drm/i915: Move the request/file and request/pid association to creation time
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530 }
531
532 /* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
535 static int
536 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539 {
540 char *vaddr;
541 int ret;
542
543 if (unlikely(page_do_bit17_swizzling))
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
555 return ret ? -EFAULT : 0;
556 }
557
558 static void
559 shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561 {
562 if (unlikely(swizzled)) {
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578 }
579
580 /* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582 static int
583 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586 {
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
606 return ret ? - EFAULT : 0;
607 }
608
609 static int
610 i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
614 {
615 char __user *user_data;
616 ssize_t remain;
617 loff_t offset;
618 int shmem_page_offset, page_length, ret = 0;
619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620 int prefaulted = 0;
621 int needs_clflush = 0;
622 struct sg_page_iter sg_iter;
623
624 user_data = to_user_ptr(args->data_ptr);
625 remain = args->size;
626
627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628
629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 if (ret)
631 return ret;
632
633 offset = args->offset;
634
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
637 struct page *page = sg_page_iter_page(&sg_iter);
638
639 if (remain <= 0)
640 break;
641
642 /* Operation in this page
643 *
644 * shmem_page_offset = offset within page in shmem file
645 * page_length = bytes to copy for this page
646 */
647 shmem_page_offset = offset_in_page(offset);
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
651
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
660
661 mutex_unlock(&dev->struct_mutex);
662
663 if (likely(!i915.prefault_disable) && !prefaulted) {
664 ret = fault_in_multipages_writeable(user_data, remain);
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
672
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
676
677 mutex_lock(&dev->struct_mutex);
678
679 if (ret)
680 goto out;
681
682 next_page:
683 remain -= page_length;
684 user_data += page_length;
685 offset += page_length;
686 }
687
688 out:
689 i915_gem_object_unpin_pages(obj);
690
691 return ret;
692 }
693
694 /**
695 * Reads data from the object referenced by handle.
696 *
697 * On error, the contents of *data are undefined.
698 */
699 int
700 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701 struct drm_file *file)
702 {
703 struct drm_i915_gem_pread *args = data;
704 struct drm_i915_gem_object *obj;
705 int ret = 0;
706
707 if (args->size == 0)
708 return 0;
709
710 if (!access_ok(VERIFY_WRITE,
711 to_user_ptr(args->data_ptr),
712 args->size))
713 return -EFAULT;
714
715 ret = i915_mutex_lock_interruptible(dev);
716 if (ret)
717 return ret;
718
719 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720 if (&obj->base == NULL) {
721 ret = -ENOENT;
722 goto unlock;
723 }
724
725 /* Bounds check source. */
726 if (args->offset > obj->base.size ||
727 args->size > obj->base.size - args->offset) {
728 ret = -EINVAL;
729 goto out;
730 }
731
732 /* prime objects have no backing filp to GEM pread/pwrite
733 * pages from.
734 */
735 if (!obj->base.filp) {
736 ret = -EINVAL;
737 goto out;
738 }
739
740 trace_i915_gem_object_pread(obj, args->offset, args->size);
741
742 ret = i915_gem_shmem_pread(dev, obj, args, file);
743
744 out:
745 drm_gem_object_unreference(&obj->base);
746 unlock:
747 mutex_unlock(&dev->struct_mutex);
748 return ret;
749 }
750
751 /* This is the fast write path which cannot handle
752 * page faults in the source data
753 */
754
755 static inline int
756 fast_user_write(struct io_mapping *mapping,
757 loff_t page_base, int page_offset,
758 char __user *user_data,
759 int length)
760 {
761 void __iomem *vaddr_atomic;
762 void *vaddr;
763 unsigned long unwritten;
764
765 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 /* We can use the cpu mem copy function because this is X86. */
767 vaddr = (void __force*)vaddr_atomic + page_offset;
768 unwritten = __copy_from_user_inatomic_nocache(vaddr,
769 user_data, length);
770 io_mapping_unmap_atomic(vaddr_atomic);
771 return unwritten;
772 }
773
774 /**
775 * This is the fast pwrite path, where we copy the data directly from the
776 * user into the GTT, uncached.
777 */
778 static int
779 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780 struct drm_i915_gem_object *obj,
781 struct drm_i915_gem_pwrite *args,
782 struct drm_file *file)
783 {
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 ssize_t remain;
786 loff_t offset, page_base;
787 char __user *user_data;
788 int page_offset, page_length, ret;
789
790 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
791 if (ret)
792 goto out;
793
794 ret = i915_gem_object_set_to_gtt_domain(obj, true);
795 if (ret)
796 goto out_unpin;
797
798 ret = i915_gem_object_put_fence(obj);
799 if (ret)
800 goto out_unpin;
801
802 user_data = to_user_ptr(args->data_ptr);
803 remain = args->size;
804
805 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806
807 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808
809 while (remain > 0) {
810 /* Operation in this page
811 *
812 * page_base = page offset within aperture
813 * page_offset = offset within page
814 * page_length = bytes to copy for this page
815 */
816 page_base = offset & PAGE_MASK;
817 page_offset = offset_in_page(offset);
818 page_length = remain;
819 if ((page_offset + remain) > PAGE_SIZE)
820 page_length = PAGE_SIZE - page_offset;
821
822 /* If we get a fault while copying data, then (presumably) our
823 * source page isn't available. Return the error and we'll
824 * retry in the slow path.
825 */
826 if (fast_user_write(dev_priv->gtt.mappable, page_base,
827 page_offset, user_data, page_length)) {
828 ret = -EFAULT;
829 goto out_flush;
830 }
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837 out_flush:
838 intel_fb_obj_flush(obj, false);
839 out_unpin:
840 i915_gem_object_ggtt_unpin(obj);
841 out:
842 return ret;
843 }
844
845 /* Per-page copy function for the shmem pwrite fastpath.
846 * Flushes invalid cachelines before writing to the target if
847 * needs_clflush_before is set and flushes out any written cachelines after
848 * writing if needs_clflush is set. */
849 static int
850 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851 char __user *user_data,
852 bool page_do_bit17_swizzling,
853 bool needs_clflush_before,
854 bool needs_clflush_after)
855 {
856 char *vaddr;
857 int ret;
858
859 if (unlikely(page_do_bit17_swizzling))
860 return -EINVAL;
861
862 vaddr = kmap_atomic(page);
863 if (needs_clflush_before)
864 drm_clflush_virt_range(vaddr + shmem_page_offset,
865 page_length);
866 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867 user_data, page_length);
868 if (needs_clflush_after)
869 drm_clflush_virt_range(vaddr + shmem_page_offset,
870 page_length);
871 kunmap_atomic(vaddr);
872
873 return ret ? -EFAULT : 0;
874 }
875
876 /* Only difference to the fast-path function is that this can handle bit17
877 * and uses non-atomic copy and kmap functions. */
878 static int
879 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880 char __user *user_data,
881 bool page_do_bit17_swizzling,
882 bool needs_clflush_before,
883 bool needs_clflush_after)
884 {
885 char *vaddr;
886 int ret;
887
888 vaddr = kmap(page);
889 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891 page_length,
892 page_do_bit17_swizzling);
893 if (page_do_bit17_swizzling)
894 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 user_data,
896 page_length);
897 else
898 ret = __copy_from_user(vaddr + shmem_page_offset,
899 user_data,
900 page_length);
901 if (needs_clflush_after)
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
905 kunmap(page);
906
907 return ret ? -EFAULT : 0;
908 }
909
910 static int
911 i915_gem_shmem_pwrite(struct drm_device *dev,
912 struct drm_i915_gem_object *obj,
913 struct drm_i915_gem_pwrite *args,
914 struct drm_file *file)
915 {
916 ssize_t remain;
917 loff_t offset;
918 char __user *user_data;
919 int shmem_page_offset, page_length, ret = 0;
920 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921 int hit_slowpath = 0;
922 int needs_clflush_after = 0;
923 int needs_clflush_before = 0;
924 struct sg_page_iter sg_iter;
925
926 user_data = to_user_ptr(args->data_ptr);
927 remain = args->size;
928
929 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930
931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 /* If we're not in the cpu write domain, set ourself into the gtt
933 * write domain and manually flush cachelines (if required). This
934 * optimizes for the case when the gpu will use the data
935 * right away and we therefore have to clflush anyway. */
936 needs_clflush_after = cpu_write_needs_clflush(obj);
937 ret = i915_gem_object_wait_rendering(obj, false);
938 if (ret)
939 return ret;
940 }
941 /* Same trick applies to invalidate partially written cachelines read
942 * before writing. */
943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944 needs_clflush_before =
945 !cpu_cache_is_coherent(dev, obj->cache_level);
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret)
949 return ret;
950
951 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952
953 i915_gem_object_pin_pages(obj);
954
955 offset = args->offset;
956 obj->dirty = 1;
957
958 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959 offset >> PAGE_SHIFT) {
960 struct page *page = sg_page_iter_page(&sg_iter);
961 int partial_cacheline_write;
962
963 if (remain <= 0)
964 break;
965
966 /* Operation in this page
967 *
968 * shmem_page_offset = offset within page in shmem file
969 * page_length = bytes to copy for this page
970 */
971 shmem_page_offset = offset_in_page(offset);
972
973 page_length = remain;
974 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - shmem_page_offset;
976
977 /* If we don't overwrite a cacheline completely we need to be
978 * careful to have up-to-date data by first clflushing. Don't
979 * overcomplicate things and flush the entire patch. */
980 partial_cacheline_write = needs_clflush_before &&
981 ((shmem_page_offset | page_length)
982 & (boot_cpu_data.x86_clflush_size - 1));
983
984 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985 (page_to_phys(page) & (1 << 17)) != 0;
986
987 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988 user_data, page_do_bit17_swizzling,
989 partial_cacheline_write,
990 needs_clflush_after);
991 if (ret == 0)
992 goto next_page;
993
994 hit_slowpath = 1;
995 mutex_unlock(&dev->struct_mutex);
996 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997 user_data, page_do_bit17_swizzling,
998 partial_cacheline_write,
999 needs_clflush_after);
1000
1001 mutex_lock(&dev->struct_mutex);
1002
1003 if (ret)
1004 goto out;
1005
1006 next_page:
1007 remain -= page_length;
1008 user_data += page_length;
1009 offset += page_length;
1010 }
1011
1012 out:
1013 i915_gem_object_unpin_pages(obj);
1014
1015 if (hit_slowpath) {
1016 /*
1017 * Fixup: Flush cpu caches in case we didn't flush the dirty
1018 * cachelines in-line while writing and the object moved
1019 * out of the cpu write domain while we've dropped the lock.
1020 */
1021 if (!needs_clflush_after &&
1022 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 if (i915_gem_clflush_object(obj, obj->pin_display))
1024 i915_gem_chipset_flush(dev);
1025 }
1026 }
1027
1028 if (needs_clflush_after)
1029 i915_gem_chipset_flush(dev);
1030
1031 intel_fb_obj_flush(obj, false);
1032 return ret;
1033 }
1034
1035 /**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040 int
1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042 struct drm_file *file)
1043 {
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 struct drm_i915_gem_pwrite *args = data;
1046 struct drm_i915_gem_object *obj;
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
1053 to_user_ptr(args->data_ptr),
1054 args->size))
1055 return -EFAULT;
1056
1057 if (likely(!i915.prefault_disable)) {
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
1063
1064 intel_runtime_pm_get(dev_priv);
1065
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto put_rpm;
1069
1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071 if (&obj->base == NULL) {
1072 ret = -ENOENT;
1073 goto unlock;
1074 }
1075
1076 /* Bounds check destination. */
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
1079 ret = -EINVAL;
1080 goto out;
1081 }
1082
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
1093 ret = -EFAULT;
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
1107 }
1108
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
1115
1116 out:
1117 drm_gem_object_unreference(&obj->base);
1118 unlock:
1119 mutex_unlock(&dev->struct_mutex);
1120 put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
1123 return ret;
1124 }
1125
1126 int
1127 i915_gem_check_wedge(struct i915_gpu_error *error,
1128 bool interruptible)
1129 {
1130 if (i915_reset_in_progress(error)) {
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
1138 return -EIO;
1139
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
1147 }
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154 */
1155 int
1156 i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 {
1158 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1159
1160 return 0;
1161 }
1162
1163 static void fake_irq(unsigned long data)
1164 {
1165 wake_up_process((struct task_struct *)data);
1166 }
1167
1168 static bool missed_irq(struct drm_i915_private *dev_priv,
1169 struct intel_engine_cs *ring)
1170 {
1171 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1172 }
1173
1174 static int __i915_spin_request(struct drm_i915_gem_request *req)
1175 {
1176 unsigned long timeout;
1177
1178 if (i915_gem_request_get_ring(req)->irq_refcount)
1179 return -EBUSY;
1180
1181 timeout = jiffies + 1;
1182 while (!need_resched()) {
1183 if (i915_gem_request_completed(req, true))
1184 return 0;
1185
1186 if (time_after_eq(jiffies, timeout))
1187 break;
1188
1189 cpu_relax_lowlatency();
1190 }
1191 if (i915_gem_request_completed(req, false))
1192 return 0;
1193
1194 return -EAGAIN;
1195 }
1196
1197 /**
1198 * __i915_wait_request - wait until execution of request has finished
1199 * @req: duh!
1200 * @reset_counter: reset sequence associated with the given request
1201 * @interruptible: do an interruptible wait (normally yes)
1202 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1203 *
1204 * Note: It is of utmost importance that the passed in seqno and reset_counter
1205 * values have been read by the caller in an smp safe manner. Where read-side
1206 * locks are involved, it is sufficient to read the reset_counter before
1207 * unlocking the lock that protects the seqno. For lockless tricks, the
1208 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1209 * inserted.
1210 *
1211 * Returns 0 if the request was found within the alloted time. Else returns the
1212 * errno with remaining time filled in timeout argument.
1213 */
1214 int __i915_wait_request(struct drm_i915_gem_request *req,
1215 unsigned reset_counter,
1216 bool interruptible,
1217 s64 *timeout,
1218 struct intel_rps_client *rps)
1219 {
1220 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1221 struct drm_device *dev = ring->dev;
1222 struct drm_i915_private *dev_priv = dev->dev_private;
1223 const bool irq_test_in_progress =
1224 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1225 DEFINE_WAIT(wait);
1226 unsigned long timeout_expire;
1227 s64 before, now;
1228 int ret;
1229
1230 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1231
1232 if (list_empty(&req->list))
1233 return 0;
1234
1235 if (i915_gem_request_completed(req, true))
1236 return 0;
1237
1238 timeout_expire = timeout ?
