[media] omap3isp: Replace cpu_is_omap3630() with ISP revision check
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
110 return ret;
111 }
112
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 int ret;
129
130 ret = i915_gem_wait_for_error(dev);
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
138 WARN_ON(i915_verify_lists(dev));
139 return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file)
151 {
152 struct drm_i915_gem_init *args = data;
153
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
160
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
165 mutex_lock(&dev->struct_mutex);
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
168 mutex_unlock(&dev->struct_mutex);
169
170 return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 struct drm_file *file)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 struct drm_i915_gem_get_aperture *args = data;
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
181
182 pinned = 0;
183 mutex_lock(&dev->struct_mutex);
184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
187 mutex_unlock(&dev->struct_mutex);
188
189 args->aper_size = dev_priv->mm.gtt_total;
190 args->aper_available_size = args->aper_size - pinned;
191
192 return 0;
193 }
194
195 static int
196 i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
200 {
201 struct drm_i915_gem_object *obj;
202 int ret;
203 u32 handle;
204
205 size = roundup(size, PAGE_SIZE);
206 if (size == 0)
207 return -EINVAL;
208
209 /* Allocate the new object */
210 obj = i915_gem_alloc_object(dev, size);
211 if (obj == NULL)
212 return -ENOMEM;
213
214 ret = drm_gem_handle_create(file, &obj->base, &handle);
215 if (ret) {
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218 kfree(obj);
219 return ret;
220 }
221
222 /* drop reference from allocate - handle holds it now */
223 drm_gem_object_unreference(&obj->base);
224 trace_i915_gem_object_create(obj);
225
226 *handle_p = handle;
227 return 0;
228 }
229
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234 {
235 /* have to work out size/pitch and return them */
236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240 }
241
242 int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245 {
246 return drm_gem_handle_delete(file, handle);
247 }
248
249 /**
250 * Creates a new mm object and returns a handle to it.
251 */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255 {
256 struct drm_i915_gem_create *args = data;
257
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260 }
261
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267 obj->tiling_mode != I915_TILING_NONE;
268 }
269
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274 {
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294 }
295
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
299 int length)
300 {
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320 }
321
322 /* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330 char *vaddr;
331 int ret;
332
333 if (unlikely(page_do_bit17_swizzling))
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
345 return ret ? -EFAULT : 0;
346 }
347
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351 {
352 if (unlikely(swizzled)) {
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368 }
369
370 /* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
396 return ret ? - EFAULT : 0;
397 }
398
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
404 {
405 char __user *user_data;
406 ssize_t remain;
407 loff_t offset;
408 int shmem_page_offset, page_length, ret = 0;
409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 int hit_slowpath = 0;
411 int prefaulted = 0;
412 int needs_clflush = 0;
413 struct scatterlist *sg;
414 int i;
415
416 user_data = (char __user *) (uintptr_t) args->data_ptr;
417 remain = args->size;
418
419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
433 }
434
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
441 offset = args->offset;
442
443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444 struct page *page;
445
446 if (i < offset >> PAGE_SHIFT)
447 continue;
448
449 if (remain <= 0)
450 break;
451
452 /* Operation in this page
453 *
454 * shmem_page_offset = offset within page in shmem file
455 * page_length = bytes to copy for this page
456 */
457 shmem_page_offset = offset_in_page(offset);
458 page_length = remain;
459 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 page_length = PAGE_SIZE - shmem_page_offset;
461
462 page = sg_page(sg);
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
471
472 hit_slowpath = 1;
473 mutex_unlock(&dev->struct_mutex);
474
475 if (!prefaulted) {
476 ret = fault_in_multipages_writeable(user_data, remain);
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
484
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
488
489 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492 mark_page_accessed(page);
493
494 if (ret)
495 goto out;
496
497 remain -= page_length;
498 user_data += page_length;
499 offset += page_length;
500 }
501
502 out:
503 i915_gem_object_unpin_pages(obj);
504
505 if (hit_slowpath) {
506 /* Fixup: Kill any reinstated backing storage pages */
507 if (obj->madv == __I915_MADV_PURGED)
508 i915_gem_object_truncate(obj);
509 }
510
511 return ret;
512 }
513
514 /**
515 * Reads data from the object referenced by handle.
516 *
517 * On error, the contents of *data are undefined.
518 */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521 struct drm_file *file)
522 {
523 struct drm_i915_gem_pread *args = data;
524 struct drm_i915_gem_object *obj;
525 int ret = 0;
526
527 if (args->size == 0)
528 return 0;
529
530 if (!access_ok(VERIFY_WRITE,
531 (char __user *)(uintptr_t)args->data_ptr,
532 args->size))
533 return -EFAULT;
534
535 ret = i915_mutex_lock_interruptible(dev);
536 if (ret)
537 return ret;
538
539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540 if (&obj->base == NULL) {
541 ret = -ENOENT;
542 goto unlock;
543 }
544
545 /* Bounds check source. */
546 if (args->offset > obj->base.size ||
547 args->size > obj->base.size - args->offset) {
548 ret = -EINVAL;
549 goto out;
550 }
551
552 /* prime objects have no backing filp to GEM pread/pwrite
553 * pages from.
554 */
555 if (!obj->base.filp) {
556 ret = -EINVAL;
557 goto out;
558 }
559
560 trace_i915_gem_object_pread(obj, args->offset, args->size);
561
562 ret = i915_gem_shmem_pread(dev, obj, args, file);
563
564 out:
565 drm_gem_object_unreference(&obj->base);
566 unlock:
567 mutex_unlock(&dev->struct_mutex);
568 return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572 * page faults in the source data
573 */
574
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
580 {
581 void __iomem *vaddr_atomic;
582 void *vaddr;
583 unsigned long unwritten;
584
585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 /* We can use the cpu mem copy function because this is X86. */
587 vaddr = (void __force*)vaddr_atomic + page_offset;
588 unwritten = __copy_from_user_inatomic_nocache(vaddr,
589 user_data, length);
590 io_mapping_unmap_atomic(vaddr_atomic);
591 return unwritten;
592 }
593
594 /**
595 * This is the fast pwrite path, where we copy the data directly from the
596 * user into the GTT, uncached.
597 */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 struct drm_i915_gem_object *obj,
601 struct drm_i915_gem_pwrite *args,
602 struct drm_file *file)
603 {
604 drm_i915_private_t *dev_priv = dev->dev_private;
605 ssize_t remain;
606 loff_t offset, page_base;
607 char __user *user_data;
608 int page_offset, page_length, ret;
609
610 ret = i915_gem_object_pin(obj, 0, true, true);
611 if (ret)
612 goto out;
613
614 ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 if (ret)
616 goto out_unpin;
617
618 ret = i915_gem_object_put_fence(obj);
619 if (ret)
620 goto out_unpin;
621
622 user_data = (char __user *) (uintptr_t) args->data_ptr;
623 remain = args->size;
624
625 offset = obj->gtt_offset + args->offset;
626
627 while (remain > 0) {
628 /* Operation in this page
629 *
630 * page_base = page offset within aperture
631 * page_offset = offset within page
632 * page_length = bytes to copy for this page
633 */
634 page_base = offset & PAGE_MASK;
635 page_offset = offset_in_page(offset);
636 page_length = remain;
637 if ((page_offset + remain) > PAGE_SIZE)
638 page_length = PAGE_SIZE - page_offset;
639
640 /* If we get a fault while copying data, then (presumably) our
641 * source page isn't available. Return the error and we'll
642 * retry in the slow path.
643 */
644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645 page_offset, user_data, page_length)) {
646 ret = -EFAULT;
647 goto out_unpin;
648 }
649
650 remain -= page_length;
651 user_data += page_length;
652 offset += page_length;
653 }
654
655 out_unpin:
656 i915_gem_object_unpin(obj);
657 out:
658 return ret;
659 }
660
661 /* Per-page copy function for the shmem pwrite fastpath.
662 * Flushes invalid cachelines before writing to the target if
663 * needs_clflush_before is set and flushes out any written cachelines after
664 * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 char __user *user_data,
668 bool page_do_bit17_swizzling,
669 bool needs_clflush_before,
670 bool needs_clflush_after)
671 {
672 char *vaddr;
673 int ret;
674
675 if (unlikely(page_do_bit17_swizzling))
676 return -EINVAL;
677
678 vaddr = kmap_atomic(page);
679 if (needs_clflush_before)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 user_data,
684 page_length);
685 if (needs_clflush_after)
686 drm_clflush_virt_range(vaddr + shmem_page_offset,
687 page_length);
688 kunmap_atomic(vaddr);
689
690 return ret ? -EFAULT : 0;
691 }
692
693 /* Only difference to the fast-path function is that this can handle bit17
694 * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 char __user *user_data,
698 bool page_do_bit17_swizzling,
699 bool needs_clflush_before,
700 bool needs_clflush_after)
701 {
702 char *vaddr;
703 int ret;
704
705 vaddr = kmap(page);
706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 page_length,
709 page_do_bit17_swizzling);
710 if (page_do_bit17_swizzling)
711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712 user_data,
713 page_length);
714 else
715 ret = __copy_from_user(vaddr + shmem_page_offset,
716 user_data,
717 page_length);
718 if (needs_clflush_after)
719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 page_length,
721 page_do_bit17_swizzling);
722 kunmap(page);
723
724 return ret ? -EFAULT : 0;
725 }
726
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729 struct drm_i915_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file)
732 {
733 ssize_t remain;
734 loff_t offset;
735 char __user *user_data;
736 int shmem_page_offset, page_length, ret = 0;
737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 int hit_slowpath = 0;
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
741 int i;
742 struct scatterlist *sg;
743
744 user_data = (char __user *) (uintptr_t) args->data_ptr;
745 remain = args->size;
746
747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
754 if (obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_after = 1;
756 if (obj->gtt_space) {
757 ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 if (ret)
759 return ret;
760 }
761 }
762 /* Same trick applies for invalidate partially written cachelines before
763 * writing. */
764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 && obj->cache_level == I915_CACHE_NONE)
766 needs_clflush_before = 1;
767
768 ret = i915_gem_object_get_pages(obj);
769 if (ret)
770 return ret;
771
772 i915_gem_object_pin_pages(obj);
773
774 offset = args->offset;
775 obj->dirty = 1;
776
777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778 struct page *page;
779 int partial_cacheline_write;
780
781 if (i < offset >> PAGE_SHIFT)
782 continue;
783
784 if (remain <= 0)
785 break;
786
787 /* Operation in this page
788 *
789 * shmem_page_offset = offset within page in shmem file
790 * page_length = bytes to copy for this page
791 */
792 shmem_page_offset = offset_in_page(offset);
793
794 page_length = remain;
795 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 page_length = PAGE_SIZE - shmem_page_offset;
797
798 /* If we don't overwrite a cacheline completely we need to be
799 * careful to have up-to-date data by first clflushing. Don't
800 * overcomplicate things and flush the entire patch. */
801 partial_cacheline_write = needs_clflush_before &&
802 ((shmem_page_offset | page_length)
803 & (boot_cpu_data.x86_clflush_size - 1));
804
805 page = sg_page(sg);
806 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 (page_to_phys(page) & (1 << 17)) != 0;
808
809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813 if (ret == 0)
814 goto next_page;
815
816 hit_slowpath = 1;
817 mutex_unlock(&dev->struct_mutex);
818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 partial_cacheline_write,
821 needs_clflush_after);
822
823 mutex_lock(&dev->struct_mutex);
824
825 next_page:
826 set_page_dirty(page);
827 mark_page_accessed(page);
828
829 if (ret)
830 goto out;
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837 out:
838 i915_gem_object_unpin_pages(obj);
839
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 intel_gtt_chipset_flush();
849 }
850 }
851
852 if (needs_clflush_after)
853 intel_gtt_chipset_flush();
854
855 return ret;
856 }
857
858 /**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 struct drm_file *file)
866 {
867 struct drm_i915_gem_pwrite *args = data;
868 struct drm_i915_gem_object *obj;
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
881 if (ret)
882 return -EFAULT;
883
884 ret = i915_mutex_lock_interruptible(dev);
885 if (ret)
886 return ret;
887
888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 if (&obj->base == NULL) {
890 ret = -ENOENT;
891 goto unlock;
892 }
893
894 /* Bounds check destination. */
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
897 ret = -EINVAL;
898 goto out;
899 }
900
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911 ret = -EFAULT;
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
918 if (obj->phys_obj) {
919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 goto out;
921 }
922
923 if (obj->cache_level == I915_CACHE_NONE &&
924 obj->tiling_mode == I915_TILING_NONE &&
925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927 /* Note that the gtt paths might fail with non-page-backed user
928 * pointers (e.g. gtt mappings when moving data between
929 * textures). Fallback to the shmem path in that case. */
930 }
931
932 if (ret == -EFAULT || ret == -ENOSPC)
933 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934
935 out:
936 drm_gem_object_unreference(&obj->base);
937 unlock:
938 mutex_unlock(&dev->struct_mutex);
939 return ret;
940 }
941
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 bool interruptible)
945 {
946 if (atomic_read(&dev_priv->mm.wedged)) {
947 struct completion *x = &dev_priv->error_completion;
948 bool recovery_complete;
949 unsigned long flags;
950
951 /* Give the error handler a chance to run. */
952 spin_lock_irqsave(&x->wait.lock, flags);
953 recovery_complete = x->done > 0;
954 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956 /* Non-interruptible callers can't handle -EAGAIN, hence return
957 * -EIO unconditionally for these. */
958 if (!interruptible)
959 return -EIO;
960
961 /* Recovery complete, but still wedged means reset failure. */
962 if (recovery_complete)
963 return -EIO;
964
965 return -EAGAIN;
966 }
967
968 return 0;
969 }
970
971 /*
972 * Compare seqno against outstanding lazy request. Emit a request if they are
973 * equal.
974 */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978 int ret;
979
980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982 ret = 0;
983 if (seqno == ring->outstanding_lazy_request)
984 ret = i915_add_request(ring, NULL, NULL);
985
986 return ret;
987 }
988
989 /**
990 * __wait_seqno - wait until execution of seqno has finished
991 * @ring: the ring expected to report seqno
992 * @seqno: duh!
