Linux 3.14
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73 {
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
93 obj->fence_dirty = false;
94 obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100 {
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 spin_lock(&dev_priv->mm.object_stat_lock);
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
113 spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119 int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
123 if (EXIT_COND)
124 return 0;
125
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
138 return ret;
139 }
140 #undef EXIT_COND
141
142 return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 int ret;
149
150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
158 WARN_ON(i915_verify_lists(dev));
159 return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165 return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_init *args = data;
174
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
181
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
186 mutex_lock(&dev->struct_mutex);
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
189 dev_priv->gtt.mappable_end = args->gtt_end;
190 mutex_unlock(&dev->struct_mutex);
191
192 return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
198 {
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_i915_gem_get_aperture *args = data;
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
203
204 pinned = 0;
205 mutex_lock(&dev->struct_mutex);
206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 if (obj->pin_count)
208 pinned += i915_gem_obj_ggtt_size(obj);
209 mutex_unlock(&dev->struct_mutex);
210
211 args->aper_size = dev_priv->gtt.base.total;
212 args->aper_available_size = args->aper_size - pinned;
213
214 return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
234 {
235 struct drm_i915_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 size = roundup(size, PAGE_SIZE);
240 if (size == 0)
241 return -EINVAL;
242
243 /* Allocate the new object */
244 obj = i915_gem_alloc_object(dev, size);
245 if (obj == NULL)
246 return -ENOMEM;
247
248 ret = drm_gem_handle_create(file, &obj->base, &handle);
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
253
254 *handle_p = handle;
255 return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262 {
263 /* have to work out size/pitch and return them */
264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268 }
269
270 /**
271 * Creates a new mm object and returns a handle to it.
272 */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276 {
277 struct drm_i915_gem_create *args = data;
278
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287 {
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
312 int length)
313 {
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343 char *vaddr;
344 int ret;
345
346 if (unlikely(page_do_bit17_swizzling))
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
358 return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364 {
365 if (unlikely(swizzled)) {
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
409 return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
417 {
418 char __user *user_data;
419 ssize_t remain;
420 loff_t offset;
421 int shmem_page_offset, page_length, ret = 0;
422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423 int prefaulted = 0;
424 int needs_clflush = 0;
425 struct sg_page_iter sg_iter;
426
427 user_data = to_user_ptr(args->data_ptr);
428 remain = args->size;
429
430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
441 }
442
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
449 offset = args->offset;
450
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
453 struct page *page = sg_page_iter_page(&sg_iter);
454
455 if (remain <= 0)
456 break;
457
458 /* Operation in this page
459 *
460 * shmem_page_offset = offset within page in shmem file
461 * page_length = bytes to copy for this page
462 */
463 shmem_page_offset = offset_in_page(offset);
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
467
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
476
477 mutex_unlock(&dev->struct_mutex);
478
479 if (likely(!i915_prefault_disable) && !prefaulted) {
480 ret = fault_in_multipages_writeable(user_data, remain);
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
488
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492
493 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496 mark_page_accessed(page);
497
498 if (ret)
499 goto out;
500
501 remain -= page_length;
502 user_data += page_length;
503 offset += page_length;
504 }
505
506 out:
507 i915_gem_object_unpin_pages(obj);
508
509 return ret;
510 }
511
512 /**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
520 {
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
524
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 to_user_ptr(args->data_ptr),
530 args->size))
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563 drm_gem_object_unreference(&obj->base);
564 unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578 {
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
582
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601 {
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
619
620 user_data = to_user_ptr(args->data_ptr);
621 remain = args->size;
622
623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
631 */
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
641 */
642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
647
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
651 }
652
653 out_unpin:
654 i915_gem_object_unpin(obj);
655 out:
656 return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
669 {
670 char *vaddr;
671 int ret;
672
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
675
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
687
688 return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
699 {
700 char *vaddr;
701 int ret;
702
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
721
722 return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
730 {
731 ssize_t remain;
732 loff_t offset;
733 char __user *user_data;
734 int shmem_page_offset, page_length, ret = 0;
735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 int hit_slowpath = 0;
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
739 struct sg_page_iter sg_iter;
740
741 user_data = to_user_ptr(args->data_ptr);
742 remain = args->size;
743
744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
751 needs_clflush_after = cpu_write_needs_clflush(obj);
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
755 }
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
761
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
768 offset = args->offset;
769 obj->dirty = 1;
770
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
773 struct page *page = sg_page_iter_page(&sg_iter);
774 int partial_cacheline_write;
775
776 if (remain <= 0)
777 break;
778
779 /* Operation in this page
780 *
781 * shmem_page_offset = offset within page in shmem file
782 * page_length = bytes to copy for this page
783 */
784 shmem_page_offset = offset_in_page(offset);
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
789
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
806
807 hit_slowpath = 1;
808 mutex_unlock(&dev->struct_mutex);
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813
814 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817 set_page_dirty(page);
818 mark_page_accessed(page);
819
820 if (ret)
821 goto out;
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
828 out:
829 i915_gem_object_unpin_pages(obj);
830
831 if (hit_slowpath) {
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
841 }
842 }
843
844 if (needs_clflush_after)
845 i915_gem_chipset_flush(dev);
846
847 return ret;
848 }
849
850 /**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857 struct drm_file *file)
858 {
859 struct drm_i915_gem_pwrite *args = data;
860 struct drm_i915_gem_object *obj;
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
867 to_user_ptr(args->data_ptr),
868 args->size))
869 return -EFAULT;
870
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
877
878 ret = i915_mutex_lock_interruptible(dev);
879 if (ret)
880 return ret;
881
882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883 if (&obj->base == NULL) {
884 ret = -ENOENT;
885 goto unlock;
886 }
887
888 /* Bounds check destination. */
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
891 ret = -EINVAL;
892 goto out;
893 }
894
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905 ret = -EFAULT;
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
912 if (obj->phys_obj) {
913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914 goto out;
915 }
916
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
924 }
925
926 if (ret == -EFAULT || ret == -ENOSPC)
927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930 drm_gem_object_unreference(&obj->base);
931 unlock:
932 mutex_unlock(&dev->struct_mutex);
933 return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938 bool interruptible)
939 {
940 if (i915_reset_in_progress(error)) {
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954 }
955
956 /*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
968 if (seqno == ring->outstanding_lazy_seqno)
969 ret = i915_add_request(ring, NULL);
970
971 return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976 wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981 {
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
997 * @reset_counter: reset sequence associated with the given seqno
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012 unsigned reset_counter,
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
1016 {
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018 const bool irq_test_in_progress =
1019 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1020 struct timespec before, now;
1021 DEFINE_WAIT(wait);
1022 unsigned long timeout_expire;
1023 int ret;
1024
1025 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1026
1027 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028 return 0;
1029
1030 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1031
1032 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033 gen6_rps_boost(dev_priv);
1034 if (file_priv)
1035 mod_delayed_work(dev_priv->wq,
1036 &file_priv->mm.idle_work,
1037 msecs_to_jiffies(100));
1038 }
1039
1040 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1041 return -ENODEV;
1042
1043 /* Record current time in case interrupted by signal, or wedged */
1044 trace_i915_gem_request_wait_begin(ring, seqno);
1045 getrawmonotonic(&before);
1046 for (;;) {
1047 struct timer_list timer;
1048
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
1062
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
1067
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
1073 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 unsigned long expire;
1081
1082 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1083 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1084 mod_timer(&timer, expire);
1085 }
1086
1087 io_schedule();
1088
1089 if (timer.function) {
1090 del_singleshot_timer_sync(&timer);
1091 destroy_timer_on_stack(&timer);
1092 }
1093 }
1094 getrawmonotonic(&now);
1095 trace_i915_gem_request_wait_end(ring, seqno);
1096
1097 if (!irq_test_in_progress)
1098 ring->irq_put(ring);
1099
1100 finish_wait(&ring->irq_queue, &wait);
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
1107 }
1108
1109 return ret;
1110 }
1111
1112 /**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
1137 interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143 {
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157 }
1158
1159 /**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166 {
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
1179 return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187 struct drm_file *file,
1188 bool readonly)
1189 {
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
1193 unsigned reset_counter;
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213 mutex_unlock(&dev->struct_mutex);
1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215 mutex_lock(&dev->struct_mutex);
1216 if (ret)
1217 return ret;
1218
1219 return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
1225 */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228 struct drm_file *file)
1229 {
1230 struct drm_i915_gem_set_domain *args = data;
1231 struct drm_i915_gem_object *obj;
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
1234 int ret;
1235
1236 /* Only handle setting domains to types used by the CPU. */
1237 if (write_domain & I915_GEM_GPU_DOMAINS)
1238 return -EINVAL;
1239
1240 if (read_domains & I915_GEM_GPU_DOMAINS)
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1252
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1257 }
1258
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264 if (ret)
1265 goto unref;
1266
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
1276 } else {
1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278 }
1279
1280 unref:
1281 drm_gem_object_unreference(&obj->base);
1282 unlock:
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285 }
1286
1287 /**
1288 * Called when user space has done writes to this buffer
1289 */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293 {
1294 struct drm_i915_gem_sw_finish *args = data;
1295 struct drm_i915_gem_object *obj;
1296 int ret = 0;
1297
1298 ret = i915_mutex_lock_interruptible(dev);
1299 if (ret)
1300 return ret;
1301
1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303 if (&obj->base == NULL) {
1304 ret = -ENOENT;
1305 goto unlock;
1306 }
1307
1308 /* Pinned buffers may be scanout, so flush the cache */
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312 drm_gem_object_unreference(&obj->base);
1313 unlock:
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316 }
1317
1318 /**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327 struct drm_file *file)
1328 {
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
1331 unsigned long addr;
1332
1333 obj = drm_gem_object_lookup(dev, file, args->handle);
1334 if (obj == NULL)
1335 return -ENOENT;
1336
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
1345 addr = vm_mmap(obj->filp, 0, args->size,
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
1348 drm_gem_object_unreference_unlocked(obj);
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355 }
1356
1357 /**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
1377 drm_i915_private_t *dev_priv = dev->dev_private;
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383 intel_runtime_pm_get(dev_priv);
1384
1385 /* We don't use vmf->pgoff since that has the fake offset */
1386 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387 PAGE_SHIFT;
1388
1389 ret = i915_mutex_lock_interruptible(dev);
1390 if (ret)
1391 goto out;
1392
1393 trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
1395 /* Access to snoopable pages through the GTT is incoherent. */
1396 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397 ret = -EINVAL;
1398 goto unlock;
1399 }
1400
1401 /* Now bind it into the GTT if needed */
1402 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1403 if (ret)
1404 goto unlock;
1405
1406 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407 if (ret)
1408 goto unpin;
1409
1410 ret = i915_gem_object_get_fence(obj);
1411 if (ret)
1412 goto unpin;
1413
1414 obj->fault_mappable = true;
1415
1416 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417 pfn >>= PAGE_SHIFT;
1418 pfn += page_offset;
1419
1420 /* Finally, remap it using the new GTT offset */
1421 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1422 unpin:
1423 i915_gem_object_unpin(obj);
1424 unlock:
1425 mutex_unlock(&dev->struct_mutex);
1426 out:
1427 switch (ret) {
1428 case -EIO:
1429 /* If this -EIO is due to a gpu hang, give the reset code a
1430 * chance to clean up the mess. Otherwise return the proper
1431 * SIGBUS. */
1432 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433 ret = VM_FAULT_SIGBUS;
1434 break;
1435 }
1436 case -EAGAIN:
1437 /*
1438 * EAGAIN means the gpu is hung and we'll wait for the error
1439 * handler to reset everything when re-faulting in
1440 * i915_mutex_lock_interruptible.
1441 */
1442 case 0:
1443 case -ERESTARTSYS:
1444 case -EINTR:
1445 case -EBUSY:
1446 /*
1447 * EBUSY is ok: this just means that another thread
1448 * already did the job.
1449 */
1450 ret = VM_FAULT_NOPAGE;
1451 break;
1452 case -ENOMEM:
1453 ret = VM_FAULT_OOM;
1454 break;
1455 case -ENOSPC:
1456 ret = VM_FAULT_SIGBUS;
1457 break;
1458 default:
1459 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1460 ret = VM_FAULT_SIGBUS;
1461 break;
1462 }
1463
1464 intel_runtime_pm_put(dev_priv);
1465 return ret;
1466 }
1467
1468 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1469 {
1470 struct i915_vma *vma;
1471
1472 /*
1473 * Only the global gtt is relevant for gtt memory mappings, so restrict
1474 * list traversal to objects bound into the global address space. Note
1475 * that the active list should be empty, but better safe than sorry.
1476 */
1477 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1478 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1479 i915_gem_release_mmap(vma->obj);
1480 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1481 i915_gem_release_mmap(vma->obj);
1482 }
1483
1484 /**
1485 * i915_gem_release_mmap - remove physical page mappings
1486 * @obj: obj in question
1487 *
1488 * Preserve the reservation of the mmapping with the DRM core code, but
1489 * relinquish ownership of the pages back to the system.
1490 *
1491 * It is vital that we remove the page mapping if we have mapped a tiled
1492 * object through the GTT and then lose the fence register due to
1493 * resource pressure. Similarly if the object has been moved out of the
1494 * aperture, than pages mapped into userspace must be revoked. Removing the
1495 * mapping will then trigger a page fault on the next user access, allowing
1496 * fixup by i915_gem_fault().
1497 */
1498 void
1499 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1500 {
1501 if (!obj->fault_mappable)
1502 return;
1503
1504 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1505 obj->fault_mappable = false;
1506 }
1507
1508 uint32_t
1509 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1510 {
1511 uint32_t gtt_size;
1512
1513 if (INTEL_INFO(dev)->gen >= 4 ||
1514 tiling_mode == I915_TILING_NONE)
1515 return size;
1516
1517 /* Previous chips need a power-of-two fence region when tiling */
1518 if (INTEL_INFO(dev)->gen == 3)
1519 gtt_size = 1024*1024;
1520 else
1521 gtt_size = 512*1024;
1522
1523 while (gtt_size < size)
1524 gtt_size <<= 1;
1525
1526 return gtt_size;
1527 }
1528
1529 /**
1530 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1531 * @obj: object to check
1532 *
1533 * Return the required GTT alignment for an object, taking into account
1534 * potential fence register mapping.
1535 */
1536 uint32_t
1537 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1538 int tiling_mode, bool fenced)
1539 {
1540 /*
1541 * Minimum alignment is 4k (GTT page size), but might be greater
1542 * if a fence register is needed for the object.
1543 */
1544 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1545 tiling_mode == I915_TILING_NONE)
1546 return 4096;
1547
1548 /*
1549 * Previous chips need to be aligned to the size of the smallest
1550 * fence register that can contain the object.