1239 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1240
1241 if (INTEL_INFO(dev_priv)->gen >= 6)
1242 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1243
1244 /* Record current time in case interrupted by signal, or wedged */
1245 trace_i915_gem_request_wait_begin(req);
1246 before = ktime_get_raw_ns();
1247
1248 /* Optimistic spin for the next jiffie before touching IRQs */
1249 ret = __i915_spin_request(req);
1250 if (ret == 0)
1251 goto out;
1252
1253 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1254 ret = -ENODEV;
1255 goto out;
1256 }
1257
1258 for (;;) {
1259 struct timer_list timer;
1260
1261 prepare_to_wait(&ring->irq_queue, &wait,
1262 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1263
1264 /* We need to check whether any gpu reset happened in between
1265 * the caller grabbing the seqno and now ... */
1266 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1267 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1268 * is truely gone. */
1269 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1270 if (ret == 0)
1271 ret = -EAGAIN;
1272 break;
1273 }
1274
1275 if (i915_gem_request_completed(req, false)) {
1276 ret = 0;
1277 break;
1278 }
1279
1280 if (interruptible && signal_pending(current)) {
1281 ret = -ERESTARTSYS;
1282 break;
1283 }
1284
1285 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1286 ret = -ETIME;
1287 break;
1288 }
1289
1290 timer.function = NULL;
1291 if (timeout || missed_irq(dev_priv, ring)) {
1292 unsigned long expire;
1293
1294 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1295 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1296 mod_timer(&timer, expire);
1297 }
1298
1299 io_schedule();
1300
1301 if (timer.function) {
1302 del_singleshot_timer_sync(&timer);
1303 destroy_timer_on_stack(&timer);
1304 }
1305 }
1306 if (!irq_test_in_progress)
1307 ring->irq_put(ring);
1308
1309 finish_wait(&ring->irq_queue, &wait);
1310
1311 out:
1312 now = ktime_get_raw_ns();
1313 trace_i915_gem_request_wait_end(req);
1314
1315 if (timeout) {
1316 s64 tres = *timeout - (now - before);
1317
1318 *timeout = tres < 0 ? 0 : tres;
1319
1320 /*
1321 * Apparently ktime isn't accurate enough and occasionally has a
1322 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1323 * things up to make the test happy. We allow up to 1 jiffy.
1324 *
1325 * This is a regrssion from the timespec->ktime conversion.
1326 */
1327 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1328 *timeout = 0;
1329 }
1330
1331 return ret;
1332 }
1333
1334 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1335 struct drm_file *file)
1336 {
1337 struct drm_i915_private *dev_private;
1338 struct drm_i915_file_private *file_priv;
1339
1340 WARN_ON(!req || !file || req->file_priv);
1341
1342 if (!req || !file)
1343 return -EINVAL;
1344
1345 if (req->file_priv)
1346 return -EINVAL;
1347
1348 dev_private = req->ring->dev->dev_private;
1349 file_priv = file->driver_priv;
1350
1351 spin_lock(&file_priv->mm.lock);
1352 req->file_priv = file_priv;
1353 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1354 spin_unlock(&file_priv->mm.lock);
1355
1356 req->pid = get_pid(task_pid(current));
1357
1358 return 0;
1359 }
1360
1361 static inline void
1362 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1363 {
1364 struct drm_i915_file_private *file_priv = request->file_priv;
1365
1366 if (!file_priv)
1367 return;
1368
1369 spin_lock(&file_priv->mm.lock);
1370 list_del(&request->client_list);
1371 request->file_priv = NULL;
1372 spin_unlock(&file_priv->mm.lock);
1373
1374 put_pid(request->pid);
1375 request->pid = NULL;
1376 }
1377
1378 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1379 {
1380 trace_i915_gem_request_retire(request);
1381
1382 /* We know the GPU must have read the request to have
1383 * sent us the seqno + interrupt, so use the position
1384 * of tail of the request to update the last known position
1385 * of the GPU head.
1386 *
1387 * Note this requires that we are always called in request
1388 * completion order.
1389 */
1390 request->ringbuf->last_retired_head = request->postfix;
1391
1392 list_del_init(&request->list);
1393 i915_gem_request_remove_from_client(request);
1394
1395 i915_gem_request_unreference(request);
1396 }
1397
1398 static void
1399 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1400 {
1401 struct intel_engine_cs *engine = req->ring;
1402 struct drm_i915_gem_request *tmp;
1403
1404 lockdep_assert_held(&engine->dev->struct_mutex);
1405
1406 if (list_empty(&req->list))
1407 return;
1408
1409 do {
1410 tmp = list_first_entry(&engine->request_list,
1411 typeof(*tmp), list);
1412
1413 i915_gem_request_retire(tmp);
1414 } while (tmp != req);
1415
1416 WARN_ON(i915_verify_lists(engine->dev));
1417 }
1418
1419 /**
1420 * Waits for a request to be signaled, and cleans up the
1421 * request and object lists appropriately for that event.
1422 */
1423 int
1424 i915_wait_request(struct drm_i915_gem_request *req)
1425 {
1426 struct drm_device *dev;
1427 struct drm_i915_private *dev_priv;
1428 bool interruptible;
1429 int ret;
1430
1431 BUG_ON(req == NULL);
1432
1433 dev = req->ring->dev;
1434 dev_priv = dev->dev_private;
1435 interruptible = dev_priv->mm.interruptible;
1436
1437 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1438
1439 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1440 if (ret)
1441 return ret;
1442
1443 ret = i915_gem_check_olr(req);
1444 if (ret)
1445 return ret;
1446
1447 ret = __i915_wait_request(req,
1448 atomic_read(&dev_priv->gpu_error.reset_counter),
1449 interruptible, NULL, NULL);
1450 if (ret)
1451 return ret;
1452
1453 __i915_gem_request_retire__upto(req);
1454 return 0;
1455 }
1456
1457 /**
1458 * Ensures that all rendering to the object has completed and the object is
1459 * safe to unbind from the GTT or access from the CPU.
1460 */
1461 int
1462 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1463 bool readonly)
1464 {
1465 int ret, i;
1466
1467 if (!obj->active)
1468 return 0;
1469
1470 if (readonly) {
1471 if (obj->last_write_req != NULL) {
1472 ret = i915_wait_request(obj->last_write_req);
1473 if (ret)
1474 return ret;
1475
1476 i = obj->last_write_req->ring->id;
1477 if (obj->last_read_req[i] == obj->last_write_req)
1478 i915_gem_object_retire__read(obj, i);
1479 else
1480 i915_gem_object_retire__write(obj);
1481 }
1482 } else {
1483 for (i = 0; i < I915_NUM_RINGS; i++) {
1484 if (obj->last_read_req[i] == NULL)
1485 continue;
1486
1487 ret = i915_wait_request(obj->last_read_req[i]);
1488 if (ret)
1489 return ret;
1490
1491 i915_gem_object_retire__read(obj, i);
1492 }
1493 RQ_BUG_ON(obj->active);
1494 }
1495
1496 return 0;
1497 }
1498
1499 static void
1500 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1501 struct drm_i915_gem_request *req)
1502 {
1503 int ring = req->ring->id;
1504
1505 if (obj->last_read_req[ring] == req)
1506 i915_gem_object_retire__read(obj, ring);
1507 else if (obj->last_write_req == req)
1508 i915_gem_object_retire__write(obj);
1509
1510 __i915_gem_request_retire__upto(req);
1511 }
1512
1513 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1514 * as the object state may change during this call.
1515 */
1516 static __must_check int
1517 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1518 struct intel_rps_client *rps,
1519 bool readonly)
1520 {
1521 struct drm_device *dev = obj->base.dev;
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1524 unsigned reset_counter;
1525 int ret, i, n = 0;
1526
1527 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1528 BUG_ON(!dev_priv->mm.interruptible);
1529
1530 if (!obj->active)
1531 return 0;
1532
1533 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1534 if (ret)
1535 return ret;
1536
1537 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1538
1539 if (readonly) {
1540 struct drm_i915_gem_request *req;
1541
1542 req = obj->last_write_req;
1543 if (req == NULL)
1544 return 0;
1545
1546 ret = i915_gem_check_olr(req);
1547 if (ret)
1548 goto err;
1549
1550 requests[n++] = i915_gem_request_reference(req);
1551 } else {
1552 for (i = 0; i < I915_NUM_RINGS; i++) {
1553 struct drm_i915_gem_request *req;
1554
1555 req = obj->last_read_req[i];
1556 if (req == NULL)
1557 continue;
1558
1559 ret = i915_gem_check_olr(req);
1560 if (ret)
1561 goto err;
1562
1563 requests[n++] = i915_gem_request_reference(req);
1564 }
1565 }
1566
1567 mutex_unlock(&dev->struct_mutex);
1568 for (i = 0; ret == 0 && i < n; i++)
1569 ret = __i915_wait_request(requests[i], reset_counter, true,
1570 NULL, rps);
1571 mutex_lock(&dev->struct_mutex);
1572
1573 err:
1574 for (i = 0; i < n; i++) {
1575 if (ret == 0)
1576 i915_gem_object_retire_request(obj, requests[i]);
1577 i915_gem_request_unreference(requests[i]);
1578 }
1579
1580 return ret;
1581 }
1582
1583 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1584 {
1585 struct drm_i915_file_private *fpriv = file->driver_priv;
1586 return &fpriv->rps;
1587 }
1588
1589 /**
1590 * Called when user space prepares to use an object with the CPU, either
1591 * through the mmap ioctl's mapping or a GTT mapping.
1592 */
1593 int
1594 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1595 struct drm_file *file)
1596 {
1597 struct drm_i915_gem_set_domain *args = data;
1598 struct drm_i915_gem_object *obj;
1599 uint32_t read_domains = args->read_domains;
1600 uint32_t write_domain = args->write_domain;
1601 int ret;
1602
1603 /* Only handle setting domains to types used by the CPU. */
1604 if (write_domain & I915_GEM_GPU_DOMAINS)
1605 return -EINVAL;
1606
1607 if (read_domains & I915_GEM_GPU_DOMAINS)
1608 return -EINVAL;
1609
1610 /* Having something in the write domain implies it's in the read
1611 * domain, and only that read domain. Enforce that in the request.
1612 */
1613 if (write_domain != 0 && read_domains != write_domain)
1614 return -EINVAL;
1615
1616 ret = i915_mutex_lock_interruptible(dev);
1617 if (ret)
1618 return ret;
1619
1620 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1621 if (&obj->base == NULL) {
1622 ret = -ENOENT;
1623 goto unlock;
1624 }
1625
1626 /* Try to flush the object off the GPU without holding the lock.
1627 * We will repeat the flush holding the lock in the normal manner
1628 * to catch cases where we are gazumped.
1629 */
1630 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1631 to_rps_client(file),
1632 !write_domain);
1633 if (ret)
1634 goto unref;
1635
1636 if (read_domains & I915_GEM_DOMAIN_GTT)
1637 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1638 else
1639 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1640
1641 unref:
1642 drm_gem_object_unreference(&obj->base);
1643 unlock:
1644 mutex_unlock(&dev->struct_mutex);
1645 return ret;
1646 }
1647
1648 /**
1649 * Called when user space has done writes to this buffer
1650 */
1651 int
1652 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1653 struct drm_file *file)
1654 {
1655 struct drm_i915_gem_sw_finish *args = data;
1656 struct drm_i915_gem_object *obj;
1657 int ret = 0;
1658
1659 ret = i915_mutex_lock_interruptible(dev);
1660 if (ret)
1661 return ret;
1662
1663 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1664 if (&obj->base == NULL) {
1665 ret = -ENOENT;
1666 goto unlock;
1667 }
1668
1669 /* Pinned buffers may be scanout, so flush the cache */
1670 if (obj->pin_display)
1671 i915_gem_object_flush_cpu_write_domain(obj);
1672
1673 drm_gem_object_unreference(&obj->base);
1674 unlock:
1675 mutex_unlock(&dev->struct_mutex);
1676 return ret;
1677 }
1678
1679 /**
1680 * Maps the contents of an object, returning the address it is mapped
1681 * into.
1682 *
1683 * While the mapping holds a reference on the contents of the object, it doesn't
1684 * imply a ref on the object itself.
1685 *
1686 * IMPORTANT:
1687 *
1688 * DRM driver writers who look a this function as an example for how to do GEM
1689 * mmap support, please don't implement mmap support like here. The modern way
1690 * to implement DRM mmap support is with an mmap offset ioctl (like
1691 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1692 * That way debug tooling like valgrind will understand what's going on, hiding
1693 * the mmap call in a driver private ioctl will break that. The i915 driver only
1694 * does cpu mmaps this way because we didn't know better.
1695 */
1696 int
1697 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1698 struct drm_file *file)
1699 {
1700 struct drm_i915_gem_mmap *args = data;
1701 struct drm_gem_object *obj;
1702 unsigned long addr;
1703
1704 if (args->flags & ~(I915_MMAP_WC))
1705 return -EINVAL;
1706
1707 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1708 return -ENODEV;
1709
1710 obj = drm_gem_object_lookup(dev, file, args->handle);
1711 if (obj == NULL)
1712 return -ENOENT;
1713
1714 /* prime objects have no backing filp to GEM mmap
1715 * pages from.
1716 */
1717 if (!obj->filp) {
1718 drm_gem_object_unreference_unlocked(obj);
1719 return -EINVAL;
1720 }
1721
1722 addr = vm_mmap(obj->filp, 0, args->size,
1723 PROT_READ | PROT_WRITE, MAP_SHARED,
1724 args->offset);
1725 if (args->flags & I915_MMAP_WC) {
1726 struct mm_struct *mm = current->mm;
1727 struct vm_area_struct *vma;
1728
1729 down_write(&mm->mmap_sem);
1730 vma = find_vma(mm, addr);
1731 if (vma)
1732 vma->vm_page_prot =
1733 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1734 else
1735 addr = -ENOMEM;
1736 up_write(&mm->mmap_sem);
1737 }
1738 drm_gem_object_unreference_unlocked(obj);
1739 if (IS_ERR((void *)addr))
1740 return addr;
1741
1742 args->addr_ptr = (uint64_t) addr;
1743
1744 return 0;
1745 }
1746
1747 /**
1748 * i915_gem_fault - fault a page into the GTT
1749 * vma: VMA in question
1750 * vmf: fault info
1751 *
1752 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1753 * from userspace. The fault handler takes care of binding the object to
1754 * the GTT (if needed), allocating and programming a fence register (again,
1755 * only if needed based on whether the old reg is still valid or the object
1756 * is tiled) and inserting a new PTE into the faulting process.
1757 *
1758 * Note that the faulting process may involve evicting existing objects
1759 * from the GTT and/or fence registers to make room. So performance may
1760 * suffer if the GTT working set is large or there are few fence registers
1761 * left.
1762 */
1763 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1764 {
1765 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1766 struct drm_device *dev = obj->base.dev;
1767 struct drm_i915_private *dev_priv = dev->dev_private;
1768 struct i915_ggtt_view view = i915_ggtt_view_normal;
1769 pgoff_t page_offset;
1770 unsigned long pfn;
1771 int ret = 0;
1772 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1773
1774 intel_runtime_pm_get(dev_priv);
1775
1776 /* We don't use vmf->pgoff since that has the fake offset */
1777 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1778 PAGE_SHIFT;
1779
1780 ret = i915_mutex_lock_interruptible(dev);
1781 if (ret)
1782 goto out;
1783
1784 trace_i915_gem_object_fault(obj, page_offset, true, write);
1785
1786 /* Try to flush the object off the GPU first without holding the lock.
1787 * Upon reacquiring the lock, we will perform our sanity checks and then
1788 * repeat the flush holding the lock in the normal manner to catch cases
1789 * where we are gazumped.
1790 */
1791 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1792 if (ret)
1793 goto unlock;
1794
1795 /* Access to snoopable pages through the GTT is incoherent. */
1796 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1797 ret = -EFAULT;
1798 goto unlock;
1799 }
1800
1801 /* Use a partial view if the object is bigger than the aperture. */
1802 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1803 obj->tiling_mode == I915_TILING_NONE) {
1804 static const unsigned int chunk_size = 256; // 1 MiB
1805
1806 memset(&view, 0, sizeof(view));
1807 view.type = I915_GGTT_VIEW_PARTIAL;
1808 view.params.partial.offset = rounddown(page_offset, chunk_size);
1809 view.params.partial.size =
1810 min_t(unsigned int,
1811 chunk_size,
1812 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1813 view.params.partial.offset);
1814 }
1815
1816 /* Now pin it into the GTT if needed */
1817 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1818 if (ret)
1819 goto unlock;
1820
1821 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1822 if (ret)
1823 goto unpin;
1824
1825 ret = i915_gem_object_get_fence(obj);
1826 if (ret)
1827 goto unpin;
1828
1829 /* Finally, remap it using the new GTT offset */
1830 pfn = dev_priv->gtt.mappable_base +
1831 i915_gem_obj_ggtt_offset_view(obj, &view);
1832 pfn >>= PAGE_SHIFT;
1833
1834 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1835 /* Overriding existing pages in partial view does not cause
1836 * us any trouble as TLBs are still valid because the fault
1837 * is due to userspace losing part of the mapping or never
1838 * having accessed it before (at this partials' range).
