drm/i915: Propagate errors from writing to ringbuffer
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
67
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
70
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74 {
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77 }
78
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81 {
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84 }
85
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
88 {
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
91 }
92
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
95 {
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
98 }
99
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
102 {
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
105 }
106
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
112 }
113
114 int
115 i915_gem_check_is_wedged(struct drm_device *dev)
116 {
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
121
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
124
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
128
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
132
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
137 */
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
142 }
143
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
145 {
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
148
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
152
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
156
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
160 }
161
162 WARN_ON(i915_verify_lists(dev));
163 return 0;
164 }
165
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168 {
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
172 }
173
174 int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
176 unsigned long end)
177 {
178 drm_i915_private_t *dev_priv = dev->dev_private;
179
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
183 return -EINVAL;
184 }
185
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
188
189 dev_priv->mm.gtt_total = end - start;
190
191 return 0;
192 }
193
194 int
195 i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
197 {
198 struct drm_i915_gem_init *args = data;
199 int ret;
200
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 mutex_unlock(&dev->struct_mutex);
204
205 return ret;
206 }
207
208 int
209 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
211 {
212 struct drm_i915_private *dev_priv = dev->dev_private;
213 struct drm_i915_gem_get_aperture *args = data;
214
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
217
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
222
223 return 0;
224 }
225
226
227 /**
228 * Creates a new mm object and returns a handle to it.
229 */
230 int
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
233 {
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 args->size = roundup(args->size, PAGE_SIZE);
240
241 /* Allocate the new object */
242 obj = i915_gem_alloc_object(dev, args->size);
243 if (obj == NULL)
244 return -ENOMEM;
245
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
247 if (ret) {
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
251 return ret;
252 }
253
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
257
258 args->handle = handle;
259 return 0;
260 }
261
262 static inline int
263 fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
267 {
268 char *vaddr;
269 int ret;
270
271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
272 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273 kunmap_atomic(vaddr);
274
275 return ret;
276 }
277
278 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
279 {
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
282
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
285 }
286
287 static inline void
288 slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
293 {
294 char *dst_vaddr, *src_vaddr;
295
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
298
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
300
301 kunmap(src_page);
302 kunmap(dst_page);
303 }
304
305 static inline void
306 slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
312 {
313 char *gpu_vaddr, *cpu_vaddr;
314
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
323 }
324
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
327
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
330 */
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
335
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
344 }
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
348 }
349
350 kunmap(cpu_page);
351 kunmap(gpu_page);
352 }
353
354 /**
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
358 */
359 static int
360 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
363 {
364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
369
370 user_data = (char __user *) (uintptr_t) args->data_ptr;
371 remain = args->size;
372
373 obj_priv = to_intel_bo(obj);
374 offset = args->offset;
375
376 while (remain > 0) {
377 /* Operation in this page
378 *
379 * page_base = page offset within aperture
380 * page_offset = offset within page
381 * page_length = bytes to copy for this page
382 */
383 page_base = (offset & ~(PAGE_SIZE-1));
384 page_offset = offset & (PAGE_SIZE-1);
385 page_length = remain;
386 if ((page_offset + remain) > PAGE_SIZE)
387 page_length = PAGE_SIZE - page_offset;
388
389 if (fast_shmem_read(obj_priv->pages,
390 page_base, page_offset,
391 user_data, page_length))
392 return -EFAULT;
393
394 remain -= page_length;
395 user_data += page_length;
396 offset += page_length;
397 }
398
399 return 0;
400 }
401
402 static int
403 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
404 {
405 int ret;
406
407 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
408
409 /* If we've insufficient memory to map in the pages, attempt
410 * to make some space by throwing out some old buffers.
411 */
412 if (ret == -ENOMEM) {
413 struct drm_device *dev = obj->dev;
414
415 ret = i915_gem_evict_something(dev, obj->size,
416 i915_gem_get_gtt_alignment(obj));
417 if (ret)
418 return ret;
419
420 ret = i915_gem_object_get_pages(obj, 0);
421 }
422
423 return ret;
424 }
425
426 /**
427 * This is the fallback shmem pread path, which allocates temporary storage
428 * in kernel space to copy_to_user into outside of the struct_mutex, so we
429 * can copy out of the object's backing pages while holding the struct mutex
430 * and not take page faults.
431 */
432 static int
433 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
434 struct drm_i915_gem_pread *args,
435 struct drm_file *file_priv)
436 {
437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
438 struct mm_struct *mm = current->mm;
439 struct page **user_pages;
440 ssize_t remain;
441 loff_t offset, pinned_pages, i;
442 loff_t first_data_page, last_data_page, num_pages;
443 int shmem_page_index, shmem_page_offset;
444 int data_page_index, data_page_offset;
445 int page_length;
446 int ret;
447 uint64_t data_ptr = args->data_ptr;
448 int do_bit17_swizzling;
449
450 remain = args->size;
451
452 /* Pin the user pages containing the data. We can't fault while
453 * holding the struct mutex, yet we want to hold it while
454 * dereferencing the user data.
455 */
456 first_data_page = data_ptr / PAGE_SIZE;
457 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
458 num_pages = last_data_page - first_data_page + 1;
459
460 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
461 if (user_pages == NULL)
462 return -ENOMEM;
463
464 mutex_unlock(&dev->struct_mutex);
465 down_read(&mm->mmap_sem);
466 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
467 num_pages, 1, 0, user_pages, NULL);
468 up_read(&mm->mmap_sem);
469 mutex_lock(&dev->struct_mutex);
470 if (pinned_pages < num_pages) {
471 ret = -EFAULT;
472 goto out;
473 }
474
475 ret = i915_gem_object_set_cpu_read_domain_range(obj,
476 args->offset,
477 args->size);
478 if (ret)
479 goto out;
480
481 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
482
483 obj_priv = to_intel_bo(obj);
484 offset = args->offset;
485
486 while (remain > 0) {
487 /* Operation in this page
488 *
489 * shmem_page_index = page number within shmem file
490 * shmem_page_offset = offset within page in shmem file
491 * data_page_index = page number in get_user_pages return
492 * data_page_offset = offset with data_page_index page.
493 * page_length = bytes to copy for this page
494 */
495 shmem_page_index = offset / PAGE_SIZE;
496 shmem_page_offset = offset & ~PAGE_MASK;
497 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
498 data_page_offset = data_ptr & ~PAGE_MASK;
499
500 page_length = remain;
501 if ((shmem_page_offset + page_length) > PAGE_SIZE)
502 page_length = PAGE_SIZE - shmem_page_offset;
503 if ((data_page_offset + page_length) > PAGE_SIZE)
504 page_length = PAGE_SIZE - data_page_offset;
505
506 if (do_bit17_swizzling) {
507 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
508 shmem_page_offset,
509 user_pages[data_page_index],
510 data_page_offset,
511 page_length,
512 1);
513 } else {
514 slow_shmem_copy(user_pages[data_page_index],
515 data_page_offset,
516 obj_priv->pages[shmem_page_index],
517 shmem_page_offset,
518 page_length);
519 }
520
521 remain -= page_length;
522 data_ptr += page_length;
523 offset += page_length;
524 }
525
526 out:
527 for (i = 0; i < pinned_pages; i++) {
528 SetPageDirty(user_pages[i]);
529 page_cache_release(user_pages[i]);
530 }
531 drm_free_large(user_pages);
532
533 return ret;
534 }
535
536 /**
537 * Reads data from the object referenced by handle.
538 *
539 * On error, the contents of *data are undefined.
540 */
541 int
542 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
543 struct drm_file *file_priv)
544 {
545 struct drm_i915_gem_pread *args = data;
546 struct drm_gem_object *obj;
547 struct drm_i915_gem_object *obj_priv;
548 int ret = 0;
549
550 ret = i915_mutex_lock_interruptible(dev);
551 if (ret)
552 return ret;
553
554 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
555 if (obj == NULL) {
556 ret = -ENOENT;
557 goto unlock;
558 }
559 obj_priv = to_intel_bo(obj);
560
561 /* Bounds check source. */
562 if (args->offset > obj->size || args->size > obj->size - args->offset) {
563 ret = -EINVAL;
564 goto out;
565 }
566
567 if (args->size == 0)
568 goto out;
569
570 if (!access_ok(VERIFY_WRITE,
571 (char __user *)(uintptr_t)args->data_ptr,
572 args->size)) {
573 ret = -EFAULT;
574 goto out;
575 }
576
577 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
578 args->size);
579 if (ret) {
580 ret = -EFAULT;
581 goto out;
582 }
583
584 ret = i915_gem_object_get_pages_or_evict(obj);
585 if (ret)
586 goto out;
587
588 ret = i915_gem_object_set_cpu_read_domain_range(obj,
589 args->offset,
590 args->size);
591 if (ret)
592 goto out_put;
593
594 ret = -EFAULT;
595 if (!i915_gem_object_needs_bit17_swizzle(obj))
596 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
597 if (ret == -EFAULT)
598 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
599
600 out_put:
601 i915_gem_object_put_pages(obj);
602 out:
603 drm_gem_object_unreference(obj);
604 unlock:
605 mutex_unlock(&dev->struct_mutex);
606 return ret;
607 }
608
609 /* This is the fast write path which cannot handle
610 * page faults in the source data
611 */
612
613 static inline int
614 fast_user_write(struct io_mapping *mapping,
615 loff_t page_base, int page_offset,
616 char __user *user_data,
617 int length)
618 {
619 char *vaddr_atomic;
620 unsigned long unwritten;
621
622 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
623 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
624 user_data, length);
625 io_mapping_unmap_atomic(vaddr_atomic);
626 return unwritten;
627 }
628
629 /* Here's the write path which can sleep for
630 * page faults
631 */
632
633 static inline void
634 slow_kernel_write(struct io_mapping *mapping,
635 loff_t gtt_base, int gtt_offset,
636 struct page *user_page, int user_offset,
637 int length)
638 {
639 char __iomem *dst_vaddr;
640 char *src_vaddr;
641
642 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
643 src_vaddr = kmap(user_page);
644
645 memcpy_toio(dst_vaddr + gtt_offset,
646 src_vaddr + user_offset,
647 length);
648
649 kunmap(user_page);
650 io_mapping_unmap(dst_vaddr);
651 }
652
653 static inline int
654 fast_shmem_write(struct page **pages,
655 loff_t page_base, int page_offset,
656 char __user *data,
657 int length)
658 {
659 char *vaddr;
660 int ret;
661
662 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
663 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
664 kunmap_atomic(vaddr);
665
666 return ret;
667 }
668
669 /**
670 * This is the fast pwrite path, where we copy the data directly from the
671 * user into the GTT, uncached.
672 */
673 static int
674 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
675 struct drm_i915_gem_pwrite *args,
676 struct drm_file *file_priv)
677 {
678 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t offset, page_base;
682 char __user *user_data;
683 int page_offset, page_length;
684
685 user_data = (char __user *) (uintptr_t) args->data_ptr;
686 remain = args->size;
687
688 obj_priv = to_intel_bo(obj);
689 offset = obj_priv->gtt_offset + args->offset;
690
691 while (remain > 0) {
692 /* Operation in this page
693 *
694 * page_base = page offset within aperture
695 * page_offset = offset within page
696 * page_length = bytes to copy for this page
697 */
698 page_base = (offset & ~(PAGE_SIZE-1));
699 page_offset = offset & (PAGE_SIZE-1);
700 page_length = remain;
701 if ((page_offset + remain) > PAGE_SIZE)
702 page_length = PAGE_SIZE - page_offset;
703
704 /* If we get a fault while copying data, then (presumably) our
705 * source page isn't available. Return the error and we'll
706 * retry in the slow path.
707 */
708 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
709 page_offset, user_data, page_length))
710
711 return -EFAULT;
712
713 remain -= page_length;
714 user_data += page_length;
715 offset += page_length;
716 }
717
718 return 0;
719 }
720
721 /**
722 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
723 * the memory and maps it using kmap_atomic for copying.
724 *
725 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
726 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
727 */
728 static int
729 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file_priv)
732 {
733 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
734 drm_i915_private_t *dev_priv = dev->dev_private;
735 ssize_t remain;
736 loff_t gtt_page_base, offset;
737 loff_t first_data_page, last_data_page, num_pages;
738 loff_t pinned_pages, i;
739 struct page **user_pages;
740 struct mm_struct *mm = current->mm;
741 int gtt_page_offset, data_page_offset, data_page_index, page_length;
742 int ret;
743 uint64_t data_ptr = args->data_ptr;
744
745 remain = args->size;
746
747 /* Pin the user pages containing the data. We can't fault while
748 * holding the struct mutex, and all of the pwrite implementations
749 * want to hold it while dereferencing the user data.
750 */
751 first_data_page = data_ptr / PAGE_SIZE;
752 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
753 num_pages = last_data_page - first_data_page + 1;
754
755 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
756 if (user_pages == NULL)
757 return -ENOMEM;
758
759 mutex_unlock(&dev->struct_mutex);
760 down_read(&mm->mmap_sem);
761 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
762 num_pages, 0, 0, user_pages, NULL);
763 up_read(&mm->mmap_sem);
764 mutex_lock(&dev->struct_mutex);
765 if (pinned_pages < num_pages) {
766 ret = -EFAULT;
767 goto out_unpin_pages;
768 }
769
770 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
771 if (ret)
772 goto out_unpin_pages;
773
774 obj_priv = to_intel_bo(obj);
775 offset = obj_priv->gtt_offset + args->offset;
776
777 while (remain > 0) {
778 /* Operation in this page
779 *
780 * gtt_page_base = page offset within aperture
781 * gtt_page_offset = offset within page in aperture
782 * data_page_index = page number in get_user_pages return
783 * data_page_offset = offset with data_page_index page.
784 * page_length = bytes to copy for this page
785 */
786 gtt_page_base = offset & PAGE_MASK;
787 gtt_page_offset = offset & ~PAGE_MASK;
788 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
789 data_page_offset = data_ptr & ~PAGE_MASK;
790
791 page_length = remain;
792 if ((gtt_page_offset + page_length) > PAGE_SIZE)
793 page_length = PAGE_SIZE - gtt_page_offset;
794 if ((data_page_offset + page_length) > PAGE_SIZE)
795 page_length = PAGE_SIZE - data_page_offset;
796
797 slow_kernel_write(dev_priv->mm.gtt_mapping,
798 gtt_page_base, gtt_page_offset,
799 user_pages[data_page_index],
800 data_page_offset,
801 page_length);
802
803 remain -= page_length;
804 offset += page_length;
805 data_ptr += page_length;
806 }
807
808 out_unpin_pages:
809 for (i = 0; i < pinned_pages; i++)
810 page_cache_release(user_pages[i]);
811 drm_free_large(user_pages);
812
813 return ret;
814 }
815
816 /**
817 * This is the fast shmem pwrite path, which attempts to directly
818 * copy_from_user into the kmapped pages backing the object.
819 */
820 static int
821 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
822 struct drm_i915_gem_pwrite *args,
823 struct drm_file *file_priv)
824 {
825 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
826 ssize_t remain;
827 loff_t offset, page_base;
828 char __user *user_data;
829 int page_offset, page_length;
830
831 user_data = (char __user *) (uintptr_t) args->data_ptr;
832 remain = args->size;
833
834 obj_priv = to_intel_bo(obj);
835 offset = args->offset;
836 obj_priv->dirty = 1;
837
838 while (remain > 0) {
839 /* Operation in this page
840 *
841 * page_base = page offset within aperture
842 * page_offset = offset within page
843 * page_length = bytes to copy for this page
844 */
845 page_base = (offset & ~(PAGE_SIZE-1));
846 page_offset = offset & (PAGE_SIZE-1);
847 page_length = remain;
848 if ((page_offset + remain) > PAGE_SIZE)
849 page_length = PAGE_SIZE - page_offset;
850
851 if (fast_shmem_write(obj_priv->pages,
852 page_base, page_offset,
853 user_data, page_length))
854 return -EFAULT;
855
856 remain -= page_length;
857 user_data += page_length;
858 offset += page_length;
859 }
860
861 return 0;
862 }
863
864 /**
865 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
866 * the memory and maps it using kmap_atomic for copying.
867 *
868 * This avoids taking mmap_sem for faulting on the user's address while the
869 * struct_mutex is held.
870 */
871 static int
872 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
873 struct drm_i915_gem_pwrite *args,
874 struct drm_file *file_priv)
875 {
876 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
877 struct mm_struct *mm = current->mm;
878 struct page **user_pages;
879 ssize_t remain;
880 loff_t offset, pinned_pages, i;
881 loff_t first_data_page, last_data_page, num_pages;
882 int shmem_page_index, shmem_page_offset;
883 int data_page_index, data_page_offset;
884 int page_length;
885 int ret;
886 uint64_t data_ptr = args->data_ptr;
887 int do_bit17_swizzling;
888
889 remain = args->size;
890
891 /* Pin the user pages containing the data. We can't fault while
892 * holding the struct mutex, and all of the pwrite implementations
893 * want to hold it while dereferencing the user data.
894 */
895 first_data_page = data_ptr / PAGE_SIZE;
896 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
897 num_pages = last_data_page - first_data_page + 1;
898
899 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
900 if (user_pages == NULL)
901 return -ENOMEM;
902
903 mutex_unlock(&dev->struct_mutex);
904 down_read(&mm->mmap_sem);
905 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
906 num_pages, 0, 0, user_pages, NULL);
907 up_read(&mm->mmap_sem);
908 mutex_lock(&dev->struct_mutex);
909 if (pinned_pages < num_pages) {
910 ret = -EFAULT;
911 goto out;
912 }
913
914 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
915 if (ret)
916 goto out;
917
918 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
919
920 obj_priv = to_intel_bo(obj);
921 offset = args->offset;
922 obj_priv->dirty = 1;
923
924 while (remain > 0) {
925 /* Operation in this page
926 *
927 * shmem_page_index = page number within shmem file
928 * shmem_page_offset = offset within page in shmem file
929 * data_page_index = page number in get_user_pages return
930 * data_page_offset = offset with data_page_index page.