1551 */
1552 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1553 }
1554
1555 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1556 {
1557 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1558 int ret;
1559
1560 if (drm_vma_node_has_offset(&obj->base.vma_node))
1561 return 0;
1562
1563 dev_priv->mm.shrinker_no_lock_stealing = true;
1564
1565 ret = drm_gem_create_mmap_offset(&obj->base);
1566 if (ret != -ENOSPC)
1567 goto out;
1568
1569 /* Badly fragmented mmap space? The only way we can recover
1570 * space is by destroying unwanted objects. We can't randomly release
1571 * mmap_offsets as userspace expects them to be persistent for the
1572 * lifetime of the objects. The closest we can is to release the
1573 * offsets on purgeable objects by truncating it and marking it purged,
1574 * which prevents userspace from ever using that object again.
1575 */
1576 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1577 ret = drm_gem_create_mmap_offset(&obj->base);
1578 if (ret != -ENOSPC)
1579 goto out;
1580
1581 i915_gem_shrink_all(dev_priv);
1582 ret = drm_gem_create_mmap_offset(&obj->base);
1583 out:
1584 dev_priv->mm.shrinker_no_lock_stealing = false;
1585
1586 return ret;
1587 }
1588
1589 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1590 {
1591 drm_gem_free_mmap_offset(&obj->base);
1592 }
1593
1594 int
1595 i915_gem_mmap_gtt(struct drm_file *file,
1596 struct drm_device *dev,
1597 uint32_t handle,
1598 uint64_t *offset)
1599 {
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 struct drm_i915_gem_object *obj;
1602 int ret;
1603
1604 ret = i915_mutex_lock_interruptible(dev);
1605 if (ret)
1606 return ret;
1607
1608 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1609 if (&obj->base == NULL) {
1610 ret = -ENOENT;
1611 goto unlock;
1612 }
1613
1614 if (obj->base.size > dev_priv->gtt.mappable_end) {
1615 ret = -E2BIG;
1616 goto out;
1617 }
1618
1619 if (obj->madv != I915_MADV_WILLNEED) {
1620 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1621 ret = -EINVAL;
1622 goto out;
1623 }
1624
1625 ret = i915_gem_object_create_mmap_offset(obj);
1626 if (ret)
1627 goto out;
1628
1629 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1630
1631 out:
1632 drm_gem_object_unreference(&obj->base);
1633 unlock:
1634 mutex_unlock(&dev->struct_mutex);
1635 return ret;
1636 }
1637
1638 /**
1639 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1640 * @dev: DRM device
1641 * @data: GTT mapping ioctl data
1642 * @file: GEM object info
1643 *
1644 * Simply returns the fake offset to userspace so it can mmap it.
1645 * The mmap call will end up in drm_gem_mmap(), which will set things
1646 * up so we can get faults in the handler above.
1647 *
1648 * The fault handler will take care of binding the object into the GTT
1649 * (since it may have been evicted to make room for something), allocating
1650 * a fence register, and mapping the appropriate aperture address into
1651 * userspace.
1652 */
1653 int
1654 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1655 struct drm_file *file)
1656 {
1657 struct drm_i915_gem_mmap_gtt *args = data;
1658
1659 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1660 }
1661
1662 /* Immediately discard the backing storage */
1663 static void
1664 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1665 {
1666 struct inode *inode;
1667
1668 i915_gem_object_free_mmap_offset(obj);
1669
1670 if (obj->base.filp == NULL)
1671 return;
1672
1673 /* Our goal here is to return as much of the memory as
1674 * is possible back to the system as we are called from OOM.
1675 * To do this we must instruct the shmfs to drop all of its
1676 * backing pages, *now*.
1677 */
1678 inode = file_inode(obj->base.filp);
1679 shmem_truncate_range(inode, 0, (loff_t)-1);
1680
1681 obj->madv = __I915_MADV_PURGED;
1682 }
1683
1684 static inline int
1685 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1686 {
1687 return obj->madv == I915_MADV_DONTNEED;
1688 }
1689
1690 static void
1691 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1692 {
1693 struct sg_page_iter sg_iter;
1694 int ret;
1695
1696 BUG_ON(obj->madv == __I915_MADV_PURGED);
1697
1698 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1699 if (ret) {
1700 /* In the event of a disaster, abandon all caches and
1701 * hope for the best.
1702 */
1703 WARN_ON(ret != -EIO);
1704 i915_gem_clflush_object(obj, true);
1705 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1706 }
1707
1708 if (i915_gem_object_needs_bit17_swizzle(obj))
1709 i915_gem_object_save_bit_17_swizzle(obj);
1710
1711 if (obj->madv == I915_MADV_DONTNEED)
1712 obj->dirty = 0;
1713
1714 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1715 struct page *page = sg_page_iter_page(&sg_iter);
1716
1717 if (obj->dirty)
1718 set_page_dirty(page);
1719
1720 if (obj->madv == I915_MADV_WILLNEED)
1721 mark_page_accessed(page);
1722
1723 page_cache_release(page);
1724 }
1725 obj->dirty = 0;
1726
1727 sg_free_table(obj->pages);
1728 kfree(obj->pages);
1729 }
1730
1731 int
1732 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1733 {
1734 const struct drm_i915_gem_object_ops *ops = obj->ops;
1735
1736 if (obj->pages == NULL)
1737 return 0;
1738
1739 if (obj->pages_pin_count)
1740 return -EBUSY;
1741
1742 BUG_ON(i915_gem_obj_bound_any(obj));
1743
1744 /* ->put_pages might need to allocate memory for the bit17 swizzle
1745 * array, hence protect them from being reaped by removing them from gtt
1746 * lists early. */
1747 list_del(&obj->global_list);
1748
1749 ops->put_pages(obj);
1750 obj->pages = NULL;
1751
1752 if (i915_gem_object_is_purgeable(obj))
1753 i915_gem_object_truncate(obj);
1754
1755 return 0;
1756 }
1757
1758 static unsigned long
1759 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1760 bool purgeable_only)
1761 {
1762 struct list_head still_bound_list;
1763 struct drm_i915_gem_object *obj, *next;
1764 unsigned long count = 0;
1765
1766 list_for_each_entry_safe(obj, next,
1767 &dev_priv->mm.unbound_list,
1768 global_list) {
1769 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1770 i915_gem_object_put_pages(obj) == 0) {
1771 count += obj->base.size >> PAGE_SHIFT;
1772 if (count >= target)
1773 return count;
1774 }
1775 }
1776
1777 /*
1778 * As we may completely rewrite the bound list whilst unbinding
1779 * (due to retiring requests) we have to strictly process only
1780 * one element of the list at the time, and recheck the list
1781 * on every iteration.
1782 */
1783 INIT_LIST_HEAD(&still_bound_list);
1784 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1785 struct i915_vma *vma, *v;
1786
1787 obj = list_first_entry(&dev_priv->mm.bound_list,
1788 typeof(*obj), global_list);
1789 list_move_tail(&obj->global_list, &still_bound_list);
1790
1791 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1792 continue;
1793
1794 /*
1795 * Hold a reference whilst we unbind this object, as we may
1796 * end up waiting for and retiring requests. This might
1797 * release the final reference (held by the active list)
1798 * and result in the object being freed from under us.
1799 * in this object being freed.
1800 *
1801 * Note 1: Shrinking the bound list is special since only active
1802 * (and hence bound objects) can contain such limbo objects, so
1803 * we don't need special tricks for shrinking the unbound list.
1804 * The only other place where we have to be careful with active
1805 * objects suddenly disappearing due to retiring requests is the
1806 * eviction code.
1807 *
1808 * Note 2: Even though the bound list doesn't hold a reference
1809 * to the object we can safely grab one here: The final object
1810 * unreferencing and the bound_list are both protected by the
1811 * dev->struct_mutex and so we won't ever be able to observe an
1812 * object on the bound_list with a reference count equals 0.
1813 */
1814 drm_gem_object_reference(&obj->base);
1815
1816 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1817 if (i915_vma_unbind(vma))
1818 break;
1819
1820 if (i915_gem_object_put_pages(obj) == 0)
1821 count += obj->base.size >> PAGE_SHIFT;
1822
1823 drm_gem_object_unreference(&obj->base);
1824 }
1825 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1826
1827 return count;
1828 }
1829
1830 static unsigned long
1831 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1832 {
1833 return __i915_gem_shrink(dev_priv, target, true);
1834 }
1835
1836 static unsigned long
1837 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1838 {
1839 struct drm_i915_gem_object *obj, *next;
1840 long freed = 0;
1841
1842 i915_gem_evict_everything(dev_priv->dev);
1843
1844 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1845 global_list) {
1846 if (i915_gem_object_put_pages(obj) == 0)
1847 freed += obj->base.size >> PAGE_SHIFT;
1848 }
1849 return freed;
1850 }
1851
1852 static int
1853 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1854 {
1855 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1856 int page_count, i;
1857 struct address_space *mapping;
1858 struct sg_table *st;
1859 struct scatterlist *sg;
1860 struct sg_page_iter sg_iter;
1861 struct page *page;
1862 unsigned long last_pfn = 0; /* suppress gcc warning */
1863 gfp_t gfp;
1864
1865 /* Assert that the object is not currently in any GPU domain. As it
1866 * wasn't in the GTT, there shouldn't be any way it could have been in
1867 * a GPU cache
1868 */
1869 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1870 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1871
1872 st = kmalloc(sizeof(*st), GFP_KERNEL);
1873 if (st == NULL)
1874 return -ENOMEM;
1875
1876 page_count = obj->base.size / PAGE_SIZE;
1877 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1878 kfree(st);
1879 return -ENOMEM;
1880 }
1881
1882 /* Get the list of pages out of our struct file. They'll be pinned
1883 * at this point until we release them.
1884 *
1885 * Fail silently without starting the shrinker
1886 */
1887 mapping = file_inode(obj->base.filp)->i_mapping;
1888 gfp = mapping_gfp_mask(mapping);
1889 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1890 gfp &= ~(__GFP_IO | __GFP_WAIT);
1891 sg = st->sgl;
1892 st->nents = 0;
1893 for (i = 0; i < page_count; i++) {
1894 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1895 if (IS_ERR(page)) {
1896 i915_gem_purge(dev_priv, page_count);
1897 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1898 }
1899 if (IS_ERR(page)) {
1900 /* We've tried hard to allocate the memory by reaping
1901 * our own buffer, now let the real VM do its job and
1902 * go down in flames if truly OOM.
1903 */
1904 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1905 gfp |= __GFP_IO | __GFP_WAIT;
1906
1907 i915_gem_shrink_all(dev_priv);
1908 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1909 if (IS_ERR(page))
1910 goto err_pages;
1911
1912 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1913 gfp &= ~(__GFP_IO | __GFP_WAIT);
1914 }
1915 #ifdef CONFIG_SWIOTLB
1916 if (swiotlb_nr_tbl()) {
1917 st->nents++;
1918 sg_set_page(sg, page, PAGE_SIZE, 0);
1919 sg = sg_next(sg);
1920 continue;
1921 }
1922 #endif
1923 if (!i || page_to_pfn(page) != last_pfn + 1) {
1924 if (i)
1925 sg = sg_next(sg);
1926 st->nents++;
1927 sg_set_page(sg, page, PAGE_SIZE, 0);
1928 } else {
1929 sg->length += PAGE_SIZE;
1930 }
1931 last_pfn = page_to_pfn(page);
1932
1933 /* Check that the i965g/gm workaround works. */
1934 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1935 }
1936 #ifdef CONFIG_SWIOTLB
1937 if (!swiotlb_nr_tbl())
1938 #endif
1939 sg_mark_end(sg);
1940 obj->pages = st;
1941
1942 if (i915_gem_object_needs_bit17_swizzle(obj))
1943 i915_gem_object_do_bit_17_swizzle(obj);
1944
1945 return 0;
1946
1947 err_pages:
1948 sg_mark_end(sg);
1949 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1950 page_cache_release(sg_page_iter_page(&sg_iter));
1951 sg_free_table(st);
1952 kfree(st);
1953 return PTR_ERR(page);
1954 }
1955
1956 /* Ensure that the associated pages are gathered from the backing storage
1957 * and pinned into our object. i915_gem_object_get_pages() may be called
1958 * multiple times before they are released by a single call to
1959 * i915_gem_object_put_pages() - once the pages are no longer referenced
1960 * either as a result of memory pressure (reaping pages under the shrinker)
1961 * or as the object is itself released.