993 * @interruptible: do an interruptible wait (normally yes)
994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995 *
996 * Returns 0 if the seqno was found within the alloted time. Else returns the
997 * errno with remaining time filled in timeout argument.
998 */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 bool interruptible, struct timespec *timeout)
1001 {
1002 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 struct timespec before, now, wait_time={1,0};
1004 unsigned long timeout_jiffies;
1005 long end;
1006 bool wait_forever = true;
1007 int ret;
1008
1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 return 0;
1011
1012 trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014 if (timeout != NULL) {
1015 wait_time = *timeout;
1016 wait_forever = false;
1017 }
1018
1019 timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021 if (WARN_ON(!ring->irq_get(ring)))
1022 return -ENODEV;
1023
1024 /* Record current time in case interrupted by signal, or wedged * */
1025 getrawmonotonic(&before);
1026
1027 #define EXIT_COND \
1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 atomic_read(&dev_priv->mm.wedged))
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
1039 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 if (ret)
1041 end = ret;
1042 } while (end == 0 && wait_forever);
1043
1044 getrawmonotonic(&now);
1045
1046 ring->irq_put(ring);
1047 trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049
1050 if (timeout) {
1051 struct timespec sleep_time = timespec_sub(now, before);
1052 *timeout = timespec_sub(*timeout, sleep_time);
1053 }
1054
1055 switch (end) {
1056 case -EIO:
1057 case -EAGAIN: /* Wedged */
1058 case -ERESTARTSYS: /* Signal */
1059 return (int)end;
1060 case 0: /* Timeout */
1061 if (timeout)
1062 set_normalized_timespec(timeout, 0, 0);
1063 return -ETIME;
1064 default: /* Completed */
1065 WARN_ON(end < 0); /* We're not aware of other errors */
1066 return 0;
1067 }
1068 }
1069
1070 /**
1071 * Waits for a sequence number to be signaled, and cleans up the
1072 * request and object lists appropriately for that event.
1073 */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 bool interruptible = dev_priv->mm.interruptible;
1080 int ret;
1081
1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 BUG_ON(seqno == 0);
1084
1085 ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 if (ret)
1087 return ret;
1088
1089 ret = i915_gem_check_olr(ring, seqno);
1090 if (ret)
1091 return ret;
1092
1093 return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095
1096 /**
1097 * Ensures that all rendering to the object has completed and the object is
1098 * safe to unbind from the GTT or access from the CPU.
1099 */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 bool readonly)
1103 {
1104 struct intel_ring_buffer *ring = obj->ring;
1105 u32 seqno;
1106 int ret;
1107
1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 if (seqno == 0)
1110 return 0;
1111
1112 ret = i915_wait_seqno(ring, seqno);
1113 if (ret)
1114 return ret;
1115
1116 i915_gem_retire_requests_ring(ring);
1117
1118 /* Manually manage the write flush as we may have not yet
1119 * retired the buffer.
1120 */
1121 if (obj->last_write_seqno &&
1122 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 obj->last_write_seqno = 0;
1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 }
1126
1127 return 0;
1128 }
1129
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131 * as the object state may change during this call.
1132 */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 bool readonly)
1136 {
1137 struct drm_device *dev = obj->base.dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 struct intel_ring_buffer *ring = obj->ring;
1140 u32 seqno;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(!dev_priv->mm.interruptible);
1145
1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 if (seqno == 0)
1148 return 0;
1149
1150 ret = i915_gem_check_wedge(dev_priv, true);
1151 if (ret)
1152 return ret;
1153
1154 ret = i915_gem_check_olr(ring, seqno);
1155 if (ret)
1156 return ret;
1157
1158 mutex_unlock(&dev->struct_mutex);
1159 ret = __wait_seqno(ring, seqno, true, NULL);
1160 mutex_lock(&dev->struct_mutex);
1161
1162 i915_gem_retire_requests_ring(ring);
1163
1164 /* Manually manage the write flush as we may have not yet
1165 * retired the buffer.
1166 */
1167 if (obj->last_write_seqno &&
1168 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 obj->last_write_seqno = 0;
1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 }
1172
1173 return ret;
1174 }
1175
1176 /**
1177 * Called when user space prepares to use an object with the CPU, either
1178 * through the mmap ioctl's mapping or a GTT mapping.
1179 */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182 struct drm_file *file)
1183 {
1184 struct drm_i915_gem_set_domain *args = data;
1185 struct drm_i915_gem_object *obj;
1186 uint32_t read_domains = args->read_domains;
1187 uint32_t write_domain = args->write_domain;
1188 int ret;
1189
1190 /* Only handle setting domains to types used by the CPU. */
1191 if (write_domain & I915_GEM_GPU_DOMAINS)
1192 return -EINVAL;
1193
1194 if (read_domains & I915_GEM_GPU_DOMAINS)
1195 return -EINVAL;
1196
1197 /* Having something in the write domain implies it's in the read
1198 * domain, and only that read domain. Enforce that in the request.
1199 */
1200 if (write_domain != 0 && read_domains != write_domain)
1201 return -EINVAL;
1202
1203 ret = i915_mutex_lock_interruptible(dev);
1204 if (ret)
1205 return ret;
1206
1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208 if (&obj->base == NULL) {
1209 ret = -ENOENT;
1210 goto unlock;
1211 }
1212
1213 /* Try to flush the object off the GPU without holding the lock.
1214 * We will repeat the flush holding the lock in the normal manner
1215 * to catch cases where we are gazumped.
1216 */
1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 if (ret)
1219 goto unref;
1220
1221 if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223
1224 /* Silently promote "you're not bound, there was nothing to do"
1225 * to success, since the client was just asking us to
1226 * make sure everything was done.
1227 */
1228 if (ret == -EINVAL)
1229 ret = 0;
1230 } else {
1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232 }
1233
1234 unref:
1235 drm_gem_object_unreference(&obj->base);
1236 unlock:
1237 mutex_unlock(&dev->struct_mutex);
1238 return ret;
1239 }
1240
1241 /**
1242 * Called when user space has done writes to this buffer
1243 */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246 struct drm_file *file)
1247 {
1248 struct drm_i915_gem_sw_finish *args = data;
1249 struct drm_i915_gem_object *obj;
1250 int ret = 0;
1251
1252 ret = i915_mutex_lock_interruptible(dev);
1253 if (ret)
1254 return ret;
1255
1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257 if (&obj->base == NULL) {
1258 ret = -ENOENT;
1259 goto unlock;
1260 }
1261
1262 /* Pinned buffers may be scanout, so flush the cache */
1263 if (obj->pin_count)
1264 i915_gem_object_flush_cpu_write_domain(obj);
1265
1266 drm_gem_object_unreference(&obj->base);
1267 unlock:
1268 mutex_unlock(&dev->struct_mutex);
1269 return ret;
1270 }
1271
1272 /**
1273 * Maps the contents of an object, returning the address it is mapped
1274 * into.
1275 *
1276 * While the mapping holds a reference on the contents of the object, it doesn't
1277 * imply a ref on the object itself.
1278 */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281 struct drm_file *file)
1282 {
1283 struct drm_i915_gem_mmap *args = data;
1284 struct drm_gem_object *obj;
1285 unsigned long addr;
1286
1287 obj = drm_gem_object_lookup(dev, file, args->handle);
1288 if (obj == NULL)
1289 return -ENOENT;
1290
1291 /* prime objects have no backing filp to GEM mmap
1292 * pages from.
1293 */
1294 if (!obj->filp) {
1295 drm_gem_object_unreference_unlocked(obj);
1296 return -EINVAL;
1297 }
1298
1299 addr = vm_mmap(obj->filp, 0, args->size,
1300 PROT_READ | PROT_WRITE, MAP_SHARED,
1301 args->offset);
1302 drm_gem_object_unreference_unlocked(obj);
1303 if (IS_ERR((void *)addr))
1304 return addr;
1305
1306 args->addr_ptr = (uint64_t) addr;
1307
1308 return 0;
1309 }
1310
1311 /**
1312 * i915_gem_fault - fault a page into the GTT
1313 * vma: VMA in question
1314 * vmf: fault info
1315 *
1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317 * from userspace. The fault handler takes care of binding the object to
1318 * the GTT (if needed), allocating and programming a fence register (again,
1319 * only if needed based on whether the old reg is still valid or the object
1320 * is tiled) and inserting a new PTE into the faulting process.
1321 *
1322 * Note that the faulting process may involve evicting existing objects
1323 * from the GTT and/or fence registers to make room. So performance may
1324 * suffer if the GTT working set is large or there are few fence registers
1325 * left.
1326 */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 struct drm_device *dev = obj->base.dev;
1331 drm_i915_private_t *dev_priv = dev->dev_private;
1332 pgoff_t page_offset;
1333 unsigned long pfn;
1334 int ret = 0;
1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336
1337 /* We don't use vmf->pgoff since that has the fake offset */
1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 PAGE_SHIFT;
1340
1341 ret = i915_mutex_lock_interruptible(dev);
1342 if (ret)
1343 goto out;
1344
1345 trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
1347 /* Now bind it into the GTT if needed */
1348 if (!obj->map_and_fenceable) {
1349 ret = i915_gem_object_unbind(obj);
1350 if (ret)
1351 goto unlock;
1352 }
1353 if (!obj->gtt_space) {
1354 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1355 if (ret)
1356 goto unlock;
1357
1358 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1359 if (ret)
1360 goto unlock;
1361 }
1362
1363 if (!obj->has_global_gtt_mapping)
1364 i915_gem_gtt_bind_object(obj, obj->cache_level);
1365
1366 ret = i915_gem_object_get_fence(obj);
1367 if (ret)
1368 goto unlock;
1369
1370 if (i915_gem_object_is_inactive(obj))
1371 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1372
1373 obj->fault_mappable = true;
1374
1375 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1376 page_offset;
1377
1378 /* Finally, remap it using the new GTT offset */
1379 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unlock:
1381 mutex_unlock(&dev->struct_mutex);
1382 out:
1383 switch (ret) {
1384 case -EIO:
1385 /* If this -EIO is due to a gpu hang, give the reset code a
1386 * chance to clean up the mess. Otherwise return the proper
1387 * SIGBUS. */
1388 if (!atomic_read(&dev_priv->mm.wedged))
1389 return VM_FAULT_SIGBUS;
1390 case -EAGAIN:
1391 /* Give the error handler a chance to run and move the
1392 * objects off the GPU active list. Next time we service the
1393 * fault, we should be able to transition the page into the
1394 * GTT without touching the GPU (and so avoid further
1395 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1396 * with coherency, just lost writes.
1397 */
1398 set_need_resched();
1399 case 0:
1400 case -ERESTARTSYS:
1401 case -EINTR:
1402 case -EBUSY:
1403 /*
1404 * EBUSY is ok: this just means that another thread
1405 * already did the job.
1406 */
1407 return VM_FAULT_NOPAGE;
1408 case -ENOMEM:
1409 return VM_FAULT_OOM;
1410 case -ENOSPC:
1411 return VM_FAULT_SIGBUS;
1412 default:
1413 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1414 return VM_FAULT_SIGBUS;
1415 }
1416 }
1417
1418 /**
1419 * i915_gem_release_mmap - remove physical page mappings
1420 * @obj: obj in question
1421 *
1422 * Preserve the reservation of the mmapping with the DRM core code, but
1423 * relinquish ownership of the pages back to the system.
1424 *
1425 * It is vital that we remove the page mapping if we have mapped a tiled
1426 * object through the GTT and then lose the fence register due to
1427 * resource pressure. Similarly if the object has been moved out of the
1428 * aperture, than pages mapped into userspace must be revoked. Removing the
1429 * mapping will then trigger a page fault on the next user access, allowing
1430 * fixup by i915_gem_fault().
1431 */
1432 void
1433 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1434 {
1435 if (!obj->fault_mappable)
1436 return;
1437
1438 if (obj->base.dev->dev_mapping)
1439 unmap_mapping_range(obj->base.dev->dev_mapping,
1440 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1441 obj->base.size, 1);
1442
1443 obj->fault_mappable = false;
1444 }
1445
1446 static uint32_t
1447 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1448 {
1449 uint32_t gtt_size;
1450
1451 if (INTEL_INFO(dev)->gen >= 4 ||
1452 tiling_mode == I915_TILING_NONE)
1453 return size;
1454
1455 /* Previous chips need a power-of-two fence region when tiling */
1456 if (INTEL_INFO(dev)->gen == 3)
1457 gtt_size = 1024*1024;
1458 else
1459 gtt_size = 512*1024;
1460
1461 while (gtt_size < size)
1462 gtt_size <<= 1;
1463
1464 return gtt_size;
1465 }
1466
1467 /**
1468 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1469 * @obj: object to check
1470 *
1471 * Return the required GTT alignment for an object, taking into account
1472 * potential fence register mapping.
1473 */
1474 static uint32_t
1475 i915_gem_get_gtt_alignment(struct drm_device *dev,
1476 uint32_t size,
1477 int tiling_mode)
1478 {
1479 /*
1480 * Minimum alignment is 4k (GTT page size), but might be greater
1481 * if a fence register is needed for the object.
1482 */
1483 if (INTEL_INFO(dev)->gen >= 4 ||
1484 tiling_mode == I915_TILING_NONE)
1485 return 4096;
1486
1487 /*
1488 * Previous chips need to be aligned to the size of the smallest
1489 * fence register that can contain the object.
1490 */
1491 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1492 }
1493
1494 /**
1495 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1496 * unfenced object
1497 * @dev: the device
1498 * @size: size of the object
1499 * @tiling_mode: tiling mode of the object
1500 *
1501 * Return the required GTT alignment for an object, only taking into account
1502 * unfenced tiled surface requirements.
1503 */
1504 uint32_t
1505 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1506 uint32_t size,
1507 int tiling_mode)
1508 {
1509 /*
1510 * Minimum alignment is 4k (GTT page size) for sane hw.