1839 */
1840 unsigned long base = vma->vm_start +
1841 (view.params.partial.offset << PAGE_SHIFT);
1842 unsigned int i;
1843
1844 for (i = 0; i < view.params.partial.size; i++) {
1845 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1846 if (ret)
1847 break;
1848 }
1849
1850 obj->fault_mappable = true;
1851 } else {
1852 if (!obj->fault_mappable) {
1853 unsigned long size = min_t(unsigned long,
1854 vma->vm_end - vma->vm_start,
1855 obj->base.size);
1856 int i;
1857
1858 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1859 ret = vm_insert_pfn(vma,
1860 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1861 pfn + i);
1862 if (ret)
1863 break;
1864 }
1865
1866 obj->fault_mappable = true;
1867 } else
1868 ret = vm_insert_pfn(vma,
1869 (unsigned long)vmf->virtual_address,
1870 pfn + page_offset);
1871 }
1872 unpin:
1873 i915_gem_object_ggtt_unpin_view(obj, &view);
1874 unlock:
1875 mutex_unlock(&dev->struct_mutex);
1876 out:
1877 switch (ret) {
1878 case -EIO:
1879 /*
1880 * We eat errors when the gpu is terminally wedged to avoid
1881 * userspace unduly crashing (gl has no provisions for mmaps to
1882 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1883 * and so needs to be reported.
1884 */
1885 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1886 ret = VM_FAULT_SIGBUS;
1887 break;
1888 }
1889 case -EAGAIN:
1890 /*
1891 * EAGAIN means the gpu is hung and we'll wait for the error
1892 * handler to reset everything when re-faulting in
1893 * i915_mutex_lock_interruptible.
1894 */
1895 case 0:
1896 case -ERESTARTSYS:
1897 case -EINTR:
1898 case -EBUSY:
1899 /*
1900 * EBUSY is ok: this just means that another thread
1901 * already did the job.
1902 */
1903 ret = VM_FAULT_NOPAGE;
1904 break;
1905 case -ENOMEM:
1906 ret = VM_FAULT_OOM;
1907 break;
1908 case -ENOSPC:
1909 case -EFAULT:
1910 ret = VM_FAULT_SIGBUS;
1911 break;
1912 default:
1913 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1914 ret = VM_FAULT_SIGBUS;
1915 break;
1916 }
1917
1918 intel_runtime_pm_put(dev_priv);
1919 return ret;
1920 }
1921
1922 /**
1923 * i915_gem_release_mmap - remove physical page mappings
1924 * @obj: obj in question
1925 *
1926 * Preserve the reservation of the mmapping with the DRM core code, but
1927 * relinquish ownership of the pages back to the system.
1928 *
1929 * It is vital that we remove the page mapping if we have mapped a tiled
1930 * object through the GTT and then lose the fence register due to
1931 * resource pressure. Similarly if the object has been moved out of the
1932 * aperture, than pages mapped into userspace must be revoked. Removing the
1933 * mapping will then trigger a page fault on the next user access, allowing
1934 * fixup by i915_gem_fault().
1935 */
1936 void
1937 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1938 {
1939 if (!obj->fault_mappable)
1940 return;
1941
1942 drm_vma_node_unmap(&obj->base.vma_node,
1943 obj->base.dev->anon_inode->i_mapping);
1944 obj->fault_mappable = false;
1945 }
1946
1947 void
1948 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1949 {
1950 struct drm_i915_gem_object *obj;
1951
1952 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1953 i915_gem_release_mmap(obj);
1954 }
1955
1956 uint32_t
1957 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1958 {
1959 uint32_t gtt_size;
1960
1961 if (INTEL_INFO(dev)->gen >= 4 ||
1962 tiling_mode == I915_TILING_NONE)
1963 return size;
1964
1965 /* Previous chips need a power-of-two fence region when tiling */
1966 if (INTEL_INFO(dev)->gen == 3)
1967 gtt_size = 1024*1024;
1968 else
1969 gtt_size = 512*1024;
1970
1971 while (gtt_size < size)
1972 gtt_size <<= 1;
1973
1974 return gtt_size;
1975 }
1976
1977 /**
1978 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1979 * @obj: object to check
1980 *
1981 * Return the required GTT alignment for an object, taking into account
1982 * potential fence register mapping.
1983 */
1984 uint32_t
1985 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1986 int tiling_mode, bool fenced)
1987 {
1988 /*
1989 * Minimum alignment is 4k (GTT page size), but might be greater
1990 * if a fence register is needed for the object.
1991 */
1992 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1993 tiling_mode == I915_TILING_NONE)
1994 return 4096;
1995
1996 /*
1997 * Previous chips need to be aligned to the size of the smallest
1998 * fence register that can contain the object.
1999 */
2000 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2001 }
2002
2003 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2004 {
2005 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2006 int ret;
2007
2008 if (drm_vma_node_has_offset(&obj->base.vma_node))
2009 return 0;
2010
2011 dev_priv->mm.shrinker_no_lock_stealing = true;
2012
2013 ret = drm_gem_create_mmap_offset(&obj->base);
2014 if (ret != -ENOSPC)
2015 goto out;
2016
2017 /* Badly fragmented mmap space? The only way we can recover
2018 * space is by destroying unwanted objects. We can't randomly release
2019 * mmap_offsets as userspace expects them to be persistent for the
2020 * lifetime of the objects. The closest we can is to release the
2021 * offsets on purgeable objects by truncating it and marking it purged,
2022 * which prevents userspace from ever using that object again.
2023 */
2024 i915_gem_shrink(dev_priv,
2025 obj->base.size >> PAGE_SHIFT,
2026 I915_SHRINK_BOUND |
2027 I915_SHRINK_UNBOUND |
2028 I915_SHRINK_PURGEABLE);
2029 ret = drm_gem_create_mmap_offset(&obj->base);
2030 if (ret != -ENOSPC)
2031 goto out;
2032
2033 i915_gem_shrink_all(dev_priv);
2034 ret = drm_gem_create_mmap_offset(&obj->base);
2035 out:
2036 dev_priv->mm.shrinker_no_lock_stealing = false;
2037
2038 return ret;
2039 }
2040
2041 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2042 {
2043 drm_gem_free_mmap_offset(&obj->base);
2044 }
2045
2046 int
2047 i915_gem_mmap_gtt(struct drm_file *file,
2048 struct drm_device *dev,
2049 uint32_t handle,
2050 uint64_t *offset)
2051 {
2052 struct drm_i915_gem_object *obj;
2053 int ret;
2054
2055 ret = i915_mutex_lock_interruptible(dev);
2056 if (ret)
2057 return ret;
2058
2059 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2060 if (&obj->base == NULL) {
2061 ret = -ENOENT;
2062 goto unlock;
2063 }
2064
2065 if (obj->madv != I915_MADV_WILLNEED) {
2066 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2067 ret = -EFAULT;
2068 goto out;
2069 }
2070
2071 ret = i915_gem_object_create_mmap_offset(obj);
2072 if (ret)
2073 goto out;
2074
2075 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2076
2077 out:
2078 drm_gem_object_unreference(&obj->base);
2079 unlock:
2080 mutex_unlock(&dev->struct_mutex);
2081 return ret;
2082 }
2083
2084 /**
2085 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2086 * @dev: DRM device
2087 * @data: GTT mapping ioctl data
2088 * @file: GEM object info
2089 *
2090 * Simply returns the fake offset to userspace so it can mmap it.
2091 * The mmap call will end up in drm_gem_mmap(), which will set things
2092 * up so we can get faults in the handler above.
2093 *
2094 * The fault handler will take care of binding the object into the GTT
2095 * (since it may have been evicted to make room for something), allocating
2096 * a fence register, and mapping the appropriate aperture address into
2097 * userspace.
2098 */
2099 int
2100 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2101 struct drm_file *file)
2102 {
2103 struct drm_i915_gem_mmap_gtt *args = data;
2104
2105 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2106 }
2107
2108 /* Immediately discard the backing storage */
2109 static void
2110 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2111 {
2112 i915_gem_object_free_mmap_offset(obj);
2113
2114 if (obj->base.filp == NULL)
2115 return;
2116
2117 /* Our goal here is to return as much of the memory as
2118 * is possible back to the system as we are called from OOM.
2119 * To do this we must instruct the shmfs to drop all of its
2120 * backing pages, *now*.
2121 */
2122 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2123 obj->madv = __I915_MADV_PURGED;
2124 }
2125
2126 /* Try to discard unwanted pages */
2127 static void
2128 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2129 {
2130 struct address_space *mapping;
2131
2132 switch (obj->madv) {
2133 case I915_MADV_DONTNEED:
2134 i915_gem_object_truncate(obj);
2135 case __I915_MADV_PURGED:
2136 return;
2137 }
2138
2139 if (obj->base.filp == NULL)
2140 return;
2141
2142 mapping = file_inode(obj->base.filp)->i_mapping,
2143 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2144 }
2145
2146 static void
2147 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2148 {
2149 struct sg_page_iter sg_iter;
2150 int ret;
2151
2152 BUG_ON(obj->madv == __I915_MADV_PURGED);
2153
2154 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2155 if (ret) {
2156 /* In the event of a disaster, abandon all caches and
2157 * hope for the best.
2158 */
2159 WARN_ON(ret != -EIO);
2160 i915_gem_clflush_object(obj, true);
2161 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2162 }
2163
2164 if (i915_gem_object_needs_bit17_swizzle(obj))
2165 i915_gem_object_save_bit_17_swizzle(obj);
2166
2167 if (obj->madv == I915_MADV_DONTNEED)
2168 obj->dirty = 0;
2169
2170 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2171 struct page *page = sg_page_iter_page(&sg_iter);
2172
2173 if (obj->dirty)
2174 set_page_dirty(page);
2175
2176 if (obj->madv == I915_MADV_WILLNEED)
2177 mark_page_accessed(page);
2178
2179 page_cache_release(page);
2180 }
2181 obj->dirty = 0;
2182
2183 sg_free_table(obj->pages);
2184 kfree(obj->pages);
2185 }
2186
2187 int
2188 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2189 {
2190 const struct drm_i915_gem_object_ops *ops = obj->ops;
2191
2192 if (obj->pages == NULL)
2193 return 0;
2194
2195 if (obj->pages_pin_count)
2196 return -EBUSY;
2197
2198 BUG_ON(i915_gem_obj_bound_any(obj));
2199
2200 /* ->put_pages might need to allocate memory for the bit17 swizzle
2201 * array, hence protect them from being reaped by removing them from gtt
2202 * lists early. */
2203 list_del(&obj->global_list);
2204
2205 ops->put_pages(obj);
2206 obj->pages = NULL;
2207
2208 i915_gem_object_invalidate(obj);
2209
2210 return 0;
2211 }
2212
2213 static int
2214 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2215 {
2216 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2217 int page_count, i;
2218 struct address_space *mapping;
2219 struct sg_table *st;
2220 struct scatterlist *sg;
2221 struct sg_page_iter sg_iter;
2222 struct page *page;
2223 unsigned long last_pfn = 0; /* suppress gcc warning */
2224 gfp_t gfp;
2225
2226 /* Assert that the object is not currently in any GPU domain. As it
2227 * wasn't in the GTT, there shouldn't be any way it could have been in
2228 * a GPU cache
2229 */
2230 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2231 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2232
2233 st = kmalloc(sizeof(*st), GFP_KERNEL);
2234 if (st == NULL)
2235 return -ENOMEM;
2236
2237 page_count = obj->base.size / PAGE_SIZE;
2238 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2239 kfree(st);
2240 return -ENOMEM;
2241 }
2242
2243 /* Get the list of pages out of our struct file. They'll be pinned
2244 * at this point until we release them.
2245 *
2246 * Fail silently without starting the shrinker
2247 */
2248 mapping = file_inode(obj->base.filp)->i_mapping;
2249 gfp = mapping_gfp_mask(mapping);
2250 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2251 gfp &= ~(__GFP_IO | __GFP_WAIT);
2252 sg = st->sgl;
2253 st->nents = 0;
2254 for (i = 0; i < page_count; i++) {
2255 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2256 if (IS_ERR(page)) {
2257 i915_gem_shrink(dev_priv,
2258 page_count,
2259 I915_SHRINK_BOUND |
2260 I915_SHRINK_UNBOUND |
2261 I915_SHRINK_PURGEABLE);
2262 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2263 }
2264 if (IS_ERR(page)) {
2265 /* We've tried hard to allocate the memory by reaping
2266 * our own buffer, now let the real VM do its job and
2267 * go down in flames if truly OOM.
2268 */
2269 i915_gem_shrink_all(dev_priv);
2270 page = shmem_read_mapping_page(mapping, i);
2271 if (IS_ERR(page))
2272 goto err_pages;
2273 }
2274 #ifdef CONFIG_SWIOTLB
2275 if (swiotlb_nr_tbl()) {
2276 st->nents++;
2277 sg_set_page(sg, page, PAGE_SIZE, 0);
2278 sg = sg_next(sg);
2279 continue;
2280 }
2281 #endif
2282 if (!i || page_to_pfn(page) != last_pfn + 1) {
2283 if (i)
2284 sg = sg_next(sg);
2285 st->nents++;
2286 sg_set_page(sg, page, PAGE_SIZE, 0);
2287 } else {
2288 sg->length += PAGE_SIZE;
2289 }
2290 last_pfn = page_to_pfn(page);
2291
2292 /* Check that the i965g/gm workaround works. */
2293 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2294 }
2295 #ifdef CONFIG_SWIOTLB
2296 if (!swiotlb_nr_tbl())
2297 #endif
2298 sg_mark_end(sg);
2299 obj->pages = st;
2300
2301 if (i915_gem_object_needs_bit17_swizzle(obj))
2302 i915_gem_object_do_bit_17_swizzle(obj);
2303
2304 if (obj->tiling_mode != I915_TILING_NONE &&
2305 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2306 i915_gem_object_pin_pages(obj);
2307
2308 return 0;
2309
2310 err_pages:
2311 sg_mark_end(sg);
2312 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2313 page_cache_release(sg_page_iter_page(&sg_iter));
2314 sg_free_table(st);
2315 kfree(st);
2316
2317 /* shmemfs first checks if there is enough memory to allocate the page
2318 * and reports ENOSPC should there be insufficient, along with the usual
2319 * ENOMEM for a genuine allocation failure.
2320 *
2321 * We use ENOSPC in our driver to mean that we have run out of aperture
2322 * space and so want to translate the error from shmemfs back to our
2323 * usual understanding of ENOMEM.
2324 */
2325 if (PTR_ERR(page) == -ENOSPC)
2326 return -ENOMEM;
2327 else
2328 return PTR_ERR(page);
2329 }
2330
2331 /* Ensure that the associated pages are gathered from the backing storage
2332 * and pinned into our object. i915_gem_object_get_pages() may be called
2333 * multiple times before they are released by a single call to
2334 * i915_gem_object_put_pages() - once the pages are no longer referenced
2335 * either as a result of memory pressure (reaping pages under the shrinker)
2336 * or as the object is itself released.