1962 */
1963 int
1964 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1965 {
1966 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1967 const struct drm_i915_gem_object_ops *ops = obj->ops;
1968 int ret;
1969
1970 if (obj->pages)
1971 return 0;
1972
1973 if (obj->madv != I915_MADV_WILLNEED) {
1974 DRM_ERROR("Attempting to obtain a purgeable object\n");
1975 return -EINVAL;
1976 }
1977
1978 BUG_ON(obj->pages_pin_count);
1979
1980 ret = ops->get_pages(obj);
1981 if (ret)
1982 return ret;
1983
1984 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1985 return 0;
1986 }
1987
1988 static void
1989 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1990 struct intel_ring_buffer *ring)
1991 {
1992 struct drm_device *dev = obj->base.dev;
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994 u32 seqno = intel_ring_get_seqno(ring);
1995
1996 BUG_ON(ring == NULL);
1997 if (obj->ring != ring && obj->last_write_seqno) {
1998 /* Keep the seqno relative to the current ring */
1999 obj->last_write_seqno = seqno;
2000 }
2001 obj->ring = ring;
2002
2003 /* Add a reference if we're newly entering the active list. */
2004 if (!obj->active) {
2005 drm_gem_object_reference(&obj->base);
2006 obj->active = 1;
2007 }
2008
2009 list_move_tail(&obj->ring_list, &ring->active_list);
2010
2011 obj->last_read_seqno = seqno;
2012
2013 if (obj->fenced_gpu_access) {
2014 obj->last_fenced_seqno = seqno;
2015
2016 /* Bump MRU to take account of the delayed flush */
2017 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2018 struct drm_i915_fence_reg *reg;
2019
2020 reg = &dev_priv->fence_regs[obj->fence_reg];
2021 list_move_tail(&reg->lru_list,
2022 &dev_priv->mm.fence_list);
2023 }
2024 }
2025 }
2026
2027 void i915_vma_move_to_active(struct i915_vma *vma,
2028 struct intel_ring_buffer *ring)
2029 {
2030 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2031 return i915_gem_object_move_to_active(vma->obj, ring);
2032 }
2033
2034 static void
2035 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2036 {
2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2039 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2040
2041 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2042 BUG_ON(!obj->active);
2043
2044 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2045
2046 list_del_init(&obj->ring_list);
2047 obj->ring = NULL;
2048
2049 obj->last_read_seqno = 0;
2050 obj->last_write_seqno = 0;
2051 obj->base.write_domain = 0;
2052
2053 obj->last_fenced_seqno = 0;
2054 obj->fenced_gpu_access = false;
2055
2056 obj->active = 0;
2057 drm_gem_object_unreference(&obj->base);
2058
2059 WARN_ON(i915_verify_lists(dev));
2060 }
2061
2062 static int
2063 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2064 {
2065 struct drm_i915_private *dev_priv = dev->dev_private;
2066 struct intel_ring_buffer *ring;
2067 int ret, i, j;
2068
2069 /* Carefully retire all requests without writing to the rings */
2070 for_each_ring(ring, dev_priv, i) {
2071 ret = intel_ring_idle(ring);
2072 if (ret)
2073 return ret;
2074 }
2075 i915_gem_retire_requests(dev);
2076
2077 /* Finally reset hw state */
2078 for_each_ring(ring, dev_priv, i) {
2079 intel_ring_init_seqno(ring, seqno);
2080
2081 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2082 ring->sync_seqno[j] = 0;
2083 }
2084
2085 return 0;
2086 }
2087
2088 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2089 {
2090 struct drm_i915_private *dev_priv = dev->dev_private;
2091 int ret;
2092
2093 if (seqno == 0)
2094 return -EINVAL;
2095
2096 /* HWS page needs to be set less than what we
2097 * will inject to ring
2098 */
2099 ret = i915_gem_init_seqno(dev, seqno - 1);
2100 if (ret)
2101 return ret;
2102
2103 /* Carefully set the last_seqno value so that wrap
2104 * detection still works
2105 */
2106 dev_priv->next_seqno = seqno;
2107 dev_priv->last_seqno = seqno - 1;
2108 if (dev_priv->last_seqno == 0)
2109 dev_priv->last_seqno--;
2110
2111 return 0;
2112 }
2113
2114 int
2115 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2116 {
2117 struct drm_i915_private *dev_priv = dev->dev_private;
2118
2119 /* reserve 0 for non-seqno */
2120 if (dev_priv->next_seqno == 0) {
2121 int ret = i915_gem_init_seqno(dev, 0);
2122 if (ret)
2123 return ret;
2124
2125 dev_priv->next_seqno = 1;
2126 }
2127
2128 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2129 return 0;
2130 }
2131
2132 int __i915_add_request(struct intel_ring_buffer *ring,
2133 struct drm_file *file,
2134 struct drm_i915_gem_object *obj,
2135 u32 *out_seqno)
2136 {
2137 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2138 struct drm_i915_gem_request *request;
2139 u32 request_ring_position, request_start;
2140 int was_empty;
2141 int ret;
2142
2143 request_start = intel_ring_get_tail(ring);
2144 /*
2145 * Emit any outstanding flushes - execbuf can fail to emit the flush
2146 * after having emitted the batchbuffer command. Hence we need to fix
2147 * things up similar to emitting the lazy request. The difference here
2148 * is that the flush _must_ happen before the next request, no matter
2149 * what.
2150 */
2151 ret = intel_ring_flush_all_caches(ring);
2152 if (ret)
2153 return ret;
2154
2155 request = ring->preallocated_lazy_request;
2156 if (WARN_ON(request == NULL))
2157 return -ENOMEM;
2158
2159 /* Record the position of the start of the request so that
2160 * should we detect the updated seqno part-way through the
2161 * GPU processing the request, we never over-estimate the
2162 * position of the head.
2163 */
2164 request_ring_position = intel_ring_get_tail(ring);
2165
2166 ret = ring->add_request(ring);
2167 if (ret)
2168 return ret;
2169
2170 request->seqno = intel_ring_get_seqno(ring);
2171 request->ring = ring;
2172 request->head = request_start;
2173 request->tail = request_ring_position;
2174
2175 /* Whilst this request exists, batch_obj will be on the
2176 * active_list, and so will hold the active reference. Only when this
2177 * request is retired will the the batch_obj be moved onto the
2178 * inactive_list and lose its active reference. Hence we do not need
2179 * to explicitly hold another reference here.
2180 */
2181 request->batch_obj = obj;
2182
2183 /* Hold a reference to the current context so that we can inspect
2184 * it later in case a hangcheck error event fires.
2185 */
2186 request->ctx = ring->last_context;
2187 if (request->ctx)
2188 i915_gem_context_reference(request->ctx);
2189
2190 request->emitted_jiffies = jiffies;
2191 was_empty = list_empty(&ring->request_list);
2192 list_add_tail(&request->list, &ring->request_list);
2193 request->file_priv = NULL;
2194
2195 if (file) {
2196 struct drm_i915_file_private *file_priv = file->driver_priv;
2197
2198 spin_lock(&file_priv->mm.lock);
2199 request->file_priv = file_priv;
2200 list_add_tail(&request->client_list,
2201 &file_priv->mm.request_list);
2202 spin_unlock(&file_priv->mm.lock);
2203 }
2204
2205 trace_i915_gem_request_add(ring, request->seqno);
2206 ring->outstanding_lazy_seqno = 0;
2207 ring->preallocated_lazy_request = NULL;
2208
2209 if (!dev_priv->ums.mm_suspended) {
2210 i915_queue_hangcheck(ring->dev);
2211
2212 if (was_empty) {
2213 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2214 queue_delayed_work(dev_priv->wq,
2215 &dev_priv->mm.retire_work,
2216 round_jiffies_up_relative(HZ));
2217 intel_mark_busy(dev_priv->dev);
2218 }
2219 }
2220
2221 if (out_seqno)
2222 *out_seqno = request->seqno;
2223 return 0;
2224 }
2225
2226 static inline void
2227 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2228 {
2229 struct drm_i915_file_private *file_priv = request->file_priv;
2230
2231 if (!file_priv)
2232 return;
2233
2234 spin_lock(&file_priv->mm.lock);
2235 list_del(&request->client_list);
2236 request->file_priv = NULL;
2237 spin_unlock(&file_priv->mm.lock);
2238 }
2239
2240 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2241 struct i915_address_space *vm)
2242 {
2243 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2244 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2245 return true;
2246
2247 return false;
2248 }
2249
2250 static bool i915_head_inside_request(const u32 acthd_unmasked,
2251 const u32 request_start,
2252 const u32 request_end)
2253 {
2254 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2255
2256 if (request_start < request_end) {
2257 if (acthd >= request_start && acthd < request_end)
2258 return true;
2259 } else if (request_start > request_end) {
2260 if (acthd >= request_start || acthd < request_end)
2261 return true;
2262 }
2263
2264 return false;
2265 }
2266
2267 static struct i915_address_space *
2268 request_to_vm(struct drm_i915_gem_request *request)
2269 {
2270 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2271 struct i915_address_space *vm;
2272
2273 vm = &dev_priv->gtt.base;
2274
2275 return vm;
2276 }
2277
2278 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2279 const u32 acthd, bool *inside)
2280 {
2281 /* There is a possibility that unmasked head address
2282 * pointing inside the ring, matches the batch_obj address range.
2283 * However this is extremely unlikely.
2284 */
2285 if (request->batch_obj) {
2286 if (i915_head_inside_object(acthd, request->batch_obj,
2287 request_to_vm(request))) {
2288 *inside = true;
2289 return true;
2290 }
2291 }
2292
2293 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2294 *inside = false;
2295 return true;
2296 }
2297
2298 return false;
2299 }
2300
2301 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2302 {
2303 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2304
2305 if (hs->banned)
2306 return true;
2307
2308 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2309 DRM_ERROR("context hanging too fast, declaring banned!\n");
2310 return true;
2311 }
2312
2313 return false;
2314 }
2315
2316 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2317 struct drm_i915_gem_request *request,
2318 u32 acthd)
2319 {
2320 struct i915_ctx_hang_stats *hs = NULL;
2321 bool inside, guilty;
2322 unsigned long offset = 0;
2323
2324 /* Innocent until proven guilty */
2325 guilty = false;
2326
2327 if (request->batch_obj)
2328 offset = i915_gem_obj_offset(request->batch_obj,
2329 request_to_vm(request));
2330
2331 if (ring->hangcheck.action != HANGCHECK_WAIT &&
2332 i915_request_guilty(request, acthd, &inside)) {
2333 DRM_DEBUG("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2334 ring->name,
2335 inside ? "inside" : "flushing",
2336 offset,
2337 request->ctx ? request->ctx->id : 0,
2338 acthd);
2339
2340 guilty = true;
2341 }
2342
2343 /* If contexts are disabled or this is the default context, use
2344 * file_priv->reset_state
2345 */
2346 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2347 hs = &request->ctx->hang_stats;
2348 else if (request->file_priv)
2349 hs = &request->file_priv->hang_stats;
2350
2351 if (hs) {
2352 if (guilty) {
2353 hs->banned = i915_context_is_banned(hs);
2354 hs->batch_active++;
2355 hs->guilty_ts = get_seconds();
2356 } else {
2357 hs->batch_pending++;
2358 }
2359 }
2360 }
2361
2362 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2363 {
2364 list_del(&request->list);
2365 i915_gem_request_remove_from_client(request);
2366
2367 if (request->ctx)
2368 i915_gem_context_unreference(request->ctx);
2369
2370 kfree(request);
2371 }
2372
2373 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2374 struct intel_ring_buffer *ring)
2375 {
2376 u32 completed_seqno = ring->get_seqno(ring, false);
2377 u32 acthd = intel_ring_get_active_head(ring);
2378 struct drm_i915_gem_request *request;
2379
2380 list_for_each_entry(request, &ring->request_list, list) {
2381 if (i915_seqno_passed(completed_seqno, request->seqno))
2382 continue;
2383
2384 i915_set_reset_status(ring, request, acthd);
2385 }
2386 }
2387
2388 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2389 struct intel_ring_buffer *ring)
2390 {
2391 while (!list_empty(&ring->active_list)) {
2392 struct drm_i915_gem_object *obj;
2393
2394 obj = list_first_entry(&ring->active_list,
2395 struct drm_i915_gem_object,
2396 ring_list);
2397
2398 i915_gem_object_move_to_inactive(obj);
2399 }
2400
2401 /*
2402 * We must free the requests after all the corresponding objects have
2403 * been moved off active lists. Which is the same order as the normal
2404 * retire_requests function does. This is important if object hold
2405 * implicit references on things like e.g. ppgtt address spaces through
2406 * the request.
2407 */
2408 while (!list_empty(&ring->request_list)) {
2409 struct drm_i915_gem_request *request;
2410
2411 request = list_first_entry(&ring->request_list,
2412 struct drm_i915_gem_request,
2413 list);
2414
2415 i915_gem_free_request(request);
2416 }
2417 }
2418
2419 void i915_gem_restore_fences(struct drm_device *dev)
2420 {
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 int i;
2423
2424 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2425 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2426
2427 /*
2428 * Commit delayed tiling changes if we have an object still
2429 * attached to the fence, otherwise just clear the fence.
2430 */
2431 if (reg->obj) {
2432 i915_gem_object_update_fence(reg->obj, reg,
2433 reg->obj->tiling_mode);
2434 } else {
2435 i915_gem_write_fence(dev, i, NULL);
2436 }
2437 }
2438 }
2439
2440 void i915_gem_reset(struct drm_device *dev)
2441 {
2442 struct drm_i915_private *dev_priv = dev->dev_private;
2443 struct intel_ring_buffer *ring;
2444 int i;
2445
2446 /*
2447 * Before we free the objects from the requests, we need to inspect
2448 * them for finding the guilty party. As the requests only borrow
2449 * their reference to the objects, the inspection must be done first.
2450 */
2451 for_each_ring(ring, dev_priv, i)
2452 i915_gem_reset_ring_status(dev_priv, ring);
2453
2454 for_each_ring(ring, dev_priv, i)
2455 i915_gem_reset_ring_cleanup(dev_priv, ring);
2456
2457 i915_gem_cleanup_ringbuffer(dev);
2458
2459 i915_gem_restore_fences(dev);
2460 }
2461
2462 /**
2463 * This function clears the request list as sequence numbers are passed.
2464 */
2465 void
2466 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2467 {
2468 uint32_t seqno;
2469
2470 if (list_empty(&ring->request_list))
2471 return;
2472
2473 WARN_ON(i915_verify_lists(ring->dev));
2474
2475 seqno = ring->get_seqno(ring, true);
2476
2477 while (!list_empty(&ring->request_list)) {
2478 struct drm_i915_gem_request *request;
2479
2480 request = list_first_entry(&ring->request_list,
2481 struct drm_i915_gem_request,
2482 list);
2483
2484 if (!i915_seqno_passed(seqno, request->seqno))
2485 break;
2486
2487 trace_i915_gem_request_retire(ring, request->seqno);
2488 /* We know the GPU must have read the request to have
2489 * sent us the seqno + interrupt, so use the position
2490 * of tail of the request to update the last known position
2491 * of the GPU head.
2492 */
2493 ring->last_retired_head = request->tail;
2494
2495 i915_gem_free_request(request);
2496 }
2497
2498 /* Move any buffers on the active list that are no longer referenced
2499 * by the ringbuffer to the flushing/inactive lists as appropriate.
2500 */
2501 while (!list_empty(&ring->active_list)) {
2502 struct drm_i915_gem_object *obj;
2503
2504 obj = list_first_entry(&ring->active_list,
2505 struct drm_i915_gem_object,
2506 ring_list);
2507
2508 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2509 break;
2510
2511 i915_gem_object_move_to_inactive(obj);
2512 }
2513
2514 if (unlikely(ring->trace_irq_seqno &&
2515 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2516 ring->irq_put(ring);
2517 ring->trace_irq_seqno = 0;
2518 }
2519
2520 WARN_ON(i915_verify_lists(ring->dev));
2521 }
2522
2523 bool
2524 i915_gem_retire_requests(struct drm_device *dev)
2525 {
2526 drm_i915_private_t *dev_priv = dev->dev_private;
2527 struct intel_ring_buffer *ring;
2528 bool idle = true;
2529 int i;
2530
2531 for_each_ring(ring, dev_priv, i) {
2532 i915_gem_retire_requests_ring(ring);
2533 idle &= list_empty(&ring->request_list);
2534 }
2535
2536 if (idle)
2537 mod_delayed_work(dev_priv->wq,
2538 &dev_priv->mm.idle_work,
2539 msecs_to_jiffies(100));
2540
2541 return idle;
2542 }
2543
2544 static void
2545 i915_gem_retire_work_handler(struct work_struct *work)
2546 {
2547 struct drm_i915_private *dev_priv =
2548 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2549 struct drm_device *dev = dev_priv->dev;
2550 bool idle;
2551
2552 /* Come back later if the device is busy... */
2553 idle = false;
2554 if (mutex_trylock(&dev->struct_mutex)) {
2555 idle = i915_gem_retire_requests(dev);
2556 mutex_unlock(&dev->struct_mutex);
2557 }
2558 if (!idle)
2559 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2560 round_jiffies_up_relative(HZ));
2561 }
2562
2563 static void
2564 i915_gem_idle_work_handler(struct work_struct *work)
2565 {
2566 struct drm_i915_private *dev_priv =
2567 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2568
2569 intel_mark_idle(dev_priv->dev);
2570 }
2571
2572 /**
2573 * Ensures that an object will eventually get non-busy by flushing any required
2574 * write domains, emitting any outstanding lazy request and retiring and
2575 * completed requests.
