drm/i915: Add *_ring_begin() to request allocation
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530 }
531
532 /* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
535 static int
536 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539 {
540 char *vaddr;
541 int ret;
542
543 if (unlikely(page_do_bit17_swizzling))
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
555 return ret ? -EFAULT : 0;
556 }
557
558 static void
559 shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561 {
562 if (unlikely(swizzled)) {
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578 }
579
580 /* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582 static int
583 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586 {
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
606 return ret ? - EFAULT : 0;
607 }
608
609 static int
610 i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
614 {
615 char __user *user_data;
616 ssize_t remain;
617 loff_t offset;
618 int shmem_page_offset, page_length, ret = 0;
619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620 int prefaulted = 0;
621 int needs_clflush = 0;
622 struct sg_page_iter sg_iter;
623
624 user_data = to_user_ptr(args->data_ptr);
625 remain = args->size;
626
627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628
629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 if (ret)
631 return ret;
632
633 offset = args->offset;
634
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
637 struct page *page = sg_page_iter_page(&sg_iter);
638
639 if (remain <= 0)
640 break;
641
642 /* Operation in this page
643 *
644 * shmem_page_offset = offset within page in shmem file
645 * page_length = bytes to copy for this page
646 */
647 shmem_page_offset = offset_in_page(offset);
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
651
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
660
661 mutex_unlock(&dev->struct_mutex);
662
663 if (likely(!i915.prefault_disable) && !prefaulted) {
664 ret = fault_in_multipages_writeable(user_data, remain);
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
672
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
676
677 mutex_lock(&dev->struct_mutex);
678
679 if (ret)
680 goto out;
681
682 next_page:
683 remain -= page_length;
684 user_data += page_length;
685 offset += page_length;
686 }
687
688 out:
689 i915_gem_object_unpin_pages(obj);
690
691 return ret;
692 }
693
694 /**
695 * Reads data from the object referenced by handle.
696 *
697 * On error, the contents of *data are undefined.
698 */
699 int
700 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701 struct drm_file *file)
702 {
703 struct drm_i915_gem_pread *args = data;
704 struct drm_i915_gem_object *obj;
705 int ret = 0;
706
707 if (args->size == 0)
708 return 0;
709
710 if (!access_ok(VERIFY_WRITE,
711 to_user_ptr(args->data_ptr),
712 args->size))
713 return -EFAULT;
714
715 ret = i915_mutex_lock_interruptible(dev);
716 if (ret)
717 return ret;
718
719 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720 if (&obj->base == NULL) {
721 ret = -ENOENT;
722 goto unlock;
723 }
724
725 /* Bounds check source. */
726 if (args->offset > obj->base.size ||
727 args->size > obj->base.size - args->offset) {
728 ret = -EINVAL;
729 goto out;
730 }
731
732 /* prime objects have no backing filp to GEM pread/pwrite
733 * pages from.
734 */
735 if (!obj->base.filp) {
736 ret = -EINVAL;
737 goto out;
738 }
739
740 trace_i915_gem_object_pread(obj, args->offset, args->size);
741
742 ret = i915_gem_shmem_pread(dev, obj, args, file);
743
744 out:
745 drm_gem_object_unreference(&obj->base);
746 unlock:
747 mutex_unlock(&dev->struct_mutex);
748 return ret;
749 }
750
751 /* This is the fast write path which cannot handle
752 * page faults in the source data
753 */
754
755 static inline int
756 fast_user_write(struct io_mapping *mapping,
757 loff_t page_base, int page_offset,
758 char __user *user_data,
759 int length)
760 {
761 void __iomem *vaddr_atomic;
762 void *vaddr;
763 unsigned long unwritten;
764
765 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 /* We can use the cpu mem copy function because this is X86. */
767 vaddr = (void __force*)vaddr_atomic + page_offset;
768 unwritten = __copy_from_user_inatomic_nocache(vaddr,
769 user_data, length);
770 io_mapping_unmap_atomic(vaddr_atomic);
771 return unwritten;
772 }
773
774 /**
775 * This is the fast pwrite path, where we copy the data directly from the
776 * user into the GTT, uncached.
777 */
778 static int
779 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780 struct drm_i915_gem_object *obj,
781 struct drm_i915_gem_pwrite *args,
782 struct drm_file *file)
783 {
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 ssize_t remain;
786 loff_t offset, page_base;
787 char __user *user_data;
788 int page_offset, page_length, ret;
789
790 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
791 if (ret)
792 goto out;
793
794 ret = i915_gem_object_set_to_gtt_domain(obj, true);
795 if (ret)
796 goto out_unpin;
797
798 ret = i915_gem_object_put_fence(obj);
799 if (ret)
800 goto out_unpin;
801
802 user_data = to_user_ptr(args->data_ptr);
803 remain = args->size;
804
805 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806
807 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808
809 while (remain > 0) {
810 /* Operation in this page
811 *
812 * page_base = page offset within aperture
813 * page_offset = offset within page
814 * page_length = bytes to copy for this page
815 */
816 page_base = offset & PAGE_MASK;
817 page_offset = offset_in_page(offset);
818 page_length = remain;
819 if ((page_offset + remain) > PAGE_SIZE)
820 page_length = PAGE_SIZE - page_offset;
821
822 /* If we get a fault while copying data, then (presumably) our
823 * source page isn't available. Return the error and we'll
824 * retry in the slow path.
825 */
826 if (fast_user_write(dev_priv->gtt.mappable, page_base,
827 page_offset, user_data, page_length)) {
828 ret = -EFAULT;
829 goto out_flush;
830 }
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837 out_flush:
838 intel_fb_obj_flush(obj, false);
839 out_unpin:
840 i915_gem_object_ggtt_unpin(obj);
841 out:
842 return ret;
843 }
844
845 /* Per-page copy function for the shmem pwrite fastpath.
846 * Flushes invalid cachelines before writing to the target if
847 * needs_clflush_before is set and flushes out any written cachelines after
848 * writing if needs_clflush is set. */
849 static int
850 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851 char __user *user_data,
852 bool page_do_bit17_swizzling,
853 bool needs_clflush_before,
854 bool needs_clflush_after)
855 {
856 char *vaddr;
857 int ret;
858
859 if (unlikely(page_do_bit17_swizzling))
860 return -EINVAL;
861
862 vaddr = kmap_atomic(page);
863 if (needs_clflush_before)
864 drm_clflush_virt_range(vaddr + shmem_page_offset,
865 page_length);
866 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867 user_data, page_length);
868 if (needs_clflush_after)
869 drm_clflush_virt_range(vaddr + shmem_page_offset,
870 page_length);
871 kunmap_atomic(vaddr);
872
873 return ret ? -EFAULT : 0;
874 }
875
876 /* Only difference to the fast-path function is that this can handle bit17
877 * and uses non-atomic copy and kmap functions. */
878 static int
879 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880 char __user *user_data,
881 bool page_do_bit17_swizzling,
882 bool needs_clflush_before,
883 bool needs_clflush_after)
884 {
885 char *vaddr;
886 int ret;
887
888 vaddr = kmap(page);
889 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891 page_length,
892 page_do_bit17_swizzling);
893 if (page_do_bit17_swizzling)
894 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 user_data,
896 page_length);
897 else
898 ret = __copy_from_user(vaddr + shmem_page_offset,
899 user_data,
900 page_length);
901 if (needs_clflush_after)
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
905 kunmap(page);
906
907 return ret ? -EFAULT : 0;
908 }
909
910 static int
911 i915_gem_shmem_pwrite(struct drm_device *dev,
912 struct drm_i915_gem_object *obj,
913 struct drm_i915_gem_pwrite *args,
914 struct drm_file *file)
915 {
916 ssize_t remain;
917 loff_t offset;
918 char __user *user_data;
919 int shmem_page_offset, page_length, ret = 0;
920 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921 int hit_slowpath = 0;
922 int needs_clflush_after = 0;
923 int needs_clflush_before = 0;
924 struct sg_page_iter sg_iter;
925
926 user_data = to_user_ptr(args->data_ptr);
927 remain = args->size;
928
929 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930
931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 /* If we're not in the cpu write domain, set ourself into the gtt
933 * write domain and manually flush cachelines (if required). This
934 * optimizes for the case when the gpu will use the data
935 * right away and we therefore have to clflush anyway. */
936 needs_clflush_after = cpu_write_needs_clflush(obj);
937 ret = i915_gem_object_wait_rendering(obj, false);
938 if (ret)
939 return ret;
940 }
941 /* Same trick applies to invalidate partially written cachelines read
942 * before writing. */
943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944 needs_clflush_before =
945 !cpu_cache_is_coherent(dev, obj->cache_level);
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret)
949 return ret;
950
951 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952
953 i915_gem_object_pin_pages(obj);
954
955 offset = args->offset;
956 obj->dirty = 1;
957
958 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959 offset >> PAGE_SHIFT) {
960 struct page *page = sg_page_iter_page(&sg_iter);
961 int partial_cacheline_write;
962
963 if (remain <= 0)
964 break;
965
966 /* Operation in this page
967 *
968 * shmem_page_offset = offset within page in shmem file
969 * page_length = bytes to copy for this page
970 */
971 shmem_page_offset = offset_in_page(offset);
972
973 page_length = remain;
974 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - shmem_page_offset;
976
977 /* If we don't overwrite a cacheline completely we need to be
978 * careful to have up-to-date data by first clflushing. Don't
979 * overcomplicate things and flush the entire patch. */
980 partial_cacheline_write = needs_clflush_before &&
981 ((shmem_page_offset | page_length)
982 & (boot_cpu_data.x86_clflush_size - 1));
983
984 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985 (page_to_phys(page) & (1 << 17)) != 0;
986
987 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988 user_data, page_do_bit17_swizzling,
989 partial_cacheline_write,
990 needs_clflush_after);
991 if (ret == 0)
992 goto next_page;
993
994 hit_slowpath = 1;
995 mutex_unlock(&dev->struct_mutex);
996 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997 user_data, page_do_bit17_swizzling,
998 partial_cacheline_write,
999 needs_clflush_after);
1000
1001 mutex_lock(&dev->struct_mutex);
1002
1003 if (ret)
1004 goto out;
1005
1006 next_page:
1007 remain -= page_length;
1008 user_data += page_length;
1009 offset += page_length;
1010 }
1011
1012 out:
1013 i915_gem_object_unpin_pages(obj);
1014
1015 if (hit_slowpath) {
1016 /*
1017 * Fixup: Flush cpu caches in case we didn't flush the dirty
1018 * cachelines in-line while writing and the object moved
1019 * out of the cpu write domain while we've dropped the lock.
1020 */
1021 if (!needs_clflush_after &&
1022 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 if (i915_gem_clflush_object(obj, obj->pin_display))
1024 i915_gem_chipset_flush(dev);
1025 }
1026 }
1027
1028 if (needs_clflush_after)
1029 i915_gem_chipset_flush(dev);
1030
1031 intel_fb_obj_flush(obj, false);
1032 return ret;
1033 }
1034
1035 /**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040 int
1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042 struct drm_file *file)
1043 {
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 struct drm_i915_gem_pwrite *args = data;
1046 struct drm_i915_gem_object *obj;
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
1053 to_user_ptr(args->data_ptr),
1054 args->size))
1055 return -EFAULT;
1056
1057 if (likely(!i915.prefault_disable)) {
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
1063
1064 intel_runtime_pm_get(dev_priv);
1065
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto put_rpm;
1069
1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071 if (&obj->base == NULL) {
1072 ret = -ENOENT;
1073 goto unlock;
1074 }
1075
1076 /* Bounds check destination. */
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
1079 ret = -EINVAL;
1080 goto out;
1081 }
1082
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
1093 ret = -EFAULT;
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
1107 }
1108
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
1115
1116 out:
1117 drm_gem_object_unreference(&obj->base);
1118 unlock:
1119 mutex_unlock(&dev->struct_mutex);
1120 put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
1123 return ret;
1124 }
1125
1126 int
1127 i915_gem_check_wedge(struct i915_gpu_error *error,
1128 bool interruptible)
1129 {
1130 if (i915_reset_in_progress(error)) {
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
1138 return -EIO;
1139
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
1147 }
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154 */
1155 int
1156 i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 {
1158 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1159
1160 if (req == req->ring->outstanding_lazy_request)
1161 i915_add_request(req);
1162
1163 return 0;
1164 }
1165
1166 static void fake_irq(unsigned long data)
1167 {
1168 wake_up_process((struct task_struct *)data);
1169 }
1170
1171 static bool missed_irq(struct drm_i915_private *dev_priv,
1172 struct intel_engine_cs *ring)
1173 {
1174 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1175 }
1176
1177 static int __i915_spin_request(struct drm_i915_gem_request *req)
1178 {
1179 unsigned long timeout;
1180
1181 if (i915_gem_request_get_ring(req)->irq_refcount)
1182 return -EBUSY;
1183
1184 timeout = jiffies + 1;
1185 while (!need_resched()) {
1186 if (i915_gem_request_completed(req, true))
1187 return 0;
1188
1189 if (time_after_eq(jiffies, timeout))
1190 break;
1191
1192 cpu_relax_lowlatency();
1193 }
1194 if (i915_gem_request_completed(req, false))
1195 return 0;
1196
1197 return -EAGAIN;
1198 }
1199
1200 /**
1201 * __i915_wait_request - wait until execution of request has finished
1202 * @req: duh!
1203 * @reset_counter: reset sequence associated with the given request
1204 * @interruptible: do an interruptible wait (normally yes)
1205 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1206 *
1207 * Note: It is of utmost importance that the passed in seqno and reset_counter
1208 * values have been read by the caller in an smp safe manner. Where read-side
1209 * locks are involved, it is sufficient to read the reset_counter before
1210 * unlocking the lock that protects the seqno. For lockless tricks, the
1211 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1212 * inserted.
1213 *
1214 * Returns 0 if the request was found within the alloted time. Else returns the
1215 * errno with remaining time filled in timeout argument.
1216 */
1217 int __i915_wait_request(struct drm_i915_gem_request *req,
1218 unsigned reset_counter,
1219 bool interruptible,
1220 s64 *timeout,
1221 struct intel_rps_client *rps)
1222 {
1223 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1224 struct drm_device *dev = ring->dev;
1225 struct drm_i915_private *dev_priv = dev->dev_private;
1226 const bool irq_test_in_progress =
1227 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1228 DEFINE_WAIT(wait);
1229 unsigned long timeout_expire;
1230 s64 before, now;
1231 int ret;
1232
1233 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1234
1235 if (list_empty(&req->list))
1236 return 0;
1237
1238 if (i915_gem_request_completed(req, true))
1239 return 0;
1240
1241 timeout_expire = timeout ?
1242 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1243
1244 if (INTEL_INFO(dev_priv)->gen >= 6)
1245 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1246
1247 /* Record current time in case interrupted by signal, or wedged */
1248 trace_i915_gem_request_wait_begin(req);
1249 before = ktime_get_raw_ns();
1250
1251 /* Optimistic spin for the next jiffie before touching IRQs */
1252 ret = __i915_spin_request(req);
1253 if (ret == 0)
1254 goto out;
1255
1256 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1257 ret = -ENODEV;
1258 goto out;
1259 }
1260
1261 for (;;) {
1262 struct timer_list timer;
1263
1264 prepare_to_wait(&ring->irq_queue, &wait,
1265 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1266
1267 /* We need to check whether any gpu reset happened in between
1268 * the caller grabbing the seqno and now ... */
1269 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1270 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1271 * is truely gone. */
1272 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1273 if (ret == 0)
1274 ret = -EAGAIN;
1275 break;
1276 }
1277
1278 if (i915_gem_request_completed(req, false)) {
1279 ret = 0;
1280 break;
1281 }
1282
1283 if (interruptible && signal_pending(current)) {
1284 ret = -ERESTARTSYS;
1285 break;
1286 }
1287
1288 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1289 ret = -ETIME;
1290 break;
1291 }
1292
1293 timer.function = NULL;
1294 if (timeout || missed_irq(dev_priv, ring)) {
1295 unsigned long expire;
1296
1297 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1298 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1299 mod_timer(&timer, expire);
1300 }
1301
1302 io_schedule();
1303
1304 if (timer.function) {
1305 del_singleshot_timer_sync(&timer);
1306 destroy_timer_on_stack(&timer);
1307 }
1308 }
1309 if (!irq_test_in_progress)
1310 ring->irq_put(ring);
1311
1312 finish_wait(&ring->irq_queue, &wait);
1313
1314 out:
1315 now = ktime_get_raw_ns();
1316 trace_i915_gem_request_wait_end(req);
1317
1318 if (timeout) {
1319 s64 tres = *timeout - (now - before);
1320
1321 *timeout = tres < 0 ? 0 : tres;
1322
1323 /*
1324 * Apparently ktime isn't accurate enough and occasionally has a
1325 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1326 * things up to make the test happy. We allow up to 1 jiffy.
1327 *
1328 * This is a regrssion from the timespec->ktime conversion.
