drm: Add colouring to the range allocator
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
44 unsigned alignment,
45 bool map_and_fenceable);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60
61 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62 {
63 if (obj->tiling_mode)
64 i915_gem_release_mmap(obj);
65
66 /* As we do not have an associated fence register, we will force
67 * a tiling change if we ever need to acquire one.
68 */
69 obj->fence_dirty = false;
70 obj->fence_reg = I915_FENCE_REG_NONE;
71 }
72
73 /* some bookkeeping */
74 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79 }
80
81 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83 {
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86 }
87
88 static int
89 i915_gem_wait_for_error(struct drm_device *dev)
90 {
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 struct completion *x = &dev_priv->error_completion;
93 unsigned long flags;
94 int ret;
95
96 if (!atomic_read(&dev_priv->mm.wedged))
97 return 0;
98
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
105 if (ret == 0) {
106 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
107 return -EIO;
108 } else if (ret < 0) {
109 return ret;
110 }
111
112 if (atomic_read(&dev_priv->mm.wedged)) {
113 /* GPU is hung, bump the completion count to account for
114 * the token we just consumed so that we never hit zero and
115 * end up waiting upon a subsequent completion event that
116 * will never happen.
117 */
118 spin_lock_irqsave(&x->wait.lock, flags);
119 x->done++;
120 spin_unlock_irqrestore(&x->wait.lock, flags);
121 }
122 return 0;
123 }
124
125 int i915_mutex_lock_interruptible(struct drm_device *dev)
126 {
127 int ret;
128
129 ret = i915_gem_wait_for_error(dev);
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
137 WARN_ON(i915_verify_lists(dev));
138 return 0;
139 }
140
141 static inline bool
142 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
143 {
144 return !obj->active;
145 }
146
147 int
148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
150 {
151 struct drm_i915_gem_init *args = data;
152
153 if (drm_core_check_feature(dev, DRIVER_MODESET))
154 return -ENODEV;
155
156 if (args->gtt_start >= args->gtt_end ||
157 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
158 return -EINVAL;
159
160 /* GEM with user mode setting was never supported on ilk and later. */
161 if (INTEL_INFO(dev)->gen >= 5)
162 return -ENODEV;
163
164 mutex_lock(&dev->struct_mutex);
165 i915_gem_init_global_gtt(dev, args->gtt_start,
166 args->gtt_end, args->gtt_end);
167 mutex_unlock(&dev->struct_mutex);
168
169 return 0;
170 }
171
172 int
173 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
174 struct drm_file *file)
175 {
176 struct drm_i915_private *dev_priv = dev->dev_private;
177 struct drm_i915_gem_get_aperture *args = data;
178 struct drm_i915_gem_object *obj;
179 size_t pinned;
180
181 pinned = 0;
182 mutex_lock(&dev->struct_mutex);
183 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
184 if (obj->pin_count)
185 pinned += obj->gtt_space->size;
186 mutex_unlock(&dev->struct_mutex);
187
188 args->aper_size = dev_priv->mm.gtt_total;
189 args->aper_available_size = args->aper_size - pinned;
190
191 return 0;
192 }
193
194 static int
195 i915_gem_create(struct drm_file *file,
196 struct drm_device *dev,
197 uint64_t size,
198 uint32_t *handle_p)
199 {
200 struct drm_i915_gem_object *obj;
201 int ret;
202 u32 handle;
203
204 size = roundup(size, PAGE_SIZE);
205 if (size == 0)
206 return -EINVAL;
207
208 /* Allocate the new object */
209 obj = i915_gem_alloc_object(dev, size);
210 if (obj == NULL)
211 return -ENOMEM;
212
213 ret = drm_gem_handle_create(file, &obj->base, &handle);
214 if (ret) {
215 drm_gem_object_release(&obj->base);
216 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
217 kfree(obj);
218 return ret;
219 }
220
221 /* drop reference from allocate - handle holds it now */
222 drm_gem_object_unreference(&obj->base);
223 trace_i915_gem_object_create(obj);
224
225 *handle_p = handle;
226 return 0;
227 }
228
229 int
230 i915_gem_dumb_create(struct drm_file *file,
231 struct drm_device *dev,
232 struct drm_mode_create_dumb *args)
233 {
234 /* have to work out size/pitch and return them */
235 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
236 args->size = args->pitch * args->height;
237 return i915_gem_create(file, dev,
238 args->size, &args->handle);
239 }
240
241 int i915_gem_dumb_destroy(struct drm_file *file,
242 struct drm_device *dev,
243 uint32_t handle)
244 {
245 return drm_gem_handle_delete(file, handle);
246 }
247
248 /**
249 * Creates a new mm object and returns a handle to it.
250 */
251 int
252 i915_gem_create_ioctl(struct drm_device *dev, void *data,
253 struct drm_file *file)
254 {
255 struct drm_i915_gem_create *args = data;
256
257 return i915_gem_create(file, dev,
258 args->size, &args->handle);
259 }
260
261 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
262 {
263 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
264
265 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
266 obj->tiling_mode != I915_TILING_NONE;
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
405 char __user *user_data;
406 ssize_t remain;
407 loff_t offset;
408 int shmem_page_offset, page_length, ret = 0;
409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 int hit_slowpath = 0;
411 int prefaulted = 0;
412 int needs_clflush = 0;
413 int release_page;
414
415 user_data = (char __user *) (uintptr_t) args->data_ptr;
416 remain = args->size;
417
418 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
419
420 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
421 /* If we're not in the cpu read domain, set ourself into the gtt
422 * read domain and manually flush cachelines (if required). This
423 * optimizes for the case when the gpu will dirty the data
424 * anyway again before the next pread happens. */
425 if (obj->cache_level == I915_CACHE_NONE)
426 needs_clflush = 1;
427 ret = i915_gem_object_set_to_gtt_domain(obj, false);
428 if (ret)
429 return ret;
430 }
431
432 offset = args->offset;
433
434 while (remain > 0) {
435 struct page *page;
436
437 /* Operation in this page
438 *
439 * shmem_page_offset = offset within page in shmem file
440 * page_length = bytes to copy for this page
441 */
442 shmem_page_offset = offset_in_page(offset);
443 page_length = remain;
444 if ((shmem_page_offset + page_length) > PAGE_SIZE)
445 page_length = PAGE_SIZE - shmem_page_offset;
446
447 if (obj->pages) {
448 page = obj->pages[offset >> PAGE_SHIFT];
449 release_page = 0;
450 } else {
451 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
452 if (IS_ERR(page)) {
453 ret = PTR_ERR(page);
454 goto out;
455 }
456 release_page = 1;
457 }
458
459 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
460 (page_to_phys(page) & (1 << 17)) != 0;
461
462 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
463 user_data, page_do_bit17_swizzling,
464 needs_clflush);
465 if (ret == 0)
466 goto next_page;
467
468 hit_slowpath = 1;
469 page_cache_get(page);
470 mutex_unlock(&dev->struct_mutex);
471
472 if (!prefaulted) {
473 ret = fault_in_multipages_writeable(user_data, remain);
474 /* Userspace is tricking us, but we've already clobbered
475 * its pages with the prefault and promised to write the
476 * data up to the first fault. Hence ignore any errors
477 * and just continue. */
478 (void)ret;
479 prefaulted = 1;
480 }
481
482 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
483 user_data, page_do_bit17_swizzling,
484 needs_clflush);
485
486 mutex_lock(&dev->struct_mutex);
487 page_cache_release(page);
488 next_page:
489 mark_page_accessed(page);
490 if (release_page)
491 page_cache_release(page);
492
493 if (ret) {
494 ret = -EFAULT;
495 goto out;
496 }
497
498 remain -= page_length;
499 user_data += page_length;
500 offset += page_length;
501 }
502
503 out:
504 if (hit_slowpath) {
505 /* Fixup: Kill any reinstated backing storage pages */
506 if (obj->madv == __I915_MADV_PURGED)
507 i915_gem_object_truncate(obj);
508 }
509
510 return ret;
511 }
512
513 /**
514 * Reads data from the object referenced by handle.
515 *
516 * On error, the contents of *data are undefined.
517 */
518 int
519 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
520 struct drm_file *file)
521 {
522 struct drm_i915_gem_pread *args = data;
523 struct drm_i915_gem_object *obj;
524 int ret = 0;
525
526 if (args->size == 0)
527 return 0;
528
529 if (!access_ok(VERIFY_WRITE,
530 (char __user *)(uintptr_t)args->data_ptr,
531 args->size))
532 return -EFAULT;
533
534 ret = i915_mutex_lock_interruptible(dev);
535 if (ret)
536 return ret;
537
538 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
539 if (&obj->base == NULL) {
540 ret = -ENOENT;
541 goto unlock;
542 }
543
544 /* Bounds check source. */
545 if (args->offset > obj->base.size ||
546 args->size > obj->base.size - args->offset) {
547 ret = -EINVAL;
548 goto out;
549 }
550
551 /* prime objects have no backing filp to GEM pread/pwrite
552 * pages from.
553 */
554 if (!obj->base.filp) {
555 ret = -EINVAL;
556 goto out;
557 }
558
559 trace_i915_gem_object_pread(obj, args->offset, args->size);
560
561 ret = i915_gem_shmem_pread(dev, obj, args, file);
562
563 out:
564 drm_gem_object_unreference(&obj->base);
565 unlock:
566 mutex_unlock(&dev->struct_mutex);
567 return ret;
568 }
569
570 /* This is the fast write path which cannot handle
571 * page faults in the source data
572 */
573
574 static inline int
575 fast_user_write(struct io_mapping *mapping,
576 loff_t page_base, int page_offset,
577 char __user *user_data,
578 int length)
579 {
580 void __iomem *vaddr_atomic;
581 void *vaddr;
582 unsigned long unwritten;
583
584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
585 /* We can use the cpu mem copy function because this is X86. */
586 vaddr = (void __force*)vaddr_atomic + page_offset;
587 unwritten = __copy_from_user_inatomic_nocache(vaddr,
588 user_data, length);
589 io_mapping_unmap_atomic(vaddr_atomic);
590 return unwritten;
591 }
592
593 /**
594 * This is the fast pwrite path, where we copy the data directly from the
595 * user into the GTT, uncached.
596 */
597 static int
598 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
599 struct drm_i915_gem_object *obj,
600 struct drm_i915_gem_pwrite *args,
601 struct drm_file *file)
602 {
603 drm_i915_private_t *dev_priv = dev->dev_private;
604 ssize_t remain;
605 loff_t offset, page_base;
606 char __user *user_data;
607 int page_offset, page_length, ret;
608
609 ret = i915_gem_object_pin(obj, 0, true);
610 if (ret)
611 goto out;
612
613 ret = i915_gem_object_set_to_gtt_domain(obj, true);
614 if (ret)
615 goto out_unpin;
616
617 ret = i915_gem_object_put_fence(obj);
618 if (ret)
619 goto out_unpin;
620
621 user_data = (char __user *) (uintptr_t) args->data_ptr;
622 remain = args->size;
623
624 offset = obj->gtt_offset + args->offset;
625
626 while (remain > 0) {
627 /* Operation in this page
628 *
629 * page_base = page offset within aperture
630 * page_offset = offset within page
631 * page_length = bytes to copy for this page
632 */
633 page_base = offset & PAGE_MASK;
634 page_offset = offset_in_page(offset);
635 page_length = remain;
636 if ((page_offset + remain) > PAGE_SIZE)
637 page_length = PAGE_SIZE - page_offset;
638
639 /* If we get a fault while copying data, then (presumably) our
640 * source page isn't available. Return the error and we'll
641 * retry in the slow path.
642 */
643 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
644 page_offset, user_data, page_length)) {
645 ret = -EFAULT;
646 goto out_unpin;
647 }
648
649 remain -= page_length;
650 user_data += page_length;
651 offset += page_length;
652 }
653
654 out_unpin:
655 i915_gem_object_unpin(obj);
656 out:
657 return ret;
658 }
659
660 /* Per-page copy function for the shmem pwrite fastpath.