2576 */
2577 static int
2578 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2579 {
2580 int ret;
2581
2582 if (obj->active) {
2583 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2584 if (ret)
2585 return ret;
2586
2587 i915_gem_retire_requests_ring(obj->ring);
2588 }
2589
2590 return 0;
2591 }
2592
2593 /**
2594 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2595 * @DRM_IOCTL_ARGS: standard ioctl arguments
2596 *
2597 * Returns 0 if successful, else an error is returned with the remaining time in
2598 * the timeout parameter.
2599 * -ETIME: object is still busy after timeout
2600 * -ERESTARTSYS: signal interrupted the wait
2601 * -ENONENT: object doesn't exist
2602 * Also possible, but rare:
2603 * -EAGAIN: GPU wedged
2604 * -ENOMEM: damn
2605 * -ENODEV: Internal IRQ fail
2606 * -E?: The add request failed
2607 *
2608 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2609 * non-zero timeout parameter the wait ioctl will wait for the given number of
2610 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2611 * without holding struct_mutex the object may become re-busied before this
2612 * function completes. A similar but shorter * race condition exists in the busy
2613 * ioctl
2614 */
2615 int
2616 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2617 {
2618 drm_i915_private_t *dev_priv = dev->dev_private;
2619 struct drm_i915_gem_wait *args = data;
2620 struct drm_i915_gem_object *obj;
2621 struct intel_ring_buffer *ring = NULL;
2622 struct timespec timeout_stack, *timeout = NULL;
2623 unsigned reset_counter;
2624 u32 seqno = 0;
2625 int ret = 0;
2626
2627 if (args->timeout_ns >= 0) {
2628 timeout_stack = ns_to_timespec(args->timeout_ns);
2629 timeout = &timeout_stack;
2630 }
2631
2632 ret = i915_mutex_lock_interruptible(dev);
2633 if (ret)
2634 return ret;
2635
2636 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2637 if (&obj->base == NULL) {
2638 mutex_unlock(&dev->struct_mutex);
2639 return -ENOENT;
2640 }
2641
2642 /* Need to make sure the object gets inactive eventually. */
2643 ret = i915_gem_object_flush_active(obj);
2644 if (ret)
2645 goto out;
2646
2647 if (obj->active) {
2648 seqno = obj->last_read_seqno;
2649 ring = obj->ring;
2650 }
2651
2652 if (seqno == 0)
2653 goto out;
2654
2655 /* Do this after OLR check to make sure we make forward progress polling
2656 * on this IOCTL with a 0 timeout (like busy ioctl)
2657 */
2658 if (!args->timeout_ns) {
2659 ret = -ETIME;
2660 goto out;
2661 }
2662
2663 drm_gem_object_unreference(&obj->base);
2664 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2665 mutex_unlock(&dev->struct_mutex);
2666
2667 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2668 if (timeout)
2669 args->timeout_ns = timespec_to_ns(timeout);
2670 return ret;
2671
2672 out:
2673 drm_gem_object_unreference(&obj->base);
2674 mutex_unlock(&dev->struct_mutex);
2675 return ret;
2676 }
2677
2678 /**
2679 * i915_gem_object_sync - sync an object to a ring.
2680 *
2681 * @obj: object which may be in use on another ring.
2682 * @to: ring we wish to use the object on. May be NULL.
2683 *
2684 * This code is meant to abstract object synchronization with the GPU.
2685 * Calling with NULL implies synchronizing the object with the CPU
2686 * rather than a particular GPU ring.
2687 *
2688 * Returns 0 if successful, else propagates up the lower layer error.
2689 */
2690 int
2691 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2692 struct intel_ring_buffer *to)
2693 {
2694 struct intel_ring_buffer *from = obj->ring;
2695 u32 seqno;
2696 int ret, idx;
2697
2698 if (from == NULL || to == from)
2699 return 0;
2700
2701 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2702 return i915_gem_object_wait_rendering(obj, false);
2703
2704 idx = intel_ring_sync_index(from, to);
2705
2706 seqno = obj->last_read_seqno;
2707 if (seqno <= from->sync_seqno[idx])
2708 return 0;
2709
2710 ret = i915_gem_check_olr(obj->ring, seqno);
2711 if (ret)
2712 return ret;
2713
2714 trace_i915_gem_ring_sync_to(from, to, seqno);
2715 ret = to->sync_to(to, from, seqno);
2716 if (!ret)
2717 /* We use last_read_seqno because sync_to()
2718 * might have just caused seqno wrap under
2719 * the radar.
2720 */
2721 from->sync_seqno[idx] = obj->last_read_seqno;
2722
2723 return ret;
2724 }
2725
2726 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2727 {
2728 u32 old_write_domain, old_read_domains;
2729
2730 /* Force a pagefault for domain tracking on next user access */
2731 i915_gem_release_mmap(obj);
2732
2733 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2734 return;
2735
2736 /* Wait for any direct GTT access to complete */
2737 mb();
2738
2739 old_read_domains = obj->base.read_domains;
2740 old_write_domain = obj->base.write_domain;
2741
2742 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2743 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2744
2745 trace_i915_gem_object_change_domain(obj,
2746 old_read_domains,
2747 old_write_domain);
2748 }
2749
2750 int i915_vma_unbind(struct i915_vma *vma)
2751 {
2752 struct drm_i915_gem_object *obj = vma->obj;
2753 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2754 int ret;
2755
2756 /* For now we only ever use 1 vma per object */
2757 WARN_ON(!list_is_singular(&obj->vma_list));
2758
2759 if (list_empty(&vma->vma_link))
2760 return 0;
2761
2762 if (!drm_mm_node_allocated(&vma->node)) {
2763 i915_gem_vma_destroy(vma);
2764
2765 return 0;
2766 }
2767
2768 if (obj->pin_count)
2769 return -EBUSY;
2770
2771 BUG_ON(obj->pages == NULL);
2772
2773 ret = i915_gem_object_finish_gpu(obj);
2774 if (ret)
2775 return ret;
2776 /* Continue on if we fail due to EIO, the GPU is hung so we
2777 * should be safe and we need to cleanup or else we might
2778 * cause memory corruption through use-after-free.
2779 */
2780
2781 i915_gem_object_finish_gtt(obj);
2782
2783 /* release the fence reg _after_ flushing */
2784 ret = i915_gem_object_put_fence(obj);
2785 if (ret)
2786 return ret;
2787
2788 trace_i915_vma_unbind(vma);
2789
2790 if (obj->has_global_gtt_mapping)
2791 i915_gem_gtt_unbind_object(obj);
2792 if (obj->has_aliasing_ppgtt_mapping) {
2793 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2794 obj->has_aliasing_ppgtt_mapping = 0;
2795 }
2796 i915_gem_gtt_finish_object(obj);
2797
2798 list_del(&vma->mm_list);
2799 /* Avoid an unnecessary call to unbind on rebind. */
2800 if (i915_is_ggtt(vma->vm))
2801 obj->map_and_fenceable = true;
2802
2803 drm_mm_remove_node(&vma->node);
2804 i915_gem_vma_destroy(vma);
2805
2806 /* Since the unbound list is global, only move to that list if
2807 * no more VMAs exist. */
2808 if (list_empty(&obj->vma_list))
2809 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2810
2811 /* And finally now the object is completely decoupled from this vma,
2812 * we can drop its hold on the backing storage and allow it to be
2813 * reaped by the shrinker.
2814 */
2815 i915_gem_object_unpin_pages(obj);
2816
2817 return 0;
2818 }
2819
2820 /**
2821 * Unbinds an object from the global GTT aperture.
2822 */
2823 int
2824 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2825 {
2826 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2827 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2828
2829 if (!i915_gem_obj_ggtt_bound(obj))
2830 return 0;
2831
2832 if (obj->pin_count)
2833 return -EBUSY;
2834
2835 BUG_ON(obj->pages == NULL);
2836
2837 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2838 }
2839
2840 int i915_gpu_idle(struct drm_device *dev)
2841 {
2842 drm_i915_private_t *dev_priv = dev->dev_private;
2843 struct intel_ring_buffer *ring;
2844 int ret, i;
2845
2846 /* Flush everything onto the inactive list. */
2847 for_each_ring(ring, dev_priv, i) {
2848 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2849 if (ret)
2850 return ret;
2851
2852 ret = intel_ring_idle(ring);
2853 if (ret)
2854 return ret;
2855 }
2856
2857 return 0;
2858 }
2859
2860 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2861 struct drm_i915_gem_object *obj)
2862 {
2863 drm_i915_private_t *dev_priv = dev->dev_private;
2864 int fence_reg;
2865 int fence_pitch_shift;
2866
2867 if (INTEL_INFO(dev)->gen >= 6) {
2868 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2869 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2870 } else {
2871 fence_reg = FENCE_REG_965_0;
2872 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2873 }
2874
2875 fence_reg += reg * 8;
2876
2877 /* To w/a incoherency with non-atomic 64-bit register updates,
2878 * we split the 64-bit update into two 32-bit writes. In order
2879 * for a partial fence not to be evaluated between writes, we
2880 * precede the update with write to turn off the fence register,
2881 * and only enable the fence as the last step.
2882 *
2883 * For extra levels of paranoia, we make sure each step lands
2884 * before applying the next step.
2885 */
2886 I915_WRITE(fence_reg, 0);
2887 POSTING_READ(fence_reg);
2888
2889 if (obj) {
2890 u32 size = i915_gem_obj_ggtt_size(obj);
2891 uint64_t val;
2892
2893 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2894 0xfffff000) << 32;
2895 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2896 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2897 if (obj->tiling_mode == I915_TILING_Y)
2898 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2899 val |= I965_FENCE_REG_VALID;
2900
2901 I915_WRITE(fence_reg + 4, val >> 32);
2902 POSTING_READ(fence_reg + 4);
2903
2904 I915_WRITE(fence_reg + 0, val);
2905 POSTING_READ(fence_reg);
2906 } else {
2907 I915_WRITE(fence_reg + 4, 0);
2908 POSTING_READ(fence_reg + 4);
2909 }
2910 }
2911
2912 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2913 struct drm_i915_gem_object *obj)
2914 {
2915 drm_i915_private_t *dev_priv = dev->dev_private;
2916 u32 val;
2917
2918 if (obj) {
2919 u32 size = i915_gem_obj_ggtt_size(obj);
2920 int pitch_val;
2921 int tile_width;
2922
2923 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2924 (size & -size) != size ||
2925 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2926 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2927 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2928
2929 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2930 tile_width = 128;
2931 else
2932 tile_width = 512;
2933
2934 /* Note: pitch better be a power of two tile widths */
2935 pitch_val = obj->stride / tile_width;
2936 pitch_val = ffs(pitch_val) - 1;
2937
2938 val = i915_gem_obj_ggtt_offset(obj);
2939 if (obj->tiling_mode == I915_TILING_Y)
2940 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2941 val |= I915_FENCE_SIZE_BITS(size);
2942 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2943 val |= I830_FENCE_REG_VALID;
2944 } else
2945 val = 0;
2946
2947 if (reg < 8)
2948 reg = FENCE_REG_830_0 + reg * 4;
2949 else
2950 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2951
2952 I915_WRITE(reg, val);
2953 POSTING_READ(reg);
2954 }
2955
2956 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2957 struct drm_i915_gem_object *obj)
2958 {
2959 drm_i915_private_t *dev_priv = dev->dev_private;
2960 uint32_t val;
2961
2962 if (obj) {
2963 u32 size = i915_gem_obj_ggtt_size(obj);
2964 uint32_t pitch_val;
2965
2966 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2967 (size & -size) != size ||
2968 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2969 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2970 i915_gem_obj_ggtt_offset(obj), size);
2971
2972 pitch_val = obj->stride / 128;
2973 pitch_val = ffs(pitch_val) - 1;
2974
2975 val = i915_gem_obj_ggtt_offset(obj);
2976 if (obj->tiling_mode == I915_TILING_Y)
2977 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2978 val |= I830_FENCE_SIZE_BITS(size);
2979 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2980 val |= I830_FENCE_REG_VALID;
2981 } else
2982 val = 0;
2983
2984 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2985 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2986 }
2987
2988 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2989 {
2990 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2991 }
2992
2993 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2994 struct drm_i915_gem_object *obj)
2995 {
2996 struct drm_i915_private *dev_priv = dev->dev_private;
2997
2998 /* Ensure that all CPU reads are completed before installing a fence
2999 * and all writes before removing the fence.
3000 */
3001 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3002 mb();
3003
3004 WARN(obj && (!obj->stride || !obj->tiling_mode),
3005 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3006 obj->stride, obj->tiling_mode);
3007
3008 switch (INTEL_INFO(dev)->gen) {
3009 case 8:
3010 case 7:
3011 case 6:
3012 case 5:
3013 case 4: i965_write_fence_reg(dev, reg, obj); break;
3014 case 3: i915_write_fence_reg(dev, reg, obj); break;
3015 case 2: i830_write_fence_reg(dev, reg, obj); break;
3016 default: BUG();
3017 }
3018
3019 /* And similarly be paranoid that no direct access to this region
3020 * is reordered to before the fence is installed.
