drm/i915: Move debug only per-request pid tracking from request to ctx
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51
52 #include "i915_params.h"
53 #include "i915_reg.h"
54
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64 #include "i915_gem_request.h"
65
66 #include "intel_gvt.h"
67
68 /* General customization:
69 */
70
71 #define DRIVER_NAME "i915"
72 #define DRIVER_DESC "Intel Graphics"
73 #define DRIVER_DATE "20160808"
74
75 #undef WARN_ON
76 /* Many gcc seem to no see through this and fall over :( */
77 #if 0
78 #define WARN_ON(x) ({ \
79 bool __i915_warn_cond = (x); \
80 if (__builtin_constant_p(__i915_warn_cond)) \
81 BUILD_BUG_ON(__i915_warn_cond); \
82 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
83 #else
84 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
85 #endif
86
87 #undef WARN_ON_ONCE
88 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
89
90 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
91 (long) (x), __func__);
92
93 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
94 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
95 * which may not necessarily be a user visible problem. This will either
96 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
97 * enable distros and users to tailor their preferred amount of i915 abrt
98 * spam.
99 */
100 #define I915_STATE_WARN(condition, format...) ({ \
101 int __ret_warn_on = !!(condition); \
102 if (unlikely(__ret_warn_on)) \
103 if (!WARN(i915.verbose_state_checks, format)) \
104 DRM_ERROR(format); \
105 unlikely(__ret_warn_on); \
106 })
107
108 #define I915_STATE_WARN_ON(x) \
109 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
110
111 bool __i915_inject_load_failure(const char *func, int line);
112 #define i915_inject_load_failure() \
113 __i915_inject_load_failure(__func__, __LINE__)
114
115 static inline const char *yesno(bool v)
116 {
117 return v ? "yes" : "no";
118 }
119
120 static inline const char *onoff(bool v)
121 {
122 return v ? "on" : "off";
123 }
124
125 enum pipe {
126 INVALID_PIPE = -1,
127 PIPE_A = 0,
128 PIPE_B,
129 PIPE_C,
130 _PIPE_EDP,
131 I915_MAX_PIPES = _PIPE_EDP
132 };
133 #define pipe_name(p) ((p) + 'A')
134
135 enum transcoder {
136 TRANSCODER_A = 0,
137 TRANSCODER_B,
138 TRANSCODER_C,
139 TRANSCODER_EDP,
140 TRANSCODER_DSI_A,
141 TRANSCODER_DSI_C,
142 I915_MAX_TRANSCODERS
143 };
144
145 static inline const char *transcoder_name(enum transcoder transcoder)
146 {
147 switch (transcoder) {
148 case TRANSCODER_A:
149 return "A";
150 case TRANSCODER_B:
151 return "B";
152 case TRANSCODER_C:
153 return "C";
154 case TRANSCODER_EDP:
155 return "EDP";
156 case TRANSCODER_DSI_A:
157 return "DSI A";
158 case TRANSCODER_DSI_C:
159 return "DSI C";
160 default:
161 return "<invalid>";
162 }
163 }
164
165 static inline bool transcoder_is_dsi(enum transcoder transcoder)
166 {
167 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
168 }
169
170 /*
171 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
172 * number of planes per CRTC. Not all platforms really have this many planes,
173 * which means some arrays of size I915_MAX_PLANES may have unused entries
174 * between the topmost sprite plane and the cursor plane.
175 */
176 enum plane {
177 PLANE_A = 0,
178 PLANE_B,
179 PLANE_C,
180 PLANE_CURSOR,
181 I915_MAX_PLANES,
182 };
183 #define plane_name(p) ((p) + 'A')
184
185 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
186
187 enum port {
188 PORT_A = 0,
189 PORT_B,
190 PORT_C,
191 PORT_D,
192 PORT_E,
193 I915_MAX_PORTS
194 };
195 #define port_name(p) ((p) + 'A')
196
197 #define I915_NUM_PHYS_VLV 2
198
199 enum dpio_channel {
200 DPIO_CH0,
201 DPIO_CH1
202 };
203
204 enum dpio_phy {
205 DPIO_PHY0,
206 DPIO_PHY1
207 };
208
209 enum intel_display_power_domain {
210 POWER_DOMAIN_PIPE_A,
211 POWER_DOMAIN_PIPE_B,
212 POWER_DOMAIN_PIPE_C,
213 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
214 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
215 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
216 POWER_DOMAIN_TRANSCODER_A,
217 POWER_DOMAIN_TRANSCODER_B,
218 POWER_DOMAIN_TRANSCODER_C,
219 POWER_DOMAIN_TRANSCODER_EDP,
220 POWER_DOMAIN_TRANSCODER_DSI_A,
221 POWER_DOMAIN_TRANSCODER_DSI_C,
222 POWER_DOMAIN_PORT_DDI_A_LANES,
223 POWER_DOMAIN_PORT_DDI_B_LANES,
224 POWER_DOMAIN_PORT_DDI_C_LANES,
225 POWER_DOMAIN_PORT_DDI_D_LANES,
226 POWER_DOMAIN_PORT_DDI_E_LANES,
227 POWER_DOMAIN_PORT_DSI,
228 POWER_DOMAIN_PORT_CRT,
229 POWER_DOMAIN_PORT_OTHER,
230 POWER_DOMAIN_VGA,
231 POWER_DOMAIN_AUDIO,
232 POWER_DOMAIN_PLLS,
233 POWER_DOMAIN_AUX_A,
234 POWER_DOMAIN_AUX_B,
235 POWER_DOMAIN_AUX_C,
236 POWER_DOMAIN_AUX_D,
237 POWER_DOMAIN_GMBUS,
238 POWER_DOMAIN_MODESET,
239 POWER_DOMAIN_INIT,
240
241 POWER_DOMAIN_NUM,
242 };
243
244 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
245 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
246 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
247 #define POWER_DOMAIN_TRANSCODER(tran) \
248 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
249 (tran) + POWER_DOMAIN_TRANSCODER_A)
250
251 enum hpd_pin {
252 HPD_NONE = 0,
253 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
254 HPD_CRT,
255 HPD_SDVO_B,
256 HPD_SDVO_C,
257 HPD_PORT_A,
258 HPD_PORT_B,
259 HPD_PORT_C,
260 HPD_PORT_D,
261 HPD_PORT_E,
262 HPD_NUM_PINS
263 };
264
265 #define for_each_hpd_pin(__pin) \
266 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
267
268 struct i915_hotplug {
269 struct work_struct hotplug_work;
270
271 struct {
272 unsigned long last_jiffies;
273 int count;
274 enum {
275 HPD_ENABLED = 0,
276 HPD_DISABLED = 1,
277 HPD_MARK_DISABLED = 2
278 } state;
279 } stats[HPD_NUM_PINS];
280 u32 event_bits;
281 struct delayed_work reenable_work;
282
283 struct intel_digital_port *irq_port[I915_MAX_PORTS];
284 u32 long_port_mask;
285 u32 short_port_mask;
286 struct work_struct dig_port_work;
287
288 struct work_struct poll_init_work;
289 bool poll_enabled;
290
291 /*
292 * if we get a HPD irq from DP and a HPD irq from non-DP
293 * the non-DP HPD could block the workqueue on a mode config
294 * mutex getting, that userspace may have taken. However
295 * userspace is waiting on the DP workqueue to run which is
296 * blocked behind the non-DP one.
297 */
298 struct workqueue_struct *dp_wq;
299 };
300
301 #define I915_GEM_GPU_DOMAINS \
302 (I915_GEM_DOMAIN_RENDER | \
303 I915_GEM_DOMAIN_SAMPLER | \
304 I915_GEM_DOMAIN_COMMAND | \
305 I915_GEM_DOMAIN_INSTRUCTION | \
306 I915_GEM_DOMAIN_VERTEX)
307
308 #define for_each_pipe(__dev_priv, __p) \
309 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
310 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
311 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
312 for_each_if ((__mask) & (1 << (__p)))
313 #define for_each_plane(__dev_priv, __pipe, __p) \
314 for ((__p) = 0; \
315 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
316 (__p)++)
317 #define for_each_sprite(__dev_priv, __p, __s) \
318 for ((__s) = 0; \
319 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
320 (__s)++)
321
322 #define for_each_port_masked(__port, __ports_mask) \
323 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
324 for_each_if ((__ports_mask) & (1 << (__port)))
325
326 #define for_each_crtc(dev, crtc) \
327 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
328
329 #define for_each_intel_plane(dev, intel_plane) \
330 list_for_each_entry(intel_plane, \
331 &(dev)->mode_config.plane_list, \
332 base.head)
333
334 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
335 list_for_each_entry(intel_plane, \
336 &(dev)->mode_config.plane_list, \
337 base.head) \
338 for_each_if ((plane_mask) & \
339 (1 << drm_plane_index(&intel_plane->base)))
340
341 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
342 list_for_each_entry(intel_plane, \
343 &(dev)->mode_config.plane_list, \
344 base.head) \
345 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
346
347 #define for_each_intel_crtc(dev, intel_crtc) \
348 list_for_each_entry(intel_crtc, \
349 &(dev)->mode_config.crtc_list, \
350 base.head)
351
352 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
353 list_for_each_entry(intel_crtc, \
354 &(dev)->mode_config.crtc_list, \
355 base.head) \
356 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
357
358 #define for_each_intel_encoder(dev, intel_encoder) \
359 list_for_each_entry(intel_encoder, \
360 &(dev)->mode_config.encoder_list, \
361 base.head)
362
363 #define for_each_intel_connector(dev, intel_connector) \
364 list_for_each_entry(intel_connector, \
365 &(dev)->mode_config.connector_list, \
366 base.head)
367
368 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
369 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
370 for_each_if ((intel_encoder)->base.crtc == (__crtc))
371
372 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
373 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
374 for_each_if ((intel_connector)->base.encoder == (__encoder))
375
376 #define for_each_power_domain(domain, mask) \
377 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
378 for_each_if ((1 << (domain)) & (mask))
379
380 struct drm_i915_private;
381 struct i915_mm_struct;
382 struct i915_mmu_object;
383
384 struct drm_i915_file_private {
385 struct drm_i915_private *dev_priv;
386 struct drm_file *file;
387
388 struct {
389 spinlock_t lock;
390 struct list_head request_list;
391 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
392 * chosen to prevent the CPU getting more than a frame ahead of the GPU
393 * (when using lax throttling for the frontbuffer). We also use it to
394 * offer free GPU waitboosts for severely congested workloads.
395 */
396 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
397 } mm;
398 struct idr context_idr;
399
400 struct intel_rps_client {
401 struct list_head link;
402 unsigned boosts;
403 } rps;
404
405 unsigned int bsd_engine;
406 };
407
408 /* Used by dp and fdi links */
409 struct intel_link_m_n {
410 uint32_t tu;
411 uint32_t gmch_m;
412 uint32_t gmch_n;
413 uint32_t link_m;
414 uint32_t link_n;
415 };
416
417 void intel_link_compute_m_n(int bpp, int nlanes,
418 int pixel_clock, int link_clock,
419 struct intel_link_m_n *m_n);
420
421 /* Interface history:
422 *
423 * 1.1: Original.