1511 */
1512 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1513 tiling_mode == I915_TILING_NONE)
1514 return 4096;
1515
1516 /* Previous hardware however needs to be aligned to a power-of-two
1517 * tile height. The simplest method for determining this is to reuse
1518 * the power-of-tile object size.
1519 */
1520 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1521 }
1522
1523 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1524 {
1525 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1526 int ret;
1527
1528 if (obj->base.map_list.map)
1529 return 0;
1530
1531 ret = drm_gem_create_mmap_offset(&obj->base);
1532 if (ret != -ENOSPC)
1533 return ret;
1534
1535 /* Badly fragmented mmap space? The only way we can recover
1536 * space is by destroying unwanted objects. We can't randomly release
1537 * mmap_offsets as userspace expects them to be persistent for the
1538 * lifetime of the objects. The closest we can is to release the
1539 * offsets on purgeable objects by truncating it and marking it purged,
1540 * which prevents userspace from ever using that object again.
1541 */
1542 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1543 ret = drm_gem_create_mmap_offset(&obj->base);
1544 if (ret != -ENOSPC)
1545 return ret;
1546
1547 i915_gem_shrink_all(dev_priv);
1548 return drm_gem_create_mmap_offset(&obj->base);
1549 }
1550
1551 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1552 {
1553 if (!obj->base.map_list.map)
1554 return;
1555
1556 drm_gem_free_mmap_offset(&obj->base);
1557 }
1558
1559 int
1560 i915_gem_mmap_gtt(struct drm_file *file,
1561 struct drm_device *dev,
1562 uint32_t handle,
1563 uint64_t *offset)
1564 {
1565 struct drm_i915_private *dev_priv = dev->dev_private;
1566 struct drm_i915_gem_object *obj;
1567 int ret;
1568
1569 ret = i915_mutex_lock_interruptible(dev);
1570 if (ret)
1571 return ret;
1572
1573 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1574 if (&obj->base == NULL) {
1575 ret = -ENOENT;
1576 goto unlock;
1577 }
1578
1579 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1580 ret = -E2BIG;
1581 goto out;
1582 }
1583
1584 if (obj->madv != I915_MADV_WILLNEED) {
1585 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1586 ret = -EINVAL;
1587 goto out;
1588 }
1589
1590 ret = i915_gem_object_create_mmap_offset(obj);
1591 if (ret)
1592 goto out;
1593
1594 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1595
1596 out:
1597 drm_gem_object_unreference(&obj->base);
1598 unlock:
1599 mutex_unlock(&dev->struct_mutex);
1600 return ret;
1601 }
1602
1603 /**
1604 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1605 * @dev: DRM device
1606 * @data: GTT mapping ioctl data
1607 * @file: GEM object info
1608 *
1609 * Simply returns the fake offset to userspace so it can mmap it.
1610 * The mmap call will end up in drm_gem_mmap(), which will set things
1611 * up so we can get faults in the handler above.
1612 *
1613 * The fault handler will take care of binding the object into the GTT
1614 * (since it may have been evicted to make room for something), allocating
1615 * a fence register, and mapping the appropriate aperture address into
1616 * userspace.
1617 */
1618 int
1619 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1620 struct drm_file *file)
1621 {
1622 struct drm_i915_gem_mmap_gtt *args = data;
1623
1624 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1625 }
1626
1627 /* Immediately discard the backing storage */
1628 static void
1629 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1630 {
1631 struct inode *inode;
1632
1633 i915_gem_object_free_mmap_offset(obj);
1634
1635 if (obj->base.filp == NULL)
1636 return;
1637
1638 /* Our goal here is to return as much of the memory as
1639 * is possible back to the system as we are called from OOM.
1640 * To do this we must instruct the shmfs to drop all of its
1641 * backing pages, *now*.
1642 */
1643 inode = obj->base.filp->f_path.dentry->d_inode;
1644 shmem_truncate_range(inode, 0, (loff_t)-1);
1645
1646 obj->madv = __I915_MADV_PURGED;
1647 }
1648
1649 static inline int
1650 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1651 {
1652 return obj->madv == I915_MADV_DONTNEED;
1653 }
1654
1655 static void
1656 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1657 {
1658 int page_count = obj->base.size / PAGE_SIZE;
1659 struct scatterlist *sg;
1660 int ret, i;
1661
1662 BUG_ON(obj->madv == __I915_MADV_PURGED);
1663
1664 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1665 if (ret) {
1666 /* In the event of a disaster, abandon all caches and
1667 * hope for the best.
1668 */
1669 WARN_ON(ret != -EIO);
1670 i915_gem_clflush_object(obj);
1671 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1672 }
1673
1674 if (i915_gem_object_needs_bit17_swizzle(obj))
1675 i915_gem_object_save_bit_17_swizzle(obj);
1676
1677 if (obj->madv == I915_MADV_DONTNEED)
1678 obj->dirty = 0;
1679
1680 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1681 struct page *page = sg_page(sg);
1682
1683 if (obj->dirty)
1684 set_page_dirty(page);
1685
1686 if (obj->madv == I915_MADV_WILLNEED)
1687 mark_page_accessed(page);
1688
1689 page_cache_release(page);
1690 }
1691 obj->dirty = 0;
1692
1693 sg_free_table(obj->pages);
1694 kfree(obj->pages);
1695 }
1696
1697 static int
1698 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1699 {
1700 const struct drm_i915_gem_object_ops *ops = obj->ops;
1701
1702 if (obj->pages == NULL)
1703 return 0;
1704
1705 BUG_ON(obj->gtt_space);
1706
1707 if (obj->pages_pin_count)
1708 return -EBUSY;
1709
1710 ops->put_pages(obj);
1711 obj->pages = NULL;
1712
1713 list_del(&obj->gtt_list);
1714 if (i915_gem_object_is_purgeable(obj))
1715 i915_gem_object_truncate(obj);
1716
1717 return 0;
1718 }
1719
1720 static long
1721 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1722 {
1723 struct drm_i915_gem_object *obj, *next;
1724 long count = 0;
1725
1726 list_for_each_entry_safe(obj, next,
1727 &dev_priv->mm.unbound_list,
1728 gtt_list) {
1729 if (i915_gem_object_is_purgeable(obj) &&
1730 i915_gem_object_put_pages(obj) == 0) {
1731 count += obj->base.size >> PAGE_SHIFT;
1732 if (count >= target)
1733 return count;
1734 }
1735 }
1736
1737 list_for_each_entry_safe(obj, next,
1738 &dev_priv->mm.inactive_list,
1739 mm_list) {
1740 if (i915_gem_object_is_purgeable(obj) &&
1741 i915_gem_object_unbind(obj) == 0 &&
1742 i915_gem_object_put_pages(obj) == 0) {
1743 count += obj->base.size >> PAGE_SHIFT;
1744 if (count >= target)
1745 return count;
1746 }
1747 }
1748
1749 return count;
1750 }
1751
1752 static void
1753 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1754 {
1755 struct drm_i915_gem_object *obj, *next;
1756
1757 i915_gem_evict_everything(dev_priv->dev);
1758
1759 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1760 i915_gem_object_put_pages(obj);
1761 }
1762
1763 static int
1764 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1765 {
1766 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1767 int page_count, i;
1768 struct address_space *mapping;
1769 struct sg_table *st;
1770 struct scatterlist *sg;
1771 struct page *page;
1772 gfp_t gfp;
1773
1774 /* Assert that the object is not currently in any GPU domain. As it
1775 * wasn't in the GTT, there shouldn't be any way it could have been in
1776 * a GPU cache
1777 */
1778 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1779 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1780
1781 st = kmalloc(sizeof(*st), GFP_KERNEL);
1782 if (st == NULL)
1783 return -ENOMEM;
1784
1785 page_count = obj->base.size / PAGE_SIZE;
1786 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1787 sg_free_table(st);
1788 kfree(st);
1789 return -ENOMEM;
1790 }
1791
1792 /* Get the list of pages out of our struct file. They'll be pinned
1793 * at this point until we release them.
1794 *
1795 * Fail silently without starting the shrinker
1796 */
1797 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1798 gfp = mapping_gfp_mask(mapping);
1799 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1800 gfp &= ~(__GFP_IO | __GFP_WAIT);
1801 for_each_sg(st->sgl, sg, page_count, i) {
1802 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1803 if (IS_ERR(page)) {
1804 i915_gem_purge(dev_priv, page_count);
1805 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806 }
1807 if (IS_ERR(page)) {
1808 /* We've tried hard to allocate the memory by reaping
1809 * our own buffer, now let the real VM do its job and
1810 * go down in flames if truly OOM.
1811 */
1812 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1813 gfp |= __GFP_IO | __GFP_WAIT;
1814
1815 i915_gem_shrink_all(dev_priv);
1816 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1817 if (IS_ERR(page))
1818 goto err_pages;
1819
1820 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1821 gfp &= ~(__GFP_IO | __GFP_WAIT);
1822 }
1823
1824 sg_set_page(sg, page, PAGE_SIZE, 0);
1825 }
1826
1827 obj->pages = st;
1828
1829 if (i915_gem_object_needs_bit17_swizzle(obj))
1830 i915_gem_object_do_bit_17_swizzle(obj);
1831
1832 return 0;
1833
1834 err_pages:
1835 for_each_sg(st->sgl, sg, i, page_count)
1836 page_cache_release(sg_page(sg));
1837 sg_free_table(st);
1838 kfree(st);
1839 return PTR_ERR(page);
1840 }
1841
1842 /* Ensure that the associated pages are gathered from the backing storage
1843 * and pinned into our object. i915_gem_object_get_pages() may be called
1844 * multiple times before they are released by a single call to
1845 * i915_gem_object_put_pages() - once the pages are no longer referenced
1846 * either as a result of memory pressure (reaping pages under the shrinker)
1847 * or as the object is itself released.
1848 */
1849 int
1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 int ret;
1855
1856 if (obj->pages)
1857 return 0;
1858
1859 BUG_ON(obj->pages_pin_count);
1860
1861 ret = ops->get_pages(obj);
1862 if (ret)
1863 return ret;
1864
1865 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1866 return 0;
1867 }
1868
1869 void
1870 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1871 struct intel_ring_buffer *ring,
1872 u32 seqno)
1873 {
1874 struct drm_device *dev = obj->base.dev;
1875 struct drm_i915_private *dev_priv = dev->dev_private;
1876
1877 BUG_ON(ring == NULL);
1878 obj->ring = ring;
1879
1880 /* Add a reference if we're newly entering the active list. */
1881 if (!obj->active) {
1882 drm_gem_object_reference(&obj->base);
1883 obj->active = 1;
1884 }
1885
1886 /* Move from whatever list we were on to the tail of execution. */
1887 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1888 list_move_tail(&obj->ring_list, &ring->active_list);
1889
1890 obj->last_read_seqno = seqno;
1891
1892 if (obj->fenced_gpu_access) {
1893 obj->last_fenced_seqno = seqno;
1894
1895 /* Bump MRU to take account of the delayed flush */
1896 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1897 struct drm_i915_fence_reg *reg;
1898
1899 reg = &dev_priv->fence_regs[obj->fence_reg];
1900 list_move_tail(&reg->lru_list,
1901 &dev_priv->mm.fence_list);
1902 }
1903 }
1904 }
1905
1906 static void
1907 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1908 {
1909 struct drm_device *dev = obj->base.dev;
1910 struct drm_i915_private *dev_priv = dev->dev_private;
1911
1912 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1913 BUG_ON(!obj->active);
1914
1915 if (obj->pin_count) /* are we a framebuffer? */
1916 intel_mark_fb_idle(obj);
1917
1918 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1919
1920 list_del_init(&obj->ring_list);
1921 obj->ring = NULL;
1922
1923 obj->last_read_seqno = 0;
1924 obj->last_write_seqno = 0;
1925 obj->base.write_domain = 0;
1926
1927 obj->last_fenced_seqno = 0;
1928 obj->fenced_gpu_access = false;
1929
1930 obj->active = 0;
1931 drm_gem_object_unreference(&obj->base);
1932
1933 WARN_ON(i915_verify_lists(dev));
1934 }
1935
1936 static u32
1937 i915_gem_get_seqno(struct drm_device *dev)
1938 {
1939 drm_i915_private_t *dev_priv = dev->dev_private;
1940 u32 seqno = dev_priv->next_seqno;
1941
1942 /* reserve 0 for non-seqno */
1943 if (++dev_priv->next_seqno == 0)
1944 dev_priv->next_seqno = 1;
1945
1946 return seqno;
1947 }
1948
1949 u32
1950 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1951 {
1952 if (ring->outstanding_lazy_request == 0)
1953 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1954
1955 return ring->outstanding_lazy_request;
1956 }
1957
1958 int
1959 i915_add_request(struct intel_ring_buffer *ring,
1960 struct drm_file *file,
1961 u32 *out_seqno)
1962 {
1963 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1964 struct drm_i915_gem_request *request;
1965 u32 request_ring_position;
1966 u32 seqno;
1967 int was_empty;
1968 int ret;
1969
1970 /*
1971 * Emit any outstanding flushes - execbuf can fail to emit the flush
1972 * after having emitted the batchbuffer command. Hence we need to fix
1973 * things up similar to emitting the lazy request. The difference here
1974 * is that the flush _must_ happen before the next request, no matter
1975 * what.
1976 */
1977 ret = intel_ring_flush_all_caches(ring);
1978 if (ret)
1979 return ret;
1980
1981 request = kmalloc(sizeof(*request), GFP_KERNEL);
1982 if (request == NULL)
1983 return -ENOMEM;
1984
1985 seqno = i915_gem_next_request_seqno(ring);
1986
1987 /* Record the position of the start of the request so that
1988 * should we detect the updated seqno part-way through the
1989 * GPU processing the request, we never over-estimate the
1990 * position of the head.
