02719df418e39425ab2dd4ec90167aaf341637e0
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60
61 static LIST_HEAD(shrink_list);
62 static DEFINE_SPINLOCK(shrink_list_lock);
63
64 static inline bool
65 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
66 {
67 return obj_priv->gtt_space &&
68 !obj_priv->active &&
69 obj_priv->pin_count == 0;
70 }
71
72 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
73 unsigned long end)
74 {
75 drm_i915_private_t *dev_priv = dev->dev_private;
76
77 if (start >= end ||
78 (start & (PAGE_SIZE - 1)) != 0 ||
79 (end & (PAGE_SIZE - 1)) != 0) {
80 return -EINVAL;
81 }
82
83 drm_mm_init(&dev_priv->mm.gtt_space, start,
84 end - start);
85
86 dev->gtt_total = (uint32_t) (end - start);
87
88 return 0;
89 }
90
91 int
92 i915_gem_init_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
94 {
95 struct drm_i915_gem_init *args = data;
96 int ret;
97
98 mutex_lock(&dev->struct_mutex);
99 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
100 mutex_unlock(&dev->struct_mutex);
101
102 return ret;
103 }
104
105 int
106 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
107 struct drm_file *file_priv)
108 {
109 struct drm_i915_gem_get_aperture *args = data;
110
111 if (!(dev->driver->driver_features & DRIVER_GEM))
112 return -ENODEV;
113
114 args->aper_size = dev->gtt_total;
115 args->aper_available_size = (args->aper_size -
116 atomic_read(&dev->pin_memory));
117
118 return 0;
119 }
120
121
122 /**
123 * Creates a new mm object and returns a handle to it.
124 */
125 int
126 i915_gem_create_ioctl(struct drm_device *dev, void *data,
127 struct drm_file *file_priv)
128 {
129 struct drm_i915_gem_create *args = data;
130 struct drm_gem_object *obj;
131 int ret;
132 u32 handle;
133
134 args->size = roundup(args->size, PAGE_SIZE);
135
136 /* Allocate the new object */
137 obj = i915_gem_alloc_object(dev, args->size);
138 if (obj == NULL)
139 return -ENOMEM;
140
141 ret = drm_gem_handle_create(file_priv, obj, &handle);
142 if (ret) {
143 drm_gem_object_unreference_unlocked(obj);
144 return ret;
145 }
146
147 /* Sink the floating reference from kref_init(handlecount) */
148 drm_gem_object_handle_unreference_unlocked(obj);
149
150 args->handle = handle;
151 return 0;
152 }
153
154 static inline int
155 fast_shmem_read(struct page **pages,
156 loff_t page_base, int page_offset,
157 char __user *data,
158 int length)
159 {
160 char __iomem *vaddr;
161 int unwritten;
162
163 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
164 if (vaddr == NULL)
165 return -ENOMEM;
166 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
167 kunmap_atomic(vaddr, KM_USER0);
168
169 if (unwritten)
170 return -EFAULT;
171
172 return 0;
173 }
174
175 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
176 {
177 drm_i915_private_t *dev_priv = obj->dev->dev_private;
178 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
179
180 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
181 obj_priv->tiling_mode != I915_TILING_NONE;
182 }
183
184 static inline void
185 slow_shmem_copy(struct page *dst_page,
186 int dst_offset,
187 struct page *src_page,
188 int src_offset,
189 int length)
190 {
191 char *dst_vaddr, *src_vaddr;
192
193 dst_vaddr = kmap(dst_page);
194 src_vaddr = kmap(src_page);
195
196 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
197
198 kunmap(src_page);
199 kunmap(dst_page);
200 }
201
202 static inline void
203 slow_shmem_bit17_copy(struct page *gpu_page,
204 int gpu_offset,
205 struct page *cpu_page,
206 int cpu_offset,
207 int length,
208 int is_read)
209 {
210 char *gpu_vaddr, *cpu_vaddr;
211
212 /* Use the unswizzled path if this page isn't affected. */
213 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
214 if (is_read)
215 return slow_shmem_copy(cpu_page, cpu_offset,
216 gpu_page, gpu_offset, length);
217 else
218 return slow_shmem_copy(gpu_page, gpu_offset,
219 cpu_page, cpu_offset, length);
220 }
221
222 gpu_vaddr = kmap(gpu_page);
223 cpu_vaddr = kmap(cpu_page);
224
225 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226 * XORing with the other bits (A9 for Y, A9 and A10 for X)
227 */
228 while (length > 0) {
229 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230 int this_length = min(cacheline_end - gpu_offset, length);
231 int swizzled_gpu_offset = gpu_offset ^ 64;
232
233 if (is_read) {
234 memcpy(cpu_vaddr + cpu_offset,
235 gpu_vaddr + swizzled_gpu_offset,
236 this_length);
237 } else {
238 memcpy(gpu_vaddr + swizzled_gpu_offset,
239 cpu_vaddr + cpu_offset,
240 this_length);
241 }
242 cpu_offset += this_length;
243 gpu_offset += this_length;
244 length -= this_length;
245 }
246
247 kunmap(cpu_page);
248 kunmap(gpu_page);
249 }
250
251 /**
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255 */
256 static int
257 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260 {
261 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
262 ssize_t remain;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
266 int ret;
267
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
269 remain = args->size;
270
271 mutex_lock(&dev->struct_mutex);
272
273 ret = i915_gem_object_get_pages(obj, 0);
274 if (ret != 0)
275 goto fail_unlock;
276
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278 args->size);
279 if (ret != 0)
280 goto fail_put_pages;
281
282 obj_priv = to_intel_bo(obj);
283 offset = args->offset;
284
285 while (remain > 0) {
286 /* Operation in this page
287 *
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
291 */
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
297
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
301 if (ret)
302 goto fail_put_pages;
303
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
307 }
308
309 fail_put_pages:
310 i915_gem_object_put_pages(obj);
311 fail_unlock:
312 mutex_unlock(&dev->struct_mutex);
313
314 return ret;
315 }
316
317 static int
318 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
319 {
320 int ret;
321
322 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
323
324 /* If we've insufficient memory to map in the pages, attempt
325 * to make some space by throwing out some old buffers.
326 */
327 if (ret == -ENOMEM) {
328 struct drm_device *dev = obj->dev;
329
330 ret = i915_gem_evict_something(dev, obj->size,
331 i915_gem_get_gtt_alignment(obj));
332 if (ret)
333 return ret;
334
335 ret = i915_gem_object_get_pages(obj, 0);
336 }
337
338 return ret;
339 }
340
341 /**
342 * This is the fallback shmem pread path, which allocates temporary storage
343 * in kernel space to copy_to_user into outside of the struct_mutex, so we
344 * can copy out of the object's backing pages while holding the struct mutex
345 * and not take page faults.
346 */
347 static int
348 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
349 struct drm_i915_gem_pread *args,
350 struct drm_file *file_priv)
351 {
352 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
353 struct mm_struct *mm = current->mm;
354 struct page **user_pages;
355 ssize_t remain;
356 loff_t offset, pinned_pages, i;
357 loff_t first_data_page, last_data_page, num_pages;
358 int shmem_page_index, shmem_page_offset;
359 int data_page_index, data_page_offset;
360 int page_length;
361 int ret;
362 uint64_t data_ptr = args->data_ptr;
363 int do_bit17_swizzling;
364
365 remain = args->size;
366
367 /* Pin the user pages containing the data. We can't fault while
368 * holding the struct mutex, yet we want to hold it while
369 * dereferencing the user data.
370 */
371 first_data_page = data_ptr / PAGE_SIZE;
372 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
373 num_pages = last_data_page - first_data_page + 1;
374
375 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
376 if (user_pages == NULL)
377 return -ENOMEM;
378
379 down_read(&mm->mmap_sem);
380 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
381 num_pages, 1, 0, user_pages, NULL);
382 up_read(&mm->mmap_sem);
383 if (pinned_pages < num_pages) {
384 ret = -EFAULT;
385 goto fail_put_user_pages;
386 }
387
388 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
389
390 mutex_lock(&dev->struct_mutex);
391
392 ret = i915_gem_object_get_pages_or_evict(obj);
393 if (ret)
394 goto fail_unlock;
395
396 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
397 args->size);
398 if (ret != 0)
399 goto fail_put_pages;
400
401 obj_priv = to_intel_bo(obj);
402 offset = args->offset;
403
404 while (remain > 0) {
405 /* Operation in this page
406 *
407 * shmem_page_index = page number within shmem file
408 * shmem_page_offset = offset within page in shmem file
409 * data_page_index = page number in get_user_pages return
410 * data_page_offset = offset with data_page_index page.
411 * page_length = bytes to copy for this page
412 */
413 shmem_page_index = offset / PAGE_SIZE;
414 shmem_page_offset = offset & ~PAGE_MASK;
415 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
416 data_page_offset = data_ptr & ~PAGE_MASK;
417
418 page_length = remain;
419 if ((shmem_page_offset + page_length) > PAGE_SIZE)
420 page_length = PAGE_SIZE - shmem_page_offset;
421 if ((data_page_offset + page_length) > PAGE_SIZE)
422 page_length = PAGE_SIZE - data_page_offset;
423
424 if (do_bit17_swizzling) {
425 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
426 shmem_page_offset,
427 user_pages[data_page_index],
428 data_page_offset,
429 page_length,
430 1);
431 } else {
432 slow_shmem_copy(user_pages[data_page_index],
433 data_page_offset,
434 obj_priv->pages[shmem_page_index],
435 shmem_page_offset,
436 page_length);
437 }
438
439 remain -= page_length;
440 data_ptr += page_length;
441 offset += page_length;
442 }
443
444 fail_put_pages:
445 i915_gem_object_put_pages(obj);
446 fail_unlock:
447 mutex_unlock(&dev->struct_mutex);
448 fail_put_user_pages:
449 for (i = 0; i < pinned_pages; i++) {
450 SetPageDirty(user_pages[i]);
451 page_cache_release(user_pages[i]);
452 }
453 drm_free_large(user_pages);
454
455 return ret;
456 }
457
458 /**
459 * Reads data from the object referenced by handle.
460 *
461 * On error, the contents of *data are undefined.
462 */
463 int
464 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
465 struct drm_file *file_priv)
466 {
467 struct drm_i915_gem_pread *args = data;
468 struct drm_gem_object *obj;
469 struct drm_i915_gem_object *obj_priv;
470 int ret;
471
472 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
473 if (obj == NULL)
474 return -ENOENT;
475 obj_priv = to_intel_bo(obj);
476
477 /* Bounds check source.
478 *
479 * XXX: This could use review for overflow issues...
480 */
481 if (args->offset > obj->size || args->size > obj->size ||
482 args->offset + args->size > obj->size) {
483 drm_gem_object_unreference_unlocked(obj);
484 return -EINVAL;
485 }
486
487 if (i915_gem_object_needs_bit17_swizzle(obj)) {
488 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
489 } else {
490 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
491 if (ret != 0)
492 ret = i915_gem_shmem_pread_slow(dev, obj, args,
493 file_priv);
494 }
495
496 drm_gem_object_unreference_unlocked(obj);
497
498 return ret;
499 }
500
501 /* This is the fast write path which cannot handle
502 * page faults in the source data
503 */
504
505 static inline int
506 fast_user_write(struct io_mapping *mapping,
507 loff_t page_base, int page_offset,
508 char __user *user_data,
509 int length)
510 {
511 char *vaddr_atomic;
512 unsigned long unwritten;
513
514 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
515 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
516 user_data, length);
517 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
518 if (unwritten)
519 return -EFAULT;
520 return 0;
521 }
522
523 /* Here's the write path which can sleep for
524 * page faults
525 */
526
527 static inline void
528 slow_kernel_write(struct io_mapping *mapping,
529 loff_t gtt_base, int gtt_offset,
530 struct page *user_page, int user_offset,
531 int length)
532 {
533 char __iomem *dst_vaddr;
534 char *src_vaddr;
535
536 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
537 src_vaddr = kmap(user_page);
538
539 memcpy_toio(dst_vaddr + gtt_offset,
540 src_vaddr + user_offset,
541 length);
542
543 kunmap(user_page);
544 io_mapping_unmap(dst_vaddr);
545 }
546
547 static inline int
548 fast_shmem_write(struct page **pages,
549 loff_t page_base, int page_offset,
550 char __user *data,
551 int length)
552 {
553 char __iomem *vaddr;
554 unsigned long unwritten;
555
556 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
557 if (vaddr == NULL)
558 return -ENOMEM;
559 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
560 kunmap_atomic(vaddr, KM_USER0);
561
562 if (unwritten)
563 return -EFAULT;
564 return 0;
565 }
566
567 /**
568 * This is the fast pwrite path, where we copy the data directly from the
569 * user into the GTT, uncached.
570 */
571 static int
572 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file_priv)
575 {
576 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
577 drm_i915_private_t *dev_priv = dev->dev_private;
578 ssize_t remain;
579 loff_t offset, page_base;
580 char __user *user_data;
581 int page_offset, page_length;
582 int ret;
583
584 user_data = (char __user *) (uintptr_t) args->data_ptr;
585 remain = args->size;
586 if (!access_ok(VERIFY_READ, user_data, remain))
587 return -EFAULT;
588
589
590 mutex_lock(&dev->struct_mutex);
591 ret = i915_gem_object_pin(obj, 0);
592 if (ret) {
593 mutex_unlock(&dev->struct_mutex);
594 return ret;
595 }
596 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
597 if (ret)
598 goto fail;
599
600 obj_priv = to_intel_bo(obj);
601 offset = obj_priv->gtt_offset + args->offset;
602
603 while (remain > 0) {
604 /* Operation in this page
605 *
606 * page_base = page offset within aperture
607 * page_offset = offset within page
608 * page_length = bytes to copy for this page
609 */
610 page_base = (offset & ~(PAGE_SIZE-1));
611 page_offset = offset & (PAGE_SIZE-1);
612 page_length = remain;
613 if ((page_offset + remain) > PAGE_SIZE)
614 page_length = PAGE_SIZE - page_offset;
615
616 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
617 page_offset, user_data, page_length);
618
619 /* If we get a fault while copying data, then (presumably) our
620 * source page isn't available. Return the error and we'll
621 * retry in the slow path.
622 */
623 if (ret)
624 goto fail;
625
626 remain -= page_length;
627 user_data += page_length;
628 offset += page_length;
629 }
630
631 fail:
632 i915_gem_object_unpin(obj);
633 mutex_unlock(&dev->struct_mutex);
634
635 return ret;
636 }
637
638 /**
639 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
640 * the memory and maps it using kmap_atomic for copying.
641 *
642 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
643 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
644 */
645 static int
646 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
647 struct drm_i915_gem_pwrite *args,
648 struct drm_file *file_priv)
649 {
650 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
651 drm_i915_private_t *dev_priv = dev->dev_private;
652 ssize_t remain;
653 loff_t gtt_page_base, offset;
654 loff_t first_data_page, last_data_page, num_pages;
655 loff_t pinned_pages, i;
656 struct page **user_pages;
657 struct mm_struct *mm = current->mm;
658 int gtt_page_offset, data_page_offset, data_page_index, page_length;
659 int ret;
660 uint64_t data_ptr = args->data_ptr;
661
662 remain = args->size;
663
664 /* Pin the user pages containing the data. We can't fault while
665 * holding the struct mutex, and all of the pwrite implementations
666 * want to hold it while dereferencing the user data.
667 */
668 first_data_page = data_ptr / PAGE_SIZE;
669 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
670 num_pages = last_data_page - first_data_page + 1;
671
672 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
673 if (user_pages == NULL)
674 return -ENOMEM;
675
676 down_read(&mm->mmap_sem);
677 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
678 num_pages, 0, 0, user_pages, NULL);
679 up_read(&mm->mmap_sem);
680 if (pinned_pages < num_pages) {
681 ret = -EFAULT;
682 goto out_unpin_pages;
683 }
684
685 mutex_lock(&dev->struct_mutex);
686 ret = i915_gem_object_pin(obj, 0);
687 if (ret)
688 goto out_unlock;
689
690 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
691 if (ret)
692 goto out_unpin_object;
693
694 obj_priv = to_intel_bo(obj);
695 offset = obj_priv->gtt_offset + args->offset;
696
697 while (remain > 0) {
698 /* Operation in this page
699 *
700 * gtt_page_base = page offset within aperture
701 * gtt_page_offset = offset within page in aperture
702 * data_page_index = page number in get_user_pages return
703 * data_page_offset = offset with data_page_index page.
704 * page_length = bytes to copy for this page
705 */
706 gtt_page_base = offset & PAGE_MASK;
707 gtt_page_offset = offset & ~PAGE_MASK;
708 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
709 data_page_offset = data_ptr & ~PAGE_MASK;
710
711 page_length = remain;
712 if ((gtt_page_offset + page_length) > PAGE_SIZE)
713 page_length = PAGE_SIZE - gtt_page_offset;
714 if ((data_page_offset + page_length) > PAGE_SIZE)
715 page_length = PAGE_SIZE - data_page_offset;
716
717 slow_kernel_write(dev_priv->mm.gtt_mapping,
718 gtt_page_base, gtt_page_offset,
719 user_pages[data_page_index],
720 data_page_offset,
721 page_length);
722
723 remain -= page_length;
724 offset += page_length;
725 data_ptr += page_length;
726 }
727
728 out_unpin_object:
729 i915_gem_object_unpin(obj);
730 out_unlock:
731 mutex_unlock(&dev->struct_mutex);
732 out_unpin_pages:
733 for (i = 0; i < pinned_pages; i++)
734 page_cache_release(user_pages[i]);
735 drm_free_large(user_pages);
736
737 return ret;
738 }
739
740 /**
741 * This is the fast shmem pwrite path, which attempts to directly
742 * copy_from_user into the kmapped pages backing the object.