1329 */
1330 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1331 *timeout = 0;
1332 }
1333
1334 return ret;
1335 }
1336
1337 static inline void
1338 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1339 {
1340 struct drm_i915_file_private *file_priv = request->file_priv;
1341
1342 if (!file_priv)
1343 return;
1344
1345 spin_lock(&file_priv->mm.lock);
1346 list_del(&request->client_list);
1347 request->file_priv = NULL;
1348 spin_unlock(&file_priv->mm.lock);
1349 }
1350
1351 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352 {
1353 trace_i915_gem_request_retire(request);
1354
1355 /* We know the GPU must have read the request to have
1356 * sent us the seqno + interrupt, so use the position
1357 * of tail of the request to update the last known position
1358 * of the GPU head.
1359 *
1360 * Note this requires that we are always called in request
1361 * completion order.
1362 */
1363 request->ringbuf->last_retired_head = request->postfix;
1364
1365 list_del_init(&request->list);
1366 i915_gem_request_remove_from_client(request);
1367
1368 put_pid(request->pid);
1369
1370 i915_gem_request_unreference(request);
1371 }
1372
1373 static void
1374 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375 {
1376 struct intel_engine_cs *engine = req->ring;
1377 struct drm_i915_gem_request *tmp;
1378
1379 lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381 if (list_empty(&req->list))
1382 return;
1383
1384 do {
1385 tmp = list_first_entry(&engine->request_list,
1386 typeof(*tmp), list);
1387
1388 i915_gem_request_retire(tmp);
1389 } while (tmp != req);
1390
1391 WARN_ON(i915_verify_lists(engine->dev));
1392 }
1393
1394 /**
1395 * Waits for a request to be signaled, and cleans up the
1396 * request and object lists appropriately for that event.
1397 */
1398 int
1399 i915_wait_request(struct drm_i915_gem_request *req)
1400 {
1401 struct drm_device *dev;
1402 struct drm_i915_private *dev_priv;
1403 bool interruptible;
1404 int ret;
1405
1406 BUG_ON(req == NULL);
1407
1408 dev = req->ring->dev;
1409 dev_priv = dev->dev_private;
1410 interruptible = dev_priv->mm.interruptible;
1411
1412 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413
1414 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415 if (ret)
1416 return ret;
1417
1418 ret = i915_gem_check_olr(req);
1419 if (ret)
1420 return ret;
1421
1422 ret = __i915_wait_request(req,
1423 atomic_read(&dev_priv->gpu_error.reset_counter),
1424 interruptible, NULL, NULL);
1425 if (ret)
1426 return ret;
1427
1428 __i915_gem_request_retire__upto(req);
1429 return 0;
1430 }
1431
1432 /**
1433 * Ensures that all rendering to the object has completed and the object is
1434 * safe to unbind from the GTT or access from the CPU.
1435 */
1436 int
1437 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1438 bool readonly)
1439 {
1440 int ret, i;
1441
1442 if (!obj->active)
1443 return 0;
1444
1445 if (readonly) {
1446 if (obj->last_write_req != NULL) {
1447 ret = i915_wait_request(obj->last_write_req);
1448 if (ret)
1449 return ret;
1450
1451 i = obj->last_write_req->ring->id;
1452 if (obj->last_read_req[i] == obj->last_write_req)
1453 i915_gem_object_retire__read(obj, i);
1454 else
1455 i915_gem_object_retire__write(obj);
1456 }
1457 } else {
1458 for (i = 0; i < I915_NUM_RINGS; i++) {
1459 if (obj->last_read_req[i] == NULL)
1460 continue;
1461
1462 ret = i915_wait_request(obj->last_read_req[i]);
1463 if (ret)
1464 return ret;
1465
1466 i915_gem_object_retire__read(obj, i);
1467 }
1468 RQ_BUG_ON(obj->active);
1469 }
1470
1471 return 0;
1472 }
1473
1474 static void
1475 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1476 struct drm_i915_gem_request *req)
1477 {
1478 int ring = req->ring->id;
1479
1480 if (obj->last_read_req[ring] == req)
1481 i915_gem_object_retire__read(obj, ring);
1482 else if (obj->last_write_req == req)
1483 i915_gem_object_retire__write(obj);
1484
1485 __i915_gem_request_retire__upto(req);
1486 }
1487
1488 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1489 * as the object state may change during this call.
1490 */
1491 static __must_check int
1492 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1493 struct intel_rps_client *rps,
1494 bool readonly)
1495 {
1496 struct drm_device *dev = obj->base.dev;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
1498 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1499 unsigned reset_counter;
1500 int ret, i, n = 0;
1501
1502 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1503 BUG_ON(!dev_priv->mm.interruptible);
1504
1505 if (!obj->active)
1506 return 0;
1507
1508 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1509 if (ret)
1510 return ret;
1511
1512 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1513
1514 if (readonly) {
1515 struct drm_i915_gem_request *req;
1516
1517 req = obj->last_write_req;
1518 if (req == NULL)
1519 return 0;
1520
1521 ret = i915_gem_check_olr(req);
1522 if (ret)
1523 goto err;
1524
1525 requests[n++] = i915_gem_request_reference(req);
1526 } else {
1527 for (i = 0; i < I915_NUM_RINGS; i++) {
1528 struct drm_i915_gem_request *req;
1529
1530 req = obj->last_read_req[i];
1531 if (req == NULL)
1532 continue;
1533
1534 ret = i915_gem_check_olr(req);
1535 if (ret)
1536 goto err;
1537
1538 requests[n++] = i915_gem_request_reference(req);
1539 }
1540 }
1541
1542 mutex_unlock(&dev->struct_mutex);
1543 for (i = 0; ret == 0 && i < n; i++)
1544 ret = __i915_wait_request(requests[i], reset_counter, true,
1545 NULL, rps);
1546 mutex_lock(&dev->struct_mutex);
1547
1548 err:
1549 for (i = 0; i < n; i++) {
1550 if (ret == 0)
1551 i915_gem_object_retire_request(obj, requests[i]);
1552 i915_gem_request_unreference(requests[i]);
1553 }
1554
1555 return ret;
1556 }
1557
1558 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1559 {
1560 struct drm_i915_file_private *fpriv = file->driver_priv;
1561 return &fpriv->rps;
1562 }
1563
1564 /**
1565 * Called when user space prepares to use an object with the CPU, either
1566 * through the mmap ioctl's mapping or a GTT mapping.
1567 */
1568 int
1569 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1570 struct drm_file *file)
1571 {
1572 struct drm_i915_gem_set_domain *args = data;
1573 struct drm_i915_gem_object *obj;
1574 uint32_t read_domains = args->read_domains;
1575 uint32_t write_domain = args->write_domain;
1576 int ret;
1577
1578 /* Only handle setting domains to types used by the CPU. */
1579 if (write_domain & I915_GEM_GPU_DOMAINS)
1580 return -EINVAL;
1581
1582 if (read_domains & I915_GEM_GPU_DOMAINS)
1583 return -EINVAL;
1584
1585 /* Having something in the write domain implies it's in the read
1586 * domain, and only that read domain. Enforce that in the request.
1587 */
1588 if (write_domain != 0 && read_domains != write_domain)
1589 return -EINVAL;
1590
1591 ret = i915_mutex_lock_interruptible(dev);
1592 if (ret)
1593 return ret;
1594
1595 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1596 if (&obj->base == NULL) {
1597 ret = -ENOENT;
1598 goto unlock;
1599 }
1600
1601 /* Try to flush the object off the GPU without holding the lock.
1602 * We will repeat the flush holding the lock in the normal manner
1603 * to catch cases where we are gazumped.
1604 */
1605 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1606 to_rps_client(file),
1607 !write_domain);
1608 if (ret)
1609 goto unref;
1610
1611 if (read_domains & I915_GEM_DOMAIN_GTT)
1612 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1613 else
1614 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1615
1616 unref:
1617 drm_gem_object_unreference(&obj->base);
1618 unlock:
1619 mutex_unlock(&dev->struct_mutex);
1620 return ret;
1621 }
1622
1623 /**
1624 * Called when user space has done writes to this buffer
1625 */
1626 int
1627 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1628 struct drm_file *file)
1629 {
1630 struct drm_i915_gem_sw_finish *args = data;
1631 struct drm_i915_gem_object *obj;
1632 int ret = 0;
1633
1634 ret = i915_mutex_lock_interruptible(dev);
1635 if (ret)
1636 return ret;
1637
1638 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1639 if (&obj->base == NULL) {
1640 ret = -ENOENT;
1641 goto unlock;
1642 }
1643
1644 /* Pinned buffers may be scanout, so flush the cache */
1645 if (obj->pin_display)
1646 i915_gem_object_flush_cpu_write_domain(obj);
1647
1648 drm_gem_object_unreference(&obj->base);
1649 unlock:
1650 mutex_unlock(&dev->struct_mutex);
1651 return ret;
1652 }
1653
1654 /**
1655 * Maps the contents of an object, returning the address it is mapped
1656 * into.
1657 *
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
1660 *
1661 * IMPORTANT:
1662 *
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
1670 */
1671 int
1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673 struct drm_file *file)
1674 {
1675 struct drm_i915_gem_mmap *args = data;
1676 struct drm_gem_object *obj;
1677 unsigned long addr;
1678
1679 if (args->flags & ~(I915_MMAP_WC))
1680 return -EINVAL;
1681
1682 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1683 return -ENODEV;
1684
1685 obj = drm_gem_object_lookup(dev, file, args->handle);
1686 if (obj == NULL)
1687 return -ENOENT;
1688
1689 /* prime objects have no backing filp to GEM mmap
1690 * pages from.
1691 */
1692 if (!obj->filp) {
1693 drm_gem_object_unreference_unlocked(obj);
1694 return -EINVAL;
1695 }
1696
1697 addr = vm_mmap(obj->filp, 0, args->size,
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1699 args->offset);
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1703
1704 down_write(&mm->mmap_sem);
1705 vma = find_vma(mm, addr);
1706 if (vma)
1707 vma->vm_page_prot =
1708 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1709 else
1710 addr = -ENOMEM;
1711 up_write(&mm->mmap_sem);
1712 }
1713 drm_gem_object_unreference_unlocked(obj);
1714 if (IS_ERR((void *)addr))
1715 return addr;
1716
1717 args->addr_ptr = (uint64_t) addr;
1718
1719 return 0;
1720 }
1721
1722 /**
1723 * i915_gem_fault - fault a page into the GTT
1724 * vma: VMA in question
1725 * vmf: fault info
1726 *
1727 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1728 * from userspace. The fault handler takes care of binding the object to
1729 * the GTT (if needed), allocating and programming a fence register (again,
1730 * only if needed based on whether the old reg is still valid or the object
1731 * is tiled) and inserting a new PTE into the faulting process.
1732 *
1733 * Note that the faulting process may involve evicting existing objects
1734 * from the GTT and/or fence registers to make room. So performance may
1735 * suffer if the GTT working set is large or there are few fence registers
1736 * left.
1737 */
1738 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739 {
1740 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1741 struct drm_device *dev = obj->base.dev;
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 struct i915_ggtt_view view = i915_ggtt_view_normal;
1744 pgoff_t page_offset;
1745 unsigned long pfn;
1746 int ret = 0;
1747 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1748
1749 intel_runtime_pm_get(dev_priv);
1750
1751 /* We don't use vmf->pgoff since that has the fake offset */
1752 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1753 PAGE_SHIFT;
1754
1755 ret = i915_mutex_lock_interruptible(dev);
1756 if (ret)
1757 goto out;
1758
1759 trace_i915_gem_object_fault(obj, page_offset, true, write);
1760
1761 /* Try to flush the object off the GPU first without holding the lock.
1762 * Upon reacquiring the lock, we will perform our sanity checks and then
1763 * repeat the flush holding the lock in the normal manner to catch cases
1764 * where we are gazumped.
1765 */
1766 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1767 if (ret)
1768 goto unlock;
1769
1770 /* Access to snoopable pages through the GTT is incoherent. */
1771 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1772 ret = -EFAULT;
1773 goto unlock;
1774 }
1775
1776 /* Use a partial view if the object is bigger than the aperture. */
1777 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1778 obj->tiling_mode == I915_TILING_NONE) {
1779 static const unsigned int chunk_size = 256; // 1 MiB
1780
1781 memset(&view, 0, sizeof(view));
1782 view.type = I915_GGTT_VIEW_PARTIAL;
1783 view.params.partial.offset = rounddown(page_offset, chunk_size);
1784 view.params.partial.size =
1785 min_t(unsigned int,
1786 chunk_size,
1787 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1788 view.params.partial.offset);
1789 }
1790
1791 /* Now pin it into the GTT if needed */
1792 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1793 if (ret)
1794 goto unlock;
1795
1796 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1797 if (ret)
1798 goto unpin;
1799
1800 ret = i915_gem_object_get_fence(obj);
1801 if (ret)
1802 goto unpin;
1803
1804 /* Finally, remap it using the new GTT offset */
1805 pfn = dev_priv->gtt.mappable_base +
1806 i915_gem_obj_ggtt_offset_view(obj, &view);
1807 pfn >>= PAGE_SHIFT;
1808
1809 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1810 /* Overriding existing pages in partial view does not cause
1811 * us any trouble as TLBs are still valid because the fault
1812 * is due to userspace losing part of the mapping or never
1813 * having accessed it before (at this partials' range).
1814 */
1815 unsigned long base = vma->vm_start +
1816 (view.params.partial.offset << PAGE_SHIFT);
1817 unsigned int i;
1818
1819 for (i = 0; i < view.params.partial.size; i++) {
1820 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1821 if (ret)
1822 break;
1823 }
1824
1825 obj->fault_mappable = true;
1826 } else {
1827 if (!obj->fault_mappable) {
1828 unsigned long size = min_t(unsigned long,
1829 vma->vm_end - vma->vm_start,
1830 obj->base.size);
1831 int i;
1832
1833 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1834 ret = vm_insert_pfn(vma,
1835 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1836 pfn + i);
1837 if (ret)
1838 break;
1839 }
1840
1841 obj->fault_mappable = true;
1842 } else
1843 ret = vm_insert_pfn(vma,
1844 (unsigned long)vmf->virtual_address,
1845 pfn + page_offset);
1846 }
1847 unpin:
1848 i915_gem_object_ggtt_unpin_view(obj, &view);
1849 unlock:
1850 mutex_unlock(&dev->struct_mutex);
1851 out:
1852 switch (ret) {
1853 case -EIO:
1854 /*
1855 * We eat errors when the gpu is terminally wedged to avoid
1856 * userspace unduly crashing (gl has no provisions for mmaps to
1857 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1858 * and so needs to be reported.
1859 */
1860 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1861 ret = VM_FAULT_SIGBUS;
1862 break;
1863 }
1864 case -EAGAIN:
1865 /*
1866 * EAGAIN means the gpu is hung and we'll wait for the error
1867 * handler to reset everything when re-faulting in
1868 * i915_mutex_lock_interruptible.
1869 */
1870 case 0:
1871 case -ERESTARTSYS:
1872 case -EINTR:
1873 case -EBUSY:
1874 /*
1875 * EBUSY is ok: this just means that another thread
1876 * already did the job.
1877 */
1878 ret = VM_FAULT_NOPAGE;
1879 break;
1880 case -ENOMEM:
1881 ret = VM_FAULT_OOM;
1882 break;
1883 case -ENOSPC:
1884 case -EFAULT:
1885 ret = VM_FAULT_SIGBUS;
1886 break;
1887 default:
1888 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1889 ret = VM_FAULT_SIGBUS;
1890 break;
1891 }
1892
1893 intel_runtime_pm_put(dev_priv);
1894 return ret;
1895 }
1896
1897 /**
1898 * i915_gem_release_mmap - remove physical page mappings
1899 * @obj: obj in question
1900 *
1901 * Preserve the reservation of the mmapping with the DRM core code, but
1902 * relinquish ownership of the pages back to the system.
1903 *
1904 * It is vital that we remove the page mapping if we have mapped a tiled
1905 * object through the GTT and then lose the fence register due to
1906 * resource pressure. Similarly if the object has been moved out of the
1907 * aperture, than pages mapped into userspace must be revoked. Removing the
1908 * mapping will then trigger a page fault on the next user access, allowing
1909 * fixup by i915_gem_fault().
1910 */
1911 void
1912 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1913 {
1914 if (!obj->fault_mappable)
1915 return;
1916
1917 drm_vma_node_unmap(&obj->base.vma_node,
1918 obj->base.dev->anon_inode->i_mapping);
1919 obj->fault_mappable = false;
1920 }
1921
1922 void
1923 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1924 {
1925 struct drm_i915_gem_object *obj;
1926
1927 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1928 i915_gem_release_mmap(obj);
1929 }
1930
1931 uint32_t
1932 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1933 {
1934 uint32_t gtt_size;
1935
1936 if (INTEL_INFO(dev)->gen >= 4 ||
1937 tiling_mode == I915_TILING_NONE)
1938 return size;
1939
1940 /* Previous chips need a power-of-two fence region when tiling */
1941 if (INTEL_INFO(dev)->gen == 3)
1942 gtt_size = 1024*1024;
1943 else
1944 gtt_size = 512*1024;
1945
1946 while (gtt_size < size)
1947 gtt_size <<= 1;
1948
1949 return gtt_size;
1950 }
1951
1952 /**
1953 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1954 * @obj: object to check
1955 *
1956 * Return the required GTT alignment for an object, taking into account
1957 * potential fence register mapping.