931 * page_length = bytes to copy for this page
932 */
933 shmem_page_index = offset / PAGE_SIZE;
934 shmem_page_offset = offset & ~PAGE_MASK;
935 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
936 data_page_offset = data_ptr & ~PAGE_MASK;
937
938 page_length = remain;
939 if ((shmem_page_offset + page_length) > PAGE_SIZE)
940 page_length = PAGE_SIZE - shmem_page_offset;
941 if ((data_page_offset + page_length) > PAGE_SIZE)
942 page_length = PAGE_SIZE - data_page_offset;
943
944 if (do_bit17_swizzling) {
945 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
946 shmem_page_offset,
947 user_pages[data_page_index],
948 data_page_offset,
949 page_length,
950 0);
951 } else {
952 slow_shmem_copy(obj_priv->pages[shmem_page_index],
953 shmem_page_offset,
954 user_pages[data_page_index],
955 data_page_offset,
956 page_length);
957 }
958
959 remain -= page_length;
960 data_ptr += page_length;
961 offset += page_length;
962 }
963
964 out:
965 for (i = 0; i < pinned_pages; i++)
966 page_cache_release(user_pages[i]);
967 drm_free_large(user_pages);
968
969 return ret;
970 }
971
972 /**
973 * Writes data to the object referenced by handle.
974 *
975 * On error, the contents of the buffer that were to be modified are undefined.
976 */
977 int
978 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file)
980 {
981 struct drm_i915_gem_pwrite *args = data;
982 struct drm_gem_object *obj;
983 struct drm_i915_gem_object *obj_priv;
984 int ret = 0;
985
986 ret = i915_mutex_lock_interruptible(dev);
987 if (ret)
988 return ret;
989
990 obj = drm_gem_object_lookup(dev, file, args->handle);
991 if (obj == NULL) {
992 ret = -ENOENT;
993 goto unlock;
994 }
995 obj_priv = to_intel_bo(obj);
996
997
998 /* Bounds check destination. */
999 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1000 ret = -EINVAL;
1001 goto out;
1002 }
1003
1004 if (args->size == 0)
1005 goto out;
1006
1007 if (!access_ok(VERIFY_READ,
1008 (char __user *)(uintptr_t)args->data_ptr,
1009 args->size)) {
1010 ret = -EFAULT;
1011 goto out;
1012 }
1013
1014 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1015 args->size);
1016 if (ret) {
1017 ret = -EFAULT;
1018 goto out;
1019 }
1020
1021 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1022 * it would end up going through the fenced access, and we'll get
1023 * different detiling behavior between reading and writing.
1024 * pread/pwrite currently are reading and writing from the CPU
1025 * perspective, requiring manual detiling by the client.
1026 */
1027 if (obj_priv->phys_obj)
1028 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1029 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1030 obj_priv->gtt_space &&
1031 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1032 ret = i915_gem_object_pin(obj, 0);
1033 if (ret)
1034 goto out;
1035
1036 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1037 if (ret)
1038 goto out_unpin;
1039
1040 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1041 if (ret == -EFAULT)
1042 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1043
1044 out_unpin:
1045 i915_gem_object_unpin(obj);
1046 } else {
1047 ret = i915_gem_object_get_pages_or_evict(obj);
1048 if (ret)
1049 goto out;
1050
1051 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1052 if (ret)
1053 goto out_put;
1054
1055 ret = -EFAULT;
1056 if (!i915_gem_object_needs_bit17_swizzle(obj))
1057 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1058 if (ret == -EFAULT)
1059 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1060
1061 out_put:
1062 i915_gem_object_put_pages(obj);
1063 }
1064
1065 out:
1066 drm_gem_object_unreference(obj);
1067 unlock:
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070 }
1071
1072 /**
1073 * Called when user space prepares to use an object with the CPU, either
1074 * through the mmap ioctl's mapping or a GTT mapping.
1075 */
1076 int
1077 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1078 struct drm_file *file_priv)
1079 {
1080 struct drm_i915_private *dev_priv = dev->dev_private;
1081 struct drm_i915_gem_set_domain *args = data;
1082 struct drm_gem_object *obj;
1083 struct drm_i915_gem_object *obj_priv;
1084 uint32_t read_domains = args->read_domains;
1085 uint32_t write_domain = args->write_domain;
1086 int ret;
1087
1088 if (!(dev->driver->driver_features & DRIVER_GEM))
1089 return -ENODEV;
1090
1091 /* Only handle setting domains to types used by the CPU. */
1092 if (write_domain & I915_GEM_GPU_DOMAINS)
1093 return -EINVAL;
1094
1095 if (read_domains & I915_GEM_GPU_DOMAINS)
1096 return -EINVAL;
1097
1098 /* Having something in the write domain implies it's in the read
1099 * domain, and only that read domain. Enforce that in the request.
1100 */
1101 if (write_domain != 0 && read_domains != write_domain)
1102 return -EINVAL;
1103
1104 ret = i915_mutex_lock_interruptible(dev);
1105 if (ret)
1106 return ret;
1107
1108 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1109 if (obj == NULL) {
1110 ret = -ENOENT;
1111 goto unlock;
1112 }
1113 obj_priv = to_intel_bo(obj);
1114
1115 intel_mark_busy(dev, obj);
1116
1117 if (read_domains & I915_GEM_DOMAIN_GTT) {
1118 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1119
1120 /* Update the LRU on the fence for the CPU access that's
1121 * about to occur.
1122 */
1123 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1124 struct drm_i915_fence_reg *reg =
1125 &dev_priv->fence_regs[obj_priv->fence_reg];
1126 list_move_tail(&reg->lru_list,
1127 &dev_priv->mm.fence_list);
1128 }
1129
1130 /* Silently promote "you're not bound, there was nothing to do"
1131 * to success, since the client was just asking us to
1132 * make sure everything was done.
1133 */
1134 if (ret == -EINVAL)
1135 ret = 0;
1136 } else {
1137 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1138 }
1139
1140 /* Maintain LRU order of "inactive" objects */
1141 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1142 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1143
1144 drm_gem_object_unreference(obj);
1145 unlock:
1146 mutex_unlock(&dev->struct_mutex);
1147 return ret;
1148 }
1149
1150 /**
1151 * Called when user space has done writes to this buffer
1152 */
1153 int
1154 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1155 struct drm_file *file_priv)
1156 {
1157 struct drm_i915_gem_sw_finish *args = data;
1158 struct drm_gem_object *obj;
1159 int ret = 0;
1160
1161 if (!(dev->driver->driver_features & DRIVER_GEM))
1162 return -ENODEV;
1163
1164 ret = i915_mutex_lock_interruptible(dev);
1165 if (ret)
1166 return ret;
1167
1168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1169 if (obj == NULL) {
1170 ret = -ENOENT;
1171 goto unlock;
1172 }
1173
1174 /* Pinned buffers may be scanout, so flush the cache */
1175 if (to_intel_bo(obj)->pin_count)
1176 i915_gem_object_flush_cpu_write_domain(obj);
1177
1178 drm_gem_object_unreference(obj);
1179 unlock:
1180 mutex_unlock(&dev->struct_mutex);
1181 return ret;
1182 }
1183
1184 /**
1185 * Maps the contents of an object, returning the address it is mapped
1186 * into.
1187 *
1188 * While the mapping holds a reference on the contents of the object, it doesn't
1189 * imply a ref on the object itself.
1190 */
1191 int
1192 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1193 struct drm_file *file_priv)
1194 {
1195 struct drm_i915_gem_mmap *args = data;
1196 struct drm_gem_object *obj;
1197 loff_t offset;
1198 unsigned long addr;
1199
1200 if (!(dev->driver->driver_features & DRIVER_GEM))
1201 return -ENODEV;
1202
1203 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204 if (obj == NULL)
1205 return -ENOENT;
1206
1207 offset = args->offset;
1208
1209 down_write(&current->mm->mmap_sem);
1210 addr = do_mmap(obj->filp, 0, args->size,
1211 PROT_READ | PROT_WRITE, MAP_SHARED,
1212 args->offset);
1213 up_write(&current->mm->mmap_sem);
1214 drm_gem_object_unreference_unlocked(obj);
1215 if (IS_ERR((void *)addr))
1216 return addr;
1217
1218 args->addr_ptr = (uint64_t) addr;
1219
1220 return 0;
1221 }
1222
1223 /**
1224 * i915_gem_fault - fault a page into the GTT
1225 * vma: VMA in question
1226 * vmf: fault info
1227 *
1228 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1229 * from userspace. The fault handler takes care of binding the object to
1230 * the GTT (if needed), allocating and programming a fence register (again,
1231 * only if needed based on whether the old reg is still valid or the object
1232 * is tiled) and inserting a new PTE into the faulting process.
1233 *
1234 * Note that the faulting process may involve evicting existing objects
1235 * from the GTT and/or fence registers to make room. So performance may
1236 * suffer if the GTT working set is large or there are few fence registers
1237 * left.
1238 */
1239 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1240 {
1241 struct drm_gem_object *obj = vma->vm_private_data;
1242 struct drm_device *dev = obj->dev;
1243 drm_i915_private_t *dev_priv = dev->dev_private;
1244 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1245 pgoff_t page_offset;
1246 unsigned long pfn;
1247 int ret = 0;
1248 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1249
1250 /* We don't use vmf->pgoff since that has the fake offset */
1251 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1252 PAGE_SHIFT;
1253
1254 /* Now bind it into the GTT if needed */
1255 mutex_lock(&dev->struct_mutex);
1256 if (!obj_priv->gtt_space) {
1257 ret = i915_gem_object_bind_to_gtt(obj, 0);
1258 if (ret)
1259 goto unlock;
1260
1261 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1262 if (ret)
1263 goto unlock;
1264 }
1265
1266 /* Need a new fence register? */
1267 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1268 ret = i915_gem_object_get_fence_reg(obj, true);
1269 if (ret)
1270 goto unlock;
1271 }
1272
1273 if (i915_gem_object_is_inactive(obj_priv))
1274 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1275
1276 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1277 page_offset;
1278
1279 /* Finally, remap it using the new GTT offset */
1280 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1281 unlock:
1282 mutex_unlock(&dev->struct_mutex);
1283
1284 switch (ret) {
1285 case 0:
1286 case -ERESTARTSYS:
1287 return VM_FAULT_NOPAGE;
1288 case -ENOMEM:
1289 case -EAGAIN:
1290 return VM_FAULT_OOM;
1291 default:
1292 return VM_FAULT_SIGBUS;
1293 }
1294 }
1295
1296 /**
1297 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1298 * @obj: obj in question
1299 *
1300 * GEM memory mapping works by handing back to userspace a fake mmap offset
1301 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1302 * up the object based on the offset and sets up the various memory mapping
1303 * structures.
1304 *
1305 * This routine allocates and attaches a fake offset for @obj.
1306 */
1307 static int
1308 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1309 {
1310 struct drm_device *dev = obj->dev;
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1313 struct drm_map_list *list;
1314 struct drm_local_map *map;
1315 int ret = 0;
1316
1317 /* Set the object up for mmap'ing */
1318 list = &obj->map_list;
1319 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1320 if (!list->map)
1321 return -ENOMEM;
1322
1323 map = list->map;
1324 map->type = _DRM_GEM;
1325 map->size = obj->size;
1326 map->handle = obj;
1327
1328 /* Get a DRM GEM mmap offset allocated... */
1329 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1330 obj->size / PAGE_SIZE, 0, 0);
1331 if (!list->file_offset_node) {
1332 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1333 ret = -ENOSPC;
1334 goto out_free_list;
1335 }
1336
1337 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1338 obj->size / PAGE_SIZE, 0);
1339 if (!list->file_offset_node) {
1340 ret = -ENOMEM;
1341 goto out_free_list;
1342 }
1343
1344 list->hash.key = list->file_offset_node->start;
1345 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1346 if (ret) {
1347 DRM_ERROR("failed to add to map hash\n");
1348 goto out_free_mm;
1349 }
1350
1351 /* By now we should be all set, any drm_mmap request on the offset
1352 * below will get to our mmap & fault handler */
1353 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1354
1355 return 0;
1356
1357 out_free_mm:
1358 drm_mm_put_block(list->file_offset_node);
1359 out_free_list:
1360 kfree(list->map);
1361
1362 return ret;
1363 }
1364
1365 /**
1366 * i915_gem_release_mmap - remove physical page mappings
1367 * @obj: obj in question
1368 *
1369 * Preserve the reservation of the mmapping with the DRM core code, but
1370 * relinquish ownership of the pages back to the system.
1371 *
1372 * It is vital that we remove the page mapping if we have mapped a tiled
1373 * object through the GTT and then lose the fence register due to
1374 * resource pressure. Similarly if the object has been moved out of the
1375 * aperture, than pages mapped into userspace must be revoked. Removing the
1376 * mapping will then trigger a page fault on the next user access, allowing
1377 * fixup by i915_gem_fault().
1378 */
1379 void
1380 i915_gem_release_mmap(struct drm_gem_object *obj)
1381 {
1382 struct drm_device *dev = obj->dev;
1383 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1384
1385 if (dev->dev_mapping)
1386 unmap_mapping_range(dev->dev_mapping,
1387 obj_priv->mmap_offset, obj->size, 1);
1388 }
1389
1390 static void
1391 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1392 {
1393 struct drm_device *dev = obj->dev;
1394 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1395 struct drm_gem_mm *mm = dev->mm_private;
1396 struct drm_map_list *list;
1397
1398 list = &obj->map_list;
1399 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1400
1401 if (list->file_offset_node) {
1402 drm_mm_put_block(list->file_offset_node);
1403 list->file_offset_node = NULL;
1404 }
1405
1406 if (list->map) {
1407 kfree(list->map);
1408 list->map = NULL;
1409 }
1410
1411 obj_priv->mmap_offset = 0;
1412 }
1413
1414 /**
1415 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1416 * @obj: object to check
1417 *
1418 * Return the required GTT alignment for an object, taking into account
1419 * potential fence register mapping if needed.
1420 */
1421 static uint32_t
1422 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1423 {
1424 struct drm_device *dev = obj->dev;
1425 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1426 int start, i;
1427
1428 /*
1429 * Minimum alignment is 4k (GTT page size), but might be greater
1430 * if a fence register is needed for the object.
1431 */
1432 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1433 return 4096;
1434
1435 /*
1436 * Previous chips need to be aligned to the size of the smallest
1437 * fence register that can contain the object.
1438 */
1439 if (INTEL_INFO(dev)->gen == 3)
1440 start = 1024*1024;
1441 else
1442 start = 512*1024;
1443
1444 for (i = start; i < obj->size; i <<= 1)
1445 ;
1446
1447 return i;
1448 }
1449
1450 /**
1451 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1452 * @dev: DRM device
1453 * @data: GTT mapping ioctl data
1454 * @file_priv: GEM object info
1455 *
1456 * Simply returns the fake offset to userspace so it can mmap it.
1457 * The mmap call will end up in drm_gem_mmap(), which will set things
1458 * up so we can get faults in the handler above.
1459 *
1460 * The fault handler will take care of binding the object into the GTT
1461 * (since it may have been evicted to make room for something), allocating
1462 * a fence register, and mapping the appropriate aperture address into
1463 * userspace.
1464 */
1465 int
1466 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1467 struct drm_file *file_priv)
1468 {
1469 struct drm_i915_gem_mmap_gtt *args = data;
1470 struct drm_gem_object *obj;
1471 struct drm_i915_gem_object *obj_priv;
1472 int ret;
1473
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1476
1477 ret = i915_mutex_lock_interruptible(dev);
1478 if (ret)
1479 return ret;
1480
1481 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1482 if (obj == NULL) {
1483 ret = -ENOENT;
1484 goto unlock;
1485 }
1486 obj_priv = to_intel_bo(obj);
1487
1488 if (obj_priv->madv != I915_MADV_WILLNEED) {
1489 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1490 ret = -EINVAL;
1491 goto out;
1492 }
1493
1494 if (!obj_priv->mmap_offset) {
1495 ret = i915_gem_create_mmap_offset(obj);
1496 if (ret)
1497 goto out;
1498 }
1499
1500 args->offset = obj_priv->mmap_offset;
1501
1502 /*
1503 * Pull it into the GTT so that we have a page list (makes the
1504 * initial fault faster and any subsequent flushing possible).