424 * 1.2: Add Power Management
425 * 1.3: Add vblank support
426 * 1.4: Fix cmdbuffer path, add heap destroy
427 * 1.5: Add vblank pipe configuration
428 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
429 * - Support vertical blank on secondary display pipe
430 */
431 #define DRIVER_MAJOR 1
432 #define DRIVER_MINOR 6
433 #define DRIVER_PATCHLEVEL 0
434
435 struct opregion_header;
436 struct opregion_acpi;
437 struct opregion_swsci;
438 struct opregion_asle;
439
440 struct intel_opregion {
441 struct opregion_header *header;
442 struct opregion_acpi *acpi;
443 struct opregion_swsci *swsci;
444 u32 swsci_gbda_sub_functions;
445 u32 swsci_sbcb_sub_functions;
446 struct opregion_asle *asle;
447 void *rvda;
448 const void *vbt;
449 u32 vbt_size;
450 u32 *lid_state;
451 struct work_struct asle_work;
452 };
453 #define OPREGION_SIZE (8*1024)
454
455 struct intel_overlay;
456 struct intel_overlay_error_state;
457
458 #define I915_FENCE_REG_NONE -1
459 #define I915_MAX_NUM_FENCES 32
460 /* 32 fences + sign bit for FENCE_REG_NONE */
461 #define I915_MAX_NUM_FENCE_BITS 6
462
463 struct drm_i915_fence_reg {
464 struct list_head lru_list;
465 struct drm_i915_gem_object *obj;
466 int pin_count;
467 };
468
469 struct sdvo_device_mapping {
470 u8 initialized;
471 u8 dvo_port;
472 u8 slave_addr;
473 u8 dvo_wiring;
474 u8 i2c_pin;
475 u8 ddc_pin;
476 };
477
478 struct intel_connector;
479 struct intel_encoder;
480 struct intel_crtc_state;
481 struct intel_initial_plane_config;
482 struct intel_crtc;
483 struct intel_limit;
484 struct dpll;
485
486 struct drm_i915_display_funcs {
487 int (*get_display_clock_speed)(struct drm_device *dev);
488 int (*get_fifo_size)(struct drm_device *dev, int plane);
489 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
490 int (*compute_intermediate_wm)(struct drm_device *dev,
491 struct intel_crtc *intel_crtc,
492 struct intel_crtc_state *newstate);
493 void (*initial_watermarks)(struct intel_crtc_state *cstate);
494 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
495 int (*compute_global_watermarks)(struct drm_atomic_state *state);
496 void (*update_wm)(struct drm_crtc *crtc);
497 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
498 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
499 /* Returns the active state of the crtc, and if the crtc is active,
500 * fills out the pipe-config with the hw state. */
501 bool (*get_pipe_config)(struct intel_crtc *,
502 struct intel_crtc_state *);
503 void (*get_initial_plane_config)(struct intel_crtc *,
504 struct intel_initial_plane_config *);
505 int (*crtc_compute_clock)(struct intel_crtc *crtc,
506 struct intel_crtc_state *crtc_state);
507 void (*crtc_enable)(struct drm_crtc *crtc);
508 void (*crtc_disable)(struct drm_crtc *crtc);
509 void (*audio_codec_enable)(struct drm_connector *connector,
510 struct intel_encoder *encoder,
511 const struct drm_display_mode *adjusted_mode);
512 void (*audio_codec_disable)(struct intel_encoder *encoder);
513 void (*fdi_link_train)(struct drm_crtc *crtc);
514 void (*init_clock_gating)(struct drm_device *dev);
515 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
516 struct drm_framebuffer *fb,
517 struct drm_i915_gem_object *obj,
518 struct drm_i915_gem_request *req,
519 uint32_t flags);
520 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
521 /* clock updates for mode set */
522 /* cursor updates */
523 /* render clock increase/decrease */
524 /* display clock increase/decrease */
525 /* pll clock increase/decrease */
526
527 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
528 void (*load_luts)(struct drm_crtc_state *crtc_state);
529 };
530
531 enum forcewake_domain_id {
532 FW_DOMAIN_ID_RENDER = 0,
533 FW_DOMAIN_ID_BLITTER,
534 FW_DOMAIN_ID_MEDIA,
535
536 FW_DOMAIN_ID_COUNT
537 };
538
539 enum forcewake_domains {
540 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
541 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
542 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
543 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
544 FORCEWAKE_BLITTER |
545 FORCEWAKE_MEDIA)
546 };
547
548 #define FW_REG_READ (1)
549 #define FW_REG_WRITE (2)
550
551 enum forcewake_domains
552 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
553 i915_reg_t reg, unsigned int op);
554
555 struct intel_uncore_funcs {
556 void (*force_wake_get)(struct drm_i915_private *dev_priv,
557 enum forcewake_domains domains);
558 void (*force_wake_put)(struct drm_i915_private *dev_priv,
559 enum forcewake_domains domains);
560
561 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
562 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
563 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
564 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
565
566 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
567 uint8_t val, bool trace);
568 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
569 uint16_t val, bool trace);
570 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
571 uint32_t val, bool trace);
572 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
573 uint64_t val, bool trace);
574 };
575
576 struct intel_uncore {
577 spinlock_t lock; /** lock is also taken in irq contexts. */
578
579 struct intel_uncore_funcs funcs;
580
581 unsigned fifo_count;
582 enum forcewake_domains fw_domains;
583
584 struct intel_uncore_forcewake_domain {
585 struct drm_i915_private *i915;
586 enum forcewake_domain_id id;
587 enum forcewake_domains mask;
588 unsigned wake_count;
589 struct hrtimer timer;
590 i915_reg_t reg_set;
591 u32 val_set;
592 u32 val_clear;
593 i915_reg_t reg_ack;
594 i915_reg_t reg_post;
595 u32 val_reset;
596 } fw_domain[FW_DOMAIN_ID_COUNT];
597
598 int unclaimed_mmio_check;
599 };
600
601 /* Iterate over initialised fw domains */
602 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
603 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
604 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
605 (domain__)++) \
606 for_each_if ((mask__) & (domain__)->mask)
607
608 #define for_each_fw_domain(domain__, dev_priv__) \
609 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
610
611 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
612 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
613 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
614
615 struct intel_csr {
616 struct work_struct work;
617 const char *fw_path;
618 uint32_t *dmc_payload;
619 uint32_t dmc_fw_size;
620 uint32_t version;
621 uint32_t mmio_count;
622 i915_reg_t mmioaddr[8];
623 uint32_t mmiodata[8];
624 uint32_t dc_state;
625 uint32_t allowed_dc_mask;
626 };
627
628 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
629 func(is_mobile) sep \
630 func(is_i85x) sep \
631 func(is_i915g) sep \
632 func(is_i945gm) sep \
633 func(is_g33) sep \
634 func(need_gfx_hws) sep \
635 func(is_g4x) sep \
636 func(is_pineview) sep \
637 func(is_broadwater) sep \
638 func(is_crestline) sep \
639 func(is_ivybridge) sep \
640 func(is_valleyview) sep \
641 func(is_cherryview) sep \
642 func(is_haswell) sep \
643 func(is_broadwell) sep \
644 func(is_skylake) sep \
645 func(is_broxton) sep \
646 func(is_kabylake) sep \
647 func(is_preliminary) sep \
648 func(has_fbc) sep \
649 func(has_pipe_cxsr) sep \
650 func(has_hotplug) sep \
651 func(cursor_needs_physical) sep \
652 func(has_overlay) sep \
653 func(overlay_needs_physical) sep \
654 func(supports_tv) sep \
655 func(has_llc) sep \
656 func(has_snoop) sep \
657 func(has_ddi) sep \
658 func(has_fpga_dbg) sep \
659 func(has_pooled_eu)
660
661 #define DEFINE_FLAG(name) u8 name:1
662 #define SEP_SEMICOLON ;
663
664 struct intel_device_info {
665 u32 display_mmio_offset;
666 u16 device_id;
667 u8 num_pipes;
668 u8 num_sprites[I915_MAX_PIPES];
669 u8 gen;
670 u16 gen_mask;
671 u8 ring_mask; /* Rings supported by the HW */
672 u8 num_rings;
673 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
674 /* Register offsets for the various display pipes and transcoders */
675 int pipe_offsets[I915_MAX_TRANSCODERS];
676 int trans_offsets[I915_MAX_TRANSCODERS];
677 int palette_offsets[I915_MAX_PIPES];
678 int cursor_offsets[I915_MAX_PIPES];
679
680 /* Slice/subslice/EU info */
681 u8 slice_total;
682 u8 subslice_total;
683 u8 subslice_per_slice;
684 u8 eu_total;
685 u8 eu_per_subslice;
686 u8 min_eu_in_pool;
687 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
688 u8 subslice_7eu[3];
689 u8 has_slice_pg:1;
690 u8 has_subslice_pg:1;
691 u8 has_eu_pg:1;
692
693 struct color_luts {
694 u16 degamma_lut_size;
695 u16 gamma_lut_size;
696 } color;
697 };
698
699 #undef DEFINE_FLAG
700 #undef SEP_SEMICOLON
701
702 struct intel_display_error_state;
703
704 struct drm_i915_error_state {
705 struct kref ref;
706 struct timeval time;
707
708 char error_msg[128];
709 bool simulated;
710 int iommu;
711 u32 reset_count;
712 u32 suspend_count;
713 struct intel_device_info device_info;
714
715 /* Generic register state */
716 u32 eir;
717 u32 pgtbl_er;
718 u32 ier;
719 u32 gtier[4];
720 u32 ccid;
721 u32 derrmr;
722 u32 forcewake;
723 u32 error; /* gen6+ */
724 u32 err_int; /* gen7 */
725 u32 fault_data0; /* gen8, gen9 */
726 u32 fault_data1; /* gen8, gen9 */
727 u32 done_reg;
728 u32 gac_eco;
729 u32 gam_ecochk;
730 u32 gab_ctl;
731 u32 gfx_mode;
732 u32 extra_instdone[I915_NUM_INSTDONE_REG];
733 u64 fence[I915_MAX_NUM_FENCES];
734 struct intel_overlay_error_state *overlay;
735 struct intel_display_error_state *display;
736 struct drm_i915_error_object *semaphore;
737
738 struct drm_i915_error_engine {
739 int engine_id;
740 /* Software tracked state */
741 bool waiting;
742 int num_waiters;
743 int hangcheck_score;
744 enum intel_engine_hangcheck_action hangcheck_action;
745 struct i915_address_space *vm;
746 int num_requests;
747
748 /* our own tracking of ring head and tail */
749 u32 cpu_ring_head;
750 u32 cpu_ring_tail;
751
752 u32 last_seqno;
753 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
754
755 /* Register state */
756 u32 start;
757 u32 tail;
758 u32 head;
759 u32 ctl;
760 u32 hws;
761 u32 ipeir;
762 u32 ipehr;
763 u32 instdone;
764 u32 bbstate;
765 u32 instpm;
766 u32 instps;
767 u32 seqno;
768 u64 bbaddr;
769 u64 acthd;
770 u32 fault_reg;
771 u64 faddr;
772 u32 rc_psmi; /* sleep state */
773 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
774
775 struct drm_i915_error_object {
776 int page_count;
777 u64 gtt_offset;
778 u32 *pages[0];
779 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
780
781 struct drm_i915_error_object *wa_ctx;
782
783 struct drm_i915_error_request {
784 long jiffies;
785 pid_t pid;
786 u32 seqno;
787 u32 head;
788 u32 tail;
789 } *requests;
790
791 struct drm_i915_error_waiter {
792 char comm[TASK_COMM_LEN];
793 pid_t pid;
794 u32 seqno;
795 } *waiters;
796
797 struct {
798 u32 gfx_mode;
799 union {
800 u64 pdp[4];
801 u32 pp_dir_base;
802 };
803 } vm_info;
804
805 pid_t pid;
806 char comm[TASK_COMM_LEN];
807 } engine[I915_NUM_ENGINES];
808
809 struct drm_i915_error_buffer {
810 u32 size;
811 u32 name;
812 u32 rseqno[I915_NUM_ENGINES], wseqno;
813 u64 gtt_offset;
814 u32 read_domains;
815 u32 write_domain;
816 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
817 u32 tiling:2;
818 u32 dirty:1;
819 u32 purgeable:1;
820 u32 userptr:1;
821 s32 engine:4;
822 u32 cache_level:3;
823 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
824 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
825 struct i915_address_space *active_vm[I915_NUM_ENGINES];
826 };
827
828 enum i915_cache_level {
829 I915_CACHE_NONE = 0,
830 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
831 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
832 caches, eg sampler/render caches, and the
833 large Last-Level-Cache. LLC is coherent with
834 the CPU, but L3 is only visible to the GPU. */
835 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
836 };
837
838 struct i915_ctx_hang_stats {
839 /* This context had batch pending when hang was declared */
840 unsigned batch_pending;
841
842 /* This context had batch active when hang was declared */
843 unsigned batch_active;
844
845 /* Time when this context was last blamed for a GPU reset */
846 unsigned long guilty_ts;
847
848 /* If the contexts causes a second GPU hang within this time,
849 * it is permanently banned from submitting any more work.
850 */
851 unsigned long ban_period_seconds;
852
853 /* This context is banned to submit more work */
854 bool banned;
855 };
856
857 /* This must match up with the value previously used for execbuf2.rsvd1. */
858 #define DEFAULT_CONTEXT_HANDLE 0
859
860 /**
861 * struct i915_gem_context - as the name implies, represents a context.
862 * @ref: reference count.
863 * @user_handle: userspace tracking identity for this context.
864 * @remap_slice: l3 row remapping information.
865 * @flags: context specific flags:
866 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
867 * @file_priv: filp associated with this context (NULL for global default
868 * context).
869 * @hang_stats: information about the role of this context in possible GPU
870 * hangs.
871 * @ppgtt: virtual memory space used by this context.
872 * @legacy_hw_ctx: render context backing object and whether it is correctly
873 * initialized (legacy ring submission mechanism only).
874 * @link: link in the global list of contexts.
875 *
876 * Contexts are memory images used by the hardware to store copies of their
877 * internal state.
878 */
879 struct i915_gem_context {
880 struct kref ref;
881 struct drm_i915_private *i915;
882 struct drm_i915_file_private *file_priv;
883 struct i915_hw_ppgtt *ppgtt;
884 struct pid *pid;
885
886 struct i915_ctx_hang_stats hang_stats;
887
888 /* Unique identifier for this context, used by the hw for tracking */
889 unsigned long flags;
890 #define CONTEXT_NO_ZEROMAP BIT(0)
891 #define CONTEXT_NO_ERROR_CAPTURE BIT(1)
892 unsigned hw_id;
893 u32 user_handle;
894
895 u32 ggtt_alignment;
896
897 struct intel_context {
898 struct i915_vma *state;
899 struct intel_ring *ring;
900 uint32_t *lrc_reg_state;
901 u64 lrc_desc;
902 int pin_count;
903 bool initialised;
904 } engine[I915_NUM_ENGINES];
905 u32 ring_size;
906 u32 desc_template;
907 struct atomic_notifier_head status_notifier;
908 bool execlists_force_single_submission;
909
910 struct list_head link;
911
912 u8 remap_slice;
913 bool closed:1;
914 };
915
916 enum fb_op_origin {
917 ORIGIN_GTT,
918 ORIGIN_CPU,
919 ORIGIN_CS,
920 ORIGIN_FLIP,
921 ORIGIN_DIRTYFB,
922 };
923
924 struct intel_fbc {
925 /* This is always the inner lock when overlapping with struct_mutex and
926 * it's the outer lock when overlapping with stolen_lock. */
927 struct mutex lock;
928 unsigned threshold;
929 unsigned int possible_framebuffer_bits;
930 unsigned int busy_bits;
931 unsigned int visible_pipes_mask;
932 struct intel_crtc *crtc;
933
934 struct drm_mm_node compressed_fb;
935 struct drm_mm_node *compressed_llb;
936
937 bool false_color;
938
939 bool enabled;
940 bool active;
941
942 struct intel_fbc_state_cache {
943 struct {
944 unsigned int mode_flags;
945 uint32_t hsw_bdw_pixel_rate;
946 } crtc;
947
948 struct {
949 unsigned int rotation;
950 int src_w;
951 int src_h;
952 bool visible;
953 } plane;
954
955 struct {
956 u64 ilk_ggtt_offset;
957 uint32_t pixel_format;
958 unsigned int stride;
959 int fence_reg;
960 unsigned int tiling_mode;
961 } fb;
962 } state_cache;
963
964 struct intel_fbc_reg_params {
965 struct {
966 enum pipe pipe;
967 enum plane plane;
968 unsigned int fence_y_offset;
969 } crtc;
970
971 struct {
972 u64 ggtt_offset;
973 uint32_t pixel_format;
974 unsigned int stride;
975 int fence_reg;
976 } fb;
977
978 int cfb_size;
979 } params;
980
981 struct intel_fbc_work {
982 bool scheduled;
983 u32 scheduled_vblank;
984 struct work_struct work;
985 } work;
986
987 const char *no_fbc_reason;
988 };
989
990 /**
991 * HIGH_RR is the highest eDP panel refresh rate read from EDID
992 * LOW_RR is the lowest eDP panel refresh rate found from EDID
993 * parsing for same resolution.
