718
1719 /* used in computing the new watermarks state */
1720 struct intel_wm_config {
1721 unsigned int num_pipes_active;
1722 bool sprites_enabled;
1723 bool sprites_scaled;
1724 };
1725
1726 struct drm_i915_private {
1727 struct drm_device drm;
1728
1729 struct kmem_cache *objects;
1730 struct kmem_cache *vmas;
1731 struct kmem_cache *requests;
1732
1733 const struct intel_device_info info;
1734
1735 int relative_constants_mode;
1736
1737 void __iomem *regs;
1738
1739 struct intel_uncore uncore;
1740
1741 struct i915_virtual_gpu vgpu;
1742
1743 struct intel_gvt gvt;
1744
1745 struct intel_guc guc;
1746
1747 struct intel_csr csr;
1748
1749 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1750
1751 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1752 * controller on different i2c buses. */
1753 struct mutex gmbus_mutex;
1754
1755 /**
1756 * Base address of the gmbus and gpio block.
1757 */
1758 uint32_t gpio_mmio_base;
1759
1760 /* MMIO base address for MIPI regs */
1761 uint32_t mipi_mmio_base;
1762
1763 uint32_t psr_mmio_base;
1764
1765 wait_queue_head_t gmbus_wait_queue;
1766
1767 struct pci_dev *bridge_dev;
1768 struct i915_gem_context *kernel_context;
1769 struct intel_engine_cs engine[I915_NUM_ENGINES];
1770 struct drm_i915_gem_object *semaphore_obj;
1771 uint32_t last_seqno, next_seqno;
1772
1773 struct drm_dma_handle *status_page_dmah;
1774 struct resource mch_res;
1775
1776 /* protects the irq masks */
1777 spinlock_t irq_lock;
1778
1779 /* protects the mmio flip data */
1780 spinlock_t mmio_flip_lock;
1781
1782 bool display_irqs_enabled;
1783
1784 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1785 struct pm_qos_request pm_qos;
1786
1787 /* Sideband mailbox protection */
1788 struct mutex sb_lock;
1789
1790 /** Cached value of IMR to avoid reads in updating the bitfield */
1791 union {
1792 u32 irq_mask;
1793 u32 de_irq_mask[I915_MAX_PIPES];
1794 };
1795 u32 gt_irq_mask;
1796 u32 pm_irq_mask;
1797 u32 pm_rps_events;
1798 u32 pipestat_irq_mask[I915_MAX_PIPES];
1799
1800 struct i915_hotplug hotplug;
1801 struct intel_fbc fbc;
1802 struct i915_drrs drrs;
1803 struct intel_opregion opregion;
1804 struct intel_vbt_data vbt;
1805
1806 bool preserve_bios_swizzle;
1807
1808 /* overlay */
1809 struct intel_overlay *overlay;
1810
1811 /* backlight registers and fields in struct intel_panel */
1812 struct mutex backlight_lock;
1813
1814 /* LVDS info */
1815 bool no_aux_handshake;
1816
1817 /* protects panel power sequencer state */
1818 struct mutex pps_mutex;
1819
1820 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1821 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1822
1823 unsigned int fsb_freq, mem_freq, is_ddr3;
1824 unsigned int skl_preferred_vco_freq;
1825 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1826 unsigned int max_dotclk_freq;
1827 unsigned int rawclk_freq;
1828 unsigned int hpll_freq;
1829 unsigned int czclk_freq;
1830
1831 struct {
1832 unsigned int vco, ref;
1833 } cdclk_pll;
1834
1835 /**
1836 * wq - Driver workqueue for GEM.
1837 *
1838 * NOTE: Work items scheduled here are not allowed to grab any modeset
1839 * locks, for otherwise the flushing done in the pageflip code will
1840 * result in deadlocks.
1841 */
1842 struct workqueue_struct *wq;
1843
1844 /* Display functions */
1845 struct drm_i915_display_funcs display;
1846
1847 /* PCH chipset type */
1848 enum intel_pch pch_type;
1849 unsigned short pch_id;
1850
1851 unsigned long quirks;
1852
1853 enum modeset_restore modeset_restore;
1854 struct mutex modeset_restore_lock;
1855 struct drm_atomic_state *modeset_restore_state;
1856
1857 struct list_head vm_list; /* Global list of all address spaces */
1858 struct i915_ggtt ggtt; /* VM representing the global address space */
1859
1860 struct i915_gem_mm mm;
1861 DECLARE_HASHTABLE(mm_structs, 7);
1862 struct mutex mm_lock;
1863
1864 /* The hw wants to have a stable context identifier for the lifetime
1865 * of the context (for OA, PASID, faults, etc). This is limited
1866 * in execlists to 21 bits.
1867 */
1868 struct ida context_hw_ida;
1869 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1870
1871 /* Kernel Modesetting */
1872
1873 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1874 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1875 wait_queue_head_t pending_flip_queue;
1876
1877 #ifdef CONFIG_DEBUG_FS
1878 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1879 #endif
1880
1881 /* dpll and cdclk state is protected by connection_mutex */
1882 int num_shared_dpll;
1883 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1884 const struct intel_dpll_mgr *dpll_mgr;
1885
1886 /*
1887 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1888 * Must be global rather than per dpll, because on some platforms
1889 * plls share registers.
1890 */
1891 struct mutex dpll_lock;
1892
1893 unsigned int active_crtcs;
1894 unsigned int min_pixclk[I915_MAX_PIPES];
1895
1896 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1897
1898 struct i915_workarounds workarounds;
1899
1900 struct i915_frontbuffer_tracking fb_tracking;
1901
1902 u16 orig_clock;
1903
1904 bool mchbar_need_disable;
1905
1906 struct intel_l3_parity l3_parity;
1907
1908 /* Cannot be determined by PCIID. You must always read a register. */
1909 u32 edram_cap;
1910
1911 /* gen6+ rps state */
1912 struct intel_gen6_power_mgmt rps;
1913
1914 /* ilk-only ips/rps state. Everything in here is protected by the global
1915 * mchdev_lock in intel_pm.c */
1916 struct intel_ilk_power_mgmt ips;
1917
1918 struct i915_power_domains power_domains;
1919
1920 struct i915_psr psr;
1921
1922 struct i915_gpu_error gpu_error;
1923
1924 struct drm_i915_gem_object *vlv_pctx;
1925
1926 #ifdef CONFIG_DRM_FBDEV_EMULATION
1927 /* list of fbdev register on this device */
1928 struct intel_fbdev *fbdev;
1929 struct work_struct fbdev_suspend_work;
1930 #endif
1931
1932 struct drm_property *broadcast_rgb_property;
1933 struct drm_property *force_audio_property;
1934
1935 /* hda/i915 audio component */
1936 struct i915_audio_component *audio_component;
1937 bool audio_component_registered;
1938 /**
1939 * av_mutex - mutex for audio/video sync
1940 *
1941 */
1942 struct mutex av_mutex;
1943
1944 uint32_t hw_context_size;
1945 struct list_head context_list;
1946
1947 u32 fdi_rx_config;
1948
1949 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1950 u32 chv_phy_control;
1951 /*
1952 * Shadows for CHV DPLL_MD regs to keep the state
1953 * checker somewhat working in the presence hardware
1954 * crappiness (can't read out DPLL_MD for pipes B & C).
1955 */
1956 u32 chv_dpll_md[I915_MAX_PIPES];
1957 u32 bxt_phy_grc;
1958
1959 u32 suspend_count;
1960 bool suspended_to_idle;
1961 struct i915_suspend_saved_registers regfile;
1962 struct vlv_s0ix_state vlv_s0ix_state;
1963
1964 struct {
1965 /*
1966 * Raw watermark latency values:
1967 * in 0.1us units for WM0,
1968 * in 0.5us units for WM1+.