743 */
744 static int
745 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
746 struct drm_i915_gem_pwrite *args,
747 struct drm_file *file_priv)
748 {
749 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
750 ssize_t remain;
751 loff_t offset, page_base;
752 char __user *user_data;
753 int page_offset, page_length;
754 int ret;
755
756 user_data = (char __user *) (uintptr_t) args->data_ptr;
757 remain = args->size;
758
759 mutex_lock(&dev->struct_mutex);
760
761 ret = i915_gem_object_get_pages(obj, 0);
762 if (ret != 0)
763 goto fail_unlock;
764
765 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
766 if (ret != 0)
767 goto fail_put_pages;
768
769 obj_priv = to_intel_bo(obj);
770 offset = args->offset;
771 obj_priv->dirty = 1;
772
773 while (remain > 0) {
774 /* Operation in this page
775 *
776 * page_base = page offset within aperture
777 * page_offset = offset within page
778 * page_length = bytes to copy for this page
779 */
780 page_base = (offset & ~(PAGE_SIZE-1));
781 page_offset = offset & (PAGE_SIZE-1);
782 page_length = remain;
783 if ((page_offset + remain) > PAGE_SIZE)
784 page_length = PAGE_SIZE - page_offset;
785
786 ret = fast_shmem_write(obj_priv->pages,
787 page_base, page_offset,
788 user_data, page_length);
789 if (ret)
790 goto fail_put_pages;
791
792 remain -= page_length;
793 user_data += page_length;
794 offset += page_length;
795 }
796
797 fail_put_pages:
798 i915_gem_object_put_pages(obj);
799 fail_unlock:
800 mutex_unlock(&dev->struct_mutex);
801
802 return ret;
803 }
804
805 /**
806 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
807 * the memory and maps it using kmap_atomic for copying.
808 *
809 * This avoids taking mmap_sem for faulting on the user's address while the
810 * struct_mutex is held.
811 */
812 static int
813 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
814 struct drm_i915_gem_pwrite *args,
815 struct drm_file *file_priv)
816 {
817 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
818 struct mm_struct *mm = current->mm;
819 struct page **user_pages;
820 ssize_t remain;
821 loff_t offset, pinned_pages, i;
822 loff_t first_data_page, last_data_page, num_pages;
823 int shmem_page_index, shmem_page_offset;
824 int data_page_index, data_page_offset;
825 int page_length;
826 int ret;
827 uint64_t data_ptr = args->data_ptr;
828 int do_bit17_swizzling;
829
830 remain = args->size;
831
832 /* Pin the user pages containing the data. We can't fault while
833 * holding the struct mutex, and all of the pwrite implementations
834 * want to hold it while dereferencing the user data.
835 */
836 first_data_page = data_ptr / PAGE_SIZE;
837 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
838 num_pages = last_data_page - first_data_page + 1;
839
840 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
841 if (user_pages == NULL)
842 return -ENOMEM;
843
844 down_read(&mm->mmap_sem);
845 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
846 num_pages, 0, 0, user_pages, NULL);
847 up_read(&mm->mmap_sem);
848 if (pinned_pages < num_pages) {
849 ret = -EFAULT;
850 goto fail_put_user_pages;
851 }
852
853 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
854
855 mutex_lock(&dev->struct_mutex);
856
857 ret = i915_gem_object_get_pages_or_evict(obj);
858 if (ret)
859 goto fail_unlock;
860
861 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
862 if (ret != 0)
863 goto fail_put_pages;
864
865 obj_priv = to_intel_bo(obj);
866 offset = args->offset;
867 obj_priv->dirty = 1;
868
869 while (remain > 0) {
870 /* Operation in this page
871 *
872 * shmem_page_index = page number within shmem file
873 * shmem_page_offset = offset within page in shmem file
874 * data_page_index = page number in get_user_pages return
875 * data_page_offset = offset with data_page_index page.
876 * page_length = bytes to copy for this page
877 */
878 shmem_page_index = offset / PAGE_SIZE;
879 shmem_page_offset = offset & ~PAGE_MASK;
880 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
881 data_page_offset = data_ptr & ~PAGE_MASK;
882
883 page_length = remain;
884 if ((shmem_page_offset + page_length) > PAGE_SIZE)
885 page_length = PAGE_SIZE - shmem_page_offset;
886 if ((data_page_offset + page_length) > PAGE_SIZE)
887 page_length = PAGE_SIZE - data_page_offset;
888
889 if (do_bit17_swizzling) {
890 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
894 page_length,
895 0);
896 } else {
897 slow_shmem_copy(obj_priv->pages[shmem_page_index],
898 shmem_page_offset,
899 user_pages[data_page_index],
900 data_page_offset,
901 page_length);
902 }
903
904 remain -= page_length;
905 data_ptr += page_length;
906 offset += page_length;
907 }
908
909 fail_put_pages:
910 i915_gem_object_put_pages(obj);
911 fail_unlock:
912 mutex_unlock(&dev->struct_mutex);
913 fail_put_user_pages:
914 for (i = 0; i < pinned_pages; i++)
915 page_cache_release(user_pages[i]);
916 drm_free_large(user_pages);
917
918 return ret;
919 }
920
921 /**
922 * Writes data to the object referenced by handle.
923 *
924 * On error, the contents of the buffer that were to be modified are undefined.
925 */
926 int
927 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
928 struct drm_file *file_priv)
929 {
930 struct drm_i915_gem_pwrite *args = data;
931 struct drm_gem_object *obj;
932 struct drm_i915_gem_object *obj_priv;
933 int ret = 0;
934
935 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
936 if (obj == NULL)
937 return -ENOENT;
938 obj_priv = to_intel_bo(obj);
939
940 /* Bounds check destination.
941 *
942 * XXX: This could use review for overflow issues...
943 */
944 if (args->offset > obj->size || args->size > obj->size ||
945 args->offset + args->size > obj->size) {
946 drm_gem_object_unreference_unlocked(obj);
947 return -EINVAL;
948 }
949
950 /* We can only do the GTT pwrite on untiled buffers, as otherwise
951 * it would end up going through the fenced access, and we'll get
952 * different detiling behavior between reading and writing.
953 * pread/pwrite currently are reading and writing from the CPU
954 * perspective, requiring manual detiling by the client.
955 */
956 if (obj_priv->phys_obj)
957 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
958 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
959 dev->gtt_total != 0 &&
960 obj->write_domain != I915_GEM_DOMAIN_CPU) {
961 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
962 if (ret == -EFAULT) {
963 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
964 file_priv);
965 }
966 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
967 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
968 } else {
969 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
970 if (ret == -EFAULT) {
971 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
972 file_priv);
973 }
974 }
975
976 #if WATCH_PWRITE
977 if (ret)
978 DRM_INFO("pwrite failed %d\n", ret);
979 #endif
980
981 drm_gem_object_unreference_unlocked(obj);
982
983 return ret;
984 }
985
986 /**
987 * Called when user space prepares to use an object with the CPU, either
988 * through the mmap ioctl's mapping or a GTT mapping.
989 */
990 int
991 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
992 struct drm_file *file_priv)
993 {
994 struct drm_i915_private *dev_priv = dev->dev_private;
995 struct drm_i915_gem_set_domain *args = data;
996 struct drm_gem_object *obj;
997 struct drm_i915_gem_object *obj_priv;
998 uint32_t read_domains = args->read_domains;
999 uint32_t write_domain = args->write_domain;
1000 int ret;
1001
1002 if (!(dev->driver->driver_features & DRIVER_GEM))
1003 return -ENODEV;
1004
1005 /* Only handle setting domains to types used by the CPU. */
1006 if (write_domain & I915_GEM_GPU_DOMAINS)
1007 return -EINVAL;
1008
1009 if (read_domains & I915_GEM_GPU_DOMAINS)
1010 return -EINVAL;
1011
1012 /* Having something in the write domain implies it's in the read
1013 * domain, and only that read domain. Enforce that in the request.
1014 */
1015 if (write_domain != 0 && read_domains != write_domain)
1016 return -EINVAL;
1017
1018 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1019 if (obj == NULL)
1020 return -ENOENT;
1021 obj_priv = to_intel_bo(obj);
1022
1023 mutex_lock(&dev->struct_mutex);
1024
1025 intel_mark_busy(dev, obj);
1026
1027 #if WATCH_BUF
1028 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1029 obj, obj->size, read_domains, write_domain);
1030 #endif
1031 if (read_domains & I915_GEM_DOMAIN_GTT) {
1032 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1033
1034 /* Update the LRU on the fence for the CPU access that's
1035 * about to occur.
1036 */
1037 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1038 struct drm_i915_fence_reg *reg =
1039 &dev_priv->fence_regs[obj_priv->fence_reg];
1040 list_move_tail(&reg->lru_list,
1041 &dev_priv->mm.fence_list);
1042 }
1043
1044 /* Silently promote "you're not bound, there was nothing to do"
1045 * to success, since the client was just asking us to
1046 * make sure everything was done.
1047 */
1048 if (ret == -EINVAL)
1049 ret = 0;
1050 } else {
1051 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1052 }
1053
1054
1055 /* Maintain LRU order of "inactive" objects */
1056 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1057 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1058
1059 drm_gem_object_unreference(obj);
1060 mutex_unlock(&dev->struct_mutex);
1061 return ret;
1062 }
1063
1064 /**
1065 * Called when user space has done writes to this buffer
1066 */
1067 int
1068 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1069 struct drm_file *file_priv)
1070 {
1071 struct drm_i915_gem_sw_finish *args = data;
1072 struct drm_gem_object *obj;
1073 struct drm_i915_gem_object *obj_priv;
1074 int ret = 0;
1075
1076 if (!(dev->driver->driver_features & DRIVER_GEM))
1077 return -ENODEV;
1078
1079 mutex_lock(&dev->struct_mutex);
1080 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1081 if (obj == NULL) {
1082 mutex_unlock(&dev->struct_mutex);
1083 return -ENOENT;
1084 }
1085
1086 #if WATCH_BUF
1087 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1088 __func__, args->handle, obj, obj->size);
1089 #endif
1090 obj_priv = to_intel_bo(obj);
1091
1092 /* Pinned buffers may be scanout, so flush the cache */
1093 if (obj_priv->pin_count)
1094 i915_gem_object_flush_cpu_write_domain(obj);
1095
1096 drm_gem_object_unreference(obj);
1097 mutex_unlock(&dev->struct_mutex);
1098 return ret;
1099 }
1100
1101 /**
1102 * Maps the contents of an object, returning the address it is mapped
1103 * into.
1104 *
1105 * While the mapping holds a reference on the contents of the object, it doesn't
1106 * imply a ref on the object itself.
1107 */
1108 int
1109 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1110 struct drm_file *file_priv)
1111 {
1112 struct drm_i915_gem_mmap *args = data;
1113 struct drm_gem_object *obj;
1114 loff_t offset;
1115 unsigned long addr;
1116
1117 if (!(dev->driver->driver_features & DRIVER_GEM))
1118 return -ENODEV;
1119
1120 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1121 if (obj == NULL)
1122 return -ENOENT;
1123
1124 offset = args->offset;
1125
1126 down_write(&current->mm->mmap_sem);
1127 addr = do_mmap(obj->filp, 0, args->size,
1128 PROT_READ | PROT_WRITE, MAP_SHARED,
1129 args->offset);
1130 up_write(&current->mm->mmap_sem);
1131 drm_gem_object_unreference_unlocked(obj);
1132 if (IS_ERR((void *)addr))
1133 return addr;
1134
1135 args->addr_ptr = (uint64_t) addr;
1136
1137 return 0;
1138 }
1139
1140 /**
1141 * i915_gem_fault - fault a page into the GTT
1142 * vma: VMA in question
1143 * vmf: fault info
1144 *
1145 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1146 * from userspace. The fault handler takes care of binding the object to
1147 * the GTT (if needed), allocating and programming a fence register (again,
1148 * only if needed based on whether the old reg is still valid or the object
1149 * is tiled) and inserting a new PTE into the faulting process.
1150 *
1151 * Note that the faulting process may involve evicting existing objects
1152 * from the GTT and/or fence registers to make room. So performance may
1153 * suffer if the GTT working set is large or there are few fence registers
1154 * left.
1155 */
1156 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1157 {
1158 struct drm_gem_object *obj = vma->vm_private_data;
1159 struct drm_device *dev = obj->dev;
1160 drm_i915_private_t *dev_priv = dev->dev_private;
1161 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1162 pgoff_t page_offset;
1163 unsigned long pfn;
1164 int ret = 0;
1165 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1166
1167 /* We don't use vmf->pgoff since that has the fake offset */
1168 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1169 PAGE_SHIFT;
1170
1171 /* Now bind it into the GTT if needed */
1172 mutex_lock(&dev->struct_mutex);
1173 if (!obj_priv->gtt_space) {
1174 ret = i915_gem_object_bind_to_gtt(obj, 0);
1175 if (ret)
1176 goto unlock;
1177
1178 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1179 if (ret)
1180 goto unlock;
1181 }
1182
1183 /* Need a new fence register? */
1184 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1185 ret = i915_gem_object_get_fence_reg(obj, true);
1186 if (ret)
1187 goto unlock;
1188 }
1189
1190 if (i915_gem_object_is_inactive(obj_priv))
1191 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1192
1193 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1194 page_offset;
1195
1196 /* Finally, remap it using the new GTT offset */
1197 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1198 unlock:
1199 mutex_unlock(&dev->struct_mutex);
1200
1201 switch (ret) {
1202 case 0:
1203 case -ERESTARTSYS:
1204 return VM_FAULT_NOPAGE;
1205 case -ENOMEM:
1206 case -EAGAIN:
1207 return VM_FAULT_OOM;
1208 default:
1209 return VM_FAULT_SIGBUS;
1210 }
1211 }
1212
1213 /**
1214 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1215 * @obj: obj in question
1216 *
1217 * GEM memory mapping works by handing back to userspace a fake mmap offset
1218 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1219 * up the object based on the offset and sets up the various memory mapping
1220 * structures.
1221 *
1222 * This routine allocates and attaches a fake offset for @obj.
1223 */
1224 static int
1225 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1226 {
1227 struct drm_device *dev = obj->dev;
1228 struct drm_gem_mm *mm = dev->mm_private;
1229 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1230 struct drm_map_list *list;
1231 struct drm_local_map *map;
1232 int ret = 0;
1233
1234 /* Set the object up for mmap'ing */
1235 list = &obj->map_list;
1236 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1237 if (!list->map)
1238 return -ENOMEM;
1239
1240 map = list->map;
1241 map->type = _DRM_GEM;
1242 map->size = obj->size;
1243 map->handle = obj;
1244
1245 /* Get a DRM GEM mmap offset allocated... */
1246 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1247 obj->size / PAGE_SIZE, 0, 0);
1248 if (!list->file_offset_node) {
1249 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1250 ret = -ENOMEM;
1251 goto out_free_list;
1252 }
1253
1254 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1255 obj->size / PAGE_SIZE, 0);
1256 if (!list->file_offset_node) {
1257 ret = -ENOMEM;
1258 goto out_free_list;
1259 }
1260
1261 list->hash.key = list->file_offset_node->start;
1262 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1263 DRM_ERROR("failed to add to map hash\n");
1264 ret = -ENOMEM;
1265 goto out_free_mm;
1266 }
1267
1268 /* By now we should be all set, any drm_mmap request on the offset
1269 * below will get to our mmap & fault handler */
1270 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1271
1272 return 0;
1273
1274 out_free_mm:
1275 drm_mm_put_block(list->file_offset_node);
1276 out_free_list:
1277 kfree(list->map);
1278
1279 return ret;
1280 }
1281
1282 /**
1283 * i915_gem_release_mmap - remove physical page mappings
1284 * @obj: obj in question
1285 *
1286 * Preserve the reservation of the mmapping with the DRM core code, but
1287 * relinquish ownership of the pages back to the system.
1288 *
1289 * It is vital that we remove the page mapping if we have mapped a tiled
1290 * object through the GTT and then lose the fence register due to
1291 * resource pressure. Similarly if the object has been moved out of the
1292 * aperture, than pages mapped into userspace must be revoked. Removing the
1293 * mapping will then trigger a page fault on the next user access, allowing
1294 * fixup by i915_gem_fault().
1295 */
1296 void
1297 i915_gem_release_mmap(struct drm_gem_object *obj)
1298 {
1299 struct drm_device *dev = obj->dev;
1300 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1301
1302 if (dev->dev_mapping)
1303 unmap_mapping_range(dev->dev_mapping,
1304 obj_priv->mmap_offset, obj->size, 1);
1305 }
1306
1307 static void
1308 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1309 {
1310 struct drm_device *dev = obj->dev;
1311 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1312 struct drm_gem_mm *mm = dev->mm_private;
1313 struct drm_map_list *list;
1314
1315 list = &obj->map_list;
1316 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1317
1318 if (list->file_offset_node) {
1319 drm_mm_put_block(list->file_offset_node);
1320 list->file_offset_node = NULL;
1321 }
1322
1323 if (list->map) {
1324 kfree(list->map);
1325 list->map = NULL;
1326 }
1327
1328 obj_priv->mmap_offset = 0;
1329 }
1330
1331 /**
1332 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1333 * @obj: object to check
1334 *
1335 * Return the required GTT alignment for an object, taking into account
1336 * potential fence register mapping if needed.
1337 */
1338 static uint32_t
1339 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1340 {
1341 struct drm_device *dev = obj->dev;
1342 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1343 int start, i;
1344
1345 /*
1346 * Minimum alignment is 4k (GTT page size), but might be greater
1347 * if a fence register is needed for the object.
1348 */
1349 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1350 return 4096;
1351
1352 /*
1353 * Previous chips need to be aligned to the size of the smallest
1354 * fence register that can contain the object.
1355 */
1356 if (IS_I9XX(dev))
1357 start = 1024*1024;
1358 else
1359 start = 512*1024;
1360
1361 for (i = start; i < obj->size; i <<= 1)
1362 ;
1363
1364 return i;
1365 }
1366
1367 /**
1368 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1369 * @dev: DRM device
1370 * @data: GTT mapping ioctl data
1371 * @file_priv: GEM object info
1372 *
1373 * Simply returns the fake offset to userspace so it can mmap it.
1374 * The mmap call will end up in drm_gem_mmap(), which will set things
1375 * up so we can get faults in the handler above.
1376 *
1377 * The fault handler will take care of binding the object into the GTT
1378 * (since it may have been evicted to make room for something), allocating
1379 * a fence register, and mapping the appropriate aperture address into
1380 * userspace.