994 */
995 enum drrs_refresh_rate_type {
996 DRRS_HIGH_RR,
997 DRRS_LOW_RR,
998 DRRS_MAX_RR, /* RR count */
999 };
1000
1001 enum drrs_support_type {
1002 DRRS_NOT_SUPPORTED = 0,
1003 STATIC_DRRS_SUPPORT = 1,
1004 SEAMLESS_DRRS_SUPPORT = 2
1005 };
1006
1007 struct intel_dp;
1008 struct i915_drrs {
1009 struct mutex mutex;
1010 struct delayed_work work;
1011 struct intel_dp *dp;
1012 unsigned busy_frontbuffer_bits;
1013 enum drrs_refresh_rate_type refresh_rate_type;
1014 enum drrs_support_type type;
1015 };
1016
1017 struct i915_psr {
1018 struct mutex lock;
1019 bool sink_support;
1020 bool source_ok;
1021 struct intel_dp *enabled;
1022 bool active;
1023 struct delayed_work work;
1024 unsigned busy_frontbuffer_bits;
1025 bool psr2_support;
1026 bool aux_frame_sync;
1027 bool link_standby;
1028 };
1029
1030 enum intel_pch {
1031 PCH_NONE = 0, /* No PCH present */
1032 PCH_IBX, /* Ibexpeak PCH */
1033 PCH_CPT, /* Cougarpoint PCH */
1034 PCH_LPT, /* Lynxpoint PCH */
1035 PCH_SPT, /* Sunrisepoint PCH */
1036 PCH_KBP, /* Kabypoint PCH */
1037 PCH_NOP,
1038 };
1039
1040 enum intel_sbi_destination {
1041 SBI_ICLK,
1042 SBI_MPHY,
1043 };
1044
1045 #define QUIRK_PIPEA_FORCE (1<<0)
1046 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1047 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1048 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1049 #define QUIRK_PIPEB_FORCE (1<<4)
1050 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1051
1052 struct intel_fbdev;
1053 struct intel_fbc_work;
1054
1055 struct intel_gmbus {
1056 struct i2c_adapter adapter;
1057 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1058 u32 force_bit;
1059 u32 reg0;
1060 i915_reg_t gpio_reg;
1061 struct i2c_algo_bit_data bit_algo;
1062 struct drm_i915_private *dev_priv;
1063 };
1064
1065 struct i915_suspend_saved_registers {
1066 u32 saveDSPARB;
1067 u32 saveFBC_CONTROL;
1068 u32 saveCACHE_MODE_0;
1069 u32 saveMI_ARB_STATE;
1070 u32 saveSWF0[16];
1071 u32 saveSWF1[16];
1072 u32 saveSWF3[3];
1073 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1074 u32 savePCH_PORT_HOTPLUG;
1075 u16 saveGCDGMBUS;
1076 };
1077
1078 struct vlv_s0ix_state {
1079 /* GAM */
1080 u32 wr_watermark;
1081 u32 gfx_prio_ctrl;
1082 u32 arb_mode;
1083 u32 gfx_pend_tlb0;
1084 u32 gfx_pend_tlb1;
1085 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1086 u32 media_max_req_count;
1087 u32 gfx_max_req_count;
1088 u32 render_hwsp;
1089 u32 ecochk;
1090 u32 bsd_hwsp;
1091 u32 blt_hwsp;
1092 u32 tlb_rd_addr;
1093
1094 /* MBC */
1095 u32 g3dctl;
1096 u32 gsckgctl;
1097 u32 mbctl;
1098
1099 /* GCP */
1100 u32 ucgctl1;
1101 u32 ucgctl3;
1102 u32 rcgctl1;
1103 u32 rcgctl2;
1104 u32 rstctl;
1105 u32 misccpctl;
1106
1107 /* GPM */
1108 u32 gfxpause;
1109 u32 rpdeuhwtc;
1110 u32 rpdeuc;
1111 u32 ecobus;
1112 u32 pwrdwnupctl;
1113 u32 rp_down_timeout;
1114 u32 rp_deucsw;
1115 u32 rcubmabdtmr;
1116 u32 rcedata;
1117 u32 spare2gh;
1118
1119 /* Display 1 CZ domain */
1120 u32 gt_imr;
1121 u32 gt_ier;
1122 u32 pm_imr;
1123 u32 pm_ier;
1124 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1125
1126 /* GT SA CZ domain */
1127 u32 tilectl;
1128 u32 gt_fifoctl;
1129 u32 gtlc_wake_ctrl;
1130 u32 gtlc_survive;
1131 u32 pmwgicz;
1132
1133 /* Display 2 CZ domain */
1134 u32 gu_ctl0;
1135 u32 gu_ctl1;
1136 u32 pcbr;
1137 u32 clock_gate_dis2;
1138 };
1139
1140 struct intel_rps_ei {
1141 u32 cz_clock;
1142 u32 render_c0;
1143 u32 media_c0;
1144 };
1145
1146 struct intel_gen6_power_mgmt {
1147 /*
1148 * work, interrupts_enabled and pm_iir are protected by
1149 * dev_priv->irq_lock
1150 */
1151 struct work_struct work;
1152 bool interrupts_enabled;
1153 u32 pm_iir;
1154
1155 u32 pm_intr_keep;
1156
1157 /* Frequencies are stored in potentially platform dependent multiples.
1158 * In other words, *_freq needs to be multiplied by X to be interesting.
1159 * Soft limits are those which are used for the dynamic reclocking done
1160 * by the driver (raise frequencies under heavy loads, and lower for
1161 * lighter loads). Hard limits are those imposed by the hardware.
1162 *
1163 * A distinction is made for overclocking, which is never enabled by
1164 * default, and is considered to be above the hard limit if it's
1165 * possible at all.
1166 */
1167 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1168 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1169 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1170 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1171 u8 min_freq; /* AKA RPn. Minimum frequency */
1172 u8 boost_freq; /* Frequency to request when wait boosting */
1173 u8 idle_freq; /* Frequency to request when we are idle */
1174 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1175 u8 rp1_freq; /* "less than" RP0 power/freqency */
1176 u8 rp0_freq; /* Non-overclocked max frequency. */
1177 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1178
1179 u8 up_threshold; /* Current %busy required to uplock */
1180 u8 down_threshold; /* Current %busy required to downclock */
1181
1182 int last_adj;
1183 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1184
1185 spinlock_t client_lock;
1186 struct list_head clients;
1187 bool client_boost;
1188
1189 bool enabled;
1190 struct delayed_work autoenable_work;
1191 unsigned boosts;
1192
1193 /* manual wa residency calculations */
1194 struct intel_rps_ei up_ei, down_ei;
1195
1196 /*
1197 * Protects RPS/RC6 register access and PCU communication.
1198 * Must be taken after struct_mutex if nested. Note that
1199 * this lock may be held for long periods of time when
1200 * talking to hw - so only take it when talking to hw!
1201 */
1202 struct mutex hw_lock;
1203 };
1204
1205 /* defined intel_pm.c */
1206 extern spinlock_t mchdev_lock;
1207
1208 struct intel_ilk_power_mgmt {
1209 u8 cur_delay;
1210 u8 min_delay;
1211 u8 max_delay;
1212 u8 fmax;
1213 u8 fstart;
1214
1215 u64 last_count1;
1216 unsigned long last_time1;
1217 unsigned long chipset_power;
1218 u64 last_count2;
1219 u64 last_time2;
1220 unsigned long gfx_power;
1221 u8 corr;
1222
1223 int c_m;
1224 int r_t;
1225 };
1226
1227 struct drm_i915_private;
1228 struct i915_power_well;
1229
1230 struct i915_power_well_ops {
1231 /*
1232 * Synchronize the well's hw state to match the current sw state, for
1233 * example enable/disable it based on the current refcount. Called
1234 * during driver init and resume time, possibly after first calling
1235 * the enable/disable handlers.
1236 */
1237 void (*sync_hw)(struct drm_i915_private *dev_priv,
1238 struct i915_power_well *power_well);
1239 /*
1240 * Enable the well and resources that depend on it (for example
1241 * interrupts located on the well). Called after the 0->1 refcount
1242 * transition.
1243 */
1244 void (*enable)(struct drm_i915_private *dev_priv,
1245 struct i915_power_well *power_well);
1246 /*
1247 * Disable the well and resources that depend on it. Called after
1248 * the 1->0 refcount transition.
1249 */
1250 void (*disable)(struct drm_i915_private *dev_priv,
1251 struct i915_power_well *power_well);
1252 /* Returns the hw enabled state. */
1253 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1254 struct i915_power_well *power_well);
1255 };
1256
1257 /* Power well structure for haswell */
1258 struct i915_power_well {
1259 const char *name;
1260 bool always_on;
1261 /* power well enable/disable usage count */
1262 int count;
1263 /* cached hw enabled state */
1264 bool hw_enabled;
1265 unsigned long domains;
1266 unsigned long data;
1267 const struct i915_power_well_ops *ops;
1268 };
1269
1270 struct i915_power_domains {
1271 /*
1272 * Power wells needed for initialization at driver init and suspend
1273 * time are on. They are kept on until after the first modeset.
1274 */
1275 bool init_power_on;
1276 bool initializing;
1277 int power_well_count;
1278
1279 struct mutex lock;
1280 int domain_use_count[POWER_DOMAIN_NUM];
1281 struct i915_power_well *power_wells;
1282 };
1283
1284 #define MAX_L3_SLICES 2
1285 struct intel_l3_parity {
1286 u32 *remap_info[MAX_L3_SLICES];
1287 struct work_struct error_work;
1288 int which_slice;
1289 };
1290
1291 struct i915_gem_mm {
1292 /** Memory allocator for GTT stolen memory */
1293 struct drm_mm stolen;
1294 /** Protects the usage of the GTT stolen memory allocator. This is
1295 * always the inner lock when overlapping with struct_mutex. */
1296 struct mutex stolen_lock;
1297
1298 /** List of all objects in gtt_space. Used to restore gtt
1299 * mappings on resume */
1300 struct list_head bound_list;
1301 /**
1302 * List of objects which are not bound to the GTT (thus
1303 * are idle and not used by the GPU) but still have
1304 * (presumably uncached) pages still attached.
1305 */
1306 struct list_head unbound_list;
1307
1308 /** Usable portion of the GTT for GEM */
1309 unsigned long stolen_base; /* limited to low memory (32-bit) */
1310
1311 /** PPGTT used for aliasing the PPGTT with the GTT */
1312 struct i915_hw_ppgtt *aliasing_ppgtt;
1313
1314 struct notifier_block oom_notifier;
1315 struct notifier_block vmap_notifier;
1316 struct shrinker shrinker;
1317
1318 /** LRU list of objects with fence regs on them. */
1319 struct list_head fence_list;
1320
1321 /**
1322 * Are we in a non-interruptible section of code like
1323 * modesetting?
1324 */
1325 bool interruptible;
1326
1327 /* the indicator for dispatch video commands on two BSD rings */
1328 unsigned int bsd_engine_dispatch_index;
1329
1330 /** Bit 6 swizzling required for X tiling */
1331 uint32_t bit_6_swizzle_x;
1332 /** Bit 6 swizzling required for Y tiling */
1333 uint32_t bit_6_swizzle_y;
1334
1335 /* accounting, useful for userland debugging */
1336 spinlock_t object_stat_lock;
1337 size_t object_memory;
1338 u32 object_count;
1339 };
1340
1341 struct drm_i915_error_state_buf {
1342 struct drm_i915_private *i915;
1343 unsigned bytes;
1344 unsigned size;
1345 int err;
1346 u8 *buf;
1347 loff_t start;
1348 loff_t pos;
1349 };
1350
1351 struct i915_error_state_file_priv {
1352 struct drm_device *dev;
1353 struct drm_i915_error_state *error;
1354 };
1355
1356 struct i915_gpu_error {
1357 /* For hangcheck timer */
1358 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1359 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1360 /* Hang gpu twice in this window and your context gets banned */
1361 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1362
1363 struct delayed_work hangcheck_work;
1364
1365 /* For reset and error_state handling. */
1366 spinlock_t lock;
1367 /* Protected by the above dev->gpu_error.lock. */
1368 struct drm_i915_error_state *first_error;
1369
1370 unsigned long missed_irq_rings;
1371
1372 /**
1373 * State variable controlling the reset flow and count
1374 *
1375 * This is a counter which gets incremented when reset is triggered,
1376 * and again when reset has been handled. So odd values (lowest bit set)
1377 * means that reset is in progress and even values that
1378 * (reset_counter >> 1):th reset was successfully completed.
1379 *
1380 * If reset is not completed succesfully, the I915_WEDGE bit is
1381 * set meaning that hardware is terminally sour and there is no
1382 * recovery. All waiters on the reset_queue will be woken when
1383 * that happens.
1384 *
1385 * This counter is used by the wait_seqno code to notice that reset
1386 * event happened and it needs to restart the entire ioctl (since most
1387 * likely the seqno it waited for won't ever signal anytime soon).
1388 *
1389 * This is important for lock-free wait paths, where no contended lock
1390 * naturally enforces the correct ordering between the bail-out of the
1391 * waiter and the gpu reset work code.
1392 */
1393 atomic_t reset_counter;
1394
1395 #define I915_RESET_IN_PROGRESS_FLAG 1
1396 #define I915_WEDGED (1 << 31)
1397
1398 /**
1399 * Waitqueue to signal when a hang is detected. Used to for waiters
1400 * to release the struct_mutex for the reset to procede.
1401 */
1402 wait_queue_head_t wait_queue;
1403
1404 /**
1405 * Waitqueue to signal when the reset has completed. Used by clients
1406 * that wait for dev_priv->mm.wedged to settle.
1407 */
1408 wait_queue_head_t reset_queue;
1409
1410 /* For missed irq/seqno simulation. */
1411 unsigned long test_irq_rings;
1412 };
1413
1414 enum modeset_restore {
1415 MODESET_ON_LID_OPEN,
1416 MODESET_DONE,
1417 MODESET_SUSPENDED,
1418 };
1419
1420 #define DP_AUX_A 0x40
1421 #define DP_AUX_B 0x10
1422 #define DP_AUX_C 0x20
1423 #define DP_AUX_D 0x30
1424
1425 #define DDC_PIN_B 0x05
1426 #define DDC_PIN_C 0x04
1427 #define DDC_PIN_D 0x06
1428
1429 struct ddi_vbt_port_info {
1430 /*
1431 * This is an index in the HDMI/DVI DDI buffer translation table.