1969 */
1970 /* primary */
1971 uint16_t pri_latency[5];
1972 /* sprite */
1973 uint16_t spr_latency[5];
1974 /* cursor */
1975 uint16_t cur_latency[5];
1976 /*
1977 * Raw watermark memory latency values
1978 * for SKL for all 8 levels
1979 * in 1us units.
1980 */
1981 uint16_t skl_latency[8];
1982
1983 /*
1984 * The skl_wm_values structure is a bit too big for stack
1985 * allocation, so we keep the staging struct where we store
1986 * intermediate results here instead.
1987 */
1988 struct skl_wm_values skl_results;
1989
1990 /* current hardware state */
1991 union {
1992 struct ilk_wm_values hw;
1993 struct skl_wm_values skl_hw;
1994 struct vlv_wm_values vlv;
1995 };
1996
1997 uint8_t max_level;
1998
1999 /*
2000 * Should be held around atomic WM register writing; also
2001 * protects * intel_crtc->wm.active and
2002 * cstate->wm.need_postvbl_update.
2003 */
2004 struct mutex wm_mutex;
2005
2006 /*
2007 * Set during HW readout of watermarks/DDB. Some platforms
2008 * need to know when we're still using BIOS-provided values
2009 * (which we don't fully trust).
2010 */
2011 bool distrust_bios_wm;
2012 } wm;
2013
2014 struct i915_runtime_pm pm;
2015
2016 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2017 struct {
2018 int (*execbuf_submit)(struct i915_execbuffer_params *params,
2019 struct drm_i915_gem_execbuffer2 *args,
2020 struct list_head *vmas);
2021 void (*cleanup_engine)(struct intel_engine_cs *engine);
2022 void (*stop_engine)(struct intel_engine_cs *engine);
2023
2024 /**
2025 * Is the GPU currently considered idle, or busy executing
2026 * userspace requests? Whilst idle, we allow runtime power
2027 * management to power down the hardware and display clocks.
2028 * In order to reduce the effect on performance, there
2029 * is a slight delay before we do so.
2030 */
2031 unsigned int active_engines;
2032 bool awake;
2033
2034 /**
2035 * We leave the user IRQ off as much as possible,
2036 * but this means that requests will finish and never
2037 * be retired once the system goes idle. Set a timer to
2038 * fire periodically while the ring is running. When it
2039 * fires, go retire requests.
2040 */
2041 struct delayed_work retire_work;
2042
2043 /**
2044 * When we detect an idle GPU, we want to turn on
2045 * powersaving features. So once we see that there
2046 * are no more requests outstanding and no more
2047 * arrive within a small period of time, we fire
2048 * off the idle_work.
2049 */
2050 struct delayed_work idle_work;
2051 } gt;
2052
2053 /* perform PHY state sanity checks? */
2054 bool chv_phy_assert[2];
2055
2056 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2057
2058 /*
2059 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2060 * will be rejected. Instead look for a better place.
2061 */
2062 };
2063
2064 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2065 {
2066 return container_of(dev, struct drm_i915_private, drm);
2067 }
2068
2069 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2070 {
2071 return to_i915(dev_get_drvdata(dev));
2072 }
2073
2074 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2075 {
2076 return container_of(guc, struct drm_i915_private, guc);
2077 }
2078
2079 /* Simple iterator over all initialised engines */
2080 #define for_each_engine(engine__, dev_priv__) \
2081 for ((engine__) = &(dev_priv__)->engine[0]; \
2082 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2083 (engine__)++) \
2084 for_each_if (intel_engine_initialized(engine__))
2085
2086 /* Iterator with engine_id */
2087 #define for_each_engine_id(engine__, dev_priv__, id__) \
2088 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2089 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2090 (engine__)++) \
2091 for_each_if (((id__) = (engine__)->id, \
2092 intel_engine_initialized(engine__)))
2093
2094 /* Iterator over subset of engines selected by mask */
2095 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2096 for ((engine__) = &(dev_priv__)->engine[0]; \
2097 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2098 (engine__)++) \
2099 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2100 intel_engine_initialized(engine__))
2101
2102 enum hdmi_force_audio {
2103 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2104 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2105 HDMI_AUDIO_AUTO, /* trust EDID */
2106 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2107 };
2108
2109 #define I915_GTT_OFFSET_NONE ((u32)-1)
2110
2111 struct drm_i915_gem_object_ops {
2112 unsigned int flags;
2113 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2114
2115 /* Interface between the GEM object and its backing storage.
2116 * get_pages() is called once prior to the use of the associated set
2117 * of pages before to binding them into the GTT, and put_pages() is
2118 * called after we no longer need them. As we expect there to be
2119 * associated cost with migrating pages between the backing storage
2120 * and making them available for the GPU (e.g. clflush), we may hold
2121 * onto the pages after they are no longer referenced by the GPU
2122 * in case they may be used again shortly (for example migrating the
2123 * pages to a different memory domain within the GTT). put_pages()
2124 * will therefore most likely be called when the object itself is
2125 * being released or under memory pressure (where we attempt to
2126 * reap pages for the shrinker).
2127 */
2128 int (*get_pages)(struct drm_i915_gem_object *);
2129 void (*put_pages)(struct drm_i915_gem_object *);
2130
2131 int (*dmabuf_export)(struct drm_i915_gem_object *);
2132 void (*release)(struct drm_i915_gem_object *);
2133 };
2134
2135 /*
2136 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2137 * considered to be the frontbuffer for the given plane interface-wise. This
2138 * doesn't mean that the hw necessarily already scans it out, but that any
2139 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2140 *
2141 * We have one bit per pipe and per scanout plane type.
2142 */
2143 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2144 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2145 #define INTEL_FRONTBUFFER_BITS \
2146 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2147 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2148 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2149 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2150 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2151 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2152 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2153 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2154 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2155 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2156 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2157
2158 struct drm_i915_gem_object {
2159 struct drm_gem_object base;
2160
2161 const struct drm_i915_gem_object_ops *ops;
2162
2163 /** List of VMAs backed by this object */
2164 struct list_head vma_list;
2165
2166 /** Stolen memory for this object, instead of being backed by shmem. */
2167 struct drm_mm_node *stolen;
2168 struct list_head global_list;
2169
2170 struct list_head engine_list[I915_NUM_ENGINES];
2171 /** Used in execbuf to temporarily hold a ref */
2172 struct list_head obj_exec_link;
2173
2174 struct list_head batch_pool_link;
2175
2176 /**
2177 * This is set if the object is on the active lists (has pending
2178 * rendering and so a non-zero seqno), and is not set if it i s on
2179 * inactive (ready to be unbound) list.
2180 */
2181 unsigned int active:I915_NUM_ENGINES;
2182
2183 /**
2184 * This is set if the object has been written to since last bound
2185 * to the GTT
2186 */
2187 unsigned int dirty:1;
2188
2189 /**
2190 * Fence register bits (if any) for this object. Will be set
2191 * as needed when mapped into the GTT.
2192 * Protected by dev->struct_mutex.
2193 */
2194 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2195
2196 /**
2197 * Advice: are the backing pages purgeable?
2198 */
2199 unsigned int madv:2;
2200
2201 /**
2202 * Current tiling mode for the object.
2203 */
2204 unsigned int tiling_mode:2;
2205 /**
2206 * Whether the tiling parameters for the currently associated fence
2207 * register have changed. Note that for the purposes of tracking
2208 * tiling changes we also treat the unfenced register, the register
2209 * slot that the object occupies whilst it executes a fenced
2210 * command (such as BLT on gen2/3), as a "fence".
2211 */
2212 unsigned int fence_dirty:1;
2213
2214 /**
2215 * Is the object at the current location in the gtt mappable and
2216 * fenceable? Used to avoid costly recalculations.