1958 */
1959 uint32_t
1960 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1961 int tiling_mode, bool fenced)
1962 {
1963 /*
1964 * Minimum alignment is 4k (GTT page size), but might be greater
1965 * if a fence register is needed for the object.
1966 */
1967 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1968 tiling_mode == I915_TILING_NONE)
1969 return 4096;
1970
1971 /*
1972 * Previous chips need to be aligned to the size of the smallest
1973 * fence register that can contain the object.
1974 */
1975 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1976 }
1977
1978 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1979 {
1980 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1981 int ret;
1982
1983 if (drm_vma_node_has_offset(&obj->base.vma_node))
1984 return 0;
1985
1986 dev_priv->mm.shrinker_no_lock_stealing = true;
1987
1988 ret = drm_gem_create_mmap_offset(&obj->base);
1989 if (ret != -ENOSPC)
1990 goto out;
1991
1992 /* Badly fragmented mmap space? The only way we can recover
1993 * space is by destroying unwanted objects. We can't randomly release
1994 * mmap_offsets as userspace expects them to be persistent for the
1995 * lifetime of the objects. The closest we can is to release the
1996 * offsets on purgeable objects by truncating it and marking it purged,
1997 * which prevents userspace from ever using that object again.
1998 */
1999 i915_gem_shrink(dev_priv,
2000 obj->base.size >> PAGE_SHIFT,
2001 I915_SHRINK_BOUND |
2002 I915_SHRINK_UNBOUND |
2003 I915_SHRINK_PURGEABLE);
2004 ret = drm_gem_create_mmap_offset(&obj->base);
2005 if (ret != -ENOSPC)
2006 goto out;
2007
2008 i915_gem_shrink_all(dev_priv);
2009 ret = drm_gem_create_mmap_offset(&obj->base);
2010 out:
2011 dev_priv->mm.shrinker_no_lock_stealing = false;
2012
2013 return ret;
2014 }
2015
2016 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2017 {
2018 drm_gem_free_mmap_offset(&obj->base);
2019 }
2020
2021 int
2022 i915_gem_mmap_gtt(struct drm_file *file,
2023 struct drm_device *dev,
2024 uint32_t handle,
2025 uint64_t *offset)
2026 {
2027 struct drm_i915_gem_object *obj;
2028 int ret;
2029
2030 ret = i915_mutex_lock_interruptible(dev);
2031 if (ret)
2032 return ret;
2033
2034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2035 if (&obj->base == NULL) {
2036 ret = -ENOENT;
2037 goto unlock;
2038 }
2039
2040 if (obj->madv != I915_MADV_WILLNEED) {
2041 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2042 ret = -EFAULT;
2043 goto out;
2044 }
2045
2046 ret = i915_gem_object_create_mmap_offset(obj);
2047 if (ret)
2048 goto out;
2049
2050 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2051
2052 out:
2053 drm_gem_object_unreference(&obj->base);
2054 unlock:
2055 mutex_unlock(&dev->struct_mutex);
2056 return ret;
2057 }
2058
2059 /**
2060 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2061 * @dev: DRM device
2062 * @data: GTT mapping ioctl data
2063 * @file: GEM object info
2064 *
2065 * Simply returns the fake offset to userspace so it can mmap it.
2066 * The mmap call will end up in drm_gem_mmap(), which will set things
2067 * up so we can get faults in the handler above.
2068 *
2069 * The fault handler will take care of binding the object into the GTT
2070 * (since it may have been evicted to make room for something), allocating
2071 * a fence register, and mapping the appropriate aperture address into
2072 * userspace.
2073 */
2074 int
2075 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2076 struct drm_file *file)
2077 {
2078 struct drm_i915_gem_mmap_gtt *args = data;
2079
2080 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2081 }
2082
2083 /* Immediately discard the backing storage */
2084 static void
2085 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2086 {
2087 i915_gem_object_free_mmap_offset(obj);
2088
2089 if (obj->base.filp == NULL)
2090 return;
2091
2092 /* Our goal here is to return as much of the memory as
2093 * is possible back to the system as we are called from OOM.
2094 * To do this we must instruct the shmfs to drop all of its
2095 * backing pages, *now*.
2096 */
2097 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2098 obj->madv = __I915_MADV_PURGED;
2099 }
2100
2101 /* Try to discard unwanted pages */
2102 static void
2103 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2104 {
2105 struct address_space *mapping;
2106
2107 switch (obj->madv) {
2108 case I915_MADV_DONTNEED:
2109 i915_gem_object_truncate(obj);
2110 case __I915_MADV_PURGED:
2111 return;
2112 }
2113
2114 if (obj->base.filp == NULL)
2115 return;
2116
2117 mapping = file_inode(obj->base.filp)->i_mapping,
2118 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2119 }
2120
2121 static void
2122 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2123 {
2124 struct sg_page_iter sg_iter;
2125 int ret;
2126
2127 BUG_ON(obj->madv == __I915_MADV_PURGED);
2128
2129 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2130 if (ret) {
2131 /* In the event of a disaster, abandon all caches and
2132 * hope for the best.
2133 */
2134 WARN_ON(ret != -EIO);
2135 i915_gem_clflush_object(obj, true);
2136 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2137 }
2138
2139 if (i915_gem_object_needs_bit17_swizzle(obj))
2140 i915_gem_object_save_bit_17_swizzle(obj);
2141
2142 if (obj->madv == I915_MADV_DONTNEED)
2143 obj->dirty = 0;
2144
2145 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2146 struct page *page = sg_page_iter_page(&sg_iter);
2147
2148 if (obj->dirty)
2149 set_page_dirty(page);
2150
2151 if (obj->madv == I915_MADV_WILLNEED)
2152 mark_page_accessed(page);
2153
2154 page_cache_release(page);
2155 }
2156 obj->dirty = 0;
2157
2158 sg_free_table(obj->pages);
2159 kfree(obj->pages);
2160 }
2161
2162 int
2163 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2164 {
2165 const struct drm_i915_gem_object_ops *ops = obj->ops;
2166
2167 if (obj->pages == NULL)
2168 return 0;
2169
2170 if (obj->pages_pin_count)
2171 return -EBUSY;
2172
2173 BUG_ON(i915_gem_obj_bound_any(obj));
2174
2175 /* ->put_pages might need to allocate memory for the bit17 swizzle
2176 * array, hence protect them from being reaped by removing them from gtt
2177 * lists early. */
2178 list_del(&obj->global_list);
2179
2180 ops->put_pages(obj);
2181 obj->pages = NULL;
2182
2183 i915_gem_object_invalidate(obj);
2184
2185 return 0;
2186 }
2187
2188 static int
2189 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2190 {
2191 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2192 int page_count, i;
2193 struct address_space *mapping;
2194 struct sg_table *st;
2195 struct scatterlist *sg;
2196 struct sg_page_iter sg_iter;
2197 struct page *page;
2198 unsigned long last_pfn = 0; /* suppress gcc warning */
2199 gfp_t gfp;
2200
2201 /* Assert that the object is not currently in any GPU domain. As it
2202 * wasn't in the GTT, there shouldn't be any way it could have been in
2203 * a GPU cache
2204 */
2205 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2206 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2207
2208 st = kmalloc(sizeof(*st), GFP_KERNEL);
2209 if (st == NULL)
2210 return -ENOMEM;
2211
2212 page_count = obj->base.size / PAGE_SIZE;
2213 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2214 kfree(st);
2215 return -ENOMEM;
2216 }
2217
2218 /* Get the list of pages out of our struct file. They'll be pinned
2219 * at this point until we release them.
2220 *
2221 * Fail silently without starting the shrinker
2222 */
2223 mapping = file_inode(obj->base.filp)->i_mapping;
2224 gfp = mapping_gfp_mask(mapping);
2225 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2226 gfp &= ~(__GFP_IO | __GFP_WAIT);
2227 sg = st->sgl;
2228 st->nents = 0;
2229 for (i = 0; i < page_count; i++) {
2230 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2231 if (IS_ERR(page)) {
2232 i915_gem_shrink(dev_priv,
2233 page_count,
2234 I915_SHRINK_BOUND |
2235 I915_SHRINK_UNBOUND |
2236 I915_SHRINK_PURGEABLE);
2237 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2238 }
2239 if (IS_ERR(page)) {
2240 /* We've tried hard to allocate the memory by reaping
2241 * our own buffer, now let the real VM do its job and
2242 * go down in flames if truly OOM.
2243 */
2244 i915_gem_shrink_all(dev_priv);
2245 page = shmem_read_mapping_page(mapping, i);
2246 if (IS_ERR(page))
2247 goto err_pages;
2248 }
2249 #ifdef CONFIG_SWIOTLB
2250 if (swiotlb_nr_tbl()) {
2251 st->nents++;
2252 sg_set_page(sg, page, PAGE_SIZE, 0);
2253 sg = sg_next(sg);
2254 continue;
2255 }
2256 #endif
2257 if (!i || page_to_pfn(page) != last_pfn + 1) {
2258 if (i)
2259 sg = sg_next(sg);
2260 st->nents++;
2261 sg_set_page(sg, page, PAGE_SIZE, 0);
2262 } else {
2263 sg->length += PAGE_SIZE;
2264 }
2265 last_pfn = page_to_pfn(page);
2266
2267 /* Check that the i965g/gm workaround works. */
2268 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2269 }
2270 #ifdef CONFIG_SWIOTLB
2271 if (!swiotlb_nr_tbl())
2272 #endif
2273 sg_mark_end(sg);
2274 obj->pages = st;
2275
2276 if (i915_gem_object_needs_bit17_swizzle(obj))
2277 i915_gem_object_do_bit_17_swizzle(obj);
2278
2279 if (obj->tiling_mode != I915_TILING_NONE &&
2280 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2281 i915_gem_object_pin_pages(obj);
2282
2283 return 0;
2284
2285 err_pages:
2286 sg_mark_end(sg);
2287 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2288 page_cache_release(sg_page_iter_page(&sg_iter));
2289 sg_free_table(st);
2290 kfree(st);
2291
2292 /* shmemfs first checks if there is enough memory to allocate the page
2293 * and reports ENOSPC should there be insufficient, along with the usual
2294 * ENOMEM for a genuine allocation failure.
2295 *
2296 * We use ENOSPC in our driver to mean that we have run out of aperture
2297 * space and so want to translate the error from shmemfs back to our
2298 * usual understanding of ENOMEM.
2299 */
2300 if (PTR_ERR(page) == -ENOSPC)
2301 return -ENOMEM;
2302 else
2303 return PTR_ERR(page);
2304 }
2305
2306 /* Ensure that the associated pages are gathered from the backing storage
2307 * and pinned into our object. i915_gem_object_get_pages() may be called
2308 * multiple times before they are released by a single call to
2309 * i915_gem_object_put_pages() - once the pages are no longer referenced
2310 * either as a result of memory pressure (reaping pages under the shrinker)
2311 * or as the object is itself released.
2312 */
2313 int
2314 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2315 {
2316 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2317 const struct drm_i915_gem_object_ops *ops = obj->ops;
2318 int ret;
2319
2320 if (obj->pages)
2321 return 0;
2322
2323 if (obj->madv != I915_MADV_WILLNEED) {
2324 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2325 return -EFAULT;
2326 }
2327
2328 BUG_ON(obj->pages_pin_count);
2329
2330 ret = ops->get_pages(obj);
2331 if (ret)
2332 return ret;
2333
2334 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2335
2336 obj->get_page.sg = obj->pages->sgl;
2337 obj->get_page.last = 0;
2338
2339 return 0;
2340 }
2341
2342 void i915_vma_move_to_active(struct i915_vma *vma,
2343 struct drm_i915_gem_request *req)
2344 {
2345 struct drm_i915_gem_object *obj = vma->obj;
2346 struct intel_engine_cs *ring;
2347
2348 ring = i915_gem_request_get_ring(req);
2349
2350 /* Add a reference if we're newly entering the active list. */
2351 if (obj->active == 0)
2352 drm_gem_object_reference(&obj->base);
2353 obj->active |= intel_ring_flag(ring);
2354
2355 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2356 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2357
2358 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2359 }
2360
2361 static void
2362 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2363 {
2364 RQ_BUG_ON(obj->last_write_req == NULL);
2365 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2366
2367 i915_gem_request_assign(&obj->last_write_req, NULL);
2368 intel_fb_obj_flush(obj, true);
2369 }
2370
2371 static void
2372 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2373 {
2374 struct i915_vma *vma;
2375
2376 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2377 RQ_BUG_ON(!(obj->active & (1 << ring)));
2378
2379 list_del_init(&obj->ring_list[ring]);
2380 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2381
2382 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2383 i915_gem_object_retire__write(obj);
2384
2385 obj->active &= ~(1 << ring);
2386 if (obj->active)
2387 return;
2388
2389 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2390 if (!list_empty(&vma->mm_list))
2391 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2392 }
2393
2394 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2395 drm_gem_object_unreference(&obj->base);
2396 }
2397
2398 static int
2399 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2400 {
2401 struct drm_i915_private *dev_priv = dev->dev_private;
2402 struct intel_engine_cs *ring;
2403 int ret, i, j;
2404
2405 /* Carefully retire all requests without writing to the rings */
2406 for_each_ring(ring, dev_priv, i) {
2407 ret = intel_ring_idle(ring);
2408 if (ret)
2409 return ret;
2410 }
2411 i915_gem_retire_requests(dev);
2412
2413 /* Finally reset hw state */
2414 for_each_ring(ring, dev_priv, i) {
2415 intel_ring_init_seqno(ring, seqno);
2416
2417 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2418 ring->semaphore.sync_seqno[j] = 0;
2419 }
2420
2421 return 0;
2422 }
2423
2424 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2425 {
2426 struct drm_i915_private *dev_priv = dev->dev_private;
2427 int ret;
2428
2429 if (seqno == 0)
2430 return -EINVAL;
2431
2432 /* HWS page needs to be set less than what we
2433 * will inject to ring
2434 */
2435 ret = i915_gem_init_seqno(dev, seqno - 1);
2436 if (ret)
2437 return ret;
2438
2439 /* Carefully set the last_seqno value so that wrap
2440 * detection still works
2441 */
2442 dev_priv->next_seqno = seqno;
2443 dev_priv->last_seqno = seqno - 1;
2444 if (dev_priv->last_seqno == 0)
2445 dev_priv->last_seqno--;
2446
2447 return 0;
2448 }
2449
2450 int
2451 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2452 {
2453 struct drm_i915_private *dev_priv = dev->dev_private;
2454
2455 /* reserve 0 for non-seqno */
2456 if (dev_priv->next_seqno == 0) {
2457 int ret = i915_gem_init_seqno(dev, 0);
2458 if (ret)
2459 return ret;
2460
2461 dev_priv->next_seqno = 1;
2462 }
2463
2464 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2465 return 0;
2466 }
2467
2468 /*
2469 * NB: This function is not allowed to fail. Doing so would mean the the
2470 * request is not being tracked for completion but the work itself is
2471 * going to happen on the hardware. This would be a Bad Thing(tm).
2472 */
2473 void __i915_add_request(struct drm_i915_gem_request *request,
2474 struct drm_file *file,
2475 struct drm_i915_gem_object *obj,
2476 bool flush_caches)
2477 {
2478 struct intel_engine_cs *ring;
2479 struct drm_i915_private *dev_priv;
2480 struct intel_ringbuffer *ringbuf;
2481 u32 request_start;
2482 int ret;
2483
2484 if (WARN_ON(request == NULL))
2485 return;
2486
2487 ring = request->ring;
2488 dev_priv = ring->dev->dev_private;
2489 ringbuf = request->ringbuf;
2490
2491 WARN_ON(request != ring->outstanding_lazy_request);
2492
2493 /*
2494 * To ensure that this call will not fail, space for its emissions
2495 * should already have been reserved in the ring buffer. Let the ring
2496 * know that it is time to use that space up.
2497 */
2498 intel_ring_reserved_space_use(ringbuf);
2499
2500 request_start = intel_ring_get_tail(ringbuf);
2501 /*
2502 * Emit any outstanding flushes - execbuf can fail to emit the flush
2503 * after having emitted the batchbuffer command. Hence we need to fix
2504 * things up similar to emitting the lazy request. The difference here
2505 * is that the flush _must_ happen before the next request, no matter
2506 * what.
2507 */
2508 if (flush_caches) {
2509 if (i915.enable_execlists)
2510 ret = logical_ring_flush_all_caches(request);
2511 else
2512 ret = intel_ring_flush_all_caches(request);
2513 /* Not allowed to fail! */
2514 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2515 }
2516
2517 /* Record the position of the start of the request so that
2518 * should we detect the updated seqno part-way through the
2519 * GPU processing the request, we never over-estimate the
2520 * position of the head.
2521 */
2522 request->postfix = intel_ring_get_tail(ringbuf);
2523
2524 if (i915.enable_execlists)
2525 ret = ring->emit_request(request);
2526 else {
2527 ret = ring->add_request(request);
2528
2529 request->tail = intel_ring_get_tail(ringbuf);
2530 }
2531 /* Not allowed to fail! */
2532 WARN(ret, "emit|add_request failed: %d!\n", ret);
2533
2534 request->head = request_start;
2535
2536 /* Whilst this request exists, batch_obj will be on the
2537 * active_list, and so will hold the active reference. Only when this
2538 * request is retired will the the batch_obj be moved onto the
2539 * inactive_list and lose its active reference. Hence we do not need
2540 * to explicitly hold another reference here.