1432 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1433 * populate this field.
1434 */
1435 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1436 uint8_t hdmi_level_shift;
1437
1438 uint8_t supports_dvi:1;
1439 uint8_t supports_hdmi:1;
1440 uint8_t supports_dp:1;
1441
1442 uint8_t alternate_aux_channel;
1443 uint8_t alternate_ddc_pin;
1444
1445 uint8_t dp_boost_level;
1446 uint8_t hdmi_boost_level;
1447 };
1448
1449 enum psr_lines_to_wait {
1450 PSR_0_LINES_TO_WAIT = 0,
1451 PSR_1_LINE_TO_WAIT,
1452 PSR_4_LINES_TO_WAIT,
1453 PSR_8_LINES_TO_WAIT
1454 };
1455
1456 struct intel_vbt_data {
1457 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1458 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1459
1460 /* Feature bits */
1461 unsigned int int_tv_support:1;
1462 unsigned int lvds_dither:1;
1463 unsigned int lvds_vbt:1;
1464 unsigned int int_crt_support:1;
1465 unsigned int lvds_use_ssc:1;
1466 unsigned int display_clock_mode:1;
1467 unsigned int fdi_rx_polarity_inverted:1;
1468 unsigned int panel_type:4;
1469 int lvds_ssc_freq;
1470 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1471
1472 enum drrs_support_type drrs_type;
1473
1474 struct {
1475 int rate;
1476 int lanes;
1477 int preemphasis;
1478 int vswing;
1479 bool low_vswing;
1480 bool initialized;
1481 bool support;
1482 int bpp;
1483 struct edp_power_seq pps;
1484 } edp;
1485
1486 struct {
1487 bool full_link;
1488 bool require_aux_wakeup;
1489 int idle_frames;
1490 enum psr_lines_to_wait lines_to_wait;
1491 int tp1_wakeup_time;
1492 int tp2_tp3_wakeup_time;
1493 } psr;
1494
1495 struct {
1496 u16 pwm_freq_hz;
1497 bool present;
1498 bool active_low_pwm;
1499 u8 min_brightness; /* min_brightness/255 of max */
1500 enum intel_backlight_type type;
1501 } backlight;
1502
1503 /* MIPI DSI */
1504 struct {
1505 u16 panel_id;
1506 struct mipi_config *config;
1507 struct mipi_pps_data *pps;
1508 u8 seq_version;
1509 u32 size;
1510 u8 *data;
1511 const u8 *sequence[MIPI_SEQ_MAX];
1512 } dsi;
1513
1514 int crt_ddc_pin;
1515
1516 int child_dev_num;
1517 union child_device_config *child_dev;
1518
1519 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1520 struct sdvo_device_mapping sdvo_mappings[2];
1521 };
1522
1523 enum intel_ddb_partitioning {
1524 INTEL_DDB_PART_1_2,
1525 INTEL_DDB_PART_5_6, /* IVB+ */
1526 };
1527
1528 struct intel_wm_level {
1529 bool enable;
1530 uint32_t pri_val;
1531 uint32_t spr_val;
1532 uint32_t cur_val;
1533 uint32_t fbc_val;
1534 };
1535
1536 struct ilk_wm_values {
1537 uint32_t wm_pipe[3];
1538 uint32_t wm_lp[3];
1539 uint32_t wm_lp_spr[3];
1540 uint32_t wm_linetime[3];
1541 bool enable_fbc_wm;
1542 enum intel_ddb_partitioning partitioning;
1543 };
1544
1545 struct vlv_pipe_wm {
1546 uint16_t primary;
1547 uint16_t sprite[2];
1548 uint8_t cursor;
1549 };
1550
1551 struct vlv_sr_wm {
1552 uint16_t plane;
1553 uint8_t cursor;
1554 };
1555
1556 struct vlv_wm_values {
1557 struct vlv_pipe_wm pipe[3];
1558 struct vlv_sr_wm sr;
1559 struct {
1560 uint8_t cursor;
1561 uint8_t sprite[2];
1562 uint8_t primary;
1563 } ddl[3];
1564 uint8_t level;
1565 bool cxsr;
1566 };
1567
1568 struct skl_ddb_entry {
1569 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1570 };
1571
1572 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1573 {
1574 return entry->end - entry->start;
1575 }
1576
1577 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1578 const struct skl_ddb_entry *e2)
1579 {
1580 if (e1->start == e2->start && e1->end == e2->end)
1581 return true;
1582
1583 return false;
1584 }
1585
1586 struct skl_ddb_allocation {
1587 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1588 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1589 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1590 };
1591
1592 struct skl_wm_values {
1593 unsigned dirty_pipes;
1594 struct skl_ddb_allocation ddb;
1595 uint32_t wm_linetime[I915_MAX_PIPES];
1596 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1597 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1598 };
1599
1600 struct skl_wm_level {
1601 bool plane_en[I915_MAX_PLANES];
1602 uint16_t plane_res_b[I915_MAX_PLANES];
1603 uint8_t plane_res_l[I915_MAX_PLANES];
1604 };
1605
1606 /*
1607 * This struct helps tracking the state needed for runtime PM, which puts the
1608 * device in PCI D3 state. Notice that when this happens, nothing on the
1609 * graphics device works, even register access, so we don't get interrupts nor
1610 * anything else.
1611 *
1612 * Every piece of our code that needs to actually touch the hardware needs to
1613 * either call intel_runtime_pm_get or call intel_display_power_get with the
1614 * appropriate power domain.
1615 *
1616 * Our driver uses the autosuspend delay feature, which means we'll only really
1617 * suspend if we stay with zero refcount for a certain amount of time. The
1618 * default value is currently very conservative (see intel_runtime_pm_enable), but
1619 * it can be changed with the standard runtime PM files from sysfs.
1620 *
1621 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1622 * goes back to false exactly before we reenable the IRQs. We use this variable
1623 * to check if someone is trying to enable/disable IRQs while they're supposed
1624 * to be disabled. This shouldn't happen and we'll print some error messages in
1625 * case it happens.
1626 *
1627 * For more, read the Documentation/power/runtime_pm.txt.
1628 */
1629 struct i915_runtime_pm {
1630 atomic_t wakeref_count;
1631 atomic_t atomic_seq;
1632 bool suspended;
1633 bool irqs_enabled;
1634 };
1635
1636 enum intel_pipe_crc_source {
1637 INTEL_PIPE_CRC_SOURCE_NONE,
1638 INTEL_PIPE_CRC_SOURCE_PLANE1,
1639 INTEL_PIPE_CRC_SOURCE_PLANE2,
1640 INTEL_PIPE_CRC_SOURCE_PF,
1641 INTEL_PIPE_CRC_SOURCE_PIPE,
1642 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1643 INTEL_PIPE_CRC_SOURCE_TV,
1644 INTEL_PIPE_CRC_SOURCE_DP_B,
1645 INTEL_PIPE_CRC_SOURCE_DP_C,
1646 INTEL_PIPE_CRC_SOURCE_DP_D,
1647 INTEL_PIPE_CRC_SOURCE_AUTO,
1648 INTEL_PIPE_CRC_SOURCE_MAX,
1649 };
1650
1651 struct intel_pipe_crc_entry {
1652 uint32_t frame;
1653 uint32_t crc[5];
1654 };
1655
1656 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1657 struct intel_pipe_crc {
1658 spinlock_t lock;
1659 bool opened; /* exclusive access to the result file */
1660 struct intel_pipe_crc_entry *entries;
1661 enum intel_pipe_crc_source source;
1662 int head, tail;
1663 wait_queue_head_t wq;
1664 };
1665
1666 struct i915_frontbuffer_tracking {
1667 spinlock_t lock;
1668
1669 /*
1670 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1671 * scheduled flips.
1672 */
1673 unsigned busy_bits;
1674 unsigned flip_bits;
1675 };
1676
1677 struct i915_wa_reg {
1678 i915_reg_t addr;
1679 u32 value;
1680 /* bitmask representing WA bits */
1681 u32 mask;
1682 };
1683
1684 /*
1685 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1686 * allowing it for RCS as we don't foresee any requirement of having
1687 * a whitelist for other engines. When it is really required for
1688 * other engines then the limit need to be increased.
1689 */
1690 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1691
1692 struct i915_workarounds {
1693 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1694 u32 count;
1695 u32 hw_whitelist_count[I915_NUM_ENGINES];
1696 };
1697
1698 struct i915_virtual_gpu {
1699 bool active;
1700 };
1701
1702 /* used in computing the new watermarks state */
1703 struct intel_wm_config {
1704 unsigned int num_pipes_active;
1705 bool sprites_enabled;
1706 bool sprites_scaled;
1707 };
1708
1709 struct drm_i915_private {
1710 struct drm_device drm;
1711
1712 struct kmem_cache *objects;
1713 struct kmem_cache *vmas;
1714 struct kmem_cache *requests;
1715
1716 const struct intel_device_info info;
1717
1718 int relative_constants_mode;
1719
1720 void __iomem *regs;
1721
1722 struct intel_uncore uncore;
1723
1724 struct i915_virtual_gpu vgpu;
1725
1726 struct intel_gvt gvt;
1727
1728 struct intel_guc guc;
1729
1730 struct intel_csr csr;
1731
1732 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1733
1734 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1735 * controller on different i2c buses. */
1736 struct mutex gmbus_mutex;
1737
1738 /**
1739 * Base address of the gmbus and gpio block.
1740 */
1741 uint32_t gpio_mmio_base;
1742
1743 /* MMIO base address for MIPI regs */
1744 uint32_t mipi_mmio_base;
1745
1746 uint32_t psr_mmio_base;
1747
1748 uint32_t pps_mmio_base;
1749
1750 wait_queue_head_t gmbus_wait_queue;
1751
1752 struct pci_dev *bridge_dev;
1753 struct i915_gem_context *kernel_context;
1754 struct intel_engine_cs engine[I915_NUM_ENGINES];
1755 struct i915_vma *semaphore;
1756 u32 next_seqno;
1757
1758 struct drm_dma_handle *status_page_dmah;
1759 struct resource mch_res;
1760
1761 /* protects the irq masks */
1762 spinlock_t irq_lock;
1763
1764 /* protects the mmio flip data */
1765 spinlock_t mmio_flip_lock;
1766
1767 bool display_irqs_enabled;
1768
1769 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1770 struct pm_qos_request pm_qos;
1771
1772 /* Sideband mailbox protection */
1773 struct mutex sb_lock;
1774
1775 /** Cached value of IMR to avoid reads in updating the bitfield */
1776 union {
1777 u32 irq_mask;
1778 u32 de_irq_mask[I915_MAX_PIPES];
1779 };
1780 u32 gt_irq_mask;
1781 u32 pm_irq_mask;
1782 u32 pm_rps_events;
1783 u32 pipestat_irq_mask[I915_MAX_PIPES];
1784
1785 struct i915_hotplug hotplug;
1786 struct intel_fbc fbc;
1787 struct i915_drrs drrs;
1788 struct intel_opregion opregion;
1789 struct intel_vbt_data vbt;
1790
1791 bool preserve_bios_swizzle;
1792
1793 /* overlay */
1794 struct intel_overlay *overlay;
1795
1796 /* backlight registers and fields in struct intel_panel */
1797 struct mutex backlight_lock;
1798
1799 /* LVDS info */
1800 bool no_aux_handshake;
1801
1802 /* protects panel power sequencer state */
1803 struct mutex pps_mutex;
1804
1805 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1806 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1807
1808 unsigned int fsb_freq, mem_freq, is_ddr3;
1809 unsigned int skl_preferred_vco_freq;
1810 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1811 unsigned int max_dotclk_freq;
1812 unsigned int rawclk_freq;
1813 unsigned int hpll_freq;
1814 unsigned int czclk_freq;
1815
1816 struct {
1817 unsigned int vco, ref;
1818 } cdclk_pll;
1819
1820 /**
1821 * wq - Driver workqueue for GEM.
1822 *
1823 * NOTE: Work items scheduled here are not allowed to grab any modeset
1824 * locks, for otherwise the flushing done in the pageflip code will
1825 * result in deadlocks.
1826 */
1827 struct workqueue_struct *wq;
1828
1829 /* Display functions */
1830 struct drm_i915_display_funcs display;
1831
1832 /* PCH chipset type */
1833 enum intel_pch pch_type;
1834 unsigned short pch_id;
1835
1836 unsigned long quirks;
1837
1838 enum modeset_restore modeset_restore;
1839 struct mutex modeset_restore_lock;
1840 struct drm_atomic_state *modeset_restore_state;
1841 struct drm_modeset_acquire_ctx reset_ctx;
1842
1843 struct list_head vm_list; /* Global list of all address spaces */
1844 struct i915_ggtt ggtt; /* VM representing the global address space */
1845
1846 struct i915_gem_mm mm;
1847 DECLARE_HASHTABLE(mm_structs, 7);
1848 struct mutex mm_lock;
1849
1850 /* The hw wants to have a stable context identifier for the lifetime
1851 * of the context (for OA, PASID, faults, etc). This is limited
1852 * in execlists to 21 bits.
1853 */
1854 struct ida context_hw_ida;
1855 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1856
1857 /* Kernel Modesetting */
1858
1859 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1860 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1861 wait_queue_head_t pending_flip_queue;
1862
1863 #ifdef CONFIG_DEBUG_FS
1864 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1865 #endif
1866
1867 /* dpll and cdclk state is protected by connection_mutex */
1868 int num_shared_dpll;
1869 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1870 const struct intel_dpll_mgr *dpll_mgr;
1871
1872 /*
1873 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1874 * Must be global rather than per dpll, because on some platforms
1875 * plls share registers.