1991 */
1992 request_ring_position = intel_ring_get_tail(ring);
1993
1994 ret = ring->add_request(ring, &seqno);
1995 if (ret) {
1996 kfree(request);
1997 return ret;
1998 }
1999
2000 trace_i915_gem_request_add(ring, seqno);
2001
2002 request->seqno = seqno;
2003 request->ring = ring;
2004 request->tail = request_ring_position;
2005 request->emitted_jiffies = jiffies;
2006 was_empty = list_empty(&ring->request_list);
2007 list_add_tail(&request->list, &ring->request_list);
2008 request->file_priv = NULL;
2009
2010 if (file) {
2011 struct drm_i915_file_private *file_priv = file->driver_priv;
2012
2013 spin_lock(&file_priv->mm.lock);
2014 request->file_priv = file_priv;
2015 list_add_tail(&request->client_list,
2016 &file_priv->mm.request_list);
2017 spin_unlock(&file_priv->mm.lock);
2018 }
2019
2020 ring->outstanding_lazy_request = 0;
2021
2022 if (!dev_priv->mm.suspended) {
2023 if (i915_enable_hangcheck) {
2024 mod_timer(&dev_priv->hangcheck_timer,
2025 jiffies +
2026 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2027 }
2028 if (was_empty) {
2029 queue_delayed_work(dev_priv->wq,
2030 &dev_priv->mm.retire_work, HZ);
2031 intel_mark_busy(dev_priv->dev);
2032 }
2033 }
2034
2035 if (out_seqno)
2036 *out_seqno = seqno;
2037 return 0;
2038 }
2039
2040 static inline void
2041 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2042 {
2043 struct drm_i915_file_private *file_priv = request->file_priv;
2044
2045 if (!file_priv)
2046 return;
2047
2048 spin_lock(&file_priv->mm.lock);
2049 if (request->file_priv) {
2050 list_del(&request->client_list);
2051 request->file_priv = NULL;
2052 }
2053 spin_unlock(&file_priv->mm.lock);
2054 }
2055
2056 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2057 struct intel_ring_buffer *ring)
2058 {
2059 while (!list_empty(&ring->request_list)) {
2060 struct drm_i915_gem_request *request;
2061
2062 request = list_first_entry(&ring->request_list,
2063 struct drm_i915_gem_request,
2064 list);
2065
2066 list_del(&request->list);
2067 i915_gem_request_remove_from_client(request);
2068 kfree(request);
2069 }
2070
2071 while (!list_empty(&ring->active_list)) {
2072 struct drm_i915_gem_object *obj;
2073
2074 obj = list_first_entry(&ring->active_list,
2075 struct drm_i915_gem_object,
2076 ring_list);
2077
2078 i915_gem_object_move_to_inactive(obj);
2079 }
2080 }
2081
2082 static void i915_gem_reset_fences(struct drm_device *dev)
2083 {
2084 struct drm_i915_private *dev_priv = dev->dev_private;
2085 int i;
2086
2087 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2088 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2089
2090 i915_gem_write_fence(dev, i, NULL);
2091
2092 if (reg->obj)
2093 i915_gem_object_fence_lost(reg->obj);
2094
2095 reg->pin_count = 0;
2096 reg->obj = NULL;
2097 INIT_LIST_HEAD(&reg->lru_list);
2098 }
2099
2100 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2101 }
2102
2103 void i915_gem_reset(struct drm_device *dev)
2104 {
2105 struct drm_i915_private *dev_priv = dev->dev_private;
2106 struct drm_i915_gem_object *obj;
2107 struct intel_ring_buffer *ring;
2108 int i;
2109
2110 for_each_ring(ring, dev_priv, i)
2111 i915_gem_reset_ring_lists(dev_priv, ring);
2112
2113 /* Move everything out of the GPU domains to ensure we do any
2114 * necessary invalidation upon reuse.
2115 */
2116 list_for_each_entry(obj,
2117 &dev_priv->mm.inactive_list,
2118 mm_list)
2119 {
2120 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2121 }
2122
2123 /* The fence registers are invalidated so clear them out */
2124 i915_gem_reset_fences(dev);
2125 }
2126
2127 /**
2128 * This function clears the request list as sequence numbers are passed.
2129 */
2130 void
2131 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2132 {
2133 uint32_t seqno;
2134 int i;
2135
2136 if (list_empty(&ring->request_list))
2137 return;
2138
2139 WARN_ON(i915_verify_lists(ring->dev));
2140
2141 seqno = ring->get_seqno(ring, true);
2142
2143 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2144 if (seqno >= ring->sync_seqno[i])
2145 ring->sync_seqno[i] = 0;
2146
2147 while (!list_empty(&ring->request_list)) {
2148 struct drm_i915_gem_request *request;
2149
2150 request = list_first_entry(&ring->request_list,
2151 struct drm_i915_gem_request,
2152 list);
2153
2154 if (!i915_seqno_passed(seqno, request->seqno))
2155 break;
2156
2157 trace_i915_gem_request_retire(ring, request->seqno);
2158 /* We know the GPU must have read the request to have
2159 * sent us the seqno + interrupt, so use the position
2160 * of tail of the request to update the last known position
2161 * of the GPU head.
2162 */
2163 ring->last_retired_head = request->tail;
2164
2165 list_del(&request->list);
2166 i915_gem_request_remove_from_client(request);
2167 kfree(request);
2168 }
2169
2170 /* Move any buffers on the active list that are no longer referenced
2171 * by the ringbuffer to the flushing/inactive lists as appropriate.
2172 */
2173 while (!list_empty(&ring->active_list)) {
2174 struct drm_i915_gem_object *obj;
2175
2176 obj = list_first_entry(&ring->active_list,
2177 struct drm_i915_gem_object,
2178 ring_list);
2179
2180 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2181 break;
2182
2183 i915_gem_object_move_to_inactive(obj);
2184 }
2185
2186 if (unlikely(ring->trace_irq_seqno &&
2187 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2188 ring->irq_put(ring);
2189 ring->trace_irq_seqno = 0;
2190 }
2191
2192 WARN_ON(i915_verify_lists(ring->dev));
2193 }
2194
2195 void
2196 i915_gem_retire_requests(struct drm_device *dev)
2197 {
2198 drm_i915_private_t *dev_priv = dev->dev_private;
2199 struct intel_ring_buffer *ring;
2200 int i;
2201
2202 for_each_ring(ring, dev_priv, i)
2203 i915_gem_retire_requests_ring(ring);
2204 }
2205
2206 static void
2207 i915_gem_retire_work_handler(struct work_struct *work)
2208 {
2209 drm_i915_private_t *dev_priv;
2210 struct drm_device *dev;
2211 struct intel_ring_buffer *ring;
2212 bool idle;
2213 int i;
2214
2215 dev_priv = container_of(work, drm_i915_private_t,
2216 mm.retire_work.work);
2217 dev = dev_priv->dev;
2218
2219 /* Come back later if the device is busy... */
2220 if (!mutex_trylock(&dev->struct_mutex)) {
2221 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2222 return;
2223 }
2224
2225 i915_gem_retire_requests(dev);
2226
2227 /* Send a periodic flush down the ring so we don't hold onto GEM
2228 * objects indefinitely.
2229 */
2230 idle = true;
2231 for_each_ring(ring, dev_priv, i) {
2232 if (ring->gpu_caches_dirty)
2233 i915_add_request(ring, NULL, NULL);
2234
2235 idle &= list_empty(&ring->request_list);
2236 }
2237
2238 if (!dev_priv->mm.suspended && !idle)
2239 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2240 if (idle)
2241 intel_mark_idle(dev);
2242
2243 mutex_unlock(&dev->struct_mutex);
2244 }
2245
2246 /**
2247 * Ensures that an object will eventually get non-busy by flushing any required
2248 * write domains, emitting any outstanding lazy request and retiring and
2249 * completed requests.
2250 */
2251 static int
2252 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2253 {
2254 int ret;
2255
2256 if (obj->active) {
2257 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2258 if (ret)
2259 return ret;
2260
2261 i915_gem_retire_requests_ring(obj->ring);
2262 }
2263
2264 return 0;
2265 }
2266
2267 /**
2268 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2269 * @DRM_IOCTL_ARGS: standard ioctl arguments
2270 *
2271 * Returns 0 if successful, else an error is returned with the remaining time in
2272 * the timeout parameter.
2273 * -ETIME: object is still busy after timeout
2274 * -ERESTARTSYS: signal interrupted the wait
2275 * -ENONENT: object doesn't exist
2276 * Also possible, but rare:
2277 * -EAGAIN: GPU wedged
2278 * -ENOMEM: damn
2279 * -ENODEV: Internal IRQ fail
2280 * -E?: The add request failed
2281 *
2282 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2283 * non-zero timeout parameter the wait ioctl will wait for the given number of
2284 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2285 * without holding struct_mutex the object may become re-busied before this
2286 * function completes. A similar but shorter * race condition exists in the busy
2287 * ioctl
2288 */
2289 int
2290 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2291 {
2292 struct drm_i915_gem_wait *args = data;
2293 struct drm_i915_gem_object *obj;
2294 struct intel_ring_buffer *ring = NULL;
2295 struct timespec timeout_stack, *timeout = NULL;
2296 u32 seqno = 0;
2297 int ret = 0;
2298
2299 if (args->timeout_ns >= 0) {
2300 timeout_stack = ns_to_timespec(args->timeout_ns);
2301 timeout = &timeout_stack;
2302 }
2303
2304 ret = i915_mutex_lock_interruptible(dev);
2305 if (ret)
2306 return ret;
2307
2308 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2309 if (&obj->base == NULL) {
2310 mutex_unlock(&dev->struct_mutex);
2311 return -ENOENT;
2312 }
2313
2314 /* Need to make sure the object gets inactive eventually. */
2315 ret = i915_gem_object_flush_active(obj);
2316 if (ret)
2317 goto out;
2318
2319 if (obj->active) {
2320 seqno = obj->last_read_seqno;
2321 ring = obj->ring;
2322 }
2323
2324 if (seqno == 0)
2325 goto out;
2326
2327 /* Do this after OLR check to make sure we make forward progress polling
2328 * on this IOCTL with a 0 timeout (like busy ioctl)
2329 */
2330 if (!args->timeout_ns) {
2331 ret = -ETIME;
2332 goto out;
2333 }
2334
2335 drm_gem_object_unreference(&obj->base);
2336 mutex_unlock(&dev->struct_mutex);
2337
2338 ret = __wait_seqno(ring, seqno, true, timeout);
2339 if (timeout) {
2340 WARN_ON(!timespec_valid(timeout));
2341 args->timeout_ns = timespec_to_ns(timeout);
2342 }
2343 return ret;
2344
2345 out:
2346 drm_gem_object_unreference(&obj->base);
2347 mutex_unlock(&dev->struct_mutex);
2348 return ret;
2349 }
2350
2351 /**
2352 * i915_gem_object_sync - sync an object to a ring.
2353 *
2354 * @obj: object which may be in use on another ring.
2355 * @to: ring we wish to use the object on. May be NULL.
2356 *
2357 * This code is meant to abstract object synchronization with the GPU.
2358 * Calling with NULL implies synchronizing the object with the CPU
2359 * rather than a particular GPU ring.
2360 *
2361 * Returns 0 if successful, else propagates up the lower layer error.
2362 */
2363 int
2364 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2365 struct intel_ring_buffer *to)
2366 {
2367 struct intel_ring_buffer *from = obj->ring;
2368 u32 seqno;
2369 int ret, idx;
2370
2371 if (from == NULL || to == from)
2372 return 0;
2373
2374 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2375 return i915_gem_object_wait_rendering(obj, false);
2376
2377 idx = intel_ring_sync_index(from, to);
2378
2379 seqno = obj->last_read_seqno;
2380 if (seqno <= from->sync_seqno[idx])
2381 return 0;
2382
2383 ret = i915_gem_check_olr(obj->ring, seqno);
2384 if (ret)
2385 return ret;
2386
2387 ret = to->sync_to(to, from, seqno);
2388 if (!ret)
2389 from->sync_seqno[idx] = seqno;
2390
2391 return ret;
2392 }
2393
2394 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2395 {
2396 u32 old_write_domain, old_read_domains;
2397
2398 /* Act a barrier for all accesses through the GTT */
2399 mb();
2400
2401 /* Force a pagefault for domain tracking on next user access */
2402 i915_gem_release_mmap(obj);
2403
2404 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2405 return;
2406
2407 old_read_domains = obj->base.read_domains;
2408 old_write_domain = obj->base.write_domain;
2409
2410 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2411 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2412
2413 trace_i915_gem_object_change_domain(obj,
2414 old_read_domains,
2415 old_write_domain);
2416 }
2417
2418 /**
2419 * Unbinds an object from the GTT aperture.
2420 */
2421 int
2422 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2423 {
2424 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2425 int ret = 0;
2426
2427 if (obj->gtt_space == NULL)
2428 return 0;
2429
2430 if (obj->pin_count)
2431 return -EBUSY;
2432
2433 BUG_ON(obj->pages == NULL);
2434
2435 ret = i915_gem_object_finish_gpu(obj);
2436 if (ret)
2437 return ret;
2438 /* Continue on if we fail due to EIO, the GPU is hung so we
2439 * should be safe and we need to cleanup or else we might
2440 * cause memory corruption through use-after-free.