2541 */
2542 request->batch_obj = obj;
2543
2544 request->emitted_jiffies = jiffies;
2545 list_add_tail(&request->list, &ring->request_list);
2546 request->file_priv = NULL;
2547
2548 if (file) {
2549 struct drm_i915_file_private *file_priv = file->driver_priv;
2550
2551 spin_lock(&file_priv->mm.lock);
2552 request->file_priv = file_priv;
2553 list_add_tail(&request->client_list,
2554 &file_priv->mm.request_list);
2555 spin_unlock(&file_priv->mm.lock);
2556
2557 request->pid = get_pid(task_pid(current));
2558 }
2559
2560 trace_i915_gem_request_add(request);
2561 ring->outstanding_lazy_request = NULL;
2562
2563 i915_queue_hangcheck(ring->dev);
2564
2565 queue_delayed_work(dev_priv->wq,
2566 &dev_priv->mm.retire_work,
2567 round_jiffies_up_relative(HZ));
2568 intel_mark_busy(dev_priv->dev);
2569
2570 /* Sanity check that the reserved size was large enough. */
2571 intel_ring_reserved_space_end(ringbuf);
2572 }
2573
2574 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2575 const struct intel_context *ctx)
2576 {
2577 unsigned long elapsed;
2578
2579 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2580
2581 if (ctx->hang_stats.banned)
2582 return true;
2583
2584 if (ctx->hang_stats.ban_period_seconds &&
2585 elapsed <= ctx->hang_stats.ban_period_seconds) {
2586 if (!i915_gem_context_is_default(ctx)) {
2587 DRM_DEBUG("context hanging too fast, banning!\n");
2588 return true;
2589 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2590 if (i915_stop_ring_allow_warn(dev_priv))
2591 DRM_ERROR("gpu hanging too fast, banning!\n");
2592 return true;
2593 }
2594 }
2595
2596 return false;
2597 }
2598
2599 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2600 struct intel_context *ctx,
2601 const bool guilty)
2602 {
2603 struct i915_ctx_hang_stats *hs;
2604
2605 if (WARN_ON(!ctx))
2606 return;
2607
2608 hs = &ctx->hang_stats;
2609
2610 if (guilty) {
2611 hs->banned = i915_context_is_banned(dev_priv, ctx);
2612 hs->batch_active++;
2613 hs->guilty_ts = get_seconds();
2614 } else {
2615 hs->batch_pending++;
2616 }
2617 }
2618
2619 void i915_gem_request_free(struct kref *req_ref)
2620 {
2621 struct drm_i915_gem_request *req = container_of(req_ref,
2622 typeof(*req), ref);
2623 struct intel_context *ctx = req->ctx;
2624
2625 if (ctx) {
2626 if (i915.enable_execlists) {
2627 struct intel_engine_cs *ring = req->ring;
2628
2629 if (ctx != ring->default_context)
2630 intel_lr_context_unpin(ring, ctx);
2631 }
2632
2633 i915_gem_context_unreference(ctx);
2634 }
2635
2636 kmem_cache_free(req->i915->requests, req);
2637 }
2638
2639 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2640 struct intel_context *ctx,
2641 struct drm_i915_gem_request **req_out)
2642 {
2643 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2644 struct drm_i915_gem_request *req;
2645 int ret;
2646
2647 if (!req_out)
2648 return -EINVAL;
2649
2650 if ((*req_out = ring->outstanding_lazy_request) != NULL)
2651 return 0;
2652
2653 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2654 if (req == NULL)
2655 return -ENOMEM;
2656
2657 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2658 if (ret)
2659 goto err;
2660
2661 kref_init(&req->ref);
2662 req->i915 = dev_priv;
2663 req->ring = ring;
2664 req->ctx = ctx;
2665 i915_gem_context_reference(req->ctx);
2666
2667 if (i915.enable_execlists)
2668 ret = intel_logical_ring_alloc_request_extras(req);
2669 else
2670 ret = intel_ring_alloc_request_extras(req);
2671 if (ret) {
2672 i915_gem_context_unreference(req->ctx);
2673 goto err;
2674 }
2675
2676 /*
2677 * Reserve space in the ring buffer for all the commands required to
2678 * eventually emit this request. This is to guarantee that the
2679 * i915_add_request() call can't fail. Note that the reserve may need
2680 * to be redone if the request is not actually submitted straight
2681 * away, e.g. because a GPU scheduler has deferred it.
2682 */
2683 if (i915.enable_execlists)
2684 ret = intel_logical_ring_reserve_space(req);
2685 else
2686 ret = intel_ring_reserve_space(req);
2687 if (ret) {
2688 /*
2689 * At this point, the request is fully allocated even if not
2690 * fully prepared. Thus it can be cleaned up using the proper
2691 * free code.
2692 */
2693 i915_gem_request_cancel(req);
2694 return ret;
2695 }
2696
2697 *req_out = ring->outstanding_lazy_request = req;
2698 return 0;
2699
2700 err:
2701 kmem_cache_free(dev_priv->requests, req);
2702 return ret;
2703 }
2704
2705 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2706 {
2707 intel_ring_reserved_space_cancel(req->ringbuf);
2708
2709 i915_gem_request_unreference(req);
2710 }
2711
2712 struct drm_i915_gem_request *
2713 i915_gem_find_active_request(struct intel_engine_cs *ring)
2714 {
2715 struct drm_i915_gem_request *request;
2716
2717 list_for_each_entry(request, &ring->request_list, list) {
2718 if (i915_gem_request_completed(request, false))
2719 continue;
2720
2721 return request;
2722 }
2723
2724 return NULL;
2725 }
2726
2727 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2728 struct intel_engine_cs *ring)
2729 {
2730 struct drm_i915_gem_request *request;
2731 bool ring_hung;
2732
2733 request = i915_gem_find_active_request(ring);
2734
2735 if (request == NULL)
2736 return;
2737
2738 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2739
2740 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2741
2742 list_for_each_entry_continue(request, &ring->request_list, list)
2743 i915_set_reset_status(dev_priv, request->ctx, false);
2744 }
2745
2746 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2747 struct intel_engine_cs *ring)
2748 {
2749 while (!list_empty(&ring->active_list)) {
2750 struct drm_i915_gem_object *obj;
2751
2752 obj = list_first_entry(&ring->active_list,
2753 struct drm_i915_gem_object,
2754 ring_list[ring->id]);
2755
2756 i915_gem_object_retire__read(obj, ring->id);
2757 }
2758
2759 /*
2760 * Clear the execlists queue up before freeing the requests, as those
2761 * are the ones that keep the context and ringbuffer backing objects
2762 * pinned in place.
2763 */
2764 while (!list_empty(&ring->execlist_queue)) {
2765 struct drm_i915_gem_request *submit_req;
2766
2767 submit_req = list_first_entry(&ring->execlist_queue,
2768 struct drm_i915_gem_request,
2769 execlist_link);
2770 list_del(&submit_req->execlist_link);
2771
2772 if (submit_req->ctx != ring->default_context)
2773 intel_lr_context_unpin(ring, submit_req->ctx);
2774
2775 i915_gem_request_unreference(submit_req);
2776 }
2777
2778 /*
2779 * We must free the requests after all the corresponding objects have
2780 * been moved off active lists. Which is the same order as the normal
2781 * retire_requests function does. This is important if object hold
2782 * implicit references on things like e.g. ppgtt address spaces through
2783 * the request.
2784 */
2785 while (!list_empty(&ring->request_list)) {
2786 struct drm_i915_gem_request *request;
2787
2788 request = list_first_entry(&ring->request_list,
2789 struct drm_i915_gem_request,
2790 list);
2791
2792 i915_gem_request_retire(request);
2793 }
2794
2795 /* This may not have been flushed before the reset, so clean it now */
2796 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2797 }
2798
2799 void i915_gem_restore_fences(struct drm_device *dev)
2800 {
2801 struct drm_i915_private *dev_priv = dev->dev_private;
2802 int i;
2803
2804 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2805 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2806
2807 /*
2808 * Commit delayed tiling changes if we have an object still
2809 * attached to the fence, otherwise just clear the fence.
2810 */
2811 if (reg->obj) {
2812 i915_gem_object_update_fence(reg->obj, reg,
2813 reg->obj->tiling_mode);
2814 } else {
2815 i915_gem_write_fence(dev, i, NULL);
2816 }
2817 }
2818 }
2819
2820 void i915_gem_reset(struct drm_device *dev)
2821 {
2822 struct drm_i915_private *dev_priv = dev->dev_private;
2823 struct intel_engine_cs *ring;
2824 int i;
2825
2826 /*
2827 * Before we free the objects from the requests, we need to inspect
2828 * them for finding the guilty party. As the requests only borrow
2829 * their reference to the objects, the inspection must be done first.
2830 */
2831 for_each_ring(ring, dev_priv, i)
2832 i915_gem_reset_ring_status(dev_priv, ring);
2833
2834 for_each_ring(ring, dev_priv, i)
2835 i915_gem_reset_ring_cleanup(dev_priv, ring);
2836
2837 i915_gem_context_reset(dev);
2838
2839 i915_gem_restore_fences(dev);
2840
2841 WARN_ON(i915_verify_lists(dev));
2842 }
2843
2844 /**
2845 * This function clears the request list as sequence numbers are passed.
2846 */
2847 void
2848 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2849 {
2850 WARN_ON(i915_verify_lists(ring->dev));
2851
2852 /* Retire requests first as we use it above for the early return.
2853 * If we retire requests last, we may use a later seqno and so clear
2854 * the requests lists without clearing the active list, leading to
2855 * confusion.
2856 */
2857 while (!list_empty(&ring->request_list)) {
2858 struct drm_i915_gem_request *request;
2859
2860 request = list_first_entry(&ring->request_list,
2861 struct drm_i915_gem_request,
2862 list);
2863
2864 if (!i915_gem_request_completed(request, true))
2865 break;
2866
2867 i915_gem_request_retire(request);
2868 }
2869
2870 /* Move any buffers on the active list that are no longer referenced
2871 * by the ringbuffer to the flushing/inactive lists as appropriate,
2872 * before we free the context associated with the requests.
2873 */
2874 while (!list_empty(&ring->active_list)) {
2875 struct drm_i915_gem_object *obj;
2876
2877 obj = list_first_entry(&ring->active_list,
2878 struct drm_i915_gem_object,
2879 ring_list[ring->id]);
2880
2881 if (!list_empty(&obj->last_read_req[ring->id]->list))
2882 break;
2883
2884 i915_gem_object_retire__read(obj, ring->id);
2885 }
2886
2887 if (unlikely(ring->trace_irq_req &&
2888 i915_gem_request_completed(ring->trace_irq_req, true))) {
2889 ring->irq_put(ring);
2890 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2891 }
2892
2893 WARN_ON(i915_verify_lists(ring->dev));
2894 }
2895
2896 bool
2897 i915_gem_retire_requests(struct drm_device *dev)
2898 {
2899 struct drm_i915_private *dev_priv = dev->dev_private;
2900 struct intel_engine_cs *ring;
2901 bool idle = true;
2902 int i;
2903
2904 for_each_ring(ring, dev_priv, i) {
2905 i915_gem_retire_requests_ring(ring);
2906 idle &= list_empty(&ring->request_list);
2907 if (i915.enable_execlists) {
2908 unsigned long flags;
2909
2910 spin_lock_irqsave(&ring->execlist_lock, flags);
2911 idle &= list_empty(&ring->execlist_queue);
2912 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2913
2914 intel_execlists_retire_requests(ring);
2915 }
2916 }
2917
2918 if (idle)
2919 mod_delayed_work(dev_priv->wq,
2920 &dev_priv->mm.idle_work,
2921 msecs_to_jiffies(100));
2922
2923 return idle;
2924 }
2925
2926 static void
2927 i915_gem_retire_work_handler(struct work_struct *work)
2928 {
2929 struct drm_i915_private *dev_priv =
2930 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2931 struct drm_device *dev = dev_priv->dev;
2932 bool idle;
2933
2934 /* Come back later if the device is busy... */
2935 idle = false;
2936 if (mutex_trylock(&dev->struct_mutex)) {
2937 idle = i915_gem_retire_requests(dev);
2938 mutex_unlock(&dev->struct_mutex);
2939 }
2940 if (!idle)
2941 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2942 round_jiffies_up_relative(HZ));
2943 }
2944
2945 static void
2946 i915_gem_idle_work_handler(struct work_struct *work)
2947 {
2948 struct drm_i915_private *dev_priv =
2949 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2950 struct drm_device *dev = dev_priv->dev;
2951 struct intel_engine_cs *ring;
2952 int i;
2953
2954 for_each_ring(ring, dev_priv, i)
2955 if (!list_empty(&ring->request_list))
2956 return;
2957
2958 intel_mark_idle(dev);
2959
2960 if (mutex_trylock(&dev->struct_mutex)) {
2961 struct intel_engine_cs *ring;
2962 int i;
2963
2964 for_each_ring(ring, dev_priv, i)
2965 i915_gem_batch_pool_fini(&ring->batch_pool);
2966
2967 mutex_unlock(&dev->struct_mutex);
2968 }
2969 }
2970
2971 /**
2972 * Ensures that an object will eventually get non-busy by flushing any required
2973 * write domains, emitting any outstanding lazy request and retiring and
2974 * completed requests.
2975 */
2976 static int
2977 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2978 {
2979 int ret, i;
2980
2981 if (!obj->active)
2982 return 0;
2983
2984 for (i = 0; i < I915_NUM_RINGS; i++) {
2985 struct drm_i915_gem_request *req;
2986
2987 req = obj->last_read_req[i];
2988 if (req == NULL)
2989 continue;
2990
2991 if (list_empty(&req->list))
2992 goto retire;
2993
2994 ret = i915_gem_check_olr(req);
2995 if (ret)
2996 return ret;
2997
2998 if (i915_gem_request_completed(req, true)) {
2999 __i915_gem_request_retire__upto(req);
3000 retire:
3001 i915_gem_object_retire__read(obj, i);
3002 }
3003 }
3004
3005 return 0;
3006 }
3007
3008 /**
3009 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3010 * @DRM_IOCTL_ARGS: standard ioctl arguments
3011 *
3012 * Returns 0 if successful, else an error is returned with the remaining time in
3013 * the timeout parameter.
3014 * -ETIME: object is still busy after timeout
3015 * -ERESTARTSYS: signal interrupted the wait
3016 * -ENONENT: object doesn't exist
3017 * Also possible, but rare:
3018 * -EAGAIN: GPU wedged
3019 * -ENOMEM: damn
3020 * -ENODEV: Internal IRQ fail
3021 * -E?: The add request failed
3022 *
3023 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3024 * non-zero timeout parameter the wait ioctl will wait for the given number of
3025 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3026 * without holding struct_mutex the object may become re-busied before this
3027 * function completes. A similar but shorter * race condition exists in the busy
3028 * ioctl
3029 */
3030 int
3031 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3032 {
3033 struct drm_i915_private *dev_priv = dev->dev_private;
3034 struct drm_i915_gem_wait *args = data;
3035 struct drm_i915_gem_object *obj;
3036 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3037 unsigned reset_counter;
3038 int i, n = 0;
3039 int ret;
3040
3041 if (args->flags != 0)
3042 return -EINVAL;
3043
3044 ret = i915_mutex_lock_interruptible(dev);
3045 if (ret)
3046 return ret;
3047
3048 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3049 if (&obj->base == NULL) {
3050 mutex_unlock(&dev->struct_mutex);
3051 return -ENOENT;
3052 }
3053
3054 /* Need to make sure the object gets inactive eventually. */
3055 ret = i915_gem_object_flush_active(obj);
3056 if (ret)
3057 goto out;
3058
3059 if (!obj->active)
3060 goto out;
3061
3062 /* Do this after OLR check to make sure we make forward progress polling
3063 * on this IOCTL with a timeout == 0 (like busy ioctl)
3064 */
3065 if (args->timeout_ns == 0) {
3066 ret = -ETIME;
3067 goto out;
3068 }
3069
3070 drm_gem_object_unreference(&obj->base);
3071 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3072
3073 for (i = 0; i < I915_NUM_RINGS; i++) {
3074 if (obj->last_read_req[i] == NULL)
3075 continue;
3076
3077 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3078 }
3079
3080 mutex_unlock(&dev->struct_mutex);
3081
3082 for (i = 0; i < n; i++) {
3083 if (ret == 0)
3084 ret = __i915_wait_request(req[i], reset_counter, true,
3085 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3086 file->driver_priv);
3087 i915_gem_request_unreference__unlocked(req[i]);
3088 }
3089 return ret;
3090
3091 out:
3092 drm_gem_object_unreference(&obj->base);
3093 mutex_unlock(&dev->struct_mutex);
3094 return ret;
3095 }
3096
3097 static int
3098 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3099 struct intel_engine_cs *to,
3100 struct drm_i915_gem_request *from_req,
3101 struct drm_i915_gem_request **to_req)
3102 {
3103 struct intel_engine_cs *from;
3104 int ret;
3105
3106 from = i915_gem_request_get_ring(from_req);
3107 if (to == from)
3108 return 0;
3109
3110 if (i915_gem_request_completed(from_req, true))
3111 return 0;
3112
3113 ret = i915_gem_check_olr(from_req);
3114 if (ret)
3115 return ret;
3116
3117 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3118 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3119 ret = __i915_wait_request(from_req,
3120 atomic_read(&i915->gpu_error.reset_counter),
3121 i915->mm.interruptible,
3122 NULL,
3123 &i915->rps.semaphores);
3124 if (ret)
3125 return ret;
3126
3127 i915_gem_object_retire_request(obj, from_req);
3128 } else {
3129 int idx = intel_ring_sync_index(from, to);
3130 u32 seqno = i915_gem_request_get_seqno(from_req);
3131
3132 WARN_ON(!to_req);
3133
3134 if (seqno <= from->semaphore.sync_seqno[idx])
3135 return 0;
3136
3137 if (*to_req == NULL) {
3138 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3139 if (ret)
3140 return ret;
3141 }
3142
3143 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3144 ret = to->semaphore.sync_to(*to_req, from, seqno);
3145 if (ret)
3146 return ret;
3147
3148 /* We use last_read_req because sync_to()
3149 * might have just caused seqno wrap under
3150 * the radar.