1381 */
1382 int
1383 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1384 struct drm_file *file_priv)
1385 {
1386 struct drm_i915_gem_mmap_gtt *args = data;
1387 struct drm_gem_object *obj;
1388 struct drm_i915_gem_object *obj_priv;
1389 int ret;
1390
1391 if (!(dev->driver->driver_features & DRIVER_GEM))
1392 return -ENODEV;
1393
1394 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1395 if (obj == NULL)
1396 return -ENOENT;
1397
1398 mutex_lock(&dev->struct_mutex);
1399
1400 obj_priv = to_intel_bo(obj);
1401
1402 if (obj_priv->madv != I915_MADV_WILLNEED) {
1403 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1404 drm_gem_object_unreference(obj);
1405 mutex_unlock(&dev->struct_mutex);
1406 return -EINVAL;
1407 }
1408
1409
1410 if (!obj_priv->mmap_offset) {
1411 ret = i915_gem_create_mmap_offset(obj);
1412 if (ret) {
1413 drm_gem_object_unreference(obj);
1414 mutex_unlock(&dev->struct_mutex);
1415 return ret;
1416 }
1417 }
1418
1419 args->offset = obj_priv->mmap_offset;
1420
1421 /*
1422 * Pull it into the GTT so that we have a page list (makes the
1423 * initial fault faster and any subsequent flushing possible).
1424 */
1425 if (!obj_priv->agp_mem) {
1426 ret = i915_gem_object_bind_to_gtt(obj, 0);
1427 if (ret) {
1428 drm_gem_object_unreference(obj);
1429 mutex_unlock(&dev->struct_mutex);
1430 return ret;
1431 }
1432 }
1433
1434 drm_gem_object_unreference(obj);
1435 mutex_unlock(&dev->struct_mutex);
1436
1437 return 0;
1438 }
1439
1440 void
1441 i915_gem_object_put_pages(struct drm_gem_object *obj)
1442 {
1443 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1444 int page_count = obj->size / PAGE_SIZE;
1445 int i;
1446
1447 BUG_ON(obj_priv->pages_refcount == 0);
1448 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1449
1450 if (--obj_priv->pages_refcount != 0)
1451 return;
1452
1453 if (obj_priv->tiling_mode != I915_TILING_NONE)
1454 i915_gem_object_save_bit_17_swizzle(obj);
1455
1456 if (obj_priv->madv == I915_MADV_DONTNEED)
1457 obj_priv->dirty = 0;
1458
1459 for (i = 0; i < page_count; i++) {
1460 if (obj_priv->dirty)
1461 set_page_dirty(obj_priv->pages[i]);
1462
1463 if (obj_priv->madv == I915_MADV_WILLNEED)
1464 mark_page_accessed(obj_priv->pages[i]);
1465
1466 page_cache_release(obj_priv->pages[i]);
1467 }
1468 obj_priv->dirty = 0;
1469
1470 drm_free_large(obj_priv->pages);
1471 obj_priv->pages = NULL;
1472 }
1473
1474 static uint32_t
1475 i915_gem_next_request_seqno(struct drm_device *dev,
1476 struct intel_ring_buffer *ring)
1477 {
1478 drm_i915_private_t *dev_priv = dev->dev_private;
1479
1480 ring->outstanding_lazy_request = true;
1481
1482 return dev_priv->next_seqno;
1483 }
1484
1485 static void
1486 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1487 struct intel_ring_buffer *ring)
1488 {
1489 struct drm_device *dev = obj->dev;
1490 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1491 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1492
1493 BUG_ON(ring == NULL);
1494 obj_priv->ring = ring;
1495
1496 /* Add a reference if we're newly entering the active list. */
1497 if (!obj_priv->active) {
1498 drm_gem_object_reference(obj);
1499 obj_priv->active = 1;
1500 }
1501
1502 /* Move from whatever list we were on to the tail of execution. */
1503 list_move_tail(&obj_priv->list, &ring->active_list);
1504 obj_priv->last_rendering_seqno = seqno;
1505 }
1506
1507 static void
1508 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1509 {
1510 struct drm_device *dev = obj->dev;
1511 drm_i915_private_t *dev_priv = dev->dev_private;
1512 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1513
1514 BUG_ON(!obj_priv->active);
1515 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1516 obj_priv->last_rendering_seqno = 0;
1517 }
1518
1519 /* Immediately discard the backing storage */
1520 static void
1521 i915_gem_object_truncate(struct drm_gem_object *obj)
1522 {
1523 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1524 struct inode *inode;
1525
1526 /* Our goal here is to return as much of the memory as
1527 * is possible back to the system as we are called from OOM.
1528 * To do this we must instruct the shmfs to drop all of its
1529 * backing pages, *now*. Here we mirror the actions taken
1530 * when by shmem_delete_inode() to release the backing store.
1531 */
1532 inode = obj->filp->f_path.dentry->d_inode;
1533 truncate_inode_pages(inode->i_mapping, 0);
1534 if (inode->i_op->truncate_range)
1535 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1536
1537 obj_priv->madv = __I915_MADV_PURGED;
1538 }
1539
1540 static inline int
1541 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1542 {
1543 return obj_priv->madv == I915_MADV_DONTNEED;
1544 }
1545
1546 static void
1547 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1548 {
1549 struct drm_device *dev = obj->dev;
1550 drm_i915_private_t *dev_priv = dev->dev_private;
1551 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1552
1553 i915_verify_inactive(dev, __FILE__, __LINE__);
1554 if (obj_priv->pin_count != 0)
1555 list_del_init(&obj_priv->list);
1556 else
1557 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1558
1559 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1560
1561 obj_priv->last_rendering_seqno = 0;
1562 obj_priv->ring = NULL;
1563 if (obj_priv->active) {
1564 obj_priv->active = 0;
1565 drm_gem_object_unreference(obj);
1566 }
1567 i915_verify_inactive(dev, __FILE__, __LINE__);
1568 }
1569
1570 void
1571 i915_gem_process_flushing_list(struct drm_device *dev,
1572 uint32_t flush_domains,
1573 struct intel_ring_buffer *ring)
1574 {
1575 drm_i915_private_t *dev_priv = dev->dev_private;
1576 struct drm_i915_gem_object *obj_priv, *next;
1577
1578 list_for_each_entry_safe(obj_priv, next,
1579 &dev_priv->mm.gpu_write_list,
1580 gpu_write_list) {
1581 struct drm_gem_object *obj = &obj_priv->base;
1582
1583 if ((obj->write_domain & flush_domains) ==
1584 obj->write_domain &&
1585 obj_priv->ring->ring_flag == ring->ring_flag) {
1586 uint32_t old_write_domain = obj->write_domain;
1587
1588 obj->write_domain = 0;
1589 list_del_init(&obj_priv->gpu_write_list);
1590 i915_gem_object_move_to_active(obj, ring);
1591
1592 /* update the fence lru list */
1593 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1594 struct drm_i915_fence_reg *reg =
1595 &dev_priv->fence_regs[obj_priv->fence_reg];
1596 list_move_tail(&reg->lru_list,
1597 &dev_priv->mm.fence_list);
1598 }
1599
1600 trace_i915_gem_object_change_domain(obj,
1601 obj->read_domains,
1602 old_write_domain);
1603 }
1604 }
1605 }
1606
1607 uint32_t
1608 i915_add_request(struct drm_device *dev,
1609 struct drm_file *file_priv,
1610 struct drm_i915_gem_request *request,
1611 struct intel_ring_buffer *ring)
1612 {
1613 drm_i915_private_t *dev_priv = dev->dev_private;
1614 struct drm_i915_file_private *i915_file_priv = NULL;
1615 uint32_t seqno;
1616 int was_empty;
1617
1618 if (file_priv != NULL)
1619 i915_file_priv = file_priv->driver_priv;
1620
1621 if (request == NULL) {
1622 request = kzalloc(sizeof(*request), GFP_KERNEL);
1623 if (request == NULL)
1624 return 0;
1625 }
1626
1627 seqno = ring->add_request(dev, ring, file_priv, 0);
1628
1629 request->seqno = seqno;
1630 request->ring = ring;
1631 request->emitted_jiffies = jiffies;
1632 was_empty = list_empty(&ring->request_list);
1633 list_add_tail(&request->list, &ring->request_list);
1634
1635 if (i915_file_priv) {
1636 list_add_tail(&request->client_list,
1637 &i915_file_priv->mm.request_list);
1638 } else {
1639 INIT_LIST_HEAD(&request->client_list);
1640 }
1641
1642 if (!dev_priv->mm.suspended) {
1643 mod_timer(&dev_priv->hangcheck_timer,
1644 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1645 if (was_empty)
1646 queue_delayed_work(dev_priv->wq,
1647 &dev_priv->mm.retire_work, HZ);
1648 }
1649 return seqno;
1650 }
1651
1652 /**
1653 * Command execution barrier
1654 *
1655 * Ensures that all commands in the ring are finished
1656 * before signalling the CPU
1657 */
1658 static void
1659 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1660 {
1661 uint32_t flush_domains = 0;
1662
1663 /* The sampler always gets flushed on i965 (sigh) */
1664 if (IS_I965G(dev))
1665 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1666
1667 ring->flush(dev, ring,
1668 I915_GEM_DOMAIN_COMMAND, flush_domains);
1669 }
1670
1671 /**
1672 * Moves buffers associated only with the given active seqno from the active
1673 * to inactive list, potentially freeing them.
1674 */
1675 static void
1676 i915_gem_retire_request(struct drm_device *dev,
1677 struct drm_i915_gem_request *request)
1678 {
1679 trace_i915_gem_request_retire(dev, request->seqno);
1680
1681 /* Move any buffers on the active list that are no longer referenced
1682 * by the ringbuffer to the flushing/inactive lists as appropriate.
1683 */
1684 while (!list_empty(&request->ring->active_list)) {
1685 struct drm_gem_object *obj;
1686 struct drm_i915_gem_object *obj_priv;
1687
1688 obj_priv = list_first_entry(&request->ring->active_list,
1689 struct drm_i915_gem_object,
1690 list);
1691 obj = &obj_priv->base;
1692
1693 /* If the seqno being retired doesn't match the oldest in the
1694 * list, then the oldest in the list must still be newer than
1695 * this seqno.
1696 */
1697 if (obj_priv->last_rendering_seqno != request->seqno)
1698 return;
1699
1700 #if WATCH_LRU
1701 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1702 __func__, request->seqno, obj);
1703 #endif
1704
1705 if (obj->write_domain != 0)
1706 i915_gem_object_move_to_flushing(obj);
1707 else
1708 i915_gem_object_move_to_inactive(obj);
1709 }
1710 }
1711
1712 /**
1713 * Returns true if seq1 is later than seq2.
1714 */
1715 bool
1716 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1717 {
1718 return (int32_t)(seq1 - seq2) >= 0;
1719 }
1720
1721 uint32_t
1722 i915_get_gem_seqno(struct drm_device *dev,
1723 struct intel_ring_buffer *ring)
1724 {
1725 return ring->get_gem_seqno(dev, ring);
1726 }
1727
1728 /**
1729 * This function clears the request list as sequence numbers are passed.
1730 */
1731 static void
1732 i915_gem_retire_requests_ring(struct drm_device *dev,
1733 struct intel_ring_buffer *ring)
1734 {
1735 drm_i915_private_t *dev_priv = dev->dev_private;
1736 uint32_t seqno;
1737
1738 if (!ring->status_page.page_addr
1739 || list_empty(&ring->request_list))
1740 return;
1741
1742 seqno = i915_get_gem_seqno(dev, ring);
1743
1744 while (!list_empty(&ring->request_list)) {
1745 struct drm_i915_gem_request *request;
1746 uint32_t retiring_seqno;
1747
1748 request = list_first_entry(&ring->request_list,
1749 struct drm_i915_gem_request,
1750 list);
1751 retiring_seqno = request->seqno;
1752
1753 if (i915_seqno_passed(seqno, retiring_seqno) ||
1754 atomic_read(&dev_priv->mm.wedged)) {
1755 i915_gem_retire_request(dev, request);
1756
1757 list_del(&request->list);
1758 list_del(&request->client_list);
1759 kfree(request);
1760 } else
1761 break;
1762 }
1763
1764 if (unlikely (dev_priv->trace_irq_seqno &&
1765 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1766
1767 ring->user_irq_put(dev, ring);
1768 dev_priv->trace_irq_seqno = 0;
1769 }
1770 }
1771
1772 void
1773 i915_gem_retire_requests(struct drm_device *dev)
1774 {
1775 drm_i915_private_t *dev_priv = dev->dev_private;
1776
1777 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1778 struct drm_i915_gem_object *obj_priv, *tmp;
1779
1780 /* We must be careful that during unbind() we do not
1781 * accidentally infinitely recurse into retire requests.
1782 * Currently:
1783 * retire -> free -> unbind -> wait -> retire_ring
1784 */
1785 list_for_each_entry_safe(obj_priv, tmp,
1786 &dev_priv->mm.deferred_free_list,
1787 list)
1788 i915_gem_free_object_tail(&obj_priv->base);
1789 }
1790
1791 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1792 if (HAS_BSD(dev))
1793 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1794 }
1795
1796 static void
1797 i915_gem_retire_work_handler(struct work_struct *work)
1798 {
1799 drm_i915_private_t *dev_priv;
1800 struct drm_device *dev;
1801
1802 dev_priv = container_of(work, drm_i915_private_t,
1803 mm.retire_work.work);
1804 dev = dev_priv->dev;
1805
1806 mutex_lock(&dev->struct_mutex);
1807 i915_gem_retire_requests(dev);
1808
1809 if (!dev_priv->mm.suspended &&
1810 (!list_empty(&dev_priv->render_ring.request_list) ||
1811 (HAS_BSD(dev) &&
1812 !list_empty(&dev_priv->bsd_ring.request_list))))
1813 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1814 mutex_unlock(&dev->struct_mutex);
1815 }
1816
1817 int
1818 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1819 bool interruptible, struct intel_ring_buffer *ring)
1820 {
1821 drm_i915_private_t *dev_priv = dev->dev_private;
1822 u32 ier;
1823 int ret = 0;
1824
1825 BUG_ON(seqno == 0);
1826
1827 if (seqno == dev_priv->next_seqno) {
1828 seqno = i915_add_request(dev, NULL, NULL, ring);
1829 if (seqno == 0)
1830 return -ENOMEM;
1831 }
1832
1833 if (atomic_read(&dev_priv->mm.wedged))
1834 return -EIO;
1835
1836 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1837 if (HAS_PCH_SPLIT(dev))
1838 ier = I915_READ(DEIER) | I915_READ(GTIER);
1839 else
1840 ier = I915_READ(IER);
1841 if (!ier) {
1842 DRM_ERROR("something (likely vbetool) disabled "
1843 "interrupts, re-enabling\n");
1844 i915_driver_irq_preinstall(dev);
1845 i915_driver_irq_postinstall(dev);
1846 }
1847
1848 trace_i915_gem_request_wait_begin(dev, seqno);
1849
1850 ring->waiting_gem_seqno = seqno;
1851 ring->user_irq_get(dev, ring);
1852 if (interruptible)
1853 ret = wait_event_interruptible(ring->irq_queue,
1854 i915_seqno_passed(
1855 ring->get_gem_seqno(dev, ring), seqno)
1856 || atomic_read(&dev_priv->mm.wedged));
1857 else
1858 wait_event(ring->irq_queue,
1859 i915_seqno_passed(
1860 ring->get_gem_seqno(dev, ring), seqno)
1861 || atomic_read(&dev_priv->mm.wedged));
1862
1863 ring->user_irq_put(dev, ring);
1864 ring->waiting_gem_seqno = 0;
1865
1866 trace_i915_gem_request_wait_end(dev, seqno);
1867 }
1868 if (atomic_read(&dev_priv->mm.wedged))
1869 ret = -EIO;
1870
1871 if (ret && ret != -ERESTARTSYS)
1872 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1873 __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
1874 dev_priv->next_seqno);
1875
1876 /* Directly dispatch request retiring. While we have the work queue
1877 * to handle this, the waiter on a request often wants an associated
1878 * buffer to have made it to the inactive list, and we would need
1879 * a separate wait queue to handle that.
1880 */
1881 if (ret == 0)
1882 i915_gem_retire_requests_ring(dev, ring);
1883
1884 return ret;
1885 }
1886
1887 /**
1888 * Waits for a sequence number to be signaled, and cleans up the
1889 * request and object lists appropriately for that event.
1890 */
1891 static int
1892 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1893 struct intel_ring_buffer *ring)
1894 {
1895 return i915_do_wait_request(dev, seqno, 1, ring);
1896 }
1897
1898 static void
1899 i915_gem_flush(struct drm_device *dev,
1900 uint32_t invalidate_domains,
1901 uint32_t flush_domains)
1902 {
1903 drm_i915_private_t *dev_priv = dev->dev_private;
1904
1905 if (flush_domains & I915_GEM_DOMAIN_CPU)
1906 drm_agp_chipset_flush(dev);
1907
1908 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1909 invalidate_domains,
1910 flush_domains);
1911
1912 if (HAS_BSD(dev))
1913 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1914 invalidate_domains,
1915 flush_domains);
1916 }
1917
1918 /**
1919 * Ensures that all rendering to the object has completed and the object is
1920 * safe to unbind from the GTT or access from the CPU.
1921 */
1922 static int
1923 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
1924 bool interruptible)
1925 {
1926 struct drm_device *dev = obj->dev;
1927 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1928 int ret;
1929
1930 /* This function only exists to support waiting for existing rendering,
1931 * not for emitting required flushes.
1932 */
1933 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1934
1935 /* If there is rendering queued on the buffer being evicted, wait for
1936 * it.
1937 */
1938 if (obj_priv->active) {
1939 #if WATCH_BUF
1940 DRM_INFO("%s: object %p wait for seqno %08x\n",
1941 __func__, obj, obj_priv->last_rendering_seqno);
1942 #endif
1943 ret = i915_do_wait_request(dev,
1944 obj_priv->last_rendering_seqno,
1945 interruptible,
1946 obj_priv->ring);
1947 if (ret)
1948 return ret;
1949 }
1950
1951 return 0;
1952 }
1953
1954 /**
1955 * Unbinds an object from the GTT aperture.
1956 */
1957 int
1958 i915_gem_object_unbind(struct drm_gem_object *obj)
1959 {
1960 struct drm_device *dev = obj->dev;
1961 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1962 int ret = 0;
1963
1964 #if WATCH_BUF
1965 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1966 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1967 #endif
1968 if (obj_priv->gtt_space == NULL)
1969 return 0;
1970
1971 if (obj_priv->pin_count != 0) {
1972 DRM_ERROR("Attempting to unbind pinned buffer\n");
1973 return -EINVAL;
1974 }
1975
1976 /* blow away mappings if mapped through GTT */
1977 i915_gem_release_mmap(obj);
1978
1979 /* Move the object to the CPU domain to ensure that
1980 * any possible CPU writes while it's not in the GTT
1981 * are flushed when we go to remap it. This will
1982 * also ensure that all pending GPU writes are finished
1983 * before we unbind.