2337 */
2338 int
2339 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2340 {
2341 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2342 const struct drm_i915_gem_object_ops *ops = obj->ops;
2343 int ret;
2344
2345 if (obj->pages)
2346 return 0;
2347
2348 if (obj->madv != I915_MADV_WILLNEED) {
2349 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2350 return -EFAULT;
2351 }
2352
2353 BUG_ON(obj->pages_pin_count);
2354
2355 ret = ops->get_pages(obj);
2356 if (ret)
2357 return ret;
2358
2359 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2360
2361 obj->get_page.sg = obj->pages->sgl;
2362 obj->get_page.last = 0;
2363
2364 return 0;
2365 }
2366
2367 void i915_vma_move_to_active(struct i915_vma *vma,
2368 struct drm_i915_gem_request *req)
2369 {
2370 struct drm_i915_gem_object *obj = vma->obj;
2371 struct intel_engine_cs *ring;
2372
2373 ring = i915_gem_request_get_ring(req);
2374
2375 /* Add a reference if we're newly entering the active list. */
2376 if (obj->active == 0)
2377 drm_gem_object_reference(&obj->base);
2378 obj->active |= intel_ring_flag(ring);
2379
2380 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2381 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2382
2383 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2384 }
2385
2386 static void
2387 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2388 {
2389 RQ_BUG_ON(obj->last_write_req == NULL);
2390 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2391
2392 i915_gem_request_assign(&obj->last_write_req, NULL);
2393 intel_fb_obj_flush(obj, true);
2394 }
2395
2396 static void
2397 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2398 {
2399 struct i915_vma *vma;
2400
2401 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2402 RQ_BUG_ON(!(obj->active & (1 << ring)));
2403
2404 list_del_init(&obj->ring_list[ring]);
2405 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2406
2407 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2408 i915_gem_object_retire__write(obj);
2409
2410 obj->active &= ~(1 << ring);
2411 if (obj->active)
2412 return;
2413
2414 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2415 if (!list_empty(&vma->mm_list))
2416 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2417 }
2418
2419 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2420 drm_gem_object_unreference(&obj->base);
2421 }
2422
2423 static int
2424 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2425 {
2426 struct drm_i915_private *dev_priv = dev->dev_private;
2427 struct intel_engine_cs *ring;
2428 int ret, i, j;
2429
2430 /* Carefully retire all requests without writing to the rings */
2431 for_each_ring(ring, dev_priv, i) {
2432 ret = intel_ring_idle(ring);
2433 if (ret)
2434 return ret;
2435 }
2436 i915_gem_retire_requests(dev);
2437
2438 /* Finally reset hw state */
2439 for_each_ring(ring, dev_priv, i) {
2440 intel_ring_init_seqno(ring, seqno);
2441
2442 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2443 ring->semaphore.sync_seqno[j] = 0;
2444 }
2445
2446 return 0;
2447 }
2448
2449 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2450 {
2451 struct drm_i915_private *dev_priv = dev->dev_private;
2452 int ret;
2453
2454 if (seqno == 0)
2455 return -EINVAL;
2456
2457 /* HWS page needs to be set less than what we
2458 * will inject to ring
2459 */
2460 ret = i915_gem_init_seqno(dev, seqno - 1);
2461 if (ret)
2462 return ret;
2463
2464 /* Carefully set the last_seqno value so that wrap
2465 * detection still works
2466 */
2467 dev_priv->next_seqno = seqno;
2468 dev_priv->last_seqno = seqno - 1;
2469 if (dev_priv->last_seqno == 0)
2470 dev_priv->last_seqno--;
2471
2472 return 0;
2473 }
2474
2475 int
2476 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2477 {
2478 struct drm_i915_private *dev_priv = dev->dev_private;
2479
2480 /* reserve 0 for non-seqno */
2481 if (dev_priv->next_seqno == 0) {
2482 int ret = i915_gem_init_seqno(dev, 0);
2483 if (ret)
2484 return ret;
2485
2486 dev_priv->next_seqno = 1;
2487 }
2488
2489 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2490 return 0;
2491 }
2492
2493 /*
2494 * NB: This function is not allowed to fail. Doing so would mean the the
2495 * request is not being tracked for completion but the work itself is
2496 * going to happen on the hardware. This would be a Bad Thing(tm).
2497 */
2498 void __i915_add_request(struct drm_i915_gem_request *request,
2499 struct drm_i915_gem_object *obj,
2500 bool flush_caches)
2501 {
2502 struct intel_engine_cs *ring;
2503 struct drm_i915_private *dev_priv;
2504 struct intel_ringbuffer *ringbuf;
2505 u32 request_start;
2506 int ret;
2507
2508 if (WARN_ON(request == NULL))
2509 return;
2510
2511 ring = request->ring;
2512 dev_priv = ring->dev->dev_private;
2513 ringbuf = request->ringbuf;
2514
2515 /*
2516 * To ensure that this call will not fail, space for its emissions
2517 * should already have been reserved in the ring buffer. Let the ring
2518 * know that it is time to use that space up.
2519 */
2520 intel_ring_reserved_space_use(ringbuf);
2521
2522 request_start = intel_ring_get_tail(ringbuf);
2523 /*
2524 * Emit any outstanding flushes - execbuf can fail to emit the flush
2525 * after having emitted the batchbuffer command. Hence we need to fix
2526 * things up similar to emitting the lazy request. The difference here
2527 * is that the flush _must_ happen before the next request, no matter
2528 * what.
2529 */
2530 if (flush_caches) {
2531 if (i915.enable_execlists)
2532 ret = logical_ring_flush_all_caches(request);
2533 else
2534 ret = intel_ring_flush_all_caches(request);
2535 /* Not allowed to fail! */
2536 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2537 }
2538
2539 /* Record the position of the start of the request so that
2540 * should we detect the updated seqno part-way through the
2541 * GPU processing the request, we never over-estimate the
2542 * position of the head.
2543 */
2544 request->postfix = intel_ring_get_tail(ringbuf);
2545
2546 if (i915.enable_execlists)
2547 ret = ring->emit_request(request);
2548 else {
2549 ret = ring->add_request(request);
2550
2551 request->tail = intel_ring_get_tail(ringbuf);
2552 }
2553 /* Not allowed to fail! */
2554 WARN(ret, "emit|add_request failed: %d!\n", ret);
2555
2556 request->head = request_start;
2557
2558 /* Whilst this request exists, batch_obj will be on the
2559 * active_list, and so will hold the active reference. Only when this
2560 * request is retired will the the batch_obj be moved onto the
2561 * inactive_list and lose its active reference. Hence we do not need
2562 * to explicitly hold another reference here.
2563 */
2564 request->batch_obj = obj;
2565
2566 request->emitted_jiffies = jiffies;
2567 list_add_tail(&request->list, &ring->request_list);
2568
2569 trace_i915_gem_request_add(request);
2570
2571 i915_queue_hangcheck(ring->dev);
2572
2573 queue_delayed_work(dev_priv->wq,
2574 &dev_priv->mm.retire_work,
2575 round_jiffies_up_relative(HZ));
2576 intel_mark_busy(dev_priv->dev);
2577
2578 /* Sanity check that the reserved size was large enough. */
2579 intel_ring_reserved_space_end(ringbuf);
2580 }
2581
2582 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2583 const struct intel_context *ctx)
2584 {
2585 unsigned long elapsed;
2586
2587 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2588
2589 if (ctx->hang_stats.banned)
2590 return true;
2591
2592 if (ctx->hang_stats.ban_period_seconds &&
2593 elapsed <= ctx->hang_stats.ban_period_seconds) {
2594 if (!i915_gem_context_is_default(ctx)) {
2595 DRM_DEBUG("context hanging too fast, banning!\n");
2596 return true;
2597 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2598 if (i915_stop_ring_allow_warn(dev_priv))
2599 DRM_ERROR("gpu hanging too fast, banning!\n");
2600 return true;
2601 }
2602 }
2603
2604 return false;
2605 }
2606
2607 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2608 struct intel_context *ctx,
2609 const bool guilty)
2610 {
2611 struct i915_ctx_hang_stats *hs;
2612
2613 if (WARN_ON(!ctx))
2614 return;
2615
2616 hs = &ctx->hang_stats;
2617
2618 if (guilty) {
2619 hs->banned = i915_context_is_banned(dev_priv, ctx);
2620 hs->batch_active++;
2621 hs->guilty_ts = get_seconds();
2622 } else {
2623 hs->batch_pending++;
2624 }
2625 }
2626
2627 void i915_gem_request_free(struct kref *req_ref)
2628 {
2629 struct drm_i915_gem_request *req = container_of(req_ref,
2630 typeof(*req), ref);
2631 struct intel_context *ctx = req->ctx;
2632
2633 if (req->file_priv)
2634 i915_gem_request_remove_from_client(req);
2635
2636 if (ctx) {
2637 if (i915.enable_execlists) {
2638 struct intel_engine_cs *ring = req->ring;
2639
2640 if (ctx != ring->default_context)
2641 intel_lr_context_unpin(ring, ctx);
2642 }
2643
2644 i915_gem_context_unreference(ctx);
2645 }
2646
2647 kmem_cache_free(req->i915->requests, req);
2648 }
2649
2650 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2651 struct intel_context *ctx,
2652 struct drm_i915_gem_request **req_out)
2653 {
2654 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2655 struct drm_i915_gem_request *req;
2656 int ret;
2657
2658 if (!req_out)
2659 return -EINVAL;
2660
2661 *req_out = NULL;
2662
2663 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2664 if (req == NULL)
2665 return -ENOMEM;
2666
2667 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2668 if (ret)
2669 goto err;
2670
2671 kref_init(&req->ref);
2672 req->i915 = dev_priv;
2673 req->ring = ring;
2674 req->ctx = ctx;
2675 i915_gem_context_reference(req->ctx);
2676
2677 if (i915.enable_execlists)
2678 ret = intel_logical_ring_alloc_request_extras(req);
2679 else
2680 ret = intel_ring_alloc_request_extras(req);
2681 if (ret) {
2682 i915_gem_context_unreference(req->ctx);
2683 goto err;
2684 }
2685
2686 /*
2687 * Reserve space in the ring buffer for all the commands required to
2688 * eventually emit this request. This is to guarantee that the
2689 * i915_add_request() call can't fail. Note that the reserve may need
2690 * to be redone if the request is not actually submitted straight
2691 * away, e.g. because a GPU scheduler has deferred it.
2692 */
2693 if (i915.enable_execlists)
2694 ret = intel_logical_ring_reserve_space(req);
2695 else
2696 ret = intel_ring_reserve_space(req);
2697 if (ret) {
2698 /*
2699 * At this point, the request is fully allocated even if not
2700 * fully prepared. Thus it can be cleaned up using the proper
2701 * free code.
2702 */
2703 i915_gem_request_cancel(req);
2704 return ret;
2705 }
2706
2707 *req_out = req;
2708 return 0;
2709
2710 err:
2711 kmem_cache_free(dev_priv->requests, req);
2712 return ret;
2713 }
2714
2715 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2716 {
2717 intel_ring_reserved_space_cancel(req->ringbuf);
2718
2719 i915_gem_request_unreference(req);
2720 }
2721
2722 struct drm_i915_gem_request *
2723 i915_gem_find_active_request(struct intel_engine_cs *ring)
2724 {
2725 struct drm_i915_gem_request *request;
2726
2727 list_for_each_entry(request, &ring->request_list, list) {
2728 if (i915_gem_request_completed(request, false))
2729 continue;
2730
2731 return request;
2732 }
2733
2734 return NULL;
2735 }
2736
2737 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2738 struct intel_engine_cs *ring)
2739 {
2740 struct drm_i915_gem_request *request;
2741 bool ring_hung;
2742
2743 request = i915_gem_find_active_request(ring);
2744
2745 if (request == NULL)
2746 return;
2747
2748 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2749
2750 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2751
2752 list_for_each_entry_continue(request, &ring->request_list, list)
2753 i915_set_reset_status(dev_priv, request->ctx, false);
2754 }
2755
2756 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2757 struct intel_engine_cs *ring)
2758 {
2759 while (!list_empty(&ring->active_list)) {
2760 struct drm_i915_gem_object *obj;
2761
2762 obj = list_first_entry(&ring->active_list,
2763 struct drm_i915_gem_object,
2764 ring_list[ring->id]);
2765
2766 i915_gem_object_retire__read(obj, ring->id);
2767 }
2768
2769 /*
2770 * Clear the execlists queue up before freeing the requests, as those
2771 * are the ones that keep the context and ringbuffer backing objects
2772 * pinned in place.
2773 */
2774 while (!list_empty(&ring->execlist_queue)) {
2775 struct drm_i915_gem_request *submit_req;
2776
2777 submit_req = list_first_entry(&ring->execlist_queue,
2778 struct drm_i915_gem_request,
2779 execlist_link);
2780 list_del(&submit_req->execlist_link);
2781
2782 if (submit_req->ctx != ring->default_context)
2783 intel_lr_context_unpin(ring, submit_req->ctx);
2784
2785 i915_gem_request_unreference(submit_req);
2786 }
2787
2788 /*
2789 * We must free the requests after all the corresponding objects have
2790 * been moved off active lists. Which is the same order as the normal
2791 * retire_requests function does. This is important if object hold
2792 * implicit references on things like e.g. ppgtt address spaces through
2793 * the request.
2794 */
2795 while (!list_empty(&ring->request_list)) {
2796 struct drm_i915_gem_request *request;
2797
2798 request = list_first_entry(&ring->request_list,
2799 struct drm_i915_gem_request,
2800 list);
2801
2802 i915_gem_request_retire(request);
2803 }
2804 }
2805
2806 void i915_gem_restore_fences(struct drm_device *dev)
2807 {
2808 struct drm_i915_private *dev_priv = dev->dev_private;
2809 int i;
2810
2811 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2812 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2813
2814 /*
2815 * Commit delayed tiling changes if we have an object still
2816 * attached to the fence, otherwise just clear the fence.
2817 */
2818 if (reg->obj) {
2819 i915_gem_object_update_fence(reg->obj, reg,
2820 reg->obj->tiling_mode);
2821 } else {
2822 i915_gem_write_fence(dev, i, NULL);
2823 }
2824 }
2825 }
2826
2827 void i915_gem_reset(struct drm_device *dev)
2828 {
2829 struct drm_i915_private *dev_priv = dev->dev_private;
2830 struct intel_engine_cs *ring;
2831 int i;
2832
2833 /*
2834 * Before we free the objects from the requests, we need to inspect
2835 * them for finding the guilty party. As the requests only borrow
2836 * their reference to the objects, the inspection must be done first.
2837 */
2838 for_each_ring(ring, dev_priv, i)
2839 i915_gem_reset_ring_status(dev_priv, ring);
2840
2841 for_each_ring(ring, dev_priv, i)
2842 i915_gem_reset_ring_cleanup(dev_priv, ring);
2843
2844 i915_gem_context_reset(dev);
2845
2846 i915_gem_restore_fences(dev);
2847
2848 WARN_ON(i915_verify_lists(dev));
2849 }
2850
2851 /**
2852 * This function clears the request list as sequence numbers are passed.
2853 */
2854 void
2855 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2856 {
2857 WARN_ON(i915_verify_lists(ring->dev));
2858
2859 /* Retire requests first as we use it above for the early return.
2860 * If we retire requests last, we may use a later seqno and so clear
2861 * the requests lists without clearing the active list, leading to
2862 * confusion.
2863 */
2864 while (!list_empty(&ring->request_list)) {
2865 struct drm_i915_gem_request *request;
2866
2867 request = list_first_entry(&ring->request_list,
2868 struct drm_i915_gem_request,
2869 list);
2870
2871 if (!i915_gem_request_completed(request, true))
2872 break;
2873
2874 i915_gem_request_retire(request);
2875 }
2876
2877 /* Move any buffers on the active list that are no longer referenced
2878 * by the ringbuffer to the flushing/inactive lists as appropriate,
2879 * before we free the context associated with the requests.