2441 */
2442
2443 i915_gem_object_finish_gtt(obj);
2444
2445 /* release the fence reg _after_ flushing */
2446 ret = i915_gem_object_put_fence(obj);
2447 if (ret)
2448 return ret;
2449
2450 trace_i915_gem_object_unbind(obj);
2451
2452 if (obj->has_global_gtt_mapping)
2453 i915_gem_gtt_unbind_object(obj);
2454 if (obj->has_aliasing_ppgtt_mapping) {
2455 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2456 obj->has_aliasing_ppgtt_mapping = 0;
2457 }
2458 i915_gem_gtt_finish_object(obj);
2459
2460 list_del(&obj->mm_list);
2461 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2462 /* Avoid an unnecessary call to unbind on rebind. */
2463 obj->map_and_fenceable = true;
2464
2465 drm_mm_put_block(obj->gtt_space);
2466 obj->gtt_space = NULL;
2467 obj->gtt_offset = 0;
2468
2469 return 0;
2470 }
2471
2472 static int i915_ring_idle(struct intel_ring_buffer *ring)
2473 {
2474 if (list_empty(&ring->active_list))
2475 return 0;
2476
2477 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2478 }
2479
2480 int i915_gpu_idle(struct drm_device *dev)
2481 {
2482 drm_i915_private_t *dev_priv = dev->dev_private;
2483 struct intel_ring_buffer *ring;
2484 int ret, i;
2485
2486 /* Flush everything onto the inactive list. */
2487 for_each_ring(ring, dev_priv, i) {
2488 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2489 if (ret)
2490 return ret;
2491
2492 ret = i915_ring_idle(ring);
2493 if (ret)
2494 return ret;
2495 }
2496
2497 return 0;
2498 }
2499
2500 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2501 struct drm_i915_gem_object *obj)
2502 {
2503 drm_i915_private_t *dev_priv = dev->dev_private;
2504 uint64_t val;
2505
2506 if (obj) {
2507 u32 size = obj->gtt_space->size;
2508
2509 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2510 0xfffff000) << 32;
2511 val |= obj->gtt_offset & 0xfffff000;
2512 val |= (uint64_t)((obj->stride / 128) - 1) <<
2513 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2514
2515 if (obj->tiling_mode == I915_TILING_Y)
2516 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2517 val |= I965_FENCE_REG_VALID;
2518 } else
2519 val = 0;
2520
2521 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2522 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2523 }
2524
2525 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2526 struct drm_i915_gem_object *obj)
2527 {
2528 drm_i915_private_t *dev_priv = dev->dev_private;
2529 uint64_t val;
2530
2531 if (obj) {
2532 u32 size = obj->gtt_space->size;
2533
2534 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2535 0xfffff000) << 32;
2536 val |= obj->gtt_offset & 0xfffff000;
2537 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2538 if (obj->tiling_mode == I915_TILING_Y)
2539 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2540 val |= I965_FENCE_REG_VALID;
2541 } else
2542 val = 0;
2543
2544 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2545 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2546 }
2547
2548 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2549 struct drm_i915_gem_object *obj)
2550 {
2551 drm_i915_private_t *dev_priv = dev->dev_private;
2552 u32 val;
2553
2554 if (obj) {
2555 u32 size = obj->gtt_space->size;
2556 int pitch_val;
2557 int tile_width;
2558
2559 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2560 (size & -size) != size ||
2561 (obj->gtt_offset & (size - 1)),
2562 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2563 obj->gtt_offset, obj->map_and_fenceable, size);
2564
2565 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2566 tile_width = 128;
2567 else
2568 tile_width = 512;
2569
2570 /* Note: pitch better be a power of two tile widths */
2571 pitch_val = obj->stride / tile_width;
2572 pitch_val = ffs(pitch_val) - 1;
2573
2574 val = obj->gtt_offset;
2575 if (obj->tiling_mode == I915_TILING_Y)
2576 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2577 val |= I915_FENCE_SIZE_BITS(size);
2578 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2579 val |= I830_FENCE_REG_VALID;
2580 } else
2581 val = 0;
2582
2583 if (reg < 8)
2584 reg = FENCE_REG_830_0 + reg * 4;
2585 else
2586 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2587
2588 I915_WRITE(reg, val);
2589 POSTING_READ(reg);
2590 }
2591
2592 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2593 struct drm_i915_gem_object *obj)
2594 {
2595 drm_i915_private_t *dev_priv = dev->dev_private;
2596 uint32_t val;
2597
2598 if (obj) {
2599 u32 size = obj->gtt_space->size;
2600 uint32_t pitch_val;
2601
2602 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2603 (size & -size) != size ||
2604 (obj->gtt_offset & (size - 1)),
2605 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2606 obj->gtt_offset, size);
2607
2608 pitch_val = obj->stride / 128;
2609 pitch_val = ffs(pitch_val) - 1;
2610
2611 val = obj->gtt_offset;
2612 if (obj->tiling_mode == I915_TILING_Y)
2613 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2614 val |= I830_FENCE_SIZE_BITS(size);
2615 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2616 val |= I830_FENCE_REG_VALID;
2617 } else
2618 val = 0;
2619
2620 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2621 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2622 }
2623
2624 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2625 struct drm_i915_gem_object *obj)
2626 {
2627 switch (INTEL_INFO(dev)->gen) {
2628 case 7:
2629 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2630 case 5:
2631 case 4: i965_write_fence_reg(dev, reg, obj); break;
2632 case 3: i915_write_fence_reg(dev, reg, obj); break;
2633 case 2: i830_write_fence_reg(dev, reg, obj); break;
2634 default: break;
2635 }
2636 }
2637
2638 static inline int fence_number(struct drm_i915_private *dev_priv,
2639 struct drm_i915_fence_reg *fence)
2640 {
2641 return fence - dev_priv->fence_regs;
2642 }
2643
2644 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2645 struct drm_i915_fence_reg *fence,
2646 bool enable)
2647 {
2648 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2649 int reg = fence_number(dev_priv, fence);
2650
2651 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2652
2653 if (enable) {
2654 obj->fence_reg = reg;
2655 fence->obj = obj;
2656 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2657 } else {
2658 obj->fence_reg = I915_FENCE_REG_NONE;
2659 fence->obj = NULL;
2660 list_del_init(&fence->lru_list);
2661 }
2662 }
2663
2664 static int
2665 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2666 {
2667 if (obj->last_fenced_seqno) {
2668 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2669 if (ret)
2670 return ret;
2671
2672 obj->last_fenced_seqno = 0;
2673 }
2674
2675 /* Ensure that all CPU reads are completed before installing a fence
2676 * and all writes before removing the fence.
2677 */
2678 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2679 mb();
2680
2681 obj->fenced_gpu_access = false;
2682 return 0;
2683 }
2684
2685 int
2686 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2687 {
2688 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2689 int ret;
2690
2691 ret = i915_gem_object_flush_fence(obj);
2692 if (ret)
2693 return ret;
2694
2695 if (obj->fence_reg == I915_FENCE_REG_NONE)
2696 return 0;
2697
2698 i915_gem_object_update_fence(obj,
2699 &dev_priv->fence_regs[obj->fence_reg],
2700 false);
2701 i915_gem_object_fence_lost(obj);
2702
2703 return 0;
2704 }
2705
2706 static struct drm_i915_fence_reg *
2707 i915_find_fence_reg(struct drm_device *dev)
2708 {
2709 struct drm_i915_private *dev_priv = dev->dev_private;
2710 struct drm_i915_fence_reg *reg, *avail;
2711 int i;
2712
2713 /* First try to find a free reg */
2714 avail = NULL;
2715 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2716 reg = &dev_priv->fence_regs[i];
2717 if (!reg->obj)
2718 return reg;
2719
2720 if (!reg->pin_count)
2721 avail = reg;
2722 }
2723
2724 if (avail == NULL)
2725 return NULL;
2726
2727 /* None available, try to steal one or wait for a user to finish */
2728 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2729 if (reg->pin_count)
2730 continue;
2731
2732 return reg;
2733 }
2734
2735 return NULL;
2736 }
2737
2738 /**
2739 * i915_gem_object_get_fence - set up fencing for an object
2740 * @obj: object to map through a fence reg
2741 *
2742 * When mapping objects through the GTT, userspace wants to be able to write
2743 * to them without having to worry about swizzling if the object is tiled.
2744 * This function walks the fence regs looking for a free one for @obj,
2745 * stealing one if it can't find any.
2746 *
2747 * It then sets up the reg based on the object's properties: address, pitch
2748 * and tiling format.
2749 *
2750 * For an untiled surface, this removes any existing fence.
2751 */
2752 int
2753 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2754 {
2755 struct drm_device *dev = obj->base.dev;
2756 struct drm_i915_private *dev_priv = dev->dev_private;
2757 bool enable = obj->tiling_mode != I915_TILING_NONE;
2758 struct drm_i915_fence_reg *reg;
2759 int ret;
2760
2761 /* Have we updated the tiling parameters upon the object and so
2762 * will need to serialise the write to the associated fence register?
2763 */
2764 if (obj->fence_dirty) {
2765 ret = i915_gem_object_flush_fence(obj);
2766 if (ret)
2767 return ret;
2768 }
2769
2770 /* Just update our place in the LRU if our fence is getting reused. */
2771 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2772 reg = &dev_priv->fence_regs[obj->fence_reg];
2773 if (!obj->fence_dirty) {
2774 list_move_tail(&reg->lru_list,
2775 &dev_priv->mm.fence_list);
2776 return 0;
2777 }
2778 } else if (enable) {
2779 reg = i915_find_fence_reg(dev);
2780 if (reg == NULL)
2781 return -EDEADLK;
2782
2783 if (reg->obj) {
2784 struct drm_i915_gem_object *old = reg->obj;
2785
2786 ret = i915_gem_object_flush_fence(old);
2787 if (ret)
2788 return ret;
2789
2790 i915_gem_object_fence_lost(old);
2791 }
2792 } else
2793 return 0;
2794
2795 i915_gem_object_update_fence(obj, reg, enable);
2796 obj->fence_dirty = false;
2797
2798 return 0;
2799 }
2800
2801 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2802 struct drm_mm_node *gtt_space,
2803 unsigned long cache_level)
2804 {
2805 struct drm_mm_node *other;
2806
2807 /* On non-LLC machines we have to be careful when putting differing
2808 * types of snoopable memory together to avoid the prefetcher
2809 * crossing memory domains and dieing.
2810 */
2811 if (HAS_LLC(dev))
2812 return true;
2813
2814 if (gtt_space == NULL)
2815 return true;
2816
2817 if (list_empty(&gtt_space->node_list))
2818 return true;
2819
2820 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2821 if (other->allocated && !other->hole_follows && other->color != cache_level)
2822 return false;
2823
2824 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2825 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2826 return false;
2827
2828 return true;
2829 }
2830
2831 static void i915_gem_verify_gtt(struct drm_device *dev)
2832 {
2833 #if WATCH_GTT
2834 struct drm_i915_private *dev_priv = dev->dev_private;
2835 struct drm_i915_gem_object *obj;
2836 int err = 0;
2837
2838 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2839 if (obj->gtt_space == NULL) {
2840 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2841 err++;
2842 continue;
2843 }
2844
2845 if (obj->cache_level != obj->gtt_space->color) {
2846 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2847 obj->gtt_space->start,
2848 obj->gtt_space->start + obj->gtt_space->size,
2849 obj->cache_level,
2850 obj->gtt_space->color);
2851 err++;
2852 continue;
2853 }
2854
2855 if (!i915_gem_valid_gtt_space(dev,
2856 obj->gtt_space,
2857 obj->cache_level)) {
2858 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2859 obj->gtt_space->start,
2860 obj->gtt_space->start + obj->gtt_space->size,
2861 obj->cache_level);
2862 err++;
2863 continue;
2864 }
2865 }
2866
2867 WARN_ON(err);
2868 #endif
2869 }
2870
2871 /**
2872 * Finds free space in the GTT aperture and binds the object there.
2873 */
2874 static int
2875 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2876 unsigned alignment,
2877 bool map_and_fenceable,
2878 bool nonblocking)
2879 {
2880 struct drm_device *dev = obj->base.dev;
2881 drm_i915_private_t *dev_priv = dev->dev_private;
2882 struct drm_mm_node *free_space;
2883 u32 size, fence_size, fence_alignment, unfenced_alignment;
2884 bool mappable, fenceable;
2885 int ret;
2886
2887 if (obj->madv != I915_MADV_WILLNEED) {
2888 DRM_ERROR("Attempting to bind a purgeable object\n");
2889 return -EINVAL;
2890 }
2891
2892 fence_size = i915_gem_get_gtt_size(dev,
2893 obj->base.size,
2894 obj->tiling_mode);
2895 fence_alignment = i915_gem_get_gtt_alignment(dev,
2896 obj->base.size,
2897 obj->tiling_mode);
2898 unfenced_alignment =
2899 i915_gem_get_unfenced_gtt_alignment(dev,
2900 obj->base.size,
2901 obj->tiling_mode);
2902
2903 if (alignment == 0)
2904 alignment = map_and_fenceable ? fence_alignment :
2905 unfenced_alignment;
2906 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2907 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2908 return -EINVAL;
2909 }
2910
2911 size = map_and_fenceable ? fence_size : obj->base.size;
2912
2913 /* If the object is bigger than the entire aperture, reject it early
2914 * before evicting everything in a vain attempt to find space.
2915 */
2916 if (obj->base.size >
2917 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2918 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2919 return -E2BIG;
2920 }
2921
2922 ret = i915_gem_object_get_pages(obj);
2923 if (ret)
2924 return ret;
2925
2926 search_free:
2927 if (map_and_fenceable)
2928 free_space =
2929 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2930 size, alignment, obj->cache_level,
2931 0, dev_priv->mm.gtt_mappable_end,
2932 false);
2933 else
2934 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2935 size, alignment, obj->cache_level,
2936 false);
2937
2938 if (free_space != NULL) {
2939 if (map_and_fenceable)
2940 obj->gtt_space =
2941 drm_mm_get_block_range_generic(free_space,
2942 size, alignment, obj->cache_level,
2943 0, dev_priv->mm.gtt_mappable_end,
2944 false);
2945 else
2946 obj->gtt_space =
2947 drm_mm_get_block_generic(free_space,
2948 size, alignment, obj->cache_level,
2949 false);
2950 }
2951 if (obj->gtt_space == NULL) {
2952 ret = i915_gem_evict_something(dev, size, alignment,
2953 obj->cache_level,
2954 map_and_fenceable,
2955 nonblocking);
2956 if (ret)
2957 return ret;
2958
2959 goto search_free;
2960 }
2961 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2962 obj->gtt_space,
2963 obj->cache_level))) {
2964 drm_mm_put_block(obj->gtt_space);
2965 obj->gtt_space = NULL;
2966 return -EINVAL;
2967 }
2968
2969
2970 ret = i915_gem_gtt_prepare_object(obj);
2971 if (ret) {
2972 drm_mm_put_block(obj->gtt_space);
2973 obj->gtt_space = NULL;
2974 return ret;
2975 }
2976
2977 if (!dev_priv->mm.aliasing_ppgtt)
2978 i915_gem_gtt_bind_object(obj, obj->cache_level);
2979
2980 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2981 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2982
2983 obj->gtt_offset = obj->gtt_space->start;
2984
2985 fenceable =
2986 obj->gtt_space->size == fence_size &&
2987 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2988
2989 mappable =
2990 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2991
2992 obj->map_and_fenceable = mappable && fenceable;
2993
2994 trace_i915_gem_object_bind(obj, map_and_fenceable);
2995 i915_gem_verify_gtt(dev);
2996 return 0;
2997 }
2998
2999 void
3000 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3001 {
3002 /* If we don't have a page list set up, then we're not pinned
3003 * to GPU, and we can ignore the cache flush because it'll happen
3004 * again at bind time.