1984 */
1985 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1986 if (ret == -ERESTARTSYS)
1987 return ret;
1988 /* Continue on if we fail due to EIO, the GPU is hung so we
1989 * should be safe and we need to cleanup or else we might
1990 * cause memory corruption through use-after-free.
1991 */
1992
1993 /* release the fence reg _after_ flushing */
1994 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1995 i915_gem_clear_fence_reg(obj);
1996
1997 if (obj_priv->agp_mem != NULL) {
1998 drm_unbind_agp(obj_priv->agp_mem);
1999 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2000 obj_priv->agp_mem = NULL;
2001 }
2002
2003 i915_gem_object_put_pages(obj);
2004 BUG_ON(obj_priv->pages_refcount);
2005
2006 if (obj_priv->gtt_space) {
2007 atomic_dec(&dev->gtt_count);
2008 atomic_sub(obj->size, &dev->gtt_memory);
2009
2010 drm_mm_put_block(obj_priv->gtt_space);
2011 obj_priv->gtt_space = NULL;
2012 }
2013
2014 /* Remove ourselves from the LRU list if present. */
2015 if (!list_empty(&obj_priv->list))
2016 list_del_init(&obj_priv->list);
2017
2018 if (i915_gem_object_is_purgeable(obj_priv))
2019 i915_gem_object_truncate(obj);
2020
2021 trace_i915_gem_object_unbind(obj);
2022
2023 return ret;
2024 }
2025
2026 int
2027 i915_gpu_idle(struct drm_device *dev)
2028 {
2029 drm_i915_private_t *dev_priv = dev->dev_private;
2030 bool lists_empty;
2031 int ret;
2032
2033 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2034 list_empty(&dev_priv->render_ring.active_list) &&
2035 (!HAS_BSD(dev) ||
2036 list_empty(&dev_priv->bsd_ring.active_list)));
2037 if (lists_empty)
2038 return 0;
2039
2040 /* Flush everything onto the inactive list. */
2041 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2042
2043 ret = i915_wait_request(dev,
2044 i915_gem_next_request_seqno(dev, &dev_priv->render_ring),
2045 &dev_priv->render_ring);
2046 if (ret)
2047 return ret;
2048
2049 if (HAS_BSD(dev)) {
2050 ret = i915_wait_request(dev,
2051 i915_gem_next_request_seqno(dev, &dev_priv->bsd_ring),
2052 &dev_priv->bsd_ring);
2053 if (ret)
2054 return ret;
2055 }
2056
2057 return 0;
2058 }
2059
2060 int
2061 i915_gem_object_get_pages(struct drm_gem_object *obj,
2062 gfp_t gfpmask)
2063 {
2064 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2065 int page_count, i;
2066 struct address_space *mapping;
2067 struct inode *inode;
2068 struct page *page;
2069
2070 BUG_ON(obj_priv->pages_refcount
2071 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2072
2073 if (obj_priv->pages_refcount++ != 0)
2074 return 0;
2075
2076 /* Get the list of pages out of our struct file. They'll be pinned
2077 * at this point until we release them.
2078 */
2079 page_count = obj->size / PAGE_SIZE;
2080 BUG_ON(obj_priv->pages != NULL);
2081 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2082 if (obj_priv->pages == NULL) {
2083 obj_priv->pages_refcount--;
2084 return -ENOMEM;
2085 }
2086
2087 inode = obj->filp->f_path.dentry->d_inode;
2088 mapping = inode->i_mapping;
2089 for (i = 0; i < page_count; i++) {
2090 page = read_cache_page_gfp(mapping, i,
2091 GFP_HIGHUSER |
2092 __GFP_COLD |
2093 __GFP_RECLAIMABLE |
2094 gfpmask);
2095 if (IS_ERR(page))
2096 goto err_pages;
2097
2098 obj_priv->pages[i] = page;
2099 }
2100
2101 if (obj_priv->tiling_mode != I915_TILING_NONE)
2102 i915_gem_object_do_bit_17_swizzle(obj);
2103
2104 return 0;
2105
2106 err_pages:
2107 while (i--)
2108 page_cache_release(obj_priv->pages[i]);
2109
2110 drm_free_large(obj_priv->pages);
2111 obj_priv->pages = NULL;
2112 obj_priv->pages_refcount--;
2113 return PTR_ERR(page);
2114 }
2115
2116 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2117 {
2118 struct drm_gem_object *obj = reg->obj;
2119 struct drm_device *dev = obj->dev;
2120 drm_i915_private_t *dev_priv = dev->dev_private;
2121 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2122 int regnum = obj_priv->fence_reg;
2123 uint64_t val;
2124
2125 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2126 0xfffff000) << 32;
2127 val |= obj_priv->gtt_offset & 0xfffff000;
2128 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2129 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2130
2131 if (obj_priv->tiling_mode == I915_TILING_Y)
2132 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2133 val |= I965_FENCE_REG_VALID;
2134
2135 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2136 }
2137
2138 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2139 {
2140 struct drm_gem_object *obj = reg->obj;
2141 struct drm_device *dev = obj->dev;
2142 drm_i915_private_t *dev_priv = dev->dev_private;
2143 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2144 int regnum = obj_priv->fence_reg;
2145 uint64_t val;
2146
2147 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2148 0xfffff000) << 32;
2149 val |= obj_priv->gtt_offset & 0xfffff000;
2150 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2151 if (obj_priv->tiling_mode == I915_TILING_Y)
2152 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2153 val |= I965_FENCE_REG_VALID;
2154
2155 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2156 }
2157
2158 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2159 {
2160 struct drm_gem_object *obj = reg->obj;
2161 struct drm_device *dev = obj->dev;
2162 drm_i915_private_t *dev_priv = dev->dev_private;
2163 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2164 int regnum = obj_priv->fence_reg;
2165 int tile_width;
2166 uint32_t fence_reg, val;
2167 uint32_t pitch_val;
2168
2169 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2170 (obj_priv->gtt_offset & (obj->size - 1))) {
2171 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2172 __func__, obj_priv->gtt_offset, obj->size);
2173 return;
2174 }
2175
2176 if (obj_priv->tiling_mode == I915_TILING_Y &&
2177 HAS_128_BYTE_Y_TILING(dev))
2178 tile_width = 128;
2179 else
2180 tile_width = 512;
2181
2182 /* Note: pitch better be a power of two tile widths */
2183 pitch_val = obj_priv->stride / tile_width;
2184 pitch_val = ffs(pitch_val) - 1;
2185
2186 if (obj_priv->tiling_mode == I915_TILING_Y &&
2187 HAS_128_BYTE_Y_TILING(dev))
2188 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2189 else
2190 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2191
2192 val = obj_priv->gtt_offset;
2193 if (obj_priv->tiling_mode == I915_TILING_Y)
2194 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2195 val |= I915_FENCE_SIZE_BITS(obj->size);
2196 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2197 val |= I830_FENCE_REG_VALID;
2198
2199 if (regnum < 8)
2200 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2201 else
2202 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2203 I915_WRITE(fence_reg, val);
2204 }
2205
2206 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2207 {
2208 struct drm_gem_object *obj = reg->obj;
2209 struct drm_device *dev = obj->dev;
2210 drm_i915_private_t *dev_priv = dev->dev_private;
2211 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2212 int regnum = obj_priv->fence_reg;
2213 uint32_t val;
2214 uint32_t pitch_val;
2215 uint32_t fence_size_bits;
2216
2217 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2218 (obj_priv->gtt_offset & (obj->size - 1))) {
2219 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2220 __func__, obj_priv->gtt_offset);
2221 return;
2222 }
2223
2224 pitch_val = obj_priv->stride / 128;
2225 pitch_val = ffs(pitch_val) - 1;
2226 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2227
2228 val = obj_priv->gtt_offset;
2229 if (obj_priv->tiling_mode == I915_TILING_Y)
2230 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2231 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2232 WARN_ON(fence_size_bits & ~0x00000f00);
2233 val |= fence_size_bits;
2234 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2235 val |= I830_FENCE_REG_VALID;
2236
2237 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2238 }
2239
2240 static int i915_find_fence_reg(struct drm_device *dev,
2241 bool interruptible)
2242 {
2243 struct drm_i915_fence_reg *reg = NULL;
2244 struct drm_i915_gem_object *obj_priv = NULL;
2245 struct drm_i915_private *dev_priv = dev->dev_private;
2246 struct drm_gem_object *obj = NULL;
2247 int i, avail, ret;
2248
2249 /* First try to find a free reg */
2250 avail = 0;
2251 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2252 reg = &dev_priv->fence_regs[i];
2253 if (!reg->obj)
2254 return i;
2255
2256 obj_priv = to_intel_bo(reg->obj);
2257 if (!obj_priv->pin_count)
2258 avail++;
2259 }
2260
2261 if (avail == 0)
2262 return -ENOSPC;
2263
2264 /* None available, try to steal one or wait for a user to finish */
2265 i = I915_FENCE_REG_NONE;
2266 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2267 lru_list) {
2268 obj = reg->obj;
2269 obj_priv = to_intel_bo(obj);
2270
2271 if (obj_priv->pin_count)
2272 continue;
2273
2274 /* found one! */
2275 i = obj_priv->fence_reg;
2276 break;
2277 }
2278
2279 BUG_ON(i == I915_FENCE_REG_NONE);
2280
2281 /* We only have a reference on obj from the active list. put_fence_reg
2282 * might drop that one, causing a use-after-free in it. So hold a
2283 * private reference to obj like the other callers of put_fence_reg
2284 * (set_tiling ioctl) do. */
2285 drm_gem_object_reference(obj);
2286 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2287 drm_gem_object_unreference(obj);
2288 if (ret != 0)
2289 return ret;
2290
2291 return i;
2292 }
2293
2294 /**
2295 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2296 * @obj: object to map through a fence reg
2297 *
2298 * When mapping objects through the GTT, userspace wants to be able to write
2299 * to them without having to worry about swizzling if the object is tiled.
2300 *
2301 * This function walks the fence regs looking for a free one for @obj,
2302 * stealing one if it can't find any.
2303 *
2304 * It then sets up the reg based on the object's properties: address, pitch
2305 * and tiling format.
2306 */
2307 int
2308 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2309 bool interruptible)
2310 {
2311 struct drm_device *dev = obj->dev;
2312 struct drm_i915_private *dev_priv = dev->dev_private;
2313 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2314 struct drm_i915_fence_reg *reg = NULL;
2315 int ret;
2316
2317 /* Just update our place in the LRU if our fence is getting used. */
2318 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2319 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2320 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2321 return 0;
2322 }
2323
2324 switch (obj_priv->tiling_mode) {
2325 case I915_TILING_NONE:
2326 WARN(1, "allocating a fence for non-tiled object?\n");
2327 break;
2328 case I915_TILING_X:
2329 if (!obj_priv->stride)
2330 return -EINVAL;
2331 WARN((obj_priv->stride & (512 - 1)),
2332 "object 0x%08x is X tiled but has non-512B pitch\n",
2333 obj_priv->gtt_offset);
2334 break;
2335 case I915_TILING_Y:
2336 if (!obj_priv->stride)
2337 return -EINVAL;
2338 WARN((obj_priv->stride & (128 - 1)),
2339 "object 0x%08x is Y tiled but has non-128B pitch\n",
2340 obj_priv->gtt_offset);
2341 break;
2342 }
2343
2344 ret = i915_find_fence_reg(dev, interruptible);
2345 if (ret < 0)
2346 return ret;
2347
2348 obj_priv->fence_reg = ret;
2349 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2350 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2351
2352 reg->obj = obj;
2353
2354 if (IS_GEN6(dev))
2355 sandybridge_write_fence_reg(reg);
2356 else if (IS_I965G(dev))
2357 i965_write_fence_reg(reg);
2358 else if (IS_I9XX(dev))
2359 i915_write_fence_reg(reg);
2360 else
2361 i830_write_fence_reg(reg);
2362
2363 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2364 obj_priv->tiling_mode);
2365
2366 return 0;
2367 }
2368
2369 /**
2370 * i915_gem_clear_fence_reg - clear out fence register info
2371 * @obj: object to clear
2372 *
2373 * Zeroes out the fence register itself and clears out the associated
2374 * data structures in dev_priv and obj_priv.
2375 */
2376 static void
2377 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2378 {
2379 struct drm_device *dev = obj->dev;
2380 drm_i915_private_t *dev_priv = dev->dev_private;
2381 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2382 struct drm_i915_fence_reg *reg =
2383 &dev_priv->fence_regs[obj_priv->fence_reg];
2384
2385 if (IS_GEN6(dev)) {
2386 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2387 (obj_priv->fence_reg * 8), 0);
2388 } else if (IS_I965G(dev)) {
2389 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2390 } else {
2391 uint32_t fence_reg;
2392
2393 if (obj_priv->fence_reg < 8)
2394 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2395 else
2396 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2397 8) * 4;
2398
2399 I915_WRITE(fence_reg, 0);
2400 }
2401
2402 reg->obj = NULL;
2403 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2404 list_del_init(&reg->lru_list);
2405 }
2406
2407 /**
2408 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2409 * to the buffer to finish, and then resets the fence register.
2410 * @obj: tiled object holding a fence register.
2411 * @bool: whether the wait upon the fence is interruptible
2412 *
2413 * Zeroes out the fence register itself and clears out the associated
2414 * data structures in dev_priv and obj_priv.
2415 */
2416 int
2417 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2418 bool interruptible)
2419 {
2420 struct drm_device *dev = obj->dev;
2421 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2422
2423 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2424 return 0;
2425
2426 /* If we've changed tiling, GTT-mappings of the object
2427 * need to re-fault to ensure that the correct fence register
2428 * setup is in place.
2429 */
2430 i915_gem_release_mmap(obj);
2431
2432 /* On the i915, GPU access to tiled buffers is via a fence,
2433 * therefore we must wait for any outstanding access to complete
2434 * before clearing the fence.
2435 */
2436 if (!IS_I965G(dev)) {
2437 int ret;
2438
2439 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2440 if (ret)
2441 return ret;
2442
2443 ret = i915_gem_object_wait_rendering(obj, interruptible);
2444 if (ret)
2445 return ret;
2446 }
2447
2448 i915_gem_object_flush_gtt_write_domain(obj);
2449 i915_gem_clear_fence_reg(obj);
2450
2451 return 0;
2452 }
2453
2454 /**
2455 * Finds free space in the GTT aperture and binds the object there.
2456 */
2457 static int
2458 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2459 {
2460 struct drm_device *dev = obj->dev;
2461 drm_i915_private_t *dev_priv = dev->dev_private;
2462 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2463 struct drm_mm_node *free_space;
2464 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2465 int ret;
2466
2467 if (obj_priv->madv != I915_MADV_WILLNEED) {
2468 DRM_ERROR("Attempting to bind a purgeable object\n");
2469 return -EINVAL;
2470 }
2471
2472 if (alignment == 0)
2473 alignment = i915_gem_get_gtt_alignment(obj);
2474 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2475 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2476 return -EINVAL;
2477 }
2478
2479 /* If the object is bigger than the entire aperture, reject it early
2480 * before evicting everything in a vain attempt to find space.
2481 */
2482 if (obj->size > dev->gtt_total) {
2483 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2484 return -E2BIG;
2485 }
2486
2487 search_free:
2488 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2489 obj->size, alignment, 0);
2490 if (free_space != NULL) {
2491 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2492 alignment);
2493 if (obj_priv->gtt_space != NULL)
2494 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2495 }
2496 if (obj_priv->gtt_space == NULL) {
2497 /* If the gtt is empty and we're still having trouble
2498 * fitting our object in, we're out of memory.
2499 */
2500 #if WATCH_LRU
2501 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2502 #endif
2503 ret = i915_gem_evict_something(dev, obj->size, alignment);
2504 if (ret)
2505 return ret;
2506
2507 goto search_free;
2508 }
2509
2510 #if WATCH_BUF
2511 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2512 obj->size, obj_priv->gtt_offset);
2513 #endif
2514 ret = i915_gem_object_get_pages(obj, gfpmask);
2515 if (ret) {
2516 drm_mm_put_block(obj_priv->gtt_space);
2517 obj_priv->gtt_space = NULL;
2518
2519 if (ret == -ENOMEM) {
2520 /* first try to clear up some space from the GTT */
2521 ret = i915_gem_evict_something(dev, obj->size,
2522 alignment);
2523 if (ret) {
2524 /* now try to shrink everyone else */
2525 if (gfpmask) {
2526 gfpmask = 0;
2527 goto search_free;
2528 }
2529
2530 return ret;
2531 }
2532
2533 goto search_free;
2534 }
2535
2536 return ret;
2537 }
2538
2539 /* Create an AGP memory structure pointing at our pages, and bind it
2540 * into the GTT.
2541 */
2542 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2543 obj_priv->pages,
2544 obj->size >> PAGE_SHIFT,
2545 obj_priv->gtt_offset,
2546 obj_priv->agp_type);
2547 if (obj_priv->agp_mem == NULL) {
2548 i915_gem_object_put_pages(obj);
2549 drm_mm_put_block(obj_priv->gtt_space);
2550 obj_priv->gtt_space = NULL;
2551
2552 ret = i915_gem_evict_something(dev, obj->size, alignment);
2553 if (ret)
2554 return ret;
2555
2556 goto search_free;
2557 }
2558 atomic_inc(&dev->gtt_count);
2559 atomic_add(obj->size, &dev->gtt_memory);
2560
2561 /* keep track of bounds object by adding it to the inactive list */
2562 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2563
2564 /* Assert that the object is not currently in any GPU domain. As it
2565 * wasn't in the GTT, there shouldn't be any way it could have been in
2566 * a GPU cache
2567 */
2568 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2569 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2570
2571 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2572
2573 return 0;
2574 }
2575
2576 void
2577 i915_gem_clflush_object(struct drm_gem_object *obj)
2578 {
2579 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2580
2581 /* If we don't have a page list set up, then we're not pinned
2582 * to GPU, and we can ignore the cache flush because it'll happen
2583 * again at bind time.