2880 */
2881 while (!list_empty(&ring->active_list)) {
2882 struct drm_i915_gem_object *obj;
2883
2884 obj = list_first_entry(&ring->active_list,
2885 struct drm_i915_gem_object,
2886 ring_list[ring->id]);
2887
2888 if (!list_empty(&obj->last_read_req[ring->id]->list))
2889 break;
2890
2891 i915_gem_object_retire__read(obj, ring->id);
2892 }
2893
2894 if (unlikely(ring->trace_irq_req &&
2895 i915_gem_request_completed(ring->trace_irq_req, true))) {
2896 ring->irq_put(ring);
2897 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2898 }
2899
2900 WARN_ON(i915_verify_lists(ring->dev));
2901 }
2902
2903 bool
2904 i915_gem_retire_requests(struct drm_device *dev)
2905 {
2906 struct drm_i915_private *dev_priv = dev->dev_private;
2907 struct intel_engine_cs *ring;
2908 bool idle = true;
2909 int i;
2910
2911 for_each_ring(ring, dev_priv, i) {
2912 i915_gem_retire_requests_ring(ring);
2913 idle &= list_empty(&ring->request_list);
2914 if (i915.enable_execlists) {
2915 unsigned long flags;
2916
2917 spin_lock_irqsave(&ring->execlist_lock, flags);
2918 idle &= list_empty(&ring->execlist_queue);
2919 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2920
2921 intel_execlists_retire_requests(ring);
2922 }
2923 }
2924
2925 if (idle)
2926 mod_delayed_work(dev_priv->wq,
2927 &dev_priv->mm.idle_work,
2928 msecs_to_jiffies(100));
2929
2930 return idle;
2931 }
2932
2933 static void
2934 i915_gem_retire_work_handler(struct work_struct *work)
2935 {
2936 struct drm_i915_private *dev_priv =
2937 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2938 struct drm_device *dev = dev_priv->dev;
2939 bool idle;
2940
2941 /* Come back later if the device is busy... */
2942 idle = false;
2943 if (mutex_trylock(&dev->struct_mutex)) {
2944 idle = i915_gem_retire_requests(dev);
2945 mutex_unlock(&dev->struct_mutex);
2946 }
2947 if (!idle)
2948 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2949 round_jiffies_up_relative(HZ));
2950 }
2951
2952 static void
2953 i915_gem_idle_work_handler(struct work_struct *work)
2954 {
2955 struct drm_i915_private *dev_priv =
2956 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2957 struct drm_device *dev = dev_priv->dev;
2958 struct intel_engine_cs *ring;
2959 int i;
2960
2961 for_each_ring(ring, dev_priv, i)
2962 if (!list_empty(&ring->request_list))
2963 return;
2964
2965 intel_mark_idle(dev);
2966
2967 if (mutex_trylock(&dev->struct_mutex)) {
2968 struct intel_engine_cs *ring;
2969 int i;
2970
2971 for_each_ring(ring, dev_priv, i)
2972 i915_gem_batch_pool_fini(&ring->batch_pool);
2973
2974 mutex_unlock(&dev->struct_mutex);
2975 }
2976 }
2977
2978 /**
2979 * Ensures that an object will eventually get non-busy by flushing any required
2980 * write domains, emitting any outstanding lazy request and retiring and
2981 * completed requests.
2982 */
2983 static int
2984 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2985 {
2986 int ret, i;
2987
2988 if (!obj->active)
2989 return 0;
2990
2991 for (i = 0; i < I915_NUM_RINGS; i++) {
2992 struct drm_i915_gem_request *req;
2993
2994 req = obj->last_read_req[i];
2995 if (req == NULL)
2996 continue;
2997
2998 if (list_empty(&req->list))
2999 goto retire;
3000
3001 ret = i915_gem_check_olr(req);
3002 if (ret)
3003 return ret;
3004
3005 if (i915_gem_request_completed(req, true)) {
3006 __i915_gem_request_retire__upto(req);
3007 retire:
3008 i915_gem_object_retire__read(obj, i);
3009 }
3010 }
3011
3012 return 0;
3013 }
3014
3015 /**
3016 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3017 * @DRM_IOCTL_ARGS: standard ioctl arguments
3018 *
3019 * Returns 0 if successful, else an error is returned with the remaining time in
3020 * the timeout parameter.
3021 * -ETIME: object is still busy after timeout
3022 * -ERESTARTSYS: signal interrupted the wait
3023 * -ENONENT: object doesn't exist
3024 * Also possible, but rare:
3025 * -EAGAIN: GPU wedged
3026 * -ENOMEM: damn
3027 * -ENODEV: Internal IRQ fail
3028 * -E?: The add request failed
3029 *
3030 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3031 * non-zero timeout parameter the wait ioctl will wait for the given number of
3032 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3033 * without holding struct_mutex the object may become re-busied before this
3034 * function completes. A similar but shorter * race condition exists in the busy
3035 * ioctl
3036 */
3037 int
3038 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3039 {
3040 struct drm_i915_private *dev_priv = dev->dev_private;
3041 struct drm_i915_gem_wait *args = data;
3042 struct drm_i915_gem_object *obj;
3043 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3044 unsigned reset_counter;
3045 int i, n = 0;
3046 int ret;
3047
3048 if (args->flags != 0)
3049 return -EINVAL;
3050
3051 ret = i915_mutex_lock_interruptible(dev);
3052 if (ret)
3053 return ret;
3054
3055 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3056 if (&obj->base == NULL) {
3057 mutex_unlock(&dev->struct_mutex);
3058 return -ENOENT;
3059 }
3060
3061 /* Need to make sure the object gets inactive eventually. */
3062 ret = i915_gem_object_flush_active(obj);
3063 if (ret)
3064 goto out;
3065
3066 if (!obj->active)
3067 goto out;
3068
3069 /* Do this after OLR check to make sure we make forward progress polling
3070 * on this IOCTL with a timeout == 0 (like busy ioctl)
3071 */
3072 if (args->timeout_ns == 0) {
3073 ret = -ETIME;
3074 goto out;
3075 }
3076
3077 drm_gem_object_unreference(&obj->base);
3078 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3079
3080 for (i = 0; i < I915_NUM_RINGS; i++) {
3081 if (obj->last_read_req[i] == NULL)
3082 continue;
3083
3084 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3085 }
3086
3087 mutex_unlock(&dev->struct_mutex);
3088
3089 for (i = 0; i < n; i++) {
3090 if (ret == 0)
3091 ret = __i915_wait_request(req[i], reset_counter, true,
3092 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3093 file->driver_priv);
3094 i915_gem_request_unreference__unlocked(req[i]);
3095 }
3096 return ret;
3097
3098 out:
3099 drm_gem_object_unreference(&obj->base);
3100 mutex_unlock(&dev->struct_mutex);
3101 return ret;
3102 }
3103
3104 static int
3105 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3106 struct intel_engine_cs *to,
3107 struct drm_i915_gem_request *from_req,
3108 struct drm_i915_gem_request **to_req)
3109 {
3110 struct intel_engine_cs *from;
3111 int ret;
3112
3113 from = i915_gem_request_get_ring(from_req);
3114 if (to == from)
3115 return 0;
3116
3117 if (i915_gem_request_completed(from_req, true))
3118 return 0;
3119
3120 ret = i915_gem_check_olr(from_req);
3121 if (ret)
3122 return ret;
3123
3124 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3125 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3126 ret = __i915_wait_request(from_req,
3127 atomic_read(&i915->gpu_error.reset_counter),
3128 i915->mm.interruptible,
3129 NULL,
3130 &i915->rps.semaphores);
3131 if (ret)
3132 return ret;
3133
3134 i915_gem_object_retire_request(obj, from_req);
3135 } else {
3136 int idx = intel_ring_sync_index(from, to);
3137 u32 seqno = i915_gem_request_get_seqno(from_req);
3138
3139 WARN_ON(!to_req);
3140
3141 if (seqno <= from->semaphore.sync_seqno[idx])
3142 return 0;
3143
3144 if (*to_req == NULL) {
3145 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3146 if (ret)
3147 return ret;
3148 }
3149
3150 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3151 ret = to->semaphore.sync_to(*to_req, from, seqno);
3152 if (ret)
3153 return ret;
3154
3155 /* We use last_read_req because sync_to()
3156 * might have just caused seqno wrap under
3157 * the radar.
3158 */
3159 from->semaphore.sync_seqno[idx] =
3160 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3161 }
3162
3163 return 0;
3164 }
3165
3166 /**
3167 * i915_gem_object_sync - sync an object to a ring.
3168 *
3169 * @obj: object which may be in use on another ring.
3170 * @to: ring we wish to use the object on. May be NULL.
3171 * @to_req: request we wish to use the object for. See below.
3172 * This will be allocated and returned if a request is
3173 * required but not passed in.
3174 *
3175 * This code is meant to abstract object synchronization with the GPU.
3176 * Calling with NULL implies synchronizing the object with the CPU
3177 * rather than a particular GPU ring. Conceptually we serialise writes
3178 * between engines inside the GPU. We only allow one engine to write
3179 * into a buffer at any time, but multiple readers. To ensure each has
3180 * a coherent view of memory, we must:
3181 *
3182 * - If there is an outstanding write request to the object, the new
3183 * request must wait for it to complete (either CPU or in hw, requests
3184 * on the same ring will be naturally ordered).
3185 *
3186 * - If we are a write request (pending_write_domain is set), the new
3187 * request must wait for outstanding read requests to complete.
3188 *
3189 * For CPU synchronisation (NULL to) no request is required. For syncing with
3190 * rings to_req must be non-NULL. However, a request does not have to be
3191 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3192 * request will be allocated automatically and returned through *to_req. Note
3193 * that it is not guaranteed that commands will be emitted (because the system
3194 * might already be idle). Hence there is no need to create a request that
3195 * might never have any work submitted. Note further that if a request is
3196 * returned in *to_req, it is the responsibility of the caller to submit
3197 * that request (after potentially adding more work to it).
3198 *
3199 * Returns 0 if successful, else propagates up the lower layer error.
3200 */
3201 int
3202 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3203 struct intel_engine_cs *to,
3204 struct drm_i915_gem_request **to_req)
3205 {
3206 const bool readonly = obj->base.pending_write_domain == 0;
3207 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3208 int ret, i, n;
3209
3210 if (!obj->active)
3211 return 0;
3212
3213 if (to == NULL)
3214 return i915_gem_object_wait_rendering(obj, readonly);
3215
3216 n = 0;
3217 if (readonly) {
3218 if (obj->last_write_req)
3219 req[n++] = obj->last_write_req;
3220 } else {
3221 for (i = 0; i < I915_NUM_RINGS; i++)
3222 if (obj->last_read_req[i])
3223 req[n++] = obj->last_read_req[i];
3224 }
3225 for (i = 0; i < n; i++) {
3226 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3227 if (ret)
3228 return ret;
3229 }
3230
3231 return 0;
3232 }
3233
3234 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3235 {
3236 u32 old_write_domain, old_read_domains;
3237
3238 /* Force a pagefault for domain tracking on next user access */
3239 i915_gem_release_mmap(obj);
3240
3241 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3242 return;
3243
3244 /* Wait for any direct GTT access to complete */
3245 mb();
3246
3247 old_read_domains = obj->base.read_domains;
3248 old_write_domain = obj->base.write_domain;
3249
3250 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3251 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3252
3253 trace_i915_gem_object_change_domain(obj,
3254 old_read_domains,
3255 old_write_domain);
3256 }
3257
3258 int i915_vma_unbind(struct i915_vma *vma)
3259 {
3260 struct drm_i915_gem_object *obj = vma->obj;
3261 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3262 int ret;
3263
3264 if (list_empty(&vma->vma_link))
3265 return 0;
3266
3267 if (!drm_mm_node_allocated(&vma->node)) {
3268 i915_gem_vma_destroy(vma);
3269 return 0;
3270 }
3271
3272 if (vma->pin_count)
3273 return -EBUSY;
3274
3275 BUG_ON(obj->pages == NULL);
3276
3277 ret = i915_gem_object_wait_rendering(obj, false);
3278 if (ret)
3279 return ret;
3280 /* Continue on if we fail due to EIO, the GPU is hung so we
3281 * should be safe and we need to cleanup or else we might
3282 * cause memory corruption through use-after-free.
3283 */
3284
3285 if (i915_is_ggtt(vma->vm) &&
3286 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3287 i915_gem_object_finish_gtt(obj);
3288
3289 /* release the fence reg _after_ flushing */
3290 ret = i915_gem_object_put_fence(obj);
3291 if (ret)
3292 return ret;
3293 }
3294
3295 trace_i915_vma_unbind(vma);
3296
3297 vma->vm->unbind_vma(vma);
3298 vma->bound = 0;
3299
3300 list_del_init(&vma->mm_list);
3301 if (i915_is_ggtt(vma->vm)) {
3302 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3303 obj->map_and_fenceable = false;
3304 } else if (vma->ggtt_view.pages) {
3305 sg_free_table(vma->ggtt_view.pages);
3306 kfree(vma->ggtt_view.pages);
3307 vma->ggtt_view.pages = NULL;
3308 }
3309 }
3310
3311 drm_mm_remove_node(&vma->node);
3312 i915_gem_vma_destroy(vma);
3313
3314 /* Since the unbound list is global, only move to that list if
3315 * no more VMAs exist. */
3316 if (list_empty(&obj->vma_list)) {
3317 i915_gem_gtt_finish_object(obj);
3318 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3319 }
3320
3321 /* And finally now the object is completely decoupled from this vma,
3322 * we can drop its hold on the backing storage and allow it to be
3323 * reaped by the shrinker.
3324 */
3325 i915_gem_object_unpin_pages(obj);
3326
3327 return 0;
3328 }
3329
3330 int i915_gpu_idle(struct drm_device *dev)
3331 {
3332 struct drm_i915_private *dev_priv = dev->dev_private;
3333 struct intel_engine_cs *ring;
3334 int ret, i;
3335
3336 /* Flush everything onto the inactive list. */
3337 for_each_ring(ring, dev_priv, i) {
3338 if (!i915.enable_execlists) {
3339 struct drm_i915_gem_request *req;
3340
3341 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3342 if (ret)
3343 return ret;
3344
3345 ret = i915_switch_context(req);
3346 if (ret) {
3347 i915_gem_request_cancel(req);
3348 return ret;
3349 }
3350
3351 i915_add_request_no_flush(req);
3352 }
3353
3354 ret = intel_ring_idle(ring);
3355 if (ret)
3356 return ret;
3357 }
3358
3359 WARN_ON(i915_verify_lists(dev));
3360 return 0;
3361 }
3362
3363 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3364 struct drm_i915_gem_object *obj)
3365 {
3366 struct drm_i915_private *dev_priv = dev->dev_private;
3367 int fence_reg;
3368 int fence_pitch_shift;
3369
3370 if (INTEL_INFO(dev)->gen >= 6) {
3371 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3372 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3373 } else {
3374 fence_reg = FENCE_REG_965_0;
3375 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3376 }
3377
3378 fence_reg += reg * 8;
3379
3380 /* To w/a incoherency with non-atomic 64-bit register updates,
3381 * we split the 64-bit update into two 32-bit writes. In order
3382 * for a partial fence not to be evaluated between writes, we
3383 * precede the update with write to turn off the fence register,
3384 * and only enable the fence as the last step.
3385 *
3386 * For extra levels of paranoia, we make sure each step lands
3387 * before applying the next step.