3005 */
3006 if (obj->pages == NULL)
3007 return;
3008
3009 /* If the GPU is snooping the contents of the CPU cache,
3010 * we do not need to manually clear the CPU cache lines. However,
3011 * the caches are only snooped when the render cache is
3012 * flushed/invalidated. As we always have to emit invalidations
3013 * and flushes when moving into and out of the RENDER domain, correct
3014 * snooping behaviour occurs naturally as the result of our domain
3015 * tracking.
3016 */
3017 if (obj->cache_level != I915_CACHE_NONE)
3018 return;
3019
3020 trace_i915_gem_object_clflush(obj);
3021
3022 drm_clflush_sg(obj->pages);
3023 }
3024
3025 /** Flushes the GTT write domain for the object if it's dirty. */
3026 static void
3027 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3028 {
3029 uint32_t old_write_domain;
3030
3031 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3032 return;
3033
3034 /* No actual flushing is required for the GTT write domain. Writes
3035 * to it immediately go to main memory as far as we know, so there's
3036 * no chipset flush. It also doesn't land in render cache.
3037 *
3038 * However, we do have to enforce the order so that all writes through
3039 * the GTT land before any writes to the device, such as updates to
3040 * the GATT itself.
3041 */
3042 wmb();
3043
3044 old_write_domain = obj->base.write_domain;
3045 obj->base.write_domain = 0;
3046
3047 trace_i915_gem_object_change_domain(obj,
3048 obj->base.read_domains,
3049 old_write_domain);
3050 }
3051
3052 /** Flushes the CPU write domain for the object if it's dirty. */
3053 static void
3054 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3055 {
3056 uint32_t old_write_domain;
3057
3058 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3059 return;
3060
3061 i915_gem_clflush_object(obj);
3062 intel_gtt_chipset_flush();
3063 old_write_domain = obj->base.write_domain;
3064 obj->base.write_domain = 0;
3065
3066 trace_i915_gem_object_change_domain(obj,
3067 obj->base.read_domains,
3068 old_write_domain);
3069 }
3070
3071 /**
3072 * Moves a single object to the GTT read, and possibly write domain.
3073 *
3074 * This function returns when the move is complete, including waiting on
3075 * flushes to occur.
3076 */
3077 int
3078 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3079 {
3080 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3081 uint32_t old_write_domain, old_read_domains;
3082 int ret;
3083
3084 /* Not valid to be called on unbound objects. */
3085 if (obj->gtt_space == NULL)
3086 return -EINVAL;
3087
3088 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3089 return 0;
3090
3091 ret = i915_gem_object_wait_rendering(obj, !write);
3092 if (ret)
3093 return ret;
3094
3095 i915_gem_object_flush_cpu_write_domain(obj);
3096
3097 old_write_domain = obj->base.write_domain;
3098 old_read_domains = obj->base.read_domains;
3099
3100 /* It should now be out of any other write domains, and we can update
3101 * the domain values for our changes.
3102 */
3103 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3104 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3105 if (write) {
3106 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3107 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3108 obj->dirty = 1;
3109 }
3110
3111 trace_i915_gem_object_change_domain(obj,
3112 old_read_domains,
3113 old_write_domain);
3114
3115 /* And bump the LRU for this access */
3116 if (i915_gem_object_is_inactive(obj))
3117 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3118
3119 return 0;
3120 }
3121
3122 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3123 enum i915_cache_level cache_level)
3124 {
3125 struct drm_device *dev = obj->base.dev;
3126 drm_i915_private_t *dev_priv = dev->dev_private;
3127 int ret;
3128
3129 if (obj->cache_level == cache_level)
3130 return 0;
3131
3132 if (obj->pin_count) {
3133 DRM_DEBUG("can not change the cache level of pinned objects\n");
3134 return -EBUSY;
3135 }
3136
3137 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3138 ret = i915_gem_object_unbind(obj);
3139 if (ret)
3140 return ret;
3141 }
3142
3143 if (obj->gtt_space) {
3144 ret = i915_gem_object_finish_gpu(obj);
3145 if (ret)
3146 return ret;
3147
3148 i915_gem_object_finish_gtt(obj);
3149
3150 /* Before SandyBridge, you could not use tiling or fence
3151 * registers with snooped memory, so relinquish any fences
3152 * currently pointing to our region in the aperture.
3153 */
3154 if (INTEL_INFO(dev)->gen < 6) {
3155 ret = i915_gem_object_put_fence(obj);
3156 if (ret)
3157 return ret;
3158 }
3159
3160 if (obj->has_global_gtt_mapping)
3161 i915_gem_gtt_bind_object(obj, cache_level);
3162 if (obj->has_aliasing_ppgtt_mapping)
3163 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3164 obj, cache_level);
3165
3166 obj->gtt_space->color = cache_level;
3167 }
3168
3169 if (cache_level == I915_CACHE_NONE) {
3170 u32 old_read_domains, old_write_domain;
3171
3172 /* If we're coming from LLC cached, then we haven't
3173 * actually been tracking whether the data is in the
3174 * CPU cache or not, since we only allow one bit set
3175 * in obj->write_domain and have been skipping the clflushes.
3176 * Just set it to the CPU cache for now.
3177 */
3178 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3179 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3180
3181 old_read_domains = obj->base.read_domains;
3182 old_write_domain = obj->base.write_domain;
3183
3184 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3185 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3186
3187 trace_i915_gem_object_change_domain(obj,
3188 old_read_domains,
3189 old_write_domain);
3190 }
3191
3192 obj->cache_level = cache_level;
3193 i915_gem_verify_gtt(dev);
3194 return 0;
3195 }
3196
3197 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3198 struct drm_file *file)
3199 {
3200 struct drm_i915_gem_caching *args = data;
3201 struct drm_i915_gem_object *obj;
3202 int ret;
3203
3204 ret = i915_mutex_lock_interruptible(dev);
3205 if (ret)
3206 return ret;
3207
3208 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3209 if (&obj->base == NULL) {
3210 ret = -ENOENT;
3211 goto unlock;
3212 }
3213
3214 args->caching = obj->cache_level != I915_CACHE_NONE;
3215
3216 drm_gem_object_unreference(&obj->base);
3217 unlock:
3218 mutex_unlock(&dev->struct_mutex);
3219 return ret;
3220 }
3221
3222 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3223 struct drm_file *file)
3224 {
3225 struct drm_i915_gem_caching *args = data;
3226 struct drm_i915_gem_object *obj;
3227 enum i915_cache_level level;
3228 int ret;
3229
3230 switch (args->caching) {
3231 case I915_CACHING_NONE:
3232 level = I915_CACHE_NONE;
3233 break;
3234 case I915_CACHING_CACHED:
3235 level = I915_CACHE_LLC;
3236 break;
3237 default:
3238 return -EINVAL;
3239 }
3240
3241 ret = i915_mutex_lock_interruptible(dev);
3242 if (ret)
3243 return ret;
3244
3245 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3246 if (&obj->base == NULL) {
3247 ret = -ENOENT;
3248 goto unlock;
3249 }
3250
3251 ret = i915_gem_object_set_cache_level(obj, level);
3252
3253 drm_gem_object_unreference(&obj->base);
3254 unlock:
3255 mutex_unlock(&dev->struct_mutex);
3256 return ret;
3257 }
3258
3259 /*
3260 * Prepare buffer for display plane (scanout, cursors, etc).
3261 * Can be called from an uninterruptible phase (modesetting) and allows
3262 * any flushes to be pipelined (for pageflips).
3263 */
3264 int
3265 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3266 u32 alignment,
3267 struct intel_ring_buffer *pipelined)
3268 {
3269 u32 old_read_domains, old_write_domain;
3270 int ret;
3271
3272 if (pipelined != obj->ring) {
3273 ret = i915_gem_object_sync(obj, pipelined);
3274 if (ret)
3275 return ret;
3276 }
3277
3278 /* The display engine is not coherent with the LLC cache on gen6. As
3279 * a result, we make sure that the pinning that is about to occur is
3280 * done with uncached PTEs. This is lowest common denominator for all
3281 * chipsets.
3282 *
3283 * However for gen6+, we could do better by using the GFDT bit instead
3284 * of uncaching, which would allow us to flush all the LLC-cached data
3285 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3286 */
3287 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3288 if (ret)
3289 return ret;
3290
3291 /* As the user may map the buffer once pinned in the display plane
3292 * (e.g. libkms for the bootup splash), we have to ensure that we
3293 * always use map_and_fenceable for all scanout buffers.
3294 */
3295 ret = i915_gem_object_pin(obj, alignment, true, false);
3296 if (ret)
3297 return ret;
3298
3299 i915_gem_object_flush_cpu_write_domain(obj);
3300
3301 old_write_domain = obj->base.write_domain;
3302 old_read_domains = obj->base.read_domains;
3303
3304 /* It should now be out of any other write domains, and we can update
3305 * the domain values for our changes.
3306 */
3307 obj->base.write_domain = 0;
3308 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3309
3310 trace_i915_gem_object_change_domain(obj,
3311 old_read_domains,
3312 old_write_domain);
3313
3314 return 0;
3315 }
3316
3317 int
3318 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3319 {
3320 int ret;
3321
3322 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3323 return 0;
3324
3325 ret = i915_gem_object_wait_rendering(obj, false);
3326 if (ret)
3327 return ret;
3328
3329 /* Ensure that we invalidate the GPU's caches and TLBs. */
3330 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3331 return 0;
3332 }
3333
3334 /**
3335 * Moves a single object to the CPU read, and possibly write domain.
3336 *
3337 * This function returns when the move is complete, including waiting on
3338 * flushes to occur.
3339 */
3340 int
3341 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3342 {
3343 uint32_t old_write_domain, old_read_domains;
3344 int ret;
3345
3346 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3347 return 0;
3348
3349 ret = i915_gem_object_wait_rendering(obj, !write);
3350 if (ret)
3351 return ret;
3352
3353 i915_gem_object_flush_gtt_write_domain(obj);
3354
3355 old_write_domain = obj->base.write_domain;
3356 old_read_domains = obj->base.read_domains;
3357
3358 /* Flush the CPU cache if it's still invalid. */
3359 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3360 i915_gem_clflush_object(obj);
3361
3362 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3363 }
3364
3365 /* It should now be out of any other write domains, and we can update
3366 * the domain values for our changes.
3367 */
3368 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3369
3370 /* If we're writing through the CPU, then the GPU read domains will
3371 * need to be invalidated at next use.
3372 */
3373 if (write) {
3374 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3375 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3376 }
3377
3378 trace_i915_gem_object_change_domain(obj,
3379 old_read_domains,
3380 old_write_domain);
3381
3382 return 0;
3383 }
3384
3385 /* Throttle our rendering by waiting until the ring has completed our requests
3386 * emitted over 20 msec ago.
3387 *
3388 * Note that if we were to use the current jiffies each time around the loop,
3389 * we wouldn't escape the function with any frames outstanding if the time to
3390 * render a frame was over 20ms.
3391 *
3392 * This should get us reasonable parallelism between CPU and GPU but also
3393 * relatively low latency when blocking on a particular request to finish.