3151 */
3152 from->semaphore.sync_seqno[idx] =
3153 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3154 }
3155
3156 return 0;
3157 }
3158
3159 /**
3160 * i915_gem_object_sync - sync an object to a ring.
3161 *
3162 * @obj: object which may be in use on another ring.
3163 * @to: ring we wish to use the object on. May be NULL.
3164 * @to_req: request we wish to use the object for. See below.
3165 * This will be allocated and returned if a request is
3166 * required but not passed in.
3167 *
3168 * This code is meant to abstract object synchronization with the GPU.
3169 * Calling with NULL implies synchronizing the object with the CPU
3170 * rather than a particular GPU ring. Conceptually we serialise writes
3171 * between engines inside the GPU. We only allow one engine to write
3172 * into a buffer at any time, but multiple readers. To ensure each has
3173 * a coherent view of memory, we must:
3174 *
3175 * - If there is an outstanding write request to the object, the new
3176 * request must wait for it to complete (either CPU or in hw, requests
3177 * on the same ring will be naturally ordered).
3178 *
3179 * - If we are a write request (pending_write_domain is set), the new
3180 * request must wait for outstanding read requests to complete.
3181 *
3182 * For CPU synchronisation (NULL to) no request is required. For syncing with
3183 * rings to_req must be non-NULL. However, a request does not have to be
3184 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3185 * request will be allocated automatically and returned through *to_req. Note
3186 * that it is not guaranteed that commands will be emitted (because the system
3187 * might already be idle). Hence there is no need to create a request that
3188 * might never have any work submitted. Note further that if a request is
3189 * returned in *to_req, it is the responsibility of the caller to submit
3190 * that request (after potentially adding more work to it).
3191 *
3192 * Returns 0 if successful, else propagates up the lower layer error.
3193 */
3194 int
3195 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3196 struct intel_engine_cs *to,
3197 struct drm_i915_gem_request **to_req)
3198 {
3199 const bool readonly = obj->base.pending_write_domain == 0;
3200 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3201 int ret, i, n;
3202
3203 if (!obj->active)
3204 return 0;
3205
3206 if (to == NULL)
3207 return i915_gem_object_wait_rendering(obj, readonly);
3208
3209 n = 0;
3210 if (readonly) {
3211 if (obj->last_write_req)
3212 req[n++] = obj->last_write_req;
3213 } else {
3214 for (i = 0; i < I915_NUM_RINGS; i++)
3215 if (obj->last_read_req[i])
3216 req[n++] = obj->last_read_req[i];
3217 }
3218 for (i = 0; i < n; i++) {
3219 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3220 if (ret)
3221 return ret;
3222 }
3223
3224 return 0;
3225 }
3226
3227 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3228 {
3229 u32 old_write_domain, old_read_domains;
3230
3231 /* Force a pagefault for domain tracking on next user access */
3232 i915_gem_release_mmap(obj);
3233
3234 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3235 return;
3236
3237 /* Wait for any direct GTT access to complete */
3238 mb();
3239
3240 old_read_domains = obj->base.read_domains;
3241 old_write_domain = obj->base.write_domain;
3242
3243 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3244 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3245
3246 trace_i915_gem_object_change_domain(obj,
3247 old_read_domains,
3248 old_write_domain);
3249 }
3250
3251 int i915_vma_unbind(struct i915_vma *vma)
3252 {
3253 struct drm_i915_gem_object *obj = vma->obj;
3254 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3255 int ret;
3256
3257 if (list_empty(&vma->vma_link))
3258 return 0;
3259
3260 if (!drm_mm_node_allocated(&vma->node)) {
3261 i915_gem_vma_destroy(vma);
3262 return 0;
3263 }
3264
3265 if (vma->pin_count)
3266 return -EBUSY;
3267
3268 BUG_ON(obj->pages == NULL);
3269
3270 ret = i915_gem_object_wait_rendering(obj, false);
3271 if (ret)
3272 return ret;
3273 /* Continue on if we fail due to EIO, the GPU is hung so we
3274 * should be safe and we need to cleanup or else we might
3275 * cause memory corruption through use-after-free.
3276 */
3277
3278 if (i915_is_ggtt(vma->vm) &&
3279 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3280 i915_gem_object_finish_gtt(obj);
3281
3282 /* release the fence reg _after_ flushing */
3283 ret = i915_gem_object_put_fence(obj);
3284 if (ret)
3285 return ret;
3286 }
3287
3288 trace_i915_vma_unbind(vma);
3289
3290 vma->vm->unbind_vma(vma);
3291 vma->bound = 0;
3292
3293 list_del_init(&vma->mm_list);
3294 if (i915_is_ggtt(vma->vm)) {
3295 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3296 obj->map_and_fenceable = false;
3297 } else if (vma->ggtt_view.pages) {
3298 sg_free_table(vma->ggtt_view.pages);
3299 kfree(vma->ggtt_view.pages);
3300 vma->ggtt_view.pages = NULL;
3301 }
3302 }
3303
3304 drm_mm_remove_node(&vma->node);
3305 i915_gem_vma_destroy(vma);
3306
3307 /* Since the unbound list is global, only move to that list if
3308 * no more VMAs exist. */
3309 if (list_empty(&obj->vma_list)) {
3310 i915_gem_gtt_finish_object(obj);
3311 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3312 }
3313
3314 /* And finally now the object is completely decoupled from this vma,
3315 * we can drop its hold on the backing storage and allow it to be
3316 * reaped by the shrinker.
3317 */
3318 i915_gem_object_unpin_pages(obj);
3319
3320 return 0;
3321 }
3322
3323 int i915_gpu_idle(struct drm_device *dev)
3324 {
3325 struct drm_i915_private *dev_priv = dev->dev_private;
3326 struct intel_engine_cs *ring;
3327 int ret, i;
3328
3329 /* Flush everything onto the inactive list. */
3330 for_each_ring(ring, dev_priv, i) {
3331 if (!i915.enable_execlists) {
3332 struct drm_i915_gem_request *req;
3333
3334 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3335 if (ret)
3336 return ret;
3337
3338 ret = i915_switch_context(req);
3339 if (ret) {
3340 i915_gem_request_cancel(req);
3341 return ret;
3342 }
3343
3344 i915_add_request_no_flush(req);
3345 }
3346
3347 WARN_ON(ring->outstanding_lazy_request);
3348
3349 ret = intel_ring_idle(ring);
3350 if (ret)
3351 return ret;
3352 }
3353
3354 WARN_ON(i915_verify_lists(dev));
3355 return 0;
3356 }
3357
3358 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3359 struct drm_i915_gem_object *obj)
3360 {
3361 struct drm_i915_private *dev_priv = dev->dev_private;
3362 int fence_reg;
3363 int fence_pitch_shift;
3364
3365 if (INTEL_INFO(dev)->gen >= 6) {
3366 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3367 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3368 } else {
3369 fence_reg = FENCE_REG_965_0;
3370 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3371 }
3372
3373 fence_reg += reg * 8;
3374
3375 /* To w/a incoherency with non-atomic 64-bit register updates,
3376 * we split the 64-bit update into two 32-bit writes. In order
3377 * for a partial fence not to be evaluated between writes, we
3378 * precede the update with write to turn off the fence register,
3379 * and only enable the fence as the last step.
3380 *
3381 * For extra levels of paranoia, we make sure each step lands
3382 * before applying the next step.
3383 */
3384 I915_WRITE(fence_reg, 0);
3385 POSTING_READ(fence_reg);
3386
3387 if (obj) {
3388 u32 size = i915_gem_obj_ggtt_size(obj);
3389 uint64_t val;
3390
3391 /* Adjust fence size to match tiled area */
3392 if (obj->tiling_mode != I915_TILING_NONE) {
3393 uint32_t row_size = obj->stride *
3394 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3395 size = (size / row_size) * row_size;
3396 }
3397
3398 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3399 0xfffff000) << 32;
3400 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3401 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3402 if (obj->tiling_mode == I915_TILING_Y)
3403 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3404 val |= I965_FENCE_REG_VALID;
3405
3406 I915_WRITE(fence_reg + 4, val >> 32);
3407 POSTING_READ(fence_reg + 4);
3408
3409 I915_WRITE(fence_reg + 0, val);
3410 POSTING_READ(fence_reg);
3411 } else {
3412 I915_WRITE(fence_reg + 4, 0);
3413 POSTING_READ(fence_reg + 4);
3414 }
3415 }
3416
3417 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3418 struct drm_i915_gem_object *obj)
3419 {
3420 struct drm_i915_private *dev_priv = dev->dev_private;
3421 u32 val;
3422
3423 if (obj) {
3424 u32 size = i915_gem_obj_ggtt_size(obj);
3425 int pitch_val;
3426 int tile_width;
3427
3428 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3429 (size & -size) != size ||
3430 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3431 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3432 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3433
3434 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3435 tile_width = 128;
3436 else
3437 tile_width = 512;
3438
3439 /* Note: pitch better be a power of two tile widths */
3440 pitch_val = obj->stride / tile_width;
3441 pitch_val = ffs(pitch_val) - 1;
3442
3443 val = i915_gem_obj_ggtt_offset(obj);
3444 if (obj->tiling_mode == I915_TILING_Y)
3445 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3446 val |= I915_FENCE_SIZE_BITS(size);
3447 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3448 val |= I830_FENCE_REG_VALID;
3449 } else
3450 val = 0;
3451
3452 if (reg < 8)
3453 reg = FENCE_REG_830_0 + reg * 4;
3454 else
3455 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3456
3457 I915_WRITE(reg, val);
3458 POSTING_READ(reg);
3459 }
3460
3461 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3462 struct drm_i915_gem_object *obj)
3463 {
3464 struct drm_i915_private *dev_priv = dev->dev_private;
3465 uint32_t val;
3466
3467 if (obj) {
3468 u32 size = i915_gem_obj_ggtt_size(obj);
3469 uint32_t pitch_val;
3470
3471 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3472 (size & -size) != size ||
3473 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3474 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3475 i915_gem_obj_ggtt_offset(obj), size);
3476
3477 pitch_val = obj->stride / 128;
3478 pitch_val = ffs(pitch_val) - 1;
3479
3480 val = i915_gem_obj_ggtt_offset(obj);
3481 if (obj->tiling_mode == I915_TILING_Y)
3482 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3483 val |= I830_FENCE_SIZE_BITS(size);
3484 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3485 val |= I830_FENCE_REG_VALID;
3486 } else
3487 val = 0;
3488
3489 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3490 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3491 }
3492
3493 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3494 {
3495 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3496 }
3497
3498 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3499 struct drm_i915_gem_object *obj)
3500 {
3501 struct drm_i915_private *dev_priv = dev->dev_private;
3502
3503 /* Ensure that all CPU reads are completed before installing a fence
3504 * and all writes before removing the fence.
3505 */
3506 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3507 mb();
3508
3509 WARN(obj && (!obj->stride || !obj->tiling_mode),
3510 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3511 obj->stride, obj->tiling_mode);
3512
3513 if (IS_GEN2(dev))
3514 i830_write_fence_reg(dev, reg, obj);
3515 else if (IS_GEN3(dev))
3516 i915_write_fence_reg(dev, reg, obj);
3517 else if (INTEL_INFO(dev)->gen >= 4)
3518 i965_write_fence_reg(dev, reg, obj);
3519
3520 /* And similarly be paranoid that no direct access to this region
3521 * is reordered to before the fence is installed.
3522 */
3523 if (i915_gem_object_needs_mb(obj))
3524 mb();
3525 }
3526
3527 static inline int fence_number(struct drm_i915_private *dev_priv,
3528 struct drm_i915_fence_reg *fence)
3529 {
3530 return fence - dev_priv->fence_regs;
3531 }
3532
3533 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3534 struct drm_i915_fence_reg *fence,
3535 bool enable)
3536 {
3537 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3538 int reg = fence_number(dev_priv, fence);
3539
3540 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3541
3542 if (enable) {
3543 obj->fence_reg = reg;
3544 fence->obj = obj;
3545 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3546 } else {
3547 obj->fence_reg = I915_FENCE_REG_NONE;
3548 fence->obj = NULL;
3549 list_del_init(&fence->lru_list);
3550 }
3551 obj->fence_dirty = false;
3552 }
3553
3554 static int
3555 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3556 {
3557 if (obj->last_fenced_req) {
3558 int ret = i915_wait_request(obj->last_fenced_req);
3559 if (ret)
3560 return ret;
3561
3562 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3563 }
3564
3565 return 0;
3566 }
3567
3568 int
3569 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3570 {
3571 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3572 struct drm_i915_fence_reg *fence;
3573 int ret;
3574
3575 ret = i915_gem_object_wait_fence(obj);
3576 if (ret)
3577 return ret;
3578
3579 if (obj->fence_reg == I915_FENCE_REG_NONE)
3580 return 0;
3581
3582 fence = &dev_priv->fence_regs[obj->fence_reg];
3583
3584 if (WARN_ON(fence->pin_count))
3585 return -EBUSY;
3586
3587 i915_gem_object_fence_lost(obj);
3588 i915_gem_object_update_fence(obj, fence, false);
3589
3590 return 0;
3591 }
3592
3593 static struct drm_i915_fence_reg *
3594 i915_find_fence_reg(struct drm_device *dev)
3595 {
3596 struct drm_i915_private *dev_priv = dev->dev_private;
3597 struct drm_i915_fence_reg *reg, *avail;
3598 int i;
3599
3600 /* First try to find a free reg */
3601 avail = NULL;
3602 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3603 reg = &dev_priv->fence_regs[i];
3604 if (!reg->obj)
3605 return reg;
3606
3607 if (!reg->pin_count)
3608 avail = reg;
3609 }
3610
3611 if (avail == NULL)
3612 goto deadlock;
3613
3614 /* None available, try to steal one or wait for a user to finish */
3615 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3616 if (reg->pin_count)
3617 continue;
3618
3619 return reg;
3620 }
3621
3622 deadlock:
3623 /* Wait for completion of pending flips which consume fences */
3624 if (intel_has_pending_fb_unpin(dev))
3625 return ERR_PTR(-EAGAIN);
3626
3627 return ERR_PTR(-EDEADLK);
3628 }
3629
3630 /**
3631 * i915_gem_object_get_fence - set up fencing for an object
3632 * @obj: object to map through a fence reg
3633 *
3634 * When mapping objects through the GTT, userspace wants to be able to write
3635 * to them without having to worry about swizzling if the object is tiled.
3636 * This function walks the fence regs looking for a free one for @obj,
3637 * stealing one if it can't find any.
3638 *
3639 * It then sets up the reg based on the object's properties: address, pitch
3640 * and tiling format.
3641 *
3642 * For an untiled surface, this removes any existing fence.
3643 */
3644 int
3645 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3646 {
3647 struct drm_device *dev = obj->base.dev;
3648 struct drm_i915_private *dev_priv = dev->dev_private;
3649 bool enable = obj->tiling_mode != I915_TILING_NONE;
3650 struct drm_i915_fence_reg *reg;
3651 int ret;
3652
3653 /* Have we updated the tiling parameters upon the object and so
3654 * will need to serialise the write to the associated fence register?