1505 */
1506 if (!obj_priv->agp_mem) {
1507 ret = i915_gem_object_bind_to_gtt(obj, 0);
1508 if (ret)
1509 goto out;
1510 }
1511
1512 out:
1513 drm_gem_object_unreference(obj);
1514 unlock:
1515 mutex_unlock(&dev->struct_mutex);
1516 return ret;
1517 }
1518
1519 static void
1520 i915_gem_object_put_pages(struct drm_gem_object *obj)
1521 {
1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1523 int page_count = obj->size / PAGE_SIZE;
1524 int i;
1525
1526 BUG_ON(obj_priv->pages_refcount == 0);
1527 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1528
1529 if (--obj_priv->pages_refcount != 0)
1530 return;
1531
1532 if (obj_priv->tiling_mode != I915_TILING_NONE)
1533 i915_gem_object_save_bit_17_swizzle(obj);
1534
1535 if (obj_priv->madv == I915_MADV_DONTNEED)
1536 obj_priv->dirty = 0;
1537
1538 for (i = 0; i < page_count; i++) {
1539 if (obj_priv->dirty)
1540 set_page_dirty(obj_priv->pages[i]);
1541
1542 if (obj_priv->madv == I915_MADV_WILLNEED)
1543 mark_page_accessed(obj_priv->pages[i]);
1544
1545 page_cache_release(obj_priv->pages[i]);
1546 }
1547 obj_priv->dirty = 0;
1548
1549 drm_free_large(obj_priv->pages);
1550 obj_priv->pages = NULL;
1551 }
1552
1553 static uint32_t
1554 i915_gem_next_request_seqno(struct drm_device *dev,
1555 struct intel_ring_buffer *ring)
1556 {
1557 drm_i915_private_t *dev_priv = dev->dev_private;
1558
1559 ring->outstanding_lazy_request = true;
1560 return dev_priv->next_seqno;
1561 }
1562
1563 static void
1564 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1565 struct intel_ring_buffer *ring)
1566 {
1567 struct drm_device *dev = obj->dev;
1568 struct drm_i915_private *dev_priv = dev->dev_private;
1569 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1570 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1571
1572 BUG_ON(ring == NULL);
1573 obj_priv->ring = ring;
1574
1575 /* Add a reference if we're newly entering the active list. */
1576 if (!obj_priv->active) {
1577 drm_gem_object_reference(obj);
1578 obj_priv->active = 1;
1579 }
1580
1581 /* Move from whatever list we were on to the tail of execution. */
1582 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1583 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1584 obj_priv->last_rendering_seqno = seqno;
1585 }
1586
1587 static void
1588 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1589 {
1590 struct drm_device *dev = obj->dev;
1591 drm_i915_private_t *dev_priv = dev->dev_private;
1592 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1593
1594 BUG_ON(!obj_priv->active);
1595 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1596 list_del_init(&obj_priv->ring_list);
1597 obj_priv->last_rendering_seqno = 0;
1598 }
1599
1600 /* Immediately discard the backing storage */
1601 static void
1602 i915_gem_object_truncate(struct drm_gem_object *obj)
1603 {
1604 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1605 struct inode *inode;
1606
1607 /* Our goal here is to return as much of the memory as
1608 * is possible back to the system as we are called from OOM.
1609 * To do this we must instruct the shmfs to drop all of its
1610 * backing pages, *now*. Here we mirror the actions taken
1611 * when by shmem_delete_inode() to release the backing store.
1612 */
1613 inode = obj->filp->f_path.dentry->d_inode;
1614 truncate_inode_pages(inode->i_mapping, 0);
1615 if (inode->i_op->truncate_range)
1616 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1617
1618 obj_priv->madv = __I915_MADV_PURGED;
1619 }
1620
1621 static inline int
1622 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1623 {
1624 return obj_priv->madv == I915_MADV_DONTNEED;
1625 }
1626
1627 static void
1628 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1629 {
1630 struct drm_device *dev = obj->dev;
1631 drm_i915_private_t *dev_priv = dev->dev_private;
1632 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1633
1634 if (obj_priv->pin_count != 0)
1635 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1636 else
1637 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1638 list_del_init(&obj_priv->ring_list);
1639
1640 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1641
1642 obj_priv->last_rendering_seqno = 0;
1643 obj_priv->ring = NULL;
1644 if (obj_priv->active) {
1645 obj_priv->active = 0;
1646 drm_gem_object_unreference(obj);
1647 }
1648 WARN_ON(i915_verify_lists(dev));
1649 }
1650
1651 static void
1652 i915_gem_process_flushing_list(struct drm_device *dev,
1653 uint32_t flush_domains,
1654 struct intel_ring_buffer *ring)
1655 {
1656 drm_i915_private_t *dev_priv = dev->dev_private;
1657 struct drm_i915_gem_object *obj_priv, *next;
1658
1659 list_for_each_entry_safe(obj_priv, next,
1660 &ring->gpu_write_list,
1661 gpu_write_list) {
1662 struct drm_gem_object *obj = &obj_priv->base;
1663
1664 if (obj->write_domain & flush_domains) {
1665 uint32_t old_write_domain = obj->write_domain;
1666
1667 obj->write_domain = 0;
1668 list_del_init(&obj_priv->gpu_write_list);
1669 i915_gem_object_move_to_active(obj, ring);
1670
1671 /* update the fence lru list */
1672 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1673 struct drm_i915_fence_reg *reg =
1674 &dev_priv->fence_regs[obj_priv->fence_reg];
1675 list_move_tail(&reg->lru_list,
1676 &dev_priv->mm.fence_list);
1677 }
1678
1679 trace_i915_gem_object_change_domain(obj,
1680 obj->read_domains,
1681 old_write_domain);
1682 }
1683 }
1684 }
1685
1686 uint32_t
1687 i915_add_request(struct drm_device *dev,
1688 struct drm_file *file,
1689 struct drm_i915_gem_request *request,
1690 struct intel_ring_buffer *ring)
1691 {
1692 drm_i915_private_t *dev_priv = dev->dev_private;
1693 struct drm_i915_file_private *file_priv = NULL;
1694 uint32_t seqno;
1695 int was_empty;
1696
1697 if (file != NULL)
1698 file_priv = file->driver_priv;
1699
1700 if (request == NULL) {
1701 request = kzalloc(sizeof(*request), GFP_KERNEL);
1702 if (request == NULL)
1703 return 0;
1704 }
1705
1706 seqno = ring->add_request(ring, 0);
1707 ring->outstanding_lazy_request = false;
1708
1709 request->seqno = seqno;
1710 request->ring = ring;
1711 request->emitted_jiffies = jiffies;
1712 was_empty = list_empty(&ring->request_list);
1713 list_add_tail(&request->list, &ring->request_list);
1714
1715 if (file_priv) {
1716 spin_lock(&file_priv->mm.lock);
1717 request->file_priv = file_priv;
1718 list_add_tail(&request->client_list,
1719 &file_priv->mm.request_list);
1720 spin_unlock(&file_priv->mm.lock);
1721 }
1722
1723 if (!dev_priv->mm.suspended) {
1724 mod_timer(&dev_priv->hangcheck_timer,
1725 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1726 if (was_empty)
1727 queue_delayed_work(dev_priv->wq,
1728 &dev_priv->mm.retire_work, HZ);
1729 }
1730 return seqno;
1731 }
1732
1733 /**
1734 * Command execution barrier
1735 *
1736 * Ensures that all commands in the ring are finished
1737 * before signalling the CPU
1738 */
1739 static void
1740 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1741 {
1742 uint32_t flush_domains = 0;
1743
1744 /* The sampler always gets flushed on i965 (sigh) */
1745 if (INTEL_INFO(dev)->gen >= 4)
1746 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1747
1748 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1749 }
1750
1751 static inline void
1752 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1753 {
1754 struct drm_i915_file_private *file_priv = request->file_priv;
1755
1756 if (!file_priv)
1757 return;
1758
1759 spin_lock(&file_priv->mm.lock);
1760 list_del(&request->client_list);
1761 request->file_priv = NULL;
1762 spin_unlock(&file_priv->mm.lock);
1763 }
1764
1765 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1766 struct intel_ring_buffer *ring)
1767 {
1768 while (!list_empty(&ring->request_list)) {
1769 struct drm_i915_gem_request *request;
1770
1771 request = list_first_entry(&ring->request_list,
1772 struct drm_i915_gem_request,
1773 list);
1774
1775 list_del(&request->list);
1776 i915_gem_request_remove_from_client(request);
1777 kfree(request);
1778 }
1779
1780 while (!list_empty(&ring->active_list)) {
1781 struct drm_i915_gem_object *obj_priv;
1782
1783 obj_priv = list_first_entry(&ring->active_list,
1784 struct drm_i915_gem_object,
1785 ring_list);
1786
1787 obj_priv->base.write_domain = 0;
1788 list_del_init(&obj_priv->gpu_write_list);
1789 i915_gem_object_move_to_inactive(&obj_priv->base);
1790 }
1791 }
1792
1793 void i915_gem_reset(struct drm_device *dev)
1794 {
1795 struct drm_i915_private *dev_priv = dev->dev_private;
1796 struct drm_i915_gem_object *obj_priv;
1797 int i;
1798
1799 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1800 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1801 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1802
1803 /* Remove anything from the flushing lists. The GPU cache is likely
1804 * to be lost on reset along with the data, so simply move the
1805 * lost bo to the inactive list.
1806 */
1807 while (!list_empty(&dev_priv->mm.flushing_list)) {
1808 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1809 struct drm_i915_gem_object,
1810 mm_list);
1811
1812 obj_priv->base.write_domain = 0;
1813 list_del_init(&obj_priv->gpu_write_list);
1814 i915_gem_object_move_to_inactive(&obj_priv->base);
1815 }
1816
1817 /* Move everything out of the GPU domains to ensure we do any
1818 * necessary invalidation upon reuse.
1819 */
1820 list_for_each_entry(obj_priv,
1821 &dev_priv->mm.inactive_list,
1822 mm_list)
1823 {
1824 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1825 }
1826
1827 /* The fence registers are invalidated so clear them out */
1828 for (i = 0; i < 16; i++) {
1829 struct drm_i915_fence_reg *reg;
1830
1831 reg = &dev_priv->fence_regs[i];
1832 if (!reg->obj)
1833 continue;
1834
1835 i915_gem_clear_fence_reg(reg->obj);
1836 }
1837 }
1838
1839 /**
1840 * This function clears the request list as sequence numbers are passed.
1841 */
1842 static void
1843 i915_gem_retire_requests_ring(struct drm_device *dev,
1844 struct intel_ring_buffer *ring)
1845 {
1846 drm_i915_private_t *dev_priv = dev->dev_private;
1847 uint32_t seqno;
1848
1849 if (!ring->status_page.page_addr ||
1850 list_empty(&ring->request_list))
1851 return;
1852
1853 WARN_ON(i915_verify_lists(dev));
1854
1855 seqno = ring->get_seqno(ring);
1856 while (!list_empty(&ring->request_list)) {
1857 struct drm_i915_gem_request *request;
1858
1859 request = list_first_entry(&ring->request_list,
1860 struct drm_i915_gem_request,
1861 list);
1862
1863 if (!i915_seqno_passed(seqno, request->seqno))
1864 break;
1865
1866 trace_i915_gem_request_retire(dev, request->seqno);
1867
1868 list_del(&request->list);
1869 i915_gem_request_remove_from_client(request);
1870 kfree(request);
1871 }
1872
1873 /* Move any buffers on the active list that are no longer referenced
1874 * by the ringbuffer to the flushing/inactive lists as appropriate.
1875 */
1876 while (!list_empty(&ring->active_list)) {
1877 struct drm_gem_object *obj;
1878 struct drm_i915_gem_object *obj_priv;
1879
1880 obj_priv = list_first_entry(&ring->active_list,
1881 struct drm_i915_gem_object,
1882 ring_list);
1883
1884 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1885 break;
1886
1887 obj = &obj_priv->base;
1888 if (obj->write_domain != 0)
1889 i915_gem_object_move_to_flushing(obj);
1890 else
1891 i915_gem_object_move_to_inactive(obj);
1892 }
1893
1894 if (unlikely (dev_priv->trace_irq_seqno &&
1895 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1896 ring->user_irq_put(ring);
1897 dev_priv->trace_irq_seqno = 0;
1898 }
1899
1900 WARN_ON(i915_verify_lists(dev));
1901 }
1902
1903 void
1904 i915_gem_retire_requests(struct drm_device *dev)
1905 {
1906 drm_i915_private_t *dev_priv = dev->dev_private;
1907
1908 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1909 struct drm_i915_gem_object *obj_priv, *tmp;
1910
1911 /* We must be careful that during unbind() we do not
1912 * accidentally infinitely recurse into retire requests.
1913 * Currently:
1914 * retire -> free -> unbind -> wait -> retire_ring
1915 */
1916 list_for_each_entry_safe(obj_priv, tmp,
1917 &dev_priv->mm.deferred_free_list,
1918 mm_list)
1919 i915_gem_free_object_tail(&obj_priv->base);
1920 }
1921
1922 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1923 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1924 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
1925 }
1926
1927 static void
1928 i915_gem_retire_work_handler(struct work_struct *work)
1929 {
1930 drm_i915_private_t *dev_priv;
1931 struct drm_device *dev;
1932
1933 dev_priv = container_of(work, drm_i915_private_t,
1934 mm.retire_work.work);
1935 dev = dev_priv->dev;
1936
1937 /* Come back later if the device is busy... */
1938 if (!mutex_trylock(&dev->struct_mutex)) {
1939 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1940 return;
1941 }
1942
1943 i915_gem_retire_requests(dev);
1944
1945 if (!dev_priv->mm.suspended &&
1946 (!list_empty(&dev_priv->render_ring.request_list) ||
1947 !list_empty(&dev_priv->bsd_ring.request_list) ||
1948 !list_empty(&dev_priv->blt_ring.request_list)))
1949 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1950 mutex_unlock(&dev->struct_mutex);
1951 }
1952
1953 int
1954 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1955 bool interruptible, struct intel_ring_buffer *ring)
1956 {
1957 drm_i915_private_t *dev_priv = dev->dev_private;
1958 u32 ier;
1959 int ret = 0;
1960
1961 BUG_ON(seqno == 0);
1962
1963 if (atomic_read(&dev_priv->mm.wedged))
1964 return -EAGAIN;
1965
1966 if (ring->outstanding_lazy_request) {
1967 seqno = i915_add_request(dev, NULL, NULL, ring);
1968 if (seqno == 0)
1969 return -ENOMEM;
1970 }
1971 BUG_ON(seqno == dev_priv->next_seqno);
1972
1973 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1974 if (HAS_PCH_SPLIT(dev))
1975 ier = I915_READ(DEIER) | I915_READ(GTIER);
1976 else
1977 ier = I915_READ(IER);
1978 if (!ier) {
1979 DRM_ERROR("something (likely vbetool) disabled "
1980 "interrupts, re-enabling\n");
1981 i915_driver_irq_preinstall(dev);
1982 i915_driver_irq_postinstall(dev);
1983 }
1984
1985 trace_i915_gem_request_wait_begin(dev, seqno);
1986
1987 ring->waiting_gem_seqno = seqno;
1988 ring->user_irq_get(ring);
1989 if (interruptible)
1990 ret = wait_event_interruptible(ring->irq_queue,
1991 i915_seqno_passed(ring->get_seqno(ring), seqno)
1992 || atomic_read(&dev_priv->mm.wedged));
1993 else
1994 wait_event(ring->irq_queue,
1995 i915_seqno_passed(ring->get_seqno(ring), seqno)
1996 || atomic_read(&dev_priv->mm.wedged));
1997
1998 ring->user_irq_put(ring);
1999 ring->waiting_gem_seqno = 0;
2000
2001 trace_i915_gem_request_wait_end(dev, seqno);
2002 }
2003 if (atomic_read(&dev_priv->mm.wedged))
2004 ret = -EAGAIN;
2005
2006 if (ret && ret != -ERESTARTSYS)
2007 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2008 __func__, ret, seqno, ring->get_seqno(ring),
2009 dev_priv->next_seqno);
2010
2011 /* Directly dispatch request retiring. While we have the work queue
2012 * to handle this, the waiter on a request often wants an associated
2013 * buffer to have made it to the inactive list, and we would need
2014 * a separate wait queue to handle that.
2015 */
2016 if (ret == 0)
2017 i915_gem_retire_requests_ring(dev, ring);
2018
2019 return ret;
2020 }
2021
2022 /**
2023 * Waits for a sequence number to be signaled, and cleans up the
2024 * request and object lists appropriately for that event.
2025 */
2026 static int
2027 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2028 struct intel_ring_buffer *ring)
2029 {
2030 return i915_do_wait_request(dev, seqno, 1, ring);
2031 }
2032
2033 static void
2034 i915_gem_flush_ring(struct drm_device *dev,
2035 struct drm_file *file_priv,
2036 struct intel_ring_buffer *ring,
2037 uint32_t invalidate_domains,
2038 uint32_t flush_domains)
2039 {
2040 ring->flush(ring, invalidate_domains, flush_domains);
2041 i915_gem_process_flushing_list(dev, flush_domains, ring);
2042 }
2043
2044 static void
2045 i915_gem_flush(struct drm_device *dev,
2046 struct drm_file *file_priv,
2047 uint32_t invalidate_domains,
2048 uint32_t flush_domains,
2049 uint32_t flush_rings)
2050 {
2051 drm_i915_private_t *dev_priv = dev->dev_private;
2052
2053 if (flush_domains & I915_GEM_DOMAIN_CPU)
2054 drm_agp_chipset_flush(dev);
2055
2056 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2057 if (flush_rings & RING_RENDER)
2058 i915_gem_flush_ring(dev, file_priv,
2059 &dev_priv->render_ring,
2060 invalidate_domains, flush_domains);
2061 if (flush_rings & RING_BSD)
2062 i915_gem_flush_ring(dev, file_priv,
2063 &dev_priv->bsd_ring,
2064 invalidate_domains, flush_domains);
2065 if (flush_rings & RING_BLT)
2066 i915_gem_flush_ring(dev, file_priv,
2067 &dev_priv->blt_ring,
2068 invalidate_domains, flush_domains);
2069 }
2070 }
2071
2072 /**
2073 * Ensures that all rendering to the object has completed and the object is
2074 * safe to unbind from the GTT or access from the CPU.
2075 */
2076 static int
2077 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2078 bool interruptible)
2079 {
2080 struct drm_device *dev = obj->dev;
2081 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2082 int ret;
2083
2084 /* This function only exists to support waiting for existing rendering,
2085 * not for emitting required flushes.
2086 */
2087 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2088
2089 /* If there is rendering queued on the buffer being evicted, wait for
2090 * it.
2091 */
2092 if (obj_priv->active) {
2093 ret = i915_do_wait_request(dev,
2094 obj_priv->last_rendering_seqno,
2095 interruptible,
2096 obj_priv->ring);
2097 if (ret)
2098 return ret;
2099 }
2100
2101 return 0;
2102 }
2103
2104 /**
2105 * Unbinds an object from the GTT aperture.