2217 */
2218 unsigned int map_and_fenceable:1;
2219
2220 /**
2221 * Whether the current gtt mapping needs to be mappable (and isn't just
2222 * mappable by accident). Track pin and fault separate for a more
2223 * accurate mappable working set.
2224 */
2225 unsigned int fault_mappable:1;
2226
2227 /*
2228 * Is the object to be mapped as read-only to the GPU
2229 * Only honoured if hardware has relevant pte bit
2230 */
2231 unsigned long gt_ro:1;
2232 unsigned int cache_level:3;
2233 unsigned int cache_dirty:1;
2234
2235 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2236
2237 unsigned int has_wc_mmap;
2238 unsigned int pin_display;
2239
2240 struct sg_table *pages;
2241 int pages_pin_count;
2242 struct get_page {
2243 struct scatterlist *sg;
2244 int last;
2245 } get_page;
2246 void *mapping;
2247
2248 /** Breadcrumb of last rendering to the buffer.
2249 * There can only be one writer, but we allow for multiple readers.
2250 * If there is a writer that necessarily implies that all other
2251 * read requests are complete - but we may only be lazily clearing
2252 * the read requests. A read request is naturally the most recent
2253 * request on a ring, so we may have two different write and read
2254 * requests on one ring where the write request is older than the
2255 * read request. This allows for the CPU to read from an active
2256 * buffer by only waiting for the write to complete.
2257 * */
2258 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
2259 struct drm_i915_gem_request *last_write_req;
2260 /** Breadcrumb of last fenced GPU access to the buffer. */
2261 struct drm_i915_gem_request *last_fenced_req;
2262
2263 /** Current tiling stride for the object, if it's tiled. */
2264 uint32_t stride;
2265
2266 /** References from framebuffers, locks out tiling changes. */
2267 unsigned long framebuffer_references;
2268
2269 /** Record of address bit 17 of each page at last unbind. */
2270 unsigned long *bit_17;
2271
2272 union {
2273 /** for phy allocated objects */
2274 struct drm_dma_handle *phys_handle;
2275
2276 struct i915_gem_userptr {
2277 uintptr_t ptr;
2278 unsigned read_only :1;
2279 unsigned workers :4;
2280 #define I915_GEM_USERPTR_MAX_WORKERS 15
2281
2282 struct i915_mm_struct *mm;
2283 struct i915_mmu_object *mmu_object;
2284 struct work_struct *work;
2285 } userptr;
2286 };
2287 };
2288
2289 static inline struct drm_i915_gem_object *
2290 to_intel_bo(struct drm_gem_object *gem)
2291 {
2292 /* Assert that to_intel_bo(NULL) == NULL */
2293 BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
2294
2295 return container_of(gem, struct drm_i915_gem_object, base);
2296 }
2297
2298 static inline struct drm_i915_gem_object *
2299 i915_gem_object_lookup(struct drm_file *file, u32 handle)
2300 {
2301 return to_intel_bo(drm_gem_object_lookup(file, handle));
2302 }
2303
2304 __deprecated
2305 extern struct drm_gem_object *
2306 drm_gem_object_lookup(struct drm_file *file, u32 handle);
2307
2308 __attribute__((nonnull))
2309 static inline struct drm_i915_gem_object *
2310 i915_gem_object_get(struct drm_i915_gem_object *obj)
2311 {
2312 drm_gem_object_reference(&obj->base);
2313 return obj;
2314 }
2315
2316 __deprecated
2317 extern void drm_gem_object_reference(struct drm_gem_object *);
2318
2319 __attribute__((nonnull))
2320 static inline void
2321 i915_gem_object_put(struct drm_i915_gem_object *obj)
2322 {
2323 drm_gem_object_unreference(&obj->base);
2324 }
2325
2326 __deprecated
2327 extern void drm_gem_object_unreference(struct drm_gem_object *);
2328
2329 __attribute__((nonnull))
2330 static inline void
2331 i915_gem_object_put_unlocked(struct drm_i915_gem_object *obj)
2332 {
2333 drm_gem_object_unreference_unlocked(&obj->base);
2334 }
2335
2336 __deprecated
2337 extern void drm_gem_object_unreference_unlocked(struct drm_gem_object *);
2338
2339 static inline bool
2340 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2341 {
2342 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2343 }
2344
2345 /*
2346 * Optimised SGL iterator for GEM objects
2347 */
2348 static __always_inline struct sgt_iter {
2349 struct scatterlist *sgp;
2350 union {
2351 unsigned long pfn;
2352 dma_addr_t dma;
2353 };
2354 unsigned int curr;
2355 unsigned int max;
2356 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2357 struct sgt_iter s = { .sgp = sgl };
2358
2359 if (s.sgp) {
2360 s.max = s.curr = s.sgp->offset;
2361 s.max += s.sgp->length;
2362 if (dma)
2363 s.dma = sg_dma_address(s.sgp);
2364 else
2365 s.pfn = page_to_pfn(sg_page(s.sgp));
2366 }
2367
2368 return s;
2369 }
2370
2371 /**
2372 * __sg_next - return the next scatterlist entry in a list
2373 * @sg: The current sg entry
2374 *
2375 * Description:
2376 * If the entry is the last, return NULL; otherwise, step to the next
2377 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2378 * otherwise just return the pointer to the current element.
2379 **/
2380 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2381 {
2382 #ifdef CONFIG_DEBUG_SG
2383 BUG_ON(sg->sg_magic != SG_MAGIC);
2384 #endif
2385 return sg_is_last(sg) ? NULL :
2386 likely(!sg_is_chain(++sg)) ? sg :
2387 sg_chain_ptr(sg);
2388 }
2389
2390 /**
2391 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2392 * @__dmap: DMA address (output)
2393 * @__iter: 'struct sgt_iter' (iterator state, internal)
2394 * @__sgt: sg_table to iterate over (input)
2395 */
2396 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2397 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2398 ((__dmap) = (__iter).dma + (__iter).curr); \
2399 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2400 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2401
2402 /**
2403 * for_each_sgt_page - iterate over the pages of the given sg_table
2404 * @__pp: page pointer (output)
2405 * @__iter: 'struct sgt_iter' (iterator state, internal)
2406 * @__sgt: sg_table to iterate over (input)
2407 */
2408 #define for_each_sgt_page(__pp, __iter, __sgt) \
2409 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2410 ((__pp) = (__iter).pfn == 0 ? NULL : \
2411 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2412 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2413 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2414
2415 /*
2416 * A command that requires special handling by the command parser.
2417 */
2418 struct drm_i915_cmd_descriptor {
2419 /*
2420 * Flags describing how the command parser processes the command.
2421 *
2422 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2423 * a length mask if not set
2424 * CMD_DESC_SKIP: The command is allowed but does not follow the
2425 * standard length encoding for the opcode range in
2426 * which it falls
2427 * CMD_DESC_REJECT: The command is never allowed
2428 * CMD_DESC_REGISTER: The command should be checked against the
2429 * register whitelist for the appropriate ring
2430 * CMD_DESC_MASTER: The command is allowed if the submitting process
2431 * is the DRM master
2432 */
2433 u32 flags;
2434 #define CMD_DESC_FIXED (1<<0)
2435 #define CMD_DESC_SKIP (1<<1)
2436 #define CMD_DESC_REJECT (1<<2)
2437 #define CMD_DESC_REGISTER (1<<3)
2438 #define CMD_DESC_BITMASK (1<<4)
2439 #define CMD_DESC_MASTER (1<<5)
2440
2441 /*
2442 * The command's unique identification bits and the bitmask to get them.
2443 * This isn't strictly the opcode field as defined in the spec and may
2444 * also include type, subtype, and/or subop fields.