3388 */
3389 I915_WRITE(fence_reg, 0);
3390 POSTING_READ(fence_reg);
3391
3392 if (obj) {
3393 u32 size = i915_gem_obj_ggtt_size(obj);
3394 uint64_t val;
3395
3396 /* Adjust fence size to match tiled area */
3397 if (obj->tiling_mode != I915_TILING_NONE) {
3398 uint32_t row_size = obj->stride *
3399 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3400 size = (size / row_size) * row_size;
3401 }
3402
3403 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3404 0xfffff000) << 32;
3405 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3406 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3407 if (obj->tiling_mode == I915_TILING_Y)
3408 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3409 val |= I965_FENCE_REG_VALID;
3410
3411 I915_WRITE(fence_reg + 4, val >> 32);
3412 POSTING_READ(fence_reg + 4);
3413
3414 I915_WRITE(fence_reg + 0, val);
3415 POSTING_READ(fence_reg);
3416 } else {
3417 I915_WRITE(fence_reg + 4, 0);
3418 POSTING_READ(fence_reg + 4);
3419 }
3420 }
3421
3422 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3423 struct drm_i915_gem_object *obj)
3424 {
3425 struct drm_i915_private *dev_priv = dev->dev_private;
3426 u32 val;
3427
3428 if (obj) {
3429 u32 size = i915_gem_obj_ggtt_size(obj);
3430 int pitch_val;
3431 int tile_width;
3432
3433 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3434 (size & -size) != size ||
3435 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3436 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3437 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3438
3439 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3440 tile_width = 128;
3441 else
3442 tile_width = 512;
3443
3444 /* Note: pitch better be a power of two tile widths */
3445 pitch_val = obj->stride / tile_width;
3446 pitch_val = ffs(pitch_val) - 1;
3447
3448 val = i915_gem_obj_ggtt_offset(obj);
3449 if (obj->tiling_mode == I915_TILING_Y)
3450 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3451 val |= I915_FENCE_SIZE_BITS(size);
3452 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3453 val |= I830_FENCE_REG_VALID;
3454 } else
3455 val = 0;
3456
3457 if (reg < 8)
3458 reg = FENCE_REG_830_0 + reg * 4;
3459 else
3460 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3461
3462 I915_WRITE(reg, val);
3463 POSTING_READ(reg);
3464 }
3465
3466 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3467 struct drm_i915_gem_object *obj)
3468 {
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 uint32_t val;
3471
3472 if (obj) {
3473 u32 size = i915_gem_obj_ggtt_size(obj);
3474 uint32_t pitch_val;
3475
3476 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3477 (size & -size) != size ||
3478 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3479 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3480 i915_gem_obj_ggtt_offset(obj), size);
3481
3482 pitch_val = obj->stride / 128;
3483 pitch_val = ffs(pitch_val) - 1;
3484
3485 val = i915_gem_obj_ggtt_offset(obj);
3486 if (obj->tiling_mode == I915_TILING_Y)
3487 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3488 val |= I830_FENCE_SIZE_BITS(size);
3489 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3490 val |= I830_FENCE_REG_VALID;
3491 } else
3492 val = 0;
3493
3494 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3495 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3496 }
3497
3498 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3499 {
3500 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3501 }
3502
3503 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3504 struct drm_i915_gem_object *obj)
3505 {
3506 struct drm_i915_private *dev_priv = dev->dev_private;
3507
3508 /* Ensure that all CPU reads are completed before installing a fence
3509 * and all writes before removing the fence.
3510 */
3511 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3512 mb();
3513
3514 WARN(obj && (!obj->stride || !obj->tiling_mode),
3515 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3516 obj->stride, obj->tiling_mode);
3517
3518 if (IS_GEN2(dev))
3519 i830_write_fence_reg(dev, reg, obj);
3520 else if (IS_GEN3(dev))
3521 i915_write_fence_reg(dev, reg, obj);
3522 else if (INTEL_INFO(dev)->gen >= 4)
3523 i965_write_fence_reg(dev, reg, obj);
3524
3525 /* And similarly be paranoid that no direct access to this region
3526 * is reordered to before the fence is installed.
3527 */
3528 if (i915_gem_object_needs_mb(obj))
3529 mb();
3530 }
3531
3532 static inline int fence_number(struct drm_i915_private *dev_priv,
3533 struct drm_i915_fence_reg *fence)
3534 {
3535 return fence - dev_priv->fence_regs;
3536 }
3537
3538 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3539 struct drm_i915_fence_reg *fence,
3540 bool enable)
3541 {
3542 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3543 int reg = fence_number(dev_priv, fence);
3544
3545 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3546
3547 if (enable) {
3548 obj->fence_reg = reg;
3549 fence->obj = obj;
3550 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3551 } else {
3552 obj->fence_reg = I915_FENCE_REG_NONE;
3553 fence->obj = NULL;
3554 list_del_init(&fence->lru_list);
3555 }
3556 obj->fence_dirty = false;
3557 }
3558
3559 static int
3560 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3561 {
3562 if (obj->last_fenced_req) {
3563 int ret = i915_wait_request(obj->last_fenced_req);
3564 if (ret)
3565 return ret;
3566
3567 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3568 }
3569
3570 return 0;
3571 }
3572
3573 int
3574 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3575 {
3576 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3577 struct drm_i915_fence_reg *fence;
3578 int ret;
3579
3580 ret = i915_gem_object_wait_fence(obj);
3581 if (ret)
3582 return ret;
3583
3584 if (obj->fence_reg == I915_FENCE_REG_NONE)
3585 return 0;
3586
3587 fence = &dev_priv->fence_regs[obj->fence_reg];
3588
3589 if (WARN_ON(fence->pin_count))
3590 return -EBUSY;
3591
3592 i915_gem_object_fence_lost(obj);
3593 i915_gem_object_update_fence(obj, fence, false);
3594
3595 return 0;
3596 }
3597
3598 static struct drm_i915_fence_reg *
3599 i915_find_fence_reg(struct drm_device *dev)
3600 {
3601 struct drm_i915_private *dev_priv = dev->dev_private;
3602 struct drm_i915_fence_reg *reg, *avail;
3603 int i;
3604
3605 /* First try to find a free reg */
3606 avail = NULL;
3607 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3608 reg = &dev_priv->fence_regs[i];
3609 if (!reg->obj)
3610 return reg;
3611
3612 if (!reg->pin_count)
3613 avail = reg;
3614 }
3615
3616 if (avail == NULL)
3617 goto deadlock;
3618
3619 /* None available, try to steal one or wait for a user to finish */
3620 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3621 if (reg->pin_count)
3622 continue;
3623
3624 return reg;
3625 }
3626
3627 deadlock:
3628 /* Wait for completion of pending flips which consume fences */
3629 if (intel_has_pending_fb_unpin(dev))
3630 return ERR_PTR(-EAGAIN);
3631
3632 return ERR_PTR(-EDEADLK);
3633 }
3634
3635 /**
3636 * i915_gem_object_get_fence - set up fencing for an object
3637 * @obj: object to map through a fence reg
3638 *
3639 * When mapping objects through the GTT, userspace wants to be able to write
3640 * to them without having to worry about swizzling if the object is tiled.
3641 * This function walks the fence regs looking for a free one for @obj,
3642 * stealing one if it can't find any.
3643 *
3644 * It then sets up the reg based on the object's properties: address, pitch
3645 * and tiling format.
3646 *
3647 * For an untiled surface, this removes any existing fence.
3648 */
3649 int
3650 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3651 {
3652 struct drm_device *dev = obj->base.dev;
3653 struct drm_i915_private *dev_priv = dev->dev_private;
3654 bool enable = obj->tiling_mode != I915_TILING_NONE;
3655 struct drm_i915_fence_reg *reg;
3656 int ret;
3657
3658 /* Have we updated the tiling parameters upon the object and so
3659 * will need to serialise the write to the associated fence register?
3660 */
3661 if (obj->fence_dirty) {
3662 ret = i915_gem_object_wait_fence(obj);
3663 if (ret)
3664 return ret;
3665 }
3666
3667 /* Just update our place in the LRU if our fence is getting reused. */
3668 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3669 reg = &dev_priv->fence_regs[obj->fence_reg];
3670 if (!obj->fence_dirty) {
3671 list_move_tail(&reg->lru_list,
3672 &dev_priv->mm.fence_list);
3673 return 0;
3674 }
3675 } else if (enable) {
3676 if (WARN_ON(!obj->map_and_fenceable))
3677 return -EINVAL;
3678
3679 reg = i915_find_fence_reg(dev);
3680 if (IS_ERR(reg))
3681 return PTR_ERR(reg);
3682
3683 if (reg->obj) {
3684 struct drm_i915_gem_object *old = reg->obj;
3685
3686 ret = i915_gem_object_wait_fence(old);
3687 if (ret)
3688 return ret;
3689
3690 i915_gem_object_fence_lost(old);
3691 }
3692 } else
3693 return 0;
3694
3695 i915_gem_object_update_fence(obj, reg, enable);
3696
3697 return 0;
3698 }
3699
3700 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3701 unsigned long cache_level)
3702 {
3703 struct drm_mm_node *gtt_space = &vma->node;
3704 struct drm_mm_node *other;
3705
3706 /*
3707 * On some machines we have to be careful when putting differing types
3708 * of snoopable memory together to avoid the prefetcher crossing memory
3709 * domains and dying. During vm initialisation, we decide whether or not
3710 * these constraints apply and set the drm_mm.color_adjust
3711 * appropriately.
3712 */
3713 if (vma->vm->mm.color_adjust == NULL)
3714 return true;
3715
3716 if (!drm_mm_node_allocated(gtt_space))
3717 return true;
3718
3719 if (list_empty(&gtt_space->node_list))
3720 return true;
3721
3722 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3723 if (other->allocated && !other->hole_follows && other->color != cache_level)
3724 return false;
3725
3726 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3727 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3728 return false;
3729
3730 return true;
3731 }
3732
3733 /**
3734 * Finds free space in the GTT aperture and binds the object or a view of it
3735 * there.
3736 */
3737 static struct i915_vma *
3738 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3739 struct i915_address_space *vm,
3740 const struct i915_ggtt_view *ggtt_view,
3741 unsigned alignment,
3742 uint64_t flags)
3743 {
3744 struct drm_device *dev = obj->base.dev;
3745 struct drm_i915_private *dev_priv = dev->dev_private;
3746 u32 size, fence_size, fence_alignment, unfenced_alignment;
3747 unsigned long start =
3748 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3749 unsigned long end =
3750 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3751 struct i915_vma *vma;
3752 int ret;
3753
3754 if (i915_is_ggtt(vm)) {
3755 u32 view_size;
3756
3757 if (WARN_ON(!ggtt_view))
3758 return ERR_PTR(-EINVAL);
3759
3760 view_size = i915_ggtt_view_size(obj, ggtt_view);
3761
3762 fence_size = i915_gem_get_gtt_size(dev,
3763 view_size,
3764 obj->tiling_mode);
3765 fence_alignment = i915_gem_get_gtt_alignment(dev,
3766 view_size,
3767 obj->tiling_mode,
3768 true);
3769 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3770 view_size,
3771 obj->tiling_mode,
3772 false);
3773 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3774 } else {
3775 fence_size = i915_gem_get_gtt_size(dev,
3776 obj->base.size,
3777 obj->tiling_mode);
3778 fence_alignment = i915_gem_get_gtt_alignment(dev,
3779 obj->base.size,
3780 obj->tiling_mode,
3781 true);
3782 unfenced_alignment =
3783 i915_gem_get_gtt_alignment(dev,
3784 obj->base.size,
3785 obj->tiling_mode,
3786 false);
3787 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3788 }
3789
3790 if (alignment == 0)
3791 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3792 unfenced_alignment;
3793 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3794 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3795 ggtt_view ? ggtt_view->type : 0,
3796 alignment);
3797 return ERR_PTR(-EINVAL);
3798 }
3799
3800 /* If binding the object/GGTT view requires more space than the entire
3801 * aperture has, reject it early before evicting everything in a vain
3802 * attempt to find space.
3803 */
3804 if (size > end) {
3805 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3806 ggtt_view ? ggtt_view->type : 0,
3807 size,
3808 flags & PIN_MAPPABLE ? "mappable" : "total",
3809 end);
3810 return ERR_PTR(-E2BIG);
3811 }
3812
3813 ret = i915_gem_object_get_pages(obj);
3814 if (ret)
3815 return ERR_PTR(ret);
3816
3817 i915_gem_object_pin_pages(obj);
3818
3819 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3820 i915_gem_obj_lookup_or_create_vma(obj, vm);
3821
3822 if (IS_ERR(vma))
3823 goto err_unpin;
3824
3825 search_free:
3826 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3827 size, alignment,
3828 obj->cache_level,
3829 start, end,
3830 DRM_MM_SEARCH_DEFAULT,
3831 DRM_MM_CREATE_DEFAULT);
3832 if (ret) {
3833 ret = i915_gem_evict_something(dev, vm, size, alignment,
3834 obj->cache_level,
3835 start, end,
3836 flags);
3837 if (ret == 0)
3838 goto search_free;
3839
3840 goto err_free_vma;
3841 }
3842 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3843 ret = -EINVAL;
3844 goto err_remove_node;
3845 }
3846
3847 ret = i915_gem_gtt_prepare_object(obj);
3848 if (ret)
3849 goto err_remove_node;
3850
3851 trace_i915_vma_bind(vma, flags);
3852 ret = i915_vma_bind(vma, obj->cache_level, flags);
3853 if (ret)
3854 goto err_finish_gtt;
3855
3856 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3857 list_add_tail(&vma->mm_list, &vm->inactive_list);
3858
3859 return vma;
3860
3861 err_finish_gtt:
3862 i915_gem_gtt_finish_object(obj);
3863 err_remove_node:
3864 drm_mm_remove_node(&vma->node);
3865 err_free_vma:
3866 i915_gem_vma_destroy(vma);
3867 vma = ERR_PTR(ret);
3868 err_unpin:
3869 i915_gem_object_unpin_pages(obj);
3870 return vma;
3871 }
3872
3873 bool
3874 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3875 bool force)
3876 {
3877 /* If we don't have a page list set up, then we're not pinned
3878 * to GPU, and we can ignore the cache flush because it'll happen
3879 * again at bind time.
3880 */
3881 if (obj->pages == NULL)
3882 return false;
3883
3884 /*
3885 * Stolen memory is always coherent with the GPU as it is explicitly
3886 * marked as wc by the system, or the system is cache-coherent.
3887 */
3888 if (obj->stolen || obj->phys_handle)
3889 return false;
3890
3891 /* If the GPU is snooping the contents of the CPU cache,
3892 * we do not need to manually clear the CPU cache lines. However,
3893 * the caches are only snooped when the render cache is
3894 * flushed/invalidated. As we always have to emit invalidations
3895 * and flushes when moving into and out of the RENDER domain, correct
3896 * snooping behaviour occurs naturally as the result of our domain
3897 * tracking.
3898 */
3899 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3900 obj->cache_dirty = true;
3901 return false;
3902 }
3903
3904 trace_i915_gem_object_clflush(obj);
3905 drm_clflush_sg(obj->pages);
3906 obj->cache_dirty = false;
3907
3908 return true;
3909 }
3910
3911 /** Flushes the GTT write domain for the object if it's dirty. */
3912 static void
3913 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3914 {
3915 uint32_t old_write_domain;
3916
3917 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3918 return;
3919
3920 /* No actual flushing is required for the GTT write domain. Writes
3921 * to it immediately go to main memory as far as we know, so there's
3922 * no chipset flush. It also doesn't land in render cache.