2106 */
2107 int
2108 i915_gem_object_unbind(struct drm_gem_object *obj)
2109 {
2110 struct drm_device *dev = obj->dev;
2111 struct drm_i915_private *dev_priv = dev->dev_private;
2112 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2113 int ret = 0;
2114
2115 if (obj_priv->gtt_space == NULL)
2116 return 0;
2117
2118 if (obj_priv->pin_count != 0) {
2119 DRM_ERROR("Attempting to unbind pinned buffer\n");
2120 return -EINVAL;
2121 }
2122
2123 /* blow away mappings if mapped through GTT */
2124 i915_gem_release_mmap(obj);
2125
2126 /* Move the object to the CPU domain to ensure that
2127 * any possible CPU writes while it's not in the GTT
2128 * are flushed when we go to remap it. This will
2129 * also ensure that all pending GPU writes are finished
2130 * before we unbind.
2131 */
2132 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2133 if (ret == -ERESTARTSYS)
2134 return ret;
2135 /* Continue on if we fail due to EIO, the GPU is hung so we
2136 * should be safe and we need to cleanup or else we might
2137 * cause memory corruption through use-after-free.
2138 */
2139 if (ret) {
2140 i915_gem_clflush_object(obj);
2141 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2142 }
2143
2144 /* release the fence reg _after_ flushing */
2145 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2146 i915_gem_clear_fence_reg(obj);
2147
2148 drm_unbind_agp(obj_priv->agp_mem);
2149 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2150
2151 i915_gem_object_put_pages(obj);
2152 BUG_ON(obj_priv->pages_refcount);
2153
2154 i915_gem_info_remove_gtt(dev_priv, obj->size);
2155 list_del_init(&obj_priv->mm_list);
2156
2157 drm_mm_put_block(obj_priv->gtt_space);
2158 obj_priv->gtt_space = NULL;
2159 obj_priv->gtt_offset = 0;
2160
2161 if (i915_gem_object_is_purgeable(obj_priv))
2162 i915_gem_object_truncate(obj);
2163
2164 trace_i915_gem_object_unbind(obj);
2165
2166 return ret;
2167 }
2168
2169 static int i915_ring_idle(struct drm_device *dev,
2170 struct intel_ring_buffer *ring)
2171 {
2172 if (list_empty(&ring->gpu_write_list))
2173 return 0;
2174
2175 i915_gem_flush_ring(dev, NULL, ring,
2176 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2177 return i915_wait_request(dev,
2178 i915_gem_next_request_seqno(dev, ring),
2179 ring);
2180 }
2181
2182 int
2183 i915_gpu_idle(struct drm_device *dev)
2184 {
2185 drm_i915_private_t *dev_priv = dev->dev_private;
2186 bool lists_empty;
2187 int ret;
2188
2189 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2190 list_empty(&dev_priv->render_ring.active_list) &&
2191 list_empty(&dev_priv->bsd_ring.active_list) &&
2192 list_empty(&dev_priv->blt_ring.active_list));
2193 if (lists_empty)
2194 return 0;
2195
2196 /* Flush everything onto the inactive list. */
2197 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2198 if (ret)
2199 return ret;
2200
2201 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2202 if (ret)
2203 return ret;
2204
2205 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2206 if (ret)
2207 return ret;
2208
2209 return 0;
2210 }
2211
2212 static int
2213 i915_gem_object_get_pages(struct drm_gem_object *obj,
2214 gfp_t gfpmask)
2215 {
2216 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2217 int page_count, i;
2218 struct address_space *mapping;
2219 struct inode *inode;
2220 struct page *page;
2221
2222 BUG_ON(obj_priv->pages_refcount
2223 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2224
2225 if (obj_priv->pages_refcount++ != 0)
2226 return 0;
2227
2228 /* Get the list of pages out of our struct file. They'll be pinned
2229 * at this point until we release them.
2230 */
2231 page_count = obj->size / PAGE_SIZE;
2232 BUG_ON(obj_priv->pages != NULL);
2233 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2234 if (obj_priv->pages == NULL) {
2235 obj_priv->pages_refcount--;
2236 return -ENOMEM;
2237 }
2238
2239 inode = obj->filp->f_path.dentry->d_inode;
2240 mapping = inode->i_mapping;
2241 for (i = 0; i < page_count; i++) {
2242 page = read_cache_page_gfp(mapping, i,
2243 GFP_HIGHUSER |
2244 __GFP_COLD |
2245 __GFP_RECLAIMABLE |
2246 gfpmask);
2247 if (IS_ERR(page))
2248 goto err_pages;
2249
2250 obj_priv->pages[i] = page;
2251 }
2252
2253 if (obj_priv->tiling_mode != I915_TILING_NONE)
2254 i915_gem_object_do_bit_17_swizzle(obj);
2255
2256 return 0;
2257
2258 err_pages:
2259 while (i--)
2260 page_cache_release(obj_priv->pages[i]);
2261
2262 drm_free_large(obj_priv->pages);
2263 obj_priv->pages = NULL;
2264 obj_priv->pages_refcount--;
2265 return PTR_ERR(page);
2266 }
2267
2268 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2269 {
2270 struct drm_gem_object *obj = reg->obj;
2271 struct drm_device *dev = obj->dev;
2272 drm_i915_private_t *dev_priv = dev->dev_private;
2273 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2274 int regnum = obj_priv->fence_reg;
2275 uint64_t val;
2276
2277 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2278 0xfffff000) << 32;
2279 val |= obj_priv->gtt_offset & 0xfffff000;
2280 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2281 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2282
2283 if (obj_priv->tiling_mode == I915_TILING_Y)
2284 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2285 val |= I965_FENCE_REG_VALID;
2286
2287 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2288 }
2289
2290 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2291 {
2292 struct drm_gem_object *obj = reg->obj;
2293 struct drm_device *dev = obj->dev;
2294 drm_i915_private_t *dev_priv = dev->dev_private;
2295 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2296 int regnum = obj_priv->fence_reg;
2297 uint64_t val;
2298
2299 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2300 0xfffff000) << 32;
2301 val |= obj_priv->gtt_offset & 0xfffff000;
2302 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2303 if (obj_priv->tiling_mode == I915_TILING_Y)
2304 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2305 val |= I965_FENCE_REG_VALID;
2306
2307 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2308 }
2309
2310 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2311 {
2312 struct drm_gem_object *obj = reg->obj;
2313 struct drm_device *dev = obj->dev;
2314 drm_i915_private_t *dev_priv = dev->dev_private;
2315 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2316 int regnum = obj_priv->fence_reg;
2317 int tile_width;
2318 uint32_t fence_reg, val;
2319 uint32_t pitch_val;
2320
2321 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2322 (obj_priv->gtt_offset & (obj->size - 1))) {
2323 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2324 __func__, obj_priv->gtt_offset, obj->size);
2325 return;
2326 }
2327
2328 if (obj_priv->tiling_mode == I915_TILING_Y &&
2329 HAS_128_BYTE_Y_TILING(dev))
2330 tile_width = 128;
2331 else
2332 tile_width = 512;
2333
2334 /* Note: pitch better be a power of two tile widths */
2335 pitch_val = obj_priv->stride / tile_width;
2336 pitch_val = ffs(pitch_val) - 1;
2337
2338 if (obj_priv->tiling_mode == I915_TILING_Y &&
2339 HAS_128_BYTE_Y_TILING(dev))
2340 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2341 else
2342 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2343
2344 val = obj_priv->gtt_offset;
2345 if (obj_priv->tiling_mode == I915_TILING_Y)
2346 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2347 val |= I915_FENCE_SIZE_BITS(obj->size);
2348 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2349 val |= I830_FENCE_REG_VALID;
2350
2351 if (regnum < 8)
2352 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2353 else
2354 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2355 I915_WRITE(fence_reg, val);
2356 }
2357
2358 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2359 {
2360 struct drm_gem_object *obj = reg->obj;
2361 struct drm_device *dev = obj->dev;
2362 drm_i915_private_t *dev_priv = dev->dev_private;
2363 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2364 int regnum = obj_priv->fence_reg;
2365 uint32_t val;
2366 uint32_t pitch_val;
2367 uint32_t fence_size_bits;
2368
2369 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2370 (obj_priv->gtt_offset & (obj->size - 1))) {
2371 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2372 __func__, obj_priv->gtt_offset);
2373 return;
2374 }
2375
2376 pitch_val = obj_priv->stride / 128;
2377 pitch_val = ffs(pitch_val) - 1;
2378 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2379
2380 val = obj_priv->gtt_offset;
2381 if (obj_priv->tiling_mode == I915_TILING_Y)
2382 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2383 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2384 WARN_ON(fence_size_bits & ~0x00000f00);
2385 val |= fence_size_bits;
2386 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2387 val |= I830_FENCE_REG_VALID;
2388
2389 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2390 }
2391
2392 static int i915_find_fence_reg(struct drm_device *dev,
2393 bool interruptible)
2394 {
2395 struct drm_i915_fence_reg *reg = NULL;
2396 struct drm_i915_gem_object *obj_priv = NULL;
2397 struct drm_i915_private *dev_priv = dev->dev_private;
2398 struct drm_gem_object *obj = NULL;
2399 int i, avail, ret;
2400
2401 /* First try to find a free reg */
2402 avail = 0;
2403 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2404 reg = &dev_priv->fence_regs[i];
2405 if (!reg->obj)
2406 return i;
2407
2408 obj_priv = to_intel_bo(reg->obj);
2409 if (!obj_priv->pin_count)
2410 avail++;
2411 }
2412
2413 if (avail == 0)
2414 return -ENOSPC;
2415
2416 /* None available, try to steal one or wait for a user to finish */
2417 i = I915_FENCE_REG_NONE;
2418 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2419 lru_list) {
2420 obj = reg->obj;
2421 obj_priv = to_intel_bo(obj);
2422
2423 if (obj_priv->pin_count)
2424 continue;
2425
2426 /* found one! */
2427 i = obj_priv->fence_reg;
2428 break;
2429 }
2430
2431 BUG_ON(i == I915_FENCE_REG_NONE);
2432
2433 /* We only have a reference on obj from the active list. put_fence_reg
2434 * might drop that one, causing a use-after-free in it. So hold a
2435 * private reference to obj like the other callers of put_fence_reg
2436 * (set_tiling ioctl) do. */
2437 drm_gem_object_reference(obj);
2438 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2439 drm_gem_object_unreference(obj);
2440 if (ret != 0)
2441 return ret;
2442
2443 return i;
2444 }
2445
2446 /**
2447 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2448 * @obj: object to map through a fence reg
2449 *
2450 * When mapping objects through the GTT, userspace wants to be able to write
2451 * to them without having to worry about swizzling if the object is tiled.
2452 *
2453 * This function walks the fence regs looking for a free one for @obj,
2454 * stealing one if it can't find any.
2455 *
2456 * It then sets up the reg based on the object's properties: address, pitch
2457 * and tiling format.
2458 */
2459 int
2460 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2461 bool interruptible)
2462 {
2463 struct drm_device *dev = obj->dev;
2464 struct drm_i915_private *dev_priv = dev->dev_private;
2465 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2466 struct drm_i915_fence_reg *reg = NULL;
2467 int ret;
2468
2469 /* Just update our place in the LRU if our fence is getting used. */
2470 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2471 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2472 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2473 return 0;
2474 }
2475
2476 switch (obj_priv->tiling_mode) {
2477 case I915_TILING_NONE:
2478 WARN(1, "allocating a fence for non-tiled object?\n");
2479 break;
2480 case I915_TILING_X:
2481 if (!obj_priv->stride)
2482 return -EINVAL;
2483 WARN((obj_priv->stride & (512 - 1)),
2484 "object 0x%08x is X tiled but has non-512B pitch\n",
2485 obj_priv->gtt_offset);
2486 break;
2487 case I915_TILING_Y:
2488 if (!obj_priv->stride)
2489 return -EINVAL;
2490 WARN((obj_priv->stride & (128 - 1)),
2491 "object 0x%08x is Y tiled but has non-128B pitch\n",
2492 obj_priv->gtt_offset);
2493 break;
2494 }
2495
2496 ret = i915_find_fence_reg(dev, interruptible);
2497 if (ret < 0)
2498 return ret;
2499
2500 obj_priv->fence_reg = ret;
2501 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2502 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2503
2504 reg->obj = obj;
2505
2506 switch (INTEL_INFO(dev)->gen) {
2507 case 6:
2508 sandybridge_write_fence_reg(reg);
2509 break;
2510 case 5:
2511 case 4:
2512 i965_write_fence_reg(reg);
2513 break;
2514 case 3:
2515 i915_write_fence_reg(reg);
2516 break;
2517 case 2:
2518 i830_write_fence_reg(reg);
2519 break;
2520 }
2521
2522 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2523 obj_priv->tiling_mode);
2524
2525 return 0;
2526 }
2527
2528 /**
2529 * i915_gem_clear_fence_reg - clear out fence register info
2530 * @obj: object to clear
2531 *
2532 * Zeroes out the fence register itself and clears out the associated
2533 * data structures in dev_priv and obj_priv.
2534 */
2535 static void
2536 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2537 {
2538 struct drm_device *dev = obj->dev;
2539 drm_i915_private_t *dev_priv = dev->dev_private;
2540 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2541 struct drm_i915_fence_reg *reg =
2542 &dev_priv->fence_regs[obj_priv->fence_reg];
2543 uint32_t fence_reg;
2544
2545 switch (INTEL_INFO(dev)->gen) {
2546 case 6:
2547 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2548 (obj_priv->fence_reg * 8), 0);
2549 break;
2550 case 5:
2551 case 4:
2552 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2553 break;
2554 case 3:
2555 if (obj_priv->fence_reg >= 8)
2556 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2557 else
2558 case 2:
2559 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2560
2561 I915_WRITE(fence_reg, 0);
2562 break;
2563 }
2564
2565 reg->obj = NULL;
2566 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2567 list_del_init(&reg->lru_list);
2568 }
2569
2570 /**
2571 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2572 * to the buffer to finish, and then resets the fence register.
2573 * @obj: tiled object holding a fence register.
2574 * @bool: whether the wait upon the fence is interruptible
2575 *
2576 * Zeroes out the fence register itself and clears out the associated
2577 * data structures in dev_priv and obj_priv.
2578 */
2579 int
2580 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2581 bool interruptible)
2582 {
2583 struct drm_device *dev = obj->dev;
2584 struct drm_i915_private *dev_priv = dev->dev_private;
2585 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2586 struct drm_i915_fence_reg *reg;
2587
2588 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2589 return 0;
2590
2591 /* If we've changed tiling, GTT-mappings of the object
2592 * need to re-fault to ensure that the correct fence register
2593 * setup is in place.
2594 */
2595 i915_gem_release_mmap(obj);
2596
2597 /* On the i915, GPU access to tiled buffers is via a fence,
2598 * therefore we must wait for any outstanding access to complete
2599 * before clearing the fence.
2600 */
2601 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2602 if (reg->gpu) {
2603 int ret;
2604
2605 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2606 if (ret)
2607 return ret;
2608
2609 ret = i915_gem_object_wait_rendering(obj, interruptible);
2610 if (ret)
2611 return ret;
2612
2613 reg->gpu = false;
2614 }
2615
2616 i915_gem_object_flush_gtt_write_domain(obj);
2617 i915_gem_clear_fence_reg(obj);
2618
2619 return 0;
2620 }
2621
2622 /**
2623 * Finds free space in the GTT aperture and binds the object there.
2624 */
2625 static int
2626 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2627 {
2628 struct drm_device *dev = obj->dev;
2629 drm_i915_private_t *dev_priv = dev->dev_private;
2630 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2631 struct drm_mm_node *free_space;
2632 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2633 int ret;
2634
2635 if (obj_priv->madv != I915_MADV_WILLNEED) {
2636 DRM_ERROR("Attempting to bind a purgeable object\n");
2637 return -EINVAL;
2638 }
2639
2640 if (alignment == 0)
2641 alignment = i915_gem_get_gtt_alignment(obj);
2642 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2643 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2644 return -EINVAL;
2645 }
2646
2647 /* If the object is bigger than the entire aperture, reject it early
2648 * before evicting everything in a vain attempt to find space.
2649 */
2650 if (obj->size > dev_priv->mm.gtt_total) {
2651 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2652 return -E2BIG;
2653 }
2654
2655 search_free:
2656 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2657 obj->size, alignment, 0);
2658 if (free_space != NULL)
2659 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2660 alignment);
2661 if (obj_priv->gtt_space == NULL) {
2662 /* If the gtt is empty and we're still having trouble
2663 * fitting our object in, we're out of memory.
2664 */
2665 ret = i915_gem_evict_something(dev, obj->size, alignment);
2666 if (ret)
2667 return ret;
2668
2669 goto search_free;
2670 }
2671
2672 ret = i915_gem_object_get_pages(obj, gfpmask);
2673 if (ret) {
2674 drm_mm_put_block(obj_priv->gtt_space);
2675 obj_priv->gtt_space = NULL;
2676
2677 if (ret == -ENOMEM) {
2678 /* first try to clear up some space from the GTT */
2679 ret = i915_gem_evict_something(dev, obj->size,
2680 alignment);
2681 if (ret) {
2682 /* now try to shrink everyone else */
2683 if (gfpmask) {
2684 gfpmask = 0;
2685 goto search_free;
2686 }
2687
2688 return ret;
2689 }
2690
2691 goto search_free;
2692 }
2693
2694 return ret;
2695 }
2696
2697 /* Create an AGP memory structure pointing at our pages, and bind it
2698 * into the GTT.