661 * Flushes invalid cachelines before writing to the target if
662 * needs_clflush_before is set and flushes out any written cachelines after
663 * writing if needs_clflush is set. */
664 static int
665 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
666 char __user *user_data,
667 bool page_do_bit17_swizzling,
668 bool needs_clflush_before,
669 bool needs_clflush_after)
670 {
671 char *vaddr;
672 int ret;
673
674 if (unlikely(page_do_bit17_swizzling))
675 return -EINVAL;
676
677 vaddr = kmap_atomic(page);
678 if (needs_clflush_before)
679 drm_clflush_virt_range(vaddr + shmem_page_offset,
680 page_length);
681 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
682 user_data,
683 page_length);
684 if (needs_clflush_after)
685 drm_clflush_virt_range(vaddr + shmem_page_offset,
686 page_length);
687 kunmap_atomic(vaddr);
688
689 return ret;
690 }
691
692 /* Only difference to the fast-path function is that this can handle bit17
693 * and uses non-atomic copy and kmap functions. */
694 static int
695 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
696 char __user *user_data,
697 bool page_do_bit17_swizzling,
698 bool needs_clflush_before,
699 bool needs_clflush_after)
700 {
701 char *vaddr;
702 int ret;
703
704 vaddr = kmap(page);
705 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 if (page_do_bit17_swizzling)
710 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
711 user_data,
712 page_length);
713 else
714 ret = __copy_from_user(vaddr + shmem_page_offset,
715 user_data,
716 page_length);
717 if (needs_clflush_after)
718 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
719 page_length,
720 page_do_bit17_swizzling);
721 kunmap(page);
722
723 return ret;
724 }
725
726 static int
727 i915_gem_shmem_pwrite(struct drm_device *dev,
728 struct drm_i915_gem_object *obj,
729 struct drm_i915_gem_pwrite *args,
730 struct drm_file *file)
731 {
732 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
733 ssize_t remain;
734 loff_t offset;
735 char __user *user_data;
736 int shmem_page_offset, page_length, ret = 0;
737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 int hit_slowpath = 0;
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
741 int release_page;
742
743 user_data = (char __user *) (uintptr_t) args->data_ptr;
744 remain = args->size;
745
746 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
747
748 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
749 /* If we're not in the cpu write domain, set ourself into the gtt
750 * write domain and manually flush cachelines (if required). This
751 * optimizes for the case when the gpu will use the data
752 * right away and we therefore have to clflush anyway. */
753 if (obj->cache_level == I915_CACHE_NONE)
754 needs_clflush_after = 1;
755 ret = i915_gem_object_set_to_gtt_domain(obj, true);
756 if (ret)
757 return ret;
758 }
759 /* Same trick applies for invalidate partially written cachelines before
760 * writing. */
761 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
762 && obj->cache_level == I915_CACHE_NONE)
763 needs_clflush_before = 1;
764
765 offset = args->offset;
766 obj->dirty = 1;
767
768 while (remain > 0) {
769 struct page *page;
770 int partial_cacheline_write;
771
772 /* Operation in this page
773 *
774 * shmem_page_offset = offset within page in shmem file
775 * page_length = bytes to copy for this page
776 */
777 shmem_page_offset = offset_in_page(offset);
778
779 page_length = remain;
780 if ((shmem_page_offset + page_length) > PAGE_SIZE)
781 page_length = PAGE_SIZE - shmem_page_offset;
782
783 /* If we don't overwrite a cacheline completely we need to be
784 * careful to have up-to-date data by first clflushing. Don't
785 * overcomplicate things and flush the entire patch. */
786 partial_cacheline_write = needs_clflush_before &&
787 ((shmem_page_offset | page_length)
788 & (boot_cpu_data.x86_clflush_size - 1));
789
790 if (obj->pages) {
791 page = obj->pages[offset >> PAGE_SHIFT];
792 release_page = 0;
793 } else {
794 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
795 if (IS_ERR(page)) {
796 ret = PTR_ERR(page);
797 goto out;
798 }
799 release_page = 1;
800 }
801
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
811
812 hit_slowpath = 1;
813 page_cache_get(page);
814 mutex_unlock(&dev->struct_mutex);
815
816 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
817 user_data, page_do_bit17_swizzling,
818 partial_cacheline_write,
819 needs_clflush_after);
820
821 mutex_lock(&dev->struct_mutex);
822 page_cache_release(page);
823 next_page:
824 set_page_dirty(page);
825 mark_page_accessed(page);
826 if (release_page)
827 page_cache_release(page);
828
829 if (ret) {
830 ret = -EFAULT;
831 goto out;
832 }
833
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
837 }
838
839 out:
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 intel_gtt_chipset_flush();
849 }
850 }
851
852 if (needs_clflush_after)
853 intel_gtt_chipset_flush();
854
855 return ret;
856 }
857
858 /**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 struct drm_file *file)
866 {
867 struct drm_i915_gem_pwrite *args = data;
868 struct drm_i915_gem_object *obj;
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
881 if (ret)
882 return -EFAULT;
883
884 ret = i915_mutex_lock_interruptible(dev);
885 if (ret)
886 return ret;
887
888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 if (&obj->base == NULL) {
890 ret = -ENOENT;
891 goto unlock;
892 }
893
894 /* Bounds check destination. */
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
897 ret = -EINVAL;
898 goto out;
899 }
900
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911 ret = -EFAULT;
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
918 if (obj->phys_obj) {
919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 goto out;
921 }
922
923 if (obj->gtt_space &&
924 obj->cache_level == I915_CACHE_NONE &&
925 obj->tiling_mode == I915_TILING_NONE &&
926 obj->map_and_fenceable &&
927 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
928 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
929 /* Note that the gtt paths might fail with non-page-backed user
930 * pointers (e.g. gtt mappings when moving data between
931 * textures). Fallback to the shmem path in that case. */
932 }
933
934 if (ret == -EFAULT)
935 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
936
937 out:
938 drm_gem_object_unreference(&obj->base);
939 unlock:
940 mutex_unlock(&dev->struct_mutex);
941 return ret;
942 }
943
944 /**
945 * Called when user space prepares to use an object with the CPU, either
946 * through the mmap ioctl's mapping or a GTT mapping.
947 */
948 int
949 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
950 struct drm_file *file)
951 {
952 struct drm_i915_gem_set_domain *args = data;
953 struct drm_i915_gem_object *obj;
954 uint32_t read_domains = args->read_domains;
955 uint32_t write_domain = args->write_domain;
956 int ret;
957
958 /* Only handle setting domains to types used by the CPU. */
959 if (write_domain & I915_GEM_GPU_DOMAINS)
960 return -EINVAL;
961
962 if (read_domains & I915_GEM_GPU_DOMAINS)
963 return -EINVAL;
964
965 /* Having something in the write domain implies it's in the read
966 * domain, and only that read domain. Enforce that in the request.
967 */
968 if (write_domain != 0 && read_domains != write_domain)
969 return -EINVAL;
970
971 ret = i915_mutex_lock_interruptible(dev);
972 if (ret)
973 return ret;
974
975 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
976 if (&obj->base == NULL) {
977 ret = -ENOENT;
978 goto unlock;
979 }
980
981 if (read_domains & I915_GEM_DOMAIN_GTT) {
982 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
983
984 /* Silently promote "you're not bound, there was nothing to do"
985 * to success, since the client was just asking us to
986 * make sure everything was done.
987 */
988 if (ret == -EINVAL)
989 ret = 0;
990 } else {
991 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
992 }
993
994 drm_gem_object_unreference(&obj->base);
995 unlock:
996 mutex_unlock(&dev->struct_mutex);
997 return ret;
998 }
999
1000 /**
1001 * Called when user space has done writes to this buffer
1002 */
1003 int
1004 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1005 struct drm_file *file)
1006 {
1007 struct drm_i915_gem_sw_finish *args = data;
1008 struct drm_i915_gem_object *obj;
1009 int ret = 0;
1010
1011 ret = i915_mutex_lock_interruptible(dev);
1012 if (ret)
1013 return ret;
1014
1015 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1016 if (&obj->base == NULL) {
1017 ret = -ENOENT;
1018 goto unlock;
1019 }
1020
1021 /* Pinned buffers may be scanout, so flush the cache */
1022 if (obj->pin_count)
1023 i915_gem_object_flush_cpu_write_domain(obj);
1024
1025 drm_gem_object_unreference(&obj->base);
1026 unlock:
1027 mutex_unlock(&dev->struct_mutex);
1028 return ret;
1029 }
1030
1031 /**
1032 * Maps the contents of an object, returning the address it is mapped
1033 * into.
1034 *
1035 * While the mapping holds a reference on the contents of the object, it doesn't
1036 * imply a ref on the object itself.
1037 */
1038 int
1039 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1040 struct drm_file *file)
1041 {
1042 struct drm_i915_gem_mmap *args = data;
1043 struct drm_gem_object *obj;
1044 unsigned long addr;
1045
1046 obj = drm_gem_object_lookup(dev, file, args->handle);
1047 if (obj == NULL)
1048 return -ENOENT;
1049
1050 /* prime objects have no backing filp to GEM mmap
1051 * pages from.
1052 */
1053 if (!obj->filp) {
1054 drm_gem_object_unreference_unlocked(obj);
1055 return -EINVAL;
1056 }
1057
1058 addr = vm_mmap(obj->filp, 0, args->size,
1059 PROT_READ | PROT_WRITE, MAP_SHARED,
1060 args->offset);
1061 drm_gem_object_unreference_unlocked(obj);
1062 if (IS_ERR((void *)addr))
1063 return addr;
1064
1065 args->addr_ptr = (uint64_t) addr;
1066
1067 return 0;
1068 }
1069
1070 /**
1071 * i915_gem_fault - fault a page into the GTT
1072 * vma: VMA in question
1073 * vmf: fault info
1074 *
1075 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1076 * from userspace. The fault handler takes care of binding the object to
1077 * the GTT (if needed), allocating and programming a fence register (again,
1078 * only if needed based on whether the old reg is still valid or the object
1079 * is tiled) and inserting a new PTE into the faulting process.
1080 *
1081 * Note that the faulting process may involve evicting existing objects
1082 * from the GTT and/or fence registers to make room. So performance may
1083 * suffer if the GTT working set is large or there are few fence registers
1084 * left.
1085 */
1086 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1087 {
1088 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1089 struct drm_device *dev = obj->base.dev;
1090 drm_i915_private_t *dev_priv = dev->dev_private;
1091 pgoff_t page_offset;
1092 unsigned long pfn;
1093 int ret = 0;
1094 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1095
1096 /* We don't use vmf->pgoff since that has the fake offset */
1097 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1098 PAGE_SHIFT;
1099
1100 ret = i915_mutex_lock_interruptible(dev);
1101 if (ret)
1102 goto out;
1103
1104 trace_i915_gem_object_fault(obj, page_offset, true, write);
1105
1106 /* Now bind it into the GTT if needed */
1107 if (!obj->map_and_fenceable) {
1108 ret = i915_gem_object_unbind(obj);
1109 if (ret)
1110 goto unlock;
1111 }
1112 if (!obj->gtt_space) {
1113 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1114 if (ret)
1115 goto unlock;
1116
1117 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1118 if (ret)
1119 goto unlock;
1120 }
1121
1122 if (!obj->has_global_gtt_mapping)
1123 i915_gem_gtt_bind_object(obj, obj->cache_level);
1124
1125 ret = i915_gem_object_get_fence(obj);
1126 if (ret)
1127 goto unlock;
1128
1129 if (i915_gem_object_is_inactive(obj))
1130 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1131
1132 obj->fault_mappable = true;
1133
1134 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1135 page_offset;
1136
1137 /* Finally, remap it using the new GTT offset */
1138 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1139 unlock:
1140 mutex_unlock(&dev->struct_mutex);
1141 out:
1142 switch (ret) {
1143 case -EIO:
1144 /* If this -EIO is due to a gpu hang, give the reset code a
1145 * chance to clean up the mess. Otherwise return the proper
1146 * SIGBUS. */
1147 if (!atomic_read(&dev_priv->mm.wedged))
1148 return VM_FAULT_SIGBUS;
1149 case -EAGAIN:
1150 /* Give the error handler a chance to run and move the
1151 * objects off the GPU active list. Next time we service the
1152 * fault, we should be able to transition the page into the
1153 * GTT without touching the GPU (and so avoid further
1154 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1155 * with coherency, just lost writes.
1156 */
1157 set_need_resched();
1158 case 0:
1159 case -ERESTARTSYS:
1160 case -EINTR:
1161 return VM_FAULT_NOPAGE;
1162 case -ENOMEM:
1163 return VM_FAULT_OOM;
1164 default:
1165 return VM_FAULT_SIGBUS;
1166 }
1167 }
1168
1169 /**
1170 * i915_gem_release_mmap - remove physical page mappings
1171 * @obj: obj in question
1172 *
1173 * Preserve the reservation of the mmapping with the DRM core code, but
1174 * relinquish ownership of the pages back to the system.
1175 *
1176 * It is vital that we remove the page mapping if we have mapped a tiled
1177 * object through the GTT and then lose the fence register due to
1178 * resource pressure. Similarly if the object has been moved out of the
1179 * aperture, than pages mapped into userspace must be revoked. Removing the
1180 * mapping will then trigger a page fault on the next user access, allowing
1181 * fixup by i915_gem_fault().
1182 */
1183 void
1184 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1185 {
1186 if (!obj->fault_mappable)
1187 return;
1188
1189 if (obj->base.dev->dev_mapping)
1190 unmap_mapping_range(obj->base.dev->dev_mapping,
1191 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1192 obj->base.size, 1);
1193
1194 obj->fault_mappable = false;
1195 }
1196
1197 static uint32_t
1198 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1199 {
1200 uint32_t gtt_size;
1201
1202 if (INTEL_INFO(dev)->gen >= 4 ||
1203 tiling_mode == I915_TILING_NONE)
1204 return size;
1205
1206 /* Previous chips need a power-of-two fence region when tiling */
1207 if (INTEL_INFO(dev)->gen == 3)
1208 gtt_size = 1024*1024;
1209 else
1210 gtt_size = 512*1024;
1211
1212 while (gtt_size < size)
1213 gtt_size <<= 1;
1214
1215 return gtt_size;
1216 }
1217
1218 /**
1219 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1220 * @obj: object to check
1221 *
1222 * Return the required GTT alignment for an object, taking into account
1223 * potential fence register mapping.
1224 */
1225 static uint32_t
1226 i915_gem_get_gtt_alignment(struct drm_device *dev,
1227 uint32_t size,
1228 int tiling_mode)
1229 {
1230 /*
1231 * Minimum alignment is 4k (GTT page size), but might be greater
1232 * if a fence register is needed for the object.
1233 */
1234 if (INTEL_INFO(dev)->gen >= 4 ||
1235 tiling_mode == I915_TILING_NONE)
1236 return 4096;
1237
1238 /*
1239 * Previous chips need to be aligned to the size of the smallest
1240 * fence register that can contain the object.
1241 */
1242 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1243 }
1244
1245 /**
1246 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1247 * unfenced object
1248 * @dev: the device
1249 * @size: size of the object
1250 * @tiling_mode: tiling mode of the object
1251 *
1252 * Return the required GTT alignment for an object, only taking into account
1253 * unfenced tiled surface requirements.
1254 */
1255 uint32_t
1256 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1257 uint32_t size,
1258 int tiling_mode)
1259 {
1260 /*
1261 * Minimum alignment is 4k (GTT page size) for sane hw.
1262 */
1263 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1264 tiling_mode == I915_TILING_NONE)
1265 return 4096;
1266
1267 /* Previous hardware however needs to be aligned to a power-of-two
1268 * tile height. The simplest method for determining this is to reuse
1269 * the power-of-tile object size.
1270 */
1271 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1272 }
1273
1274 int
1275 i915_gem_mmap_gtt(struct drm_file *file,
1276 struct drm_device *dev,
1277 uint32_t handle,
1278 uint64_t *offset)
1279 {
1280 struct drm_i915_private *dev_priv = dev->dev_private;
1281 struct drm_i915_gem_object *obj;
1282 int ret;
1283
1284 ret = i915_mutex_lock_interruptible(dev);
1285 if (ret)
1286 return ret;
1287
1288 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1289 if (&obj->base == NULL) {
1290 ret = -ENOENT;
1291 goto unlock;
1292 }
1293
1294 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1295 ret = -E2BIG;
1296 goto out;
1297 }
1298
1299 if (obj->madv != I915_MADV_WILLNEED) {
1300 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1301 ret = -EINVAL;
1302 goto out;
1303 }
1304
1305 if (!obj->base.map_list.map) {
1306 ret = drm_gem_create_mmap_offset(&obj->base);
1307 if (ret)
1308 goto out;
1309 }
1310
1311 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1312
1313 out:
1314 drm_gem_object_unreference(&obj->base);
1315 unlock:
1316 mutex_unlock(&dev->struct_mutex);
1317 return ret;
1318 }
1319
1320 /**
1321 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1322 * @dev: DRM device
1323 * @data: GTT mapping ioctl data
1324 * @file: GEM object info
1325 *
1326 * Simply returns the fake offset to userspace so it can mmap it.