3021 */
3022 if (i915_gem_object_needs_mb(obj))
3023 mb();
3024 }
3025
3026 static inline int fence_number(struct drm_i915_private *dev_priv,
3027 struct drm_i915_fence_reg *fence)
3028 {
3029 return fence - dev_priv->fence_regs;
3030 }
3031
3032 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3033 struct drm_i915_fence_reg *fence,
3034 bool enable)
3035 {
3036 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3037 int reg = fence_number(dev_priv, fence);
3038
3039 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3040
3041 if (enable) {
3042 obj->fence_reg = reg;
3043 fence->obj = obj;
3044 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3045 } else {
3046 obj->fence_reg = I915_FENCE_REG_NONE;
3047 fence->obj = NULL;
3048 list_del_init(&fence->lru_list);
3049 }
3050 obj->fence_dirty = false;
3051 }
3052
3053 static int
3054 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3055 {
3056 if (obj->last_fenced_seqno) {
3057 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3058 if (ret)
3059 return ret;
3060
3061 obj->last_fenced_seqno = 0;
3062 }
3063
3064 obj->fenced_gpu_access = false;
3065 return 0;
3066 }
3067
3068 int
3069 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3070 {
3071 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3072 struct drm_i915_fence_reg *fence;
3073 int ret;
3074
3075 ret = i915_gem_object_wait_fence(obj);
3076 if (ret)
3077 return ret;
3078
3079 if (obj->fence_reg == I915_FENCE_REG_NONE)
3080 return 0;
3081
3082 fence = &dev_priv->fence_regs[obj->fence_reg];
3083
3084 i915_gem_object_fence_lost(obj);
3085 i915_gem_object_update_fence(obj, fence, false);
3086
3087 return 0;
3088 }
3089
3090 static struct drm_i915_fence_reg *
3091 i915_find_fence_reg(struct drm_device *dev)
3092 {
3093 struct drm_i915_private *dev_priv = dev->dev_private;
3094 struct drm_i915_fence_reg *reg, *avail;
3095 int i;
3096
3097 /* First try to find a free reg */
3098 avail = NULL;
3099 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3100 reg = &dev_priv->fence_regs[i];
3101 if (!reg->obj)
3102 return reg;
3103
3104 if (!reg->pin_count)
3105 avail = reg;
3106 }
3107
3108 if (avail == NULL)
3109 goto deadlock;
3110
3111 /* None available, try to steal one or wait for a user to finish */
3112 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3113 if (reg->pin_count)
3114 continue;
3115
3116 return reg;
3117 }
3118
3119 deadlock:
3120 /* Wait for completion of pending flips which consume fences */
3121 if (intel_has_pending_fb_unpin(dev))
3122 return ERR_PTR(-EAGAIN);
3123
3124 return ERR_PTR(-EDEADLK);
3125 }
3126
3127 /**
3128 * i915_gem_object_get_fence - set up fencing for an object
3129 * @obj: object to map through a fence reg
3130 *
3131 * When mapping objects through the GTT, userspace wants to be able to write
3132 * to them without having to worry about swizzling if the object is tiled.
3133 * This function walks the fence regs looking for a free one for @obj,
3134 * stealing one if it can't find any.
3135 *
3136 * It then sets up the reg based on the object's properties: address, pitch
3137 * and tiling format.
3138 *
3139 * For an untiled surface, this removes any existing fence.
3140 */
3141 int
3142 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3143 {
3144 struct drm_device *dev = obj->base.dev;
3145 struct drm_i915_private *dev_priv = dev->dev_private;
3146 bool enable = obj->tiling_mode != I915_TILING_NONE;
3147 struct drm_i915_fence_reg *reg;
3148 int ret;
3149
3150 /* Have we updated the tiling parameters upon the object and so
3151 * will need to serialise the write to the associated fence register?
3152 */
3153 if (obj->fence_dirty) {
3154 ret = i915_gem_object_wait_fence(obj);
3155 if (ret)
3156 return ret;
3157 }
3158
3159 /* Just update our place in the LRU if our fence is getting reused. */
3160 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3161 reg = &dev_priv->fence_regs[obj->fence_reg];
3162 if (!obj->fence_dirty) {
3163 list_move_tail(&reg->lru_list,
3164 &dev_priv->mm.fence_list);
3165 return 0;
3166 }
3167 } else if (enable) {
3168 reg = i915_find_fence_reg(dev);
3169 if (IS_ERR(reg))
3170 return PTR_ERR(reg);
3171
3172 if (reg->obj) {
3173 struct drm_i915_gem_object *old = reg->obj;
3174
3175 ret = i915_gem_object_wait_fence(old);
3176 if (ret)
3177 return ret;
3178
3179 i915_gem_object_fence_lost(old);
3180 }
3181 } else
3182 return 0;
3183
3184 i915_gem_object_update_fence(obj, reg, enable);
3185
3186 return 0;
3187 }
3188
3189 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3190 struct drm_mm_node *gtt_space,
3191 unsigned long cache_level)
3192 {
3193 struct drm_mm_node *other;
3194
3195 /* On non-LLC machines we have to be careful when putting differing
3196 * types of snoopable memory together to avoid the prefetcher
3197 * crossing memory domains and dying.
3198 */
3199 if (HAS_LLC(dev))
3200 return true;
3201
3202 if (!drm_mm_node_allocated(gtt_space))
3203 return true;
3204
3205 if (list_empty(&gtt_space->node_list))
3206 return true;
3207
3208 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3209 if (other->allocated && !other->hole_follows && other->color != cache_level)
3210 return false;
3211
3212 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3213 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3214 return false;
3215
3216 return true;
3217 }
3218
3219 static void i915_gem_verify_gtt(struct drm_device *dev)
3220 {
3221 #if WATCH_GTT
3222 struct drm_i915_private *dev_priv = dev->dev_private;
3223 struct drm_i915_gem_object *obj;
3224 int err = 0;
3225
3226 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3227 if (obj->gtt_space == NULL) {
3228 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3229 err++;
3230 continue;
3231 }
3232
3233 if (obj->cache_level != obj->gtt_space->color) {
3234 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3235 i915_gem_obj_ggtt_offset(obj),
3236 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3237 obj->cache_level,
3238 obj->gtt_space->color);
3239 err++;
3240 continue;
3241 }
3242
3243 if (!i915_gem_valid_gtt_space(dev,
3244 obj->gtt_space,
3245 obj->cache_level)) {
3246 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3247 i915_gem_obj_ggtt_offset(obj),
3248 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3249 obj->cache_level);
3250 err++;
3251 continue;
3252 }
3253 }
3254
3255 WARN_ON(err);
3256 #endif
3257 }
3258
3259 /**
3260 * Finds free space in the GTT aperture and binds the object there.
3261 */
3262 static int
3263 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3264 struct i915_address_space *vm,
3265 unsigned alignment,
3266 bool map_and_fenceable,
3267 bool nonblocking)
3268 {
3269 struct drm_device *dev = obj->base.dev;
3270 drm_i915_private_t *dev_priv = dev->dev_private;
3271 u32 size, fence_size, fence_alignment, unfenced_alignment;
3272 size_t gtt_max =
3273 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3274 struct i915_vma *vma;
3275 int ret;
3276
3277 fence_size = i915_gem_get_gtt_size(dev,
3278 obj->base.size,
3279 obj->tiling_mode);
3280 fence_alignment = i915_gem_get_gtt_alignment(dev,
3281 obj->base.size,
3282 obj->tiling_mode, true);
3283 unfenced_alignment =
3284 i915_gem_get_gtt_alignment(dev,
3285 obj->base.size,
3286 obj->tiling_mode, false);
3287
3288 if (alignment == 0)
3289 alignment = map_and_fenceable ? fence_alignment :
3290 unfenced_alignment;
3291 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3292 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3293 return -EINVAL;
3294 }
3295
3296 size = map_and_fenceable ? fence_size : obj->base.size;
3297
3298 /* If the object is bigger than the entire aperture, reject it early
3299 * before evicting everything in a vain attempt to find space.
3300 */
3301 if (obj->base.size > gtt_max) {
3302 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3303 obj->base.size,
3304 map_and_fenceable ? "mappable" : "total",
3305 gtt_max);
3306 return -E2BIG;
3307 }
3308
3309 ret = i915_gem_object_get_pages(obj);
3310 if (ret)
3311 return ret;
3312
3313 i915_gem_object_pin_pages(obj);
3314
3315 BUG_ON(!i915_is_ggtt(vm));
3316
3317 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3318 if (IS_ERR(vma)) {
3319 ret = PTR_ERR(vma);
3320 goto err_unpin;
3321 }
3322
3323 /* For now we only ever use 1 vma per object */
3324 WARN_ON(!list_is_singular(&obj->vma_list));
3325
3326 search_free:
3327 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3328 size, alignment,
3329 obj->cache_level, 0, gtt_max,
3330 DRM_MM_SEARCH_DEFAULT);
3331 if (ret) {
3332 ret = i915_gem_evict_something(dev, vm, size, alignment,
3333 obj->cache_level,
3334 map_and_fenceable,
3335 nonblocking);
3336 if (ret == 0)
3337 goto search_free;
3338
3339 goto err_free_vma;
3340 }
3341 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3342 obj->cache_level))) {
3343 ret = -EINVAL;
3344 goto err_remove_node;
3345 }
3346
3347 ret = i915_gem_gtt_prepare_object(obj);
3348 if (ret)
3349 goto err_remove_node;
3350
3351 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3352 list_add_tail(&vma->mm_list, &vm->inactive_list);
3353
3354 if (i915_is_ggtt(vm)) {
3355 bool mappable, fenceable;
3356
3357 fenceable = (vma->node.size == fence_size &&
3358 (vma->node.start & (fence_alignment - 1)) == 0);
3359
3360 mappable = (vma->node.start + obj->base.size <=
3361 dev_priv->gtt.mappable_end);
3362
3363 obj->map_and_fenceable = mappable && fenceable;
3364 }
3365
3366 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3367
3368 trace_i915_vma_bind(vma, map_and_fenceable);
3369 i915_gem_verify_gtt(dev);
3370 return 0;
3371
3372 err_remove_node:
3373 drm_mm_remove_node(&vma->node);
3374 err_free_vma:
3375 i915_gem_vma_destroy(vma);
3376 err_unpin:
3377 i915_gem_object_unpin_pages(obj);
3378 return ret;
3379 }
3380
3381 bool
3382 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3383 bool force)
3384 {
3385 /* If we don't have a page list set up, then we're not pinned
3386 * to GPU, and we can ignore the cache flush because it'll happen
3387 * again at bind time.
3388 */
3389 if (obj->pages == NULL)
3390 return false;
3391
3392 /*
3393 * Stolen memory is always coherent with the GPU as it is explicitly
3394 * marked as wc by the system, or the system is cache-coherent.
3395 */
3396 if (obj->stolen)
3397 return false;
3398
3399 /* If the GPU is snooping the contents of the CPU cache,
3400 * we do not need to manually clear the CPU cache lines. However,
3401 * the caches are only snooped when the render cache is
3402 * flushed/invalidated. As we always have to emit invalidations
3403 * and flushes when moving into and out of the RENDER domain, correct
3404 * snooping behaviour occurs naturally as the result of our domain
3405 * tracking.
3406 */
3407 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3408 return false;
3409
3410 trace_i915_gem_object_clflush(obj);
3411 drm_clflush_sg(obj->pages);
3412
3413 return true;
3414 }
3415
3416 /** Flushes the GTT write domain for the object if it's dirty. */
3417 static void
3418 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3419 {
3420 uint32_t old_write_domain;
3421
3422 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3423 return;
3424
3425 /* No actual flushing is required for the GTT write domain. Writes
3426 * to it immediately go to main memory as far as we know, so there's
3427 * no chipset flush. It also doesn't land in render cache.
3428 *
3429 * However, we do have to enforce the order so that all writes through
3430 * the GTT land before any writes to the device, such as updates to
3431 * the GATT itself.
3432 */
3433 wmb();
3434
3435 old_write_domain = obj->base.write_domain;
3436 obj->base.write_domain = 0;
3437
3438 trace_i915_gem_object_change_domain(obj,
3439 obj->base.read_domains,
3440 old_write_domain);
3441 }
3442
3443 /** Flushes the CPU write domain for the object if it's dirty. */
3444 static void
3445 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3446 bool force)
3447 {
3448 uint32_t old_write_domain;
3449
3450 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3451 return;
3452
3453 if (i915_gem_clflush_object(obj, force))
3454 i915_gem_chipset_flush(obj->base.dev);
3455
3456 old_write_domain = obj->base.write_domain;
3457 obj->base.write_domain = 0;
3458
3459 trace_i915_gem_object_change_domain(obj,
3460 obj->base.read_domains,
3461 old_write_domain);
3462 }
3463
3464 /**
3465 * Moves a single object to the GTT read, and possibly write domain.
3466 *
3467 * This function returns when the move is complete, including waiting on
3468 * flushes to occur.
3469 */
3470 int
3471 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3472 {
3473 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3474 uint32_t old_write_domain, old_read_domains;
3475 int ret;
3476
3477 /* Not valid to be called on unbound objects. */
3478 if (!i915_gem_obj_bound_any(obj))
3479 return -EINVAL;
3480
3481 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3482 return 0;
3483
3484 ret = i915_gem_object_wait_rendering(obj, !write);
3485 if (ret)
3486 return ret;
3487
3488 i915_gem_object_flush_cpu_write_domain(obj, false);
3489
3490 /* Serialise direct access to this object with the barriers for
3491 * coherent writes from the GPU, by effectively invalidating the
3492 * GTT domain upon first access.
3493 */
3494 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3495 mb();
3496
3497 old_write_domain = obj->base.write_domain;
3498 old_read_domains = obj->base.read_domains;
3499
3500 /* It should now be out of any other write domains, and we can update
3501 * the domain values for our changes.
3502 */
3503 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3504 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3505 if (write) {
3506 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3507 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3508 obj->dirty = 1;
3509 }
3510
3511 trace_i915_gem_object_change_domain(obj,
3512 old_read_domains,
3513 old_write_domain);
3514
3515 /* And bump the LRU for this access */
3516 if (i915_gem_object_is_inactive(obj)) {
3517 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3518 if (vma)
3519 list_move_tail(&vma->mm_list,
3520 &dev_priv->gtt.base.inactive_list);
3521
3522 }
3523
3524 return 0;
3525 }
3526
3527 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3528 enum i915_cache_level cache_level)
3529 {
3530 struct drm_device *dev = obj->base.dev;
3531 drm_i915_private_t *dev_priv = dev->dev_private;
3532 struct i915_vma *vma;
3533 int ret;
3534
3535 if (obj->cache_level == cache_level)
3536 return 0;
3537
3538 if (obj->pin_count) {
3539 DRM_DEBUG("can not change the cache level of pinned objects\n");
3540 return -EBUSY;
3541 }
3542
3543 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3544 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3545 ret = i915_vma_unbind(vma);
3546 if (ret)
3547 return ret;
3548
3549 break;
3550 }
3551 }
3552
3553 if (i915_gem_obj_bound_any(obj)) {
3554 ret = i915_gem_object_finish_gpu(obj);
3555 if (ret)
3556 return ret;
3557
3558 i915_gem_object_finish_gtt(obj);
3559
3560 /* Before SandyBridge, you could not use tiling or fence
3561 * registers with snooped memory, so relinquish any fences
3562 * currently pointing to our region in the aperture.