2445 */
2446 struct {
2447 u32 value;
2448 u32 mask;
2449 } cmd;
2450
2451 /*
2452 * The command's length. The command is either fixed length (i.e. does
2453 * not include a length field) or has a length field mask. The flag
2454 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2455 * a length mask. All command entries in a command table must include
2456 * length information.
2457 */
2458 union {
2459 u32 fixed;
2460 u32 mask;
2461 } length;
2462
2463 /*
2464 * Describes where to find a register address in the command to check
2465 * against the ring's register whitelist. Only valid if flags has the
2466 * CMD_DESC_REGISTER bit set.
2467 *
2468 * A non-zero step value implies that the command may access multiple
2469 * registers in sequence (e.g. LRI), in that case step gives the
2470 * distance in dwords between individual offset fields.
2471 */
2472 struct {
2473 u32 offset;
2474 u32 mask;
2475 u32 step;
2476 } reg;
2477
2478 #define MAX_CMD_DESC_BITMASKS 3
2479 /*
2480 * Describes command checks where a particular dword is masked and
2481 * compared against an expected value. If the command does not match
2482 * the expected value, the parser rejects it. Only valid if flags has
2483 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2484 * are valid.
2485 *
2486 * If the check specifies a non-zero condition_mask then the parser
2487 * only performs the check when the bits specified by condition_mask
2488 * are non-zero.
2489 */
2490 struct {
2491 u32 offset;
2492 u32 mask;
2493 u32 expected;
2494 u32 condition_offset;
2495 u32 condition_mask;
2496 } bits[MAX_CMD_DESC_BITMASKS];
2497 };
2498
2499 /*
2500 * A table of commands requiring special handling by the command parser.
2501 *
2502 * Each ring has an array of tables. Each table consists of an array of command
2503 * descriptors, which must be sorted with command opcodes in ascending order.
2504 */
2505 struct drm_i915_cmd_table {
2506 const struct drm_i915_cmd_descriptor *table;
2507 int count;
2508 };
2509
2510 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2511 #define __I915__(p) ({ \
2512 struct drm_i915_private *__p; \
2513 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2514 __p = (struct drm_i915_private *)p; \
2515 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2516 __p = to_i915((struct drm_device *)p); \
2517 else \
2518 BUILD_BUG(); \
2519 __p; \
2520 })
2521 #define INTEL_INFO(p) (&__I915__(p)->info)
2522 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2523 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2524
2525 #define REVID_FOREVER 0xff
2526 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2527
2528 #define GEN_FOREVER (0)
2529 /*
2530 * Returns true if Gen is in inclusive range [Start, End].
2531 *
2532 * Use GEN_FOREVER for unbound start and or end.
2533 */
2534 #define IS_GEN(p, s, e) ({ \
2535 unsigned int __s = (s), __e = (e); \
2536 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2537 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2538 if ((__s) != GEN_FOREVER) \
2539 __s = (s) - 1; \
2540 if ((__e) == GEN_FOREVER) \
2541 __e = BITS_PER_LONG - 1; \
2542 else \
2543 __e = (e) - 1; \
2544 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2545 })
2546
2547 /*
2548 * Return true if revision is in range [since,until] inclusive.
2549 *
2550 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2551 */
2552 #define IS_REVID(p, since, until) \
2553 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2554
2555 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2556 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2557 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2558 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2559 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2560 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2561 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2562 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2563 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2564 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2565 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2566 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2567 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2568 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2569 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2570 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2571 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2572 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2573 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2574 INTEL_DEVID(dev) == 0x0152 || \
2575 INTEL_DEVID(dev) == 0x015a)
2576 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2577 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2578 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2579 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2580 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2581 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2582 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2583 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2584 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2585 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2586 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2587 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2588 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2589 (INTEL_DEVID(dev) & 0xf) == 0xe))
2590 /* ULX machines are also considered ULT. */
2591 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2592 (INTEL_DEVID(dev) & 0xf) == 0xe)
2593 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2594 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2595 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2596 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2597 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2598 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2599 /* ULX machines are also considered ULT. */
2600 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2601 INTEL_DEVID(dev) == 0x0A1E)
2602 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2603 INTEL_DEVID(dev) == 0x1913 || \
2604 INTEL_DEVID(dev) == 0x1916 || \
2605 INTEL_DEVID(dev) == 0x1921 || \
2606 INTEL_DEVID(dev) == 0x1926)
2607 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2608 INTEL_DEVID(dev) == 0x1915 || \
2609 INTEL_DEVID(dev) == 0x191E)
2610 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2611 INTEL_DEVID(dev) == 0x5913 || \
2612 INTEL_DEVID(dev) == 0x5916 || \
2613 INTEL_DEVID(dev) == 0x5921 || \
2614 INTEL_DEVID(dev) == 0x5926)
2615 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2616 INTEL_DEVID(dev) == 0x5915 || \
2617 INTEL_DEVID(dev) == 0x591E)
2618 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2619 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2620 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2621 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2622
2623 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2624
2625 #define SKL_REVID_A0 0x0
2626 #define SKL_REVID_B0 0x1
2627 #define SKL_REVID_C0 0x2
2628 #define SKL_REVID_D0 0x3
2629 #define SKL_REVID_E0 0x4
2630 #define SKL_REVID_F0 0x5
2631 #define SKL_REVID_G0 0x6
2632 #define SKL_REVID_H0 0x7
2633
2634 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2635
2636 #define BXT_REVID_A0 0x0
2637 #define BXT_REVID_A1 0x1
2638 #define BXT_REVID_B0 0x3
2639 #define BXT_REVID_C0 0x9
2640
2641 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2642
2643 #define KBL_REVID_A0 0x0
2644 #define KBL_REVID_B0 0x1
2645 #define KBL_REVID_C0 0x2
2646 #define KBL_REVID_D0 0x3
2647 #define KBL_REVID_E0 0x4
2648
2649 #define IS_KBL_REVID(p, since, until) \
2650 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2651
2652 /*
2653 * The genX designation typically refers to the render engine, so render
2654 * capability related checks should use IS_GEN, while display and other checks
2655 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2656 * chips, etc.).
2657 */
2658 #define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1)))
2659 #define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2)))
2660 #define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3)))
2661 #define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4)))
2662 #define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5)))
2663 #define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6)))
2664 #define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7)))
2665 #define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8)))
2666
2667 #define ENGINE_MASK(id) BIT(id)
2668 #define RENDER_RING ENGINE_MASK(RCS)
2669 #define BSD_RING ENGINE_MASK(VCS)
2670 #define BLT_RING ENGINE_MASK(BCS)
2671 #define VEBOX_RING ENGINE_MASK(VECS)
2672 #define BSD2_RING ENGINE_MASK(VCS2)
2673 #define ALL_ENGINES (~0)
2674
2675 #define HAS_ENGINE(dev_priv, id) \
2676 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2677
2678 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2679 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2680 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2681 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2682
2683 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2684 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2685 #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2686 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2687 HAS_EDRAM(dev))
2688 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2689
2690 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2691 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2692 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2693 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2694 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2695
2696 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2697 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2698
2699 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2700 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2701
2702 /* WaRsDisableCoarsePowerGating:skl,bxt */
2703 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2704 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2705 IS_SKL_GT3(dev_priv) || \
2706 IS_SKL_GT4(dev_priv))
2707
2708 /*
2709 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2710 * even when in MSI mode. This results in spurious interrupt warnings if the
2711 * legacy irq no. is shared with another device. The kernel then disables that
2712 * interrupt source and so prevents the other device from working properly.
2713 */
2714 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2715 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2716
2717 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2718 * rows, which changed the alignment requirements and fence programming.