2699 */
2700 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2701 obj_priv->pages,
2702 obj->size >> PAGE_SHIFT,
2703 obj_priv->gtt_space->start,
2704 obj_priv->agp_type);
2705 if (obj_priv->agp_mem == NULL) {
2706 i915_gem_object_put_pages(obj);
2707 drm_mm_put_block(obj_priv->gtt_space);
2708 obj_priv->gtt_space = NULL;
2709
2710 ret = i915_gem_evict_something(dev, obj->size, alignment);
2711 if (ret)
2712 return ret;
2713
2714 goto search_free;
2715 }
2716
2717 /* keep track of bounds object by adding it to the inactive list */
2718 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2719 i915_gem_info_add_gtt(dev_priv, obj->size);
2720
2721 /* Assert that the object is not currently in any GPU domain. As it
2722 * wasn't in the GTT, there shouldn't be any way it could have been in
2723 * a GPU cache
2724 */
2725 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2726 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2727
2728 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2729 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2730
2731 return 0;
2732 }
2733
2734 void
2735 i915_gem_clflush_object(struct drm_gem_object *obj)
2736 {
2737 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2738
2739 /* If we don't have a page list set up, then we're not pinned
2740 * to GPU, and we can ignore the cache flush because it'll happen
2741 * again at bind time.
2742 */
2743 if (obj_priv->pages == NULL)
2744 return;
2745
2746 trace_i915_gem_object_clflush(obj);
2747
2748 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2749 }
2750
2751 /** Flushes any GPU write domain for the object if it's dirty. */
2752 static int
2753 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2754 bool pipelined)
2755 {
2756 struct drm_device *dev = obj->dev;
2757 uint32_t old_write_domain;
2758
2759 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2760 return 0;
2761
2762 /* Queue the GPU write cache flushing we need. */
2763 old_write_domain = obj->write_domain;
2764 i915_gem_flush_ring(dev, NULL,
2765 to_intel_bo(obj)->ring,
2766 0, obj->write_domain);
2767 BUG_ON(obj->write_domain);
2768
2769 trace_i915_gem_object_change_domain(obj,
2770 obj->read_domains,
2771 old_write_domain);
2772
2773 if (pipelined)
2774 return 0;
2775
2776 return i915_gem_object_wait_rendering(obj, true);
2777 }
2778
2779 /** Flushes the GTT write domain for the object if it's dirty. */
2780 static void
2781 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2782 {
2783 uint32_t old_write_domain;
2784
2785 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2786 return;
2787
2788 /* No actual flushing is required for the GTT write domain. Writes
2789 * to it immediately go to main memory as far as we know, so there's
2790 * no chipset flush. It also doesn't land in render cache.
2791 */
2792 old_write_domain = obj->write_domain;
2793 obj->write_domain = 0;
2794
2795 trace_i915_gem_object_change_domain(obj,
2796 obj->read_domains,
2797 old_write_domain);
2798 }
2799
2800 /** Flushes the CPU write domain for the object if it's dirty. */
2801 static void
2802 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2803 {
2804 struct drm_device *dev = obj->dev;
2805 uint32_t old_write_domain;
2806
2807 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2808 return;
2809
2810 i915_gem_clflush_object(obj);
2811 drm_agp_chipset_flush(dev);
2812 old_write_domain = obj->write_domain;
2813 obj->write_domain = 0;
2814
2815 trace_i915_gem_object_change_domain(obj,
2816 obj->read_domains,
2817 old_write_domain);
2818 }
2819
2820 /**
2821 * Moves a single object to the GTT read, and possibly write domain.
2822 *
2823 * This function returns when the move is complete, including waiting on
2824 * flushes to occur.
2825 */
2826 int
2827 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2828 {
2829 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2830 uint32_t old_write_domain, old_read_domains;
2831 int ret;
2832
2833 /* Not valid to be called on unbound objects. */
2834 if (obj_priv->gtt_space == NULL)
2835 return -EINVAL;
2836
2837 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2838 if (ret != 0)
2839 return ret;
2840
2841 i915_gem_object_flush_cpu_write_domain(obj);
2842
2843 if (write) {
2844 ret = i915_gem_object_wait_rendering(obj, true);
2845 if (ret)
2846 return ret;
2847 }
2848
2849 old_write_domain = obj->write_domain;
2850 old_read_domains = obj->read_domains;
2851
2852 /* It should now be out of any other write domains, and we can update
2853 * the domain values for our changes.
2854 */
2855 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2856 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2857 if (write) {
2858 obj->read_domains = I915_GEM_DOMAIN_GTT;
2859 obj->write_domain = I915_GEM_DOMAIN_GTT;
2860 obj_priv->dirty = 1;
2861 }
2862
2863 trace_i915_gem_object_change_domain(obj,
2864 old_read_domains,
2865 old_write_domain);
2866
2867 return 0;
2868 }
2869
2870 /*
2871 * Prepare buffer for display plane. Use uninterruptible for possible flush
2872 * wait, as in modesetting process we're not supposed to be interrupted.
2873 */
2874 int
2875 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2876 bool pipelined)
2877 {
2878 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2879 uint32_t old_read_domains;
2880 int ret;
2881
2882 /* Not valid to be called on unbound objects. */
2883 if (obj_priv->gtt_space == NULL)
2884 return -EINVAL;
2885
2886 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2887 if (ret)
2888 return ret;
2889
2890 /* Currently, we are always called from an non-interruptible context. */
2891 if (!pipelined) {
2892 ret = i915_gem_object_wait_rendering(obj, false);
2893 if (ret)
2894 return ret;
2895 }
2896
2897 i915_gem_object_flush_cpu_write_domain(obj);
2898
2899 old_read_domains = obj->read_domains;
2900 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2901
2902 trace_i915_gem_object_change_domain(obj,
2903 old_read_domains,
2904 obj->write_domain);
2905
2906 return 0;
2907 }
2908
2909 /**
2910 * Moves a single object to the CPU read, and possibly write domain.
2911 *
2912 * This function returns when the move is complete, including waiting on
2913 * flushes to occur.
2914 */
2915 static int
2916 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2917 {
2918 uint32_t old_write_domain, old_read_domains;
2919 int ret;
2920
2921 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2922 if (ret != 0)
2923 return ret;
2924
2925 i915_gem_object_flush_gtt_write_domain(obj);
2926
2927 /* If we have a partially-valid cache of the object in the CPU,
2928 * finish invalidating it and free the per-page flags.
2929 */
2930 i915_gem_object_set_to_full_cpu_read_domain(obj);
2931
2932 if (write) {
2933 ret = i915_gem_object_wait_rendering(obj, true);
2934 if (ret)
2935 return ret;
2936 }
2937
2938 old_write_domain = obj->write_domain;
2939 old_read_domains = obj->read_domains;
2940
2941 /* Flush the CPU cache if it's still invalid. */
2942 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2943 i915_gem_clflush_object(obj);
2944
2945 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2946 }
2947
2948 /* It should now be out of any other write domains, and we can update
2949 * the domain values for our changes.
2950 */
2951 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2952
2953 /* If we're writing through the CPU, then the GPU read domains will
2954 * need to be invalidated at next use.
2955 */
2956 if (write) {
2957 obj->read_domains = I915_GEM_DOMAIN_CPU;
2958 obj->write_domain = I915_GEM_DOMAIN_CPU;
2959 }
2960
2961 trace_i915_gem_object_change_domain(obj,
2962 old_read_domains,
2963 old_write_domain);
2964
2965 return 0;
2966 }
2967
2968 /*
2969 * Set the next domain for the specified object. This
2970 * may not actually perform the necessary flushing/invaliding though,
2971 * as that may want to be batched with other set_domain operations
2972 *
2973 * This is (we hope) the only really tricky part of gem. The goal
2974 * is fairly simple -- track which caches hold bits of the object
2975 * and make sure they remain coherent. A few concrete examples may
2976 * help to explain how it works. For shorthand, we use the notation
2977 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2978 * a pair of read and write domain masks.
2979 *
2980 * Case 1: the batch buffer
2981 *
2982 * 1. Allocated
2983 * 2. Written by CPU
2984 * 3. Mapped to GTT
2985 * 4. Read by GPU
2986 * 5. Unmapped from GTT
2987 * 6. Freed
2988 *
2989 * Let's take these a step at a time
2990 *
2991 * 1. Allocated
2992 * Pages allocated from the kernel may still have
2993 * cache contents, so we set them to (CPU, CPU) always.
2994 * 2. Written by CPU (using pwrite)
2995 * The pwrite function calls set_domain (CPU, CPU) and
2996 * this function does nothing (as nothing changes)
2997 * 3. Mapped by GTT
2998 * This function asserts that the object is not
2999 * currently in any GPU-based read or write domains
3000 * 4. Read by GPU
3001 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3002 * As write_domain is zero, this function adds in the
3003 * current read domains (CPU+COMMAND, 0).
3004 * flush_domains is set to CPU.
3005 * invalidate_domains is set to COMMAND
3006 * clflush is run to get data out of the CPU caches
3007 * then i915_dev_set_domain calls i915_gem_flush to
3008 * emit an MI_FLUSH and drm_agp_chipset_flush
3009 * 5. Unmapped from GTT
3010 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3011 * flush_domains and invalidate_domains end up both zero
3012 * so no flushing/invalidating happens
3013 * 6. Freed
3014 * yay, done
3015 *
3016 * Case 2: The shared render buffer
3017 *
3018 * 1. Allocated
3019 * 2. Mapped to GTT
3020 * 3. Read/written by GPU
3021 * 4. set_domain to (CPU,CPU)
3022 * 5. Read/written by CPU
3023 * 6. Read/written by GPU
3024 *
3025 * 1. Allocated
3026 * Same as last example, (CPU, CPU)
3027 * 2. Mapped to GTT
3028 * Nothing changes (assertions find that it is not in the GPU)
3029 * 3. Read/written by GPU
3030 * execbuffer calls set_domain (RENDER, RENDER)
3031 * flush_domains gets CPU
3032 * invalidate_domains gets GPU
3033 * clflush (obj)
3034 * MI_FLUSH and drm_agp_chipset_flush
3035 * 4. set_domain (CPU, CPU)
3036 * flush_domains gets GPU
3037 * invalidate_domains gets CPU
3038 * wait_rendering (obj) to make sure all drawing is complete.
3039 * This will include an MI_FLUSH to get the data from GPU
3040 * to memory
3041 * clflush (obj) to invalidate the CPU cache
3042 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3043 * 5. Read/written by CPU
3044 * cache lines are loaded and dirtied
3045 * 6. Read written by GPU
3046 * Same as last GPU access
3047 *
3048 * Case 3: The constant buffer
3049 *
3050 * 1. Allocated
3051 * 2. Written by CPU
3052 * 3. Read by GPU
3053 * 4. Updated (written) by CPU again
3054 * 5. Read by GPU
3055 *
3056 * 1. Allocated
3057 * (CPU, CPU)
3058 * 2. Written by CPU
3059 * (CPU, CPU)
3060 * 3. Read by GPU
3061 * (CPU+RENDER, 0)
3062 * flush_domains = CPU
3063 * invalidate_domains = RENDER
3064 * clflush (obj)
3065 * MI_FLUSH
3066 * drm_agp_chipset_flush
3067 * 4. Updated (written) by CPU again
3068 * (CPU, CPU)
3069 * flush_domains = 0 (no previous write domain)
3070 * invalidate_domains = 0 (no new read domains)
3071 * 5. Read by GPU
3072 * (CPU+RENDER, 0)
3073 * flush_domains = CPU
3074 * invalidate_domains = RENDER
3075 * clflush (obj)
3076 * MI_FLUSH
3077 * drm_agp_chipset_flush
3078 */
3079 static void
3080 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3081 struct intel_ring_buffer *ring)
3082 {
3083 struct drm_device *dev = obj->dev;
3084 struct drm_i915_private *dev_priv = dev->dev_private;
3085 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3086 uint32_t invalidate_domains = 0;
3087 uint32_t flush_domains = 0;
3088 uint32_t old_read_domains;
3089
3090 intel_mark_busy(dev, obj);
3091
3092 /*
3093 * If the object isn't moving to a new write domain,
3094 * let the object stay in multiple read domains
3095 */
3096 if (obj->pending_write_domain == 0)
3097 obj->pending_read_domains |= obj->read_domains;
3098 else
3099 obj_priv->dirty = 1;
3100
3101 /*
3102 * Flush the current write domain if
3103 * the new read domains don't match. Invalidate
3104 * any read domains which differ from the old
3105 * write domain
3106 */
3107 if (obj->write_domain &&
3108 obj->write_domain != obj->pending_read_domains) {
3109 flush_domains |= obj->write_domain;
3110 invalidate_domains |=
3111 obj->pending_read_domains & ~obj->write_domain;
3112 }
3113 /*
3114 * Invalidate any read caches which may have
3115 * stale data. That is, any new read domains.
3116 */
3117 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3118 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3119 i915_gem_clflush_object(obj);
3120
3121 old_read_domains = obj->read_domains;
3122
3123 /* The actual obj->write_domain will be updated with
3124 * pending_write_domain after we emit the accumulated flush for all
3125 * of our domain changes in execbuffers (which clears objects'
3126 * write_domains). So if we have a current write domain that we
3127 * aren't changing, set pending_write_domain to that.
3128 */
3129 if (flush_domains == 0 && obj->pending_write_domain == 0)
3130 obj->pending_write_domain = obj->write_domain;
3131 obj->read_domains = obj->pending_read_domains;
3132
3133 dev->invalidate_domains |= invalidate_domains;
3134 dev->flush_domains |= flush_domains;
3135 if (flush_domains & I915_GEM_GPU_DOMAINS)
3136 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3137 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3138 dev_priv->mm.flush_rings |= ring->id;
3139
3140 trace_i915_gem_object_change_domain(obj,
3141 old_read_domains,
3142 obj->write_domain);
3143 }
3144
3145 /**
3146 * Moves the object from a partially CPU read to a full one.
3147 *
3148 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3149 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3150 */
3151 static void
3152 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3153 {
3154 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3155
3156 if (!obj_priv->page_cpu_valid)
3157 return;
3158
3159 /* If we're partially in the CPU read domain, finish moving it in.
3160 */
3161 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3162 int i;
3163
3164 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3165 if (obj_priv->page_cpu_valid[i])
3166 continue;
3167 drm_clflush_pages(obj_priv->pages + i, 1);
3168 }
3169 }
3170
3171 /* Free the page_cpu_valid mappings which are now stale, whether
3172 * or not we've got I915_GEM_DOMAIN_CPU.
3173 */
3174 kfree(obj_priv->page_cpu_valid);
3175 obj_priv->page_cpu_valid = NULL;
3176 }
3177
3178 /**
3179 * Set the CPU read domain on a range of the object.
3180 *
3181 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3182 * not entirely valid. The page_cpu_valid member of the object flags which
3183 * pages have been flushed, and will be respected by
3184 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3185 * of the whole object.
3186 *
3187 * This function returns when the move is complete, including waiting on
3188 * flushes to occur.
3189 */
3190 static int
3191 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3192 uint64_t offset, uint64_t size)
3193 {
3194 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3195 uint32_t old_read_domains;
3196 int i, ret;
3197
3198 if (offset == 0 && size == obj->size)
3199 return i915_gem_object_set_to_cpu_domain(obj, 0);
3200
3201 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3202 if (ret != 0)
3203 return ret;
3204 i915_gem_object_flush_gtt_write_domain(obj);
3205
3206 /* If we're already fully in the CPU read domain, we're done. */
3207 if (obj_priv->page_cpu_valid == NULL &&
3208 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3209 return 0;
3210
3211 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3212 * newly adding I915_GEM_DOMAIN_CPU
3213 */
3214 if (obj_priv->page_cpu_valid == NULL) {
3215 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3216 GFP_KERNEL);
3217 if (obj_priv->page_cpu_valid == NULL)
3218 return -ENOMEM;
3219 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3220 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3221
3222 /* Flush the cache on any pages that are still invalid from the CPU's
3223 * perspective.
3224 */
3225 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3226 i++) {
3227 if (obj_priv->page_cpu_valid[i])
3228 continue;
3229
3230 drm_clflush_pages(obj_priv->pages + i, 1);
3231
3232 obj_priv->page_cpu_valid[i] = 1;
3233 }
3234
3235 /* It should now be out of any other write domains, and we can update
3236 * the domain values for our changes.
3237 */
3238 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3239
3240 old_read_domains = obj->read_domains;
3241 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3242
3243 trace_i915_gem_object_change_domain(obj,
3244 old_read_domains,
3245 obj->write_domain);
3246
3247 return 0;
3248 }
3249
3250 /**
3251 * Pin an object to the GTT and evaluate the relocations landing in it.
3252 */
3253 static int
3254 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3255 struct drm_file *file_priv,
3256 struct drm_i915_gem_exec_object2 *entry)
3257 {
3258 struct drm_device *dev = obj->base.dev;
3259 drm_i915_private_t *dev_priv = dev->dev_private;
3260 struct drm_i915_gem_relocation_entry __user *user_relocs;
3261 struct drm_gem_object *target_obj = NULL;
3262 uint32_t target_handle = 0;
3263 int i, ret = 0;
3264
3265 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3266 for (i = 0; i < entry->relocation_count; i++) {
3267 struct drm_i915_gem_relocation_entry reloc;
3268 uint32_t target_offset;
3269
3270 if (__copy_from_user_inatomic(&reloc,
3271 user_relocs+i,
3272 sizeof(reloc))) {
3273 ret = -EFAULT;
3274 break;
3275 }
3276
3277 if (reloc.target_handle != target_handle) {
3278 drm_gem_object_unreference(target_obj);
3279
3280 target_obj = drm_gem_object_lookup(dev, file_priv,
3281 reloc.target_handle);
3282 if (target_obj == NULL) {
3283 ret = -ENOENT;
3284 break;
3285 }
3286
3287 target_handle = reloc.target_handle;
3288 }
3289 target_offset = to_intel_bo(target_obj)->gtt_offset;
3290
3291 #if WATCH_RELOC
3292 DRM_INFO("%s: obj %p offset %08x target %d "
3293 "read %08x write %08x gtt %08x "
3294 "presumed %08x delta %08x\n",
3295 __func__,
3296 obj,
3297 (int) reloc.offset,
3298 (int) reloc.target_handle,
3299 (int) reloc.read_domains,
3300 (int) reloc.write_domain,
3301 (int) target_offset,
3302 (int) reloc.presumed_offset,
3303 reloc.delta);
3304 #endif
3305
3306 /* The target buffer should have appeared before us in the
3307 * exec_object list, so it should have a GTT space bound by now.