3563 */
3564 if (INTEL_INFO(dev)->gen < 6) {
3565 ret = i915_gem_object_put_fence(obj);
3566 if (ret)
3567 return ret;
3568 }
3569
3570 if (obj->has_global_gtt_mapping)
3571 i915_gem_gtt_bind_object(obj, cache_level);
3572 if (obj->has_aliasing_ppgtt_mapping)
3573 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3574 obj, cache_level);
3575 }
3576
3577 list_for_each_entry(vma, &obj->vma_list, vma_link)
3578 vma->node.color = cache_level;
3579 obj->cache_level = cache_level;
3580
3581 if (cpu_write_needs_clflush(obj)) {
3582 u32 old_read_domains, old_write_domain;
3583
3584 /* If we're coming from LLC cached, then we haven't
3585 * actually been tracking whether the data is in the
3586 * CPU cache or not, since we only allow one bit set
3587 * in obj->write_domain and have been skipping the clflushes.
3588 * Just set it to the CPU cache for now.
3589 */
3590 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3591
3592 old_read_domains = obj->base.read_domains;
3593 old_write_domain = obj->base.write_domain;
3594
3595 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3596 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3597
3598 trace_i915_gem_object_change_domain(obj,
3599 old_read_domains,
3600 old_write_domain);
3601 }
3602
3603 i915_gem_verify_gtt(dev);
3604 return 0;
3605 }
3606
3607 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3608 struct drm_file *file)
3609 {
3610 struct drm_i915_gem_caching *args = data;
3611 struct drm_i915_gem_object *obj;
3612 int ret;
3613
3614 ret = i915_mutex_lock_interruptible(dev);
3615 if (ret)
3616 return ret;
3617
3618 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3619 if (&obj->base == NULL) {
3620 ret = -ENOENT;
3621 goto unlock;
3622 }
3623
3624 switch (obj->cache_level) {
3625 case I915_CACHE_LLC:
3626 case I915_CACHE_L3_LLC:
3627 args->caching = I915_CACHING_CACHED;
3628 break;
3629
3630 case I915_CACHE_WT:
3631 args->caching = I915_CACHING_DISPLAY;
3632 break;
3633
3634 default:
3635 args->caching = I915_CACHING_NONE;
3636 break;
3637 }
3638
3639 drm_gem_object_unreference(&obj->base);
3640 unlock:
3641 mutex_unlock(&dev->struct_mutex);
3642 return ret;
3643 }
3644
3645 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3646 struct drm_file *file)
3647 {
3648 struct drm_i915_gem_caching *args = data;
3649 struct drm_i915_gem_object *obj;
3650 enum i915_cache_level level;
3651 int ret;
3652
3653 switch (args->caching) {
3654 case I915_CACHING_NONE:
3655 level = I915_CACHE_NONE;
3656 break;
3657 case I915_CACHING_CACHED:
3658 level = I915_CACHE_LLC;
3659 break;
3660 case I915_CACHING_DISPLAY:
3661 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3662 break;
3663 default:
3664 return -EINVAL;
3665 }
3666
3667 ret = i915_mutex_lock_interruptible(dev);
3668 if (ret)
3669 return ret;
3670
3671 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3672 if (&obj->base == NULL) {
3673 ret = -ENOENT;
3674 goto unlock;
3675 }
3676
3677 ret = i915_gem_object_set_cache_level(obj, level);
3678
3679 drm_gem_object_unreference(&obj->base);
3680 unlock:
3681 mutex_unlock(&dev->struct_mutex);
3682 return ret;
3683 }
3684
3685 static bool is_pin_display(struct drm_i915_gem_object *obj)
3686 {
3687 /* There are 3 sources that pin objects:
3688 * 1. The display engine (scanouts, sprites, cursors);
3689 * 2. Reservations for execbuffer;
3690 * 3. The user.
3691 *
3692 * We can ignore reservations as we hold the struct_mutex and
3693 * are only called outside of the reservation path. The user
3694 * can only increment pin_count once, and so if after
3695 * subtracting the potential reference by the user, any pin_count
3696 * remains, it must be due to another use by the display engine.
3697 */
3698 return obj->pin_count - !!obj->user_pin_count;
3699 }
3700
3701 /*
3702 * Prepare buffer for display plane (scanout, cursors, etc).
3703 * Can be called from an uninterruptible phase (modesetting) and allows
3704 * any flushes to be pipelined (for pageflips).
3705 */
3706 int
3707 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3708 u32 alignment,
3709 struct intel_ring_buffer *pipelined)
3710 {
3711 u32 old_read_domains, old_write_domain;
3712 int ret;
3713
3714 if (pipelined != obj->ring) {
3715 ret = i915_gem_object_sync(obj, pipelined);
3716 if (ret)
3717 return ret;
3718 }
3719
3720 /* Mark the pin_display early so that we account for the
3721 * display coherency whilst setting up the cache domains.
3722 */
3723 obj->pin_display = true;
3724
3725 /* The display engine is not coherent with the LLC cache on gen6. As
3726 * a result, we make sure that the pinning that is about to occur is
3727 * done with uncached PTEs. This is lowest common denominator for all
3728 * chipsets.
3729 *
3730 * However for gen6+, we could do better by using the GFDT bit instead
3731 * of uncaching, which would allow us to flush all the LLC-cached data
3732 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3733 */
3734 ret = i915_gem_object_set_cache_level(obj,
3735 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3736 if (ret)
3737 goto err_unpin_display;
3738
3739 /* As the user may map the buffer once pinned in the display plane
3740 * (e.g. libkms for the bootup splash), we have to ensure that we
3741 * always use map_and_fenceable for all scanout buffers.
3742 */
3743 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3744 if (ret)
3745 goto err_unpin_display;
3746
3747 i915_gem_object_flush_cpu_write_domain(obj, true);
3748
3749 old_write_domain = obj->base.write_domain;
3750 old_read_domains = obj->base.read_domains;
3751
3752 /* It should now be out of any other write domains, and we can update
3753 * the domain values for our changes.
3754 */
3755 obj->base.write_domain = 0;
3756 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3757
3758 trace_i915_gem_object_change_domain(obj,
3759 old_read_domains,
3760 old_write_domain);
3761
3762 return 0;
3763
3764 err_unpin_display:
3765 obj->pin_display = is_pin_display(obj);
3766 return ret;
3767 }
3768
3769 void
3770 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3771 {
3772 i915_gem_object_unpin(obj);
3773 obj->pin_display = is_pin_display(obj);
3774 }
3775
3776 int
3777 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3778 {
3779 int ret;
3780
3781 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3782 return 0;
3783
3784 ret = i915_gem_object_wait_rendering(obj, false);
3785 if (ret)
3786 return ret;
3787
3788 /* Ensure that we invalidate the GPU's caches and TLBs. */
3789 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3790 return 0;
3791 }
3792
3793 /**
3794 * Moves a single object to the CPU read, and possibly write domain.
3795 *
3796 * This function returns when the move is complete, including waiting on
3797 * flushes to occur.
3798 */
3799 int
3800 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3801 {
3802 uint32_t old_write_domain, old_read_domains;
3803 int ret;
3804
3805 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3806 return 0;
3807
3808 ret = i915_gem_object_wait_rendering(obj, !write);
3809 if (ret)
3810 return ret;
3811
3812 i915_gem_object_flush_gtt_write_domain(obj);
3813
3814 old_write_domain = obj->base.write_domain;
3815 old_read_domains = obj->base.read_domains;
3816
3817 /* Flush the CPU cache if it's still invalid. */
3818 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3819 i915_gem_clflush_object(obj, false);
3820
3821 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3822 }
3823
3824 /* It should now be out of any other write domains, and we can update
3825 * the domain values for our changes.
3826 */
3827 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3828
3829 /* If we're writing through the CPU, then the GPU read domains will
3830 * need to be invalidated at next use.
3831 */
3832 if (write) {
3833 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3834 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3835 }
3836
3837 trace_i915_gem_object_change_domain(obj,
3838 old_read_domains,
3839 old_write_domain);
3840
3841 return 0;
3842 }
3843
3844 /* Throttle our rendering by waiting until the ring has completed our requests
3845 * emitted over 20 msec ago.
3846 *
3847 * Note that if we were to use the current jiffies each time around the loop,
3848 * we wouldn't escape the function with any frames outstanding if the time to
3849 * render a frame was over 20ms.
3850 *
3851 * This should get us reasonable parallelism between CPU and GPU but also
3852 * relatively low latency when blocking on a particular request to finish.
3853 */
3854 static int
3855 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3856 {
3857 struct drm_i915_private *dev_priv = dev->dev_private;
3858 struct drm_i915_file_private *file_priv = file->driver_priv;
3859 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3860 struct drm_i915_gem_request *request;
3861 struct intel_ring_buffer *ring = NULL;
3862 unsigned reset_counter;
3863 u32 seqno = 0;
3864 int ret;
3865
3866 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3867 if (ret)
3868 return ret;
3869
3870 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3871 if (ret)
3872 return ret;
3873
3874 spin_lock(&file_priv->mm.lock);
3875 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3876 if (time_after_eq(request->emitted_jiffies, recent_enough))
3877 break;
3878
3879 ring = request->ring;
3880 seqno = request->seqno;
3881 }
3882 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3883 spin_unlock(&file_priv->mm.lock);
3884
3885 if (seqno == 0)
3886 return 0;
3887
3888 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3889 if (ret == 0)
3890 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3891
3892 return ret;
3893 }
3894
3895 int
3896 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3897 struct i915_address_space *vm,
3898 uint32_t alignment,
3899 bool map_and_fenceable,
3900 bool nonblocking)
3901 {
3902 struct i915_vma *vma;
3903 int ret;
3904
3905 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3906 return -EBUSY;
3907
3908 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3909
3910 vma = i915_gem_obj_to_vma(obj, vm);
3911
3912 if (vma) {
3913 if ((alignment &&
3914 vma->node.start & (alignment - 1)) ||
3915 (map_and_fenceable && !obj->map_and_fenceable)) {
3916 WARN(obj->pin_count,
3917 "bo is already pinned with incorrect alignment:"
3918 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3919 " obj->map_and_fenceable=%d\n",
3920 i915_gem_obj_offset(obj, vm), alignment,
3921 map_and_fenceable,
3922 obj->map_and_fenceable);
3923 ret = i915_vma_unbind(vma);
3924 if (ret)
3925 return ret;
3926 }
3927 }
3928
3929 if (!i915_gem_obj_bound(obj, vm)) {
3930 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3931
3932 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3933 map_and_fenceable,
3934 nonblocking);
3935 if (ret)
3936 return ret;
3937
3938 if (!dev_priv->mm.aliasing_ppgtt)
3939 i915_gem_gtt_bind_object(obj, obj->cache_level);
3940 }
3941
3942 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3943 i915_gem_gtt_bind_object(obj, obj->cache_level);
3944
3945 obj->pin_count++;
3946 obj->pin_mappable |= map_and_fenceable;
3947
3948 return 0;
3949 }
3950
3951 void
3952 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3953 {
3954 BUG_ON(obj->pin_count == 0);
3955 BUG_ON(!i915_gem_obj_bound_any(obj));
3956
3957 if (--obj->pin_count == 0)
3958 obj->pin_mappable = false;
3959 }
3960
3961 int
3962 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3963 struct drm_file *file)
3964 {
3965 struct drm_i915_gem_pin *args = data;
3966 struct drm_i915_gem_object *obj;
3967 int ret;
3968
3969 ret = i915_mutex_lock_interruptible(dev);
3970 if (ret)
3971 return ret;
3972
3973 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3974 if (&obj->base == NULL) {
3975 ret = -ENOENT;
3976 goto unlock;
3977 }
3978
3979 if (obj->madv != I915_MADV_WILLNEED) {
3980 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3981 ret = -EINVAL;
3982 goto out;
3983 }
3984
3985 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3986 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3987 args->handle);
3988 ret = -EINVAL;
3989 goto out;
3990 }
3991
3992 if (obj->user_pin_count == ULONG_MAX) {
3993 ret = -EBUSY;
3994 goto out;
3995 }
3996
3997 if (obj->user_pin_count == 0) {
3998 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3999 if (ret)
4000 goto out;
4001 }
4002
4003 obj->user_pin_count++;
4004 obj->pin_filp = file;
4005
4006 args->offset = i915_gem_obj_ggtt_offset(obj);
4007 out:
4008 drm_gem_object_unreference(&obj->base);
4009 unlock:
4010 mutex_unlock(&dev->struct_mutex);
4011 return ret;
4012 }
4013
4014 int
4015 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4016 struct drm_file *file)
4017 {
4018 struct drm_i915_gem_pin *args = data;
4019 struct drm_i915_gem_object *obj;
4020 int ret;
4021
4022 ret = i915_mutex_lock_interruptible(dev);
4023 if (ret)
4024 return ret;
4025
4026 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4027 if (&obj->base == NULL) {
4028 ret = -ENOENT;
4029 goto unlock;
4030 }
4031
4032 if (obj->pin_filp != file) {
4033 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4034 args->handle);
4035 ret = -EINVAL;
4036 goto out;
4037 }
4038 obj->user_pin_count--;
4039 if (obj->user_pin_count == 0) {
4040 obj->pin_filp = NULL;
4041 i915_gem_object_unpin(obj);
4042 }
4043
4044 out:
4045 drm_gem_object_unreference(&obj->base);
4046 unlock:
4047 mutex_unlock(&dev->struct_mutex);
4048 return ret;
4049 }
4050
4051 int
4052 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4053 struct drm_file *file)
4054 {
4055 struct drm_i915_gem_busy *args = data;
4056 struct drm_i915_gem_object *obj;
4057 int ret;
4058
4059 ret = i915_mutex_lock_interruptible(dev);
4060 if (ret)
4061 return ret;
4062
4063 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4064 if (&obj->base == NULL) {
4065 ret = -ENOENT;
4066 goto unlock;
4067 }
4068
4069 /* Count all active objects as busy, even if they are currently not used
4070 * by the gpu. Users of this interface expect objects to eventually
4071 * become non-busy without any further actions, therefore emit any
4072 * necessary flushes here.