2719 */
2720 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2721 IS_I915GM(dev)))
2722 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2723 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2724
2725 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2726 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2727 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2728
2729 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2730
2731 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2732 INTEL_INFO(dev)->gen >= 9)
2733
2734 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2735 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2736 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2737 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2738 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2739 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2740 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2741 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2742 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2743 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2744 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2745
2746 #define HAS_CSR(dev) (IS_GEN9(dev))
2747
2748 /*
2749 * For now, anything with a GuC requires uCode loading, and then supports
2750 * command submission once loaded. But these are logically independent
2751 * properties, so we have separate macros to test them.
2752 */
2753 #define HAS_GUC(dev) (IS_GEN9(dev))
2754 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2755 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2756
2757 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2758 INTEL_INFO(dev)->gen >= 8)
2759
2760 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2761 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2762 !IS_BROXTON(dev))
2763
2764 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2765
2766 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2767 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2768 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2769 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2770 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2771 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2772 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2773 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2774 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2775 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2776 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2777 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2778
2779 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2780 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
2781 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2782 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2783 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2784 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2785 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2786 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2787 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2788 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2789
2790 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2791 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2792
2793 /* DPF == dynamic parity feature */
2794 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2795 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2796
2797 #define GT_FREQUENCY_MULTIPLIER 50
2798 #define GEN9_FREQ_SCALER 3
2799
2800 #include "i915_trace.h"
2801
2802 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2803 {
2804 #ifdef CONFIG_INTEL_IOMMU
2805 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2806 return true;
2807 #endif
2808 return false;
2809 }
2810
2811 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2812 extern int i915_resume_switcheroo(struct drm_device *dev);
2813
2814 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2815 int enable_ppgtt);
2816
2817 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2818
2819 /* i915_drv.c */
2820 void __printf(3, 4)
2821 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2822 const char *fmt, ...);
2823
2824 #define i915_report_error(dev_priv, fmt, ...) \
2825 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2826
2827 #ifdef CONFIG_COMPAT
2828 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2829 unsigned long arg);
2830 #endif
2831 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2832 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2833 extern int i915_reset(struct drm_i915_private *dev_priv);
2834 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2835 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2836 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2837 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2838 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2839 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2840 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2841
2842 /* intel_hotplug.c */
2843 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2844 u32 pin_mask, u32 long_mask);
2845 void intel_hpd_init(struct drm_i915_private *dev_priv);
2846 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2847 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2848 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2849 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2850 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2851
2852 /* i915_irq.c */
2853 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2854 {
2855 unsigned long delay;
2856
2857 if (unlikely(!i915.enable_hangcheck))
2858 return;
2859
2860 /* Don't continually defer the hangcheck so that it is always run at
2861 * least once after work has been scheduled on any ring. Otherwise,
2862 * we will ignore a hung ring if a second ring is kept busy.
2863 */
2864
2865 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2866 queue_delayed_work(system_long_wq,
2867 &dev_priv->gpu_error.hangcheck_work, delay);
2868 }
2869
2870 __printf(3, 4)
2871 void i915_handle_error(struct drm_i915_private *dev_priv,
2872 u32 engine_mask,
2873 const char *fmt, ...);
2874
2875 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2876 int intel_irq_install(struct drm_i915_private *dev_priv);
2877 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2878
2879 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2880 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2881 bool restore_forcewake);
2882 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2883 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2884 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2885 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2886 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2887 bool restore);
2888 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2889 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2890 enum forcewake_domains domains);
2891 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2892 enum forcewake_domains domains);
2893 /* Like above but the caller must manage the uncore.lock itself.
2894 * Must be used with I915_READ_FW and friends.
2895 */
2896 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2897 enum forcewake_domains domains);
2898 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2899 enum forcewake_domains domains);
2900 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2901
2902 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2903
2904 int intel_wait_for_register(struct drm_i915_private *dev_priv,
2905 i915_reg_t reg,
2906 const u32 mask,
2907 const u32 value,
2908 const unsigned long timeout_ms);
2909 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
2910 i915_reg_t reg,
2911 const u32 mask,
2912 const u32 value,
2913 const unsigned long timeout_ms);
2914
2915 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2916 {
2917 return dev_priv->gvt.initialized;
2918 }
2919
2920 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2921 {
2922 return dev_priv->vgpu.active;
2923 }
2924
2925 void
2926 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2927 u32 status_mask);
2928
2929 void
2930 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2931 u32 status_mask);
2932
2933 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2934 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2935 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2936 uint32_t mask,
2937 uint32_t bits);
2938 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2939 uint32_t interrupt_mask,
2940 uint32_t enabled_irq_mask);
2941 static inline void
2942 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2943 {
2944 ilk_update_display_irq(dev_priv, bits, bits);
2945 }
2946 static inline void
2947 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2948 {
2949 ilk_update_display_irq(dev_priv, bits, 0);
2950 }
2951 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2952 enum pipe pipe,
2953 uint32_t interrupt_mask,
2954 uint32_t enabled_irq_mask);
2955 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2956 enum pipe pipe, uint32_t bits)
2957 {
2958 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2959 }
2960 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2961 enum pipe pipe, uint32_t bits)
2962 {
2963 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2964 }
2965 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2966 uint32_t interrupt_mask,
2967 uint32_t enabled_irq_mask);
2968 static inline void
2969 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2970 {
2971 ibx_display_interrupt_update(dev_priv, bits, bits);
2972 }
2973 static inline void
2974 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2975 {
2976 ibx_display_interrupt_update(dev_priv, bits, 0);
2977 }
2978
2979 /* i915_gem.c */
2980 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2981 struct drm_file *file_priv);
2982 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2983 struct drm_file *file_priv);
2984 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2985 struct drm_file *file_priv);
2986 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2987 struct drm_file *file_priv);
2988 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2989 struct drm_file *file_priv);
2990 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2991 struct drm_file *file_priv);
2992 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2993 struct drm_file *file_priv);
2994 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
2995 struct drm_i915_gem_request *req);
2996 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
2997 struct drm_i915_gem_execbuffer2 *args,
2998 struct list_head *vmas);
2999 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3000 struct drm_file *file_priv);
3001 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3002 struct drm_file *file_priv);
3003 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3004 struct drm_file *file_priv);
3005 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3006 struct drm_file *file);
3007 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3008 struct drm_file *file);
3009 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3010 struct drm_file *file_priv);
3011 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3012 struct drm_file *file_priv);
3013 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3014 struct drm_file *file_priv);
3015 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3016 struct drm_file *file_priv);
3017 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3018 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3019 struct drm_file *file);
3020 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3021 struct drm_file *file_priv);
3022 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3023 struct drm_file *file_priv);
3024 void i915_gem_load_init(struct drm_device *dev);
3025 void i915_gem_load_cleanup(struct drm_device *dev);
3026 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3027 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3028
3029 void *i915_gem_object_alloc(struct drm_device *dev);
3030 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3031 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3032 const struct drm_i915_gem_object_ops *ops);
3033 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3034 size_t size);
3035 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3036 struct drm_device *dev, const void *data, size_t size);
3037 void i915_gem_free_object(struct drm_gem_object *obj);
3038 void i915_gem_vma_destroy(struct i915_vma *vma);
3039
3040 /* Flags used by pin/bind&friends. */
3041 #define PIN_MAPPABLE (1<<0)
3042 #define PIN_NONBLOCK (1<<1)
3043 #define PIN_GLOBAL (1<<2)
3044 #define PIN_OFFSET_BIAS (1<<3)
3045 #define PIN_USER (1<<4)
3046 #define PIN_UPDATE (1<<5)
3047 #define PIN_ZONE_4G (1<<6)
3048 #define PIN_HIGH (1<<7)
3049 #define PIN_OFFSET_FIXED (1<<8)
3050 #define PIN_OFFSET_MASK (~4095)
3051 int __must_check
3052 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3053 struct i915_address_space *vm,
3054 uint32_t alignment,
3055 uint64_t flags);
3056 int __must_check
3057 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3058 const struct i915_ggtt_view *view,
3059 uint32_t alignment,
3060 uint64_t flags);
3061
3062 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3063 u32 flags);
3064 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3065 int __must_check i915_vma_unbind(struct i915_vma *vma);
3066 /*
3067 * BEWARE: Do not use the function below unless you can _absolutely_
3068 * _guarantee_ VMA in question is _not in use_ anywhere.