3655 */
3656 if (obj->fence_dirty) {
3657 ret = i915_gem_object_wait_fence(obj);
3658 if (ret)
3659 return ret;
3660 }
3661
3662 /* Just update our place in the LRU if our fence is getting reused. */
3663 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3664 reg = &dev_priv->fence_regs[obj->fence_reg];
3665 if (!obj->fence_dirty) {
3666 list_move_tail(&reg->lru_list,
3667 &dev_priv->mm.fence_list);
3668 return 0;
3669 }
3670 } else if (enable) {
3671 if (WARN_ON(!obj->map_and_fenceable))
3672 return -EINVAL;
3673
3674 reg = i915_find_fence_reg(dev);
3675 if (IS_ERR(reg))
3676 return PTR_ERR(reg);
3677
3678 if (reg->obj) {
3679 struct drm_i915_gem_object *old = reg->obj;
3680
3681 ret = i915_gem_object_wait_fence(old);
3682 if (ret)
3683 return ret;
3684
3685 i915_gem_object_fence_lost(old);
3686 }
3687 } else
3688 return 0;
3689
3690 i915_gem_object_update_fence(obj, reg, enable);
3691
3692 return 0;
3693 }
3694
3695 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3696 unsigned long cache_level)
3697 {
3698 struct drm_mm_node *gtt_space = &vma->node;
3699 struct drm_mm_node *other;
3700
3701 /*
3702 * On some machines we have to be careful when putting differing types
3703 * of snoopable memory together to avoid the prefetcher crossing memory
3704 * domains and dying. During vm initialisation, we decide whether or not
3705 * these constraints apply and set the drm_mm.color_adjust
3706 * appropriately.
3707 */
3708 if (vma->vm->mm.color_adjust == NULL)
3709 return true;
3710
3711 if (!drm_mm_node_allocated(gtt_space))
3712 return true;
3713
3714 if (list_empty(&gtt_space->node_list))
3715 return true;
3716
3717 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3718 if (other->allocated && !other->hole_follows && other->color != cache_level)
3719 return false;
3720
3721 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3722 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3723 return false;
3724
3725 return true;
3726 }
3727
3728 /**
3729 * Finds free space in the GTT aperture and binds the object or a view of it
3730 * there.
3731 */
3732 static struct i915_vma *
3733 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3734 struct i915_address_space *vm,
3735 const struct i915_ggtt_view *ggtt_view,
3736 unsigned alignment,
3737 uint64_t flags)
3738 {
3739 struct drm_device *dev = obj->base.dev;
3740 struct drm_i915_private *dev_priv = dev->dev_private;
3741 u32 size, fence_size, fence_alignment, unfenced_alignment;
3742 unsigned long start =
3743 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3744 unsigned long end =
3745 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3746 struct i915_vma *vma;
3747 int ret;
3748
3749 if (i915_is_ggtt(vm)) {
3750 u32 view_size;
3751
3752 if (WARN_ON(!ggtt_view))
3753 return ERR_PTR(-EINVAL);
3754
3755 view_size = i915_ggtt_view_size(obj, ggtt_view);
3756
3757 fence_size = i915_gem_get_gtt_size(dev,
3758 view_size,
3759 obj->tiling_mode);
3760 fence_alignment = i915_gem_get_gtt_alignment(dev,
3761 view_size,
3762 obj->tiling_mode,
3763 true);
3764 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3765 view_size,
3766 obj->tiling_mode,
3767 false);
3768 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3769 } else {
3770 fence_size = i915_gem_get_gtt_size(dev,
3771 obj->base.size,
3772 obj->tiling_mode);
3773 fence_alignment = i915_gem_get_gtt_alignment(dev,
3774 obj->base.size,
3775 obj->tiling_mode,
3776 true);
3777 unfenced_alignment =
3778 i915_gem_get_gtt_alignment(dev,
3779 obj->base.size,
3780 obj->tiling_mode,
3781 false);
3782 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3783 }
3784
3785 if (alignment == 0)
3786 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3787 unfenced_alignment;
3788 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3789 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3790 ggtt_view ? ggtt_view->type : 0,
3791 alignment);
3792 return ERR_PTR(-EINVAL);
3793 }
3794
3795 /* If binding the object/GGTT view requires more space than the entire
3796 * aperture has, reject it early before evicting everything in a vain
3797 * attempt to find space.
3798 */
3799 if (size > end) {
3800 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3801 ggtt_view ? ggtt_view->type : 0,
3802 size,
3803 flags & PIN_MAPPABLE ? "mappable" : "total",
3804 end);
3805 return ERR_PTR(-E2BIG);
3806 }
3807
3808 ret = i915_gem_object_get_pages(obj);
3809 if (ret)
3810 return ERR_PTR(ret);
3811
3812 i915_gem_object_pin_pages(obj);
3813
3814 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3815 i915_gem_obj_lookup_or_create_vma(obj, vm);
3816
3817 if (IS_ERR(vma))
3818 goto err_unpin;
3819
3820 search_free:
3821 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3822 size, alignment,
3823 obj->cache_level,
3824 start, end,
3825 DRM_MM_SEARCH_DEFAULT,
3826 DRM_MM_CREATE_DEFAULT);
3827 if (ret) {
3828 ret = i915_gem_evict_something(dev, vm, size, alignment,
3829 obj->cache_level,
3830 start, end,
3831 flags);
3832 if (ret == 0)
3833 goto search_free;
3834
3835 goto err_free_vma;
3836 }
3837 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3838 ret = -EINVAL;
3839 goto err_remove_node;
3840 }
3841
3842 ret = i915_gem_gtt_prepare_object(obj);
3843 if (ret)
3844 goto err_remove_node;
3845
3846 trace_i915_vma_bind(vma, flags);
3847 ret = i915_vma_bind(vma, obj->cache_level, flags);
3848 if (ret)
3849 goto err_finish_gtt;
3850
3851 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3852 list_add_tail(&vma->mm_list, &vm->inactive_list);
3853
3854 return vma;
3855
3856 err_finish_gtt:
3857 i915_gem_gtt_finish_object(obj);
3858 err_remove_node:
3859 drm_mm_remove_node(&vma->node);
3860 err_free_vma:
3861 i915_gem_vma_destroy(vma);
3862 vma = ERR_PTR(ret);
3863 err_unpin:
3864 i915_gem_object_unpin_pages(obj);
3865 return vma;
3866 }
3867
3868 bool
3869 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3870 bool force)
3871 {
3872 /* If we don't have a page list set up, then we're not pinned
3873 * to GPU, and we can ignore the cache flush because it'll happen
3874 * again at bind time.
3875 */
3876 if (obj->pages == NULL)
3877 return false;
3878
3879 /*
3880 * Stolen memory is always coherent with the GPU as it is explicitly
3881 * marked as wc by the system, or the system is cache-coherent.
3882 */
3883 if (obj->stolen || obj->phys_handle)
3884 return false;
3885
3886 /* If the GPU is snooping the contents of the CPU cache,
3887 * we do not need to manually clear the CPU cache lines. However,
3888 * the caches are only snooped when the render cache is
3889 * flushed/invalidated. As we always have to emit invalidations
3890 * and flushes when moving into and out of the RENDER domain, correct
3891 * snooping behaviour occurs naturally as the result of our domain
3892 * tracking.
3893 */
3894 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3895 obj->cache_dirty = true;
3896 return false;
3897 }
3898
3899 trace_i915_gem_object_clflush(obj);
3900 drm_clflush_sg(obj->pages);
3901 obj->cache_dirty = false;
3902
3903 return true;
3904 }
3905
3906 /** Flushes the GTT write domain for the object if it's dirty. */
3907 static void
3908 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3909 {
3910 uint32_t old_write_domain;
3911
3912 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3913 return;
3914
3915 /* No actual flushing is required for the GTT write domain. Writes
3916 * to it immediately go to main memory as far as we know, so there's
3917 * no chipset flush. It also doesn't land in render cache.
3918 *
3919 * However, we do have to enforce the order so that all writes through
3920 * the GTT land before any writes to the device, such as updates to
3921 * the GATT itself.
3922 */
3923 wmb();
3924
3925 old_write_domain = obj->base.write_domain;
3926 obj->base.write_domain = 0;
3927
3928 intel_fb_obj_flush(obj, false);
3929
3930 trace_i915_gem_object_change_domain(obj,
3931 obj->base.read_domains,
3932 old_write_domain);
3933 }
3934
3935 /** Flushes the CPU write domain for the object if it's dirty. */
3936 static void
3937 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3938 {
3939 uint32_t old_write_domain;
3940
3941 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3942 return;
3943
3944 if (i915_gem_clflush_object(obj, obj->pin_display))
3945 i915_gem_chipset_flush(obj->base.dev);
3946
3947 old_write_domain = obj->base.write_domain;
3948 obj->base.write_domain = 0;
3949
3950 intel_fb_obj_flush(obj, false);
3951
3952 trace_i915_gem_object_change_domain(obj,
3953 obj->base.read_domains,
3954 old_write_domain);
3955 }
3956
3957 /**
3958 * Moves a single object to the GTT read, and possibly write domain.
3959 *
3960 * This function returns when the move is complete, including waiting on
3961 * flushes to occur.
3962 */
3963 int
3964 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3965 {
3966 uint32_t old_write_domain, old_read_domains;
3967 struct i915_vma *vma;
3968 int ret;
3969
3970 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3971 return 0;
3972
3973 ret = i915_gem_object_wait_rendering(obj, !write);
3974 if (ret)
3975 return ret;
3976
3977 /* Flush and acquire obj->pages so that we are coherent through
3978 * direct access in memory with previous cached writes through
3979 * shmemfs and that our cache domain tracking remains valid.
3980 * For example, if the obj->filp was moved to swap without us
3981 * being notified and releasing the pages, we would mistakenly
3982 * continue to assume that the obj remained out of the CPU cached
3983 * domain.
3984 */
3985 ret = i915_gem_object_get_pages(obj);
3986 if (ret)
3987 return ret;
3988
3989 i915_gem_object_flush_cpu_write_domain(obj);
3990
3991 /* Serialise direct access to this object with the barriers for
3992 * coherent writes from the GPU, by effectively invalidating the
3993 * GTT domain upon first access.
3994 */
3995 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3996 mb();
3997
3998 old_write_domain = obj->base.write_domain;
3999 old_read_domains = obj->base.read_domains;
4000
4001 /* It should now be out of any other write domains, and we can update
4002 * the domain values for our changes.
4003 */
4004 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4005 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4006 if (write) {
4007 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4008 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4009 obj->dirty = 1;
4010 }
4011
4012 if (write)
4013 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4014
4015 trace_i915_gem_object_change_domain(obj,
4016 old_read_domains,
4017 old_write_domain);
4018
4019 /* And bump the LRU for this access */
4020 vma = i915_gem_obj_to_ggtt(obj);
4021 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4022 list_move_tail(&vma->mm_list,
4023 &to_i915(obj->base.dev)->gtt.base.inactive_list);
4024
4025 return 0;
4026 }
4027
4028 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4029 enum i915_cache_level cache_level)
4030 {
4031 struct drm_device *dev = obj->base.dev;
4032 struct i915_vma *vma, *next;
4033 int ret;
4034
4035 if (obj->cache_level == cache_level)
4036 return 0;
4037
4038 if (i915_gem_obj_is_pinned(obj)) {
4039 DRM_DEBUG("can not change the cache level of pinned objects\n");
4040 return -EBUSY;
4041 }
4042
4043 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4044 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4045 ret = i915_vma_unbind(vma);
4046 if (ret)
4047 return ret;
4048 }
4049 }
4050
4051 if (i915_gem_obj_bound_any(obj)) {
4052 ret = i915_gem_object_wait_rendering(obj, false);
4053 if (ret)
4054 return ret;
4055
4056 i915_gem_object_finish_gtt(obj);
4057
4058 /* Before SandyBridge, you could not use tiling or fence
4059 * registers with snooped memory, so relinquish any fences
4060 * currently pointing to our region in the aperture.
4061 */
4062 if (INTEL_INFO(dev)->gen < 6) {
4063 ret = i915_gem_object_put_fence(obj);
4064 if (ret)
4065 return ret;
4066 }
4067
4068 list_for_each_entry(vma, &obj->vma_list, vma_link)
4069 if (drm_mm_node_allocated(&vma->node)) {
4070 ret = i915_vma_bind(vma, cache_level,
4071 PIN_UPDATE);
4072 if (ret)
4073 return ret;
4074 }
4075 }
4076
4077 list_for_each_entry(vma, &obj->vma_list, vma_link)
4078 vma->node.color = cache_level;
4079 obj->cache_level = cache_level;
4080
4081 if (obj->cache_dirty &&
4082 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4083 cpu_write_needs_clflush(obj)) {
4084 if (i915_gem_clflush_object(obj, true))
4085 i915_gem_chipset_flush(obj->base.dev);
4086 }
4087
4088 return 0;
4089 }
4090
4091 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4092 struct drm_file *file)
4093 {
4094 struct drm_i915_gem_caching *args = data;
4095 struct drm_i915_gem_object *obj;
4096
4097 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4098 if (&obj->base == NULL)
4099 return -ENOENT;
4100
4101 switch (obj->cache_level) {
4102 case I915_CACHE_LLC:
4103 case I915_CACHE_L3_LLC:
4104 args->caching = I915_CACHING_CACHED;
4105 break;
4106
4107 case I915_CACHE_WT:
4108 args->caching = I915_CACHING_DISPLAY;
4109 break;
4110
4111 default:
4112 args->caching = I915_CACHING_NONE;
4113 break;
4114 }
4115
4116 drm_gem_object_unreference_unlocked(&obj->base);
4117 return 0;
4118 }
4119
4120 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4121 struct drm_file *file)
4122 {
4123 struct drm_i915_gem_caching *args = data;
4124 struct drm_i915_gem_object *obj;
4125 enum i915_cache_level level;
4126 int ret;
4127
4128 switch (args->caching) {
4129 case I915_CACHING_NONE:
4130 level = I915_CACHE_NONE;
4131 break;
4132 case I915_CACHING_CACHED:
4133 level = I915_CACHE_LLC;
4134 break;
4135 case I915_CACHING_DISPLAY:
4136 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4137 break;
4138 default:
4139 return -EINVAL;
4140 }
4141
4142 ret = i915_mutex_lock_interruptible(dev);
4143 if (ret)
4144 return ret;
4145
4146 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4147 if (&obj->base == NULL) {
4148 ret = -ENOENT;
4149 goto unlock;
4150 }
4151
4152 ret = i915_gem_object_set_cache_level(obj, level);
4153
4154 drm_gem_object_unreference(&obj->base);
4155 unlock:
4156 mutex_unlock(&dev->struct_mutex);
4157 return ret;
4158 }
4159
4160 /*
4161 * Prepare buffer for display plane (scanout, cursors, etc).
4162 * Can be called from an uninterruptible phase (modesetting) and allows
4163 * any flushes to be pipelined (for pageflips).
4164 */
4165 int
4166 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4167 u32 alignment,
4168 struct intel_engine_cs *pipelined,
4169 struct drm_i915_gem_request **pipelined_request,
4170 const struct i915_ggtt_view *view)
4171 {
4172 u32 old_read_domains, old_write_domain;
4173 int ret;
4174
4175 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4176 if (ret)
4177 return ret;
4178
4179 /* Mark the pin_display early so that we account for the
4180 * display coherency whilst setting up the cache domains.
4181 */
4182 obj->pin_display++;
4183
4184 /* The display engine is not coherent with the LLC cache on gen6. As
4185 * a result, we make sure that the pinning that is about to occur is
4186 * done with uncached PTEs. This is lowest common denominator for all
4187 * chipsets.
4188 *
4189 * However for gen6+, we could do better by using the GFDT bit instead
4190 * of uncaching, which would allow us to flush all the LLC-cached data
4191 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4192 */
4193 ret = i915_gem_object_set_cache_level(obj,
4194 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4195 if (ret)
4196 goto err_unpin_display;
4197
4198 /* As the user may map the buffer once pinned in the display plane
4199 * (e.g. libkms for the bootup splash), we have to ensure that we
4200 * always use map_and_fenceable for all scanout buffers.
4201 */
4202 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4203 view->type == I915_GGTT_VIEW_NORMAL ?
4204 PIN_MAPPABLE : 0);
4205 if (ret)
4206 goto err_unpin_display;
4207
4208 i915_gem_object_flush_cpu_write_domain(obj);
4209
4210 old_write_domain = obj->base.write_domain;
4211 old_read_domains = obj->base.read_domains;
4212
4213 /* It should now be out of any other write domains, and we can update
4214 * the domain values for our changes.
4215 */
4216 obj->base.write_domain = 0;
4217 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4218
4219 trace_i915_gem_object_change_domain(obj,
4220 old_read_domains,
4221 old_write_domain);
4222
4223 return 0;
4224
4225 err_unpin_display:
4226 obj->pin_display--;
4227 return ret;
4228 }
4229
4230 void
4231 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4232 const struct i915_ggtt_view *view)
4233 {
4234 if (WARN_ON(obj->pin_display == 0))
4235 return;
4236
4237 i915_gem_object_ggtt_unpin_view(obj, view);
4238
4239 obj->pin_display--;
4240 }
4241
4242 /**
4243 * Moves a single object to the CPU read, and possibly write domain.
4244 *
4245 * This function returns when the move is complete, including waiting on
4246 * flushes to occur.
4247 */
4248 int
4249 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4250 {
4251 uint32_t old_write_domain, old_read_domains;
4252 int ret;
4253
4254 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4255 return 0;
4256
4257 ret = i915_gem_object_wait_rendering(obj, !write);
4258 if (ret)
4259 return ret;
4260
4261 i915_gem_object_flush_gtt_write_domain(obj);
4262
4263 old_write_domain = obj->base.write_domain;
4264 old_read_domains = obj->base.read_domains;
4265
4266 /* Flush the CPU cache if it's still invalid. */
4267 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4268 i915_gem_clflush_object(obj, false);
4269
4270 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4271 }
4272
4273 /* It should now be out of any other write domains, and we can update
4274 * the domain values for our changes.