2584 */
2585 if (obj_priv->pages == NULL)
2586 return;
2587
2588 trace_i915_gem_object_clflush(obj);
2589
2590 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2591 }
2592
2593 /** Flushes any GPU write domain for the object if it's dirty. */
2594 static int
2595 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2596 bool pipelined)
2597 {
2598 struct drm_device *dev = obj->dev;
2599 uint32_t old_write_domain;
2600
2601 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2602 return 0;
2603
2604 /* Queue the GPU write cache flushing we need. */
2605 old_write_domain = obj->write_domain;
2606 i915_gem_flush(dev, 0, obj->write_domain);
2607 BUG_ON(obj->write_domain);
2608
2609 trace_i915_gem_object_change_domain(obj,
2610 obj->read_domains,
2611 old_write_domain);
2612
2613 if (pipelined)
2614 return 0;
2615
2616 return i915_gem_object_wait_rendering(obj, true);
2617 }
2618
2619 /** Flushes the GTT write domain for the object if it's dirty. */
2620 static void
2621 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2622 {
2623 uint32_t old_write_domain;
2624
2625 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2626 return;
2627
2628 /* No actual flushing is required for the GTT write domain. Writes
2629 * to it immediately go to main memory as far as we know, so there's
2630 * no chipset flush. It also doesn't land in render cache.
2631 */
2632 old_write_domain = obj->write_domain;
2633 obj->write_domain = 0;
2634
2635 trace_i915_gem_object_change_domain(obj,
2636 obj->read_domains,
2637 old_write_domain);
2638 }
2639
2640 /** Flushes the CPU write domain for the object if it's dirty. */
2641 static void
2642 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2643 {
2644 struct drm_device *dev = obj->dev;
2645 uint32_t old_write_domain;
2646
2647 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2648 return;
2649
2650 i915_gem_clflush_object(obj);
2651 drm_agp_chipset_flush(dev);
2652 old_write_domain = obj->write_domain;
2653 obj->write_domain = 0;
2654
2655 trace_i915_gem_object_change_domain(obj,
2656 obj->read_domains,
2657 old_write_domain);
2658 }
2659
2660 /**
2661 * Moves a single object to the GTT read, and possibly write domain.
2662 *
2663 * This function returns when the move is complete, including waiting on
2664 * flushes to occur.
2665 */
2666 int
2667 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2668 {
2669 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2670 uint32_t old_write_domain, old_read_domains;
2671 int ret;
2672
2673 /* Not valid to be called on unbound objects. */
2674 if (obj_priv->gtt_space == NULL)
2675 return -EINVAL;
2676
2677 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2678 if (ret != 0)
2679 return ret;
2680
2681 i915_gem_object_flush_cpu_write_domain(obj);
2682
2683 if (write) {
2684 ret = i915_gem_object_wait_rendering(obj, true);
2685 if (ret)
2686 return ret;
2687 }
2688
2689 old_write_domain = obj->write_domain;
2690 old_read_domains = obj->read_domains;
2691
2692 /* It should now be out of any other write domains, and we can update
2693 * the domain values for our changes.
2694 */
2695 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2696 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2697 if (write) {
2698 obj->read_domains = I915_GEM_DOMAIN_GTT;
2699 obj->write_domain = I915_GEM_DOMAIN_GTT;
2700 obj_priv->dirty = 1;
2701 }
2702
2703 trace_i915_gem_object_change_domain(obj,
2704 old_read_domains,
2705 old_write_domain);
2706
2707 return 0;
2708 }
2709
2710 /*
2711 * Prepare buffer for display plane. Use uninterruptible for possible flush
2712 * wait, as in modesetting process we're not supposed to be interrupted.
2713 */
2714 int
2715 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2716 bool pipelined)
2717 {
2718 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2719 uint32_t old_read_domains;
2720 int ret;
2721
2722 /* Not valid to be called on unbound objects. */
2723 if (obj_priv->gtt_space == NULL)
2724 return -EINVAL;
2725
2726 ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2727 if (ret)
2728 return ret;
2729
2730 i915_gem_object_flush_cpu_write_domain(obj);
2731
2732 old_read_domains = obj->read_domains;
2733 obj->read_domains = I915_GEM_DOMAIN_GTT;
2734
2735 trace_i915_gem_object_change_domain(obj,
2736 old_read_domains,
2737 obj->write_domain);
2738
2739 return 0;
2740 }
2741
2742 /**
2743 * Moves a single object to the CPU read, and possibly write domain.
2744 *
2745 * This function returns when the move is complete, including waiting on
2746 * flushes to occur.
2747 */
2748 static int
2749 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2750 {
2751 uint32_t old_write_domain, old_read_domains;
2752 int ret;
2753
2754 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2755 if (ret != 0)
2756 return ret;
2757
2758 i915_gem_object_flush_gtt_write_domain(obj);
2759
2760 /* If we have a partially-valid cache of the object in the CPU,
2761 * finish invalidating it and free the per-page flags.
2762 */
2763 i915_gem_object_set_to_full_cpu_read_domain(obj);
2764
2765 if (write) {
2766 ret = i915_gem_object_wait_rendering(obj, true);
2767 if (ret)
2768 return ret;
2769 }
2770
2771 old_write_domain = obj->write_domain;
2772 old_read_domains = obj->read_domains;
2773
2774 /* Flush the CPU cache if it's still invalid. */
2775 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2776 i915_gem_clflush_object(obj);
2777
2778 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2779 }
2780
2781 /* It should now be out of any other write domains, and we can update
2782 * the domain values for our changes.
2783 */
2784 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2785
2786 /* If we're writing through the CPU, then the GPU read domains will
2787 * need to be invalidated at next use.
2788 */
2789 if (write) {
2790 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2791 obj->write_domain = I915_GEM_DOMAIN_CPU;
2792 }
2793
2794 trace_i915_gem_object_change_domain(obj,
2795 old_read_domains,
2796 old_write_domain);
2797
2798 return 0;
2799 }
2800
2801 /*
2802 * Set the next domain for the specified object. This
2803 * may not actually perform the necessary flushing/invaliding though,
2804 * as that may want to be batched with other set_domain operations
2805 *
2806 * This is (we hope) the only really tricky part of gem. The goal
2807 * is fairly simple -- track which caches hold bits of the object
2808 * and make sure they remain coherent. A few concrete examples may
2809 * help to explain how it works. For shorthand, we use the notation
2810 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2811 * a pair of read and write domain masks.
2812 *
2813 * Case 1: the batch buffer
2814 *
2815 * 1. Allocated
2816 * 2. Written by CPU
2817 * 3. Mapped to GTT
2818 * 4. Read by GPU
2819 * 5. Unmapped from GTT
2820 * 6. Freed
2821 *
2822 * Let's take these a step at a time
2823 *
2824 * 1. Allocated
2825 * Pages allocated from the kernel may still have
2826 * cache contents, so we set them to (CPU, CPU) always.
2827 * 2. Written by CPU (using pwrite)
2828 * The pwrite function calls set_domain (CPU, CPU) and
2829 * this function does nothing (as nothing changes)
2830 * 3. Mapped by GTT
2831 * This function asserts that the object is not
2832 * currently in any GPU-based read or write domains
2833 * 4. Read by GPU
2834 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2835 * As write_domain is zero, this function adds in the
2836 * current read domains (CPU+COMMAND, 0).
2837 * flush_domains is set to CPU.
2838 * invalidate_domains is set to COMMAND
2839 * clflush is run to get data out of the CPU caches
2840 * then i915_dev_set_domain calls i915_gem_flush to
2841 * emit an MI_FLUSH and drm_agp_chipset_flush
2842 * 5. Unmapped from GTT
2843 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2844 * flush_domains and invalidate_domains end up both zero
2845 * so no flushing/invalidating happens
2846 * 6. Freed
2847 * yay, done
2848 *
2849 * Case 2: The shared render buffer
2850 *
2851 * 1. Allocated
2852 * 2. Mapped to GTT
2853 * 3. Read/written by GPU
2854 * 4. set_domain to (CPU,CPU)
2855 * 5. Read/written by CPU
2856 * 6. Read/written by GPU
2857 *
2858 * 1. Allocated
2859 * Same as last example, (CPU, CPU)
2860 * 2. Mapped to GTT
2861 * Nothing changes (assertions find that it is not in the GPU)
2862 * 3. Read/written by GPU
2863 * execbuffer calls set_domain (RENDER, RENDER)
2864 * flush_domains gets CPU
2865 * invalidate_domains gets GPU
2866 * clflush (obj)
2867 * MI_FLUSH and drm_agp_chipset_flush
2868 * 4. set_domain (CPU, CPU)
2869 * flush_domains gets GPU
2870 * invalidate_domains gets CPU
2871 * wait_rendering (obj) to make sure all drawing is complete.
2872 * This will include an MI_FLUSH to get the data from GPU
2873 * to memory
2874 * clflush (obj) to invalidate the CPU cache
2875 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2876 * 5. Read/written by CPU
2877 * cache lines are loaded and dirtied
2878 * 6. Read written by GPU
2879 * Same as last GPU access
2880 *
2881 * Case 3: The constant buffer
2882 *
2883 * 1. Allocated
2884 * 2. Written by CPU
2885 * 3. Read by GPU
2886 * 4. Updated (written) by CPU again
2887 * 5. Read by GPU
2888 *
2889 * 1. Allocated
2890 * (CPU, CPU)
2891 * 2. Written by CPU
2892 * (CPU, CPU)
2893 * 3. Read by GPU
2894 * (CPU+RENDER, 0)
2895 * flush_domains = CPU
2896 * invalidate_domains = RENDER
2897 * clflush (obj)
2898 * MI_FLUSH
2899 * drm_agp_chipset_flush
2900 * 4. Updated (written) by CPU again
2901 * (CPU, CPU)
2902 * flush_domains = 0 (no previous write domain)
2903 * invalidate_domains = 0 (no new read domains)
2904 * 5. Read by GPU
2905 * (CPU+RENDER, 0)
2906 * flush_domains = CPU
2907 * invalidate_domains = RENDER
2908 * clflush (obj)
2909 * MI_FLUSH
2910 * drm_agp_chipset_flush
2911 */
2912 static void
2913 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2914 {
2915 struct drm_device *dev = obj->dev;
2916 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2917 uint32_t invalidate_domains = 0;
2918 uint32_t flush_domains = 0;
2919 uint32_t old_read_domains;
2920
2921 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2922 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2923
2924 intel_mark_busy(dev, obj);
2925
2926 #if WATCH_BUF
2927 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2928 __func__, obj,
2929 obj->read_domains, obj->pending_read_domains,
2930 obj->write_domain, obj->pending_write_domain);
2931 #endif
2932 /*
2933 * If the object isn't moving to a new write domain,
2934 * let the object stay in multiple read domains
2935 */
2936 if (obj->pending_write_domain == 0)
2937 obj->pending_read_domains |= obj->read_domains;
2938 else
2939 obj_priv->dirty = 1;
2940
2941 /*
2942 * Flush the current write domain if
2943 * the new read domains don't match. Invalidate
2944 * any read domains which differ from the old
2945 * write domain
2946 */
2947 if (obj->write_domain &&
2948 obj->write_domain != obj->pending_read_domains) {
2949 flush_domains |= obj->write_domain;
2950 invalidate_domains |=
2951 obj->pending_read_domains & ~obj->write_domain;
2952 }
2953 /*
2954 * Invalidate any read caches which may have
2955 * stale data. That is, any new read domains.
2956 */
2957 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2958 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2959 #if WATCH_BUF
2960 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2961 __func__, flush_domains, invalidate_domains);
2962 #endif
2963 i915_gem_clflush_object(obj);
2964 }
2965
2966 old_read_domains = obj->read_domains;
2967
2968 /* The actual obj->write_domain will be updated with
2969 * pending_write_domain after we emit the accumulated flush for all
2970 * of our domain changes in execbuffers (which clears objects'
2971 * write_domains). So if we have a current write domain that we
2972 * aren't changing, set pending_write_domain to that.
2973 */
2974 if (flush_domains == 0 && obj->pending_write_domain == 0)
2975 obj->pending_write_domain = obj->write_domain;
2976 obj->read_domains = obj->pending_read_domains;
2977
2978 dev->invalidate_domains |= invalidate_domains;
2979 dev->flush_domains |= flush_domains;
2980 #if WATCH_BUF
2981 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2982 __func__,
2983 obj->read_domains, obj->write_domain,
2984 dev->invalidate_domains, dev->flush_domains);
2985 #endif
2986
2987 trace_i915_gem_object_change_domain(obj,
2988 old_read_domains,
2989 obj->write_domain);
2990 }
2991
2992 /**
2993 * Moves the object from a partially CPU read to a full one.
2994 *
2995 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2996 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2997 */
2998 static void
2999 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3000 {
3001 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3002
3003 if (!obj_priv->page_cpu_valid)
3004 return;
3005
3006 /* If we're partially in the CPU read domain, finish moving it in.
3007 */
3008 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3009 int i;
3010
3011 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3012 if (obj_priv->page_cpu_valid[i])
3013 continue;
3014 drm_clflush_pages(obj_priv->pages + i, 1);
3015 }
3016 }
3017
3018 /* Free the page_cpu_valid mappings which are now stale, whether
3019 * or not we've got I915_GEM_DOMAIN_CPU.
3020 */
3021 kfree(obj_priv->page_cpu_valid);
3022 obj_priv->page_cpu_valid = NULL;
3023 }
3024
3025 /**
3026 * Set the CPU read domain on a range of the object.
3027 *
3028 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3029 * not entirely valid. The page_cpu_valid member of the object flags which
3030 * pages have been flushed, and will be respected by
3031 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3032 * of the whole object.
3033 *
3034 * This function returns when the move is complete, including waiting on
3035 * flushes to occur.
3036 */
3037 static int
3038 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3039 uint64_t offset, uint64_t size)
3040 {
3041 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3042 uint32_t old_read_domains;
3043 int i, ret;
3044
3045 if (offset == 0 && size == obj->size)
3046 return i915_gem_object_set_to_cpu_domain(obj, 0);
3047
3048 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3049 if (ret != 0)
3050 return ret;
3051 i915_gem_object_flush_gtt_write_domain(obj);
3052
3053 /* If we're already fully in the CPU read domain, we're done. */
3054 if (obj_priv->page_cpu_valid == NULL &&
3055 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3056 return 0;
3057
3058 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3059 * newly adding I915_GEM_DOMAIN_CPU
3060 */
3061 if (obj_priv->page_cpu_valid == NULL) {
3062 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3063 GFP_KERNEL);
3064 if (obj_priv->page_cpu_valid == NULL)
3065 return -ENOMEM;
3066 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3067 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3068
3069 /* Flush the cache on any pages that are still invalid from the CPU's
3070 * perspective.
3071 */
3072 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3073 i++) {
3074 if (obj_priv->page_cpu_valid[i])
3075 continue;
3076
3077 drm_clflush_pages(obj_priv->pages + i, 1);
3078
3079 obj_priv->page_cpu_valid[i] = 1;
3080 }
3081
3082 /* It should now be out of any other write domains, and we can update
3083 * the domain values for our changes.
3084 */
3085 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3086
3087 old_read_domains = obj->read_domains;
3088 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3089
3090 trace_i915_gem_object_change_domain(obj,
3091 old_read_domains,
3092 obj->write_domain);
3093
3094 return 0;
3095 }
3096
3097 /**
3098 * Pin an object to the GTT and evaluate the relocations landing in it.
3099 */
3100 static int
3101 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3102 struct drm_file *file_priv,
3103 struct drm_i915_gem_exec_object2 *entry,
3104 struct drm_i915_gem_relocation_entry *relocs)
3105 {
3106 struct drm_device *dev = obj->dev;
3107 drm_i915_private_t *dev_priv = dev->dev_private;
3108 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3109 int i, ret;
3110 void __iomem *reloc_page;
3111 bool need_fence;
3112
3113 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3114 obj_priv->tiling_mode != I915_TILING_NONE;
3115
3116 /* Check fence reg constraints and rebind if necessary */
3117 if (need_fence &&
3118 !i915_gem_object_fence_offset_ok(obj,
3119 obj_priv->tiling_mode)) {
3120 ret = i915_gem_object_unbind(obj);
3121 if (ret)
3122 return ret;
3123 }
3124
3125 /* Choose the GTT offset for our buffer and put it there. */
3126 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3127 if (ret)
3128 return ret;
3129
3130 /*
3131 * Pre-965 chips need a fence register set up in order to
3132 * properly handle blits to/from tiled surfaces.
3133 */
3134 if (need_fence) {
3135 ret = i915_gem_object_get_fence_reg(obj, false);
3136 if (ret != 0) {
3137 i915_gem_object_unpin(obj);
3138 return ret;
3139 }
3140 }
3141
3142 entry->offset = obj_priv->gtt_offset;
3143
3144 /* Apply the relocations, using the GTT aperture to avoid cache
3145 * flushing requirements.
3146 */
3147 for (i = 0; i < entry->relocation_count; i++) {
3148 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3149 struct drm_gem_object *target_obj;
3150 struct drm_i915_gem_object *target_obj_priv;
3151 uint32_t reloc_val, reloc_offset;
3152 uint32_t __iomem *reloc_entry;
3153
3154 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3155 reloc->target_handle);
3156 if (target_obj == NULL) {
3157 i915_gem_object_unpin(obj);
3158 return -ENOENT;
3159 }
3160 target_obj_priv = to_intel_bo(target_obj);
3161
3162 #if WATCH_RELOC
3163 DRM_INFO("%s: obj %p offset %08x target %d "
3164 "read %08x write %08x gtt %08x "
3165 "presumed %08x delta %08x\n",
3166 __func__,
3167 obj,
3168 (int) reloc->offset,
3169 (int) reloc->target_handle,
3170 (int) reloc->read_domains,
3171 (int) reloc->write_domain,
3172 (int) target_obj_priv->gtt_offset,
3173 (int) reloc->presumed_offset,
3174 reloc->delta);
3175 #endif
3176
3177 /* The target buffer should have appeared before us in the
3178 * exec_object list, so it should have a GTT space bound by now.