3069 */
3070 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
3071 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3072 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3073 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3074
3075 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3076 int *needs_clflush);
3077
3078 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3079
3080 static inline int __sg_page_count(struct scatterlist *sg)
3081 {
3082 return sg->length >> PAGE_SHIFT;
3083 }
3084
3085 struct page *
3086 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3087
3088 static inline dma_addr_t
3089 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3090 {
3091 if (n < obj->get_page.last) {
3092 obj->get_page.sg = obj->pages->sgl;
3093 obj->get_page.last = 0;
3094 }
3095
3096 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3097 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3098 if (unlikely(sg_is_chain(obj->get_page.sg)))
3099 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3100 }
3101
3102 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3103 }
3104
3105 static inline struct page *
3106 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3107 {
3108 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3109 return NULL;
3110
3111 if (n < obj->get_page.last) {
3112 obj->get_page.sg = obj->pages->sgl;
3113 obj->get_page.last = 0;
3114 }
3115
3116 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3117 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3118 if (unlikely(sg_is_chain(obj->get_page.sg)))
3119 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3120 }
3121
3122 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3123 }
3124
3125 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3126 {
3127 BUG_ON(obj->pages == NULL);
3128 obj->pages_pin_count++;
3129 }
3130
3131 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3132 {
3133 BUG_ON(obj->pages_pin_count == 0);
3134 obj->pages_pin_count--;
3135 }
3136
3137 /**
3138 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3139 * @obj - the object to map into kernel address space
3140 *
3141 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3142 * pages and then returns a contiguous mapping of the backing storage into
3143 * the kernel address space.
3144 *
3145 * The caller must hold the struct_mutex, and is responsible for calling
3146 * i915_gem_object_unpin_map() when the mapping is no longer required.
3147 *
3148 * Returns the pointer through which to access the mapped object, or an
3149 * ERR_PTR() on error.
3150 */
3151 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
3152
3153 /**
3154 * i915_gem_object_unpin_map - releases an earlier mapping
3155 * @obj - the object to unmap
3156 *
3157 * After pinning the object and mapping its pages, once you are finished
3158 * with your access, call i915_gem_object_unpin_map() to release the pin
3159 * upon the mapping. Once the pin count reaches zero, that mapping may be
3160 * removed.
3161 *
3162 * The caller must hold the struct_mutex.
3163 */
3164 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3165 {
3166 lockdep_assert_held(&obj->base.dev->struct_mutex);
3167 i915_gem_object_unpin_pages(obj);
3168 }
3169
3170 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3171 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3172 struct intel_engine_cs *to,
3173 struct drm_i915_gem_request **to_req);
3174 void i915_vma_move_to_active(struct i915_vma *vma,
3175 struct drm_i915_gem_request *req);
3176 int i915_gem_dumb_create(struct drm_file *file_priv,
3177 struct drm_device *dev,
3178 struct drm_mode_create_dumb *args);
3179 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3180 uint32_t handle, uint64_t *offset);
3181
3182 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3183 struct drm_i915_gem_object *new,
3184 unsigned frontbuffer_bits);
3185
3186 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3187
3188 struct drm_i915_gem_request *
3189 i915_gem_find_active_request(struct intel_engine_cs *engine);
3190
3191 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3192 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
3193
3194 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3195 {
3196 return atomic_read(&error->reset_counter);
3197 }
3198
3199 static inline bool __i915_reset_in_progress(u32 reset)
3200 {
3201 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3202 }
3203
3204 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3205 {
3206 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3207 }
3208
3209 static inline bool __i915_terminally_wedged(u32 reset)
3210 {
3211 return unlikely(reset & I915_WEDGED);
3212 }
3213
3214 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3215 {
3216 return __i915_reset_in_progress(i915_reset_counter(error));
3217 }
3218
3219 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3220 {
3221 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3222 }
3223
3224 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3225 {
3226 return __i915_terminally_wedged(i915_reset_counter(error));
3227 }
3228
3229 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3230 {
3231 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3232 }
3233
3234 void i915_gem_reset(struct drm_device *dev);
3235 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3236 int __must_check i915_gem_init(struct drm_device *dev);
3237 int __must_check i915_gem_init_hw(struct drm_device *dev);
3238 void i915_gem_init_swizzling(struct drm_device *dev);
3239 void i915_gem_cleanup_engines(struct drm_device *dev);
3240 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv);
3241 int __must_check i915_gem_suspend(struct drm_device *dev);
3242 void i915_gem_resume(struct drm_device *dev);
3243 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3244 int __must_check
3245 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3246 bool readonly);
3247 int __must_check
3248 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3249 bool write);
3250 int __must_check
3251 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3252 int __must_check
3253 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3254 u32 alignment,
3255 const struct i915_ggtt_view *view);
3256 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3257 const struct i915_ggtt_view *view);
3258 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3259 int align);
3260 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3261 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3262
3263 uint32_t
3264 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3265 uint32_t
3266 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3267 int tiling_mode, bool fenced);
3268
3269 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3270 enum i915_cache_level cache_level);
3271
3272 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3273 struct dma_buf *dma_buf);
3274
3275 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3276 struct drm_gem_object *gem_obj, int flags);
3277
3278 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3279 const struct i915_ggtt_view *view);
3280 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3281 struct i915_address_space *vm);
3282 static inline u64
3283 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3284 {
3285 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3286 }
3287
3288 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3289 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3290 const struct i915_ggtt_view *view);
3291 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3292 struct i915_address_space *vm);
3293
3294 struct i915_vma *
3295 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3296 struct i915_address_space *vm);
3297 struct i915_vma *
3298 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3299 const struct i915_ggtt_view *view);
3300
3301 struct i915_vma *
3302 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3303 struct i915_address_space *vm);
3304 struct i915_vma *
3305 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3306 const struct i915_ggtt_view *view);
3307
3308 static inline struct i915_vma *
3309 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3310 {
3311 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3312 }
3313 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3314
3315 /* Some GGTT VM helpers */
3316 static inline struct i915_hw_ppgtt *
3317 i915_vm_to_ppgtt(struct i915_address_space *vm)
3318 {
3319 return container_of(vm, struct i915_hw_ppgtt, base);
3320 }
3321
3322
3323 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3324 {
3325 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3326 }
3327
3328 unsigned long
3329 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj);
3330
3331 static inline int __must_check
3332 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3333 uint32_t alignment,
3334 unsigned flags)
3335 {
3336 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3337 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3338
3339 return i915_gem_object_pin(obj, &ggtt->base,
3340 alignment, flags | PIN_GLOBAL);
3341 }
3342
3343 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3344 const struct i915_ggtt_view *view);
3345 static inline void
3346 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3347 {
3348 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3349 }
3350
3351 /* i915_gem_fence.c */
3352 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3353 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3354
3355 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3356 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3357
3358 void i915_gem_restore_fences(struct drm_device *dev);
3359
3360 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3361 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3362 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3363
3364 /* i915_gem_context.c */
3365 int __must_check i915_gem_context_init(struct drm_device *dev);
3366 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3367 void i915_gem_context_fini(struct drm_device *dev);
3368 void i915_gem_context_reset(struct drm_device *dev);
3369 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3370 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3371 int i915_switch_context(struct drm_i915_gem_request *req);
3372 int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv);
3373 void i915_gem_context_free(struct kref *ctx_ref);
3374 struct drm_i915_gem_object *
3375 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3376 struct i915_gem_context *
3377 i915_gem_context_create_gvt(struct drm_device *dev);
3378
3379 static inline struct i915_gem_context *
3380 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3381 {
3382 struct i915_gem_context *ctx;
3383
3384 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3385
3386 ctx = idr_find(&file_priv->context_idr, id);
3387 if (!ctx)
3388 return ERR_PTR(-ENOENT);
3389
3390 return ctx;
3391 }
3392
3393 static inline struct i915_gem_context *
3394 i915_gem_context_get(struct i915_gem_context *ctx)
3395 {
3396 kref_get(&ctx->ref);
3397 return ctx;
3398 }
3399
3400 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3401 {
3402 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3403 kref_put(&ctx->ref, i915_gem_context_free);
3404 }
3405
3406 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3407 {
3408 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3409 }
3410
3411 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3412 struct drm_file *file);
3413 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3414 struct drm_file *file);
3415 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3416 struct drm_file *file_priv);
3417 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3418 struct drm_file *file_priv);
3419 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3420 struct drm_file *file);
3421
3422 /* i915_gem_evict.c */
3423 int __must_check i915_gem_evict_something(struct drm_device *dev,