3308 */
3309 if (target_offset == 0) {
3310 DRM_ERROR("No GTT space found for object %d\n",
3311 reloc.target_handle);
3312 ret = -EINVAL;
3313 break;
3314 }
3315
3316 /* Validate that the target is in a valid r/w GPU domain */
3317 if (reloc.write_domain & (reloc.write_domain - 1)) {
3318 DRM_ERROR("reloc with multiple write domains: "
3319 "obj %p target %d offset %d "
3320 "read %08x write %08x",
3321 obj, reloc.target_handle,
3322 (int) reloc.offset,
3323 reloc.read_domains,
3324 reloc.write_domain);
3325 ret = -EINVAL;
3326 break;
3327 }
3328 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3329 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3330 DRM_ERROR("reloc with read/write CPU domains: "
3331 "obj %p target %d offset %d "
3332 "read %08x write %08x",
3333 obj, reloc.target_handle,
3334 (int) reloc.offset,
3335 reloc.read_domains,
3336 reloc.write_domain);
3337 ret = -EINVAL;
3338 break;
3339 }
3340 if (reloc.write_domain && target_obj->pending_write_domain &&
3341 reloc.write_domain != target_obj->pending_write_domain) {
3342 DRM_ERROR("Write domain conflict: "
3343 "obj %p target %d offset %d "
3344 "new %08x old %08x\n",
3345 obj, reloc.target_handle,
3346 (int) reloc.offset,
3347 reloc.write_domain,
3348 target_obj->pending_write_domain);
3349 ret = -EINVAL;
3350 break;
3351 }
3352
3353 target_obj->pending_read_domains |= reloc.read_domains;
3354 target_obj->pending_write_domain |= reloc.write_domain;
3355
3356 /* If the relocation already has the right value in it, no
3357 * more work needs to be done.
3358 */
3359 if (target_offset == reloc.presumed_offset)
3360 continue;
3361
3362 /* Check that the relocation address is valid... */
3363 if (reloc.offset > obj->base.size - 4) {
3364 DRM_ERROR("Relocation beyond object bounds: "
3365 "obj %p target %d offset %d size %d.\n",
3366 obj, reloc.target_handle,
3367 (int) reloc.offset, (int) obj->base.size);
3368 ret = -EINVAL;
3369 break;
3370 }
3371 if (reloc.offset & 3) {
3372 DRM_ERROR("Relocation not 4-byte aligned: "
3373 "obj %p target %d offset %d.\n",
3374 obj, reloc.target_handle,
3375 (int) reloc.offset);
3376 ret = -EINVAL;
3377 break;
3378 }
3379
3380 /* and points to somewhere within the target object. */
3381 if (reloc.delta >= target_obj->size) {
3382 DRM_ERROR("Relocation beyond target object bounds: "
3383 "obj %p target %d delta %d size %d.\n",
3384 obj, reloc.target_handle,
3385 (int) reloc.delta, (int) target_obj->size);
3386 ret = -EINVAL;
3387 break;
3388 }
3389
3390 reloc.delta += target_offset;
3391 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3392 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3393 char *vaddr;
3394
3395 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3396 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3397 kunmap_atomic(vaddr);
3398 } else {
3399 uint32_t __iomem *reloc_entry;
3400 void __iomem *reloc_page;
3401
3402 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3403 if (ret)
3404 break;
3405
3406 /* Map the page containing the relocation we're going to perform. */
3407 reloc.offset += obj->gtt_offset;
3408 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3409 reloc.offset & PAGE_MASK);
3410 reloc_entry = (uint32_t __iomem *)
3411 (reloc_page + (reloc.offset & ~PAGE_MASK));
3412 iowrite32(reloc.delta, reloc_entry);
3413 io_mapping_unmap_atomic(reloc_page);
3414 }
3415
3416 /* and update the user's relocation entry */
3417 reloc.presumed_offset = target_offset;
3418 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3419 &reloc.presumed_offset,
3420 sizeof(reloc.presumed_offset))) {
3421 ret = -EFAULT;
3422 break;
3423 }
3424 }
3425
3426 drm_gem_object_unreference(target_obj);
3427 return ret;
3428 }
3429
3430 static int
3431 i915_gem_execbuffer_pin(struct drm_device *dev,
3432 struct drm_file *file,
3433 struct drm_gem_object **object_list,
3434 struct drm_i915_gem_exec_object2 *exec_list,
3435 int count)
3436 {
3437 struct drm_i915_private *dev_priv = dev->dev_private;
3438 int ret, i, retry;
3439
3440 /* attempt to pin all of the buffers into the GTT */
3441 for (retry = 0; retry < 2; retry++) {
3442 ret = 0;
3443 for (i = 0; i < count; i++) {
3444 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3445 struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3446 bool need_fence =
3447 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3448 obj->tiling_mode != I915_TILING_NONE;
3449
3450 /* Check fence reg constraints and rebind if necessary */
3451 if (need_fence &&
3452 !i915_gem_object_fence_offset_ok(&obj->base,
3453 obj->tiling_mode)) {
3454 ret = i915_gem_object_unbind(&obj->base);
3455 if (ret)
3456 break;
3457 }
3458
3459 ret = i915_gem_object_pin(&obj->base, entry->alignment);
3460 if (ret)
3461 break;
3462
3463 /*
3464 * Pre-965 chips need a fence register set up in order
3465 * to properly handle blits to/from tiled surfaces.
3466 */
3467 if (need_fence) {
3468 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3469 if (ret) {
3470 i915_gem_object_unpin(&obj->base);
3471 break;
3472 }
3473
3474 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3475 }
3476
3477 entry->offset = obj->gtt_offset;
3478 }
3479
3480 while (i--)
3481 i915_gem_object_unpin(object_list[i]);
3482
3483 if (ret == 0)
3484 break;
3485
3486 if (ret != -ENOSPC || retry)
3487 return ret;
3488
3489 ret = i915_gem_evict_everything(dev);
3490 if (ret)
3491 return ret;
3492 }
3493
3494 return 0;
3495 }
3496
3497 /* Throttle our rendering by waiting until the ring has completed our requests
3498 * emitted over 20 msec ago.
3499 *
3500 * Note that if we were to use the current jiffies each time around the loop,
3501 * we wouldn't escape the function with any frames outstanding if the time to
3502 * render a frame was over 20ms.
3503 *
3504 * This should get us reasonable parallelism between CPU and GPU but also
3505 * relatively low latency when blocking on a particular request to finish.
3506 */
3507 static int
3508 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3509 {
3510 struct drm_i915_private *dev_priv = dev->dev_private;
3511 struct drm_i915_file_private *file_priv = file->driver_priv;
3512 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3513 struct drm_i915_gem_request *request;
3514 struct intel_ring_buffer *ring = NULL;
3515 u32 seqno = 0;
3516 int ret;
3517
3518 spin_lock(&file_priv->mm.lock);
3519 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3520 if (time_after_eq(request->emitted_jiffies, recent_enough))
3521 break;
3522
3523 ring = request->ring;
3524 seqno = request->seqno;
3525 }
3526 spin_unlock(&file_priv->mm.lock);
3527
3528 if (seqno == 0)
3529 return 0;
3530
3531 ret = 0;
3532 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3533 /* And wait for the seqno passing without holding any locks and
3534 * causing extra latency for others. This is safe as the irq
3535 * generation is designed to be run atomically and so is
3536 * lockless.
3537 */
3538 ring->user_irq_get(ring);
3539 ret = wait_event_interruptible(ring->irq_queue,
3540 i915_seqno_passed(ring->get_seqno(ring), seqno)
3541 || atomic_read(&dev_priv->mm.wedged));
3542 ring->user_irq_put(ring);
3543
3544 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3545 ret = -EIO;
3546 }
3547
3548 if (ret == 0)
3549 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3550
3551 return ret;
3552 }
3553
3554 static int
3555 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3556 uint64_t exec_offset)
3557 {
3558 uint32_t exec_start, exec_len;
3559
3560 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3561 exec_len = (uint32_t) exec->batch_len;
3562
3563 if ((exec_start | exec_len) & 0x7)
3564 return -EINVAL;
3565
3566 if (!exec_start)
3567 return -EINVAL;
3568
3569 return 0;
3570 }
3571
3572 static int
3573 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3574 int count)
3575 {
3576 int i;
3577
3578 for (i = 0; i < count; i++) {
3579 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3580 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3581
3582 if (!access_ok(VERIFY_READ, ptr, length))
3583 return -EFAULT;
3584
3585 /* we may also need to update the presumed offsets */
3586 if (!access_ok(VERIFY_WRITE, ptr, length))
3587 return -EFAULT;
3588
3589 if (fault_in_pages_readable(ptr, length))
3590 return -EFAULT;
3591 }
3592
3593 return 0;
3594 }
3595
3596 static int
3597 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3598 struct drm_file *file,
3599 struct drm_i915_gem_execbuffer2 *args,
3600 struct drm_i915_gem_exec_object2 *exec_list)
3601 {
3602 drm_i915_private_t *dev_priv = dev->dev_private;
3603 struct drm_gem_object **object_list = NULL;
3604 struct drm_gem_object *batch_obj;
3605 struct drm_i915_gem_object *obj_priv;
3606 struct drm_clip_rect *cliprects = NULL;
3607 struct drm_i915_gem_request *request = NULL;
3608 int ret, i, flips;
3609 uint64_t exec_offset;
3610
3611 struct intel_ring_buffer *ring = NULL;
3612
3613 ret = i915_gem_check_is_wedged(dev);
3614 if (ret)
3615 return ret;
3616
3617 ret = validate_exec_list(exec_list, args->buffer_count);
3618 if (ret)
3619 return ret;
3620
3621 #if WATCH_EXEC
3622 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3623 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3624 #endif
3625 switch (args->flags & I915_EXEC_RING_MASK) {
3626 case I915_EXEC_DEFAULT:
3627 case I915_EXEC_RENDER:
3628 ring = &dev_priv->render_ring;
3629 break;
3630 case I915_EXEC_BSD:
3631 if (!HAS_BSD(dev)) {
3632 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3633 return -EINVAL;
3634 }
3635 ring = &dev_priv->bsd_ring;
3636 break;
3637 case I915_EXEC_BLT:
3638 if (!HAS_BLT(dev)) {
3639 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3640 return -EINVAL;
3641 }
3642 ring = &dev_priv->blt_ring;
3643 break;
3644 default:
3645 DRM_ERROR("execbuf with unknown ring: %d\n",
3646 (int)(args->flags & I915_EXEC_RING_MASK));
3647 return -EINVAL;
3648 }
3649
3650 if (args->buffer_count < 1) {
3651 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3652 return -EINVAL;
3653 }
3654 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3655 if (object_list == NULL) {
3656 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3657 args->buffer_count);
3658 ret = -ENOMEM;
3659 goto pre_mutex_err;
3660 }
3661
3662 if (args->num_cliprects != 0) {
3663 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3664 GFP_KERNEL);
3665 if (cliprects == NULL) {
3666 ret = -ENOMEM;
3667 goto pre_mutex_err;
3668 }
3669
3670 ret = copy_from_user(cliprects,
3671 (struct drm_clip_rect __user *)
3672 (uintptr_t) args->cliprects_ptr,
3673 sizeof(*cliprects) * args->num_cliprects);
3674 if (ret != 0) {
3675 DRM_ERROR("copy %d cliprects failed: %d\n",
3676 args->num_cliprects, ret);
3677 ret = -EFAULT;
3678 goto pre_mutex_err;
3679 }
3680 }
3681
3682 request = kzalloc(sizeof(*request), GFP_KERNEL);
3683 if (request == NULL) {
3684 ret = -ENOMEM;
3685 goto pre_mutex_err;
3686 }
3687
3688 ret = i915_mutex_lock_interruptible(dev);
3689 if (ret)
3690 goto pre_mutex_err;
3691
3692 if (dev_priv->mm.suspended) {
3693 mutex_unlock(&dev->struct_mutex);
3694 ret = -EBUSY;
3695 goto pre_mutex_err;
3696 }
3697
3698 /* Look up object handles */
3699 for (i = 0; i < args->buffer_count; i++) {
3700 object_list[i] = drm_gem_object_lookup(dev, file,
3701 exec_list[i].handle);
3702 if (object_list[i] == NULL) {
3703 DRM_ERROR("Invalid object handle %d at index %d\n",
3704 exec_list[i].handle, i);
3705 /* prevent error path from reading uninitialized data */
3706 args->buffer_count = i + 1;
3707 ret = -ENOENT;
3708 goto err;
3709 }
3710
3711 obj_priv = to_intel_bo(object_list[i]);
3712 if (obj_priv->in_execbuffer) {
3713 DRM_ERROR("Object %p appears more than once in object list\n",
3714 object_list[i]);
3715 /* prevent error path from reading uninitialized data */
3716 args->buffer_count = i + 1;
3717 ret = -EINVAL;
3718 goto err;
3719 }
3720 obj_priv->in_execbuffer = true;
3721 }
3722
3723 /* Move the objects en-masse into the GTT, evicting if necessary. */
3724 ret = i915_gem_execbuffer_pin(dev, file,
3725 object_list, exec_list,
3726 args->buffer_count);
3727 if (ret)
3728 goto err;
3729
3730 /* The objects are in their final locations, apply the relocations. */
3731 for (i = 0; i < args->buffer_count; i++) {
3732 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3733 obj->base.pending_read_domains = 0;
3734 obj->base.pending_write_domain = 0;
3735 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3736 if (ret)
3737 goto err;
3738 }
3739
3740 /* Set the pending read domains for the batch buffer to COMMAND */
3741 batch_obj = object_list[args->buffer_count-1];
3742 if (batch_obj->pending_write_domain) {
3743 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3744 ret = -EINVAL;
3745 goto err;
3746 }
3747 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3748
3749 /* Sanity check the batch buffer */
3750 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3751 ret = i915_gem_check_execbuffer(args, exec_offset);
3752 if (ret != 0) {
3753 DRM_ERROR("execbuf with invalid offset/length\n");
3754 goto err;
3755 }
3756
3757 /* Zero the global flush/invalidate flags. These
3758 * will be modified as new domains are computed
3759 * for each object
3760 */
3761 dev->invalidate_domains = 0;
3762 dev->flush_domains = 0;
3763 dev_priv->mm.flush_rings = 0;
3764
3765 for (i = 0; i < args->buffer_count; i++) {
3766 struct drm_gem_object *obj = object_list[i];
3767
3768 /* Compute new gpu domains and update invalidate/flush */
3769 i915_gem_object_set_to_gpu_domain(obj, ring);
3770 }
3771
3772 if (dev->invalidate_domains | dev->flush_domains) {
3773 #if WATCH_EXEC
3774 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3775 __func__,
3776 dev->invalidate_domains,
3777 dev->flush_domains);
3778 #endif
3779 i915_gem_flush(dev, file,
3780 dev->invalidate_domains,
3781 dev->flush_domains,
3782 dev_priv->mm.flush_rings);
3783 }
3784
3785 for (i = 0; i < args->buffer_count; i++) {
3786 struct drm_gem_object *obj = object_list[i];
3787 uint32_t old_write_domain = obj->write_domain;
3788 obj->write_domain = obj->pending_write_domain;
3789 trace_i915_gem_object_change_domain(obj,
3790 obj->read_domains,
3791 old_write_domain);
3792 }
3793
3794 #if WATCH_COHERENCY
3795 for (i = 0; i < args->buffer_count; i++) {
3796 i915_gem_object_check_coherency(object_list[i],
3797 exec_list[i].handle);
3798 }
3799 #endif
3800
3801 #if WATCH_EXEC
3802 i915_gem_dump_object(batch_obj,
3803 args->batch_len,
3804 __func__,
3805 ~0);
3806 #endif
3807
3808 /* Check for any pending flips. As we only maintain a flip queue depth
3809 * of 1, we can simply insert a WAIT for the next display flip prior
3810 * to executing the batch and avoid stalling the CPU.
3811 */
3812 flips = 0;
3813 for (i = 0; i < args->buffer_count; i++) {
3814 if (object_list[i]->write_domain)
3815 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3816 }
3817 if (flips) {
3818 int plane, flip_mask;
3819
3820 for (plane = 0; flips >> plane; plane++) {
3821 if (((flips >> plane) & 1) == 0)
3822 continue;
3823
3824 if (plane)
3825 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3826 else
3827 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3828
3829 ret = intel_ring_begin(ring, 2);
3830 if (ret)
3831 goto err;
3832
3833 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3834 intel_ring_emit(ring, MI_NOOP);
3835 intel_ring_advance(ring);
3836 }
3837 }
3838
3839 /* Exec the batchbuffer */
3840 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
3841 if (ret) {
3842 DRM_ERROR("dispatch failed %d\n", ret);
3843 goto err;
3844 }
3845
3846 /*
3847 * Ensure that the commands in the batch buffer are
3848 * finished before the interrupt fires
3849 */
3850 i915_retire_commands(dev, ring);
3851
3852 for (i = 0; i < args->buffer_count; i++) {
3853 struct drm_gem_object *obj = object_list[i];
3854
3855 i915_gem_object_move_to_active(obj, ring);
3856 if (obj->write_domain)
3857 list_move_tail(&to_intel_bo(obj)->gpu_write_list,
3858 &ring->gpu_write_list);
3859 }
3860
3861 i915_add_request(dev, file, request, ring);
3862 request = NULL;
3863
3864 err:
3865 for (i = 0; i < args->buffer_count; i++) {
3866 if (object_list[i]) {
3867 obj_priv = to_intel_bo(object_list[i]);
3868 obj_priv->in_execbuffer = false;
3869 }
3870 drm_gem_object_unreference(object_list[i]);
3871 }
3872
3873 mutex_unlock(&dev->struct_mutex);
3874
3875 pre_mutex_err:
3876 drm_free_large(object_list);
3877 kfree(cliprects);
3878 kfree(request);
3879
3880 return ret;
3881 }
3882
3883 /*
3884 * Legacy execbuffer just creates an exec2 list from the original exec object
3885 * list array and passes it to the real function.