3179 */
3180 if (target_obj_priv->gtt_space == NULL) {
3181 DRM_ERROR("No GTT space found for object %d\n",
3182 reloc->target_handle);
3183 drm_gem_object_unreference(target_obj);
3184 i915_gem_object_unpin(obj);
3185 return -EINVAL;
3186 }
3187
3188 /* Validate that the target is in a valid r/w GPU domain */
3189 if (reloc->write_domain & (reloc->write_domain - 1)) {
3190 DRM_ERROR("reloc with multiple write domains: "
3191 "obj %p target %d offset %d "
3192 "read %08x write %08x",
3193 obj, reloc->target_handle,
3194 (int) reloc->offset,
3195 reloc->read_domains,
3196 reloc->write_domain);
3197 return -EINVAL;
3198 }
3199 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3200 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3201 DRM_ERROR("reloc with read/write CPU domains: "
3202 "obj %p target %d offset %d "
3203 "read %08x write %08x",
3204 obj, reloc->target_handle,
3205 (int) reloc->offset,
3206 reloc->read_domains,
3207 reloc->write_domain);
3208 drm_gem_object_unreference(target_obj);
3209 i915_gem_object_unpin(obj);
3210 return -EINVAL;
3211 }
3212 if (reloc->write_domain && target_obj->pending_write_domain &&
3213 reloc->write_domain != target_obj->pending_write_domain) {
3214 DRM_ERROR("Write domain conflict: "
3215 "obj %p target %d offset %d "
3216 "new %08x old %08x\n",
3217 obj, reloc->target_handle,
3218 (int) reloc->offset,
3219 reloc->write_domain,
3220 target_obj->pending_write_domain);
3221 drm_gem_object_unreference(target_obj);
3222 i915_gem_object_unpin(obj);
3223 return -EINVAL;
3224 }
3225
3226 target_obj->pending_read_domains |= reloc->read_domains;
3227 target_obj->pending_write_domain |= reloc->write_domain;
3228
3229 /* If the relocation already has the right value in it, no
3230 * more work needs to be done.
3231 */
3232 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3233 drm_gem_object_unreference(target_obj);
3234 continue;
3235 }
3236
3237 /* Check that the relocation address is valid... */
3238 if (reloc->offset > obj->size - 4) {
3239 DRM_ERROR("Relocation beyond object bounds: "
3240 "obj %p target %d offset %d size %d.\n",
3241 obj, reloc->target_handle,
3242 (int) reloc->offset, (int) obj->size);
3243 drm_gem_object_unreference(target_obj);
3244 i915_gem_object_unpin(obj);
3245 return -EINVAL;
3246 }
3247 if (reloc->offset & 3) {
3248 DRM_ERROR("Relocation not 4-byte aligned: "
3249 "obj %p target %d offset %d.\n",
3250 obj, reloc->target_handle,
3251 (int) reloc->offset);
3252 drm_gem_object_unreference(target_obj);
3253 i915_gem_object_unpin(obj);
3254 return -EINVAL;
3255 }
3256
3257 /* and points to somewhere within the target object. */
3258 if (reloc->delta >= target_obj->size) {
3259 DRM_ERROR("Relocation beyond target object bounds: "
3260 "obj %p target %d delta %d size %d.\n",
3261 obj, reloc->target_handle,
3262 (int) reloc->delta, (int) target_obj->size);
3263 drm_gem_object_unreference(target_obj);
3264 i915_gem_object_unpin(obj);
3265 return -EINVAL;
3266 }
3267
3268 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3269 if (ret != 0) {
3270 drm_gem_object_unreference(target_obj);
3271 i915_gem_object_unpin(obj);
3272 return -EINVAL;
3273 }
3274
3275 /* Map the page containing the relocation we're going to
3276 * perform.
3277 */
3278 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3279 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3280 (reloc_offset &
3281 ~(PAGE_SIZE - 1)),
3282 KM_USER0);
3283 reloc_entry = (uint32_t __iomem *)(reloc_page +
3284 (reloc_offset & (PAGE_SIZE - 1)));
3285 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3286
3287 #if WATCH_BUF
3288 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3289 obj, (unsigned int) reloc->offset,
3290 readl(reloc_entry), reloc_val);
3291 #endif
3292 writel(reloc_val, reloc_entry);
3293 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3294
3295 /* The updated presumed offset for this entry will be
3296 * copied back out to the user.
3297 */
3298 reloc->presumed_offset = target_obj_priv->gtt_offset;
3299
3300 drm_gem_object_unreference(target_obj);
3301 }
3302
3303 #if WATCH_BUF
3304 if (0)
3305 i915_gem_dump_object(obj, 128, __func__, ~0);
3306 #endif
3307 return 0;
3308 }
3309
3310 /* Throttle our rendering by waiting until the ring has completed our requests
3311 * emitted over 20 msec ago.
3312 *
3313 * Note that if we were to use the current jiffies each time around the loop,
3314 * we wouldn't escape the function with any frames outstanding if the time to
3315 * render a frame was over 20ms.
3316 *
3317 * This should get us reasonable parallelism between CPU and GPU but also
3318 * relatively low latency when blocking on a particular request to finish.
3319 */
3320 static int
3321 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3322 {
3323 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3324 int ret = 0;
3325 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3326
3327 mutex_lock(&dev->struct_mutex);
3328 while (!list_empty(&i915_file_priv->mm.request_list)) {
3329 struct drm_i915_gem_request *request;
3330
3331 request = list_first_entry(&i915_file_priv->mm.request_list,
3332 struct drm_i915_gem_request,
3333 client_list);
3334
3335 if (time_after_eq(request->emitted_jiffies, recent_enough))
3336 break;
3337
3338 ret = i915_wait_request(dev, request->seqno, request->ring);
3339 if (ret != 0)
3340 break;
3341 }
3342 mutex_unlock(&dev->struct_mutex);
3343
3344 return ret;
3345 }
3346
3347 static int
3348 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3349 uint32_t buffer_count,
3350 struct drm_i915_gem_relocation_entry **relocs)
3351 {
3352 uint32_t reloc_count = 0, reloc_index = 0, i;
3353 int ret;
3354
3355 *relocs = NULL;
3356 for (i = 0; i < buffer_count; i++) {
3357 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3358 return -EINVAL;
3359 reloc_count += exec_list[i].relocation_count;
3360 }
3361
3362 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3363 if (*relocs == NULL) {
3364 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3365 return -ENOMEM;
3366 }
3367
3368 for (i = 0; i < buffer_count; i++) {
3369 struct drm_i915_gem_relocation_entry __user *user_relocs;
3370
3371 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3372
3373 ret = copy_from_user(&(*relocs)[reloc_index],
3374 user_relocs,
3375 exec_list[i].relocation_count *
3376 sizeof(**relocs));
3377 if (ret != 0) {
3378 drm_free_large(*relocs);
3379 *relocs = NULL;
3380 return -EFAULT;
3381 }
3382
3383 reloc_index += exec_list[i].relocation_count;
3384 }
3385
3386 return 0;
3387 }
3388
3389 static int
3390 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3391 uint32_t buffer_count,
3392 struct drm_i915_gem_relocation_entry *relocs)
3393 {
3394 uint32_t reloc_count = 0, i;
3395 int ret = 0;
3396
3397 if (relocs == NULL)
3398 return 0;
3399
3400 for (i = 0; i < buffer_count; i++) {
3401 struct drm_i915_gem_relocation_entry __user *user_relocs;
3402 int unwritten;
3403
3404 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3405
3406 unwritten = copy_to_user(user_relocs,
3407 &relocs[reloc_count],
3408 exec_list[i].relocation_count *
3409 sizeof(*relocs));
3410
3411 if (unwritten) {
3412 ret = -EFAULT;
3413 goto err;
3414 }
3415
3416 reloc_count += exec_list[i].relocation_count;
3417 }
3418
3419 err:
3420 drm_free_large(relocs);
3421
3422 return ret;
3423 }
3424
3425 static int
3426 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3427 uint64_t exec_offset)
3428 {
3429 uint32_t exec_start, exec_len;
3430
3431 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3432 exec_len = (uint32_t) exec->batch_len;
3433
3434 if ((exec_start | exec_len) & 0x7)
3435 return -EINVAL;
3436
3437 if (!exec_start)
3438 return -EINVAL;
3439
3440 return 0;
3441 }
3442
3443 static int
3444 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3445 struct drm_gem_object **object_list,
3446 int count)
3447 {
3448 drm_i915_private_t *dev_priv = dev->dev_private;
3449 struct drm_i915_gem_object *obj_priv;
3450 DEFINE_WAIT(wait);
3451 int i, ret = 0;
3452
3453 for (;;) {
3454 prepare_to_wait(&dev_priv->pending_flip_queue,
3455 &wait, TASK_INTERRUPTIBLE);
3456 for (i = 0; i < count; i++) {
3457 obj_priv = to_intel_bo(object_list[i]);
3458 if (atomic_read(&obj_priv->pending_flip) > 0)
3459 break;
3460 }
3461 if (i == count)
3462 break;
3463
3464 if (!signal_pending(current)) {
3465 mutex_unlock(&dev->struct_mutex);
3466 schedule();
3467 mutex_lock(&dev->struct_mutex);
3468 continue;
3469 }
3470 ret = -ERESTARTSYS;
3471 break;
3472 }
3473 finish_wait(&dev_priv->pending_flip_queue, &wait);
3474
3475 return ret;
3476 }
3477
3478 static int
3479 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3480 struct drm_file *file_priv,
3481 struct drm_i915_gem_execbuffer2 *args,
3482 struct drm_i915_gem_exec_object2 *exec_list)
3483 {
3484 drm_i915_private_t *dev_priv = dev->dev_private;
3485 struct drm_gem_object **object_list = NULL;
3486 struct drm_gem_object *batch_obj;
3487 struct drm_i915_gem_object *obj_priv;
3488 struct drm_clip_rect *cliprects = NULL;
3489 struct drm_i915_gem_relocation_entry *relocs = NULL;
3490 struct drm_i915_gem_request *request = NULL;
3491 int ret = 0, ret2, i, pinned = 0;
3492 uint64_t exec_offset;
3493 uint32_t seqno, reloc_index;
3494 int pin_tries, flips;
3495
3496 struct intel_ring_buffer *ring = NULL;
3497
3498 #if WATCH_EXEC
3499 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3500 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3501 #endif
3502 if (args->flags & I915_EXEC_BSD) {
3503 if (!HAS_BSD(dev)) {
3504 DRM_ERROR("execbuf with wrong flag\n");
3505 return -EINVAL;
3506 }
3507 ring = &dev_priv->bsd_ring;
3508 } else {
3509 ring = &dev_priv->render_ring;
3510 }
3511
3512 if (args->buffer_count < 1) {
3513 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3514 return -EINVAL;
3515 }
3516 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3517 if (object_list == NULL) {
3518 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3519 args->buffer_count);
3520 ret = -ENOMEM;
3521 goto pre_mutex_err;
3522 }
3523
3524 if (args->num_cliprects != 0) {
3525 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3526 GFP_KERNEL);
3527 if (cliprects == NULL) {
3528 ret = -ENOMEM;
3529 goto pre_mutex_err;
3530 }
3531
3532 ret = copy_from_user(cliprects,
3533 (struct drm_clip_rect __user *)
3534 (uintptr_t) args->cliprects_ptr,
3535 sizeof(*cliprects) * args->num_cliprects);
3536 if (ret != 0) {
3537 DRM_ERROR("copy %d cliprects failed: %d\n",
3538 args->num_cliprects, ret);
3539 ret = -EFAULT;
3540 goto pre_mutex_err;
3541 }
3542 }
3543
3544 request = kzalloc(sizeof(*request), GFP_KERNEL);
3545 if (request == NULL) {
3546 ret = -ENOMEM;
3547 goto pre_mutex_err;
3548 }
3549
3550 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3551 &relocs);
3552 if (ret != 0)
3553 goto pre_mutex_err;
3554
3555 mutex_lock(&dev->struct_mutex);
3556
3557 i915_verify_inactive(dev, __FILE__, __LINE__);
3558
3559 if (atomic_read(&dev_priv->mm.wedged)) {
3560 mutex_unlock(&dev->struct_mutex);
3561 ret = -EIO;
3562 goto pre_mutex_err;
3563 }
3564
3565 if (dev_priv->mm.suspended) {
3566 mutex_unlock(&dev->struct_mutex);
3567 ret = -EBUSY;
3568 goto pre_mutex_err;
3569 }
3570
3571 /* Look up object handles */
3572 flips = 0;
3573 for (i = 0; i < args->buffer_count; i++) {
3574 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3575 exec_list[i].handle);
3576 if (object_list[i] == NULL) {
3577 DRM_ERROR("Invalid object handle %d at index %d\n",
3578 exec_list[i].handle, i);
3579 /* prevent error path from reading uninitialized data */
3580 args->buffer_count = i + 1;
3581 ret = -ENOENT;
3582 goto err;
3583 }
3584
3585 obj_priv = to_intel_bo(object_list[i]);
3586 if (obj_priv->in_execbuffer) {
3587 DRM_ERROR("Object %p appears more than once in object list\n",
3588 object_list[i]);
3589 /* prevent error path from reading uninitialized data */
3590 args->buffer_count = i + 1;
3591 ret = -EINVAL;
3592 goto err;
3593 }
3594 obj_priv->in_execbuffer = true;
3595 flips += atomic_read(&obj_priv->pending_flip);
3596 }
3597
3598 if (flips > 0) {
3599 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3600 args->buffer_count);
3601 if (ret)
3602 goto err;
3603 }
3604
3605 /* Pin and relocate */
3606 for (pin_tries = 0; ; pin_tries++) {
3607 ret = 0;
3608 reloc_index = 0;
3609
3610 for (i = 0; i < args->buffer_count; i++) {
3611 object_list[i]->pending_read_domains = 0;
3612 object_list[i]->pending_write_domain = 0;
3613 ret = i915_gem_object_pin_and_relocate(object_list[i],
3614 file_priv,
3615 &exec_list[i],
3616 &relocs[reloc_index]);
3617 if (ret)
3618 break;
3619 pinned = i + 1;
3620 reloc_index += exec_list[i].relocation_count;
3621 }
3622 /* success */
3623 if (ret == 0)
3624 break;
3625
3626 /* error other than GTT full, or we've already tried again */
3627 if (ret != -ENOSPC || pin_tries >= 1) {
3628 if (ret != -ERESTARTSYS) {
3629 unsigned long long total_size = 0;
3630 int num_fences = 0;
3631 for (i = 0; i < args->buffer_count; i++) {
3632 obj_priv = to_intel_bo(object_list[i]);
3633
3634 total_size += object_list[i]->size;
3635 num_fences +=
3636 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3637 obj_priv->tiling_mode != I915_TILING_NONE;
3638 }
3639 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3640 pinned+1, args->buffer_count,
3641 total_size, num_fences,
3642 ret);
3643 DRM_ERROR("%d objects [%d pinned], "
3644 "%d object bytes [%d pinned], "
3645 "%d/%d gtt bytes\n",
3646 atomic_read(&dev->object_count),
3647 atomic_read(&dev->pin_count),
3648 atomic_read(&dev->object_memory),
3649 atomic_read(&dev->pin_memory),
3650 atomic_read(&dev->gtt_memory),
3651 dev->gtt_total);
3652 }
3653 goto err;
3654 }
3655
3656 /* unpin all of our buffers */
3657 for (i = 0; i < pinned; i++)
3658 i915_gem_object_unpin(object_list[i]);
3659 pinned = 0;
3660
3661 /* evict everyone we can from the aperture */
3662 ret = i915_gem_evict_everything(dev);
3663 if (ret && ret != -ENOSPC)
3664 goto err;
3665 }
3666
3667 /* Set the pending read domains for the batch buffer to COMMAND */
3668 batch_obj = object_list[args->buffer_count-1];
3669 if (batch_obj->pending_write_domain) {
3670 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3671 ret = -EINVAL;
3672 goto err;
3673 }
3674 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3675
3676 /* Sanity check the batch buffer, prior to moving objects */
3677 exec_offset = exec_list[args->buffer_count - 1].offset;
3678 ret = i915_gem_check_execbuffer (args, exec_offset);
3679 if (ret != 0) {
3680 DRM_ERROR("execbuf with invalid offset/length\n");
3681 goto err;
3682 }
3683
3684 i915_verify_inactive(dev, __FILE__, __LINE__);
3685
3686 /* Zero the global flush/invalidate flags. These
3687 * will be modified as new domains are computed
3688 * for each object
3689 */
3690 dev->invalidate_domains = 0;
3691 dev->flush_domains = 0;
3692
3693 for (i = 0; i < args->buffer_count; i++) {
3694 struct drm_gem_object *obj = object_list[i];
3695
3696 /* Compute new gpu domains and update invalidate/flush */
3697 i915_gem_object_set_to_gpu_domain(obj);
3698 }
3699
3700 i915_verify_inactive(dev, __FILE__, __LINE__);
3701
3702 if (dev->invalidate_domains | dev->flush_domains) {
3703 #if WATCH_EXEC
3704 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3705 __func__,
3706 dev->invalidate_domains,
3707 dev->flush_domains);
3708 #endif
3709 i915_gem_flush(dev,
3710 dev->invalidate_domains,
3711 dev->flush_domains);
3712 }
3713
3714 if (dev_priv->render_ring.outstanding_lazy_request) {
3715 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->render_ring);
3716 dev_priv->render_ring.outstanding_lazy_request = false;
3717 }
3718 if (dev_priv->bsd_ring.outstanding_lazy_request) {
3719 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->bsd_ring);
3720 dev_priv->bsd_ring.outstanding_lazy_request = false;
3721 }
3722
3723 for (i = 0; i < args->buffer_count; i++) {
3724 struct drm_gem_object *obj = object_list[i];
3725 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3726 uint32_t old_write_domain = obj->write_domain;
3727
3728 obj->write_domain = obj->pending_write_domain;
3729 if (obj->write_domain)
3730 list_move_tail(&obj_priv->gpu_write_list,
3731 &dev_priv->mm.gpu_write_list);
3732 else
3733 list_del_init(&obj_priv->gpu_write_list);
3734
3735 trace_i915_gem_object_change_domain(obj,
3736 obj->read_domains,
3737 old_write_domain);
3738 }
3739
3740 i915_verify_inactive(dev, __FILE__, __LINE__);
3741
3742 #if WATCH_COHERENCY
3743 for (i = 0; i < args->buffer_count; i++) {
3744 i915_gem_object_check_coherency(object_list[i],
3745 exec_list[i].handle);
3746 }
3747 #endif
3748
3749 #if WATCH_EXEC
3750 i915_gem_dump_object(batch_obj,
3751 args->batch_len,
3752 __func__,
3753 ~0);
3754 #endif
3755
3756 /* Exec the batchbuffer */
3757 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3758 cliprects, exec_offset);
3759 if (ret) {
3760 DRM_ERROR("dispatch failed %d\n", ret);
3761 goto err;
3762 }
3763
3764 /*
3765 * Ensure that the commands in the batch buffer are
3766 * finished before the interrupt fires
3767 */
3768 i915_retire_commands(dev, ring);
3769
3770 i915_verify_inactive(dev, __FILE__, __LINE__);
3771
3772 for (i = 0; i < args->buffer_count; i++) {
3773 struct drm_gem_object *obj = object_list[i];
3774 obj_priv = to_intel_bo(obj);
3775
3776 i915_gem_object_move_to_active(obj, ring);
3777 #if WATCH_LRU
3778 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3779 #endif
3780 }
3781
3782 /*
3783 * Get a seqno representing the execution of the current buffer,
3784 * which we can wait on. We would like to mitigate these interrupts,
3785 * likely by only creating seqnos occasionally (so that we have
3786 * *some* interrupts representing completion of buffers that we can
3787 * wait on when trying to clear up gtt space).