4275 */
4276 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4277
4278 /* If we're writing through the CPU, then the GPU read domains will
4279 * need to be invalidated at next use.
4280 */
4281 if (write) {
4282 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4283 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4284 }
4285
4286 if (write)
4287 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4288
4289 trace_i915_gem_object_change_domain(obj,
4290 old_read_domains,
4291 old_write_domain);
4292
4293 return 0;
4294 }
4295
4296 /* Throttle our rendering by waiting until the ring has completed our requests
4297 * emitted over 20 msec ago.
4298 *
4299 * Note that if we were to use the current jiffies each time around the loop,
4300 * we wouldn't escape the function with any frames outstanding if the time to
4301 * render a frame was over 20ms.
4302 *
4303 * This should get us reasonable parallelism between CPU and GPU but also
4304 * relatively low latency when blocking on a particular request to finish.
4305 */
4306 static int
4307 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4308 {
4309 struct drm_i915_private *dev_priv = dev->dev_private;
4310 struct drm_i915_file_private *file_priv = file->driver_priv;
4311 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4312 struct drm_i915_gem_request *request, *target = NULL;
4313 unsigned reset_counter;
4314 int ret;
4315
4316 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4317 if (ret)
4318 return ret;
4319
4320 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4321 if (ret)
4322 return ret;
4323
4324 spin_lock(&file_priv->mm.lock);
4325 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4326 if (time_after_eq(request->emitted_jiffies, recent_enough))
4327 break;
4328
4329 target = request;
4330 }
4331 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4332 if (target)
4333 i915_gem_request_reference(target);
4334 spin_unlock(&file_priv->mm.lock);
4335
4336 if (target == NULL)
4337 return 0;
4338
4339 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4340 if (ret == 0)
4341 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4342
4343 i915_gem_request_unreference__unlocked(target);
4344
4345 return ret;
4346 }
4347
4348 static bool
4349 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4350 {
4351 struct drm_i915_gem_object *obj = vma->obj;
4352
4353 if (alignment &&
4354 vma->node.start & (alignment - 1))
4355 return true;
4356
4357 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4358 return true;
4359
4360 if (flags & PIN_OFFSET_BIAS &&
4361 vma->node.start < (flags & PIN_OFFSET_MASK))
4362 return true;
4363
4364 return false;
4365 }
4366
4367 static int
4368 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4369 struct i915_address_space *vm,
4370 const struct i915_ggtt_view *ggtt_view,
4371 uint32_t alignment,
4372 uint64_t flags)
4373 {
4374 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4375 struct i915_vma *vma;
4376 unsigned bound;
4377 int ret;
4378
4379 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4380 return -ENODEV;
4381
4382 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4383 return -EINVAL;
4384
4385 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4386 return -EINVAL;
4387
4388 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4389 return -EINVAL;
4390
4391 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4392 i915_gem_obj_to_vma(obj, vm);
4393
4394 if (IS_ERR(vma))
4395 return PTR_ERR(vma);
4396
4397 if (vma) {
4398 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4399 return -EBUSY;
4400
4401 if (i915_vma_misplaced(vma, alignment, flags)) {
4402 unsigned long offset;
4403 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4404 i915_gem_obj_offset(obj, vm);
4405 WARN(vma->pin_count,
4406 "bo is already pinned in %s with incorrect alignment:"
4407 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4408 " obj->map_and_fenceable=%d\n",
4409 ggtt_view ? "ggtt" : "ppgtt",
4410 offset,
4411 alignment,
4412 !!(flags & PIN_MAPPABLE),
4413 obj->map_and_fenceable);
4414 ret = i915_vma_unbind(vma);
4415 if (ret)
4416 return ret;
4417
4418 vma = NULL;
4419 }
4420 }
4421
4422 bound = vma ? vma->bound : 0;
4423 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4424 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4425 flags);
4426 if (IS_ERR(vma))
4427 return PTR_ERR(vma);
4428 } else {
4429 ret = i915_vma_bind(vma, obj->cache_level, flags);
4430 if (ret)
4431 return ret;
4432 }
4433
4434 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4435 (bound ^ vma->bound) & GLOBAL_BIND) {
4436 bool mappable, fenceable;
4437 u32 fence_size, fence_alignment;
4438
4439 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4440 obj->base.size,
4441 obj->tiling_mode);
4442 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4443 obj->base.size,
4444 obj->tiling_mode,
4445 true);
4446
4447 fenceable = (vma->node.size == fence_size &&
4448 (vma->node.start & (fence_alignment - 1)) == 0);
4449
4450 mappable = (vma->node.start + fence_size <=
4451 dev_priv->gtt.mappable_end);
4452
4453 obj->map_and_fenceable = mappable && fenceable;
4454
4455 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4456 }
4457
4458 vma->pin_count++;
4459 return 0;
4460 }
4461
4462 int
4463 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4464 struct i915_address_space *vm,
4465 uint32_t alignment,
4466 uint64_t flags)
4467 {
4468 return i915_gem_object_do_pin(obj, vm,
4469 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4470 alignment, flags);
4471 }
4472
4473 int
4474 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4475 const struct i915_ggtt_view *view,
4476 uint32_t alignment,
4477 uint64_t flags)
4478 {
4479 if (WARN_ONCE(!view, "no view specified"))
4480 return -EINVAL;
4481
4482 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4483 alignment, flags | PIN_GLOBAL);
4484 }
4485
4486 void
4487 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4488 const struct i915_ggtt_view *view)
4489 {
4490 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4491
4492 BUG_ON(!vma);
4493 WARN_ON(vma->pin_count == 0);
4494 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4495
4496 --vma->pin_count;
4497 }
4498
4499 bool
4500 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4501 {
4502 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4503 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4504 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4505
4506 WARN_ON(!ggtt_vma ||
4507 dev_priv->fence_regs[obj->fence_reg].pin_count >
4508 ggtt_vma->pin_count);
4509 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4510 return true;
4511 } else
4512 return false;
4513 }
4514
4515 void
4516 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4517 {
4518 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4519 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4520 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4521 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4522 }
4523 }
4524
4525 int
4526 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4527 struct drm_file *file)
4528 {
4529 struct drm_i915_gem_busy *args = data;
4530 struct drm_i915_gem_object *obj;
4531 int ret;
4532
4533 ret = i915_mutex_lock_interruptible(dev);
4534 if (ret)
4535 return ret;
4536
4537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4538 if (&obj->base == NULL) {
4539 ret = -ENOENT;
4540 goto unlock;
4541 }
4542
4543 /* Count all active objects as busy, even if they are currently not used
4544 * by the gpu. Users of this interface expect objects to eventually
4545 * become non-busy without any further actions, therefore emit any
4546 * necessary flushes here.
4547 */
4548 ret = i915_gem_object_flush_active(obj);
4549 if (ret)
4550 goto unref;
4551
4552 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4553 args->busy = obj->active << 16;
4554 if (obj->last_write_req)
4555 args->busy |= obj->last_write_req->ring->id;
4556
4557 unref:
4558 drm_gem_object_unreference(&obj->base);
4559 unlock:
4560 mutex_unlock(&dev->struct_mutex);
4561 return ret;
4562 }
4563
4564 int
4565 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4566 struct drm_file *file_priv)
4567 {
4568 return i915_gem_ring_throttle(dev, file_priv);
4569 }
4570
4571 int
4572 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4573 struct drm_file *file_priv)
4574 {
4575 struct drm_i915_private *dev_priv = dev->dev_private;
4576 struct drm_i915_gem_madvise *args = data;
4577 struct drm_i915_gem_object *obj;
4578 int ret;
4579
4580 switch (args->madv) {
4581 case I915_MADV_DONTNEED:
4582 case I915_MADV_WILLNEED:
4583 break;
4584 default:
4585 return -EINVAL;
4586 }
4587
4588 ret = i915_mutex_lock_interruptible(dev);
4589 if (ret)
4590 return ret;
4591
4592 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4593 if (&obj->base == NULL) {
4594 ret = -ENOENT;
4595 goto unlock;
4596 }
4597
4598 if (i915_gem_obj_is_pinned(obj)) {
4599 ret = -EINVAL;
4600 goto out;
4601 }
4602
4603 if (obj->pages &&
4604 obj->tiling_mode != I915_TILING_NONE &&
4605 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4606 if (obj->madv == I915_MADV_WILLNEED)
4607 i915_gem_object_unpin_pages(obj);
4608 if (args->madv == I915_MADV_WILLNEED)
4609 i915_gem_object_pin_pages(obj);
4610 }
4611
4612 if (obj->madv != __I915_MADV_PURGED)
4613 obj->madv = args->madv;
4614
4615 /* if the object is no longer attached, discard its backing storage */
4616 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4617 i915_gem_object_truncate(obj);
4618
4619 args->retained = obj->madv != __I915_MADV_PURGED;
4620
4621 out:
4622 drm_gem_object_unreference(&obj->base);
4623 unlock:
4624 mutex_unlock(&dev->struct_mutex);
4625 return ret;
4626 }
4627
4628 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4629 const struct drm_i915_gem_object_ops *ops)
4630 {
4631 int i;
4632
4633 INIT_LIST_HEAD(&obj->global_list);
4634 for (i = 0; i < I915_NUM_RINGS; i++)
4635 INIT_LIST_HEAD(&obj->ring_list[i]);
4636 INIT_LIST_HEAD(&obj->obj_exec_link);
4637 INIT_LIST_HEAD(&obj->vma_list);
4638 INIT_LIST_HEAD(&obj->batch_pool_link);
4639
4640 obj->ops = ops;
4641
4642 obj->fence_reg = I915_FENCE_REG_NONE;
4643 obj->madv = I915_MADV_WILLNEED;
4644
4645 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4646 }
4647
4648 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4649 .get_pages = i915_gem_object_get_pages_gtt,
4650 .put_pages = i915_gem_object_put_pages_gtt,
4651 };
4652
4653 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4654 size_t size)
4655 {
4656 struct drm_i915_gem_object *obj;
4657 struct address_space *mapping;
4658 gfp_t mask;
4659
4660 obj = i915_gem_object_alloc(dev);
4661 if (obj == NULL)
4662 return NULL;
4663
4664 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4665 i915_gem_object_free(obj);
4666 return NULL;
4667 }
4668
4669 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4670 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4671 /* 965gm cannot relocate objects above 4GiB. */
4672 mask &= ~__GFP_HIGHMEM;
4673 mask |= __GFP_DMA32;
4674 }
4675
4676 mapping = file_inode(obj->base.filp)->i_mapping;
4677 mapping_set_gfp_mask(mapping, mask);
4678
4679 i915_gem_object_init(obj, &i915_gem_object_ops);
4680
4681 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4682 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4683
4684 if (HAS_LLC(dev)) {
4685 /* On some devices, we can have the GPU use the LLC (the CPU
4686 * cache) for about a 10% performance improvement
4687 * compared to uncached. Graphics requests other than
4688 * display scanout are coherent with the CPU in
4689 * accessing this cache. This means in this mode we
4690 * don't need to clflush on the CPU side, and on the
4691 * GPU side we only need to flush internal caches to
4692 * get data visible to the CPU.
4693 *
4694 * However, we maintain the display planes as UC, and so
4695 * need to rebind when first used as such.
4696 */
4697 obj->cache_level = I915_CACHE_LLC;
4698 } else
4699 obj->cache_level = I915_CACHE_NONE;
4700
4701 trace_i915_gem_object_create(obj);
4702
4703 return obj;
4704 }
4705
4706 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4707 {
4708 /* If we are the last user of the backing storage (be it shmemfs
4709 * pages or stolen etc), we know that the pages are going to be
4710 * immediately released. In this case, we can then skip copying
4711 * back the contents from the GPU.
4712 */
4713
4714 if (obj->madv != I915_MADV_WILLNEED)
4715 return false;
4716
4717 if (obj->base.filp == NULL)
4718 return true;
4719
4720 /* At first glance, this looks racy, but then again so would be
4721 * userspace racing mmap against close. However, the first external
4722 * reference to the filp can only be obtained through the
4723 * i915_gem_mmap_ioctl() which safeguards us against the user
4724 * acquiring such a reference whilst we are in the middle of
4725 * freeing the object.
4726 */
4727 return atomic_long_read(&obj->base.filp->f_count) == 1;
4728 }
4729
4730 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4731 {
4732 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4733 struct drm_device *dev = obj->base.dev;
4734 struct drm_i915_private *dev_priv = dev->dev_private;
4735 struct i915_vma *vma, *next;
4736
4737 intel_runtime_pm_get(dev_priv);
4738
4739 trace_i915_gem_object_destroy(obj);
4740
4741 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4742 int ret;
4743
4744 vma->pin_count = 0;
4745 ret = i915_vma_unbind(vma);
4746 if (WARN_ON(ret == -ERESTARTSYS)) {
4747 bool was_interruptible;
4748
4749 was_interruptible = dev_priv->mm.interruptible;
4750 dev_priv->mm.interruptible = false;
4751
4752 WARN_ON(i915_vma_unbind(vma));
4753
4754 dev_priv->mm.interruptible = was_interruptible;
4755 }
4756 }
4757
4758 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4759 * before progressing. */
4760 if (obj->stolen)
4761 i915_gem_object_unpin_pages(obj);
4762
4763 WARN_ON(obj->frontbuffer_bits);
4764
4765 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4766 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4767 obj->tiling_mode != I915_TILING_NONE)
4768 i915_gem_object_unpin_pages(obj);
4769
4770 if (WARN_ON(obj->pages_pin_count))
4771 obj->pages_pin_count = 0;
4772 if (discard_backing_storage(obj))
4773 obj->madv = I915_MADV_DONTNEED;
4774 i915_gem_object_put_pages(obj);
4775 i915_gem_object_free_mmap_offset(obj);
4776
4777 BUG_ON(obj->pages);
4778
4779 if (obj->base.import_attach)
4780 drm_prime_gem_destroy(&obj->base, NULL);
4781
4782 if (obj->ops->release)
4783 obj->ops->release(obj);
4784
4785 drm_gem_object_release(&obj->base);
4786 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4787
4788 kfree(obj->bit_17);
4789 i915_gem_object_free(obj);
4790
4791 intel_runtime_pm_put(dev_priv);
4792 }
4793
4794 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4795 struct i915_address_space *vm)
4796 {
4797 struct i915_vma *vma;
4798 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4799 if (i915_is_ggtt(vma->vm) &&
4800 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4801 continue;
4802 if (vma->vm == vm)
4803 return vma;
4804 }
4805 return NULL;
4806 }
4807
4808 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4809 const struct i915_ggtt_view *view)
4810 {
4811 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4812 struct i915_vma *vma;
4813
4814 if (WARN_ONCE(!view, "no view specified"))
4815 return ERR_PTR(-EINVAL);
4816
4817 list_for_each_entry(vma, &obj->vma_list, vma_link)
4818 if (vma->vm == ggtt &&
4819 i915_ggtt_view_equal(&vma->ggtt_view, view))
4820 return vma;
4821 return NULL;
4822 }
4823
4824 void i915_gem_vma_destroy(struct i915_vma *vma)
4825 {
4826 struct i915_address_space *vm = NULL;
4827 WARN_ON(vma->node.allocated);
4828
4829 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4830 if (!list_empty(&vma->exec_list))
4831 return;
4832
4833 vm = vma->vm;
4834
4835 if (!i915_is_ggtt(vm))
4836 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4837
4838 list_del(&vma->vma_link);
4839
4840 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4841 }
4842
4843 static void
4844 i915_gem_stop_ringbuffers(struct drm_device *dev)
4845 {
4846 struct drm_i915_private *dev_priv = dev->dev_private;
4847 struct intel_engine_cs *ring;
4848 int i;
4849
4850 for_each_ring(ring, dev_priv, i)
4851 dev_priv->gt.stop_ring(ring);
4852 }
4853
4854 int
4855 i915_gem_suspend(struct drm_device *dev)
4856 {
4857 struct drm_i915_private *dev_priv = dev->dev_private;
4858 int ret = 0;
4859
4860 mutex_lock(&dev->struct_mutex);
4861 ret = i915_gpu_idle(dev);
4862 if (ret)
4863 goto err;
4864
4865 i915_gem_retire_requests(dev);
4866
4867 i915_gem_stop_ringbuffers(dev);
4868 mutex_unlock(&dev->struct_mutex);
4869
4870 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4871 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4872 flush_delayed_work(&dev_priv->mm.idle_work);
4873
4874 /* Assert that we sucessfully flushed all the work and
4875 * reset the GPU back to its idle, low power state.
4876 */
4877 WARN_ON(dev_priv->mm.busy);
4878
4879 return 0;
4880
4881 err:
4882 mutex_unlock(&dev->struct_mutex);
4883 return ret;
4884 }
4885
4886 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4887 {
4888 struct intel_engine_cs *ring = req->ring;
4889 struct drm_device *dev = ring->dev;
4890 struct drm_i915_private *dev_priv = dev->dev_private;
4891 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4892 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4893 int i, ret;
4894
4895 if (!HAS_L3_DPF(dev) || !remap_info)
4896 return 0;
4897
4898 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4899 if (ret)
4900 return ret;
4901
4902 /*
4903 * Note: We do not worry about the concurrent register cacheline hang
4904 * here because no other code should access these registers other than
4905 * at initialization time.