1876 */
1877 struct mutex dpll_lock;
1878
1879 unsigned int active_crtcs;
1880 unsigned int min_pixclk[I915_MAX_PIPES];
1881
1882 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1883
1884 struct i915_workarounds workarounds;
1885
1886 struct i915_frontbuffer_tracking fb_tracking;
1887
1888 u16 orig_clock;
1889
1890 bool mchbar_need_disable;
1891
1892 struct intel_l3_parity l3_parity;
1893
1894 /* Cannot be determined by PCIID. You must always read a register. */
1895 u32 edram_cap;
1896
1897 /* gen6+ rps state */
1898 struct intel_gen6_power_mgmt rps;
1899
1900 /* ilk-only ips/rps state. Everything in here is protected by the global
1901 * mchdev_lock in intel_pm.c */
1902 struct intel_ilk_power_mgmt ips;
1903
1904 struct i915_power_domains power_domains;
1905
1906 struct i915_psr psr;
1907
1908 struct i915_gpu_error gpu_error;
1909
1910 struct drm_i915_gem_object *vlv_pctx;
1911
1912 #ifdef CONFIG_DRM_FBDEV_EMULATION
1913 /* list of fbdev register on this device */
1914 struct intel_fbdev *fbdev;
1915 struct work_struct fbdev_suspend_work;
1916 #endif
1917
1918 struct drm_property *broadcast_rgb_property;
1919 struct drm_property *force_audio_property;
1920
1921 /* hda/i915 audio component */
1922 struct i915_audio_component *audio_component;
1923 bool audio_component_registered;
1924 /**
1925 * av_mutex - mutex for audio/video sync
1926 *
1927 */
1928 struct mutex av_mutex;
1929
1930 uint32_t hw_context_size;
1931 struct list_head context_list;
1932
1933 u32 fdi_rx_config;
1934
1935 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1936 u32 chv_phy_control;
1937 /*
1938 * Shadows for CHV DPLL_MD regs to keep the state
1939 * checker somewhat working in the presence hardware
1940 * crappiness (can't read out DPLL_MD for pipes B & C).
1941 */
1942 u32 chv_dpll_md[I915_MAX_PIPES];
1943 u32 bxt_phy_grc;
1944
1945 u32 suspend_count;
1946 bool suspended_to_idle;
1947 struct i915_suspend_saved_registers regfile;
1948 struct vlv_s0ix_state vlv_s0ix_state;
1949
1950 struct {
1951 /*
1952 * Raw watermark latency values:
1953 * in 0.1us units for WM0,
1954 * in 0.5us units for WM1+.
1955 */
1956 /* primary */
1957 uint16_t pri_latency[5];
1958 /* sprite */
1959 uint16_t spr_latency[5];
1960 /* cursor */
1961 uint16_t cur_latency[5];
1962 /*
1963 * Raw watermark memory latency values
1964 * for SKL for all 8 levels
1965 * in 1us units.
1966 */
1967 uint16_t skl_latency[8];
1968
1969 /*
1970 * The skl_wm_values structure is a bit too big for stack
1971 * allocation, so we keep the staging struct where we store
1972 * intermediate results here instead.
1973 */
1974 struct skl_wm_values skl_results;
1975
1976 /* current hardware state */
1977 union {
1978 struct ilk_wm_values hw;
1979 struct skl_wm_values skl_hw;
1980 struct vlv_wm_values vlv;
1981 };
1982
1983 uint8_t max_level;
1984
1985 /*
1986 * Should be held around atomic WM register writing; also
1987 * protects * intel_crtc->wm.active and
1988 * cstate->wm.need_postvbl_update.
1989 */
1990 struct mutex wm_mutex;
1991
1992 /*
1993 * Set during HW readout of watermarks/DDB. Some platforms
1994 * need to know when we're still using BIOS-provided values
1995 * (which we don't fully trust).
1996 */
1997 bool distrust_bios_wm;
1998 } wm;
1999
2000 struct i915_runtime_pm pm;
2001
2002 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2003 struct {
2004 void (*cleanup_engine)(struct intel_engine_cs *engine);
2005
2006 /**
2007 * Is the GPU currently considered idle, or busy executing
2008 * userspace requests? Whilst idle, we allow runtime power
2009 * management to power down the hardware and display clocks.
2010 * In order to reduce the effect on performance, there
2011 * is a slight delay before we do so.
2012 */
2013 unsigned int active_engines;
2014 bool awake;
2015
2016 /**
2017 * We leave the user IRQ off as much as possible,
2018 * but this means that requests will finish and never
2019 * be retired once the system goes idle. Set a timer to
2020 * fire periodically while the ring is running. When it
2021 * fires, go retire requests.
2022 */
2023 struct delayed_work retire_work;
2024
2025 /**
2026 * When we detect an idle GPU, we want to turn on
2027 * powersaving features. So once we see that there
2028 * are no more requests outstanding and no more
2029 * arrive within a small period of time, we fire
2030 * off the idle_work.
2031 */
2032 struct delayed_work idle_work;
2033 } gt;
2034
2035 /* perform PHY state sanity checks? */
2036 bool chv_phy_assert[2];
2037
2038 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2039
2040 /*
2041 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2042 * will be rejected. Instead look for a better place.
2043 */
2044 };
2045
2046 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2047 {
2048 return container_of(dev, struct drm_i915_private, drm);
2049 }
2050
2051 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2052 {
2053 return to_i915(dev_get_drvdata(dev));
2054 }
2055
2056 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2057 {
2058 return container_of(guc, struct drm_i915_private, guc);
2059 }
2060
2061 /* Simple iterator over all initialised engines */
2062 #define for_each_engine(engine__, dev_priv__) \
2063 for ((engine__) = &(dev_priv__)->engine[0]; \
2064 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2065 (engine__)++) \
2066 for_each_if (intel_engine_initialized(engine__))
2067
2068 /* Iterator with engine_id */
2069 #define for_each_engine_id(engine__, dev_priv__, id__) \
2070 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2071 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2072 (engine__)++) \
2073 for_each_if (((id__) = (engine__)->id, \
2074 intel_engine_initialized(engine__)))
2075
2076 /* Iterator over subset of engines selected by mask */
2077 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2078 for ((engine__) = &(dev_priv__)->engine[0]; \
2079 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2080 (engine__)++) \
2081 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2082 intel_engine_initialized(engine__))
2083
2084 enum hdmi_force_audio {
2085 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2086 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2087 HDMI_AUDIO_AUTO, /* trust EDID */
2088 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2089 };
2090
2091 #define I915_GTT_OFFSET_NONE ((u32)-1)
2092
2093 struct drm_i915_gem_object_ops {
2094 unsigned int flags;
2095 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2096
2097 /* Interface between the GEM object and its backing storage.
2098 * get_pages() is called once prior to the use of the associated set
2099 * of pages before to binding them into the GTT, and put_pages() is
2100 * called after we no longer need them. As we expect there to be
2101 * associated cost with migrating pages between the backing storage
2102 * and making them available for the GPU (e.g. clflush), we may hold
2103 * onto the pages after they are no longer referenced by the GPU
2104 * in case they may be used again shortly (for example migrating the
2105 * pages to a different memory domain within the GTT). put_pages()
2106 * will therefore most likely be called when the object itself is
2107 * being released or under memory pressure (where we attempt to
2108 * reap pages for the shrinker).
2109 */
2110 int (*get_pages)(struct drm_i915_gem_object *);
2111 void (*put_pages)(struct drm_i915_gem_object *);
2112
2113 int (*dmabuf_export)(struct drm_i915_gem_object *);
2114 void (*release)(struct drm_i915_gem_object *);
2115 };
2116
2117 /*
2118 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2119 * considered to be the frontbuffer for the given plane interface-wise. This
2120 * doesn't mean that the hw necessarily already scans it out, but that any
2121 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2122 *
2123 * We have one bit per pipe and per scanout plane type.
2124 */
2125 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2126 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2127 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2128 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2129 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2130 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2131 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2132 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2133 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2134 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2135 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2136 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2137
2138 struct drm_i915_gem_object {
2139 struct drm_gem_object base;
2140
2141 const struct drm_i915_gem_object_ops *ops;
2142
2143 /** List of VMAs backed by this object */
2144 struct list_head vma_list;
2145
2146 /** Stolen memory for this object, instead of being backed by shmem. */
2147 struct drm_mm_node *stolen;
2148 struct list_head global_list;
2149
2150 /** Used in execbuf to temporarily hold a ref */
2151 struct list_head obj_exec_link;
2152
2153 struct list_head batch_pool_link;
2154
2155 unsigned long flags;
2156 /**
2157 * This is set if the object is on the active lists (has pending
2158 * rendering and so a non-zero seqno), and is not set if it i s on
2159 * inactive (ready to be unbound) list.
2160 */
2161 #define I915_BO_ACTIVE_SHIFT 0
2162 #define I915_BO_ACTIVE_MASK ((1 << I915_NUM_ENGINES) - 1)
2163 #define __I915_BO_ACTIVE(bo) \
2164 ((READ_ONCE((bo)->flags) >> I915_BO_ACTIVE_SHIFT) & I915_BO_ACTIVE_MASK)
2165
2166 /**
2167 * This is set if the object has been written to since last bound
2168 * to the GTT
2169 */
2170 unsigned int dirty:1;
2171
2172 /**
2173 * Fence register bits (if any) for this object. Will be set
2174 * as needed when mapped into the GTT.
2175 * Protected by dev->struct_mutex.
2176 */
2177 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2178
2179 /**
2180 * Advice: are the backing pages purgeable?
2181 */
2182 unsigned int madv:2;
2183
2184 /**
2185 * Whether the tiling parameters for the currently associated fence
2186 * register have changed. Note that for the purposes of tracking
2187 * tiling changes we also treat the unfenced register, the register
2188 * slot that the object occupies whilst it executes a fenced
2189 * command (such as BLT on gen2/3), as a "fence".
2190 */
2191 unsigned int fence_dirty:1;
2192
2193 /**
2194 * Is the object at the current location in the gtt mappable and
2195 * fenceable? Used to avoid costly recalculations.
2196 */
2197 unsigned int map_and_fenceable:1;
2198
2199 /**
2200 * Whether the current gtt mapping needs to be mappable (and isn't just
2201 * mappable by accident). Track pin and fault separate for a more
2202 * accurate mappable working set.
2203 */
2204 unsigned int fault_mappable:1;
2205
2206 /*
2207 * Is the object to be mapped as read-only to the GPU
2208 * Only honoured if hardware has relevant pte bit
2209 */
2210 unsigned long gt_ro:1;
2211 unsigned int cache_level:3;
2212 unsigned int cache_dirty:1;
2213
2214 atomic_t frontbuffer_bits;
2215
2216 /** Current tiling stride for the object, if it's tiled. */
2217 unsigned int tiling_and_stride;
2218 #define FENCE_MINIMUM_STRIDE 128 /* See i915_tiling_ok() */
2219 #define TILING_MASK (FENCE_MINIMUM_STRIDE-1)
2220 #define STRIDE_MASK (~TILING_MASK)
2221
2222 unsigned int has_wc_mmap;
2223 /** Count of VMA actually bound by this object */
2224 unsigned int bind_count;
2225 unsigned int pin_display;
2226
2227 struct sg_table *pages;
2228 int pages_pin_count;
2229 struct get_page {
2230 struct scatterlist *sg;
2231 int last;
2232 } get_page;
2233 void *mapping;
2234
2235 /** Breadcrumb of last rendering to the buffer.
2236 * There can only be one writer, but we allow for multiple readers.
2237 * If there is a writer that necessarily implies that all other
2238 * read requests are complete - but we may only be lazily clearing
2239 * the read requests. A read request is naturally the most recent
2240 * request on a ring, so we may have two different write and read
2241 * requests on one ring where the write request is older than the
2242 * read request. This allows for the CPU to read from an active
2243 * buffer by only waiting for the write to complete.