1327 * The mmap call will end up in drm_gem_mmap(), which will set things
1328 * up so we can get faults in the handler above.
1329 *
1330 * The fault handler will take care of binding the object into the GTT
1331 * (since it may have been evicted to make room for something), allocating
1332 * a fence register, and mapping the appropriate aperture address into
1333 * userspace.
1334 */
1335 int
1336 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1337 struct drm_file *file)
1338 {
1339 struct drm_i915_gem_mmap_gtt *args = data;
1340
1341 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1342 }
1343
1344 int
1345 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1346 gfp_t gfpmask)
1347 {
1348 int page_count, i;
1349 struct address_space *mapping;
1350 struct inode *inode;
1351 struct page *page;
1352
1353 if (obj->pages || obj->sg_table)
1354 return 0;
1355
1356 /* Get the list of pages out of our struct file. They'll be pinned
1357 * at this point until we release them.
1358 */
1359 page_count = obj->base.size / PAGE_SIZE;
1360 BUG_ON(obj->pages != NULL);
1361 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1362 if (obj->pages == NULL)
1363 return -ENOMEM;
1364
1365 inode = obj->base.filp->f_path.dentry->d_inode;
1366 mapping = inode->i_mapping;
1367 gfpmask |= mapping_gfp_mask(mapping);
1368
1369 for (i = 0; i < page_count; i++) {
1370 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1371 if (IS_ERR(page))
1372 goto err_pages;
1373
1374 obj->pages[i] = page;
1375 }
1376
1377 if (i915_gem_object_needs_bit17_swizzle(obj))
1378 i915_gem_object_do_bit_17_swizzle(obj);
1379
1380 return 0;
1381
1382 err_pages:
1383 while (i--)
1384 page_cache_release(obj->pages[i]);
1385
1386 drm_free_large(obj->pages);
1387 obj->pages = NULL;
1388 return PTR_ERR(page);
1389 }
1390
1391 static void
1392 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1393 {
1394 int page_count = obj->base.size / PAGE_SIZE;
1395 int i;
1396
1397 if (!obj->pages)
1398 return;
1399
1400 BUG_ON(obj->madv == __I915_MADV_PURGED);
1401
1402 if (i915_gem_object_needs_bit17_swizzle(obj))
1403 i915_gem_object_save_bit_17_swizzle(obj);
1404
1405 if (obj->madv == I915_MADV_DONTNEED)
1406 obj->dirty = 0;
1407
1408 for (i = 0; i < page_count; i++) {
1409 if (obj->dirty)
1410 set_page_dirty(obj->pages[i]);
1411
1412 if (obj->madv == I915_MADV_WILLNEED)
1413 mark_page_accessed(obj->pages[i]);
1414
1415 page_cache_release(obj->pages[i]);
1416 }
1417 obj->dirty = 0;
1418
1419 drm_free_large(obj->pages);
1420 obj->pages = NULL;
1421 }
1422
1423 void
1424 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1425 struct intel_ring_buffer *ring,
1426 u32 seqno)
1427 {
1428 struct drm_device *dev = obj->base.dev;
1429 struct drm_i915_private *dev_priv = dev->dev_private;
1430
1431 BUG_ON(ring == NULL);
1432 obj->ring = ring;
1433
1434 /* Add a reference if we're newly entering the active list. */
1435 if (!obj->active) {
1436 drm_gem_object_reference(&obj->base);
1437 obj->active = 1;
1438 }
1439
1440 /* Move from whatever list we were on to the tail of execution. */
1441 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1442 list_move_tail(&obj->ring_list, &ring->active_list);
1443
1444 obj->last_rendering_seqno = seqno;
1445
1446 if (obj->fenced_gpu_access) {
1447 obj->last_fenced_seqno = seqno;
1448
1449 /* Bump MRU to take account of the delayed flush */
1450 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1451 struct drm_i915_fence_reg *reg;
1452
1453 reg = &dev_priv->fence_regs[obj->fence_reg];
1454 list_move_tail(&reg->lru_list,
1455 &dev_priv->mm.fence_list);
1456 }
1457 }
1458 }
1459
1460 static void
1461 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1462 {
1463 list_del_init(&obj->ring_list);
1464 obj->last_rendering_seqno = 0;
1465 obj->last_fenced_seqno = 0;
1466 }
1467
1468 static void
1469 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1470 {
1471 struct drm_device *dev = obj->base.dev;
1472 drm_i915_private_t *dev_priv = dev->dev_private;
1473
1474 BUG_ON(!obj->active);
1475 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1476
1477 i915_gem_object_move_off_active(obj);
1478 }
1479
1480 static void
1481 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1482 {
1483 struct drm_device *dev = obj->base.dev;
1484 struct drm_i915_private *dev_priv = dev->dev_private;
1485
1486 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1487
1488 BUG_ON(!list_empty(&obj->gpu_write_list));
1489 BUG_ON(!obj->active);
1490 obj->ring = NULL;
1491
1492 i915_gem_object_move_off_active(obj);
1493 obj->fenced_gpu_access = false;
1494
1495 obj->active = 0;
1496 obj->pending_gpu_write = false;
1497 drm_gem_object_unreference(&obj->base);
1498
1499 WARN_ON(i915_verify_lists(dev));
1500 }
1501
1502 /* Immediately discard the backing storage */
1503 static void
1504 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1505 {
1506 struct inode *inode;
1507
1508 /* Our goal here is to return as much of the memory as
1509 * is possible back to the system as we are called from OOM.
1510 * To do this we must instruct the shmfs to drop all of its
1511 * backing pages, *now*.
1512 */
1513 inode = obj->base.filp->f_path.dentry->d_inode;
1514 shmem_truncate_range(inode, 0, (loff_t)-1);
1515
1516 if (obj->base.map_list.map)
1517 drm_gem_free_mmap_offset(&obj->base);
1518
1519 obj->madv = __I915_MADV_PURGED;
1520 }
1521
1522 static inline int
1523 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1524 {
1525 return obj->madv == I915_MADV_DONTNEED;
1526 }
1527
1528 static void
1529 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1530 uint32_t flush_domains)
1531 {
1532 struct drm_i915_gem_object *obj, *next;
1533
1534 list_for_each_entry_safe(obj, next,
1535 &ring->gpu_write_list,
1536 gpu_write_list) {
1537 if (obj->base.write_domain & flush_domains) {
1538 uint32_t old_write_domain = obj->base.write_domain;
1539
1540 obj->base.write_domain = 0;
1541 list_del_init(&obj->gpu_write_list);
1542 i915_gem_object_move_to_active(obj, ring,
1543 i915_gem_next_request_seqno(ring));
1544
1545 trace_i915_gem_object_change_domain(obj,
1546 obj->base.read_domains,
1547 old_write_domain);
1548 }
1549 }
1550 }
1551
1552 static u32
1553 i915_gem_get_seqno(struct drm_device *dev)
1554 {
1555 drm_i915_private_t *dev_priv = dev->dev_private;
1556 u32 seqno = dev_priv->next_seqno;
1557
1558 /* reserve 0 for non-seqno */
1559 if (++dev_priv->next_seqno == 0)
1560 dev_priv->next_seqno = 1;
1561
1562 return seqno;
1563 }
1564
1565 u32
1566 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1567 {
1568 if (ring->outstanding_lazy_request == 0)
1569 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1570
1571 return ring->outstanding_lazy_request;
1572 }
1573
1574 int
1575 i915_add_request(struct intel_ring_buffer *ring,
1576 struct drm_file *file,
1577 struct drm_i915_gem_request *request)
1578 {
1579 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1580 uint32_t seqno;
1581 u32 request_ring_position;
1582 int was_empty;
1583 int ret;
1584
1585 /*
1586 * Emit any outstanding flushes - execbuf can fail to emit the flush
1587 * after having emitted the batchbuffer command. Hence we need to fix
1588 * things up similar to emitting the lazy request. The difference here
1589 * is that the flush _must_ happen before the next request, no matter
1590 * what.
1591 */
1592 if (ring->gpu_caches_dirty) {
1593 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1594 if (ret)
1595 return ret;
1596
1597 ring->gpu_caches_dirty = false;
1598 }
1599
1600 BUG_ON(request == NULL);
1601 seqno = i915_gem_next_request_seqno(ring);
1602
1603 /* Record the position of the start of the request so that
1604 * should we detect the updated seqno part-way through the
1605 * GPU processing the request, we never over-estimate the
1606 * position of the head.
1607 */
1608 request_ring_position = intel_ring_get_tail(ring);
1609
1610 ret = ring->add_request(ring, &seqno);
1611 if (ret)
1612 return ret;
1613
1614 trace_i915_gem_request_add(ring, seqno);
1615
1616 request->seqno = seqno;
1617 request->ring = ring;
1618 request->tail = request_ring_position;
1619 request->emitted_jiffies = jiffies;
1620 was_empty = list_empty(&ring->request_list);
1621 list_add_tail(&request->list, &ring->request_list);
1622
1623 if (file) {
1624 struct drm_i915_file_private *file_priv = file->driver_priv;
1625
1626 spin_lock(&file_priv->mm.lock);
1627 request->file_priv = file_priv;
1628 list_add_tail(&request->client_list,
1629 &file_priv->mm.request_list);
1630 spin_unlock(&file_priv->mm.lock);
1631 }
1632
1633 ring->outstanding_lazy_request = 0;
1634
1635 if (!dev_priv->mm.suspended) {
1636 if (i915_enable_hangcheck) {
1637 mod_timer(&dev_priv->hangcheck_timer,
1638 jiffies +
1639 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1640 }
1641 if (was_empty)
1642 queue_delayed_work(dev_priv->wq,
1643 &dev_priv->mm.retire_work, HZ);
1644 }
1645
1646 WARN_ON(!list_empty(&ring->gpu_write_list));
1647
1648 return 0;
1649 }
1650
1651 static inline void
1652 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1653 {
1654 struct drm_i915_file_private *file_priv = request->file_priv;
1655
1656 if (!file_priv)
1657 return;
1658
1659 spin_lock(&file_priv->mm.lock);
1660 if (request->file_priv) {
1661 list_del(&request->client_list);
1662 request->file_priv = NULL;
1663 }
1664 spin_unlock(&file_priv->mm.lock);
1665 }
1666
1667 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1668 struct intel_ring_buffer *ring)
1669 {
1670 while (!list_empty(&ring->request_list)) {
1671 struct drm_i915_gem_request *request;
1672
1673 request = list_first_entry(&ring->request_list,
1674 struct drm_i915_gem_request,
1675 list);
1676
1677 list_del(&request->list);
1678 i915_gem_request_remove_from_client(request);
1679 kfree(request);
1680 }
1681
1682 while (!list_empty(&ring->active_list)) {
1683 struct drm_i915_gem_object *obj;
1684
1685 obj = list_first_entry(&ring->active_list,
1686 struct drm_i915_gem_object,
1687 ring_list);
1688
1689 obj->base.write_domain = 0;
1690 list_del_init(&obj->gpu_write_list);
1691 i915_gem_object_move_to_inactive(obj);
1692 }
1693 }
1694
1695 static void i915_gem_reset_fences(struct drm_device *dev)
1696 {
1697 struct drm_i915_private *dev_priv = dev->dev_private;
1698 int i;
1699
1700 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1701 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1702
1703 i915_gem_write_fence(dev, i, NULL);
1704
1705 if (reg->obj)
1706 i915_gem_object_fence_lost(reg->obj);
1707
1708 reg->pin_count = 0;
1709 reg->obj = NULL;
1710 INIT_LIST_HEAD(&reg->lru_list);
1711 }
1712
1713 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1714 }
1715
1716 void i915_gem_reset(struct drm_device *dev)
1717 {
1718 struct drm_i915_private *dev_priv = dev->dev_private;
1719 struct drm_i915_gem_object *obj;
1720 struct intel_ring_buffer *ring;
1721 int i;
1722
1723 for_each_ring(ring, dev_priv, i)
1724 i915_gem_reset_ring_lists(dev_priv, ring);
1725
1726 /* Remove anything from the flushing lists. The GPU cache is likely
1727 * to be lost on reset along with the data, so simply move the
1728 * lost bo to the inactive list.
1729 */
1730 while (!list_empty(&dev_priv->mm.flushing_list)) {
1731 obj = list_first_entry(&dev_priv->mm.flushing_list,
1732 struct drm_i915_gem_object,
1733 mm_list);
1734
1735 obj->base.write_domain = 0;
1736 list_del_init(&obj->gpu_write_list);
1737 i915_gem_object_move_to_inactive(obj);
1738 }
1739
1740 /* Move everything out of the GPU domains to ensure we do any
1741 * necessary invalidation upon reuse.
1742 */
1743 list_for_each_entry(obj,
1744 &dev_priv->mm.inactive_list,
1745 mm_list)
1746 {
1747 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1748 }
1749
1750 /* The fence registers are invalidated so clear them out */
1751 i915_gem_reset_fences(dev);
1752 }
1753
1754 /**
1755 * This function clears the request list as sequence numbers are passed.
1756 */
1757 void
1758 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1759 {
1760 uint32_t seqno;
1761 int i;
1762
1763 if (list_empty(&ring->request_list))
1764 return;
1765
1766 WARN_ON(i915_verify_lists(ring->dev));
1767
1768 seqno = ring->get_seqno(ring);
1769
1770 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1771 if (seqno >= ring->sync_seqno[i])
1772 ring->sync_seqno[i] = 0;
1773
1774 while (!list_empty(&ring->request_list)) {
1775 struct drm_i915_gem_request *request;
1776
1777 request = list_first_entry(&ring->request_list,
1778 struct drm_i915_gem_request,
1779 list);
1780
1781 if (!i915_seqno_passed(seqno, request->seqno))
1782 break;
1783
1784 trace_i915_gem_request_retire(ring, request->seqno);
1785 /* We know the GPU must have read the request to have
1786 * sent us the seqno + interrupt, so use the position
1787 * of tail of the request to update the last known position
1788 * of the GPU head.