3394 */
3395 static int
3396 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3397 {
3398 struct drm_i915_private *dev_priv = dev->dev_private;
3399 struct drm_i915_file_private *file_priv = file->driver_priv;
3400 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3401 struct drm_i915_gem_request *request;
3402 struct intel_ring_buffer *ring = NULL;
3403 u32 seqno = 0;
3404 int ret;
3405
3406 if (atomic_read(&dev_priv->mm.wedged))
3407 return -EIO;
3408
3409 spin_lock(&file_priv->mm.lock);
3410 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3411 if (time_after_eq(request->emitted_jiffies, recent_enough))
3412 break;
3413
3414 ring = request->ring;
3415 seqno = request->seqno;
3416 }
3417 spin_unlock(&file_priv->mm.lock);
3418
3419 if (seqno == 0)
3420 return 0;
3421
3422 ret = __wait_seqno(ring, seqno, true, NULL);
3423 if (ret == 0)
3424 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3425
3426 return ret;
3427 }
3428
3429 int
3430 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3431 uint32_t alignment,
3432 bool map_and_fenceable,
3433 bool nonblocking)
3434 {
3435 int ret;
3436
3437 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3438 return -EBUSY;
3439
3440 if (obj->gtt_space != NULL) {
3441 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3442 (map_and_fenceable && !obj->map_and_fenceable)) {
3443 WARN(obj->pin_count,
3444 "bo is already pinned with incorrect alignment:"
3445 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3446 " obj->map_and_fenceable=%d\n",
3447 obj->gtt_offset, alignment,
3448 map_and_fenceable,
3449 obj->map_and_fenceable);
3450 ret = i915_gem_object_unbind(obj);
3451 if (ret)
3452 return ret;
3453 }
3454 }
3455
3456 if (obj->gtt_space == NULL) {
3457 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3458 map_and_fenceable,
3459 nonblocking);
3460 if (ret)
3461 return ret;
3462 }
3463
3464 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3465 i915_gem_gtt_bind_object(obj, obj->cache_level);
3466
3467 obj->pin_count++;
3468 obj->pin_mappable |= map_and_fenceable;
3469
3470 return 0;
3471 }
3472
3473 void
3474 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3475 {
3476 BUG_ON(obj->pin_count == 0);
3477 BUG_ON(obj->gtt_space == NULL);
3478
3479 if (--obj->pin_count == 0)
3480 obj->pin_mappable = false;
3481 }
3482
3483 int
3484 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3485 struct drm_file *file)
3486 {
3487 struct drm_i915_gem_pin *args = data;
3488 struct drm_i915_gem_object *obj;
3489 int ret;
3490
3491 ret = i915_mutex_lock_interruptible(dev);
3492 if (ret)
3493 return ret;
3494
3495 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3496 if (&obj->base == NULL) {
3497 ret = -ENOENT;
3498 goto unlock;
3499 }
3500
3501 if (obj->madv != I915_MADV_WILLNEED) {
3502 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3503 ret = -EINVAL;
3504 goto out;
3505 }
3506
3507 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3508 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3509 args->handle);
3510 ret = -EINVAL;
3511 goto out;
3512 }
3513
3514 obj->user_pin_count++;
3515 obj->pin_filp = file;
3516 if (obj->user_pin_count == 1) {
3517 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3518 if (ret)
3519 goto out;
3520 }
3521
3522 /* XXX - flush the CPU caches for pinned objects
3523 * as the X server doesn't manage domains yet
3524 */
3525 i915_gem_object_flush_cpu_write_domain(obj);
3526 args->offset = obj->gtt_offset;
3527 out:
3528 drm_gem_object_unreference(&obj->base);
3529 unlock:
3530 mutex_unlock(&dev->struct_mutex);
3531 return ret;
3532 }
3533
3534 int
3535 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3536 struct drm_file *file)
3537 {
3538 struct drm_i915_gem_pin *args = data;
3539 struct drm_i915_gem_object *obj;
3540 int ret;
3541
3542 ret = i915_mutex_lock_interruptible(dev);
3543 if (ret)
3544 return ret;
3545
3546 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3547 if (&obj->base == NULL) {
3548 ret = -ENOENT;
3549 goto unlock;
3550 }
3551
3552 if (obj->pin_filp != file) {
3553 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3554 args->handle);
3555 ret = -EINVAL;
3556 goto out;
3557 }
3558 obj->user_pin_count--;
3559 if (obj->user_pin_count == 0) {
3560 obj->pin_filp = NULL;
3561 i915_gem_object_unpin(obj);
3562 }
3563
3564 out:
3565 drm_gem_object_unreference(&obj->base);
3566 unlock:
3567 mutex_unlock(&dev->struct_mutex);
3568 return ret;
3569 }
3570
3571 int
3572 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3573 struct drm_file *file)
3574 {
3575 struct drm_i915_gem_busy *args = data;
3576 struct drm_i915_gem_object *obj;
3577 int ret;
3578
3579 ret = i915_mutex_lock_interruptible(dev);
3580 if (ret)
3581 return ret;
3582
3583 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3584 if (&obj->base == NULL) {
3585 ret = -ENOENT;
3586 goto unlock;
3587 }
3588
3589 /* Count all active objects as busy, even if they are currently not used
3590 * by the gpu. Users of this interface expect objects to eventually
3591 * become non-busy without any further actions, therefore emit any
3592 * necessary flushes here.
3593 */
3594 ret = i915_gem_object_flush_active(obj);
3595
3596 args->busy = obj->active;
3597 if (obj->ring) {
3598 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3599 args->busy |= intel_ring_flag(obj->ring) << 16;
3600 }
3601
3602 drm_gem_object_unreference(&obj->base);
3603 unlock:
3604 mutex_unlock(&dev->struct_mutex);
3605 return ret;
3606 }
3607
3608 int
3609 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3610 struct drm_file *file_priv)
3611 {
3612 return i915_gem_ring_throttle(dev, file_priv);
3613 }
3614
3615 int
3616 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3617 struct drm_file *file_priv)
3618 {
3619 struct drm_i915_gem_madvise *args = data;
3620 struct drm_i915_gem_object *obj;
3621 int ret;
3622
3623 switch (args->madv) {
3624 case I915_MADV_DONTNEED:
3625 case I915_MADV_WILLNEED:
3626 break;
3627 default:
3628 return -EINVAL;
3629 }
3630
3631 ret = i915_mutex_lock_interruptible(dev);
3632 if (ret)
3633 return ret;
3634
3635 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3636 if (&obj->base == NULL) {
3637 ret = -ENOENT;
3638 goto unlock;
3639 }
3640
3641 if (obj->pin_count) {
3642 ret = -EINVAL;
3643 goto out;
3644 }
3645
3646 if (obj->madv != __I915_MADV_PURGED)
3647 obj->madv = args->madv;
3648
3649 /* if the object is no longer attached, discard its backing storage */
3650 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3651 i915_gem_object_truncate(obj);
3652
3653 args->retained = obj->madv != __I915_MADV_PURGED;
3654
3655 out:
3656 drm_gem_object_unreference(&obj->base);
3657 unlock:
3658 mutex_unlock(&dev->struct_mutex);
3659 return ret;
3660 }
3661
3662 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3663 const struct drm_i915_gem_object_ops *ops)
3664 {
3665 INIT_LIST_HEAD(&obj->mm_list);
3666 INIT_LIST_HEAD(&obj->gtt_list);
3667 INIT_LIST_HEAD(&obj->ring_list);
3668 INIT_LIST_HEAD(&obj->exec_list);
3669
3670 obj->ops = ops;
3671
3672 obj->fence_reg = I915_FENCE_REG_NONE;
3673 obj->madv = I915_MADV_WILLNEED;
3674 /* Avoid an unnecessary call to unbind on the first bind. */
3675 obj->map_and_fenceable = true;
3676
3677 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3678 }
3679
3680 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3681 .get_pages = i915_gem_object_get_pages_gtt,
3682 .put_pages = i915_gem_object_put_pages_gtt,
3683 };
3684
3685 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3686 size_t size)
3687 {
3688 struct drm_i915_gem_object *obj;
3689 struct address_space *mapping;
3690 u32 mask;
3691
3692 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3693 if (obj == NULL)
3694 return NULL;
3695
3696 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3697 kfree(obj);
3698 return NULL;
3699 }
3700
3701 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3702 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3703 /* 965gm cannot relocate objects above 4GiB. */
3704 mask &= ~__GFP_HIGHMEM;
3705 mask |= __GFP_DMA32;
3706 }
3707
3708 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3709 mapping_set_gfp_mask(mapping, mask);
3710
3711 i915_gem_object_init(obj, &i915_gem_object_ops);
3712
3713 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3714 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3715
3716 if (HAS_LLC(dev)) {
3717 /* On some devices, we can have the GPU use the LLC (the CPU
3718 * cache) for about a 10% performance improvement
3719 * compared to uncached. Graphics requests other than
3720 * display scanout are coherent with the CPU in
3721 * accessing this cache. This means in this mode we
3722 * don't need to clflush on the CPU side, and on the
3723 * GPU side we only need to flush internal caches to
3724 * get data visible to the CPU.
3725 *
3726 * However, we maintain the display planes as UC, and so
3727 * need to rebind when first used as such.
3728 */
3729 obj->cache_level = I915_CACHE_LLC;
3730 } else
3731 obj->cache_level = I915_CACHE_NONE;
3732
3733 return obj;
3734 }
3735
3736 int i915_gem_init_object(struct drm_gem_object *obj)
3737 {
3738 BUG();
3739
3740 return 0;
3741 }
3742
3743 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3744 {
3745 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3746 struct drm_device *dev = obj->base.dev;
3747 drm_i915_private_t *dev_priv = dev->dev_private;
3748
3749 trace_i915_gem_object_destroy(obj);
3750
3751 if (obj->phys_obj)
3752 i915_gem_detach_phys_object(dev, obj);
3753
3754 obj->pin_count = 0;
3755 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3756 bool was_interruptible;
3757
3758 was_interruptible = dev_priv->mm.interruptible;
3759 dev_priv->mm.interruptible = false;
3760
3761 WARN_ON(i915_gem_object_unbind(obj));
3762
3763 dev_priv->mm.interruptible = was_interruptible;
3764 }
3765
3766 obj->pages_pin_count = 0;
3767 i915_gem_object_put_pages(obj);
3768 i915_gem_object_free_mmap_offset(obj);
3769
3770 BUG_ON(obj->pages);
3771
3772 if (obj->base.import_attach)
3773 drm_prime_gem_destroy(&obj->base, NULL);
3774
3775 drm_gem_object_release(&obj->base);
3776 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3777
3778 kfree(obj->bit_17);
3779 kfree(obj);
3780 }
3781
3782 int
3783 i915_gem_idle(struct drm_device *dev)
3784 {
3785 drm_i915_private_t *dev_priv = dev->dev_private;
3786 int ret;
3787
3788 mutex_lock(&dev->struct_mutex);
3789
3790 if (dev_priv->mm.suspended) {
3791 mutex_unlock(&dev->struct_mutex);
3792 return 0;
3793 }
3794
3795 ret = i915_gpu_idle(dev);
3796 if (ret) {
3797 mutex_unlock(&dev->struct_mutex);
3798 return ret;
3799 }
3800 i915_gem_retire_requests(dev);
3801
3802 /* Under UMS, be paranoid and evict. */
3803 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3804 i915_gem_evict_everything(dev);
3805
3806 i915_gem_reset_fences(dev);
3807
3808 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3809 * We need to replace this with a semaphore, or something.
3810 * And not confound mm.suspended!
3811 */
3812 dev_priv->mm.suspended = 1;
3813 del_timer_sync(&dev_priv->hangcheck_timer);
3814
3815 i915_kernel_lost_context(dev);
3816 i915_gem_cleanup_ringbuffer(dev);
3817
3818 mutex_unlock(&dev->struct_mutex);
3819
3820 /* Cancel the retire work handler, which should be idle now. */
3821 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3822
3823 return 0;
3824 }
3825
3826 void i915_gem_l3_remap(struct drm_device *dev)
3827 {
3828 drm_i915_private_t *dev_priv = dev->dev_private;
3829 u32 misccpctl;
3830 int i;
3831
3832 if (!IS_IVYBRIDGE(dev))
3833 return;
3834
3835 if (!dev_priv->mm.l3_remap_info)
3836 return;
3837
3838 misccpctl = I915_READ(GEN7_MISCCPCTL);
3839 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3840 POSTING_READ(GEN7_MISCCPCTL);
3841
3842 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3843 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3844 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3845 DRM_DEBUG("0x%x was already programmed to %x\n",
3846 GEN7_L3LOG_BASE + i, remap);
3847 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3848 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3849 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3850 }
3851
3852 /* Make sure all the writes land before disabling dop clock gating */
3853 POSTING_READ(GEN7_L3LOG_BASE);
3854
3855 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3856 }
3857
3858 void i915_gem_init_swizzling(struct drm_device *dev)
3859 {
3860 drm_i915_private_t *dev_priv = dev->dev_private;
3861
3862 if (INTEL_INFO(dev)->gen < 5 ||
3863 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3864 return;
3865
3866 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3867 DISP_TILE_SURFACE_SWIZZLING);
3868
3869 if (IS_GEN5(dev))
3870 return;
3871
3872 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3873 if (IS_GEN6(dev))
3874 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3875 else
3876 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3877 }
3878
3879 void i915_gem_init_ppgtt(struct drm_device *dev)
3880 {
3881 drm_i915_private_t *dev_priv = dev->dev_private;
3882 uint32_t pd_offset;
3883 struct intel_ring_buffer *ring;
3884 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3885 uint32_t __iomem *pd_addr;
3886 uint32_t pd_entry;
3887 int i;
3888
3889 if (!dev_priv->mm.aliasing_ppgtt)
3890 return;
3891
3892
3893 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3894 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3895 dma_addr_t pt_addr;
3896
3897 if (dev_priv->mm.gtt->needs_dmar)
3898 pt_addr = ppgtt->pt_dma_addr[i];
3899 else
3900 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3901
3902 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3903 pd_entry |= GEN6_PDE_VALID;
3904
3905 writel(pd_entry, pd_addr + i);
3906 }
3907 readl(pd_addr);
3908
3909 pd_offset = ppgtt->pd_offset;
3910 pd_offset /= 64; /* in cachelines, */
3911 pd_offset <<= 16;
3912
3913 if (INTEL_INFO(dev)->gen == 6) {
3914 uint32_t ecochk, gab_ctl, ecobits;
3915
3916 ecobits = I915_READ(GAC_ECO_BITS);
3917 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3918
3919 gab_ctl = I915_READ(GAB_CTL);
3920 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3921
3922 ecochk = I915_READ(GAM_ECOCHK);
3923 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3924 ECOCHK_PPGTT_CACHE64B);
3925 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3926 } else if (INTEL_INFO(dev)->gen >= 7) {
3927 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3928 /* GFX_MODE is per-ring on gen7+ */
3929 }
3930
3931 for_each_ring(ring, dev_priv, i) {
3932 if (INTEL_INFO(dev)->gen >= 7)
3933 I915_WRITE(RING_MODE_GEN7(ring),
3934 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3935
3936 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3937 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3938 }
3939 }
3940
3941 static bool
3942 intel_enable_blt(struct drm_device *dev)
3943 {
3944 if (!HAS_BLT(dev))
3945 return false;
3946
3947 /* The blitter was dysfunctional on early prototypes */
3948 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3949 DRM_INFO("BLT not supported on this pre-production hardware;"
3950 " graphics performance will be degraded.\n");
3951 return false;
3952 }
3953
3954 return true;
3955 }
3956
3957 int
3958 i915_gem_init_hw(struct drm_device *dev)
3959 {
3960 drm_i915_private_t *dev_priv = dev->dev_private;
3961 int ret;
3962
3963 if (!intel_enable_gtt())
3964 return -EIO;
3965
3966 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3967 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3968
3969 i915_gem_l3_remap(dev);
3970
3971 i915_gem_init_swizzling(dev);
3972
3973 ret = intel_init_render_ring_buffer(dev);
3974 if (ret)
3975 return ret;
3976
3977 if (HAS_BSD(dev)) {
3978 ret = intel_init_bsd_ring_buffer(dev);
3979 if (ret)
3980 goto cleanup_render_ring;
3981 }
3982
3983 if (intel_enable_blt(dev)) {
3984 ret = intel_init_blt_ring_buffer(dev);
3985 if (ret)
3986 goto cleanup_bsd_ring;
3987 }
3988
3989 dev_priv->next_seqno = 1;
3990
3991 /*
3992 * XXX: There was some w/a described somewhere suggesting loading
3993 * contexts before PPGTT.