2244 */
2245 struct i915_gem_active last_read[I915_NUM_ENGINES];
2246 struct i915_gem_active last_write;
2247 struct i915_gem_active last_fence;
2248
2249 /** References from framebuffers, locks out tiling changes. */
2250 unsigned long framebuffer_references;
2251
2252 /** Record of address bit 17 of each page at last unbind. */
2253 unsigned long *bit_17;
2254
2255 union {
2256 /** for phy allocated objects */
2257 struct drm_dma_handle *phys_handle;
2258
2259 struct i915_gem_userptr {
2260 uintptr_t ptr;
2261 unsigned read_only :1;
2262 unsigned workers :4;
2263 #define I915_GEM_USERPTR_MAX_WORKERS 15
2264
2265 struct i915_mm_struct *mm;
2266 struct i915_mmu_object *mmu_object;
2267 struct work_struct *work;
2268 } userptr;
2269 };
2270 };
2271
2272 static inline struct drm_i915_gem_object *
2273 to_intel_bo(struct drm_gem_object *gem)
2274 {
2275 /* Assert that to_intel_bo(NULL) == NULL */
2276 BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
2277
2278 return container_of(gem, struct drm_i915_gem_object, base);
2279 }
2280
2281 static inline struct drm_i915_gem_object *
2282 i915_gem_object_lookup(struct drm_file *file, u32 handle)
2283 {
2284 return to_intel_bo(drm_gem_object_lookup(file, handle));
2285 }
2286
2287 __deprecated
2288 extern struct drm_gem_object *
2289 drm_gem_object_lookup(struct drm_file *file, u32 handle);
2290
2291 __attribute__((nonnull))
2292 static inline struct drm_i915_gem_object *
2293 i915_gem_object_get(struct drm_i915_gem_object *obj)
2294 {
2295 drm_gem_object_reference(&obj->base);
2296 return obj;
2297 }
2298
2299 __deprecated
2300 extern void drm_gem_object_reference(struct drm_gem_object *);
2301
2302 __attribute__((nonnull))
2303 static inline void
2304 i915_gem_object_put(struct drm_i915_gem_object *obj)
2305 {
2306 drm_gem_object_unreference(&obj->base);
2307 }
2308
2309 __deprecated
2310 extern void drm_gem_object_unreference(struct drm_gem_object *);
2311
2312 __attribute__((nonnull))
2313 static inline void
2314 i915_gem_object_put_unlocked(struct drm_i915_gem_object *obj)
2315 {
2316 drm_gem_object_unreference_unlocked(&obj->base);
2317 }
2318
2319 __deprecated
2320 extern void drm_gem_object_unreference_unlocked(struct drm_gem_object *);
2321
2322 static inline bool
2323 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2324 {
2325 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2326 }
2327
2328 static inline unsigned long
2329 i915_gem_object_get_active(const struct drm_i915_gem_object *obj)
2330 {
2331 return (obj->flags >> I915_BO_ACTIVE_SHIFT) & I915_BO_ACTIVE_MASK;
2332 }
2333
2334 static inline bool
2335 i915_gem_object_is_active(const struct drm_i915_gem_object *obj)
2336 {
2337 return i915_gem_object_get_active(obj);
2338 }
2339
2340 static inline void
2341 i915_gem_object_set_active(struct drm_i915_gem_object *obj, int engine)
2342 {
2343 obj->flags |= BIT(engine + I915_BO_ACTIVE_SHIFT);
2344 }
2345
2346 static inline void
2347 i915_gem_object_clear_active(struct drm_i915_gem_object *obj, int engine)
2348 {
2349 obj->flags &= ~BIT(engine + I915_BO_ACTIVE_SHIFT);
2350 }
2351
2352 static inline bool
2353 i915_gem_object_has_active_engine(const struct drm_i915_gem_object *obj,
2354 int engine)
2355 {
2356 return obj->flags & BIT(engine + I915_BO_ACTIVE_SHIFT);
2357 }
2358
2359 static inline unsigned int
2360 i915_gem_object_get_tiling(struct drm_i915_gem_object *obj)
2361 {
2362 return obj->tiling_and_stride & TILING_MASK;
2363 }
2364
2365 static inline bool
2366 i915_gem_object_is_tiled(struct drm_i915_gem_object *obj)
2367 {
2368 return i915_gem_object_get_tiling(obj) != I915_TILING_NONE;
2369 }
2370
2371 static inline unsigned int
2372 i915_gem_object_get_stride(struct drm_i915_gem_object *obj)
2373 {
2374 return obj->tiling_and_stride & STRIDE_MASK;
2375 }
2376
2377 static inline struct i915_vma *i915_vma_get(struct i915_vma *vma)
2378 {
2379 i915_gem_object_get(vma->obj);
2380 return vma;
2381 }
2382
2383 static inline void i915_vma_put(struct i915_vma *vma)
2384 {
2385 lockdep_assert_held(&vma->vm->dev->struct_mutex);
2386 i915_gem_object_put(vma->obj);
2387 }
2388
2389 /*
2390 * Optimised SGL iterator for GEM objects
2391 */
2392 static __always_inline struct sgt_iter {
2393 struct scatterlist *sgp;
2394 union {
2395 unsigned long pfn;
2396 dma_addr_t dma;
2397 };
2398 unsigned int curr;
2399 unsigned int max;
2400 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2401 struct sgt_iter s = { .sgp = sgl };
2402
2403 if (s.sgp) {
2404 s.max = s.curr = s.sgp->offset;
2405 s.max += s.sgp->length;
2406 if (dma)
2407 s.dma = sg_dma_address(s.sgp);
2408 else
2409 s.pfn = page_to_pfn(sg_page(s.sgp));
2410 }
2411
2412 return s;
2413 }
2414
2415 /**
2416 * __sg_next - return the next scatterlist entry in a list
2417 * @sg: The current sg entry
2418 *
2419 * Description:
2420 * If the entry is the last, return NULL; otherwise, step to the next
2421 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2422 * otherwise just return the pointer to the current element.
2423 **/
2424 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2425 {
2426 #ifdef CONFIG_DEBUG_SG
2427 BUG_ON(sg->sg_magic != SG_MAGIC);
2428 #endif
2429 return sg_is_last(sg) ? NULL :
2430 likely(!sg_is_chain(++sg)) ? sg :
2431 sg_chain_ptr(sg);
2432 }
2433
2434 /**
2435 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2436 * @__dmap: DMA address (output)
2437 * @__iter: 'struct sgt_iter' (iterator state, internal)
2438 * @__sgt: sg_table to iterate over (input)
2439 */
2440 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2441 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2442 ((__dmap) = (__iter).dma + (__iter).curr); \
2443 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2444 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2445
2446 /**
2447 * for_each_sgt_page - iterate over the pages of the given sg_table
2448 * @__pp: page pointer (output)
2449 * @__iter: 'struct sgt_iter' (iterator state, internal)
2450 * @__sgt: sg_table to iterate over (input)
2451 */
2452 #define for_each_sgt_page(__pp, __iter, __sgt) \
2453 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2454 ((__pp) = (__iter).pfn == 0 ? NULL : \
2455 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2456 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2457 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2458
2459 /*
2460 * A command that requires special handling by the command parser.
2461 */
2462 struct drm_i915_cmd_descriptor {
2463 /*
2464 * Flags describing how the command parser processes the command.
2465 *
2466 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2467 * a length mask if not set
2468 * CMD_DESC_SKIP: The command is allowed but does not follow the
2469 * standard length encoding for the opcode range in
2470 * which it falls
2471 * CMD_DESC_REJECT: The command is never allowed
2472 * CMD_DESC_REGISTER: The command should be checked against the
2473 * register whitelist for the appropriate ring
2474 * CMD_DESC_MASTER: The command is allowed if the submitting process
2475 * is the DRM master
2476 */
2477 u32 flags;
2478 #define CMD_DESC_FIXED (1<<0)
2479 #define CMD_DESC_SKIP (1<<1)
2480 #define CMD_DESC_REJECT (1<<2)
2481 #define CMD_DESC_REGISTER (1<<3)
2482 #define CMD_DESC_BITMASK (1<<4)
2483 #define CMD_DESC_MASTER (1<<5)
2484
2485 /*
2486 * The command's unique identification bits and the bitmask to get them.
2487 * This isn't strictly the opcode field as defined in the spec and may
2488 * also include type, subtype, and/or subop fields.
2489 */
2490 struct {
2491 u32 value;
2492 u32 mask;
2493 } cmd;
2494
2495 /*
2496 * The command's length. The command is either fixed length (i.e. does
2497 * not include a length field) or has a length field mask. The flag
2498 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2499 * a length mask. All command entries in a command table must include
2500 * length information.
2501 */
2502 union {
2503 u32 fixed;
2504 u32 mask;
2505 } length;
2506
2507 /*
2508 * Describes where to find a register address in the command to check
2509 * against the ring's register whitelist. Only valid if flags has the
2510 * CMD_DESC_REGISTER bit set.
2511 *
2512 * A non-zero step value implies that the command may access multiple
2513 * registers in sequence (e.g. LRI), in that case step gives the
2514 * distance in dwords between individual offset fields.
2515 */
2516 struct {
2517 u32 offset;
2518 u32 mask;
2519 u32 step;
2520 } reg;
2521
2522 #define MAX_CMD_DESC_BITMASKS 3
2523 /*
2524 * Describes command checks where a particular dword is masked and
2525 * compared against an expected value. If the command does not match
2526 * the expected value, the parser rejects it. Only valid if flags has
2527 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2528 * are valid.
2529 *
2530 * If the check specifies a non-zero condition_mask then the parser
2531 * only performs the check when the bits specified by condition_mask
2532 * are non-zero.
2533 */
2534 struct {
2535 u32 offset;
2536 u32 mask;
2537 u32 expected;
2538 u32 condition_offset;
2539 u32 condition_mask;
2540 } bits[MAX_CMD_DESC_BITMASKS];
2541 };
2542
2543 /*
2544 * A table of commands requiring special handling by the command parser.
2545 *
2546 * Each engine has an array of tables. Each table consists of an array of
2547 * command descriptors, which must be sorted with command opcodes in
2548 * ascending order.
2549 */
2550 struct drm_i915_cmd_table {
2551 const struct drm_i915_cmd_descriptor *table;
2552 int count;
2553 };
2554
2555 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2556 #define __I915__(p) ({ \
2557 struct drm_i915_private *__p; \
2558 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2559 __p = (struct drm_i915_private *)p; \
2560 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2561 __p = to_i915((struct drm_device *)p); \
2562 else \
2563 BUILD_BUG(); \
2564 __p; \
2565 })
2566 #define INTEL_INFO(p) (&__I915__(p)->info)
2567 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2568 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2569
2570 #define REVID_FOREVER 0xff
2571 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2572
2573 #define GEN_FOREVER (0)
2574 /*
2575 * Returns true if Gen is in inclusive range [Start, End].
2576 *
2577 * Use GEN_FOREVER for unbound start and or end.
2578 */
2579 #define IS_GEN(p, s, e) ({ \
2580 unsigned int __s = (s), __e = (e); \
2581 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2582 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2583 if ((__s) != GEN_FOREVER) \
2584 __s = (s) - 1; \
2585 if ((__e) == GEN_FOREVER) \
2586 __e = BITS_PER_LONG - 1; \
2587 else \
2588 __e = (e) - 1; \
2589 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2590 })
2591
2592 /*
2593 * Return true if revision is in range [since,until] inclusive.
2594 *
2595 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2596 */
2597 #define IS_REVID(p, since, until) \
2598 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2599
2600 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2601 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2602 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2603 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2604 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2605 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2606 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2607 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2608 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2609 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2610 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2611 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2612 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2613 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2614 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2615 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2616 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2617 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2618 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2619 INTEL_DEVID(dev) == 0x0152 || \
2620 INTEL_DEVID(dev) == 0x015a)
2621 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2622 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2623 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2624 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2625 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2626 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2627 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2628 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2629 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2630 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2631 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2632 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2633 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2634 (INTEL_DEVID(dev) & 0xf) == 0xe))
2635 /* ULX machines are also considered ULT. */
2636 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2637 (INTEL_DEVID(dev) & 0xf) == 0xe)
2638 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2639 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2640 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2641 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2642 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2643 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2644 /* ULX machines are also considered ULT. */
2645 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2646 INTEL_DEVID(dev) == 0x0A1E)
2647 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2648 INTEL_DEVID(dev) == 0x1913 || \
2649 INTEL_DEVID(dev) == 0x1916 || \
2650 INTEL_DEVID(dev) == 0x1921 || \
2651 INTEL_DEVID(dev) == 0x1926)
2652 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2653 INTEL_DEVID(dev) == 0x1915 || \
2654 INTEL_DEVID(dev) == 0x191E)
2655 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2656 INTEL_DEVID(dev) == 0x5913 || \
2657 INTEL_DEVID(dev) == 0x5916 || \
2658 INTEL_DEVID(dev) == 0x5921 || \
2659 INTEL_DEVID(dev) == 0x5926)
2660 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2661 INTEL_DEVID(dev) == 0x5915 || \
2662 INTEL_DEVID(dev) == 0x591E)
2663 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2664 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2665 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2666 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2667
2668 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2669
2670 #define SKL_REVID_A0 0x0
2671 #define SKL_REVID_B0 0x1
2672 #define SKL_REVID_C0 0x2
2673 #define SKL_REVID_D0 0x3
2674 #define SKL_REVID_E0 0x4
2675 #define SKL_REVID_F0 0x5
2676 #define SKL_REVID_G0 0x6
2677 #define SKL_REVID_H0 0x7
2678
2679 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2680
2681 #define BXT_REVID_A0 0x0
2682 #define BXT_REVID_A1 0x1
2683 #define BXT_REVID_B0 0x3
2684 #define BXT_REVID_C0 0x9
2685
2686 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2687
2688 #define KBL_REVID_A0 0x0
2689 #define KBL_REVID_B0 0x1
2690 #define KBL_REVID_C0 0x2
2691 #define KBL_REVID_D0 0x3
2692 #define KBL_REVID_E0 0x4
2693
2694 #define IS_KBL_REVID(p, since, until) \
2695 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2696
2697 /*
2698 * The genX designation typically refers to the render engine, so render
2699 * capability related checks should use IS_GEN, while display and other checks
2700 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2701 * chips, etc.).
2702 */
2703 #define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1)))
2704 #define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2)))
2705 #define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3)))
2706 #define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4)))
2707 #define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5)))
2708 #define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6)))
2709 #define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7)))
2710 #define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8)))
2711
2712 #define ENGINE_MASK(id) BIT(id)
2713 #define RENDER_RING ENGINE_MASK(RCS)
2714 #define BSD_RING ENGINE_MASK(VCS)
2715 #define BLT_RING ENGINE_MASK(BCS)
2716 #define VEBOX_RING ENGINE_MASK(VECS)
2717 #define BSD2_RING ENGINE_MASK(VCS2)
2718 #define ALL_ENGINES (~0)
2719
2720 #define HAS_ENGINE(dev_priv, id) \
2721 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2722
2723 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2724 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2725 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2726 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2727
2728 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2729 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2730 #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2731 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2732 HAS_EDRAM(dev))
2733 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2734
2735 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2736 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2737 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2738 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2739 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2740
2741 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2742 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2743
2744 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2745 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2746
2747 /* WaRsDisableCoarsePowerGating:skl,bxt */
2748 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2749 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2750 IS_SKL_GT3(dev_priv) || \
2751 IS_SKL_GT4(dev_priv))
2752
2753 /*
2754 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2755 * even when in MSI mode. This results in spurious interrupt warnings if the
2756 * legacy irq no. is shared with another device. The kernel then disables that
2757 * interrupt source and so prevents the other device from working properly.
2758 */
2759 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2760 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2761
2762 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2763 * rows, which changed the alignment requirements and fence programming.
2764 */
2765 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2766 IS_I915GM(dev)))
2767 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2768 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2769
2770 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2771 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2772 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2773
2774 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2775
2776 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2777 INTEL_INFO(dev)->gen >= 9)
2778
2779 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2780 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2781 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2782 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2783 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2784 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2785 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2786 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2787 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2788 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2789 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2790
2791 #define HAS_CSR(dev) (IS_GEN9(dev))
2792
2793 /*
2794 * For now, anything with a GuC requires uCode loading, and then supports
2795 * command submission once loaded. But these are logically independent
2796 * properties, so we have separate macros to test them.