3886 */
3887 int
3888 i915_gem_execbuffer(struct drm_device *dev, void *data,
3889 struct drm_file *file_priv)
3890 {
3891 struct drm_i915_gem_execbuffer *args = data;
3892 struct drm_i915_gem_execbuffer2 exec2;
3893 struct drm_i915_gem_exec_object *exec_list = NULL;
3894 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3895 int ret, i;
3896
3897 #if WATCH_EXEC
3898 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3899 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3900 #endif
3901
3902 if (args->buffer_count < 1) {
3903 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3904 return -EINVAL;
3905 }
3906
3907 /* Copy in the exec list from userland */
3908 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3909 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3910 if (exec_list == NULL || exec2_list == NULL) {
3911 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3912 args->buffer_count);
3913 drm_free_large(exec_list);
3914 drm_free_large(exec2_list);
3915 return -ENOMEM;
3916 }
3917 ret = copy_from_user(exec_list,
3918 (struct drm_i915_relocation_entry __user *)
3919 (uintptr_t) args->buffers_ptr,
3920 sizeof(*exec_list) * args->buffer_count);
3921 if (ret != 0) {
3922 DRM_ERROR("copy %d exec entries failed %d\n",
3923 args->buffer_count, ret);
3924 drm_free_large(exec_list);
3925 drm_free_large(exec2_list);
3926 return -EFAULT;
3927 }
3928
3929 for (i = 0; i < args->buffer_count; i++) {
3930 exec2_list[i].handle = exec_list[i].handle;
3931 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3932 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3933 exec2_list[i].alignment = exec_list[i].alignment;
3934 exec2_list[i].offset = exec_list[i].offset;
3935 if (INTEL_INFO(dev)->gen < 4)
3936 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3937 else
3938 exec2_list[i].flags = 0;
3939 }
3940
3941 exec2.buffers_ptr = args->buffers_ptr;
3942 exec2.buffer_count = args->buffer_count;
3943 exec2.batch_start_offset = args->batch_start_offset;
3944 exec2.batch_len = args->batch_len;
3945 exec2.DR1 = args->DR1;
3946 exec2.DR4 = args->DR4;
3947 exec2.num_cliprects = args->num_cliprects;
3948 exec2.cliprects_ptr = args->cliprects_ptr;
3949 exec2.flags = I915_EXEC_RENDER;
3950
3951 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3952 if (!ret) {
3953 /* Copy the new buffer offsets back to the user's exec list. */
3954 for (i = 0; i < args->buffer_count; i++)
3955 exec_list[i].offset = exec2_list[i].offset;
3956 /* ... and back out to userspace */
3957 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3958 (uintptr_t) args->buffers_ptr,
3959 exec_list,
3960 sizeof(*exec_list) * args->buffer_count);
3961 if (ret) {
3962 ret = -EFAULT;
3963 DRM_ERROR("failed to copy %d exec entries "
3964 "back to user (%d)\n",
3965 args->buffer_count, ret);
3966 }
3967 }
3968
3969 drm_free_large(exec_list);
3970 drm_free_large(exec2_list);
3971 return ret;
3972 }
3973
3974 int
3975 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3976 struct drm_file *file_priv)
3977 {
3978 struct drm_i915_gem_execbuffer2 *args = data;
3979 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3980 int ret;
3981
3982 #if WATCH_EXEC
3983 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3984 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3985 #endif
3986
3987 if (args->buffer_count < 1) {
3988 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3989 return -EINVAL;
3990 }
3991
3992 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3993 if (exec2_list == NULL) {
3994 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3995 args->buffer_count);
3996 return -ENOMEM;
3997 }
3998 ret = copy_from_user(exec2_list,
3999 (struct drm_i915_relocation_entry __user *)
4000 (uintptr_t) args->buffers_ptr,
4001 sizeof(*exec2_list) * args->buffer_count);
4002 if (ret != 0) {
4003 DRM_ERROR("copy %d exec entries failed %d\n",
4004 args->buffer_count, ret);
4005 drm_free_large(exec2_list);
4006 return -EFAULT;
4007 }
4008
4009 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4010 if (!ret) {
4011 /* Copy the new buffer offsets back to the user's exec list. */
4012 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4013 (uintptr_t) args->buffers_ptr,
4014 exec2_list,
4015 sizeof(*exec2_list) * args->buffer_count);
4016 if (ret) {
4017 ret = -EFAULT;
4018 DRM_ERROR("failed to copy %d exec entries "
4019 "back to user (%d)\n",
4020 args->buffer_count, ret);
4021 }
4022 }
4023
4024 drm_free_large(exec2_list);
4025 return ret;
4026 }
4027
4028 int
4029 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4030 {
4031 struct drm_device *dev = obj->dev;
4032 struct drm_i915_private *dev_priv = dev->dev_private;
4033 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4034 int ret;
4035
4036 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4037 WARN_ON(i915_verify_lists(dev));
4038
4039 if (obj_priv->gtt_space != NULL) {
4040 if (alignment == 0)
4041 alignment = i915_gem_get_gtt_alignment(obj);
4042 if (obj_priv->gtt_offset & (alignment - 1)) {
4043 WARN(obj_priv->pin_count,
4044 "bo is already pinned with incorrect alignment:"
4045 " offset=%x, req.alignment=%x\n",
4046 obj_priv->gtt_offset, alignment);
4047 ret = i915_gem_object_unbind(obj);
4048 if (ret)
4049 return ret;
4050 }
4051 }
4052
4053 if (obj_priv->gtt_space == NULL) {
4054 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4055 if (ret)
4056 return ret;
4057 }
4058
4059 obj_priv->pin_count++;
4060
4061 /* If the object is not active and not pending a flush,
4062 * remove it from the inactive list
4063 */
4064 if (obj_priv->pin_count == 1) {
4065 i915_gem_info_add_pin(dev_priv, obj->size);
4066 if (!obj_priv->active)
4067 list_move_tail(&obj_priv->mm_list,
4068 &dev_priv->mm.pinned_list);
4069 }
4070
4071 WARN_ON(i915_verify_lists(dev));
4072 return 0;
4073 }
4074
4075 void
4076 i915_gem_object_unpin(struct drm_gem_object *obj)
4077 {
4078 struct drm_device *dev = obj->dev;
4079 drm_i915_private_t *dev_priv = dev->dev_private;
4080 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4081
4082 WARN_ON(i915_verify_lists(dev));
4083 obj_priv->pin_count--;
4084 BUG_ON(obj_priv->pin_count < 0);
4085 BUG_ON(obj_priv->gtt_space == NULL);
4086
4087 /* If the object is no longer pinned, and is
4088 * neither active nor being flushed, then stick it on
4089 * the inactive list
4090 */
4091 if (obj_priv->pin_count == 0) {
4092 if (!obj_priv->active)
4093 list_move_tail(&obj_priv->mm_list,
4094 &dev_priv->mm.inactive_list);
4095 i915_gem_info_remove_pin(dev_priv, obj->size);
4096 }
4097 WARN_ON(i915_verify_lists(dev));
4098 }
4099
4100 int
4101 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4102 struct drm_file *file_priv)
4103 {
4104 struct drm_i915_gem_pin *args = data;
4105 struct drm_gem_object *obj;
4106 struct drm_i915_gem_object *obj_priv;
4107 int ret;
4108
4109 ret = i915_mutex_lock_interruptible(dev);
4110 if (ret)
4111 return ret;
4112
4113 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4114 if (obj == NULL) {
4115 ret = -ENOENT;
4116 goto unlock;
4117 }
4118 obj_priv = to_intel_bo(obj);
4119
4120 if (obj_priv->madv != I915_MADV_WILLNEED) {
4121 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4122 ret = -EINVAL;
4123 goto out;
4124 }
4125
4126 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4127 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4128 args->handle);
4129 ret = -EINVAL;
4130 goto out;
4131 }
4132
4133 obj_priv->user_pin_count++;
4134 obj_priv->pin_filp = file_priv;
4135 if (obj_priv->user_pin_count == 1) {
4136 ret = i915_gem_object_pin(obj, args->alignment);
4137 if (ret)
4138 goto out;
4139 }
4140
4141 /* XXX - flush the CPU caches for pinned objects
4142 * as the X server doesn't manage domains yet
4143 */
4144 i915_gem_object_flush_cpu_write_domain(obj);
4145 args->offset = obj_priv->gtt_offset;
4146 out:
4147 drm_gem_object_unreference(obj);
4148 unlock:
4149 mutex_unlock(&dev->struct_mutex);
4150 return ret;
4151 }
4152
4153 int
4154 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4155 struct drm_file *file_priv)
4156 {
4157 struct drm_i915_gem_pin *args = data;
4158 struct drm_gem_object *obj;
4159 struct drm_i915_gem_object *obj_priv;
4160 int ret;
4161
4162 ret = i915_mutex_lock_interruptible(dev);
4163 if (ret)
4164 return ret;
4165
4166 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4167 if (obj == NULL) {
4168 ret = -ENOENT;
4169 goto unlock;
4170 }
4171 obj_priv = to_intel_bo(obj);
4172
4173 if (obj_priv->pin_filp != file_priv) {
4174 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4175 args->handle);
4176 ret = -EINVAL;
4177 goto out;
4178 }
4179 obj_priv->user_pin_count--;
4180 if (obj_priv->user_pin_count == 0) {
4181 obj_priv->pin_filp = NULL;
4182 i915_gem_object_unpin(obj);
4183 }
4184
4185 out:
4186 drm_gem_object_unreference(obj);
4187 unlock:
4188 mutex_unlock(&dev->struct_mutex);
4189 return ret;
4190 }
4191
4192 int
4193 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4194 struct drm_file *file_priv)
4195 {
4196 struct drm_i915_gem_busy *args = data;
4197 struct drm_gem_object *obj;
4198 struct drm_i915_gem_object *obj_priv;
4199 int ret;
4200
4201 ret = i915_mutex_lock_interruptible(dev);
4202 if (ret)
4203 return ret;
4204
4205 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4206 if (obj == NULL) {
4207 ret = -ENOENT;
4208 goto unlock;
4209 }
4210 obj_priv = to_intel_bo(obj);
4211
4212 /* Count all active objects as busy, even if they are currently not used
4213 * by the gpu. Users of this interface expect objects to eventually
4214 * become non-busy without any further actions, therefore emit any
4215 * necessary flushes here.
4216 */
4217 args->busy = obj_priv->active;
4218 if (args->busy) {
4219 /* Unconditionally flush objects, even when the gpu still uses this
4220 * object. Userspace calling this function indicates that it wants to
4221 * use this buffer rather sooner than later, so issuing the required
4222 * flush earlier is beneficial.
4223 */
4224 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4225 i915_gem_flush_ring(dev, file_priv,
4226 obj_priv->ring,
4227 0, obj->write_domain);
4228
4229 /* Update the active list for the hardware's current position.
4230 * Otherwise this only updates on a delayed timer or when irqs
4231 * are actually unmasked, and our working set ends up being
4232 * larger than required.
4233 */
4234 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4235
4236 args->busy = obj_priv->active;
4237 }
4238
4239 drm_gem_object_unreference(obj);
4240 unlock:
4241 mutex_unlock(&dev->struct_mutex);
4242 return ret;
4243 }
4244
4245 int
4246 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4247 struct drm_file *file_priv)
4248 {
4249 return i915_gem_ring_throttle(dev, file_priv);
4250 }
4251
4252 int
4253 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4254 struct drm_file *file_priv)
4255 {
4256 struct drm_i915_gem_madvise *args = data;
4257 struct drm_gem_object *obj;
4258 struct drm_i915_gem_object *obj_priv;
4259 int ret;
4260
4261 switch (args->madv) {
4262 case I915_MADV_DONTNEED:
4263 case I915_MADV_WILLNEED:
4264 break;
4265 default:
4266 return -EINVAL;
4267 }
4268
4269 ret = i915_mutex_lock_interruptible(dev);
4270 if (ret)
4271 return ret;
4272
4273 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4274 if (obj == NULL) {
4275 ret = -ENOENT;
4276 goto unlock;
4277 }
4278 obj_priv = to_intel_bo(obj);
4279
4280 if (obj_priv->pin_count) {
4281 ret = -EINVAL;
4282 goto out;
4283 }
4284
4285 if (obj_priv->madv != __I915_MADV_PURGED)
4286 obj_priv->madv = args->madv;
4287
4288 /* if the object is no longer bound, discard its backing storage */
4289 if (i915_gem_object_is_purgeable(obj_priv) &&
4290 obj_priv->gtt_space == NULL)
4291 i915_gem_object_truncate(obj);
4292
4293 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4294
4295 out:
4296 drm_gem_object_unreference(obj);
4297 unlock:
4298 mutex_unlock(&dev->struct_mutex);
4299 return ret;
4300 }
4301
4302 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4303 size_t size)
4304 {
4305 struct drm_i915_private *dev_priv = dev->dev_private;
4306 struct drm_i915_gem_object *obj;
4307
4308 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4309 if (obj == NULL)
4310 return NULL;
4311
4312 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4313 kfree(obj);
4314 return NULL;
4315 }
4316
4317 i915_gem_info_add_obj(dev_priv, size);
4318
4319 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4320 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4321
4322 obj->agp_type = AGP_USER_MEMORY;
4323 obj->base.driver_private = NULL;
4324 obj->fence_reg = I915_FENCE_REG_NONE;
4325 INIT_LIST_HEAD(&obj->mm_list);
4326 INIT_LIST_HEAD(&obj->ring_list);
4327 INIT_LIST_HEAD(&obj->gpu_write_list);
4328 obj->madv = I915_MADV_WILLNEED;
4329
4330 return &obj->base;
4331 }
4332
4333 int i915_gem_init_object(struct drm_gem_object *obj)
4334 {
4335 BUG();
4336
4337 return 0;
4338 }
4339
4340 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4341 {
4342 struct drm_device *dev = obj->dev;
4343 drm_i915_private_t *dev_priv = dev->dev_private;
4344 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4345 int ret;
4346
4347 ret = i915_gem_object_unbind(obj);
4348 if (ret == -ERESTARTSYS) {
4349 list_move(&obj_priv->mm_list,
4350 &dev_priv->mm.deferred_free_list);
4351 return;
4352 }
4353
4354 if (obj_priv->mmap_offset)
4355 i915_gem_free_mmap_offset(obj);
4356
4357 drm_gem_object_release(obj);
4358 i915_gem_info_remove_obj(dev_priv, obj->size);
4359
4360 kfree(obj_priv->page_cpu_valid);
4361 kfree(obj_priv->bit_17);
4362 kfree(obj_priv);
4363 }
4364
4365 void i915_gem_free_object(struct drm_gem_object *obj)
4366 {
4367 struct drm_device *dev = obj->dev;
4368 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4369
4370 trace_i915_gem_object_destroy(obj);
4371
4372 while (obj_priv->pin_count > 0)
4373 i915_gem_object_unpin(obj);
4374
4375 if (obj_priv->phys_obj)
4376 i915_gem_detach_phys_object(dev, obj);
4377
4378 i915_gem_free_object_tail(obj);
4379 }
4380
4381 int
4382 i915_gem_idle(struct drm_device *dev)
4383 {
4384 drm_i915_private_t *dev_priv = dev->dev_private;
4385 int ret;
4386
4387 mutex_lock(&dev->struct_mutex);
4388
4389 if (dev_priv->mm.suspended) {
4390 mutex_unlock(&dev->struct_mutex);
4391 return 0;
4392 }
4393
4394 ret = i915_gpu_idle(dev);
4395 if (ret) {
4396 mutex_unlock(&dev->struct_mutex);
4397 return ret;
4398 }
4399
4400 /* Under UMS, be paranoid and evict. */
4401 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4402 ret = i915_gem_evict_inactive(dev);
4403 if (ret) {
4404 mutex_unlock(&dev->struct_mutex);
4405 return ret;
4406 }
4407 }
4408
4409 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4410 * We need to replace this with a semaphore, or something.
4411 * And not confound mm.suspended!
4412 */
4413 dev_priv->mm.suspended = 1;
4414 del_timer_sync(&dev_priv->hangcheck_timer);
4415
4416 i915_kernel_lost_context(dev);
4417 i915_gem_cleanup_ringbuffer(dev);
4418
4419 mutex_unlock(&dev->struct_mutex);
4420
4421 /* Cancel the retire work handler, which should be idle now. */
4422 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4423
4424 return 0;
4425 }
4426
4427 /*
4428 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4429 * over cache flushing.