3994 */
3995 i915_gem_context_init(dev);
3996 i915_gem_init_ppgtt(dev);
3997
3998 return 0;
3999
4000 cleanup_bsd_ring:
4001 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4002 cleanup_render_ring:
4003 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4004 return ret;
4005 }
4006
4007 static bool
4008 intel_enable_ppgtt(struct drm_device *dev)
4009 {
4010 if (i915_enable_ppgtt >= 0)
4011 return i915_enable_ppgtt;
4012
4013 #ifdef CONFIG_INTEL_IOMMU
4014 /* Disable ppgtt on SNB if VT-d is on. */
4015 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4016 return false;
4017 #endif
4018
4019 return true;
4020 }
4021
4022 int i915_gem_init(struct drm_device *dev)
4023 {
4024 struct drm_i915_private *dev_priv = dev->dev_private;
4025 unsigned long gtt_size, mappable_size;
4026 int ret;
4027
4028 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4029 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4030
4031 mutex_lock(&dev->struct_mutex);
4032 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4033 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4034 * aperture accordingly when using aliasing ppgtt. */
4035 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4036
4037 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4038
4039 ret = i915_gem_init_aliasing_ppgtt(dev);
4040 if (ret) {
4041 mutex_unlock(&dev->struct_mutex);
4042 return ret;
4043 }
4044 } else {
4045 /* Let GEM Manage all of the aperture.
4046 *
4047 * However, leave one page at the end still bound to the scratch
4048 * page. There are a number of places where the hardware
4049 * apparently prefetches past the end of the object, and we've
4050 * seen multiple hangs with the GPU head pointer stuck in a
4051 * batchbuffer bound at the last page of the aperture. One page
4052 * should be enough to keep any prefetching inside of the
4053 * aperture.
4054 */
4055 i915_gem_init_global_gtt(dev, 0, mappable_size,
4056 gtt_size);
4057 }
4058
4059 ret = i915_gem_init_hw(dev);
4060 mutex_unlock(&dev->struct_mutex);
4061 if (ret) {
4062 i915_gem_cleanup_aliasing_ppgtt(dev);
4063 return ret;
4064 }
4065
4066 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4067 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4068 dev_priv->dri1.allow_batchbuffer = 1;
4069 return 0;
4070 }
4071
4072 void
4073 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4074 {
4075 drm_i915_private_t *dev_priv = dev->dev_private;
4076 struct intel_ring_buffer *ring;
4077 int i;
4078
4079 for_each_ring(ring, dev_priv, i)
4080 intel_cleanup_ring_buffer(ring);
4081 }
4082
4083 int
4084 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4085 struct drm_file *file_priv)
4086 {
4087 drm_i915_private_t *dev_priv = dev->dev_private;
4088 int ret;
4089
4090 if (drm_core_check_feature(dev, DRIVER_MODESET))
4091 return 0;
4092
4093 if (atomic_read(&dev_priv->mm.wedged)) {
4094 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4095 atomic_set(&dev_priv->mm.wedged, 0);
4096 }
4097
4098 mutex_lock(&dev->struct_mutex);
4099 dev_priv->mm.suspended = 0;
4100
4101 ret = i915_gem_init_hw(dev);
4102 if (ret != 0) {
4103 mutex_unlock(&dev->struct_mutex);
4104 return ret;
4105 }
4106
4107 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4108 mutex_unlock(&dev->struct_mutex);
4109
4110 ret = drm_irq_install(dev);
4111 if (ret)
4112 goto cleanup_ringbuffer;
4113
4114 return 0;
4115
4116 cleanup_ringbuffer:
4117 mutex_lock(&dev->struct_mutex);
4118 i915_gem_cleanup_ringbuffer(dev);
4119 dev_priv->mm.suspended = 1;
4120 mutex_unlock(&dev->struct_mutex);
4121
4122 return ret;
4123 }
4124
4125 int
4126 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4127 struct drm_file *file_priv)
4128 {
4129 if (drm_core_check_feature(dev, DRIVER_MODESET))
4130 return 0;
4131
4132 drm_irq_uninstall(dev);
4133 return i915_gem_idle(dev);
4134 }
4135
4136 void
4137 i915_gem_lastclose(struct drm_device *dev)
4138 {
4139 int ret;
4140
4141 if (drm_core_check_feature(dev, DRIVER_MODESET))
4142 return;
4143
4144 ret = i915_gem_idle(dev);
4145 if (ret)
4146 DRM_ERROR("failed to idle hardware: %d\n", ret);
4147 }
4148
4149 static void
4150 init_ring_lists(struct intel_ring_buffer *ring)
4151 {
4152 INIT_LIST_HEAD(&ring->active_list);
4153 INIT_LIST_HEAD(&ring->request_list);
4154 }
4155
4156 void
4157 i915_gem_load(struct drm_device *dev)
4158 {
4159 int i;
4160 drm_i915_private_t *dev_priv = dev->dev_private;
4161
4162 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4163 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4164 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4165 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4166 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4167 for (i = 0; i < I915_NUM_RINGS; i++)
4168 init_ring_lists(&dev_priv->ring[i]);
4169 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4170 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4171 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4172 i915_gem_retire_work_handler);
4173 init_completion(&dev_priv->error_completion);
4174
4175 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4176 if (IS_GEN3(dev)) {
4177 I915_WRITE(MI_ARB_STATE,
4178 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4179 }
4180
4181 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4182
4183 /* Old X drivers will take 0-2 for front, back, depth buffers */
4184 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4185 dev_priv->fence_reg_start = 3;
4186
4187 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4188 dev_priv->num_fence_regs = 16;
4189 else
4190 dev_priv->num_fence_regs = 8;
4191
4192 /* Initialize fence registers to zero */
4193 i915_gem_reset_fences(dev);
4194
4195 i915_gem_detect_bit_6_swizzle(dev);
4196 init_waitqueue_head(&dev_priv->pending_flip_queue);
4197
4198 dev_priv->mm.interruptible = true;
4199
4200 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4201 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4202 register_shrinker(&dev_priv->mm.inactive_shrinker);
4203 }
4204
4205 /*
4206 * Create a physically contiguous memory object for this object
4207 * e.g. for cursor + overlay regs
4208 */
4209 static int i915_gem_init_phys_object(struct drm_device *dev,
4210 int id, int size, int align)
4211 {
4212 drm_i915_private_t *dev_priv = dev->dev_private;
4213 struct drm_i915_gem_phys_object *phys_obj;
4214 int ret;
4215
4216 if (dev_priv->mm.phys_objs[id - 1] || !size)
4217 return 0;
4218
4219 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4220 if (!phys_obj)
4221 return -ENOMEM;
4222
4223 phys_obj->id = id;
4224
4225 phys_obj->handle = drm_pci_alloc(dev, size, align);
4226 if (!phys_obj->handle) {
4227 ret = -ENOMEM;
4228 goto kfree_obj;
4229 }
4230 #ifdef CONFIG_X86
4231 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4232 #endif
4233
4234 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4235
4236 return 0;
4237 kfree_obj:
4238 kfree(phys_obj);
4239 return ret;
4240 }
4241
4242 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4243 {
4244 drm_i915_private_t *dev_priv = dev->dev_private;
4245 struct drm_i915_gem_phys_object *phys_obj;
4246
4247 if (!dev_priv->mm.phys_objs[id - 1])
4248 return;
4249
4250 phys_obj = dev_priv->mm.phys_objs[id - 1];
4251 if (phys_obj->cur_obj) {
4252 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4253 }
4254
4255 #ifdef CONFIG_X86
4256 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4257 #endif
4258 drm_pci_free(dev, phys_obj->handle);
4259 kfree(phys_obj);
4260 dev_priv->mm.phys_objs[id - 1] = NULL;
4261 }
4262
4263 void i915_gem_free_all_phys_object(struct drm_device *dev)
4264 {
4265 int i;
4266
4267 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4268 i915_gem_free_phys_object(dev, i);
4269 }
4270
4271 void i915_gem_detach_phys_object(struct drm_device *dev,
4272 struct drm_i915_gem_object *obj)
4273 {
4274 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4275 char *vaddr;
4276 int i;
4277 int page_count;
4278
4279 if (!obj->phys_obj)
4280 return;
4281 vaddr = obj->phys_obj->handle->vaddr;
4282
4283 page_count = obj->base.size / PAGE_SIZE;
4284 for (i = 0; i < page_count; i++) {
4285 struct page *page = shmem_read_mapping_page(mapping, i);
4286 if (!IS_ERR(page)) {
4287 char *dst = kmap_atomic(page);
4288 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4289 kunmap_atomic(dst);
4290
4291 drm_clflush_pages(&page, 1);
4292
4293 set_page_dirty(page);
4294 mark_page_accessed(page);
4295 page_cache_release(page);
4296 }
4297 }
4298 intel_gtt_chipset_flush();
4299
4300 obj->phys_obj->cur_obj = NULL;
4301 obj->phys_obj = NULL;
4302 }
4303
4304 int
4305 i915_gem_attach_phys_object(struct drm_device *dev,
4306 struct drm_i915_gem_object *obj,
4307 int id,
4308 int align)
4309 {
4310 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4311 drm_i915_private_t *dev_priv = dev->dev_private;
4312 int ret = 0;
4313 int page_count;
4314 int i;
4315
4316 if (id > I915_MAX_PHYS_OBJECT)
4317 return -EINVAL;
4318
4319 if (obj->phys_obj) {
4320 if (obj->phys_obj->id == id)
4321 return 0;
4322 i915_gem_detach_phys_object(dev, obj);
4323 }
4324
4325 /* create a new object */
4326 if (!dev_priv->mm.phys_objs[id - 1]) {
4327 ret = i915_gem_init_phys_object(dev, id,
4328 obj->base.size, align);
4329 if (ret) {
4330 DRM_ERROR("failed to init phys object %d size: %zu\n",
4331 id, obj->base.size);
4332 return ret;
4333 }
4334 }
4335
4336 /* bind to the object */
4337 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4338 obj->phys_obj->cur_obj = obj;
4339
4340 page_count = obj->base.size / PAGE_SIZE;
4341
4342 for (i = 0; i < page_count; i++) {
4343 struct page *page;
4344 char *dst, *src;
4345
4346 page = shmem_read_mapping_page(mapping, i);
4347 if (IS_ERR(page))
4348 return PTR_ERR(page);
4349
4350 src = kmap_atomic(page);
4351 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4352 memcpy(dst, src, PAGE_SIZE);
4353 kunmap_atomic(src);
4354
4355 mark_page_accessed(page);
4356 page_cache_release(page);
4357 }
4358
4359 return 0;
4360 }
4361
4362 static int
4363 i915_gem_phys_pwrite(struct drm_device *dev,
4364 struct drm_i915_gem_object *obj,
4365 struct drm_i915_gem_pwrite *args,
4366 struct drm_file *file_priv)
4367 {
4368 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4369 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4370
4371 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4372 unsigned long unwritten;
4373
4374 /* The physical object once assigned is fixed for the lifetime
4375 * of the obj, so we can safely drop the lock and continue
4376 * to access vaddr.
4377 */
4378 mutex_unlock(&dev->struct_mutex);
4379 unwritten = copy_from_user(vaddr, user_data, args->size);
4380 mutex_lock(&dev->struct_mutex);
4381 if (unwritten)
4382 return -EFAULT;
4383 }
4384
4385 intel_gtt_chipset_flush();
4386 return 0;
4387 }
4388
4389 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4390 {
4391 struct drm_i915_file_private *file_priv = file->driver_priv;
4392
4393 /* Clean up our request list when the client is going away, so that
4394 * later retire_requests won't dereference our soon-to-be-gone
4395 * file_priv.
4396 */
4397 spin_lock(&file_priv->mm.lock);
4398 while (!list_empty(&file_priv->mm.request_list)) {
4399 struct drm_i915_gem_request *request;
4400
4401 request = list_first_entry(&file_priv->mm.request_list,
4402 struct drm_i915_gem_request,
4403 client_list);
4404 list_del(&request->client_list);
4405 request->file_priv = NULL;
4406 }
4407 spin_unlock(&file_priv->mm.lock);
4408 }
4409
4410 static int
4411 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4412 {
4413 struct drm_i915_private *dev_priv =
4414 container_of(shrinker,
4415 struct drm_i915_private,
4416 mm.inactive_shrinker);
4417 struct drm_device *dev = dev_priv->dev;
4418 struct drm_i915_gem_object *obj;
4419 int nr_to_scan = sc->nr_to_scan;
4420 int cnt;
4421
4422 if (!mutex_trylock(&dev->struct_mutex))
4423 return 0;
4424
4425 if (nr_to_scan) {
4426 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4427 if (nr_to_scan > 0)
4428 i915_gem_shrink_all(dev_priv);
4429 }
4430
4431 cnt = 0;
4432 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4433 if (obj->pages_pin_count == 0)
4434 cnt += obj->base.size >> PAGE_SHIFT;
4435 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4436 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4437 cnt += obj->base.size >> PAGE_SHIFT;
4438
4439 mutex_unlock(&dev->struct_mutex);
4440 return cnt;
4441 }
This page took 0.126006 seconds and 5 git commands to generate.