2797 */
2798 #define HAS_GUC(dev) (IS_GEN9(dev))
2799 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2800 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2801
2802 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2803 INTEL_INFO(dev)->gen >= 8)
2804
2805 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2806 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2807 !IS_BROXTON(dev))
2808
2809 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2810
2811 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2812 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2813 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2814 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2815 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2816 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2817 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2818 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2819 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2820 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2821 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2822 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2823
2824 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2825 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
2826 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2827 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2828 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2829 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2830 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2831 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2832 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2833 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2834
2835 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2836 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2837
2838 /* DPF == dynamic parity feature */
2839 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2840 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2841
2842 #define GT_FREQUENCY_MULTIPLIER 50
2843 #define GEN9_FREQ_SCALER 3
2844
2845 #include "i915_trace.h"
2846
2847 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2848 {
2849 #ifdef CONFIG_INTEL_IOMMU
2850 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2851 return true;
2852 #endif
2853 return false;
2854 }
2855
2856 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2857 extern int i915_resume_switcheroo(struct drm_device *dev);
2858
2859 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2860 int enable_ppgtt);
2861
2862 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2863
2864 /* i915_drv.c */
2865 void __printf(3, 4)
2866 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2867 const char *fmt, ...);
2868
2869 #define i915_report_error(dev_priv, fmt, ...) \
2870 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2871
2872 #ifdef CONFIG_COMPAT
2873 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2874 unsigned long arg);
2875 #endif
2876 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2877 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2878 extern int i915_reset(struct drm_i915_private *dev_priv);
2879 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2880 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2881 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2882 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2883 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2884 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2885 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2886
2887 /* intel_hotplug.c */
2888 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2889 u32 pin_mask, u32 long_mask);
2890 void intel_hpd_init(struct drm_i915_private *dev_priv);
2891 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2892 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2893 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2894 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2895 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2896
2897 /* i915_irq.c */
2898 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2899 {
2900 unsigned long delay;
2901
2902 if (unlikely(!i915.enable_hangcheck))
2903 return;
2904
2905 /* Don't continually defer the hangcheck so that it is always run at
2906 * least once after work has been scheduled on any ring. Otherwise,
2907 * we will ignore a hung ring if a second ring is kept busy.
2908 */
2909
2910 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2911 queue_delayed_work(system_long_wq,
2912 &dev_priv->gpu_error.hangcheck_work, delay);
2913 }
2914
2915 __printf(3, 4)
2916 void i915_handle_error(struct drm_i915_private *dev_priv,
2917 u32 engine_mask,
2918 const char *fmt, ...);
2919
2920 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2921 int intel_irq_install(struct drm_i915_private *dev_priv);
2922 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2923
2924 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2925 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2926 bool restore_forcewake);
2927 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2928 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2929 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2930 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2931 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2932 bool restore);
2933 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2934 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2935 enum forcewake_domains domains);
2936 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2937 enum forcewake_domains domains);
2938 /* Like above but the caller must manage the uncore.lock itself.
2939 * Must be used with I915_READ_FW and friends.
2940 */
2941 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2942 enum forcewake_domains domains);
2943 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2944 enum forcewake_domains domains);
2945 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2946
2947 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2948
2949 int intel_wait_for_register(struct drm_i915_private *dev_priv,
2950 i915_reg_t reg,
2951 const u32 mask,
2952 const u32 value,
2953 const unsigned long timeout_ms);
2954 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
2955 i915_reg_t reg,
2956 const u32 mask,
2957 const u32 value,
2958 const unsigned long timeout_ms);
2959
2960 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2961 {
2962 return dev_priv->gvt.initialized;
2963 }
2964
2965 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2966 {
2967 return dev_priv->vgpu.active;
2968 }
2969
2970 void
2971 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2972 u32 status_mask);
2973
2974 void
2975 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2976 u32 status_mask);
2977
2978 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2979 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2980 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2981 uint32_t mask,
2982 uint32_t bits);
2983 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2984 uint32_t interrupt_mask,
2985 uint32_t enabled_irq_mask);
2986 static inline void
2987 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2988 {
2989 ilk_update_display_irq(dev_priv, bits, bits);
2990 }
2991 static inline void
2992 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2993 {
2994 ilk_update_display_irq(dev_priv, bits, 0);
2995 }
2996 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2997 enum pipe pipe,
2998 uint32_t interrupt_mask,
2999 uint32_t enabled_irq_mask);
3000 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3001 enum pipe pipe, uint32_t bits)
3002 {
3003 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3004 }
3005 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3006 enum pipe pipe, uint32_t bits)
3007 {
3008 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3009 }
3010 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3011 uint32_t interrupt_mask,
3012 uint32_t enabled_irq_mask);
3013 static inline void
3014 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3015 {
3016 ibx_display_interrupt_update(dev_priv, bits, bits);
3017 }
3018 static inline void
3019 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3020 {
3021 ibx_display_interrupt_update(dev_priv, bits, 0);
3022 }
3023
3024 /* i915_gem.c */
3025 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3026 struct drm_file *file_priv);
3027 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3028 struct drm_file *file_priv);
3029 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3030 struct drm_file *file_priv);
3031 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3032 struct drm_file *file_priv);
3033 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3034 struct drm_file *file_priv);
3035 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3036 struct drm_file *file_priv);
3037 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3038 struct drm_file *file_priv);
3039 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3040 struct drm_file *file_priv);
3041 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3042 struct drm_file *file_priv);
3043 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3044 struct drm_file *file_priv);
3045 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3046 struct drm_file *file);
3047 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3048 struct drm_file *file);
3049 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3050 struct drm_file *file_priv);
3051 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3052 struct drm_file *file_priv);
3053 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3054 struct drm_file *file_priv);
3055 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3056 struct drm_file *file_priv);
3057 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3058 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3059 struct drm_file *file);
3060 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3061 struct drm_file *file_priv);
3062 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3063 struct drm_file *file_priv);
3064 void i915_gem_load_init(struct drm_device *dev);
3065 void i915_gem_load_cleanup(struct drm_device *dev);
3066 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3067 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3068
3069 void *i915_gem_object_alloc(struct drm_device *dev);
3070 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3071 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3072 const struct drm_i915_gem_object_ops *ops);
3073 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3074 size_t size);
3075 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3076 struct drm_device *dev, const void *data, size_t size);
3077 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3078 void i915_gem_free_object(struct drm_gem_object *obj);
3079
3080 struct i915_vma * __must_check
3081 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3082 const struct i915_ggtt_view *view,
3083 u64 size,
3084 u64 alignment,
3085 u64 flags);
3086
3087 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3088 u32 flags);
3089 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3090 int __must_check i915_vma_unbind(struct i915_vma *vma);
3091 void i915_vma_close(struct i915_vma *vma);
3092 void i915_vma_destroy(struct i915_vma *vma);
3093
3094 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3095 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3096 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3097 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3098
3099 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3100 int *needs_clflush);
3101
3102 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3103
3104 static inline int __sg_page_count(struct scatterlist *sg)
3105 {
3106 return sg->length >> PAGE_SHIFT;
3107 }
3108
3109 struct page *
3110 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3111
3112 static inline dma_addr_t
3113 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3114 {
3115 if (n < obj->get_page.last) {
3116 obj->get_page.sg = obj->pages->sgl;
3117 obj->get_page.last = 0;
3118 }
3119
3120 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3121 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3122 if (unlikely(sg_is_chain(obj->get_page.sg)))
3123 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3124 }
3125
3126 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3127 }
3128
3129 static inline struct page *
3130 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3131 {
3132 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3133 return NULL;
3134
3135 if (n < obj->get_page.last) {
3136 obj->get_page.sg = obj->pages->sgl;
3137 obj->get_page.last = 0;
3138 }
3139
3140 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3141 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3142 if (unlikely(sg_is_chain(obj->get_page.sg)))
3143 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3144 }
3145
3146 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3147 }
3148
3149 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3150 {
3151 BUG_ON(obj->pages == NULL);
3152 obj->pages_pin_count++;
3153 }
3154
3155 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3156 {
3157 BUG_ON(obj->pages_pin_count == 0);
3158 obj->pages_pin_count--;
3159 }
3160
3161 enum i915_map_type {
3162 I915_MAP_WB = 0,
3163 I915_MAP_WC,
3164 };
3165
3166 /**
3167 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3168 * @obj - the object to map into kernel address space
3169 * @type - the type of mapping, used to select pgprot_t
3170 *
3171 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3172 * pages and then returns a contiguous mapping of the backing storage into
3173 * the kernel address space. Based on the @type of mapping, the PTE will be
3174 * set to either WriteBack or WriteCombine (via pgprot_t).
3175 *
3176 * The caller must hold the struct_mutex, and is responsible for calling
3177 * i915_gem_object_unpin_map() when the mapping is no longer required.
3178 *
3179 * Returns the pointer through which to access the mapped object, or an
3180 * ERR_PTR() on error.
3181 */
3182 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3183 enum i915_map_type type);
3184
3185 /**
3186 * i915_gem_object_unpin_map - releases an earlier mapping
3187 * @obj - the object to unmap
3188 *
3189 * After pinning the object and mapping its pages, once you are finished
3190 * with your access, call i915_gem_object_unpin_map() to release the pin
3191 * upon the mapping. Once the pin count reaches zero, that mapping may be
3192 * removed.
3193 *
3194 * The caller must hold the struct_mutex.
3195 */
3196 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3197 {
3198 lockdep_assert_held(&obj->base.dev->struct_mutex);
3199 i915_gem_object_unpin_pages(obj);
3200 }
3201
3202 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3203 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3204 struct drm_i915_gem_request *to);
3205 void i915_vma_move_to_active(struct i915_vma *vma,
3206 struct drm_i915_gem_request *req,
3207 unsigned int flags);
3208 int i915_gem_dumb_create(struct drm_file *file_priv,
3209 struct drm_device *dev,
3210 struct drm_mode_create_dumb *args);
3211 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3212 uint32_t handle, uint64_t *offset);
3213
3214 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3215 struct drm_i915_gem_object *new,
3216 unsigned frontbuffer_bits);
3217
3218 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3219
3220 struct drm_i915_gem_request *
3221 i915_gem_find_active_request(struct intel_engine_cs *engine);
3222
3223 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3224
3225 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3226 {
3227 return atomic_read(&error->reset_counter);
3228 }
3229
3230 static inline bool __i915_reset_in_progress(u32 reset)
3231 {
3232 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3233 }
3234
3235 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3236 {
3237 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3238 }
3239
3240 static inline bool __i915_terminally_wedged(u32 reset)
3241 {
3242 return unlikely(reset & I915_WEDGED);
3243 }
3244
3245 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3246 {
3247 return __i915_reset_in_progress(i915_reset_counter(error));
3248 }
3249
3250 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3251 {
3252 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3253 }
3254
3255 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3256 {
3257 return __i915_terminally_wedged(i915_reset_counter(error));
3258 }
3259
3260 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3261 {
3262 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3263 }
3264
3265 void i915_gem_reset(struct drm_device *dev);
3266 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3267 int __must_check i915_gem_init(struct drm_device *dev);
3268 int __must_check i915_gem_init_hw(struct drm_device *dev);
3269 void i915_gem_init_swizzling(struct drm_device *dev);
3270 void i915_gem_cleanup_engines(struct drm_device *dev);
3271 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3272 bool interruptible);
3273 int __must_check i915_gem_suspend(struct drm_device *dev);
3274 void i915_gem_resume(struct drm_device *dev);
3275 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3276 int __must_check
3277 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3278 bool readonly);
3279 int __must_check
3280 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3281 bool write);
3282 int __must_check
3283 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3284 struct i915_vma * __must_check
3285 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3286 u32 alignment,
3287 const struct i915_ggtt_view *view);
3288 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3289 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3290 int align);
3291 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3292 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3293
3294 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv, u64 size,
3295 int tiling_mode);
3296 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
3297 int tiling_mode, bool fenced);
3298
3299 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3300 enum i915_cache_level cache_level);
3301
3302 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3303 struct dma_buf *dma_buf);
3304
3305 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3306 struct drm_gem_object *gem_obj, int flags);
3307
3308 struct i915_vma *
3309 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3310 struct i915_address_space *vm,
3311 const struct i915_ggtt_view *view);
3312
3313 struct i915_vma *
3314 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3315 struct i915_address_space *vm,
3316 const struct i915_ggtt_view *view);
3317
3318 static inline struct i915_hw_ppgtt *
3319 i915_vm_to_ppgtt(struct i915_address_space *vm)
3320 {
3321 return container_of(vm, struct i915_hw_ppgtt, base);
3322 }
3323
3324 static inline struct i915_vma *
3325 i915_gem_object_to_ggtt(struct drm_i915_gem_object *obj,
3326 const struct i915_ggtt_view *view)
3327 {
3328 return i915_gem_obj_to_vma(obj, &to_i915(obj->base.dev)->ggtt.base, view);
3329 }
3330
3331 static inline unsigned long
3332 i915_gem_object_ggtt_offset(struct drm_i915_gem_object *o,
3333 const struct i915_ggtt_view *view)
3334 {
3335 return i915_ggtt_offset(i915_gem_object_to_ggtt(o, view));
3336 }
3337
3338 /* i915_gem_fence.c */
3339 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3340 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3341
3342 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3343 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3344
3345 void i915_gem_restore_fences(struct drm_device *dev);
3346
3347 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3348 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3349 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3350
3351 /* i915_gem_context.c */
3352 int __must_check i915_gem_context_init(struct drm_device *dev);
3353 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3354 void i915_gem_context_fini(struct drm_device *dev);
3355 void i915_gem_context_reset(struct drm_device *dev);
3356 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3357 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3358 int i915_switch_context(struct drm_i915_gem_request *req);
3359 int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv);
3360 void i915_gem_context_free(struct kref *ctx_ref);