1789 */
1790 ring->last_retired_head = request->tail;
1791
1792 list_del(&request->list);
1793 i915_gem_request_remove_from_client(request);
1794 kfree(request);
1795 }
1796
1797 /* Move any buffers on the active list that are no longer referenced
1798 * by the ringbuffer to the flushing/inactive lists as appropriate.
1799 */
1800 while (!list_empty(&ring->active_list)) {
1801 struct drm_i915_gem_object *obj;
1802
1803 obj = list_first_entry(&ring->active_list,
1804 struct drm_i915_gem_object,
1805 ring_list);
1806
1807 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1808 break;
1809
1810 if (obj->base.write_domain != 0)
1811 i915_gem_object_move_to_flushing(obj);
1812 else
1813 i915_gem_object_move_to_inactive(obj);
1814 }
1815
1816 if (unlikely(ring->trace_irq_seqno &&
1817 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1818 ring->irq_put(ring);
1819 ring->trace_irq_seqno = 0;
1820 }
1821
1822 WARN_ON(i915_verify_lists(ring->dev));
1823 }
1824
1825 void
1826 i915_gem_retire_requests(struct drm_device *dev)
1827 {
1828 drm_i915_private_t *dev_priv = dev->dev_private;
1829 struct intel_ring_buffer *ring;
1830 int i;
1831
1832 for_each_ring(ring, dev_priv, i)
1833 i915_gem_retire_requests_ring(ring);
1834 }
1835
1836 static void
1837 i915_gem_retire_work_handler(struct work_struct *work)
1838 {
1839 drm_i915_private_t *dev_priv;
1840 struct drm_device *dev;
1841 struct intel_ring_buffer *ring;
1842 bool idle;
1843 int i;
1844
1845 dev_priv = container_of(work, drm_i915_private_t,
1846 mm.retire_work.work);
1847 dev = dev_priv->dev;
1848
1849 /* Come back later if the device is busy... */
1850 if (!mutex_trylock(&dev->struct_mutex)) {
1851 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1852 return;
1853 }
1854
1855 i915_gem_retire_requests(dev);
1856
1857 /* Send a periodic flush down the ring so we don't hold onto GEM
1858 * objects indefinitely.
1859 */
1860 idle = true;
1861 for_each_ring(ring, dev_priv, i) {
1862 if (ring->gpu_caches_dirty) {
1863 struct drm_i915_gem_request *request;
1864
1865 request = kzalloc(sizeof(*request), GFP_KERNEL);
1866 if (request == NULL ||
1867 i915_add_request(ring, NULL, request))
1868 kfree(request);
1869 }
1870
1871 idle &= list_empty(&ring->request_list);
1872 }
1873
1874 if (!dev_priv->mm.suspended && !idle)
1875 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1876
1877 mutex_unlock(&dev->struct_mutex);
1878 }
1879
1880 int
1881 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1882 bool interruptible)
1883 {
1884 if (atomic_read(&dev_priv->mm.wedged)) {
1885 struct completion *x = &dev_priv->error_completion;
1886 bool recovery_complete;
1887 unsigned long flags;
1888
1889 /* Give the error handler a chance to run. */
1890 spin_lock_irqsave(&x->wait.lock, flags);
1891 recovery_complete = x->done > 0;
1892 spin_unlock_irqrestore(&x->wait.lock, flags);
1893
1894 /* Non-interruptible callers can't handle -EAGAIN, hence return
1895 * -EIO unconditionally for these. */
1896 if (!interruptible)
1897 return -EIO;
1898
1899 /* Recovery complete, but still wedged means reset failure. */
1900 if (recovery_complete)
1901 return -EIO;
1902
1903 return -EAGAIN;
1904 }
1905
1906 return 0;
1907 }
1908
1909 /*
1910 * Compare seqno against outstanding lazy request. Emit a request if they are
1911 * equal.
1912 */
1913 static int
1914 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1915 {
1916 int ret = 0;
1917
1918 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1919
1920 if (seqno == ring->outstanding_lazy_request) {
1921 struct drm_i915_gem_request *request;
1922
1923 request = kzalloc(sizeof(*request), GFP_KERNEL);
1924 if (request == NULL)
1925 return -ENOMEM;
1926
1927 ret = i915_add_request(ring, NULL, request);
1928 if (ret) {
1929 kfree(request);
1930 return ret;
1931 }
1932
1933 BUG_ON(seqno != request->seqno);
1934 }
1935
1936 return ret;
1937 }
1938
1939 /**
1940 * __wait_seqno - wait until execution of seqno has finished
1941 * @ring: the ring expected to report seqno
1942 * @seqno: duh!
1943 * @interruptible: do an interruptible wait (normally yes)
1944 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1945 *
1946 * Returns 0 if the seqno was found within the alloted time. Else returns the
1947 * errno with remaining time filled in timeout argument.
1948 */
1949 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1950 bool interruptible, struct timespec *timeout)
1951 {
1952 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1953 struct timespec before, now, wait_time={1,0};
1954 unsigned long timeout_jiffies;
1955 long end;
1956 bool wait_forever = true;
1957 int ret;
1958
1959 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1960 return 0;
1961
1962 trace_i915_gem_request_wait_begin(ring, seqno);
1963
1964 if (timeout != NULL) {
1965 wait_time = *timeout;
1966 wait_forever = false;
1967 }
1968
1969 timeout_jiffies = timespec_to_jiffies(&wait_time);
1970
1971 if (WARN_ON(!ring->irq_get(ring)))
1972 return -ENODEV;
1973
1974 /* Record current time in case interrupted by signal, or wedged * */
1975 getrawmonotonic(&before);
1976
1977 #define EXIT_COND \
1978 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1979 atomic_read(&dev_priv->mm.wedged))
1980 do {
1981 if (interruptible)
1982 end = wait_event_interruptible_timeout(ring->irq_queue,
1983 EXIT_COND,
1984 timeout_jiffies);
1985 else
1986 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1987 timeout_jiffies);
1988
1989 ret = i915_gem_check_wedge(dev_priv, interruptible);
1990 if (ret)
1991 end = ret;
1992 } while (end == 0 && wait_forever);
1993
1994 getrawmonotonic(&now);
1995
1996 ring->irq_put(ring);
1997 trace_i915_gem_request_wait_end(ring, seqno);
1998 #undef EXIT_COND
1999
2000 if (timeout) {
2001 struct timespec sleep_time = timespec_sub(now, before);
2002 *timeout = timespec_sub(*timeout, sleep_time);
2003 }
2004
2005 switch (end) {
2006 case -EAGAIN: /* Wedged */
2007 case -ERESTARTSYS: /* Signal */
2008 return (int)end;
2009 case 0: /* Timeout */
2010 if (timeout)
2011 set_normalized_timespec(timeout, 0, 0);
2012 return -ETIME;
2013 default: /* Completed */
2014 WARN_ON(end < 0); /* We're not aware of other errors */
2015 return 0;
2016 }
2017 }
2018
2019 /**
2020 * Waits for a sequence number to be signaled, and cleans up the
2021 * request and object lists appropriately for that event.
2022 */
2023 int
2024 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
2025 {
2026 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2027 int ret = 0;
2028
2029 BUG_ON(seqno == 0);
2030
2031 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
2032 if (ret)
2033 return ret;
2034
2035 ret = i915_gem_check_olr(ring, seqno);
2036 if (ret)
2037 return ret;
2038
2039 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
2040
2041 return ret;
2042 }
2043
2044 /**
2045 * Ensures that all rendering to the object has completed and the object is
2046 * safe to unbind from the GTT or access from the CPU.
2047 */
2048 int
2049 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2050 {
2051 int ret;
2052
2053 /* This function only exists to support waiting for existing rendering,
2054 * not for emitting required flushes.
2055 */
2056 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2057
2058 /* If there is rendering queued on the buffer being evicted, wait for
2059 * it.
2060 */
2061 if (obj->active) {
2062 ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2063 if (ret)
2064 return ret;
2065 i915_gem_retire_requests_ring(obj->ring);
2066 }
2067
2068 return 0;
2069 }
2070
2071 /**
2072 * Ensures that an object will eventually get non-busy by flushing any required
2073 * write domains, emitting any outstanding lazy request and retiring and
2074 * completed requests.
2075 */
2076 static int
2077 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2078 {
2079 int ret;
2080
2081 if (obj->active) {
2082 ret = i915_gem_object_flush_gpu_write_domain(obj);
2083 if (ret)
2084 return ret;
2085
2086 ret = i915_gem_check_olr(obj->ring,
2087 obj->last_rendering_seqno);
2088 if (ret)
2089 return ret;
2090 i915_gem_retire_requests_ring(obj->ring);
2091 }
2092
2093 return 0;
2094 }
2095
2096 /**
2097 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2098 * @DRM_IOCTL_ARGS: standard ioctl arguments
2099 *
2100 * Returns 0 if successful, else an error is returned with the remaining time in
2101 * the timeout parameter.
2102 * -ETIME: object is still busy after timeout
2103 * -ERESTARTSYS: signal interrupted the wait
2104 * -ENONENT: object doesn't exist
2105 * Also possible, but rare:
2106 * -EAGAIN: GPU wedged
2107 * -ENOMEM: damn
2108 * -ENODEV: Internal IRQ fail
2109 * -E?: The add request failed
2110 *
2111 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2112 * non-zero timeout parameter the wait ioctl will wait for the given number of
2113 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2114 * without holding struct_mutex the object may become re-busied before this
2115 * function completes. A similar but shorter * race condition exists in the busy
2116 * ioctl
2117 */
2118 int
2119 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2120 {
2121 struct drm_i915_gem_wait *args = data;
2122 struct drm_i915_gem_object *obj;
2123 struct intel_ring_buffer *ring = NULL;
2124 struct timespec timeout_stack, *timeout = NULL;
2125 u32 seqno = 0;
2126 int ret = 0;
2127
2128 if (args->timeout_ns >= 0) {
2129 timeout_stack = ns_to_timespec(args->timeout_ns);
2130 timeout = &timeout_stack;
2131 }
2132
2133 ret = i915_mutex_lock_interruptible(dev);
2134 if (ret)
2135 return ret;
2136
2137 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2138 if (&obj->base == NULL) {
2139 mutex_unlock(&dev->struct_mutex);
2140 return -ENOENT;
2141 }
2142
2143 /* Need to make sure the object gets inactive eventually. */
2144 ret = i915_gem_object_flush_active(obj);
2145 if (ret)
2146 goto out;
2147
2148 if (obj->active) {
2149 seqno = obj->last_rendering_seqno;
2150 ring = obj->ring;
2151 }
2152
2153 if (seqno == 0)
2154 goto out;
2155
2156 /* Do this after OLR check to make sure we make forward progress polling
2157 * on this IOCTL with a 0 timeout (like busy ioctl)
2158 */
2159 if (!args->timeout_ns) {
2160 ret = -ETIME;
2161 goto out;
2162 }
2163
2164 drm_gem_object_unreference(&obj->base);
2165 mutex_unlock(&dev->struct_mutex);
2166
2167 ret = __wait_seqno(ring, seqno, true, timeout);
2168 if (timeout) {
2169 WARN_ON(!timespec_valid(timeout));
2170 args->timeout_ns = timespec_to_ns(timeout);
2171 }
2172 return ret;
2173
2174 out:
2175 drm_gem_object_unreference(&obj->base);
2176 mutex_unlock(&dev->struct_mutex);
2177 return ret;
2178 }
2179
2180 /**
2181 * i915_gem_object_sync - sync an object to a ring.
2182 *
2183 * @obj: object which may be in use on another ring.
2184 * @to: ring we wish to use the object on. May be NULL.
2185 *
2186 * This code is meant to abstract object synchronization with the GPU.
2187 * Calling with NULL implies synchronizing the object with the CPU
2188 * rather than a particular GPU ring.
2189 *
2190 * Returns 0 if successful, else propagates up the lower layer error.
2191 */
2192 int
2193 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2194 struct intel_ring_buffer *to)
2195 {
2196 struct intel_ring_buffer *from = obj->ring;
2197 u32 seqno;
2198 int ret, idx;
2199
2200 if (from == NULL || to == from)
2201 return 0;
2202
2203 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2204 return i915_gem_object_wait_rendering(obj);
2205
2206 idx = intel_ring_sync_index(from, to);
2207
2208 seqno = obj->last_rendering_seqno;
2209 if (seqno <= from->sync_seqno[idx])
2210 return 0;
2211
2212 ret = i915_gem_check_olr(obj->ring, seqno);
2213 if (ret)
2214 return ret;
2215
2216 ret = to->sync_to(to, from, seqno);
2217 if (!ret)
2218 from->sync_seqno[idx] = seqno;
2219
2220 return ret;
2221 }
2222
2223 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2224 {
2225 u32 old_write_domain, old_read_domains;
2226
2227 /* Act a barrier for all accesses through the GTT */
2228 mb();
2229
2230 /* Force a pagefault for domain tracking on next user access */
2231 i915_gem_release_mmap(obj);
2232
2233 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2234 return;
2235
2236 old_read_domains = obj->base.read_domains;
2237 old_write_domain = obj->base.write_domain;
2238
2239 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2240 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2241
2242 trace_i915_gem_object_change_domain(obj,
2243 old_read_domains,
2244 old_write_domain);
2245 }
2246
2247 /**
2248 * Unbinds an object from the GTT aperture.
2249 */
2250 int
2251 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2252 {
2253 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2254 int ret = 0;
2255
2256 if (obj->gtt_space == NULL)
2257 return 0;
2258
2259 if (obj->pin_count)
2260 return -EBUSY;
2261
2262 ret = i915_gem_object_finish_gpu(obj);
2263 if (ret)
2264 return ret;
2265 /* Continue on if we fail due to EIO, the GPU is hung so we
2266 * should be safe and we need to cleanup or else we might
2267 * cause memory corruption through use-after-free.