3788 */
3789 seqno = i915_add_request(dev, file_priv, request, ring);
3790 request = NULL;
3791
3792 #if WATCH_LRU
3793 i915_dump_lru(dev, __func__);
3794 #endif
3795
3796 i915_verify_inactive(dev, __FILE__, __LINE__);
3797
3798 err:
3799 for (i = 0; i < pinned; i++)
3800 i915_gem_object_unpin(object_list[i]);
3801
3802 for (i = 0; i < args->buffer_count; i++) {
3803 if (object_list[i]) {
3804 obj_priv = to_intel_bo(object_list[i]);
3805 obj_priv->in_execbuffer = false;
3806 }
3807 drm_gem_object_unreference(object_list[i]);
3808 }
3809
3810 mutex_unlock(&dev->struct_mutex);
3811
3812 pre_mutex_err:
3813 /* Copy the updated relocations out regardless of current error
3814 * state. Failure to update the relocs would mean that the next
3815 * time userland calls execbuf, it would do so with presumed offset
3816 * state that didn't match the actual object state.
3817 */
3818 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3819 relocs);
3820 if (ret2 != 0) {
3821 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3822
3823 if (ret == 0)
3824 ret = ret2;
3825 }
3826
3827 drm_free_large(object_list);
3828 kfree(cliprects);
3829 kfree(request);
3830
3831 return ret;
3832 }
3833
3834 /*
3835 * Legacy execbuffer just creates an exec2 list from the original exec object
3836 * list array and passes it to the real function.
3837 */
3838 int
3839 i915_gem_execbuffer(struct drm_device *dev, void *data,
3840 struct drm_file *file_priv)
3841 {
3842 struct drm_i915_gem_execbuffer *args = data;
3843 struct drm_i915_gem_execbuffer2 exec2;
3844 struct drm_i915_gem_exec_object *exec_list = NULL;
3845 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3846 int ret, i;
3847
3848 #if WATCH_EXEC
3849 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3850 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3851 #endif
3852
3853 if (args->buffer_count < 1) {
3854 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3855 return -EINVAL;
3856 }
3857
3858 /* Copy in the exec list from userland */
3859 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3860 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3861 if (exec_list == NULL || exec2_list == NULL) {
3862 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3863 args->buffer_count);
3864 drm_free_large(exec_list);
3865 drm_free_large(exec2_list);
3866 return -ENOMEM;
3867 }
3868 ret = copy_from_user(exec_list,
3869 (struct drm_i915_relocation_entry __user *)
3870 (uintptr_t) args->buffers_ptr,
3871 sizeof(*exec_list) * args->buffer_count);
3872 if (ret != 0) {
3873 DRM_ERROR("copy %d exec entries failed %d\n",
3874 args->buffer_count, ret);
3875 drm_free_large(exec_list);
3876 drm_free_large(exec2_list);
3877 return -EFAULT;
3878 }
3879
3880 for (i = 0; i < args->buffer_count; i++) {
3881 exec2_list[i].handle = exec_list[i].handle;
3882 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3883 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3884 exec2_list[i].alignment = exec_list[i].alignment;
3885 exec2_list[i].offset = exec_list[i].offset;
3886 if (!IS_I965G(dev))
3887 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3888 else
3889 exec2_list[i].flags = 0;
3890 }
3891
3892 exec2.buffers_ptr = args->buffers_ptr;
3893 exec2.buffer_count = args->buffer_count;
3894 exec2.batch_start_offset = args->batch_start_offset;
3895 exec2.batch_len = args->batch_len;
3896 exec2.DR1 = args->DR1;
3897 exec2.DR4 = args->DR4;
3898 exec2.num_cliprects = args->num_cliprects;
3899 exec2.cliprects_ptr = args->cliprects_ptr;
3900 exec2.flags = I915_EXEC_RENDER;
3901
3902 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3903 if (!ret) {
3904 /* Copy the new buffer offsets back to the user's exec list. */
3905 for (i = 0; i < args->buffer_count; i++)
3906 exec_list[i].offset = exec2_list[i].offset;
3907 /* ... and back out to userspace */
3908 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3909 (uintptr_t) args->buffers_ptr,
3910 exec_list,
3911 sizeof(*exec_list) * args->buffer_count);
3912 if (ret) {
3913 ret = -EFAULT;
3914 DRM_ERROR("failed to copy %d exec entries "
3915 "back to user (%d)\n",
3916 args->buffer_count, ret);
3917 }
3918 }
3919
3920 drm_free_large(exec_list);
3921 drm_free_large(exec2_list);
3922 return ret;
3923 }
3924
3925 int
3926 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3927 struct drm_file *file_priv)
3928 {
3929 struct drm_i915_gem_execbuffer2 *args = data;
3930 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3931 int ret;
3932
3933 #if WATCH_EXEC
3934 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3935 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3936 #endif
3937
3938 if (args->buffer_count < 1) {
3939 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3940 return -EINVAL;
3941 }
3942
3943 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3944 if (exec2_list == NULL) {
3945 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3946 args->buffer_count);
3947 return -ENOMEM;
3948 }
3949 ret = copy_from_user(exec2_list,
3950 (struct drm_i915_relocation_entry __user *)
3951 (uintptr_t) args->buffers_ptr,
3952 sizeof(*exec2_list) * args->buffer_count);
3953 if (ret != 0) {
3954 DRM_ERROR("copy %d exec entries failed %d\n",
3955 args->buffer_count, ret);
3956 drm_free_large(exec2_list);
3957 return -EFAULT;
3958 }
3959
3960 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
3961 if (!ret) {
3962 /* Copy the new buffer offsets back to the user's exec list. */
3963 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3964 (uintptr_t) args->buffers_ptr,
3965 exec2_list,
3966 sizeof(*exec2_list) * args->buffer_count);
3967 if (ret) {
3968 ret = -EFAULT;
3969 DRM_ERROR("failed to copy %d exec entries "
3970 "back to user (%d)\n",
3971 args->buffer_count, ret);
3972 }
3973 }
3974
3975 drm_free_large(exec2_list);
3976 return ret;
3977 }
3978
3979 int
3980 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3981 {
3982 struct drm_device *dev = obj->dev;
3983 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3984 int ret;
3985
3986 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3987
3988 i915_verify_inactive(dev, __FILE__, __LINE__);
3989
3990 if (obj_priv->gtt_space != NULL) {
3991 if (alignment == 0)
3992 alignment = i915_gem_get_gtt_alignment(obj);
3993 if (obj_priv->gtt_offset & (alignment - 1)) {
3994 WARN(obj_priv->pin_count,
3995 "bo is already pinned with incorrect alignment:"
3996 " offset=%x, req.alignment=%x\n",
3997 obj_priv->gtt_offset, alignment);
3998 ret = i915_gem_object_unbind(obj);
3999 if (ret)
4000 return ret;
4001 }
4002 }
4003
4004 if (obj_priv->gtt_space == NULL) {
4005 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4006 if (ret)
4007 return ret;
4008 }
4009
4010 obj_priv->pin_count++;
4011
4012 /* If the object is not active and not pending a flush,
4013 * remove it from the inactive list
4014 */
4015 if (obj_priv->pin_count == 1) {
4016 atomic_inc(&dev->pin_count);
4017 atomic_add(obj->size, &dev->pin_memory);
4018 if (!obj_priv->active &&
4019 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4020 list_del_init(&obj_priv->list);
4021 }
4022 i915_verify_inactive(dev, __FILE__, __LINE__);
4023
4024 return 0;
4025 }
4026
4027 void
4028 i915_gem_object_unpin(struct drm_gem_object *obj)
4029 {
4030 struct drm_device *dev = obj->dev;
4031 drm_i915_private_t *dev_priv = dev->dev_private;
4032 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4033
4034 i915_verify_inactive(dev, __FILE__, __LINE__);
4035 obj_priv->pin_count--;
4036 BUG_ON(obj_priv->pin_count < 0);
4037 BUG_ON(obj_priv->gtt_space == NULL);
4038
4039 /* If the object is no longer pinned, and is
4040 * neither active nor being flushed, then stick it on
4041 * the inactive list
4042 */
4043 if (obj_priv->pin_count == 0) {
4044 if (!obj_priv->active &&
4045 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4046 list_move_tail(&obj_priv->list,
4047 &dev_priv->mm.inactive_list);
4048 atomic_dec(&dev->pin_count);
4049 atomic_sub(obj->size, &dev->pin_memory);
4050 }
4051 i915_verify_inactive(dev, __FILE__, __LINE__);
4052 }
4053
4054 int
4055 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4056 struct drm_file *file_priv)
4057 {
4058 struct drm_i915_gem_pin *args = data;
4059 struct drm_gem_object *obj;
4060 struct drm_i915_gem_object *obj_priv;
4061 int ret;
4062
4063 mutex_lock(&dev->struct_mutex);
4064
4065 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4066 if (obj == NULL) {
4067 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4068 args->handle);
4069 mutex_unlock(&dev->struct_mutex);
4070 return -ENOENT;
4071 }
4072 obj_priv = to_intel_bo(obj);
4073
4074 if (obj_priv->madv != I915_MADV_WILLNEED) {
4075 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4076 drm_gem_object_unreference(obj);
4077 mutex_unlock(&dev->struct_mutex);
4078 return -EINVAL;
4079 }
4080
4081 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4082 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4083 args->handle);
4084 drm_gem_object_unreference(obj);
4085 mutex_unlock(&dev->struct_mutex);
4086 return -EINVAL;
4087 }
4088
4089 obj_priv->user_pin_count++;
4090 obj_priv->pin_filp = file_priv;
4091 if (obj_priv->user_pin_count == 1) {
4092 ret = i915_gem_object_pin(obj, args->alignment);
4093 if (ret != 0) {
4094 drm_gem_object_unreference(obj);
4095 mutex_unlock(&dev->struct_mutex);
4096 return ret;
4097 }
4098 }
4099
4100 /* XXX - flush the CPU caches for pinned objects
4101 * as the X server doesn't manage domains yet
4102 */
4103 i915_gem_object_flush_cpu_write_domain(obj);
4104 args->offset = obj_priv->gtt_offset;
4105 drm_gem_object_unreference(obj);
4106 mutex_unlock(&dev->struct_mutex);
4107
4108 return 0;
4109 }
4110
4111 int
4112 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4113 struct drm_file *file_priv)
4114 {
4115 struct drm_i915_gem_pin *args = data;
4116 struct drm_gem_object *obj;
4117 struct drm_i915_gem_object *obj_priv;
4118
4119 mutex_lock(&dev->struct_mutex);
4120
4121 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4122 if (obj == NULL) {
4123 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4124 args->handle);
4125 mutex_unlock(&dev->struct_mutex);
4126 return -ENOENT;
4127 }
4128
4129 obj_priv = to_intel_bo(obj);
4130 if (obj_priv->pin_filp != file_priv) {
4131 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4132 args->handle);
4133 drm_gem_object_unreference(obj);
4134 mutex_unlock(&dev->struct_mutex);
4135 return -EINVAL;
4136 }
4137 obj_priv->user_pin_count--;
4138 if (obj_priv->user_pin_count == 0) {
4139 obj_priv->pin_filp = NULL;
4140 i915_gem_object_unpin(obj);
4141 }
4142
4143 drm_gem_object_unreference(obj);
4144 mutex_unlock(&dev->struct_mutex);
4145 return 0;
4146 }
4147
4148 int
4149 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4150 struct drm_file *file_priv)
4151 {
4152 struct drm_i915_gem_busy *args = data;
4153 struct drm_gem_object *obj;
4154 struct drm_i915_gem_object *obj_priv;
4155
4156 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4157 if (obj == NULL) {
4158 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4159 args->handle);
4160 return -ENOENT;
4161 }
4162
4163 mutex_lock(&dev->struct_mutex);
4164
4165 /* Count all active objects as busy, even if they are currently not used
4166 * by the gpu. Users of this interface expect objects to eventually
4167 * become non-busy without any further actions, therefore emit any
4168 * necessary flushes here.
4169 */
4170 obj_priv = to_intel_bo(obj);
4171 args->busy = obj_priv->active;
4172 if (args->busy) {
4173 /* Unconditionally flush objects, even when the gpu still uses this
4174 * object. Userspace calling this function indicates that it wants to
4175 * use this buffer rather sooner than later, so issuing the required
4176 * flush earlier is beneficial.
4177 */
4178 if (obj->write_domain) {
4179 i915_gem_flush(dev, 0, obj->write_domain);
4180 (void)i915_add_request(dev, file_priv, NULL, obj_priv->ring);
4181 }
4182
4183 /* Update the active list for the hardware's current position.
4184 * Otherwise this only updates on a delayed timer or when irqs
4185 * are actually unmasked, and our working set ends up being
4186 * larger than required.
4187 */
4188 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4189
4190 args->busy = obj_priv->active;
4191 }
4192
4193 drm_gem_object_unreference(obj);
4194 mutex_unlock(&dev->struct_mutex);
4195 return 0;
4196 }
4197
4198 int
4199 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4200 struct drm_file *file_priv)
4201 {
4202 return i915_gem_ring_throttle(dev, file_priv);
4203 }
4204
4205 int
4206 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4207 struct drm_file *file_priv)
4208 {
4209 struct drm_i915_gem_madvise *args = data;
4210 struct drm_gem_object *obj;
4211 struct drm_i915_gem_object *obj_priv;
4212
4213 switch (args->madv) {
4214 case I915_MADV_DONTNEED:
4215 case I915_MADV_WILLNEED:
4216 break;
4217 default:
4218 return -EINVAL;
4219 }
4220
4221 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4222 if (obj == NULL) {
4223 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4224 args->handle);
4225 return -ENOENT;
4226 }
4227
4228 mutex_lock(&dev->struct_mutex);
4229 obj_priv = to_intel_bo(obj);
4230
4231 if (obj_priv->pin_count) {
4232 drm_gem_object_unreference(obj);
4233 mutex_unlock(&dev->struct_mutex);
4234
4235 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4236 return -EINVAL;
4237 }
4238
4239 if (obj_priv->madv != __I915_MADV_PURGED)
4240 obj_priv->madv = args->madv;
4241
4242 /* if the object is no longer bound, discard its backing storage */
4243 if (i915_gem_object_is_purgeable(obj_priv) &&
4244 obj_priv->gtt_space == NULL)
4245 i915_gem_object_truncate(obj);
4246
4247 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4248
4249 drm_gem_object_unreference(obj);
4250 mutex_unlock(&dev->struct_mutex);
4251
4252 return 0;
4253 }
4254
4255 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4256 size_t size)
4257 {
4258 struct drm_i915_gem_object *obj;
4259
4260 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4261 if (obj == NULL)
4262 return NULL;
4263
4264 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4265 kfree(obj);
4266 return NULL;
4267 }
4268
4269 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4270 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4271
4272 obj->agp_type = AGP_USER_MEMORY;
4273 obj->base.driver_private = NULL;
4274 obj->fence_reg = I915_FENCE_REG_NONE;
4275 INIT_LIST_HEAD(&obj->list);
4276 INIT_LIST_HEAD(&obj->gpu_write_list);
4277 obj->madv = I915_MADV_WILLNEED;
4278
4279 trace_i915_gem_object_create(&obj->base);
4280
4281 return &obj->base;
4282 }
4283
4284 int i915_gem_init_object(struct drm_gem_object *obj)
4285 {
4286 BUG();
4287
4288 return 0;
4289 }
4290
4291 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4292 {
4293 struct drm_device *dev = obj->dev;
4294 drm_i915_private_t *dev_priv = dev->dev_private;
4295 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4296 int ret;
4297
4298 ret = i915_gem_object_unbind(obj);
4299 if (ret == -ERESTARTSYS) {
4300 list_move(&obj_priv->list,
4301 &dev_priv->mm.deferred_free_list);
4302 return;
4303 }
4304
4305 if (obj_priv->mmap_offset)
4306 i915_gem_free_mmap_offset(obj);
4307
4308 drm_gem_object_release(obj);
4309
4310 kfree(obj_priv->page_cpu_valid);
4311 kfree(obj_priv->bit_17);
4312 kfree(obj_priv);
4313 }
4314
4315 void i915_gem_free_object(struct drm_gem_object *obj)
4316 {
4317 struct drm_device *dev = obj->dev;
4318 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4319
4320 trace_i915_gem_object_destroy(obj);
4321
4322 while (obj_priv->pin_count > 0)
4323 i915_gem_object_unpin(obj);
4324
4325 if (obj_priv->phys_obj)
4326 i915_gem_detach_phys_object(dev, obj);
4327
4328 i915_gem_free_object_tail(obj);
4329 }
4330
4331 int
4332 i915_gem_idle(struct drm_device *dev)
4333 {
4334 drm_i915_private_t *dev_priv = dev->dev_private;
4335 int ret;
4336
4337 mutex_lock(&dev->struct_mutex);
4338
4339 if (dev_priv->mm.suspended ||
4340 (dev_priv->render_ring.gem_object == NULL) ||
4341 (HAS_BSD(dev) &&
4342 dev_priv->bsd_ring.gem_object == NULL)) {
4343 mutex_unlock(&dev->struct_mutex);
4344 return 0;
4345 }
4346
4347 ret = i915_gpu_idle(dev);
4348 if (ret) {
4349 mutex_unlock(&dev->struct_mutex);
4350 return ret;
4351 }
4352
4353 /* Under UMS, be paranoid and evict. */
4354 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4355 ret = i915_gem_evict_inactive(dev);
4356 if (ret) {
4357 mutex_unlock(&dev->struct_mutex);
4358 return ret;
4359 }
4360 }
4361
4362 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4363 * We need to replace this with a semaphore, or something.