3361 struct drm_i915_gem_object *
3362 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3363 struct i915_gem_context *
3364 i915_gem_context_create_gvt(struct drm_device *dev);
3365
3366 static inline struct i915_gem_context *
3367 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3368 {
3369 struct i915_gem_context *ctx;
3370
3371 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3372
3373 ctx = idr_find(&file_priv->context_idr, id);
3374 if (!ctx)
3375 return ERR_PTR(-ENOENT);
3376
3377 return ctx;
3378 }
3379
3380 static inline struct i915_gem_context *
3381 i915_gem_context_get(struct i915_gem_context *ctx)
3382 {
3383 kref_get(&ctx->ref);
3384 return ctx;
3385 }
3386
3387 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3388 {
3389 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3390 kref_put(&ctx->ref, i915_gem_context_free);
3391 }
3392
3393 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3394 {
3395 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3396 }
3397
3398 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3399 struct drm_file *file);
3400 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3401 struct drm_file *file);
3402 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3403 struct drm_file *file_priv);
3404 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3405 struct drm_file *file_priv);
3406 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3407 struct drm_file *file);
3408
3409 /* i915_gem_evict.c */
3410 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3411 u64 min_size, u64 alignment,
3412 unsigned cache_level,
3413 u64 start, u64 end,
3414 unsigned flags);
3415 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3416 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3417
3418 /* belongs in i915_gem_gtt.h */
3419 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3420 {
3421 if (INTEL_GEN(dev_priv) < 6)
3422 intel_gtt_chipset_flush();
3423 }
3424
3425 /* i915_gem_stolen.c */
3426 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3427 struct drm_mm_node *node, u64 size,
3428 unsigned alignment);
3429 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3430 struct drm_mm_node *node, u64 size,
3431 unsigned alignment, u64 start,
3432 u64 end);
3433 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3434 struct drm_mm_node *node);
3435 int i915_gem_init_stolen(struct drm_device *dev);
3436 void i915_gem_cleanup_stolen(struct drm_device *dev);
3437 struct drm_i915_gem_object *
3438 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3439 struct drm_i915_gem_object *
3440 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3441 u32 stolen_offset,
3442 u32 gtt_offset,
3443 u32 size);
3444
3445 /* i915_gem_shrinker.c */
3446 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3447 unsigned long target,
3448 unsigned flags);
3449 #define I915_SHRINK_PURGEABLE 0x1
3450 #define I915_SHRINK_UNBOUND 0x2
3451 #define I915_SHRINK_BOUND 0x4
3452 #define I915_SHRINK_ACTIVE 0x8
3453 #define I915_SHRINK_VMAPS 0x10
3454 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3455 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3456 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3457
3458
3459 /* i915_gem_tiling.c */
3460 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3461 {
3462 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3463
3464 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3465 i915_gem_object_is_tiled(obj);
3466 }
3467
3468 /* i915_debugfs.c */
3469 #ifdef CONFIG_DEBUG_FS
3470 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3471 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3472 int i915_debugfs_connector_add(struct drm_connector *connector);
3473 void intel_display_crc_init(struct drm_device *dev);
3474 #else
3475 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3476 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3477 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3478 { return 0; }
3479 static inline void intel_display_crc_init(struct drm_device *dev) {}
3480 #endif
3481
3482 /* i915_gpu_error.c */
3483 __printf(2, 3)
3484 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3485 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3486 const struct i915_error_state_file_priv *error);
3487 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3488 struct drm_i915_private *i915,
3489 size_t count, loff_t pos);
3490 static inline void i915_error_state_buf_release(
3491 struct drm_i915_error_state_buf *eb)
3492 {
3493 kfree(eb->buf);
3494 }
3495 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3496 u32 engine_mask,
3497 const char *error_msg);
3498 void i915_error_state_get(struct drm_device *dev,
3499 struct i915_error_state_file_priv *error_priv);
3500 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3501 void i915_destroy_error_state(struct drm_device *dev);
3502
3503 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3504 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3505
3506 /* i915_cmd_parser.c */
3507 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3508 int intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3509 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3510 bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine);
3511 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3512 struct drm_i915_gem_object *batch_obj,
3513 struct drm_i915_gem_object *shadow_batch_obj,
3514 u32 batch_start_offset,
3515 u32 batch_len,
3516 bool is_master);
3517
3518 /* i915_suspend.c */
3519 extern int i915_save_state(struct drm_device *dev);
3520 extern int i915_restore_state(struct drm_device *dev);
3521
3522 /* i915_sysfs.c */
3523 void i915_setup_sysfs(struct drm_device *dev_priv);
3524 void i915_teardown_sysfs(struct drm_device *dev_priv);
3525
3526 /* intel_i2c.c */
3527 extern int intel_setup_gmbus(struct drm_device *dev);
3528 extern void intel_teardown_gmbus(struct drm_device *dev);
3529 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3530 unsigned int pin);
3531
3532 extern struct i2c_adapter *
3533 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3534 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3535 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3536 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3537 {
3538 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3539 }
3540 extern void intel_i2c_reset(struct drm_device *dev);
3541
3542 /* intel_bios.c */
3543 int intel_bios_init(struct drm_i915_private *dev_priv);
3544 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3545 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3546 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3547 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3548 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3549 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3550 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3551 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3552 enum port port);
3553
3554 /* intel_opregion.c */
3555 #ifdef CONFIG_ACPI
3556 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3557 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3558 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3559 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3560 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3561 bool enable);
3562 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3563 pci_power_t state);
3564 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3565 #else
3566 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3567 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3568 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3569 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3570 {
3571 }
3572 static inline int
3573 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3574 {
3575 return 0;
3576 }
3577 static inline int
3578 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3579 {
3580 return 0;
3581 }
3582 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3583 {
3584 return -ENODEV;
3585 }
3586 #endif
3587
3588 /* intel_acpi.c */
3589 #ifdef CONFIG_ACPI
3590 extern void intel_register_dsm_handler(void);
3591 extern void intel_unregister_dsm_handler(void);
3592 #else
3593 static inline void intel_register_dsm_handler(void) { return; }
3594 static inline void intel_unregister_dsm_handler(void) { return; }
3595 #endif /* CONFIG_ACPI */
3596
3597 /* intel_device_info.c */
3598 static inline struct intel_device_info *
3599 mkwrite_device_info(struct drm_i915_private *dev_priv)
3600 {
3601 return (struct intel_device_info *)&dev_priv->info;
3602 }
3603
3604 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3605 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3606
3607 /* modesetting */
3608 extern void intel_modeset_init_hw(struct drm_device *dev);
3609 extern void intel_modeset_init(struct drm_device *dev);
3610 extern void intel_modeset_gem_init(struct drm_device *dev);
3611 extern void intel_modeset_cleanup(struct drm_device *dev);
3612 extern int intel_connector_register(struct drm_connector *);
3613 extern void intel_connector_unregister(struct drm_connector *);
3614 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3615 extern void intel_display_resume(struct drm_device *dev);
3616 extern void i915_redisable_vga(struct drm_device *dev);
3617 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3618 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3619 extern void intel_init_pch_refclk(struct drm_device *dev);
3620 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3621 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3622 bool enable);
3623
3624 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3625 struct drm_file *file);
3626
3627 /* overlay */
3628 extern struct intel_overlay_error_state *
3629 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3630 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3631 struct intel_overlay_error_state *error);
3632
3633 extern struct intel_display_error_state *
3634 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3635 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3636 struct drm_device *dev,
3637 struct intel_display_error_state *error);
3638
3639 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3640 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3641
3642 /* intel_sideband.c */
3643 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3644 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3645 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3646 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3647 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3648 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3649 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3650 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3651 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3652 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3653 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3654 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3655 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3656 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3657 enum intel_sbi_destination destination);
3658 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3659 enum intel_sbi_destination destination);
3660 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3661 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3662
3663 /* intel_dpio_phy.c */
3664 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3665 u32 deemph_reg_value, u32 margin_reg_value,
3666 bool uniq_trans_scale);
3667 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3668 bool reset);
3669 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3670 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3671 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3672 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3673
3674 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3675 u32 demph_reg_value, u32 preemph_reg_value,
3676 u32 uniqtranscale_reg_value, u32 tx3_demph);
3677 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3678 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3679 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3680
3681 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3682 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3683
3684 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3685 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3686
3687 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3688 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3689 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3690 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3691
3692 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3693 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3694 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3695 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3696
3697 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3698 * will be implemented using 2 32-bit writes in an arbitrary order with
3699 * an arbitrary delay between them. This can cause the hardware to
3700 * act upon the intermediate value, possibly leading to corruption and
3701 * machine death. You have been warned.
3702 */
3703 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3704 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3705
3706 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3707 u32 upper, lower, old_upper, loop = 0; \
3708 upper = I915_READ(upper_reg); \
3709 do { \
3710 old_upper = upper; \
3711 lower = I915_READ(lower_reg); \
3712 upper = I915_READ(upper_reg); \
3713 } while (upper != old_upper && loop++ < 2); \
3714 (u64)upper << 32 | lower; })
3715
3716 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3717 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3718
3719 #define __raw_read(x, s) \
3720 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3721 i915_reg_t reg) \
3722 { \
3723 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3724 }
3725
3726 #define __raw_write(x, s) \
3727 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3728 i915_reg_t reg, uint##x##_t val) \
3729 { \
3730 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3731 }
3732 __raw_read(8, b)
3733 __raw_read(16, w)
3734 __raw_read(32, l)
3735 __raw_read(64, q)
3736
3737 __raw_write(8, b)
3738 __raw_write(16, w)
3739 __raw_write(32, l)
3740 __raw_write(64, q)
3741
3742 #undef __raw_read
3743 #undef __raw_write
3744
3745 /* These are untraced mmio-accessors that are only valid to be used inside
3746 * criticial sections inside IRQ handlers where forcewake is explicitly
3747 * controlled.
3748 * Think twice, and think again, before using these.
3749 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3750 * intel_uncore_forcewake_irqunlock().
3751 */
3752 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3753 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3754 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3755 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3756
3757 /* "Broadcast RGB" property */
3758 #define INTEL_BROADCAST_RGB_AUTO 0
3759 #define INTEL_BROADCAST_RGB_FULL 1
3760 #define INTEL_BROADCAST_RGB_LIMITED 2
3761
3762 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3763 {
3764 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3765 return VLV_VGACNTRL;
3766 else if (INTEL_INFO(dev)->gen >= 5)
3767 return CPU_VGACNTRL;
3768 else
3769 return VGACNTRL;
3770 }
3771
3772 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3773 {
3774 unsigned long j = msecs_to_jiffies(m);
3775
3776 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3777 }
3778
3779 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3780 {
3781 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3782 }
3783
3784 static inline unsigned long
3785 timespec_to_jiffies_timeout(const struct timespec *value)
3786 {
3787 unsigned long j = timespec_to_jiffies(value);
3788
3789 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3790 }
3791
3792 /*
3793 * If you need to wait X milliseconds between events A and B, but event B
3794 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3795 * when event A happened, then just before event B you call this function and
3796 * pass the timestamp as the first argument, and X as the second argument.
3797 */
3798 static inline void
3799 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3800 {
3801 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3802
3803 /*
3804 * Don't re-read the value of "jiffies" every time since it may change
3805 * behind our back and break the math.
3806 */
3807 tmp_jiffies = jiffies;
3808 target_jiffies = timestamp_jiffies +
3809 msecs_to_jiffies_timeout(to_wait_ms);
3810
3811 if (time_after(target_jiffies, tmp_jiffies)) {
3812 remaining_jiffies = target_jiffies - tmp_jiffies;
3813 while (remaining_jiffies)
3814 remaining_jiffies =
3815 schedule_timeout_uninterruptible(remaining_jiffies);
3816 }
3817 }
3818 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req)
3819 {
3820 struct intel_engine_cs *engine = req->engine;
3821
3822 /* Before we do the heavier coherent read of the seqno,
3823 * check the value (hopefully) in the CPU cacheline.
3824 */
3825 if (i915_gem_request_completed(req))
3826 return true;
3827
3828 /* Ensure our read of the seqno is coherent so that we
3829 * do not "miss an interrupt" (i.e. if this is the last
3830 * request and the seqno write from the GPU is not visible
3831 * by the time the interrupt fires, we will see that the
3832 * request is incomplete and go back to sleep awaiting
3833 * another interrupt that will never come.)
3834 *
3835 * Strictly, we only need to do this once after an interrupt,
3836 * but it is easier and safer to do it every time the waiter
3837 * is woken.
3838 */
3839 if (engine->irq_seqno_barrier &&
3840 rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh) == current &&
3841 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
3842 struct task_struct *tsk;
3843
3844 /* The ordering of irq_posted versus applying the barrier
3845 * is crucial. The clearing of the current irq_posted must
3846 * be visible before we perform the barrier operation,
3847 * such that if a subsequent interrupt arrives, irq_posted
3848 * is reasserted and our task rewoken (which causes us to
3849 * do another __i915_request_irq_complete() immediately
3850 * and reapply the barrier). Conversely, if the clear
3851 * occurs after the barrier, then an interrupt that arrived
3852 * whilst we waited on the barrier would not trigger a
3853 * barrier on the next pass, and the read may not see the
3854 * seqno update.
3855 */
3856 engine->irq_seqno_barrier(engine);
3857
3858 /* If we consume the irq, but we are no longer the bottom-half,
3859 * the real bottom-half may not have serialised their own
3860 * seqno check with the irq-barrier (i.e. may have inspected
3861 * the seqno before we believe it coherent since they see
3862 * irq_posted == false but we are still running).
3863 */
3864 rcu_read_lock();
3865 tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
3866 if (tsk && tsk != current)
3867 /* Note that if the bottom-half is changed as we
3868 * are sending the wake-up, the new bottom-half will
3869 * be woken by whomever made the change. We only have
3870 * to worry about when we steal the irq-posted for
3871 * ourself.
3872 */
3873 wake_up_process(tsk);
3874 rcu_read_unlock();
3875
3876 if (i915_gem_request_completed(req))
3877 return true;
3878 }
3879
3880 /* We need to check whether any gpu reset happened in between
3881 * the request being submitted and now. If a reset has occurred,
3882 * the seqno will have been advance past ours and our request
3883 * is complete. If we are in the process of handling a reset,
3884 * the request is effectively complete as the rendering will
3885 * be discarded, but we need to return in order to drop the
3886 * struct_mutex.
3887 */
3888 if (i915_reset_in_progress(&req->i915->gpu_error))
3889 return true;
3890
3891 return false;
3892 }
3893
3894 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3895 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3896
3897 #define ptr_unpack_bits(ptr, bits) ({ \
3898 unsigned long __v = (unsigned long)(ptr); \
3899 (bits) = __v & ~PAGE_MASK; \
3900 (typeof(ptr))(__v & PAGE_MASK); \
3901 })
3902
3903 #define ptr_pack_bits(ptr, bits) \
3904 ((typeof(ptr))((unsigned long)(ptr) | (bits)))
3905
3906 #define fetch_and_zero(ptr) ({ \
3907 typeof(*ptr) __T = *(ptr); \
3908 *(ptr) = (typeof(*ptr))0; \
3909 __T; \
3910 })
3911
3912 #endif
This page took 0.117049 seconds and 6 git commands to generate.