3424 struct i915_address_space *vm,
3425 int min_size,
3426 unsigned alignment,
3427 unsigned cache_level,
3428 unsigned long start,
3429 unsigned long end,
3430 unsigned flags);
3431 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3432 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3433
3434 /* belongs in i915_gem_gtt.h */
3435 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3436 {
3437 if (INTEL_GEN(dev_priv) < 6)
3438 intel_gtt_chipset_flush();
3439 }
3440
3441 /* i915_gem_stolen.c */
3442 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3443 struct drm_mm_node *node, u64 size,
3444 unsigned alignment);
3445 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3446 struct drm_mm_node *node, u64 size,
3447 unsigned alignment, u64 start,
3448 u64 end);
3449 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3450 struct drm_mm_node *node);
3451 int i915_gem_init_stolen(struct drm_device *dev);
3452 void i915_gem_cleanup_stolen(struct drm_device *dev);
3453 struct drm_i915_gem_object *
3454 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3455 struct drm_i915_gem_object *
3456 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3457 u32 stolen_offset,
3458 u32 gtt_offset,
3459 u32 size);
3460
3461 /* i915_gem_shrinker.c */
3462 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3463 unsigned long target,
3464 unsigned flags);
3465 #define I915_SHRINK_PURGEABLE 0x1
3466 #define I915_SHRINK_UNBOUND 0x2
3467 #define I915_SHRINK_BOUND 0x4
3468 #define I915_SHRINK_ACTIVE 0x8
3469 #define I915_SHRINK_VMAPS 0x10
3470 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3471 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3472 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3473
3474
3475 /* i915_gem_tiling.c */
3476 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3477 {
3478 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3479
3480 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3481 obj->tiling_mode != I915_TILING_NONE;
3482 }
3483
3484 /* i915_gem_debug.c */
3485 #if WATCH_LISTS
3486 int i915_verify_lists(struct drm_device *dev);
3487 #else
3488 #define i915_verify_lists(dev) 0
3489 #endif
3490
3491 /* i915_debugfs.c */
3492 #ifdef CONFIG_DEBUG_FS
3493 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3494 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3495 int i915_debugfs_connector_add(struct drm_connector *connector);
3496 void intel_display_crc_init(struct drm_device *dev);
3497 #else
3498 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3499 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3500 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3501 { return 0; }
3502 static inline void intel_display_crc_init(struct drm_device *dev) {}
3503 #endif
3504
3505 /* i915_gpu_error.c */
3506 __printf(2, 3)
3507 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3508 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3509 const struct i915_error_state_file_priv *error);
3510 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3511 struct drm_i915_private *i915,
3512 size_t count, loff_t pos);
3513 static inline void i915_error_state_buf_release(
3514 struct drm_i915_error_state_buf *eb)
3515 {
3516 kfree(eb->buf);
3517 }
3518 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3519 u32 engine_mask,
3520 const char *error_msg);
3521 void i915_error_state_get(struct drm_device *dev,
3522 struct i915_error_state_file_priv *error_priv);
3523 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3524 void i915_destroy_error_state(struct drm_device *dev);
3525
3526 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3527 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3528
3529 /* i915_cmd_parser.c */
3530 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3531 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine);
3532 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine);
3533 bool i915_needs_cmd_parser(struct intel_engine_cs *engine);
3534 int i915_parse_cmds(struct intel_engine_cs *engine,
3535 struct drm_i915_gem_object *batch_obj,
3536 struct drm_i915_gem_object *shadow_batch_obj,
3537 u32 batch_start_offset,
3538 u32 batch_len,
3539 bool is_master);
3540
3541 /* i915_suspend.c */
3542 extern int i915_save_state(struct drm_device *dev);
3543 extern int i915_restore_state(struct drm_device *dev);
3544
3545 /* i915_sysfs.c */
3546 void i915_setup_sysfs(struct drm_device *dev_priv);
3547 void i915_teardown_sysfs(struct drm_device *dev_priv);
3548
3549 /* intel_i2c.c */
3550 extern int intel_setup_gmbus(struct drm_device *dev);
3551 extern void intel_teardown_gmbus(struct drm_device *dev);
3552 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3553 unsigned int pin);
3554
3555 extern struct i2c_adapter *
3556 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3557 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3558 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3559 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3560 {
3561 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3562 }
3563 extern void intel_i2c_reset(struct drm_device *dev);
3564
3565 /* intel_bios.c */
3566 int intel_bios_init(struct drm_i915_private *dev_priv);
3567 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3568 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3569 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3570 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3571 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3572 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3573 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3574 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3575 enum port port);
3576
3577 /* intel_opregion.c */
3578 #ifdef CONFIG_ACPI
3579 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3580 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3581 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3582 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3583 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3584 bool enable);
3585 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3586 pci_power_t state);
3587 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3588 #else
3589 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3590 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3591 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3592 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3593 {
3594 }
3595 static inline int
3596 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3597 {
3598 return 0;
3599 }
3600 static inline int
3601 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3602 {
3603 return 0;
3604 }
3605 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3606 {
3607 return -ENODEV;
3608 }
3609 #endif
3610
3611 /* intel_acpi.c */
3612 #ifdef CONFIG_ACPI
3613 extern void intel_register_dsm_handler(void);
3614 extern void intel_unregister_dsm_handler(void);
3615 #else
3616 static inline void intel_register_dsm_handler(void) { return; }
3617 static inline void intel_unregister_dsm_handler(void) { return; }
3618 #endif /* CONFIG_ACPI */
3619
3620 /* intel_device_info.c */
3621 static inline struct intel_device_info *
3622 mkwrite_device_info(struct drm_i915_private *dev_priv)
3623 {
3624 return (struct intel_device_info *)&dev_priv->info;
3625 }
3626
3627 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3628 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3629
3630 /* modesetting */
3631 extern void intel_modeset_init_hw(struct drm_device *dev);
3632 extern void intel_modeset_init(struct drm_device *dev);
3633 extern void intel_modeset_gem_init(struct drm_device *dev);
3634 extern void intel_modeset_cleanup(struct drm_device *dev);
3635 extern int intel_connector_register(struct drm_connector *);
3636 extern void intel_connector_unregister(struct drm_connector *);
3637 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3638 extern void intel_display_resume(struct drm_device *dev);
3639 extern void i915_redisable_vga(struct drm_device *dev);
3640 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3641 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3642 extern void intel_init_pch_refclk(struct drm_device *dev);
3643 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3644 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3645 bool enable);
3646
3647 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3648 struct drm_file *file);
3649
3650 /* overlay */
3651 extern struct intel_overlay_error_state *
3652 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3653 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3654 struct intel_overlay_error_state *error);
3655
3656 extern struct intel_display_error_state *
3657 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3658 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3659 struct drm_device *dev,
3660 struct intel_display_error_state *error);
3661
3662 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3663 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3664
3665 /* intel_sideband.c */
3666 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3667 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3668 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3669 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3670 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3671 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3672 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3673 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3674 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3675 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3676 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3677 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3678 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3679 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3680 enum intel_sbi_destination destination);
3681 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3682 enum intel_sbi_destination destination);
3683 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3684 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3685
3686 /* intel_dpio_phy.c */
3687 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3688 u32 deemph_reg_value, u32 margin_reg_value,
3689 bool uniq_trans_scale);
3690 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3691 bool reset);
3692 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3693 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3694 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3695 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3696
3697 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3698 u32 demph_reg_value, u32 preemph_reg_value,
3699 u32 uniqtranscale_reg_value, u32 tx3_demph);
3700 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3701 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3702 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3703
3704 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3705 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3706
3707 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3708 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3709
3710 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3711 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3712 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3713 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3714
3715 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3716 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3717 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3718 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3719
3720 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3721 * will be implemented using 2 32-bit writes in an arbitrary order with
3722 * an arbitrary delay between them. This can cause the hardware to
3723 * act upon the intermediate value, possibly leading to corruption and
3724 * machine death. You have been warned.