4073 */
4074 ret = i915_gem_object_flush_active(obj);
4075
4076 args->busy = obj->active;
4077 if (obj->ring) {
4078 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4079 args->busy |= intel_ring_flag(obj->ring) << 16;
4080 }
4081
4082 drm_gem_object_unreference(&obj->base);
4083 unlock:
4084 mutex_unlock(&dev->struct_mutex);
4085 return ret;
4086 }
4087
4088 int
4089 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4090 struct drm_file *file_priv)
4091 {
4092 return i915_gem_ring_throttle(dev, file_priv);
4093 }
4094
4095 int
4096 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4097 struct drm_file *file_priv)
4098 {
4099 struct drm_i915_gem_madvise *args = data;
4100 struct drm_i915_gem_object *obj;
4101 int ret;
4102
4103 switch (args->madv) {
4104 case I915_MADV_DONTNEED:
4105 case I915_MADV_WILLNEED:
4106 break;
4107 default:
4108 return -EINVAL;
4109 }
4110
4111 ret = i915_mutex_lock_interruptible(dev);
4112 if (ret)
4113 return ret;
4114
4115 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4116 if (&obj->base == NULL) {
4117 ret = -ENOENT;
4118 goto unlock;
4119 }
4120
4121 if (obj->pin_count) {
4122 ret = -EINVAL;
4123 goto out;
4124 }
4125
4126 if (obj->madv != __I915_MADV_PURGED)
4127 obj->madv = args->madv;
4128
4129 /* if the object is no longer attached, discard its backing storage */
4130 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4131 i915_gem_object_truncate(obj);
4132
4133 args->retained = obj->madv != __I915_MADV_PURGED;
4134
4135 out:
4136 drm_gem_object_unreference(&obj->base);
4137 unlock:
4138 mutex_unlock(&dev->struct_mutex);
4139 return ret;
4140 }
4141
4142 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4143 const struct drm_i915_gem_object_ops *ops)
4144 {
4145 INIT_LIST_HEAD(&obj->global_list);
4146 INIT_LIST_HEAD(&obj->ring_list);
4147 INIT_LIST_HEAD(&obj->obj_exec_link);
4148 INIT_LIST_HEAD(&obj->vma_list);
4149
4150 obj->ops = ops;
4151
4152 obj->fence_reg = I915_FENCE_REG_NONE;
4153 obj->madv = I915_MADV_WILLNEED;
4154 /* Avoid an unnecessary call to unbind on the first bind. */
4155 obj->map_and_fenceable = true;
4156
4157 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4158 }
4159
4160 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4161 .get_pages = i915_gem_object_get_pages_gtt,
4162 .put_pages = i915_gem_object_put_pages_gtt,
4163 };
4164
4165 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4166 size_t size)
4167 {
4168 struct drm_i915_gem_object *obj;
4169 struct address_space *mapping;
4170 gfp_t mask;
4171
4172 obj = i915_gem_object_alloc(dev);
4173 if (obj == NULL)
4174 return NULL;
4175
4176 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4177 i915_gem_object_free(obj);
4178 return NULL;
4179 }
4180
4181 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4182 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4183 /* 965gm cannot relocate objects above 4GiB. */
4184 mask &= ~__GFP_HIGHMEM;
4185 mask |= __GFP_DMA32;
4186 }
4187
4188 mapping = file_inode(obj->base.filp)->i_mapping;
4189 mapping_set_gfp_mask(mapping, mask);
4190
4191 i915_gem_object_init(obj, &i915_gem_object_ops);
4192
4193 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4194 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4195
4196 if (HAS_LLC(dev)) {
4197 /* On some devices, we can have the GPU use the LLC (the CPU
4198 * cache) for about a 10% performance improvement
4199 * compared to uncached. Graphics requests other than
4200 * display scanout are coherent with the CPU in
4201 * accessing this cache. This means in this mode we
4202 * don't need to clflush on the CPU side, and on the
4203 * GPU side we only need to flush internal caches to
4204 * get data visible to the CPU.
4205 *
4206 * However, we maintain the display planes as UC, and so
4207 * need to rebind when first used as such.
4208 */
4209 obj->cache_level = I915_CACHE_LLC;
4210 } else
4211 obj->cache_level = I915_CACHE_NONE;
4212
4213 trace_i915_gem_object_create(obj);
4214
4215 return obj;
4216 }
4217
4218 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4219 {
4220 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4221 struct drm_device *dev = obj->base.dev;
4222 drm_i915_private_t *dev_priv = dev->dev_private;
4223 struct i915_vma *vma, *next;
4224
4225 intel_runtime_pm_get(dev_priv);
4226
4227 trace_i915_gem_object_destroy(obj);
4228
4229 if (obj->phys_obj)
4230 i915_gem_detach_phys_object(dev, obj);
4231
4232 obj->pin_count = 0;
4233 /* NB: 0 or 1 elements */
4234 WARN_ON(!list_empty(&obj->vma_list) &&
4235 !list_is_singular(&obj->vma_list));
4236 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4237 int ret = i915_vma_unbind(vma);
4238 if (WARN_ON(ret == -ERESTARTSYS)) {
4239 bool was_interruptible;
4240
4241 was_interruptible = dev_priv->mm.interruptible;
4242 dev_priv->mm.interruptible = false;
4243
4244 WARN_ON(i915_vma_unbind(vma));
4245
4246 dev_priv->mm.interruptible = was_interruptible;
4247 }
4248 }
4249
4250 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4251 * before progressing. */
4252 if (obj->stolen)
4253 i915_gem_object_unpin_pages(obj);
4254
4255 if (WARN_ON(obj->pages_pin_count))
4256 obj->pages_pin_count = 0;
4257 i915_gem_object_put_pages(obj);
4258 i915_gem_object_free_mmap_offset(obj);
4259 i915_gem_object_release_stolen(obj);
4260
4261 BUG_ON(obj->pages);
4262
4263 if (obj->base.import_attach)
4264 drm_prime_gem_destroy(&obj->base, NULL);
4265
4266 drm_gem_object_release(&obj->base);
4267 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4268
4269 kfree(obj->bit_17);
4270 i915_gem_object_free(obj);
4271
4272 intel_runtime_pm_put(dev_priv);
4273 }
4274
4275 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4276 struct i915_address_space *vm)
4277 {
4278 struct i915_vma *vma;
4279 list_for_each_entry(vma, &obj->vma_list, vma_link)
4280 if (vma->vm == vm)
4281 return vma;
4282
4283 return NULL;
4284 }
4285
4286 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4287 struct i915_address_space *vm)
4288 {
4289 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4290 if (vma == NULL)
4291 return ERR_PTR(-ENOMEM);
4292
4293 INIT_LIST_HEAD(&vma->vma_link);
4294 INIT_LIST_HEAD(&vma->mm_list);
4295 INIT_LIST_HEAD(&vma->exec_list);
4296 vma->vm = vm;
4297 vma->obj = obj;
4298
4299 /* Keep GGTT vmas first to make debug easier */
4300 if (i915_is_ggtt(vm))
4301 list_add(&vma->vma_link, &obj->vma_list);
4302 else
4303 list_add_tail(&vma->vma_link, &obj->vma_list);
4304
4305 return vma;
4306 }
4307
4308 struct i915_vma *
4309 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4310 struct i915_address_space *vm)
4311 {
4312 struct i915_vma *vma;
4313
4314 vma = i915_gem_obj_to_vma(obj, vm);
4315 if (!vma)
4316 vma = __i915_gem_vma_create(obj, vm);
4317
4318 return vma;
4319 }
4320
4321 void i915_gem_vma_destroy(struct i915_vma *vma)
4322 {
4323 WARN_ON(vma->node.allocated);
4324
4325 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4326 if (!list_empty(&vma->exec_list))
4327 return;
4328
4329 list_del(&vma->vma_link);
4330
4331 kfree(vma);
4332 }
4333
4334 int
4335 i915_gem_suspend(struct drm_device *dev)
4336 {
4337 drm_i915_private_t *dev_priv = dev->dev_private;
4338 int ret = 0;
4339
4340 mutex_lock(&dev->struct_mutex);
4341 if (dev_priv->ums.mm_suspended)
4342 goto err;
4343
4344 ret = i915_gpu_idle(dev);
4345 if (ret)
4346 goto err;
4347
4348 i915_gem_retire_requests(dev);
4349
4350 /* Under UMS, be paranoid and evict. */
4351 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4352 i915_gem_evict_everything(dev);
4353
4354 i915_kernel_lost_context(dev);
4355 i915_gem_cleanup_ringbuffer(dev);
4356
4357 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4358 * We need to replace this with a semaphore, or something.
4359 * And not confound ums.mm_suspended!
4360 */
4361 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4362 DRIVER_MODESET);
4363 mutex_unlock(&dev->struct_mutex);
4364
4365 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4366 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4367 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4368
4369 return 0;
4370
4371 err:
4372 mutex_unlock(&dev->struct_mutex);
4373 return ret;
4374 }
4375
4376 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4377 {
4378 struct drm_device *dev = ring->dev;
4379 drm_i915_private_t *dev_priv = dev->dev_private;
4380 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4381 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4382 int i, ret;
4383
4384 if (!HAS_L3_DPF(dev) || !remap_info)
4385 return 0;
4386
4387 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4388 if (ret)
4389 return ret;
4390
4391 /*
4392 * Note: We do not worry about the concurrent register cacheline hang
4393 * here because no other code should access these registers other than
4394 * at initialization time.
4395 */
4396 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4397 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4398 intel_ring_emit(ring, reg_base + i);
4399 intel_ring_emit(ring, remap_info[i/4]);
4400 }
4401
4402 intel_ring_advance(ring);
4403
4404 return ret;
4405 }
4406
4407 void i915_gem_init_swizzling(struct drm_device *dev)
4408 {
4409 drm_i915_private_t *dev_priv = dev->dev_private;
4410
4411 if (INTEL_INFO(dev)->gen < 5 ||
4412 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4413 return;
4414
4415 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4416 DISP_TILE_SURFACE_SWIZZLING);
4417
4418 if (IS_GEN5(dev))
4419 return;
4420
4421 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4422 if (IS_GEN6(dev))
4423 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4424 else if (IS_GEN7(dev))
4425 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4426 else if (IS_GEN8(dev))
4427 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4428 else
4429 BUG();
4430 }
4431
4432 static bool
4433 intel_enable_blt(struct drm_device *dev)
4434 {
4435 if (!HAS_BLT(dev))
4436 return false;
4437
4438 /* The blitter was dysfunctional on early prototypes */
4439 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4440 DRM_INFO("BLT not supported on this pre-production hardware;"
4441 " graphics performance will be degraded.\n");
4442 return false;
4443 }
4444
4445 return true;
4446 }
4447
4448 static int i915_gem_init_rings(struct drm_device *dev)
4449 {
4450 struct drm_i915_private *dev_priv = dev->dev_private;
4451 int ret;
4452
4453 ret = intel_init_render_ring_buffer(dev);
4454 if (ret)
4455 return ret;
4456
4457 if (HAS_BSD(dev)) {
4458 ret = intel_init_bsd_ring_buffer(dev);
4459 if (ret)
4460 goto cleanup_render_ring;
4461 }
4462
4463 if (intel_enable_blt(dev)) {
4464 ret = intel_init_blt_ring_buffer(dev);
4465 if (ret)
4466 goto cleanup_bsd_ring;
4467 }
4468
4469 if (HAS_VEBOX(dev)) {
4470 ret = intel_init_vebox_ring_buffer(dev);
4471 if (ret)
4472 goto cleanup_blt_ring;
4473 }
4474
4475
4476 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4477 if (ret)
4478 goto cleanup_vebox_ring;
4479
4480 return 0;
4481
4482 cleanup_vebox_ring:
4483 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4484 cleanup_blt_ring:
4485 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4486 cleanup_bsd_ring:
4487 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4488 cleanup_render_ring:
4489 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4490
4491 return ret;
4492 }
4493
4494 int
4495 i915_gem_init_hw(struct drm_device *dev)
4496 {
4497 drm_i915_private_t *dev_priv = dev->dev_private;
4498 int ret, i;
4499
4500 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4501 return -EIO;
4502
4503 if (dev_priv->ellc_size)
4504 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4505
4506 if (IS_HASWELL(dev))
4507 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4508 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4509
4510 if (HAS_PCH_NOP(dev)) {
4511 u32 temp = I915_READ(GEN7_MSG_CTL);
4512 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4513 I915_WRITE(GEN7_MSG_CTL, temp);
4514 }
4515
4516 i915_gem_init_swizzling(dev);
4517
4518 ret = i915_gem_init_rings(dev);
4519 if (ret)
4520 return ret;
4521
4522 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4523 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4524
4525 /*
4526 * XXX: There was some w/a described somewhere suggesting loading
4527 * contexts before PPGTT.