2268 */
2269
2270 i915_gem_object_finish_gtt(obj);
2271
2272 /* Move the object to the CPU domain to ensure that
2273 * any possible CPU writes while it's not in the GTT
2274 * are flushed when we go to remap it.
2275 */
2276 if (ret == 0)
2277 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2278 if (ret == -ERESTARTSYS)
2279 return ret;
2280 if (ret) {
2281 /* In the event of a disaster, abandon all caches and
2282 * hope for the best.
2283 */
2284 i915_gem_clflush_object(obj);
2285 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2286 }
2287
2288 /* release the fence reg _after_ flushing */
2289 ret = i915_gem_object_put_fence(obj);
2290 if (ret)
2291 return ret;
2292
2293 trace_i915_gem_object_unbind(obj);
2294
2295 if (obj->has_global_gtt_mapping)
2296 i915_gem_gtt_unbind_object(obj);
2297 if (obj->has_aliasing_ppgtt_mapping) {
2298 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2299 obj->has_aliasing_ppgtt_mapping = 0;
2300 }
2301 i915_gem_gtt_finish_object(obj);
2302
2303 i915_gem_object_put_pages_gtt(obj);
2304
2305 list_del_init(&obj->gtt_list);
2306 list_del_init(&obj->mm_list);
2307 /* Avoid an unnecessary call to unbind on rebind. */
2308 obj->map_and_fenceable = true;
2309
2310 drm_mm_put_block(obj->gtt_space);
2311 obj->gtt_space = NULL;
2312 obj->gtt_offset = 0;
2313
2314 if (i915_gem_object_is_purgeable(obj))
2315 i915_gem_object_truncate(obj);
2316
2317 return ret;
2318 }
2319
2320 int
2321 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2322 uint32_t invalidate_domains,
2323 uint32_t flush_domains)
2324 {
2325 int ret;
2326
2327 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2328 return 0;
2329
2330 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2331
2332 ret = ring->flush(ring, invalidate_domains, flush_domains);
2333 if (ret)
2334 return ret;
2335
2336 if (flush_domains & I915_GEM_GPU_DOMAINS)
2337 i915_gem_process_flushing_list(ring, flush_domains);
2338
2339 return 0;
2340 }
2341
2342 static int i915_ring_idle(struct intel_ring_buffer *ring)
2343 {
2344 int ret;
2345
2346 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2347 return 0;
2348
2349 if (!list_empty(&ring->gpu_write_list)) {
2350 ret = i915_gem_flush_ring(ring,
2351 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2352 if (ret)
2353 return ret;
2354 }
2355
2356 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2357 }
2358
2359 int i915_gpu_idle(struct drm_device *dev)
2360 {
2361 drm_i915_private_t *dev_priv = dev->dev_private;
2362 struct intel_ring_buffer *ring;
2363 int ret, i;
2364
2365 /* Flush everything onto the inactive list. */
2366 for_each_ring(ring, dev_priv, i) {
2367 ret = i915_ring_idle(ring);
2368 if (ret)
2369 return ret;
2370
2371 /* Is the device fubar? */
2372 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2373 return -EBUSY;
2374
2375 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2376 if (ret)
2377 return ret;
2378 }
2379
2380 return 0;
2381 }
2382
2383 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2384 struct drm_i915_gem_object *obj)
2385 {
2386 drm_i915_private_t *dev_priv = dev->dev_private;
2387 uint64_t val;
2388
2389 if (obj) {
2390 u32 size = obj->gtt_space->size;
2391
2392 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2393 0xfffff000) << 32;
2394 val |= obj->gtt_offset & 0xfffff000;
2395 val |= (uint64_t)((obj->stride / 128) - 1) <<
2396 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2397
2398 if (obj->tiling_mode == I915_TILING_Y)
2399 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2400 val |= I965_FENCE_REG_VALID;
2401 } else
2402 val = 0;
2403
2404 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2405 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2406 }
2407
2408 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2409 struct drm_i915_gem_object *obj)
2410 {
2411 drm_i915_private_t *dev_priv = dev->dev_private;
2412 uint64_t val;
2413
2414 if (obj) {
2415 u32 size = obj->gtt_space->size;
2416
2417 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2418 0xfffff000) << 32;
2419 val |= obj->gtt_offset & 0xfffff000;
2420 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2421 if (obj->tiling_mode == I915_TILING_Y)
2422 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2423 val |= I965_FENCE_REG_VALID;
2424 } else
2425 val = 0;
2426
2427 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2428 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2429 }
2430
2431 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2432 struct drm_i915_gem_object *obj)
2433 {
2434 drm_i915_private_t *dev_priv = dev->dev_private;
2435 u32 val;
2436
2437 if (obj) {
2438 u32 size = obj->gtt_space->size;
2439 int pitch_val;
2440 int tile_width;
2441
2442 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2443 (size & -size) != size ||
2444 (obj->gtt_offset & (size - 1)),
2445 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2446 obj->gtt_offset, obj->map_and_fenceable, size);
2447
2448 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2449 tile_width = 128;
2450 else
2451 tile_width = 512;
2452
2453 /* Note: pitch better be a power of two tile widths */
2454 pitch_val = obj->stride / tile_width;
2455 pitch_val = ffs(pitch_val) - 1;
2456
2457 val = obj->gtt_offset;
2458 if (obj->tiling_mode == I915_TILING_Y)
2459 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2460 val |= I915_FENCE_SIZE_BITS(size);
2461 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2462 val |= I830_FENCE_REG_VALID;
2463 } else
2464 val = 0;
2465
2466 if (reg < 8)
2467 reg = FENCE_REG_830_0 + reg * 4;
2468 else
2469 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2470
2471 I915_WRITE(reg, val);
2472 POSTING_READ(reg);
2473 }
2474
2475 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2476 struct drm_i915_gem_object *obj)
2477 {
2478 drm_i915_private_t *dev_priv = dev->dev_private;
2479 uint32_t val;
2480
2481 if (obj) {
2482 u32 size = obj->gtt_space->size;
2483 uint32_t pitch_val;
2484
2485 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2486 (size & -size) != size ||
2487 (obj->gtt_offset & (size - 1)),
2488 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2489 obj->gtt_offset, size);
2490
2491 pitch_val = obj->stride / 128;
2492 pitch_val = ffs(pitch_val) - 1;
2493
2494 val = obj->gtt_offset;
2495 if (obj->tiling_mode == I915_TILING_Y)
2496 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2497 val |= I830_FENCE_SIZE_BITS(size);
2498 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2499 val |= I830_FENCE_REG_VALID;
2500 } else
2501 val = 0;
2502
2503 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2504 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2505 }
2506
2507 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2508 struct drm_i915_gem_object *obj)
2509 {
2510 switch (INTEL_INFO(dev)->gen) {
2511 case 7:
2512 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2513 case 5:
2514 case 4: i965_write_fence_reg(dev, reg, obj); break;
2515 case 3: i915_write_fence_reg(dev, reg, obj); break;
2516 case 2: i830_write_fence_reg(dev, reg, obj); break;
2517 default: break;
2518 }
2519 }
2520
2521 static inline int fence_number(struct drm_i915_private *dev_priv,
2522 struct drm_i915_fence_reg *fence)
2523 {
2524 return fence - dev_priv->fence_regs;
2525 }
2526
2527 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2528 struct drm_i915_fence_reg *fence,
2529 bool enable)
2530 {
2531 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2532 int reg = fence_number(dev_priv, fence);
2533
2534 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2535
2536 if (enable) {
2537 obj->fence_reg = reg;
2538 fence->obj = obj;
2539 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2540 } else {
2541 obj->fence_reg = I915_FENCE_REG_NONE;
2542 fence->obj = NULL;
2543 list_del_init(&fence->lru_list);
2544 }
2545 }
2546
2547 static int
2548 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2549 {
2550 int ret;
2551
2552 if (obj->fenced_gpu_access) {
2553 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2554 ret = i915_gem_flush_ring(obj->ring,
2555 0, obj->base.write_domain);
2556 if (ret)
2557 return ret;
2558 }
2559
2560 obj->fenced_gpu_access = false;
2561 }
2562
2563 if (obj->last_fenced_seqno) {
2564 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2565 if (ret)
2566 return ret;
2567
2568 obj->last_fenced_seqno = 0;
2569 }
2570
2571 /* Ensure that all CPU reads are completed before installing a fence
2572 * and all writes before removing the fence.
2573 */
2574 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2575 mb();
2576
2577 return 0;
2578 }
2579
2580 int
2581 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2582 {
2583 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2584 int ret;
2585
2586 ret = i915_gem_object_flush_fence(obj);
2587 if (ret)
2588 return ret;
2589
2590 if (obj->fence_reg == I915_FENCE_REG_NONE)
2591 return 0;
2592
2593 i915_gem_object_update_fence(obj,
2594 &dev_priv->fence_regs[obj->fence_reg],
2595 false);
2596 i915_gem_object_fence_lost(obj);
2597
2598 return 0;
2599 }
2600
2601 static struct drm_i915_fence_reg *
2602 i915_find_fence_reg(struct drm_device *dev)
2603 {
2604 struct drm_i915_private *dev_priv = dev->dev_private;
2605 struct drm_i915_fence_reg *reg, *avail;
2606 int i;
2607
2608 /* First try to find a free reg */
2609 avail = NULL;
2610 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2611 reg = &dev_priv->fence_regs[i];
2612 if (!reg->obj)
2613 return reg;
2614
2615 if (!reg->pin_count)
2616 avail = reg;
2617 }
2618
2619 if (avail == NULL)
2620 return NULL;
2621
2622 /* None available, try to steal one or wait for a user to finish */
2623 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2624 if (reg->pin_count)
2625 continue;
2626
2627 return reg;
2628 }
2629
2630 return NULL;
2631 }
2632
2633 /**
2634 * i915_gem_object_get_fence - set up fencing for an object
2635 * @obj: object to map through a fence reg
2636 *
2637 * When mapping objects through the GTT, userspace wants to be able to write
2638 * to them without having to worry about swizzling if the object is tiled.
2639 * This function walks the fence regs looking for a free one for @obj,
2640 * stealing one if it can't find any.
2641 *
2642 * It then sets up the reg based on the object's properties: address, pitch
2643 * and tiling format.
2644 *
2645 * For an untiled surface, this removes any existing fence.
2646 */
2647 int
2648 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2649 {
2650 struct drm_device *dev = obj->base.dev;
2651 struct drm_i915_private *dev_priv = dev->dev_private;
2652 bool enable = obj->tiling_mode != I915_TILING_NONE;
2653 struct drm_i915_fence_reg *reg;
2654 int ret;
2655
2656 /* Have we updated the tiling parameters upon the object and so
2657 * will need to serialise the write to the associated fence register?
2658 */
2659 if (obj->fence_dirty) {
2660 ret = i915_gem_object_flush_fence(obj);
2661 if (ret)
2662 return ret;
2663 }
2664
2665 /* Just update our place in the LRU if our fence is getting reused. */
2666 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2667 reg = &dev_priv->fence_regs[obj->fence_reg];
2668 if (!obj->fence_dirty) {
2669 list_move_tail(&reg->lru_list,
2670 &dev_priv->mm.fence_list);
2671 return 0;
2672 }
2673 } else if (enable) {
2674 reg = i915_find_fence_reg(dev);
2675 if (reg == NULL)
2676 return -EDEADLK;
2677
2678 if (reg->obj) {
2679 struct drm_i915_gem_object *old = reg->obj;
2680
2681 ret = i915_gem_object_flush_fence(old);
2682 if (ret)
2683 return ret;
2684
2685 i915_gem_object_fence_lost(old);
2686 }
2687 } else
2688 return 0;
2689
2690 i915_gem_object_update_fence(obj, reg, enable);
2691 obj->fence_dirty = false;
2692
2693 return 0;
2694 }
2695
2696 /**
2697 * Finds free space in the GTT aperture and binds the object there.
2698 */
2699 static int
2700 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2701 unsigned alignment,
2702 bool map_and_fenceable)
2703 {
2704 struct drm_device *dev = obj->base.dev;
2705 drm_i915_private_t *dev_priv = dev->dev_private;
2706 struct drm_mm_node *free_space;
2707 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2708 u32 size, fence_size, fence_alignment, unfenced_alignment;
2709 bool mappable, fenceable;
2710 int ret;
2711
2712 if (obj->madv != I915_MADV_WILLNEED) {
2713 DRM_ERROR("Attempting to bind a purgeable object\n");
2714 return -EINVAL;
2715 }
2716
2717 fence_size = i915_gem_get_gtt_size(dev,
2718 obj->base.size,
2719 obj->tiling_mode);
2720 fence_alignment = i915_gem_get_gtt_alignment(dev,
2721 obj->base.size,
2722 obj->tiling_mode);
2723 unfenced_alignment =
2724 i915_gem_get_unfenced_gtt_alignment(dev,
2725 obj->base.size,
2726 obj->tiling_mode);
2727
2728 if (alignment == 0)
2729 alignment = map_and_fenceable ? fence_alignment :
2730 unfenced_alignment;
2731 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2732 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2733 return -EINVAL;
2734 }
2735
2736 size = map_and_fenceable ? fence_size : obj->base.size;
2737
2738 /* If the object is bigger than the entire aperture, reject it early
2739 * before evicting everything in a vain attempt to find space.
2740 */
2741 if (obj->base.size >
2742 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2743 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2744 return -E2BIG;
2745 }
2746
2747 search_free:
2748 if (map_and_fenceable)
2749 free_space =
2750 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2751 size, alignment,
2752 0, dev_priv->mm.gtt_mappable_end,
2753 0);
2754 else
2755 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2756 size, alignment, 0);
2757
2758 if (free_space != NULL) {
2759 if (map_and_fenceable)
2760 obj->gtt_space =
2761 drm_mm_get_block_range_generic(free_space,
2762 size, alignment, 0,
2763 0, dev_priv->mm.gtt_mappable_end,
2764 0);
2765 else
2766 obj->gtt_space =
2767 drm_mm_get_block(free_space, size, alignment);
2768 }
2769 if (obj->gtt_space == NULL) {
2770 /* If the gtt is empty and we're still having trouble
2771 * fitting our object in, we're out of memory.