3923 *
3924 * However, we do have to enforce the order so that all writes through
3925 * the GTT land before any writes to the device, such as updates to
3926 * the GATT itself.
3927 */
3928 wmb();
3929
3930 old_write_domain = obj->base.write_domain;
3931 obj->base.write_domain = 0;
3932
3933 intel_fb_obj_flush(obj, false);
3934
3935 trace_i915_gem_object_change_domain(obj,
3936 obj->base.read_domains,
3937 old_write_domain);
3938 }
3939
3940 /** Flushes the CPU write domain for the object if it's dirty. */
3941 static void
3942 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3943 {
3944 uint32_t old_write_domain;
3945
3946 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3947 return;
3948
3949 if (i915_gem_clflush_object(obj, obj->pin_display))
3950 i915_gem_chipset_flush(obj->base.dev);
3951
3952 old_write_domain = obj->base.write_domain;
3953 obj->base.write_domain = 0;
3954
3955 intel_fb_obj_flush(obj, false);
3956
3957 trace_i915_gem_object_change_domain(obj,
3958 obj->base.read_domains,
3959 old_write_domain);
3960 }
3961
3962 /**
3963 * Moves a single object to the GTT read, and possibly write domain.
3964 *
3965 * This function returns when the move is complete, including waiting on
3966 * flushes to occur.
3967 */
3968 int
3969 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3970 {
3971 uint32_t old_write_domain, old_read_domains;
3972 struct i915_vma *vma;
3973 int ret;
3974
3975 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3976 return 0;
3977
3978 ret = i915_gem_object_wait_rendering(obj, !write);
3979 if (ret)
3980 return ret;
3981
3982 /* Flush and acquire obj->pages so that we are coherent through
3983 * direct access in memory with previous cached writes through
3984 * shmemfs and that our cache domain tracking remains valid.
3985 * For example, if the obj->filp was moved to swap without us
3986 * being notified and releasing the pages, we would mistakenly
3987 * continue to assume that the obj remained out of the CPU cached
3988 * domain.
3989 */
3990 ret = i915_gem_object_get_pages(obj);
3991 if (ret)
3992 return ret;
3993
3994 i915_gem_object_flush_cpu_write_domain(obj);
3995
3996 /* Serialise direct access to this object with the barriers for
3997 * coherent writes from the GPU, by effectively invalidating the
3998 * GTT domain upon first access.
3999 */
4000 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4001 mb();
4002
4003 old_write_domain = obj->base.write_domain;
4004 old_read_domains = obj->base.read_domains;
4005
4006 /* It should now be out of any other write domains, and we can update
4007 * the domain values for our changes.
4008 */
4009 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4010 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4011 if (write) {
4012 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4013 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4014 obj->dirty = 1;
4015 }
4016
4017 if (write)
4018 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4019
4020 trace_i915_gem_object_change_domain(obj,
4021 old_read_domains,
4022 old_write_domain);
4023
4024 /* And bump the LRU for this access */
4025 vma = i915_gem_obj_to_ggtt(obj);
4026 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4027 list_move_tail(&vma->mm_list,
4028 &to_i915(obj->base.dev)->gtt.base.inactive_list);
4029
4030 return 0;
4031 }
4032
4033 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4034 enum i915_cache_level cache_level)
4035 {
4036 struct drm_device *dev = obj->base.dev;
4037 struct i915_vma *vma, *next;
4038 int ret;
4039
4040 if (obj->cache_level == cache_level)
4041 return 0;
4042
4043 if (i915_gem_obj_is_pinned(obj)) {
4044 DRM_DEBUG("can not change the cache level of pinned objects\n");
4045 return -EBUSY;
4046 }
4047
4048 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4049 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4050 ret = i915_vma_unbind(vma);
4051 if (ret)
4052 return ret;
4053 }
4054 }
4055
4056 if (i915_gem_obj_bound_any(obj)) {
4057 ret = i915_gem_object_wait_rendering(obj, false);
4058 if (ret)
4059 return ret;
4060
4061 i915_gem_object_finish_gtt(obj);
4062
4063 /* Before SandyBridge, you could not use tiling or fence
4064 * registers with snooped memory, so relinquish any fences
4065 * currently pointing to our region in the aperture.
4066 */
4067 if (INTEL_INFO(dev)->gen < 6) {
4068 ret = i915_gem_object_put_fence(obj);
4069 if (ret)
4070 return ret;
4071 }
4072
4073 list_for_each_entry(vma, &obj->vma_list, vma_link)
4074 if (drm_mm_node_allocated(&vma->node)) {
4075 ret = i915_vma_bind(vma, cache_level,
4076 PIN_UPDATE);
4077 if (ret)
4078 return ret;
4079 }
4080 }
4081
4082 list_for_each_entry(vma, &obj->vma_list, vma_link)
4083 vma->node.color = cache_level;
4084 obj->cache_level = cache_level;
4085
4086 if (obj->cache_dirty &&
4087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4088 cpu_write_needs_clflush(obj)) {
4089 if (i915_gem_clflush_object(obj, true))
4090 i915_gem_chipset_flush(obj->base.dev);
4091 }
4092
4093 return 0;
4094 }
4095
4096 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4097 struct drm_file *file)
4098 {
4099 struct drm_i915_gem_caching *args = data;
4100 struct drm_i915_gem_object *obj;
4101
4102 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4103 if (&obj->base == NULL)
4104 return -ENOENT;
4105
4106 switch (obj->cache_level) {
4107 case I915_CACHE_LLC:
4108 case I915_CACHE_L3_LLC:
4109 args->caching = I915_CACHING_CACHED;
4110 break;
4111
4112 case I915_CACHE_WT:
4113 args->caching = I915_CACHING_DISPLAY;
4114 break;
4115
4116 default:
4117 args->caching = I915_CACHING_NONE;
4118 break;
4119 }
4120
4121 drm_gem_object_unreference_unlocked(&obj->base);
4122 return 0;
4123 }
4124
4125 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4126 struct drm_file *file)
4127 {
4128 struct drm_i915_gem_caching *args = data;
4129 struct drm_i915_gem_object *obj;
4130 enum i915_cache_level level;
4131 int ret;
4132
4133 switch (args->caching) {
4134 case I915_CACHING_NONE:
4135 level = I915_CACHE_NONE;
4136 break;
4137 case I915_CACHING_CACHED:
4138 level = I915_CACHE_LLC;
4139 break;
4140 case I915_CACHING_DISPLAY:
4141 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4142 break;
4143 default:
4144 return -EINVAL;
4145 }
4146
4147 ret = i915_mutex_lock_interruptible(dev);
4148 if (ret)
4149 return ret;
4150
4151 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4152 if (&obj->base == NULL) {
4153 ret = -ENOENT;
4154 goto unlock;
4155 }
4156
4157 ret = i915_gem_object_set_cache_level(obj, level);
4158
4159 drm_gem_object_unreference(&obj->base);
4160 unlock:
4161 mutex_unlock(&dev->struct_mutex);
4162 return ret;
4163 }
4164
4165 /*
4166 * Prepare buffer for display plane (scanout, cursors, etc).
4167 * Can be called from an uninterruptible phase (modesetting) and allows
4168 * any flushes to be pipelined (for pageflips).
4169 */
4170 int
4171 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4172 u32 alignment,
4173 struct intel_engine_cs *pipelined,
4174 struct drm_i915_gem_request **pipelined_request,
4175 const struct i915_ggtt_view *view)
4176 {
4177 u32 old_read_domains, old_write_domain;
4178 int ret;
4179
4180 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4181 if (ret)
4182 return ret;
4183
4184 /* Mark the pin_display early so that we account for the
4185 * display coherency whilst setting up the cache domains.
4186 */
4187 obj->pin_display++;
4188
4189 /* The display engine is not coherent with the LLC cache on gen6. As
4190 * a result, we make sure that the pinning that is about to occur is
4191 * done with uncached PTEs. This is lowest common denominator for all
4192 * chipsets.
4193 *
4194 * However for gen6+, we could do better by using the GFDT bit instead
4195 * of uncaching, which would allow us to flush all the LLC-cached data
4196 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4197 */
4198 ret = i915_gem_object_set_cache_level(obj,
4199 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4200 if (ret)
4201 goto err_unpin_display;
4202
4203 /* As the user may map the buffer once pinned in the display plane
4204 * (e.g. libkms for the bootup splash), we have to ensure that we
4205 * always use map_and_fenceable for all scanout buffers.
4206 */
4207 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4208 view->type == I915_GGTT_VIEW_NORMAL ?
4209 PIN_MAPPABLE : 0);
4210 if (ret)
4211 goto err_unpin_display;
4212
4213 i915_gem_object_flush_cpu_write_domain(obj);
4214
4215 old_write_domain = obj->base.write_domain;
4216 old_read_domains = obj->base.read_domains;
4217
4218 /* It should now be out of any other write domains, and we can update
4219 * the domain values for our changes.
4220 */
4221 obj->base.write_domain = 0;
4222 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4223
4224 trace_i915_gem_object_change_domain(obj,
4225 old_read_domains,
4226 old_write_domain);
4227
4228 return 0;
4229
4230 err_unpin_display:
4231 obj->pin_display--;
4232 return ret;
4233 }
4234
4235 void
4236 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4237 const struct i915_ggtt_view *view)
4238 {
4239 if (WARN_ON(obj->pin_display == 0))
4240 return;
4241
4242 i915_gem_object_ggtt_unpin_view(obj, view);
4243
4244 obj->pin_display--;
4245 }
4246
4247 /**
4248 * Moves a single object to the CPU read, and possibly write domain.
4249 *
4250 * This function returns when the move is complete, including waiting on
4251 * flushes to occur.
4252 */
4253 int
4254 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4255 {
4256 uint32_t old_write_domain, old_read_domains;
4257 int ret;
4258
4259 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4260 return 0;
4261
4262 ret = i915_gem_object_wait_rendering(obj, !write);
4263 if (ret)
4264 return ret;
4265
4266 i915_gem_object_flush_gtt_write_domain(obj);
4267
4268 old_write_domain = obj->base.write_domain;
4269 old_read_domains = obj->base.read_domains;
4270
4271 /* Flush the CPU cache if it's still invalid. */
4272 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4273 i915_gem_clflush_object(obj, false);
4274
4275 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4276 }
4277
4278 /* It should now be out of any other write domains, and we can update
4279 * the domain values for our changes.
4280 */
4281 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4282
4283 /* If we're writing through the CPU, then the GPU read domains will
4284 * need to be invalidated at next use.
4285 */
4286 if (write) {
4287 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4288 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4289 }
4290
4291 if (write)
4292 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4293
4294 trace_i915_gem_object_change_domain(obj,
4295 old_read_domains,
4296 old_write_domain);
4297
4298 return 0;
4299 }
4300
4301 /* Throttle our rendering by waiting until the ring has completed our requests
4302 * emitted over 20 msec ago.
4303 *
4304 * Note that if we were to use the current jiffies each time around the loop,
4305 * we wouldn't escape the function with any frames outstanding if the time to
4306 * render a frame was over 20ms.
4307 *
4308 * This should get us reasonable parallelism between CPU and GPU but also
4309 * relatively low latency when blocking on a particular request to finish.
4310 */
4311 static int
4312 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4313 {
4314 struct drm_i915_private *dev_priv = dev->dev_private;
4315 struct drm_i915_file_private *file_priv = file->driver_priv;
4316 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4317 struct drm_i915_gem_request *request, *target = NULL;
4318 unsigned reset_counter;
4319 int ret;
4320
4321 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4322 if (ret)
4323 return ret;
4324
4325 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4326 if (ret)
4327 return ret;
4328
4329 spin_lock(&file_priv->mm.lock);
4330 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4331 if (time_after_eq(request->emitted_jiffies, recent_enough))
4332 break;
4333
4334 /*
4335 * Note that the request might not have been submitted yet.
4336 * In which case emitted_jiffies will be zero.
4337 */
4338 if (!request->emitted_jiffies)
4339 continue;
4340
4341 target = request;
4342 }
4343 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4344 if (target)
4345 i915_gem_request_reference(target);
4346 spin_unlock(&file_priv->mm.lock);
4347
4348 if (target == NULL)
4349 return 0;
4350
4351 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4352 if (ret == 0)
4353 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4354
4355 i915_gem_request_unreference__unlocked(target);
4356
4357 return ret;
4358 }
4359
4360 static bool
4361 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4362 {
4363 struct drm_i915_gem_object *obj = vma->obj;
4364
4365 if (alignment &&
4366 vma->node.start & (alignment - 1))
4367 return true;
4368
4369 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4370 return true;
4371
4372 if (flags & PIN_OFFSET_BIAS &&
4373 vma->node.start < (flags & PIN_OFFSET_MASK))
4374 return true;
4375
4376 return false;
4377 }
4378
4379 static int
4380 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4381 struct i915_address_space *vm,
4382 const struct i915_ggtt_view *ggtt_view,
4383 uint32_t alignment,
4384 uint64_t flags)
4385 {
4386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4387 struct i915_vma *vma;
4388 unsigned bound;
4389 int ret;
4390
4391 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4392 return -ENODEV;
4393
4394 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4395 return -EINVAL;
4396
4397 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4398 return -EINVAL;
4399
4400 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4401 return -EINVAL;
4402
4403 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4404 i915_gem_obj_to_vma(obj, vm);
4405
4406 if (IS_ERR(vma))
4407 return PTR_ERR(vma);
4408
4409 if (vma) {
4410 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4411 return -EBUSY;
4412
4413 if (i915_vma_misplaced(vma, alignment, flags)) {
4414 unsigned long offset;
4415 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4416 i915_gem_obj_offset(obj, vm);
4417 WARN(vma->pin_count,
4418 "bo is already pinned in %s with incorrect alignment:"
4419 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4420 " obj->map_and_fenceable=%d\n",
4421 ggtt_view ? "ggtt" : "ppgtt",
4422 offset,
4423 alignment,
4424 !!(flags & PIN_MAPPABLE),
4425 obj->map_and_fenceable);
4426 ret = i915_vma_unbind(vma);
4427 if (ret)
4428 return ret;
4429
4430 vma = NULL;
4431 }
4432 }
4433
4434 bound = vma ? vma->bound : 0;
4435 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4436 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4437 flags);
4438 if (IS_ERR(vma))
4439 return PTR_ERR(vma);
4440 } else {
4441 ret = i915_vma_bind(vma, obj->cache_level, flags);
4442 if (ret)
4443 return ret;
4444 }
4445
4446 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4447 (bound ^ vma->bound) & GLOBAL_BIND) {
4448 bool mappable, fenceable;
4449 u32 fence_size, fence_alignment;
4450
4451 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4452 obj->base.size,
4453 obj->tiling_mode);
4454 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4455 obj->base.size,
4456 obj->tiling_mode,
4457 true);
4458
4459 fenceable = (vma->node.size == fence_size &&
4460 (vma->node.start & (fence_alignment - 1)) == 0);
4461
4462 mappable = (vma->node.start + fence_size <=
4463 dev_priv->gtt.mappable_end);
4464
4465 obj->map_and_fenceable = mappable && fenceable;
4466
4467 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4468 }
4469
4470 vma->pin_count++;
4471 return 0;
4472 }
4473
4474 int
4475 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4476 struct i915_address_space *vm,
4477 uint32_t alignment,
4478 uint64_t flags)
4479 {
4480 return i915_gem_object_do_pin(obj, vm,
4481 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4482 alignment, flags);
4483 }
4484
4485 int
4486 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4487 const struct i915_ggtt_view *view,
4488 uint32_t alignment,
4489 uint64_t flags)
4490 {
4491 if (WARN_ONCE(!view, "no view specified"))
4492 return -EINVAL;
4493
4494 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4495 alignment, flags | PIN_GLOBAL);
4496 }
4497
4498 void
4499 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4500 const struct i915_ggtt_view *view)
4501 {
4502 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4503
4504 BUG_ON(!vma);
4505 WARN_ON(vma->pin_count == 0);
4506 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4507
4508 --vma->pin_count;
4509 }
4510
4511 bool
4512 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4513 {
4514 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4515 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4516 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4517
4518 WARN_ON(!ggtt_vma ||
4519 dev_priv->fence_regs[obj->fence_reg].pin_count >
4520 ggtt_vma->pin_count);
4521 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4522 return true;
4523 } else
4524 return false;
4525 }
4526
4527 void
4528 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4529 {
4530 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4531 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4532 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4533 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4534 }
4535 }
4536
4537 int
4538 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4539 struct drm_file *file)
4540 {
4541 struct drm_i915_gem_busy *args = data;
4542 struct drm_i915_gem_object *obj;
4543 int ret;
4544
4545 ret = i915_mutex_lock_interruptible(dev);
4546 if (ret)
4547 return ret;
4548
4549 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4550 if (&obj->base == NULL) {
4551 ret = -ENOENT;
4552 goto unlock;
4553 }
4554
4555 /* Count all active objects as busy, even if they are currently not used
4556 * by the gpu. Users of this interface expect objects to eventually
4557 * become non-busy without any further actions, therefore emit any
4558 * necessary flushes here.