4430 */
4431 static int
4432 i915_gem_init_pipe_control(struct drm_device *dev)
4433 {
4434 drm_i915_private_t *dev_priv = dev->dev_private;
4435 struct drm_gem_object *obj;
4436 struct drm_i915_gem_object *obj_priv;
4437 int ret;
4438
4439 obj = i915_gem_alloc_object(dev, 4096);
4440 if (obj == NULL) {
4441 DRM_ERROR("Failed to allocate seqno page\n");
4442 ret = -ENOMEM;
4443 goto err;
4444 }
4445 obj_priv = to_intel_bo(obj);
4446 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4447
4448 ret = i915_gem_object_pin(obj, 4096);
4449 if (ret)
4450 goto err_unref;
4451
4452 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4453 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4454 if (dev_priv->seqno_page == NULL)
4455 goto err_unpin;
4456
4457 dev_priv->seqno_obj = obj;
4458 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4459
4460 return 0;
4461
4462 err_unpin:
4463 i915_gem_object_unpin(obj);
4464 err_unref:
4465 drm_gem_object_unreference(obj);
4466 err:
4467 return ret;
4468 }
4469
4470
4471 static void
4472 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4473 {
4474 drm_i915_private_t *dev_priv = dev->dev_private;
4475 struct drm_gem_object *obj;
4476 struct drm_i915_gem_object *obj_priv;
4477
4478 obj = dev_priv->seqno_obj;
4479 obj_priv = to_intel_bo(obj);
4480 kunmap(obj_priv->pages[0]);
4481 i915_gem_object_unpin(obj);
4482 drm_gem_object_unreference(obj);
4483 dev_priv->seqno_obj = NULL;
4484
4485 dev_priv->seqno_page = NULL;
4486 }
4487
4488 int
4489 i915_gem_init_ringbuffer(struct drm_device *dev)
4490 {
4491 drm_i915_private_t *dev_priv = dev->dev_private;
4492 int ret;
4493
4494 if (HAS_PIPE_CONTROL(dev)) {
4495 ret = i915_gem_init_pipe_control(dev);
4496 if (ret)
4497 return ret;
4498 }
4499
4500 ret = intel_init_render_ring_buffer(dev);
4501 if (ret)
4502 goto cleanup_pipe_control;
4503
4504 if (HAS_BSD(dev)) {
4505 ret = intel_init_bsd_ring_buffer(dev);
4506 if (ret)
4507 goto cleanup_render_ring;
4508 }
4509
4510 if (HAS_BLT(dev)) {
4511 ret = intel_init_blt_ring_buffer(dev);
4512 if (ret)
4513 goto cleanup_bsd_ring;
4514 }
4515
4516 dev_priv->next_seqno = 1;
4517
4518 return 0;
4519
4520 cleanup_bsd_ring:
4521 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4522 cleanup_render_ring:
4523 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4524 cleanup_pipe_control:
4525 if (HAS_PIPE_CONTROL(dev))
4526 i915_gem_cleanup_pipe_control(dev);
4527 return ret;
4528 }
4529
4530 void
4531 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4532 {
4533 drm_i915_private_t *dev_priv = dev->dev_private;
4534
4535 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4536 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4537 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4538 if (HAS_PIPE_CONTROL(dev))
4539 i915_gem_cleanup_pipe_control(dev);
4540 }
4541
4542 int
4543 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4544 struct drm_file *file_priv)
4545 {
4546 drm_i915_private_t *dev_priv = dev->dev_private;
4547 int ret;
4548
4549 if (drm_core_check_feature(dev, DRIVER_MODESET))
4550 return 0;
4551
4552 if (atomic_read(&dev_priv->mm.wedged)) {
4553 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4554 atomic_set(&dev_priv->mm.wedged, 0);
4555 }
4556
4557 mutex_lock(&dev->struct_mutex);
4558 dev_priv->mm.suspended = 0;
4559
4560 ret = i915_gem_init_ringbuffer(dev);
4561 if (ret != 0) {
4562 mutex_unlock(&dev->struct_mutex);
4563 return ret;
4564 }
4565
4566 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4567 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4568 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4569 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4570 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4571 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4572 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4573 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4574 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4575 mutex_unlock(&dev->struct_mutex);
4576
4577 ret = drm_irq_install(dev);
4578 if (ret)
4579 goto cleanup_ringbuffer;
4580
4581 return 0;
4582
4583 cleanup_ringbuffer:
4584 mutex_lock(&dev->struct_mutex);
4585 i915_gem_cleanup_ringbuffer(dev);
4586 dev_priv->mm.suspended = 1;
4587 mutex_unlock(&dev->struct_mutex);
4588
4589 return ret;
4590 }
4591
4592 int
4593 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4594 struct drm_file *file_priv)
4595 {
4596 if (drm_core_check_feature(dev, DRIVER_MODESET))
4597 return 0;
4598
4599 drm_irq_uninstall(dev);
4600 return i915_gem_idle(dev);
4601 }
4602
4603 void
4604 i915_gem_lastclose(struct drm_device *dev)
4605 {
4606 int ret;
4607
4608 if (drm_core_check_feature(dev, DRIVER_MODESET))
4609 return;
4610
4611 ret = i915_gem_idle(dev);
4612 if (ret)
4613 DRM_ERROR("failed to idle hardware: %d\n", ret);
4614 }
4615
4616 static void
4617 init_ring_lists(struct intel_ring_buffer *ring)
4618 {
4619 INIT_LIST_HEAD(&ring->active_list);
4620 INIT_LIST_HEAD(&ring->request_list);
4621 INIT_LIST_HEAD(&ring->gpu_write_list);
4622 }
4623
4624 void
4625 i915_gem_load(struct drm_device *dev)
4626 {
4627 int i;
4628 drm_i915_private_t *dev_priv = dev->dev_private;
4629
4630 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4631 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4632 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4633 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4634 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4635 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4636 init_ring_lists(&dev_priv->render_ring);
4637 init_ring_lists(&dev_priv->bsd_ring);
4638 init_ring_lists(&dev_priv->blt_ring);
4639 for (i = 0; i < 16; i++)
4640 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4641 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4642 i915_gem_retire_work_handler);
4643 init_completion(&dev_priv->error_completion);
4644 spin_lock(&shrink_list_lock);
4645 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4646 spin_unlock(&shrink_list_lock);
4647
4648 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4649 if (IS_GEN3(dev)) {
4650 u32 tmp = I915_READ(MI_ARB_STATE);
4651 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4652 /* arb state is a masked write, so set bit + bit in mask */
4653 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4654 I915_WRITE(MI_ARB_STATE, tmp);
4655 }
4656 }
4657
4658 /* Old X drivers will take 0-2 for front, back, depth buffers */
4659 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4660 dev_priv->fence_reg_start = 3;
4661
4662 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4663 dev_priv->num_fence_regs = 16;
4664 else
4665 dev_priv->num_fence_regs = 8;
4666
4667 /* Initialize fence registers to zero */
4668 switch (INTEL_INFO(dev)->gen) {
4669 case 6:
4670 for (i = 0; i < 16; i++)
4671 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4672 break;
4673 case 5:
4674 case 4:
4675 for (i = 0; i < 16; i++)
4676 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4677 break;
4678 case 3:
4679 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4680 for (i = 0; i < 8; i++)
4681 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4682 case 2:
4683 for (i = 0; i < 8; i++)
4684 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4685 break;
4686 }
4687 i915_gem_detect_bit_6_swizzle(dev);
4688 init_waitqueue_head(&dev_priv->pending_flip_queue);
4689 }
4690
4691 /*
4692 * Create a physically contiguous memory object for this object
4693 * e.g. for cursor + overlay regs
4694 */
4695 static int i915_gem_init_phys_object(struct drm_device *dev,
4696 int id, int size, int align)
4697 {
4698 drm_i915_private_t *dev_priv = dev->dev_private;
4699 struct drm_i915_gem_phys_object *phys_obj;
4700 int ret;
4701
4702 if (dev_priv->mm.phys_objs[id - 1] || !size)
4703 return 0;
4704
4705 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4706 if (!phys_obj)
4707 return -ENOMEM;
4708
4709 phys_obj->id = id;
4710
4711 phys_obj->handle = drm_pci_alloc(dev, size, align);
4712 if (!phys_obj->handle) {
4713 ret = -ENOMEM;
4714 goto kfree_obj;
4715 }
4716 #ifdef CONFIG_X86
4717 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4718 #endif
4719
4720 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4721
4722 return 0;
4723 kfree_obj:
4724 kfree(phys_obj);
4725 return ret;
4726 }
4727
4728 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4729 {
4730 drm_i915_private_t *dev_priv = dev->dev_private;
4731 struct drm_i915_gem_phys_object *phys_obj;
4732
4733 if (!dev_priv->mm.phys_objs[id - 1])
4734 return;
4735
4736 phys_obj = dev_priv->mm.phys_objs[id - 1];
4737 if (phys_obj->cur_obj) {
4738 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4739 }
4740
4741 #ifdef CONFIG_X86
4742 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4743 #endif
4744 drm_pci_free(dev, phys_obj->handle);
4745 kfree(phys_obj);
4746 dev_priv->mm.phys_objs[id - 1] = NULL;
4747 }
4748
4749 void i915_gem_free_all_phys_object(struct drm_device *dev)
4750 {
4751 int i;
4752
4753 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4754 i915_gem_free_phys_object(dev, i);
4755 }
4756
4757 void i915_gem_detach_phys_object(struct drm_device *dev,
4758 struct drm_gem_object *obj)
4759 {
4760 struct drm_i915_gem_object *obj_priv;
4761 int i;
4762 int ret;
4763 int page_count;
4764
4765 obj_priv = to_intel_bo(obj);
4766 if (!obj_priv->phys_obj)
4767 return;
4768
4769 ret = i915_gem_object_get_pages(obj, 0);
4770 if (ret)
4771 goto out;
4772
4773 page_count = obj->size / PAGE_SIZE;
4774
4775 for (i = 0; i < page_count; i++) {
4776 char *dst = kmap_atomic(obj_priv->pages[i]);
4777 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4778
4779 memcpy(dst, src, PAGE_SIZE);
4780 kunmap_atomic(dst);
4781 }
4782 drm_clflush_pages(obj_priv->pages, page_count);
4783 drm_agp_chipset_flush(dev);
4784
4785 i915_gem_object_put_pages(obj);
4786 out:
4787 obj_priv->phys_obj->cur_obj = NULL;
4788 obj_priv->phys_obj = NULL;
4789 }
4790
4791 int
4792 i915_gem_attach_phys_object(struct drm_device *dev,
4793 struct drm_gem_object *obj,
4794 int id,
4795 int align)
4796 {
4797 drm_i915_private_t *dev_priv = dev->dev_private;
4798 struct drm_i915_gem_object *obj_priv;
4799 int ret = 0;
4800 int page_count;
4801 int i;
4802
4803 if (id > I915_MAX_PHYS_OBJECT)
4804 return -EINVAL;
4805
4806 obj_priv = to_intel_bo(obj);
4807
4808 if (obj_priv->phys_obj) {
4809 if (obj_priv->phys_obj->id == id)
4810 return 0;
4811 i915_gem_detach_phys_object(dev, obj);
4812 }
4813
4814 /* create a new object */
4815 if (!dev_priv->mm.phys_objs[id - 1]) {
4816 ret = i915_gem_init_phys_object(dev, id,
4817 obj->size, align);
4818 if (ret) {
4819 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4820 goto out;
4821 }
4822 }
4823
4824 /* bind to the object */
4825 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4826 obj_priv->phys_obj->cur_obj = obj;
4827
4828 ret = i915_gem_object_get_pages(obj, 0);
4829 if (ret) {
4830 DRM_ERROR("failed to get page list\n");
4831 goto out;
4832 }
4833
4834 page_count = obj->size / PAGE_SIZE;
4835
4836 for (i = 0; i < page_count; i++) {
4837 char *src = kmap_atomic(obj_priv->pages[i]);
4838 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4839
4840 memcpy(dst, src, PAGE_SIZE);
4841 kunmap_atomic(src);
4842 }
4843
4844 i915_gem_object_put_pages(obj);
4845
4846 return 0;
4847 out:
4848 return ret;
4849 }
4850
4851 static int
4852 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4853 struct drm_i915_gem_pwrite *args,
4854 struct drm_file *file_priv)
4855 {
4856 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4857 void *obj_addr;
4858 int ret;
4859 char __user *user_data;
4860
4861 user_data = (char __user *) (uintptr_t) args->data_ptr;
4862 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4863
4864 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4865 ret = copy_from_user(obj_addr, user_data, args->size);
4866 if (ret)
4867 return -EFAULT;
4868
4869 drm_agp_chipset_flush(dev);
4870 return 0;
4871 }
4872
4873 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4874 {
4875 struct drm_i915_file_private *file_priv = file->driver_priv;
4876
4877 /* Clean up our request list when the client is going away, so that
4878 * later retire_requests won't dereference our soon-to-be-gone
4879 * file_priv.
4880 */
4881 spin_lock(&file_priv->mm.lock);
4882 while (!list_empty(&file_priv->mm.request_list)) {
4883 struct drm_i915_gem_request *request;
4884
4885 request = list_first_entry(&file_priv->mm.request_list,
4886 struct drm_i915_gem_request,
4887 client_list);
4888 list_del(&request->client_list);
4889 request->file_priv = NULL;
4890 }
4891 spin_unlock(&file_priv->mm.lock);
4892 }
4893
4894 static int
4895 i915_gpu_is_active(struct drm_device *dev)
4896 {
4897 drm_i915_private_t *dev_priv = dev->dev_private;
4898 int lists_empty;
4899
4900 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4901 list_empty(&dev_priv->render_ring.active_list) &&
4902 list_empty(&dev_priv->bsd_ring.active_list) &&
4903 list_empty(&dev_priv->blt_ring.active_list);
4904
4905 return !lists_empty;
4906 }
4907
4908 static int
4909 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4910 {
4911 drm_i915_private_t *dev_priv, *next_dev;
4912 struct drm_i915_gem_object *obj_priv, *next_obj;
4913 int cnt = 0;
4914 int would_deadlock = 1;
4915
4916 /* "fast-path" to count number of available objects */
4917 if (nr_to_scan == 0) {
4918 spin_lock(&shrink_list_lock);
4919 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4920 struct drm_device *dev = dev_priv->dev;
4921
4922 if (mutex_trylock(&dev->struct_mutex)) {
4923 list_for_each_entry(obj_priv,
4924 &dev_priv->mm.inactive_list,
4925 mm_list)
4926 cnt++;
4927 mutex_unlock(&dev->struct_mutex);
4928 }
4929 }
4930 spin_unlock(&shrink_list_lock);
4931
4932 return (cnt / 100) * sysctl_vfs_cache_pressure;
4933 }
4934
4935 spin_lock(&shrink_list_lock);
4936
4937 rescan:
4938 /* first scan for clean buffers */
4939 list_for_each_entry_safe(dev_priv, next_dev,
4940 &shrink_list, mm.shrink_list) {
4941 struct drm_device *dev = dev_priv->dev;
4942
4943 if (! mutex_trylock(&dev->struct_mutex))
4944 continue;
4945
4946 spin_unlock(&shrink_list_lock);
4947 i915_gem_retire_requests(dev);
4948
4949 list_for_each_entry_safe(obj_priv, next_obj,
4950 &dev_priv->mm.inactive_list,
4951 mm_list) {
4952 if (i915_gem_object_is_purgeable(obj_priv)) {
4953 i915_gem_object_unbind(&obj_priv->base);
4954 if (--nr_to_scan <= 0)
4955 break;
4956 }
4957 }
4958
4959 spin_lock(&shrink_list_lock);
4960 mutex_unlock(&dev->struct_mutex);
4961
4962 would_deadlock = 0;
4963
4964 if (nr_to_scan <= 0)
4965 break;
4966 }
4967
4968 /* second pass, evict/count anything still on the inactive list */
4969 list_for_each_entry_safe(dev_priv, next_dev,
4970 &shrink_list, mm.shrink_list) {
4971 struct drm_device *dev = dev_priv->dev;
4972
4973 if (! mutex_trylock(&dev->struct_mutex))
4974 continue;
4975
4976 spin_unlock(&shrink_list_lock);
4977
4978 list_for_each_entry_safe(obj_priv, next_obj,
4979 &dev_priv->mm.inactive_list,
4980 mm_list) {
4981 if (nr_to_scan > 0) {
4982 i915_gem_object_unbind(&obj_priv->base);
4983 nr_to_scan--;
4984 } else
4985 cnt++;
4986 }
4987
4988 spin_lock(&shrink_list_lock);
4989 mutex_unlock(&dev->struct_mutex);
4990
4991 would_deadlock = 0;
4992 }
4993
4994 if (nr_to_scan) {
4995 int active = 0;
4996
4997 /*
4998 * We are desperate for pages, so as a last resort, wait
4999 * for the GPU to finish and discard whatever we can.
5000 * This has a dramatic impact to reduce the number of
5001 * OOM-killer events whilst running the GPU aggressively.
5002 */
5003 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5004 struct drm_device *dev = dev_priv->dev;
5005
5006 if (!mutex_trylock(&dev->struct_mutex))
5007 continue;
5008
5009 spin_unlock(&shrink_list_lock);
5010
5011 if (i915_gpu_is_active(dev)) {
5012 i915_gpu_idle(dev);
5013 active++;
5014 }
5015
5016 spin_lock(&shrink_list_lock);
5017 mutex_unlock(&dev->struct_mutex);
5018 }
5019
5020 if (active)
5021 goto rescan;
5022 }
5023
5024 spin_unlock(&shrink_list_lock);
5025
5026 if (would_deadlock)
5027 return -1;
5028 else if (cnt > 0)
5029 return (cnt / 100) * sysctl_vfs_cache_pressure;
5030 else
5031 return 0;
5032 }
5033
5034 static struct shrinker shrinker = {
5035 .shrink = i915_gem_shrink,
5036 .seeks = DEFAULT_SEEKS,
5037 };
5038
5039 __init void
5040 i915_gem_shrinker_init(void)
5041 {
5042 register_shrinker(&shrinker);
5043 }
5044
5045 __exit void
5046 i915_gem_shrinker_exit(void)
5047 {
5048 unregister_shrinker(&shrinker);
5049 }
This page took 0.167185 seconds and 5 git commands to generate.