2772 */
2773 ret = i915_gem_evict_something(dev, size, alignment,
2774 map_and_fenceable);
2775 if (ret)
2776 return ret;
2777
2778 goto search_free;
2779 }
2780
2781 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2782 if (ret) {
2783 drm_mm_put_block(obj->gtt_space);
2784 obj->gtt_space = NULL;
2785
2786 if (ret == -ENOMEM) {
2787 /* first try to reclaim some memory by clearing the GTT */
2788 ret = i915_gem_evict_everything(dev, false);
2789 if (ret) {
2790 /* now try to shrink everyone else */
2791 if (gfpmask) {
2792 gfpmask = 0;
2793 goto search_free;
2794 }
2795
2796 return -ENOMEM;
2797 }
2798
2799 goto search_free;
2800 }
2801
2802 return ret;
2803 }
2804
2805 ret = i915_gem_gtt_prepare_object(obj);
2806 if (ret) {
2807 i915_gem_object_put_pages_gtt(obj);
2808 drm_mm_put_block(obj->gtt_space);
2809 obj->gtt_space = NULL;
2810
2811 if (i915_gem_evict_everything(dev, false))
2812 return ret;
2813
2814 goto search_free;
2815 }
2816
2817 if (!dev_priv->mm.aliasing_ppgtt)
2818 i915_gem_gtt_bind_object(obj, obj->cache_level);
2819
2820 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2821 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2822
2823 /* Assert that the object is not currently in any GPU domain. As it
2824 * wasn't in the GTT, there shouldn't be any way it could have been in
2825 * a GPU cache
2826 */
2827 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2828 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2829
2830 obj->gtt_offset = obj->gtt_space->start;
2831
2832 fenceable =
2833 obj->gtt_space->size == fence_size &&
2834 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2835
2836 mappable =
2837 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2838
2839 obj->map_and_fenceable = mappable && fenceable;
2840
2841 trace_i915_gem_object_bind(obj, map_and_fenceable);
2842 return 0;
2843 }
2844
2845 void
2846 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2847 {
2848 /* If we don't have a page list set up, then we're not pinned
2849 * to GPU, and we can ignore the cache flush because it'll happen
2850 * again at bind time.
2851 */
2852 if (obj->pages == NULL)
2853 return;
2854
2855 /* If the GPU is snooping the contents of the CPU cache,
2856 * we do not need to manually clear the CPU cache lines. However,
2857 * the caches are only snooped when the render cache is
2858 * flushed/invalidated. As we always have to emit invalidations
2859 * and flushes when moving into and out of the RENDER domain, correct
2860 * snooping behaviour occurs naturally as the result of our domain
2861 * tracking.
2862 */
2863 if (obj->cache_level != I915_CACHE_NONE)
2864 return;
2865
2866 trace_i915_gem_object_clflush(obj);
2867
2868 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2869 }
2870
2871 /** Flushes any GPU write domain for the object if it's dirty. */
2872 static int
2873 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2874 {
2875 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2876 return 0;
2877
2878 /* Queue the GPU write cache flushing we need. */
2879 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2880 }
2881
2882 /** Flushes the GTT write domain for the object if it's dirty. */
2883 static void
2884 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2885 {
2886 uint32_t old_write_domain;
2887
2888 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2889 return;
2890
2891 /* No actual flushing is required for the GTT write domain. Writes
2892 * to it immediately go to main memory as far as we know, so there's
2893 * no chipset flush. It also doesn't land in render cache.
2894 *
2895 * However, we do have to enforce the order so that all writes through
2896 * the GTT land before any writes to the device, such as updates to
2897 * the GATT itself.
2898 */
2899 wmb();
2900
2901 old_write_domain = obj->base.write_domain;
2902 obj->base.write_domain = 0;
2903
2904 trace_i915_gem_object_change_domain(obj,
2905 obj->base.read_domains,
2906 old_write_domain);
2907 }
2908
2909 /** Flushes the CPU write domain for the object if it's dirty. */
2910 static void
2911 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2912 {
2913 uint32_t old_write_domain;
2914
2915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2916 return;
2917
2918 i915_gem_clflush_object(obj);
2919 intel_gtt_chipset_flush();
2920 old_write_domain = obj->base.write_domain;
2921 obj->base.write_domain = 0;
2922
2923 trace_i915_gem_object_change_domain(obj,
2924 obj->base.read_domains,
2925 old_write_domain);
2926 }
2927
2928 /**
2929 * Moves a single object to the GTT read, and possibly write domain.
2930 *
2931 * This function returns when the move is complete, including waiting on
2932 * flushes to occur.
2933 */
2934 int
2935 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2936 {
2937 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2938 uint32_t old_write_domain, old_read_domains;
2939 int ret;
2940
2941 /* Not valid to be called on unbound objects. */
2942 if (obj->gtt_space == NULL)
2943 return -EINVAL;
2944
2945 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2946 return 0;
2947
2948 ret = i915_gem_object_flush_gpu_write_domain(obj);
2949 if (ret)
2950 return ret;
2951
2952 if (obj->pending_gpu_write || write) {
2953 ret = i915_gem_object_wait_rendering(obj);
2954 if (ret)
2955 return ret;
2956 }
2957
2958 i915_gem_object_flush_cpu_write_domain(obj);
2959
2960 old_write_domain = obj->base.write_domain;
2961 old_read_domains = obj->base.read_domains;
2962
2963 /* It should now be out of any other write domains, and we can update
2964 * the domain values for our changes.
2965 */
2966 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2967 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2968 if (write) {
2969 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2970 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2971 obj->dirty = 1;
2972 }
2973
2974 trace_i915_gem_object_change_domain(obj,
2975 old_read_domains,
2976 old_write_domain);
2977
2978 /* And bump the LRU for this access */
2979 if (i915_gem_object_is_inactive(obj))
2980 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2981
2982 return 0;
2983 }
2984
2985 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2986 enum i915_cache_level cache_level)
2987 {
2988 struct drm_device *dev = obj->base.dev;
2989 drm_i915_private_t *dev_priv = dev->dev_private;
2990 int ret;
2991
2992 if (obj->cache_level == cache_level)
2993 return 0;
2994
2995 if (obj->pin_count) {
2996 DRM_DEBUG("can not change the cache level of pinned objects\n");
2997 return -EBUSY;
2998 }
2999
3000 if (obj->gtt_space) {
3001 ret = i915_gem_object_finish_gpu(obj);
3002 if (ret)
3003 return ret;
3004
3005 i915_gem_object_finish_gtt(obj);
3006
3007 /* Before SandyBridge, you could not use tiling or fence
3008 * registers with snooped memory, so relinquish any fences
3009 * currently pointing to our region in the aperture.
3010 */
3011 if (INTEL_INFO(obj->base.dev)->gen < 6) {
3012 ret = i915_gem_object_put_fence(obj);
3013 if (ret)
3014 return ret;
3015 }
3016
3017 if (obj->has_global_gtt_mapping)
3018 i915_gem_gtt_bind_object(obj, cache_level);
3019 if (obj->has_aliasing_ppgtt_mapping)
3020 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3021 obj, cache_level);
3022 }
3023
3024 if (cache_level == I915_CACHE_NONE) {
3025 u32 old_read_domains, old_write_domain;
3026
3027 /* If we're coming from LLC cached, then we haven't
3028 * actually been tracking whether the data is in the
3029 * CPU cache or not, since we only allow one bit set
3030 * in obj->write_domain and have been skipping the clflushes.
3031 * Just set it to the CPU cache for now.
3032 */
3033 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3034 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3035
3036 old_read_domains = obj->base.read_domains;
3037 old_write_domain = obj->base.write_domain;
3038
3039 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3040 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3041
3042 trace_i915_gem_object_change_domain(obj,
3043 old_read_domains,
3044 old_write_domain);
3045 }
3046
3047 obj->cache_level = cache_level;
3048 return 0;
3049 }
3050
3051 /*
3052 * Prepare buffer for display plane (scanout, cursors, etc).
3053 * Can be called from an uninterruptible phase (modesetting) and allows
3054 * any flushes to be pipelined (for pageflips).
3055 */
3056 int
3057 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3058 u32 alignment,
3059 struct intel_ring_buffer *pipelined)
3060 {
3061 u32 old_read_domains, old_write_domain;
3062 int ret;
3063
3064 ret = i915_gem_object_flush_gpu_write_domain(obj);
3065 if (ret)
3066 return ret;
3067
3068 if (pipelined != obj->ring) {
3069 ret = i915_gem_object_sync(obj, pipelined);
3070 if (ret)
3071 return ret;
3072 }
3073
3074 /* The display engine is not coherent with the LLC cache on gen6. As
3075 * a result, we make sure that the pinning that is about to occur is
3076 * done with uncached PTEs. This is lowest common denominator for all
3077 * chipsets.
3078 *
3079 * However for gen6+, we could do better by using the GFDT bit instead
3080 * of uncaching, which would allow us to flush all the LLC-cached data
3081 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3082 */
3083 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3084 if (ret)
3085 return ret;
3086
3087 /* As the user may map the buffer once pinned in the display plane
3088 * (e.g. libkms for the bootup splash), we have to ensure that we
3089 * always use map_and_fenceable for all scanout buffers.
3090 */
3091 ret = i915_gem_object_pin(obj, alignment, true);
3092 if (ret)
3093 return ret;
3094
3095 i915_gem_object_flush_cpu_write_domain(obj);
3096
3097 old_write_domain = obj->base.write_domain;
3098 old_read_domains = obj->base.read_domains;
3099
3100 /* It should now be out of any other write domains, and we can update
3101 * the domain values for our changes.
3102 */
3103 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3104 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3105
3106 trace_i915_gem_object_change_domain(obj,
3107 old_read_domains,
3108 old_write_domain);
3109
3110 return 0;
3111 }
3112
3113 int
3114 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3115 {
3116 int ret;
3117
3118 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3119 return 0;
3120
3121 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3122 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3123 if (ret)
3124 return ret;
3125 }
3126
3127 ret = i915_gem_object_wait_rendering(obj);
3128 if (ret)
3129 return ret;
3130
3131 /* Ensure that we invalidate the GPU's caches and TLBs. */
3132 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3133 return 0;
3134 }
3135
3136 /**
3137 * Moves a single object to the CPU read, and possibly write domain.
3138 *
3139 * This function returns when the move is complete, including waiting on
3140 * flushes to occur.
3141 */
3142 int
3143 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3144 {
3145 uint32_t old_write_domain, old_read_domains;
3146 int ret;
3147
3148 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3149 return 0;
3150
3151 ret = i915_gem_object_flush_gpu_write_domain(obj);
3152 if (ret)
3153 return ret;
3154
3155 if (write || obj->pending_gpu_write) {
3156 ret = i915_gem_object_wait_rendering(obj);
3157 if (ret)
3158 return ret;
3159 }
3160
3161 i915_gem_object_flush_gtt_write_domain(obj);
3162
3163 old_write_domain = obj->base.write_domain;
3164 old_read_domains = obj->base.read_domains;
3165
3166 /* Flush the CPU cache if it's still invalid. */
3167 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3168 i915_gem_clflush_object(obj);
3169
3170 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3171 }
3172
3173 /* It should now be out of any other write domains, and we can update
3174 * the domain values for our changes.
3175 */
3176 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3177
3178 /* If we're writing through the CPU, then the GPU read domains will
3179 * need to be invalidated at next use.
3180 */
3181 if (write) {
3182 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3183 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3184 }
3185
3186 trace_i915_gem_object_change_domain(obj,
3187 old_read_domains,
3188 old_write_domain);
3189
3190 return 0;
3191 }
3192
3193 /* Throttle our rendering by waiting until the ring has completed our requests
3194 * emitted over 20 msec ago.
3195 *
3196 * Note that if we were to use the current jiffies each time around the loop,
3197 * we wouldn't escape the function with any frames outstanding if the time to
3198 * render a frame was over 20ms.
3199 *
3200 * This should get us reasonable parallelism between CPU and GPU but also
3201 * relatively low latency when blocking on a particular request to finish.