3725 */
3726 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3727 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3728
3729 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3730 u32 upper, lower, old_upper, loop = 0; \
3731 upper = I915_READ(upper_reg); \
3732 do { \
3733 old_upper = upper; \
3734 lower = I915_READ(lower_reg); \
3735 upper = I915_READ(upper_reg); \
3736 } while (upper != old_upper && loop++ < 2); \
3737 (u64)upper << 32 | lower; })
3738
3739 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3740 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3741
3742 #define __raw_read(x, s) \
3743 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3744 i915_reg_t reg) \
3745 { \
3746 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3747 }
3748
3749 #define __raw_write(x, s) \
3750 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3751 i915_reg_t reg, uint##x##_t val) \
3752 { \
3753 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3754 }
3755 __raw_read(8, b)
3756 __raw_read(16, w)
3757 __raw_read(32, l)
3758 __raw_read(64, q)
3759
3760 __raw_write(8, b)
3761 __raw_write(16, w)
3762 __raw_write(32, l)
3763 __raw_write(64, q)
3764
3765 #undef __raw_read
3766 #undef __raw_write
3767
3768 /* These are untraced mmio-accessors that are only valid to be used inside
3769 * criticial sections inside IRQ handlers where forcewake is explicitly
3770 * controlled.
3771 * Think twice, and think again, before using these.
3772 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3773 * intel_uncore_forcewake_irqunlock().
3774 */
3775 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3776 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3777 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3778 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3779
3780 /* "Broadcast RGB" property */
3781 #define INTEL_BROADCAST_RGB_AUTO 0
3782 #define INTEL_BROADCAST_RGB_FULL 1
3783 #define INTEL_BROADCAST_RGB_LIMITED 2
3784
3785 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3786 {
3787 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3788 return VLV_VGACNTRL;
3789 else if (INTEL_INFO(dev)->gen >= 5)
3790 return CPU_VGACNTRL;
3791 else
3792 return VGACNTRL;
3793 }
3794
3795 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3796 {
3797 unsigned long j = msecs_to_jiffies(m);
3798
3799 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3800 }
3801
3802 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3803 {
3804 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3805 }
3806
3807 static inline unsigned long
3808 timespec_to_jiffies_timeout(const struct timespec *value)
3809 {
3810 unsigned long j = timespec_to_jiffies(value);
3811
3812 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3813 }
3814
3815 /*
3816 * If you need to wait X milliseconds between events A and B, but event B
3817 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3818 * when event A happened, then just before event B you call this function and
3819 * pass the timestamp as the first argument, and X as the second argument.
3820 */
3821 static inline void
3822 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3823 {
3824 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3825
3826 /*
3827 * Don't re-read the value of "jiffies" every time since it may change
3828 * behind our back and break the math.
3829 */
3830 tmp_jiffies = jiffies;
3831 target_jiffies = timestamp_jiffies +
3832 msecs_to_jiffies_timeout(to_wait_ms);
3833
3834 if (time_after(target_jiffies, tmp_jiffies)) {
3835 remaining_jiffies = target_jiffies - tmp_jiffies;
3836 while (remaining_jiffies)
3837 remaining_jiffies =
3838 schedule_timeout_uninterruptible(remaining_jiffies);
3839 }
3840 }
3841 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req)
3842 {
3843 struct intel_engine_cs *engine = req->engine;
3844
3845 /* Before we do the heavier coherent read of the seqno,
3846 * check the value (hopefully) in the CPU cacheline.
3847 */
3848 if (i915_gem_request_completed(req))
3849 return true;
3850
3851 /* Ensure our read of the seqno is coherent so that we
3852 * do not "miss an interrupt" (i.e. if this is the last
3853 * request and the seqno write from the GPU is not visible
3854 * by the time the interrupt fires, we will see that the
3855 * request is incomplete and go back to sleep awaiting
3856 * another interrupt that will never come.)
3857 *
3858 * Strictly, we only need to do this once after an interrupt,
3859 * but it is easier and safer to do it every time the waiter
3860 * is woken.
3861 */
3862 if (engine->irq_seqno_barrier &&
3863 READ_ONCE(engine->breadcrumbs.irq_seqno_bh) == current &&
3864 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
3865 struct task_struct *tsk;
3866
3867 /* The ordering of irq_posted versus applying the barrier
3868 * is crucial. The clearing of the current irq_posted must
3869 * be visible before we perform the barrier operation,
3870 * such that if a subsequent interrupt arrives, irq_posted
3871 * is reasserted and our task rewoken (which causes us to
3872 * do another __i915_request_irq_complete() immediately
3873 * and reapply the barrier). Conversely, if the clear
3874 * occurs after the barrier, then an interrupt that arrived
3875 * whilst we waited on the barrier would not trigger a
3876 * barrier on the next pass, and the read may not see the
3877 * seqno update.
3878 */
3879 engine->irq_seqno_barrier(engine);
3880
3881 /* If we consume the irq, but we are no longer the bottom-half,
3882 * the real bottom-half may not have serialised their own
3883 * seqno check with the irq-barrier (i.e. may have inspected
3884 * the seqno before we believe it coherent since they see
3885 * irq_posted == false but we are still running).
3886 */
3887 rcu_read_lock();
3888 tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
3889 if (tsk && tsk != current)
3890 /* Note that if the bottom-half is changed as we
3891 * are sending the wake-up, the new bottom-half will
3892 * be woken by whomever made the change. We only have
3893 * to worry about when we steal the irq-posted for
3894 * ourself.
3895 */
3896 wake_up_process(tsk);
3897 rcu_read_unlock();
3898
3899 if (i915_gem_request_completed(req))
3900 return true;
3901 }
3902
3903 /* We need to check whether any gpu reset happened in between
3904 * the request being submitted and now. If a reset has occurred,
3905 * the seqno will have been advance past ours and our request
3906 * is complete. If we are in the process of handling a reset,
3907 * the request is effectively complete as the rendering will
3908 * be discarded, but we need to return in order to drop the
3909 * struct_mutex.
3910 */
3911 if (i915_reset_in_progress(&req->i915->gpu_error))
3912 return true;
3913
3914 return false;
3915 }
3916
3917 #endif
This page took 0.349195 seconds and 6 git commands to generate.