4528 */
4529 ret = i915_gem_context_init(dev);
4530 if (ret) {
4531 i915_gem_cleanup_ringbuffer(dev);
4532 DRM_ERROR("Context initialization failed %d\n", ret);
4533 return ret;
4534 }
4535
4536 if (dev_priv->mm.aliasing_ppgtt) {
4537 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4538 if (ret) {
4539 i915_gem_cleanup_aliasing_ppgtt(dev);
4540 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4541 }
4542 }
4543
4544 return 0;
4545 }
4546
4547 int i915_gem_init(struct drm_device *dev)
4548 {
4549 struct drm_i915_private *dev_priv = dev->dev_private;
4550 int ret;
4551
4552 mutex_lock(&dev->struct_mutex);
4553
4554 if (IS_VALLEYVIEW(dev)) {
4555 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4556 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4557 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4558 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4559 }
4560
4561 i915_gem_init_global_gtt(dev);
4562
4563 ret = i915_gem_init_hw(dev);
4564 mutex_unlock(&dev->struct_mutex);
4565 if (ret) {
4566 i915_gem_cleanup_aliasing_ppgtt(dev);
4567 return ret;
4568 }
4569
4570 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4571 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4572 dev_priv->dri1.allow_batchbuffer = 1;
4573 return 0;
4574 }
4575
4576 void
4577 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4578 {
4579 drm_i915_private_t *dev_priv = dev->dev_private;
4580 struct intel_ring_buffer *ring;
4581 int i;
4582
4583 for_each_ring(ring, dev_priv, i)
4584 intel_cleanup_ring_buffer(ring);
4585 }
4586
4587 int
4588 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4589 struct drm_file *file_priv)
4590 {
4591 struct drm_i915_private *dev_priv = dev->dev_private;
4592 int ret;
4593
4594 if (drm_core_check_feature(dev, DRIVER_MODESET))
4595 return 0;
4596
4597 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4598 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4599 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4600 }
4601
4602 mutex_lock(&dev->struct_mutex);
4603 dev_priv->ums.mm_suspended = 0;
4604
4605 ret = i915_gem_init_hw(dev);
4606 if (ret != 0) {
4607 mutex_unlock(&dev->struct_mutex);
4608 return ret;
4609 }
4610
4611 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4612 mutex_unlock(&dev->struct_mutex);
4613
4614 ret = drm_irq_install(dev);
4615 if (ret)
4616 goto cleanup_ringbuffer;
4617
4618 return 0;
4619
4620 cleanup_ringbuffer:
4621 mutex_lock(&dev->struct_mutex);
4622 i915_gem_cleanup_ringbuffer(dev);
4623 dev_priv->ums.mm_suspended = 1;
4624 mutex_unlock(&dev->struct_mutex);
4625
4626 return ret;
4627 }
4628
4629 int
4630 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4631 struct drm_file *file_priv)
4632 {
4633 if (drm_core_check_feature(dev, DRIVER_MODESET))
4634 return 0;
4635
4636 drm_irq_uninstall(dev);
4637
4638 return i915_gem_suspend(dev);
4639 }
4640
4641 void
4642 i915_gem_lastclose(struct drm_device *dev)
4643 {
4644 int ret;
4645
4646 if (drm_core_check_feature(dev, DRIVER_MODESET))
4647 return;
4648
4649 ret = i915_gem_suspend(dev);
4650 if (ret)
4651 DRM_ERROR("failed to idle hardware: %d\n", ret);
4652 }
4653
4654 static void
4655 init_ring_lists(struct intel_ring_buffer *ring)
4656 {
4657 INIT_LIST_HEAD(&ring->active_list);
4658 INIT_LIST_HEAD(&ring->request_list);
4659 }
4660
4661 static void i915_init_vm(struct drm_i915_private *dev_priv,
4662 struct i915_address_space *vm)
4663 {
4664 vm->dev = dev_priv->dev;
4665 INIT_LIST_HEAD(&vm->active_list);
4666 INIT_LIST_HEAD(&vm->inactive_list);
4667 INIT_LIST_HEAD(&vm->global_link);
4668 list_add(&vm->global_link, &dev_priv->vm_list);
4669 }
4670
4671 void
4672 i915_gem_load(struct drm_device *dev)
4673 {
4674 drm_i915_private_t *dev_priv = dev->dev_private;
4675 int i;
4676
4677 dev_priv->slab =
4678 kmem_cache_create("i915_gem_object",
4679 sizeof(struct drm_i915_gem_object), 0,
4680 SLAB_HWCACHE_ALIGN,
4681 NULL);
4682
4683 INIT_LIST_HEAD(&dev_priv->vm_list);
4684 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4685
4686 INIT_LIST_HEAD(&dev_priv->context_list);
4687 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4688 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4689 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4690 for (i = 0; i < I915_NUM_RINGS; i++)
4691 init_ring_lists(&dev_priv->ring[i]);
4692 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4693 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4694 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4695 i915_gem_retire_work_handler);
4696 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4697 i915_gem_idle_work_handler);
4698 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4699
4700 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4701 if (IS_GEN3(dev)) {
4702 I915_WRITE(MI_ARB_STATE,
4703 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4704 }
4705
4706 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4707
4708 /* Old X drivers will take 0-2 for front, back, depth buffers */
4709 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4710 dev_priv->fence_reg_start = 3;
4711
4712 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4713 dev_priv->num_fence_regs = 32;
4714 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4715 dev_priv->num_fence_regs = 16;
4716 else
4717 dev_priv->num_fence_regs = 8;
4718
4719 /* Initialize fence registers to zero */
4720 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4721 i915_gem_restore_fences(dev);
4722
4723 i915_gem_detect_bit_6_swizzle(dev);
4724 init_waitqueue_head(&dev_priv->pending_flip_queue);
4725
4726 dev_priv->mm.interruptible = true;
4727
4728 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4729 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4730 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4731 register_shrinker(&dev_priv->mm.inactive_shrinker);
4732 }
4733
4734 /*
4735 * Create a physically contiguous memory object for this object
4736 * e.g. for cursor + overlay regs
4737 */
4738 static int i915_gem_init_phys_object(struct drm_device *dev,
4739 int id, int size, int align)
4740 {
4741 drm_i915_private_t *dev_priv = dev->dev_private;
4742 struct drm_i915_gem_phys_object *phys_obj;
4743 int ret;
4744
4745 if (dev_priv->mm.phys_objs[id - 1] || !size)
4746 return 0;
4747
4748 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4749 if (!phys_obj)
4750 return -ENOMEM;
4751
4752 phys_obj->id = id;
4753
4754 phys_obj->handle = drm_pci_alloc(dev, size, align);
4755 if (!phys_obj->handle) {
4756 ret = -ENOMEM;
4757 goto kfree_obj;
4758 }
4759 #ifdef CONFIG_X86
4760 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4761 #endif
4762
4763 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4764
4765 return 0;
4766 kfree_obj:
4767 kfree(phys_obj);
4768 return ret;
4769 }
4770
4771 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4772 {
4773 drm_i915_private_t *dev_priv = dev->dev_private;
4774 struct drm_i915_gem_phys_object *phys_obj;
4775
4776 if (!dev_priv->mm.phys_objs[id - 1])
4777 return;
4778
4779 phys_obj = dev_priv->mm.phys_objs[id - 1];
4780 if (phys_obj->cur_obj) {
4781 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4782 }
4783
4784 #ifdef CONFIG_X86
4785 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4786 #endif
4787 drm_pci_free(dev, phys_obj->handle);
4788 kfree(phys_obj);
4789 dev_priv->mm.phys_objs[id - 1] = NULL;
4790 }
4791
4792 void i915_gem_free_all_phys_object(struct drm_device *dev)
4793 {
4794 int i;
4795
4796 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4797 i915_gem_free_phys_object(dev, i);
4798 }
4799
4800 void i915_gem_detach_phys_object(struct drm_device *dev,
4801 struct drm_i915_gem_object *obj)
4802 {
4803 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4804 char *vaddr;
4805 int i;
4806 int page_count;
4807
4808 if (!obj->phys_obj)
4809 return;
4810 vaddr = obj->phys_obj->handle->vaddr;
4811
4812 page_count = obj->base.size / PAGE_SIZE;
4813 for (i = 0; i < page_count; i++) {
4814 struct page *page = shmem_read_mapping_page(mapping, i);
4815 if (!IS_ERR(page)) {
4816 char *dst = kmap_atomic(page);
4817 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4818 kunmap_atomic(dst);
4819
4820 drm_clflush_pages(&page, 1);
4821
4822 set_page_dirty(page);
4823 mark_page_accessed(page);
4824 page_cache_release(page);
4825 }
4826 }
4827 i915_gem_chipset_flush(dev);
4828
4829 obj->phys_obj->cur_obj = NULL;
4830 obj->phys_obj = NULL;
4831 }
4832
4833 int
4834 i915_gem_attach_phys_object(struct drm_device *dev,
4835 struct drm_i915_gem_object *obj,
4836 int id,
4837 int align)
4838 {
4839 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4840 drm_i915_private_t *dev_priv = dev->dev_private;
4841 int ret = 0;
4842 int page_count;
4843 int i;
4844
4845 if (id > I915_MAX_PHYS_OBJECT)
4846 return -EINVAL;
4847
4848 if (obj->phys_obj) {
4849 if (obj->phys_obj->id == id)
4850 return 0;
4851 i915_gem_detach_phys_object(dev, obj);
4852 }
4853
4854 /* create a new object */
4855 if (!dev_priv->mm.phys_objs[id - 1]) {
4856 ret = i915_gem_init_phys_object(dev, id,
4857 obj->base.size, align);
4858 if (ret) {
4859 DRM_ERROR("failed to init phys object %d size: %zu\n",
4860 id, obj->base.size);
4861 return ret;
4862 }
4863 }
4864
4865 /* bind to the object */
4866 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4867 obj->phys_obj->cur_obj = obj;
4868
4869 page_count = obj->base.size / PAGE_SIZE;
4870
4871 for (i = 0; i < page_count; i++) {
4872 struct page *page;
4873 char *dst, *src;
4874
4875 page = shmem_read_mapping_page(mapping, i);
4876 if (IS_ERR(page))
4877 return PTR_ERR(page);
4878
4879 src = kmap_atomic(page);
4880 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4881 memcpy(dst, src, PAGE_SIZE);
4882 kunmap_atomic(src);
4883
4884 mark_page_accessed(page);
4885 page_cache_release(page);
4886 }
4887
4888 return 0;
4889 }
4890
4891 static int
4892 i915_gem_phys_pwrite(struct drm_device *dev,
4893 struct drm_i915_gem_object *obj,
4894 struct drm_i915_gem_pwrite *args,
4895 struct drm_file *file_priv)
4896 {
4897 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4898 char __user *user_data = to_user_ptr(args->data_ptr);
4899
4900 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4901 unsigned long unwritten;
4902
4903 /* The physical object once assigned is fixed for the lifetime
4904 * of the obj, so we can safely drop the lock and continue
4905 * to access vaddr.
4906 */
4907 mutex_unlock(&dev->struct_mutex);
4908 unwritten = copy_from_user(vaddr, user_data, args->size);
4909 mutex_lock(&dev->struct_mutex);
4910 if (unwritten)
4911 return -EFAULT;
4912 }
4913
4914 i915_gem_chipset_flush(dev);
4915 return 0;
4916 }
4917
4918 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4919 {
4920 struct drm_i915_file_private *file_priv = file->driver_priv;
4921
4922 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4923
4924 /* Clean up our request list when the client is going away, so that
4925 * later retire_requests won't dereference our soon-to-be-gone
4926 * file_priv.
4927 */
4928 spin_lock(&file_priv->mm.lock);
4929 while (!list_empty(&file_priv->mm.request_list)) {
4930 struct drm_i915_gem_request *request;
4931
4932 request = list_first_entry(&file_priv->mm.request_list,
4933 struct drm_i915_gem_request,
4934 client_list);
4935 list_del(&request->client_list);
4936 request->file_priv = NULL;
4937 }
4938 spin_unlock(&file_priv->mm.lock);
4939 }
4940
4941 static void
4942 i915_gem_file_idle_work_handler(struct work_struct *work)
4943 {
4944 struct drm_i915_file_private *file_priv =
4945 container_of(work, typeof(*file_priv), mm.idle_work.work);
4946
4947 atomic_set(&file_priv->rps_wait_boost, false);
4948 }
4949
4950 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4951 {
4952 struct drm_i915_file_private *file_priv;
4953
4954 DRM_DEBUG_DRIVER("\n");
4955
4956 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4957 if (!file_priv)
4958 return -ENOMEM;
4959
4960 file->driver_priv = file_priv;
4961 file_priv->dev_priv = dev->dev_private;
4962
4963 spin_lock_init(&file_priv->mm.lock);
4964 INIT_LIST_HEAD(&file_priv->mm.request_list);
4965 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4966 i915_gem_file_idle_work_handler);
4967
4968 idr_init(&file_priv->context_idr);
4969
4970 return 0;
4971 }
4972
4973 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4974 {
4975 if (!mutex_is_locked(mutex))
4976 return false;
4977
4978 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4979 return mutex->owner == task;
4980 #else
4981 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4982 return false;
4983 #endif
4984 }
4985
4986 static unsigned long
4987 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4988 {
4989 struct drm_i915_private *dev_priv =
4990 container_of(shrinker,
4991 struct drm_i915_private,
4992 mm.inactive_shrinker);
4993 struct drm_device *dev = dev_priv->dev;
4994 struct drm_i915_gem_object *obj;
4995 bool unlock = true;
4996 unsigned long count;
4997
4998 if (!mutex_trylock(&dev->struct_mutex)) {
4999 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5000 return 0;
5001
5002 if (dev_priv->mm.shrinker_no_lock_stealing)
5003 return 0;
5004
5005 unlock = false;
5006 }
5007
5008 count = 0;
5009 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5010 if (obj->pages_pin_count == 0)
5011 count += obj->base.size >> PAGE_SHIFT;
5012
5013 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5014 if (obj->active)
5015 continue;
5016
5017 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
5018 count += obj->base.size >> PAGE_SHIFT;
5019 }
5020
5021 if (unlock)
5022 mutex_unlock(&dev->struct_mutex);
5023
5024 return count;
5025 }
5026
5027 /* All the new VM stuff */
5028 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5029 struct i915_address_space *vm)
5030 {
5031 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5032 struct i915_vma *vma;
5033
5034 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5035 vm = &dev_priv->gtt.base;
5036
5037 BUG_ON(list_empty(&o->vma_list));
5038 list_for_each_entry(vma, &o->vma_list, vma_link) {
5039 if (vma->vm == vm)
5040 return vma->node.start;
5041
5042 }
5043 return -1;
5044 }
5045
5046 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5047 struct i915_address_space *vm)
5048 {
5049 struct i915_vma *vma;
5050
5051 list_for_each_entry(vma, &o->vma_list, vma_link)
5052 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5053 return true;
5054
5055 return false;
5056 }
5057
5058 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5059 {
5060 struct i915_vma *vma;
5061
5062 list_for_each_entry(vma, &o->vma_list, vma_link)
5063 if (drm_mm_node_allocated(&vma->node))
5064 return true;
5065
5066 return false;
5067 }
5068
5069 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5070 struct i915_address_space *vm)
5071 {
5072 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5073 struct i915_vma *vma;
5074
5075 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5076 vm = &dev_priv->gtt.base;
5077
5078 BUG_ON(list_empty(&o->vma_list));
5079
5080 list_for_each_entry(vma, &o->vma_list, vma_link)
5081 if (vma->vm == vm)
5082 return vma->node.size;
5083
5084 return 0;
5085 }
5086
5087 static unsigned long
5088 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5089 {
5090 struct drm_i915_private *dev_priv =
5091 container_of(shrinker,
5092 struct drm_i915_private,
5093 mm.inactive_shrinker);
5094 struct drm_device *dev = dev_priv->dev;
5095 unsigned long freed;
5096 bool unlock = true;
5097
5098 if (!mutex_trylock(&dev->struct_mutex)) {
5099 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5100 return SHRINK_STOP;
5101
5102 if (dev_priv->mm.shrinker_no_lock_stealing)
5103 return SHRINK_STOP;
5104
5105 unlock = false;
5106 }
5107
5108 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5109 if (freed < sc->nr_to_scan)
5110 freed += __i915_gem_shrink(dev_priv,
5111 sc->nr_to_scan - freed,
5112 false);
5113 if (freed < sc->nr_to_scan)
5114 freed += i915_gem_shrink_all(dev_priv);
5115
5116 if (unlock)
5117 mutex_unlock(&dev->struct_mutex);
5118
5119 return freed;
5120 }
5121
5122 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5123 {
5124 struct i915_vma *vma;
5125
5126 if (WARN_ON(list_empty(&obj->vma_list)))
5127 return NULL;
5128
5129 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5130 if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5131 return NULL;
5132
5133 return vma;
5134 }
This page took 0.223005 seconds and 5 git commands to generate.