3202 */
3203 static int
3204 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3205 {
3206 struct drm_i915_private *dev_priv = dev->dev_private;
3207 struct drm_i915_file_private *file_priv = file->driver_priv;
3208 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3209 struct drm_i915_gem_request *request;
3210 struct intel_ring_buffer *ring = NULL;
3211 u32 seqno = 0;
3212 int ret;
3213
3214 if (atomic_read(&dev_priv->mm.wedged))
3215 return -EIO;
3216
3217 spin_lock(&file_priv->mm.lock);
3218 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3219 if (time_after_eq(request->emitted_jiffies, recent_enough))
3220 break;
3221
3222 ring = request->ring;
3223 seqno = request->seqno;
3224 }
3225 spin_unlock(&file_priv->mm.lock);
3226
3227 if (seqno == 0)
3228 return 0;
3229
3230 ret = __wait_seqno(ring, seqno, true, NULL);
3231 if (ret == 0)
3232 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3233
3234 return ret;
3235 }
3236
3237 int
3238 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3239 uint32_t alignment,
3240 bool map_and_fenceable)
3241 {
3242 int ret;
3243
3244 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3245
3246 if (obj->gtt_space != NULL) {
3247 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3248 (map_and_fenceable && !obj->map_and_fenceable)) {
3249 WARN(obj->pin_count,
3250 "bo is already pinned with incorrect alignment:"
3251 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3252 " obj->map_and_fenceable=%d\n",
3253 obj->gtt_offset, alignment,
3254 map_and_fenceable,
3255 obj->map_and_fenceable);
3256 ret = i915_gem_object_unbind(obj);
3257 if (ret)
3258 return ret;
3259 }
3260 }
3261
3262 if (obj->gtt_space == NULL) {
3263 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3264 map_and_fenceable);
3265 if (ret)
3266 return ret;
3267 }
3268
3269 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3270 i915_gem_gtt_bind_object(obj, obj->cache_level);
3271
3272 obj->pin_count++;
3273 obj->pin_mappable |= map_and_fenceable;
3274
3275 return 0;
3276 }
3277
3278 void
3279 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3280 {
3281 BUG_ON(obj->pin_count == 0);
3282 BUG_ON(obj->gtt_space == NULL);
3283
3284 if (--obj->pin_count == 0)
3285 obj->pin_mappable = false;
3286 }
3287
3288 int
3289 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3290 struct drm_file *file)
3291 {
3292 struct drm_i915_gem_pin *args = data;
3293 struct drm_i915_gem_object *obj;
3294 int ret;
3295
3296 ret = i915_mutex_lock_interruptible(dev);
3297 if (ret)
3298 return ret;
3299
3300 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3301 if (&obj->base == NULL) {
3302 ret = -ENOENT;
3303 goto unlock;
3304 }
3305
3306 if (obj->madv != I915_MADV_WILLNEED) {
3307 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3308 ret = -EINVAL;
3309 goto out;
3310 }
3311
3312 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3313 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3314 args->handle);
3315 ret = -EINVAL;
3316 goto out;
3317 }
3318
3319 obj->user_pin_count++;
3320 obj->pin_filp = file;
3321 if (obj->user_pin_count == 1) {
3322 ret = i915_gem_object_pin(obj, args->alignment, true);
3323 if (ret)
3324 goto out;
3325 }
3326
3327 /* XXX - flush the CPU caches for pinned objects
3328 * as the X server doesn't manage domains yet
3329 */
3330 i915_gem_object_flush_cpu_write_domain(obj);
3331 args->offset = obj->gtt_offset;
3332 out:
3333 drm_gem_object_unreference(&obj->base);
3334 unlock:
3335 mutex_unlock(&dev->struct_mutex);
3336 return ret;
3337 }
3338
3339 int
3340 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3341 struct drm_file *file)
3342 {
3343 struct drm_i915_gem_pin *args = data;
3344 struct drm_i915_gem_object *obj;
3345 int ret;
3346
3347 ret = i915_mutex_lock_interruptible(dev);
3348 if (ret)
3349 return ret;
3350
3351 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3352 if (&obj->base == NULL) {
3353 ret = -ENOENT;
3354 goto unlock;
3355 }
3356
3357 if (obj->pin_filp != file) {
3358 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3359 args->handle);
3360 ret = -EINVAL;
3361 goto out;
3362 }
3363 obj->user_pin_count--;
3364 if (obj->user_pin_count == 0) {
3365 obj->pin_filp = NULL;
3366 i915_gem_object_unpin(obj);
3367 }
3368
3369 out:
3370 drm_gem_object_unreference(&obj->base);
3371 unlock:
3372 mutex_unlock(&dev->struct_mutex);
3373 return ret;
3374 }
3375
3376 int
3377 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3378 struct drm_file *file)
3379 {
3380 struct drm_i915_gem_busy *args = data;
3381 struct drm_i915_gem_object *obj;
3382 int ret;
3383
3384 ret = i915_mutex_lock_interruptible(dev);
3385 if (ret)
3386 return ret;
3387
3388 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3389 if (&obj->base == NULL) {
3390 ret = -ENOENT;
3391 goto unlock;
3392 }
3393
3394 /* Count all active objects as busy, even if they are currently not used
3395 * by the gpu. Users of this interface expect objects to eventually
3396 * become non-busy without any further actions, therefore emit any
3397 * necessary flushes here.
3398 */
3399 ret = i915_gem_object_flush_active(obj);
3400
3401 args->busy = obj->active;
3402
3403 drm_gem_object_unreference(&obj->base);
3404 unlock:
3405 mutex_unlock(&dev->struct_mutex);
3406 return ret;
3407 }
3408
3409 int
3410 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3411 struct drm_file *file_priv)
3412 {
3413 return i915_gem_ring_throttle(dev, file_priv);
3414 }
3415
3416 int
3417 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3418 struct drm_file *file_priv)
3419 {
3420 struct drm_i915_gem_madvise *args = data;
3421 struct drm_i915_gem_object *obj;
3422 int ret;
3423
3424 switch (args->madv) {
3425 case I915_MADV_DONTNEED:
3426 case I915_MADV_WILLNEED:
3427 break;
3428 default:
3429 return -EINVAL;
3430 }
3431
3432 ret = i915_mutex_lock_interruptible(dev);
3433 if (ret)
3434 return ret;
3435
3436 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3437 if (&obj->base == NULL) {
3438 ret = -ENOENT;
3439 goto unlock;
3440 }
3441
3442 if (obj->pin_count) {
3443 ret = -EINVAL;
3444 goto out;
3445 }
3446
3447 if (obj->madv != __I915_MADV_PURGED)
3448 obj->madv = args->madv;
3449
3450 /* if the object is no longer bound, discard its backing storage */
3451 if (i915_gem_object_is_purgeable(obj) &&
3452 obj->gtt_space == NULL)
3453 i915_gem_object_truncate(obj);
3454
3455 args->retained = obj->madv != __I915_MADV_PURGED;
3456
3457 out:
3458 drm_gem_object_unreference(&obj->base);
3459 unlock:
3460 mutex_unlock(&dev->struct_mutex);
3461 return ret;
3462 }
3463
3464 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3465 size_t size)
3466 {
3467 struct drm_i915_private *dev_priv = dev->dev_private;
3468 struct drm_i915_gem_object *obj;
3469 struct address_space *mapping;
3470 u32 mask;
3471
3472 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3473 if (obj == NULL)
3474 return NULL;
3475
3476 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3477 kfree(obj);
3478 return NULL;
3479 }
3480
3481 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3482 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3483 /* 965gm cannot relocate objects above 4GiB. */
3484 mask &= ~__GFP_HIGHMEM;
3485 mask |= __GFP_DMA32;
3486 }
3487
3488 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3489 mapping_set_gfp_mask(mapping, mask);
3490
3491 i915_gem_info_add_obj(dev_priv, size);
3492
3493 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3494 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3495
3496 if (HAS_LLC(dev)) {
3497 /* On some devices, we can have the GPU use the LLC (the CPU
3498 * cache) for about a 10% performance improvement
3499 * compared to uncached. Graphics requests other than
3500 * display scanout are coherent with the CPU in
3501 * accessing this cache. This means in this mode we
3502 * don't need to clflush on the CPU side, and on the
3503 * GPU side we only need to flush internal caches to
3504 * get data visible to the CPU.
3505 *
3506 * However, we maintain the display planes as UC, and so
3507 * need to rebind when first used as such.
3508 */
3509 obj->cache_level = I915_CACHE_LLC;
3510 } else
3511 obj->cache_level = I915_CACHE_NONE;
3512
3513 obj->base.driver_private = NULL;
3514 obj->fence_reg = I915_FENCE_REG_NONE;
3515 INIT_LIST_HEAD(&obj->mm_list);
3516 INIT_LIST_HEAD(&obj->gtt_list);
3517 INIT_LIST_HEAD(&obj->ring_list);
3518 INIT_LIST_HEAD(&obj->exec_list);
3519 INIT_LIST_HEAD(&obj->gpu_write_list);
3520 obj->madv = I915_MADV_WILLNEED;
3521 /* Avoid an unnecessary call to unbind on the first bind. */
3522 obj->map_and_fenceable = true;
3523
3524 return obj;
3525 }
3526
3527 int i915_gem_init_object(struct drm_gem_object *obj)
3528 {
3529 BUG();
3530
3531 return 0;
3532 }
3533
3534 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3535 {
3536 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3537 struct drm_device *dev = obj->base.dev;
3538 drm_i915_private_t *dev_priv = dev->dev_private;
3539
3540 trace_i915_gem_object_destroy(obj);
3541
3542 if (gem_obj->import_attach)
3543 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3544
3545 if (obj->phys_obj)
3546 i915_gem_detach_phys_object(dev, obj);
3547
3548 obj->pin_count = 0;
3549 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3550 bool was_interruptible;
3551
3552 was_interruptible = dev_priv->mm.interruptible;
3553 dev_priv->mm.interruptible = false;
3554
3555 WARN_ON(i915_gem_object_unbind(obj));
3556
3557 dev_priv->mm.interruptible = was_interruptible;
3558 }
3559
3560 if (obj->base.map_list.map)
3561 drm_gem_free_mmap_offset(&obj->base);
3562
3563 drm_gem_object_release(&obj->base);
3564 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3565
3566 kfree(obj->bit_17);
3567 kfree(obj);
3568 }
3569
3570 int
3571 i915_gem_idle(struct drm_device *dev)
3572 {
3573 drm_i915_private_t *dev_priv = dev->dev_private;
3574 int ret;
3575
3576 mutex_lock(&dev->struct_mutex);
3577
3578 if (dev_priv->mm.suspended) {
3579 mutex_unlock(&dev->struct_mutex);
3580 return 0;
3581 }
3582
3583 ret = i915_gpu_idle(dev);
3584 if (ret) {
3585 mutex_unlock(&dev->struct_mutex);
3586 return ret;
3587 }
3588 i915_gem_retire_requests(dev);
3589
3590 /* Under UMS, be paranoid and evict. */
3591 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3592 i915_gem_evict_everything(dev, false);
3593
3594 i915_gem_reset_fences(dev);
3595
3596 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3597 * We need to replace this with a semaphore, or something.
3598 * And not confound mm.suspended!
3599 */
3600 dev_priv->mm.suspended = 1;
3601 del_timer_sync(&dev_priv->hangcheck_timer);
3602
3603 i915_kernel_lost_context(dev);
3604 i915_gem_cleanup_ringbuffer(dev);
3605
3606 mutex_unlock(&dev->struct_mutex);
3607
3608 /* Cancel the retire work handler, which should be idle now. */
3609 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3610
3611 return 0;
3612 }
3613
3614 void i915_gem_l3_remap(struct drm_device *dev)
3615 {
3616 drm_i915_private_t *dev_priv = dev->dev_private;
3617 u32 misccpctl;
3618 int i;
3619
3620 if (!IS_IVYBRIDGE(dev))
3621 return;
3622
3623 if (!dev_priv->mm.l3_remap_info)
3624 return;
3625
3626 misccpctl = I915_READ(GEN7_MISCCPCTL);
3627 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3628 POSTING_READ(GEN7_MISCCPCTL);
3629
3630 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3631 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3632 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3633 DRM_DEBUG("0x%x was already programmed to %x\n",
3634 GEN7_L3LOG_BASE + i, remap);
3635 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3636 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3637 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3638 }
3639
3640 /* Make sure all the writes land before disabling dop clock gating */
3641 POSTING_READ(GEN7_L3LOG_BASE);
3642
3643 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3644 }
3645
3646 void i915_gem_init_swizzling(struct drm_device *dev)
3647 {
3648 drm_i915_private_t *dev_priv = dev->dev_private;
3649
3650 if (INTEL_INFO(dev)->gen < 5 ||
3651 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3652 return;
3653
3654 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3655 DISP_TILE_SURFACE_SWIZZLING);
3656
3657 if (IS_GEN5(dev))
3658 return;
3659
3660 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3661 if (IS_GEN6(dev))
3662 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3663 else
3664 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3665 }
3666
3667 void i915_gem_init_ppgtt(struct drm_device *dev)
3668 {
3669 drm_i915_private_t *dev_priv = dev->dev_private;
3670 uint32_t pd_offset;
3671 struct intel_ring_buffer *ring;
3672 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3673 uint32_t __iomem *pd_addr;
3674 uint32_t pd_entry;
3675 int i;
3676
3677 if (!dev_priv->mm.aliasing_ppgtt)
3678 return;
3679
3680
3681 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3682 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3683 dma_addr_t pt_addr;
3684
3685 if (dev_priv->mm.gtt->needs_dmar)
3686 pt_addr = ppgtt->pt_dma_addr[i];
3687 else
3688 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3689
3690 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3691 pd_entry |= GEN6_PDE_VALID;
3692
3693 writel(pd_entry, pd_addr + i);
3694 }
3695 readl(pd_addr);
3696
3697 pd_offset = ppgtt->pd_offset;
3698 pd_offset /= 64; /* in cachelines, */
3699 pd_offset <<= 16;
3700
3701 if (INTEL_INFO(dev)->gen == 6) {
3702 uint32_t ecochk, gab_ctl, ecobits;
3703
3704 ecobits = I915_READ(GAC_ECO_BITS);
3705 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3706
3707 gab_ctl = I915_READ(GAB_CTL);
3708 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3709
3710 ecochk = I915_READ(GAM_ECOCHK);
3711 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3712 ECOCHK_PPGTT_CACHE64B);
3713 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3714 } else if (INTEL_INFO(dev)->gen >= 7) {
3715 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3716 /* GFX_MODE is per-ring on gen7+ */
3717 }
3718
3719 for_each_ring(ring, dev_priv, i) {
3720 if (INTEL_INFO(dev)->gen >= 7)
3721 I915_WRITE(RING_MODE_GEN7(ring),
3722 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3723
3724 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3725 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3726 }
3727 }
3728
3729 int
3730 i915_gem_init_hw(struct drm_device *dev)
3731 {
3732 drm_i915_private_t *dev_priv = dev->dev_private;
3733 int ret;
3734
3735 if (!intel_enable_gtt())
3736 return -EIO;
3737
3738 i915_gem_l3_remap(dev);
3739
3740 i915_gem_init_swizzling(dev);
3741
3742 ret = intel_init_render_ring_buffer(dev);
3743 if (ret)
3744 return ret;
3745
3746 if (HAS_BSD(dev)) {
3747 ret = intel_init_bsd_ring_buffer(dev);
3748 if (ret)
3749 goto cleanup_render_ring;
3750 }
3751
3752 if (HAS_BLT(dev)) {
3753 ret = intel_init_blt_ring_buffer(dev);
3754 if (ret)
3755 goto cleanup_bsd_ring;
3756 }
3757
3758 dev_priv->next_seqno = 1;
3759
3760 /*
3761 * XXX: There was some w/a described somewhere suggesting loading
3762 * contexts before PPGTT.