4906 */
4907 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4908 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4909 intel_ring_emit(ring, reg_base + i);
4910 intel_ring_emit(ring, remap_info[i/4]);
4911 }
4912
4913 intel_ring_advance(ring);
4914
4915 return ret;
4916 }
4917
4918 void i915_gem_init_swizzling(struct drm_device *dev)
4919 {
4920 struct drm_i915_private *dev_priv = dev->dev_private;
4921
4922 if (INTEL_INFO(dev)->gen < 5 ||
4923 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4924 return;
4925
4926 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4927 DISP_TILE_SURFACE_SWIZZLING);
4928
4929 if (IS_GEN5(dev))
4930 return;
4931
4932 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4933 if (IS_GEN6(dev))
4934 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4935 else if (IS_GEN7(dev))
4936 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4937 else if (IS_GEN8(dev))
4938 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4939 else
4940 BUG();
4941 }
4942
4943 static bool
4944 intel_enable_blt(struct drm_device *dev)
4945 {
4946 if (!HAS_BLT(dev))
4947 return false;
4948
4949 /* The blitter was dysfunctional on early prototypes */
4950 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4951 DRM_INFO("BLT not supported on this pre-production hardware;"
4952 " graphics performance will be degraded.\n");
4953 return false;
4954 }
4955
4956 return true;
4957 }
4958
4959 static void init_unused_ring(struct drm_device *dev, u32 base)
4960 {
4961 struct drm_i915_private *dev_priv = dev->dev_private;
4962
4963 I915_WRITE(RING_CTL(base), 0);
4964 I915_WRITE(RING_HEAD(base), 0);
4965 I915_WRITE(RING_TAIL(base), 0);
4966 I915_WRITE(RING_START(base), 0);
4967 }
4968
4969 static void init_unused_rings(struct drm_device *dev)
4970 {
4971 if (IS_I830(dev)) {
4972 init_unused_ring(dev, PRB1_BASE);
4973 init_unused_ring(dev, SRB0_BASE);
4974 init_unused_ring(dev, SRB1_BASE);
4975 init_unused_ring(dev, SRB2_BASE);
4976 init_unused_ring(dev, SRB3_BASE);
4977 } else if (IS_GEN2(dev)) {
4978 init_unused_ring(dev, SRB0_BASE);
4979 init_unused_ring(dev, SRB1_BASE);
4980 } else if (IS_GEN3(dev)) {
4981 init_unused_ring(dev, PRB1_BASE);
4982 init_unused_ring(dev, PRB2_BASE);
4983 }
4984 }
4985
4986 int i915_gem_init_rings(struct drm_device *dev)
4987 {
4988 struct drm_i915_private *dev_priv = dev->dev_private;
4989 int ret;
4990
4991 ret = intel_init_render_ring_buffer(dev);
4992 if (ret)
4993 return ret;
4994
4995 if (HAS_BSD(dev)) {
4996 ret = intel_init_bsd_ring_buffer(dev);
4997 if (ret)
4998 goto cleanup_render_ring;
4999 }
5000
5001 if (intel_enable_blt(dev)) {
5002 ret = intel_init_blt_ring_buffer(dev);
5003 if (ret)
5004 goto cleanup_bsd_ring;
5005 }
5006
5007 if (HAS_VEBOX(dev)) {
5008 ret = intel_init_vebox_ring_buffer(dev);
5009 if (ret)
5010 goto cleanup_blt_ring;
5011 }
5012
5013 if (HAS_BSD2(dev)) {
5014 ret = intel_init_bsd2_ring_buffer(dev);
5015 if (ret)
5016 goto cleanup_vebox_ring;
5017 }
5018
5019 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5020 if (ret)
5021 goto cleanup_bsd2_ring;
5022
5023 return 0;
5024
5025 cleanup_bsd2_ring:
5026 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
5027 cleanup_vebox_ring:
5028 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5029 cleanup_blt_ring:
5030 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5031 cleanup_bsd_ring:
5032 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5033 cleanup_render_ring:
5034 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5035
5036 return ret;
5037 }
5038
5039 int
5040 i915_gem_init_hw(struct drm_device *dev)
5041 {
5042 struct drm_i915_private *dev_priv = dev->dev_private;
5043 struct intel_engine_cs *ring;
5044 int ret, i, j;
5045
5046 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5047 return -EIO;
5048
5049 /* Double layer security blanket, see i915_gem_init() */
5050 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5051
5052 if (dev_priv->ellc_size)
5053 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5054
5055 if (IS_HASWELL(dev))
5056 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5057 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5058
5059 if (HAS_PCH_NOP(dev)) {
5060 if (IS_IVYBRIDGE(dev)) {
5061 u32 temp = I915_READ(GEN7_MSG_CTL);
5062 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5063 I915_WRITE(GEN7_MSG_CTL, temp);
5064 } else if (INTEL_INFO(dev)->gen >= 7) {
5065 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5066 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5067 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5068 }
5069 }
5070
5071 i915_gem_init_swizzling(dev);
5072
5073 /*
5074 * At least 830 can leave some of the unused rings
5075 * "active" (ie. head != tail) after resume which
5076 * will prevent c3 entry. Makes sure all unused rings
5077 * are totally idle.
5078 */
5079 init_unused_rings(dev);
5080
5081 BUG_ON(!dev_priv->ring[RCS].default_context);
5082
5083 ret = i915_ppgtt_init_hw(dev);
5084 if (ret) {
5085 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5086 goto out;
5087 }
5088
5089 /* Need to do basic initialisation of all rings first: */
5090 for_each_ring(ring, dev_priv, i) {
5091 ret = ring->init_hw(ring);
5092 if (ret)
5093 goto out;
5094 }
5095
5096 /* Now it is safe to go back round and do everything else: */
5097 for_each_ring(ring, dev_priv, i) {
5098 struct drm_i915_gem_request *req;
5099
5100 WARN_ON(!ring->default_context);
5101
5102 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5103 if (ret) {
5104 i915_gem_cleanup_ringbuffer(dev);
5105 goto out;
5106 }
5107
5108 if (ring->id == RCS) {
5109 for (j = 0; j < NUM_L3_SLICES(dev); j++)
5110 i915_gem_l3_remap(req, j);
5111 }
5112
5113 ret = i915_ppgtt_init_ring(req);
5114 if (ret && ret != -EIO) {
5115 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5116 i915_gem_request_cancel(req);
5117 i915_gem_cleanup_ringbuffer(dev);
5118 goto out;
5119 }
5120
5121 ret = i915_gem_context_enable(req);
5122 if (ret && ret != -EIO) {
5123 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5124 i915_gem_request_cancel(req);
5125 i915_gem_cleanup_ringbuffer(dev);
5126 goto out;
5127 }
5128
5129 i915_add_request_no_flush(req);
5130 }
5131
5132 out:
5133 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5134 return ret;
5135 }
5136
5137 int i915_gem_init(struct drm_device *dev)
5138 {
5139 struct drm_i915_private *dev_priv = dev->dev_private;
5140 int ret;
5141
5142 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5143 i915.enable_execlists);
5144
5145 mutex_lock(&dev->struct_mutex);
5146
5147 if (IS_VALLEYVIEW(dev)) {
5148 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5149 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5150 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5151 VLV_GTLC_ALLOWWAKEACK), 10))
5152 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5153 }
5154
5155 if (!i915.enable_execlists) {
5156 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5157 dev_priv->gt.init_rings = i915_gem_init_rings;
5158 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5159 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5160 } else {
5161 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5162 dev_priv->gt.init_rings = intel_logical_rings_init;
5163 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5164 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5165 }
5166
5167 /* This is just a security blanket to placate dragons.
5168 * On some systems, we very sporadically observe that the first TLBs
5169 * used by the CS may be stale, despite us poking the TLB reset. If
5170 * we hold the forcewake during initialisation these problems
5171 * just magically go away.
5172 */
5173 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5174
5175 ret = i915_gem_init_userptr(dev);
5176 if (ret)
5177 goto out_unlock;
5178
5179 i915_gem_init_global_gtt(dev);
5180
5181 ret = i915_gem_context_init(dev);
5182 if (ret)
5183 goto out_unlock;
5184
5185 ret = dev_priv->gt.init_rings(dev);
5186 if (ret)
5187 goto out_unlock;
5188
5189 ret = i915_gem_init_hw(dev);
5190 if (ret == -EIO) {
5191 /* Allow ring initialisation to fail by marking the GPU as
5192 * wedged. But we only want to do this where the GPU is angry,
5193 * for all other failure, such as an allocation failure, bail.
5194 */
5195 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5196 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5197 ret = 0;
5198 }
5199
5200 out_unlock:
5201 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5202 mutex_unlock(&dev->struct_mutex);
5203
5204 return ret;
5205 }
5206
5207 void
5208 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5209 {
5210 struct drm_i915_private *dev_priv = dev->dev_private;
5211 struct intel_engine_cs *ring;
5212 int i;
5213
5214 for_each_ring(ring, dev_priv, i)
5215 dev_priv->gt.cleanup_ring(ring);
5216 }
5217
5218 static void
5219 init_ring_lists(struct intel_engine_cs *ring)
5220 {
5221 INIT_LIST_HEAD(&ring->active_list);
5222 INIT_LIST_HEAD(&ring->request_list);
5223 }
5224
5225 void i915_init_vm(struct drm_i915_private *dev_priv,
5226 struct i915_address_space *vm)
5227 {
5228 if (!i915_is_ggtt(vm))
5229 drm_mm_init(&vm->mm, vm->start, vm->total);
5230 vm->dev = dev_priv->dev;
5231 INIT_LIST_HEAD(&vm->active_list);
5232 INIT_LIST_HEAD(&vm->inactive_list);
5233 INIT_LIST_HEAD(&vm->global_link);
5234 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5235 }
5236
5237 void
5238 i915_gem_load(struct drm_device *dev)
5239 {
5240 struct drm_i915_private *dev_priv = dev->dev_private;
5241 int i;
5242
5243 dev_priv->objects =
5244 kmem_cache_create("i915_gem_object",
5245 sizeof(struct drm_i915_gem_object), 0,
5246 SLAB_HWCACHE_ALIGN,
5247 NULL);
5248 dev_priv->vmas =
5249 kmem_cache_create("i915_gem_vma",
5250 sizeof(struct i915_vma), 0,
5251 SLAB_HWCACHE_ALIGN,
5252 NULL);
5253 dev_priv->requests =
5254 kmem_cache_create("i915_gem_request",
5255 sizeof(struct drm_i915_gem_request), 0,
5256 SLAB_HWCACHE_ALIGN,
5257 NULL);
5258
5259 INIT_LIST_HEAD(&dev_priv->vm_list);
5260 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5261
5262 INIT_LIST_HEAD(&dev_priv->context_list);
5263 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5264 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5265 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5266 for (i = 0; i < I915_NUM_RINGS; i++)
5267 init_ring_lists(&dev_priv->ring[i]);
5268 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5269 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5270 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5271 i915_gem_retire_work_handler);
5272 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5273 i915_gem_idle_work_handler);
5274 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5275
5276 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5277
5278 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5279 dev_priv->num_fence_regs = 32;
5280 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5281 dev_priv->num_fence_regs = 16;
5282 else
5283 dev_priv->num_fence_regs = 8;
5284
5285 if (intel_vgpu_active(dev))
5286 dev_priv->num_fence_regs =
5287 I915_READ(vgtif_reg(avail_rs.fence_num));
5288
5289 /* Initialize fence registers to zero */
5290 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5291 i915_gem_restore_fences(dev);
5292
5293 i915_gem_detect_bit_6_swizzle(dev);
5294 init_waitqueue_head(&dev_priv->pending_flip_queue);
5295
5296 dev_priv->mm.interruptible = true;
5297
5298 i915_gem_shrinker_init(dev_priv);
5299
5300 mutex_init(&dev_priv->fb_tracking.lock);
5301 }
5302
5303 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5304 {
5305 struct drm_i915_file_private *file_priv = file->driver_priv;
5306
5307 /* Clean up our request list when the client is going away, so that
5308 * later retire_requests won't dereference our soon-to-be-gone
5309 * file_priv.
5310 */
5311 spin_lock(&file_priv->mm.lock);
5312 while (!list_empty(&file_priv->mm.request_list)) {
5313 struct drm_i915_gem_request *request;
5314
5315 request = list_first_entry(&file_priv->mm.request_list,
5316 struct drm_i915_gem_request,
5317 client_list);
5318 list_del(&request->client_list);
5319 request->file_priv = NULL;
5320 }
5321 spin_unlock(&file_priv->mm.lock);
5322
5323 if (!list_empty(&file_priv->rps.link)) {
5324 spin_lock(&to_i915(dev)->rps.client_lock);
5325 list_del(&file_priv->rps.link);
5326 spin_unlock(&to_i915(dev)->rps.client_lock);
5327 }
5328 }
5329
5330 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5331 {
5332 struct drm_i915_file_private *file_priv;
5333 int ret;
5334
5335 DRM_DEBUG_DRIVER("\n");
5336
5337 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5338 if (!file_priv)
5339 return -ENOMEM;
5340
5341 file->driver_priv = file_priv;
5342 file_priv->dev_priv = dev->dev_private;
5343 file_priv->file = file;
5344 INIT_LIST_HEAD(&file_priv->rps.link);
5345
5346 spin_lock_init(&file_priv->mm.lock);
5347 INIT_LIST_HEAD(&file_priv->mm.request_list);
5348
5349 ret = i915_gem_context_open(dev, file);
5350 if (ret)
5351 kfree(file_priv);
5352
5353 return ret;
5354 }
5355
5356 /**
5357 * i915_gem_track_fb - update frontbuffer tracking
5358 * old: current GEM buffer for the frontbuffer slots
5359 * new: new GEM buffer for the frontbuffer slots
5360 * frontbuffer_bits: bitmask of frontbuffer slots
5361 *
5362 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5363 * from @old and setting them in @new. Both @old and @new can be NULL.
5364 */
5365 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5366 struct drm_i915_gem_object *new,
5367 unsigned frontbuffer_bits)
5368 {
5369 if (old) {
5370 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5371 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5372 old->frontbuffer_bits &= ~frontbuffer_bits;
5373 }
5374
5375 if (new) {
5376 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5377 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5378 new->frontbuffer_bits |= frontbuffer_bits;
5379 }
5380 }
5381
5382 /* All the new VM stuff */
5383 unsigned long
5384 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5385 struct i915_address_space *vm)
5386 {
5387 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5388 struct i915_vma *vma;
5389
5390 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5391
5392 list_for_each_entry(vma, &o->vma_list, vma_link) {
5393 if (i915_is_ggtt(vma->vm) &&
5394 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5395 continue;
5396 if (vma->vm == vm)
5397 return vma->node.start;
5398 }
5399
5400 WARN(1, "%s vma for this object not found.\n",
5401 i915_is_ggtt(vm) ? "global" : "ppgtt");
5402 return -1;
5403 }
5404
5405 unsigned long
5406 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5407 const struct i915_ggtt_view *view)
5408 {
5409 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5410 struct i915_vma *vma;
5411
5412 list_for_each_entry(vma, &o->vma_list, vma_link)
5413 if (vma->vm == ggtt &&
5414 i915_ggtt_view_equal(&vma->ggtt_view, view))
5415 return vma->node.start;
5416
5417 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5418 return -1;
5419 }
5420
5421 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5422 struct i915_address_space *vm)
5423 {
5424 struct i915_vma *vma;
5425
5426 list_for_each_entry(vma, &o->vma_list, vma_link) {
5427 if (i915_is_ggtt(vma->vm) &&
5428 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5429 continue;
5430 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5431 return true;
5432 }
5433
5434 return false;
5435 }
5436
5437 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5438 const struct i915_ggtt_view *view)
5439 {
5440 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5441 struct i915_vma *vma;
5442
5443 list_for_each_entry(vma, &o->vma_list, vma_link)
5444 if (vma->vm == ggtt &&
5445 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5446 drm_mm_node_allocated(&vma->node))
5447 return true;
5448
5449 return false;
5450 }
5451
5452 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5453 {
5454 struct i915_vma *vma;
5455
5456 list_for_each_entry(vma, &o->vma_list, vma_link)
5457 if (drm_mm_node_allocated(&vma->node))
5458 return true;
5459
5460 return false;
5461 }
5462
5463 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5464 struct i915_address_space *vm)
5465 {
5466 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5467 struct i915_vma *vma;
5468
5469 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5470
5471 BUG_ON(list_empty(&o->vma_list));
5472
5473 list_for_each_entry(vma, &o->vma_list, vma_link) {
5474 if (i915_is_ggtt(vma->vm) &&
5475 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5476 continue;
5477 if (vma->vm == vm)
5478 return vma->node.size;
5479 }
5480 return 0;
5481 }
5482
5483 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5484 {
5485 struct i915_vma *vma;
5486 list_for_each_entry(vma, &obj->vma_list, vma_link)
5487 if (vma->pin_count > 0)
5488 return true;
5489
5490 return false;
5491 }
5492
This page took 0.19906 seconds and 5 git commands to generate.