4364 * And not confound mm.suspended!
4365 */
4366 dev_priv->mm.suspended = 1;
4367 del_timer_sync(&dev_priv->hangcheck_timer);
4368
4369 i915_kernel_lost_context(dev);
4370 i915_gem_cleanup_ringbuffer(dev);
4371
4372 mutex_unlock(&dev->struct_mutex);
4373
4374 /* Cancel the retire work handler, which should be idle now. */
4375 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4376
4377 return 0;
4378 }
4379
4380 /*
4381 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4382 * over cache flushing.
4383 */
4384 static int
4385 i915_gem_init_pipe_control(struct drm_device *dev)
4386 {
4387 drm_i915_private_t *dev_priv = dev->dev_private;
4388 struct drm_gem_object *obj;
4389 struct drm_i915_gem_object *obj_priv;
4390 int ret;
4391
4392 obj = i915_gem_alloc_object(dev, 4096);
4393 if (obj == NULL) {
4394 DRM_ERROR("Failed to allocate seqno page\n");
4395 ret = -ENOMEM;
4396 goto err;
4397 }
4398 obj_priv = to_intel_bo(obj);
4399 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4400
4401 ret = i915_gem_object_pin(obj, 4096);
4402 if (ret)
4403 goto err_unref;
4404
4405 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4406 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4407 if (dev_priv->seqno_page == NULL)
4408 goto err_unpin;
4409
4410 dev_priv->seqno_obj = obj;
4411 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4412
4413 return 0;
4414
4415 err_unpin:
4416 i915_gem_object_unpin(obj);
4417 err_unref:
4418 drm_gem_object_unreference(obj);
4419 err:
4420 return ret;
4421 }
4422
4423
4424 static void
4425 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4426 {
4427 drm_i915_private_t *dev_priv = dev->dev_private;
4428 struct drm_gem_object *obj;
4429 struct drm_i915_gem_object *obj_priv;
4430
4431 obj = dev_priv->seqno_obj;
4432 obj_priv = to_intel_bo(obj);
4433 kunmap(obj_priv->pages[0]);
4434 i915_gem_object_unpin(obj);
4435 drm_gem_object_unreference(obj);
4436 dev_priv->seqno_obj = NULL;
4437
4438 dev_priv->seqno_page = NULL;
4439 }
4440
4441 int
4442 i915_gem_init_ringbuffer(struct drm_device *dev)
4443 {
4444 drm_i915_private_t *dev_priv = dev->dev_private;
4445 int ret;
4446
4447 dev_priv->render_ring = render_ring;
4448
4449 if (!I915_NEED_GFX_HWS(dev)) {
4450 dev_priv->render_ring.status_page.page_addr
4451 = dev_priv->status_page_dmah->vaddr;
4452 memset(dev_priv->render_ring.status_page.page_addr,
4453 0, PAGE_SIZE);
4454 }
4455
4456 if (HAS_PIPE_CONTROL(dev)) {
4457 ret = i915_gem_init_pipe_control(dev);
4458 if (ret)
4459 return ret;
4460 }
4461
4462 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4463 if (ret)
4464 goto cleanup_pipe_control;
4465
4466 if (HAS_BSD(dev)) {
4467 dev_priv->bsd_ring = bsd_ring;
4468 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4469 if (ret)
4470 goto cleanup_render_ring;
4471 }
4472
4473 dev_priv->next_seqno = 1;
4474
4475 return 0;
4476
4477 cleanup_render_ring:
4478 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4479 cleanup_pipe_control:
4480 if (HAS_PIPE_CONTROL(dev))
4481 i915_gem_cleanup_pipe_control(dev);
4482 return ret;
4483 }
4484
4485 void
4486 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4487 {
4488 drm_i915_private_t *dev_priv = dev->dev_private;
4489
4490 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4491 if (HAS_BSD(dev))
4492 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4493 if (HAS_PIPE_CONTROL(dev))
4494 i915_gem_cleanup_pipe_control(dev);
4495 }
4496
4497 int
4498 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4499 struct drm_file *file_priv)
4500 {
4501 drm_i915_private_t *dev_priv = dev->dev_private;
4502 int ret;
4503
4504 if (drm_core_check_feature(dev, DRIVER_MODESET))
4505 return 0;
4506
4507 if (atomic_read(&dev_priv->mm.wedged)) {
4508 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4509 atomic_set(&dev_priv->mm.wedged, 0);
4510 }
4511
4512 mutex_lock(&dev->struct_mutex);
4513 dev_priv->mm.suspended = 0;
4514
4515 ret = i915_gem_init_ringbuffer(dev);
4516 if (ret != 0) {
4517 mutex_unlock(&dev->struct_mutex);
4518 return ret;
4519 }
4520
4521 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4522 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4523 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4524 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4525 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4526 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4527 mutex_unlock(&dev->struct_mutex);
4528
4529 ret = drm_irq_install(dev);
4530 if (ret)
4531 goto cleanup_ringbuffer;
4532
4533 return 0;
4534
4535 cleanup_ringbuffer:
4536 mutex_lock(&dev->struct_mutex);
4537 i915_gem_cleanup_ringbuffer(dev);
4538 dev_priv->mm.suspended = 1;
4539 mutex_unlock(&dev->struct_mutex);
4540
4541 return ret;
4542 }
4543
4544 int
4545 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4546 struct drm_file *file_priv)
4547 {
4548 if (drm_core_check_feature(dev, DRIVER_MODESET))
4549 return 0;
4550
4551 drm_irq_uninstall(dev);
4552 return i915_gem_idle(dev);
4553 }
4554
4555 void
4556 i915_gem_lastclose(struct drm_device *dev)
4557 {
4558 int ret;
4559
4560 if (drm_core_check_feature(dev, DRIVER_MODESET))
4561 return;
4562
4563 ret = i915_gem_idle(dev);
4564 if (ret)
4565 DRM_ERROR("failed to idle hardware: %d\n", ret);
4566 }
4567
4568 void
4569 i915_gem_load(struct drm_device *dev)
4570 {
4571 int i;
4572 drm_i915_private_t *dev_priv = dev->dev_private;
4573
4574 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4575 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4576 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4577 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4578 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4579 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4580 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4581 if (HAS_BSD(dev)) {
4582 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4583 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4584 }
4585 for (i = 0; i < 16; i++)
4586 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4587 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4588 i915_gem_retire_work_handler);
4589 spin_lock(&shrink_list_lock);
4590 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4591 spin_unlock(&shrink_list_lock);
4592
4593 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4594 if (IS_GEN3(dev)) {
4595 u32 tmp = I915_READ(MI_ARB_STATE);
4596 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4597 /* arb state is a masked write, so set bit + bit in mask */
4598 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4599 I915_WRITE(MI_ARB_STATE, tmp);
4600 }
4601 }
4602
4603 /* Old X drivers will take 0-2 for front, back, depth buffers */
4604 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4605 dev_priv->fence_reg_start = 3;
4606
4607 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4608 dev_priv->num_fence_regs = 16;
4609 else
4610 dev_priv->num_fence_regs = 8;
4611
4612 /* Initialize fence registers to zero */
4613 if (IS_I965G(dev)) {
4614 for (i = 0; i < 16; i++)
4615 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4616 } else {
4617 for (i = 0; i < 8; i++)
4618 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4619 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4620 for (i = 0; i < 8; i++)
4621 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4622 }
4623 i915_gem_detect_bit_6_swizzle(dev);
4624 init_waitqueue_head(&dev_priv->pending_flip_queue);
4625 }
4626
4627 /*
4628 * Create a physically contiguous memory object for this object
4629 * e.g. for cursor + overlay regs
4630 */
4631 static int i915_gem_init_phys_object(struct drm_device *dev,
4632 int id, int size, int align)
4633 {
4634 drm_i915_private_t *dev_priv = dev->dev_private;
4635 struct drm_i915_gem_phys_object *phys_obj;
4636 int ret;
4637
4638 if (dev_priv->mm.phys_objs[id - 1] || !size)
4639 return 0;
4640
4641 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4642 if (!phys_obj)
4643 return -ENOMEM;
4644
4645 phys_obj->id = id;
4646
4647 phys_obj->handle = drm_pci_alloc(dev, size, align);
4648 if (!phys_obj->handle) {
4649 ret = -ENOMEM;
4650 goto kfree_obj;
4651 }
4652 #ifdef CONFIG_X86
4653 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4654 #endif
4655
4656 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4657
4658 return 0;
4659 kfree_obj:
4660 kfree(phys_obj);
4661 return ret;
4662 }
4663
4664 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4665 {
4666 drm_i915_private_t *dev_priv = dev->dev_private;
4667 struct drm_i915_gem_phys_object *phys_obj;
4668
4669 if (!dev_priv->mm.phys_objs[id - 1])
4670 return;
4671
4672 phys_obj = dev_priv->mm.phys_objs[id - 1];
4673 if (phys_obj->cur_obj) {
4674 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4675 }
4676
4677 #ifdef CONFIG_X86
4678 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4679 #endif
4680 drm_pci_free(dev, phys_obj->handle);
4681 kfree(phys_obj);
4682 dev_priv->mm.phys_objs[id - 1] = NULL;
4683 }
4684
4685 void i915_gem_free_all_phys_object(struct drm_device *dev)
4686 {
4687 int i;
4688
4689 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4690 i915_gem_free_phys_object(dev, i);
4691 }
4692
4693 void i915_gem_detach_phys_object(struct drm_device *dev,
4694 struct drm_gem_object *obj)
4695 {
4696 struct drm_i915_gem_object *obj_priv;
4697 int i;
4698 int ret;
4699 int page_count;
4700
4701 obj_priv = to_intel_bo(obj);
4702 if (!obj_priv->phys_obj)
4703 return;
4704
4705 ret = i915_gem_object_get_pages(obj, 0);
4706 if (ret)
4707 goto out;
4708
4709 page_count = obj->size / PAGE_SIZE;
4710
4711 for (i = 0; i < page_count; i++) {
4712 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4713 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4714
4715 memcpy(dst, src, PAGE_SIZE);
4716 kunmap_atomic(dst, KM_USER0);
4717 }
4718 drm_clflush_pages(obj_priv->pages, page_count);
4719 drm_agp_chipset_flush(dev);
4720
4721 i915_gem_object_put_pages(obj);
4722 out:
4723 obj_priv->phys_obj->cur_obj = NULL;
4724 obj_priv->phys_obj = NULL;
4725 }
4726
4727 int
4728 i915_gem_attach_phys_object(struct drm_device *dev,
4729 struct drm_gem_object *obj,
4730 int id,
4731 int align)
4732 {
4733 drm_i915_private_t *dev_priv = dev->dev_private;
4734 struct drm_i915_gem_object *obj_priv;
4735 int ret = 0;
4736 int page_count;
4737 int i;
4738
4739 if (id > I915_MAX_PHYS_OBJECT)
4740 return -EINVAL;
4741
4742 obj_priv = to_intel_bo(obj);
4743
4744 if (obj_priv->phys_obj) {
4745 if (obj_priv->phys_obj->id == id)
4746 return 0;
4747 i915_gem_detach_phys_object(dev, obj);
4748 }
4749
4750 /* create a new object */
4751 if (!dev_priv->mm.phys_objs[id - 1]) {
4752 ret = i915_gem_init_phys_object(dev, id,
4753 obj->size, align);
4754 if (ret) {
4755 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4756 goto out;
4757 }
4758 }
4759
4760 /* bind to the object */
4761 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4762 obj_priv->phys_obj->cur_obj = obj;
4763
4764 ret = i915_gem_object_get_pages(obj, 0);
4765 if (ret) {
4766 DRM_ERROR("failed to get page list\n");
4767 goto out;
4768 }
4769
4770 page_count = obj->size / PAGE_SIZE;
4771
4772 for (i = 0; i < page_count; i++) {
4773 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4774 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4775
4776 memcpy(dst, src, PAGE_SIZE);
4777 kunmap_atomic(src, KM_USER0);
4778 }
4779
4780 i915_gem_object_put_pages(obj);
4781
4782 return 0;
4783 out:
4784 return ret;
4785 }
4786
4787 static int
4788 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4789 struct drm_i915_gem_pwrite *args,
4790 struct drm_file *file_priv)
4791 {
4792 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4793 void *obj_addr;
4794 int ret;
4795 char __user *user_data;
4796
4797 user_data = (char __user *) (uintptr_t) args->data_ptr;
4798 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4799
4800 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4801 ret = copy_from_user(obj_addr, user_data, args->size);
4802 if (ret)
4803 return -EFAULT;
4804
4805 drm_agp_chipset_flush(dev);
4806 return 0;
4807 }
4808
4809 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4810 {
4811 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4812
4813 /* Clean up our request list when the client is going away, so that
4814 * later retire_requests won't dereference our soon-to-be-gone
4815 * file_priv.
4816 */
4817 mutex_lock(&dev->struct_mutex);
4818 while (!list_empty(&i915_file_priv->mm.request_list))
4819 list_del_init(i915_file_priv->mm.request_list.next);
4820 mutex_unlock(&dev->struct_mutex);
4821 }
4822
4823 static int
4824 i915_gpu_is_active(struct drm_device *dev)
4825 {
4826 drm_i915_private_t *dev_priv = dev->dev_private;
4827 int lists_empty;
4828
4829 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4830 list_empty(&dev_priv->render_ring.active_list);
4831 if (HAS_BSD(dev))
4832 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4833
4834 return !lists_empty;
4835 }
4836
4837 static int
4838 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4839 {
4840 drm_i915_private_t *dev_priv, *next_dev;
4841 struct drm_i915_gem_object *obj_priv, *next_obj;
4842 int cnt = 0;
4843 int would_deadlock = 1;
4844
4845 /* "fast-path" to count number of available objects */
4846 if (nr_to_scan == 0) {
4847 spin_lock(&shrink_list_lock);
4848 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4849 struct drm_device *dev = dev_priv->dev;
4850
4851 if (mutex_trylock(&dev->struct_mutex)) {
4852 list_for_each_entry(obj_priv,
4853 &dev_priv->mm.inactive_list,
4854 list)
4855 cnt++;
4856 mutex_unlock(&dev->struct_mutex);
4857 }
4858 }
4859 spin_unlock(&shrink_list_lock);
4860
4861 return (cnt / 100) * sysctl_vfs_cache_pressure;
4862 }
4863
4864 spin_lock(&shrink_list_lock);
4865
4866 rescan:
4867 /* first scan for clean buffers */
4868 list_for_each_entry_safe(dev_priv, next_dev,
4869 &shrink_list, mm.shrink_list) {
4870 struct drm_device *dev = dev_priv->dev;
4871
4872 if (! mutex_trylock(&dev->struct_mutex))
4873 continue;
4874
4875 spin_unlock(&shrink_list_lock);
4876 i915_gem_retire_requests(dev);
4877
4878 list_for_each_entry_safe(obj_priv, next_obj,
4879 &dev_priv->mm.inactive_list,
4880 list) {
4881 if (i915_gem_object_is_purgeable(obj_priv)) {
4882 i915_gem_object_unbind(&obj_priv->base);
4883 if (--nr_to_scan <= 0)
4884 break;
4885 }
4886 }
4887
4888 spin_lock(&shrink_list_lock);
4889 mutex_unlock(&dev->struct_mutex);
4890
4891 would_deadlock = 0;
4892
4893 if (nr_to_scan <= 0)
4894 break;
4895 }
4896
4897 /* second pass, evict/count anything still on the inactive list */
4898 list_for_each_entry_safe(dev_priv, next_dev,
4899 &shrink_list, mm.shrink_list) {
4900 struct drm_device *dev = dev_priv->dev;
4901
4902 if (! mutex_trylock(&dev->struct_mutex))
4903 continue;
4904
4905 spin_unlock(&shrink_list_lock);
4906
4907 list_for_each_entry_safe(obj_priv, next_obj,
4908 &dev_priv->mm.inactive_list,
4909 list) {
4910 if (nr_to_scan > 0) {
4911 i915_gem_object_unbind(&obj_priv->base);
4912 nr_to_scan--;
4913 } else
4914 cnt++;
4915 }
4916
4917 spin_lock(&shrink_list_lock);
4918 mutex_unlock(&dev->struct_mutex);
4919
4920 would_deadlock = 0;
4921 }
4922
4923 if (nr_to_scan) {
4924 int active = 0;
4925
4926 /*
4927 * We are desperate for pages, so as a last resort, wait
4928 * for the GPU to finish and discard whatever we can.
4929 * This has a dramatic impact to reduce the number of
4930 * OOM-killer events whilst running the GPU aggressively.
4931 */
4932 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4933 struct drm_device *dev = dev_priv->dev;
4934
4935 if (!mutex_trylock(&dev->struct_mutex))
4936 continue;
4937
4938 spin_unlock(&shrink_list_lock);
4939
4940 if (i915_gpu_is_active(dev)) {
4941 i915_gpu_idle(dev);
4942 active++;
4943 }
4944
4945 spin_lock(&shrink_list_lock);
4946 mutex_unlock(&dev->struct_mutex);
4947 }
4948
4949 if (active)
4950 goto rescan;
4951 }
4952
4953 spin_unlock(&shrink_list_lock);
4954
4955 if (would_deadlock)
4956 return -1;
4957 else if (cnt > 0)
4958 return (cnt / 100) * sysctl_vfs_cache_pressure;
4959 else
4960 return 0;
4961 }
4962
4963 static struct shrinker shrinker = {
4964 .shrink = i915_gem_shrink,
4965 .seeks = DEFAULT_SEEKS,
4966 };
4967
4968 __init void
4969 i915_gem_shrinker_init(void)
4970 {
4971 register_shrinker(&shrinker);
4972 }
4973
4974 __exit void
4975 i915_gem_shrinker_exit(void)
4976 {
4977 unregister_shrinker(&shrinker);
4978 }
This page took 0.509747 seconds and 4 git commands to generate.