3763 */
3764 i915_gem_context_init(dev);
3765 i915_gem_init_ppgtt(dev);
3766
3767 return 0;
3768
3769 cleanup_bsd_ring:
3770 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3771 cleanup_render_ring:
3772 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3773 return ret;
3774 }
3775
3776 static bool
3777 intel_enable_ppgtt(struct drm_device *dev)
3778 {
3779 if (i915_enable_ppgtt >= 0)
3780 return i915_enable_ppgtt;
3781
3782 #ifdef CONFIG_INTEL_IOMMU
3783 /* Disable ppgtt on SNB if VT-d is on. */
3784 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3785 return false;
3786 #endif
3787
3788 return true;
3789 }
3790
3791 int i915_gem_init(struct drm_device *dev)
3792 {
3793 struct drm_i915_private *dev_priv = dev->dev_private;
3794 unsigned long gtt_size, mappable_size;
3795 int ret;
3796
3797 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3798 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3799
3800 mutex_lock(&dev->struct_mutex);
3801 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3802 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3803 * aperture accordingly when using aliasing ppgtt. */
3804 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3805
3806 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3807
3808 ret = i915_gem_init_aliasing_ppgtt(dev);
3809 if (ret) {
3810 mutex_unlock(&dev->struct_mutex);
3811 return ret;
3812 }
3813 } else {
3814 /* Let GEM Manage all of the aperture.
3815 *
3816 * However, leave one page at the end still bound to the scratch
3817 * page. There are a number of places where the hardware
3818 * apparently prefetches past the end of the object, and we've
3819 * seen multiple hangs with the GPU head pointer stuck in a
3820 * batchbuffer bound at the last page of the aperture. One page
3821 * should be enough to keep any prefetching inside of the
3822 * aperture.
3823 */
3824 i915_gem_init_global_gtt(dev, 0, mappable_size,
3825 gtt_size);
3826 }
3827
3828 ret = i915_gem_init_hw(dev);
3829 mutex_unlock(&dev->struct_mutex);
3830 if (ret) {
3831 i915_gem_cleanup_aliasing_ppgtt(dev);
3832 return ret;
3833 }
3834
3835 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3836 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3837 dev_priv->dri1.allow_batchbuffer = 1;
3838 return 0;
3839 }
3840
3841 void
3842 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3843 {
3844 drm_i915_private_t *dev_priv = dev->dev_private;
3845 struct intel_ring_buffer *ring;
3846 int i;
3847
3848 for_each_ring(ring, dev_priv, i)
3849 intel_cleanup_ring_buffer(ring);
3850 }
3851
3852 int
3853 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3854 struct drm_file *file_priv)
3855 {
3856 drm_i915_private_t *dev_priv = dev->dev_private;
3857 int ret;
3858
3859 if (drm_core_check_feature(dev, DRIVER_MODESET))
3860 return 0;
3861
3862 if (atomic_read(&dev_priv->mm.wedged)) {
3863 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3864 atomic_set(&dev_priv->mm.wedged, 0);
3865 }
3866
3867 mutex_lock(&dev->struct_mutex);
3868 dev_priv->mm.suspended = 0;
3869
3870 ret = i915_gem_init_hw(dev);
3871 if (ret != 0) {
3872 mutex_unlock(&dev->struct_mutex);
3873 return ret;
3874 }
3875
3876 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3877 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3878 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3879 mutex_unlock(&dev->struct_mutex);
3880
3881 ret = drm_irq_install(dev);
3882 if (ret)
3883 goto cleanup_ringbuffer;
3884
3885 return 0;
3886
3887 cleanup_ringbuffer:
3888 mutex_lock(&dev->struct_mutex);
3889 i915_gem_cleanup_ringbuffer(dev);
3890 dev_priv->mm.suspended = 1;
3891 mutex_unlock(&dev->struct_mutex);
3892
3893 return ret;
3894 }
3895
3896 int
3897 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3898 struct drm_file *file_priv)
3899 {
3900 if (drm_core_check_feature(dev, DRIVER_MODESET))
3901 return 0;
3902
3903 drm_irq_uninstall(dev);
3904 return i915_gem_idle(dev);
3905 }
3906
3907 void
3908 i915_gem_lastclose(struct drm_device *dev)
3909 {
3910 int ret;
3911
3912 if (drm_core_check_feature(dev, DRIVER_MODESET))
3913 return;
3914
3915 ret = i915_gem_idle(dev);
3916 if (ret)
3917 DRM_ERROR("failed to idle hardware: %d\n", ret);
3918 }
3919
3920 static void
3921 init_ring_lists(struct intel_ring_buffer *ring)
3922 {
3923 INIT_LIST_HEAD(&ring->active_list);
3924 INIT_LIST_HEAD(&ring->request_list);
3925 INIT_LIST_HEAD(&ring->gpu_write_list);
3926 }
3927
3928 void
3929 i915_gem_load(struct drm_device *dev)
3930 {
3931 int i;
3932 drm_i915_private_t *dev_priv = dev->dev_private;
3933
3934 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3935 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3936 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3937 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3938 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3939 for (i = 0; i < I915_NUM_RINGS; i++)
3940 init_ring_lists(&dev_priv->ring[i]);
3941 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3942 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3943 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3944 i915_gem_retire_work_handler);
3945 init_completion(&dev_priv->error_completion);
3946
3947 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3948 if (IS_GEN3(dev)) {
3949 I915_WRITE(MI_ARB_STATE,
3950 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3951 }
3952
3953 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3954
3955 /* Old X drivers will take 0-2 for front, back, depth buffers */
3956 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3957 dev_priv->fence_reg_start = 3;
3958
3959 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3960 dev_priv->num_fence_regs = 16;
3961 else
3962 dev_priv->num_fence_regs = 8;
3963
3964 /* Initialize fence registers to zero */
3965 i915_gem_reset_fences(dev);
3966
3967 i915_gem_detect_bit_6_swizzle(dev);
3968 init_waitqueue_head(&dev_priv->pending_flip_queue);
3969
3970 dev_priv->mm.interruptible = true;
3971
3972 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3973 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3974 register_shrinker(&dev_priv->mm.inactive_shrinker);
3975 }
3976
3977 /*
3978 * Create a physically contiguous memory object for this object
3979 * e.g. for cursor + overlay regs
3980 */
3981 static int i915_gem_init_phys_object(struct drm_device *dev,
3982 int id, int size, int align)
3983 {
3984 drm_i915_private_t *dev_priv = dev->dev_private;
3985 struct drm_i915_gem_phys_object *phys_obj;
3986 int ret;
3987
3988 if (dev_priv->mm.phys_objs[id - 1] || !size)
3989 return 0;
3990
3991 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3992 if (!phys_obj)
3993 return -ENOMEM;
3994
3995 phys_obj->id = id;
3996
3997 phys_obj->handle = drm_pci_alloc(dev, size, align);
3998 if (!phys_obj->handle) {
3999 ret = -ENOMEM;
4000 goto kfree_obj;
4001 }
4002 #ifdef CONFIG_X86
4003 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4004 #endif
4005
4006 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4007
4008 return 0;
4009 kfree_obj:
4010 kfree(phys_obj);
4011 return ret;
4012 }
4013
4014 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4015 {
4016 drm_i915_private_t *dev_priv = dev->dev_private;
4017 struct drm_i915_gem_phys_object *phys_obj;
4018
4019 if (!dev_priv->mm.phys_objs[id - 1])
4020 return;
4021
4022 phys_obj = dev_priv->mm.phys_objs[id - 1];
4023 if (phys_obj->cur_obj) {
4024 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4025 }
4026
4027 #ifdef CONFIG_X86
4028 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4029 #endif
4030 drm_pci_free(dev, phys_obj->handle);
4031 kfree(phys_obj);
4032 dev_priv->mm.phys_objs[id - 1] = NULL;
4033 }
4034
4035 void i915_gem_free_all_phys_object(struct drm_device *dev)
4036 {
4037 int i;
4038
4039 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4040 i915_gem_free_phys_object(dev, i);
4041 }
4042
4043 void i915_gem_detach_phys_object(struct drm_device *dev,
4044 struct drm_i915_gem_object *obj)
4045 {
4046 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4047 char *vaddr;
4048 int i;
4049 int page_count;
4050
4051 if (!obj->phys_obj)
4052 return;
4053 vaddr = obj->phys_obj->handle->vaddr;
4054
4055 page_count = obj->base.size / PAGE_SIZE;
4056 for (i = 0; i < page_count; i++) {
4057 struct page *page = shmem_read_mapping_page(mapping, i);
4058 if (!IS_ERR(page)) {
4059 char *dst = kmap_atomic(page);
4060 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4061 kunmap_atomic(dst);
4062
4063 drm_clflush_pages(&page, 1);
4064
4065 set_page_dirty(page);
4066 mark_page_accessed(page);
4067 page_cache_release(page);
4068 }
4069 }
4070 intel_gtt_chipset_flush();
4071
4072 obj->phys_obj->cur_obj = NULL;
4073 obj->phys_obj = NULL;
4074 }
4075
4076 int
4077 i915_gem_attach_phys_object(struct drm_device *dev,
4078 struct drm_i915_gem_object *obj,
4079 int id,
4080 int align)
4081 {
4082 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4083 drm_i915_private_t *dev_priv = dev->dev_private;
4084 int ret = 0;
4085 int page_count;
4086 int i;
4087
4088 if (id > I915_MAX_PHYS_OBJECT)
4089 return -EINVAL;
4090
4091 if (obj->phys_obj) {
4092 if (obj->phys_obj->id == id)
4093 return 0;
4094 i915_gem_detach_phys_object(dev, obj);
4095 }
4096
4097 /* create a new object */
4098 if (!dev_priv->mm.phys_objs[id - 1]) {
4099 ret = i915_gem_init_phys_object(dev, id,
4100 obj->base.size, align);
4101 if (ret) {
4102 DRM_ERROR("failed to init phys object %d size: %zu\n",
4103 id, obj->base.size);
4104 return ret;
4105 }
4106 }
4107
4108 /* bind to the object */
4109 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4110 obj->phys_obj->cur_obj = obj;
4111
4112 page_count = obj->base.size / PAGE_SIZE;
4113
4114 for (i = 0; i < page_count; i++) {
4115 struct page *page;
4116 char *dst, *src;
4117
4118 page = shmem_read_mapping_page(mapping, i);
4119 if (IS_ERR(page))
4120 return PTR_ERR(page);
4121
4122 src = kmap_atomic(page);
4123 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4124 memcpy(dst, src, PAGE_SIZE);
4125 kunmap_atomic(src);
4126
4127 mark_page_accessed(page);
4128 page_cache_release(page);
4129 }
4130
4131 return 0;
4132 }
4133
4134 static int
4135 i915_gem_phys_pwrite(struct drm_device *dev,
4136 struct drm_i915_gem_object *obj,
4137 struct drm_i915_gem_pwrite *args,
4138 struct drm_file *file_priv)
4139 {
4140 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4141 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4142
4143 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4144 unsigned long unwritten;
4145
4146 /* The physical object once assigned is fixed for the lifetime
4147 * of the obj, so we can safely drop the lock and continue
4148 * to access vaddr.
4149 */
4150 mutex_unlock(&dev->struct_mutex);
4151 unwritten = copy_from_user(vaddr, user_data, args->size);
4152 mutex_lock(&dev->struct_mutex);
4153 if (unwritten)
4154 return -EFAULT;
4155 }
4156
4157 intel_gtt_chipset_flush();
4158 return 0;
4159 }
4160
4161 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4162 {
4163 struct drm_i915_file_private *file_priv = file->driver_priv;
4164
4165 /* Clean up our request list when the client is going away, so that
4166 * later retire_requests won't dereference our soon-to-be-gone
4167 * file_priv.
4168 */
4169 spin_lock(&file_priv->mm.lock);
4170 while (!list_empty(&file_priv->mm.request_list)) {
4171 struct drm_i915_gem_request *request;
4172
4173 request = list_first_entry(&file_priv->mm.request_list,
4174 struct drm_i915_gem_request,
4175 client_list);
4176 list_del(&request->client_list);
4177 request->file_priv = NULL;
4178 }
4179 spin_unlock(&file_priv->mm.lock);
4180 }
4181
4182 static int
4183 i915_gpu_is_active(struct drm_device *dev)
4184 {
4185 drm_i915_private_t *dev_priv = dev->dev_private;
4186 int lists_empty;
4187
4188 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4189 list_empty(&dev_priv->mm.active_list);
4190
4191 return !lists_empty;
4192 }
4193
4194 static int
4195 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4196 {
4197 struct drm_i915_private *dev_priv =
4198 container_of(shrinker,
4199 struct drm_i915_private,
4200 mm.inactive_shrinker);
4201 struct drm_device *dev = dev_priv->dev;
4202 struct drm_i915_gem_object *obj, *next;
4203 int nr_to_scan = sc->nr_to_scan;
4204 int cnt;
4205
4206 if (!mutex_trylock(&dev->struct_mutex))
4207 return 0;
4208
4209 /* "fast-path" to count number of available objects */
4210 if (nr_to_scan == 0) {
4211 cnt = 0;
4212 list_for_each_entry(obj,
4213 &dev_priv->mm.inactive_list,
4214 mm_list)
4215 cnt++;
4216 mutex_unlock(&dev->struct_mutex);
4217 return cnt / 100 * sysctl_vfs_cache_pressure;
4218 }
4219
4220 rescan:
4221 /* first scan for clean buffers */
4222 i915_gem_retire_requests(dev);
4223
4224 list_for_each_entry_safe(obj, next,
4225 &dev_priv->mm.inactive_list,
4226 mm_list) {
4227 if (i915_gem_object_is_purgeable(obj)) {
4228 if (i915_gem_object_unbind(obj) == 0 &&
4229 --nr_to_scan == 0)
4230 break;
4231 }
4232 }
4233
4234 /* second pass, evict/count anything still on the inactive list */
4235 cnt = 0;
4236 list_for_each_entry_safe(obj, next,
4237 &dev_priv->mm.inactive_list,
4238 mm_list) {
4239 if (nr_to_scan &&
4240 i915_gem_object_unbind(obj) == 0)
4241 nr_to_scan--;
4242 else
4243 cnt++;
4244 }
4245
4246 if (nr_to_scan && i915_gpu_is_active(dev)) {
4247 /*
4248 * We are desperate for pages, so as a last resort, wait
4249 * for the GPU to finish and discard whatever we can.
4250 * This has a dramatic impact to reduce the number of
4251 * OOM-killer events whilst running the GPU aggressively.
4252 */
4253 if (i915_gpu_idle(dev) == 0)
4254 goto rescan;
4255 }
4256 mutex_unlock(&dev->struct_mutex);
4257 return cnt / 100 * sysctl_vfs_cache_pressure;
4258 }
This page took 0.153823 seconds and 5 git commands to generate.