4559 */
4560 ret = i915_gem_object_flush_active(obj);
4561 if (ret)
4562 goto unref;
4563
4564 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4565 args->busy = obj->active << 16;
4566 if (obj->last_write_req)
4567 args->busy |= obj->last_write_req->ring->id;
4568
4569 unref:
4570 drm_gem_object_unreference(&obj->base);
4571 unlock:
4572 mutex_unlock(&dev->struct_mutex);
4573 return ret;
4574 }
4575
4576 int
4577 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4578 struct drm_file *file_priv)
4579 {
4580 return i915_gem_ring_throttle(dev, file_priv);
4581 }
4582
4583 int
4584 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4585 struct drm_file *file_priv)
4586 {
4587 struct drm_i915_private *dev_priv = dev->dev_private;
4588 struct drm_i915_gem_madvise *args = data;
4589 struct drm_i915_gem_object *obj;
4590 int ret;
4591
4592 switch (args->madv) {
4593 case I915_MADV_DONTNEED:
4594 case I915_MADV_WILLNEED:
4595 break;
4596 default:
4597 return -EINVAL;
4598 }
4599
4600 ret = i915_mutex_lock_interruptible(dev);
4601 if (ret)
4602 return ret;
4603
4604 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4605 if (&obj->base == NULL) {
4606 ret = -ENOENT;
4607 goto unlock;
4608 }
4609
4610 if (i915_gem_obj_is_pinned(obj)) {
4611 ret = -EINVAL;
4612 goto out;
4613 }
4614
4615 if (obj->pages &&
4616 obj->tiling_mode != I915_TILING_NONE &&
4617 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4618 if (obj->madv == I915_MADV_WILLNEED)
4619 i915_gem_object_unpin_pages(obj);
4620 if (args->madv == I915_MADV_WILLNEED)
4621 i915_gem_object_pin_pages(obj);
4622 }
4623
4624 if (obj->madv != __I915_MADV_PURGED)
4625 obj->madv = args->madv;
4626
4627 /* if the object is no longer attached, discard its backing storage */
4628 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4629 i915_gem_object_truncate(obj);
4630
4631 args->retained = obj->madv != __I915_MADV_PURGED;
4632
4633 out:
4634 drm_gem_object_unreference(&obj->base);
4635 unlock:
4636 mutex_unlock(&dev->struct_mutex);
4637 return ret;
4638 }
4639
4640 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4641 const struct drm_i915_gem_object_ops *ops)
4642 {
4643 int i;
4644
4645 INIT_LIST_HEAD(&obj->global_list);
4646 for (i = 0; i < I915_NUM_RINGS; i++)
4647 INIT_LIST_HEAD(&obj->ring_list[i]);
4648 INIT_LIST_HEAD(&obj->obj_exec_link);
4649 INIT_LIST_HEAD(&obj->vma_list);
4650 INIT_LIST_HEAD(&obj->batch_pool_link);
4651
4652 obj->ops = ops;
4653
4654 obj->fence_reg = I915_FENCE_REG_NONE;
4655 obj->madv = I915_MADV_WILLNEED;
4656
4657 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4658 }
4659
4660 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4661 .get_pages = i915_gem_object_get_pages_gtt,
4662 .put_pages = i915_gem_object_put_pages_gtt,
4663 };
4664
4665 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4666 size_t size)
4667 {
4668 struct drm_i915_gem_object *obj;
4669 struct address_space *mapping;
4670 gfp_t mask;
4671
4672 obj = i915_gem_object_alloc(dev);
4673 if (obj == NULL)
4674 return NULL;
4675
4676 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4677 i915_gem_object_free(obj);
4678 return NULL;
4679 }
4680
4681 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4682 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4683 /* 965gm cannot relocate objects above 4GiB. */
4684 mask &= ~__GFP_HIGHMEM;
4685 mask |= __GFP_DMA32;
4686 }
4687
4688 mapping = file_inode(obj->base.filp)->i_mapping;
4689 mapping_set_gfp_mask(mapping, mask);
4690
4691 i915_gem_object_init(obj, &i915_gem_object_ops);
4692
4693 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4694 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4695
4696 if (HAS_LLC(dev)) {
4697 /* On some devices, we can have the GPU use the LLC (the CPU
4698 * cache) for about a 10% performance improvement
4699 * compared to uncached. Graphics requests other than
4700 * display scanout are coherent with the CPU in
4701 * accessing this cache. This means in this mode we
4702 * don't need to clflush on the CPU side, and on the
4703 * GPU side we only need to flush internal caches to
4704 * get data visible to the CPU.
4705 *
4706 * However, we maintain the display planes as UC, and so
4707 * need to rebind when first used as such.
4708 */
4709 obj->cache_level = I915_CACHE_LLC;
4710 } else
4711 obj->cache_level = I915_CACHE_NONE;
4712
4713 trace_i915_gem_object_create(obj);
4714
4715 return obj;
4716 }
4717
4718 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4719 {
4720 /* If we are the last user of the backing storage (be it shmemfs
4721 * pages or stolen etc), we know that the pages are going to be
4722 * immediately released. In this case, we can then skip copying
4723 * back the contents from the GPU.
4724 */
4725
4726 if (obj->madv != I915_MADV_WILLNEED)
4727 return false;
4728
4729 if (obj->base.filp == NULL)
4730 return true;
4731
4732 /* At first glance, this looks racy, but then again so would be
4733 * userspace racing mmap against close. However, the first external
4734 * reference to the filp can only be obtained through the
4735 * i915_gem_mmap_ioctl() which safeguards us against the user
4736 * acquiring such a reference whilst we are in the middle of
4737 * freeing the object.
4738 */
4739 return atomic_long_read(&obj->base.filp->f_count) == 1;
4740 }
4741
4742 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4743 {
4744 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4745 struct drm_device *dev = obj->base.dev;
4746 struct drm_i915_private *dev_priv = dev->dev_private;
4747 struct i915_vma *vma, *next;
4748
4749 intel_runtime_pm_get(dev_priv);
4750
4751 trace_i915_gem_object_destroy(obj);
4752
4753 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4754 int ret;
4755
4756 vma->pin_count = 0;
4757 ret = i915_vma_unbind(vma);
4758 if (WARN_ON(ret == -ERESTARTSYS)) {
4759 bool was_interruptible;
4760
4761 was_interruptible = dev_priv->mm.interruptible;
4762 dev_priv->mm.interruptible = false;
4763
4764 WARN_ON(i915_vma_unbind(vma));
4765
4766 dev_priv->mm.interruptible = was_interruptible;
4767 }
4768 }
4769
4770 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4771 * before progressing. */
4772 if (obj->stolen)
4773 i915_gem_object_unpin_pages(obj);
4774
4775 WARN_ON(obj->frontbuffer_bits);
4776
4777 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4778 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4779 obj->tiling_mode != I915_TILING_NONE)
4780 i915_gem_object_unpin_pages(obj);
4781
4782 if (WARN_ON(obj->pages_pin_count))
4783 obj->pages_pin_count = 0;
4784 if (discard_backing_storage(obj))
4785 obj->madv = I915_MADV_DONTNEED;
4786 i915_gem_object_put_pages(obj);
4787 i915_gem_object_free_mmap_offset(obj);
4788
4789 BUG_ON(obj->pages);
4790
4791 if (obj->base.import_attach)
4792 drm_prime_gem_destroy(&obj->base, NULL);
4793
4794 if (obj->ops->release)
4795 obj->ops->release(obj);
4796
4797 drm_gem_object_release(&obj->base);
4798 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4799
4800 kfree(obj->bit_17);
4801 i915_gem_object_free(obj);
4802
4803 intel_runtime_pm_put(dev_priv);
4804 }
4805
4806 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4807 struct i915_address_space *vm)
4808 {
4809 struct i915_vma *vma;
4810 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4811 if (i915_is_ggtt(vma->vm) &&
4812 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4813 continue;
4814 if (vma->vm == vm)
4815 return vma;
4816 }
4817 return NULL;
4818 }
4819
4820 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4821 const struct i915_ggtt_view *view)
4822 {
4823 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4824 struct i915_vma *vma;
4825
4826 if (WARN_ONCE(!view, "no view specified"))
4827 return ERR_PTR(-EINVAL);
4828
4829 list_for_each_entry(vma, &obj->vma_list, vma_link)
4830 if (vma->vm == ggtt &&
4831 i915_ggtt_view_equal(&vma->ggtt_view, view))
4832 return vma;
4833 return NULL;
4834 }
4835
4836 void i915_gem_vma_destroy(struct i915_vma *vma)
4837 {
4838 struct i915_address_space *vm = NULL;
4839 WARN_ON(vma->node.allocated);
4840
4841 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4842 if (!list_empty(&vma->exec_list))
4843 return;
4844
4845 vm = vma->vm;
4846
4847 if (!i915_is_ggtt(vm))
4848 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4849
4850 list_del(&vma->vma_link);
4851
4852 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4853 }
4854
4855 static void
4856 i915_gem_stop_ringbuffers(struct drm_device *dev)
4857 {
4858 struct drm_i915_private *dev_priv = dev->dev_private;
4859 struct intel_engine_cs *ring;
4860 int i;
4861
4862 for_each_ring(ring, dev_priv, i)
4863 dev_priv->gt.stop_ring(ring);
4864 }
4865
4866 int
4867 i915_gem_suspend(struct drm_device *dev)
4868 {
4869 struct drm_i915_private *dev_priv = dev->dev_private;
4870 int ret = 0;
4871
4872 mutex_lock(&dev->struct_mutex);
4873 ret = i915_gpu_idle(dev);
4874 if (ret)
4875 goto err;
4876
4877 i915_gem_retire_requests(dev);
4878
4879 i915_gem_stop_ringbuffers(dev);
4880 mutex_unlock(&dev->struct_mutex);
4881
4882 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4883 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4884 flush_delayed_work(&dev_priv->mm.idle_work);
4885
4886 /* Assert that we sucessfully flushed all the work and
4887 * reset the GPU back to its idle, low power state.
4888 */
4889 WARN_ON(dev_priv->mm.busy);
4890
4891 return 0;
4892
4893 err:
4894 mutex_unlock(&dev->struct_mutex);
4895 return ret;
4896 }
4897
4898 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4899 {
4900 struct intel_engine_cs *ring = req->ring;
4901 struct drm_device *dev = ring->dev;
4902 struct drm_i915_private *dev_priv = dev->dev_private;
4903 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4904 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4905 int i, ret;
4906
4907 if (!HAS_L3_DPF(dev) || !remap_info)
4908 return 0;
4909
4910 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4911 if (ret)
4912 return ret;
4913
4914 /*
4915 * Note: We do not worry about the concurrent register cacheline hang
4916 * here because no other code should access these registers other than
4917 * at initialization time.
4918 */
4919 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4920 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4921 intel_ring_emit(ring, reg_base + i);
4922 intel_ring_emit(ring, remap_info[i/4]);
4923 }
4924
4925 intel_ring_advance(ring);
4926
4927 return ret;
4928 }
4929
4930 void i915_gem_init_swizzling(struct drm_device *dev)
4931 {
4932 struct drm_i915_private *dev_priv = dev->dev_private;
4933
4934 if (INTEL_INFO(dev)->gen < 5 ||
4935 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4936 return;
4937
4938 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4939 DISP_TILE_SURFACE_SWIZZLING);
4940
4941 if (IS_GEN5(dev))
4942 return;
4943
4944 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4945 if (IS_GEN6(dev))
4946 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4947 else if (IS_GEN7(dev))
4948 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4949 else if (IS_GEN8(dev))
4950 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4951 else
4952 BUG();
4953 }
4954
4955 static bool
4956 intel_enable_blt(struct drm_device *dev)
4957 {
4958 if (!HAS_BLT(dev))
4959 return false;
4960
4961 /* The blitter was dysfunctional on early prototypes */
4962 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4963 DRM_INFO("BLT not supported on this pre-production hardware;"
4964 " graphics performance will be degraded.\n");
4965 return false;
4966 }
4967
4968 return true;
4969 }
4970
4971 static void init_unused_ring(struct drm_device *dev, u32 base)
4972 {
4973 struct drm_i915_private *dev_priv = dev->dev_private;
4974
4975 I915_WRITE(RING_CTL(base), 0);
4976 I915_WRITE(RING_HEAD(base), 0);
4977 I915_WRITE(RING_TAIL(base), 0);
4978 I915_WRITE(RING_START(base), 0);
4979 }
4980
4981 static void init_unused_rings(struct drm_device *dev)
4982 {
4983 if (IS_I830(dev)) {
4984 init_unused_ring(dev, PRB1_BASE);
4985 init_unused_ring(dev, SRB0_BASE);
4986 init_unused_ring(dev, SRB1_BASE);
4987 init_unused_ring(dev, SRB2_BASE);
4988 init_unused_ring(dev, SRB3_BASE);
4989 } else if (IS_GEN2(dev)) {
4990 init_unused_ring(dev, SRB0_BASE);
4991 init_unused_ring(dev, SRB1_BASE);
4992 } else if (IS_GEN3(dev)) {
4993 init_unused_ring(dev, PRB1_BASE);
4994 init_unused_ring(dev, PRB2_BASE);
4995 }
4996 }
4997
4998 int i915_gem_init_rings(struct drm_device *dev)
4999 {
5000 struct drm_i915_private *dev_priv = dev->dev_private;
5001 int ret;
5002
5003 ret = intel_init_render_ring_buffer(dev);
5004 if (ret)
5005 return ret;
5006
5007 if (HAS_BSD(dev)) {
5008 ret = intel_init_bsd_ring_buffer(dev);
5009 if (ret)
5010 goto cleanup_render_ring;
5011 }
5012
5013 if (intel_enable_blt(dev)) {
5014 ret = intel_init_blt_ring_buffer(dev);
5015 if (ret)
5016 goto cleanup_bsd_ring;
5017 }
5018
5019 if (HAS_VEBOX(dev)) {
5020 ret = intel_init_vebox_ring_buffer(dev);
5021 if (ret)
5022 goto cleanup_blt_ring;
5023 }
5024
5025 if (HAS_BSD2(dev)) {
5026 ret = intel_init_bsd2_ring_buffer(dev);
5027 if (ret)
5028 goto cleanup_vebox_ring;
5029 }
5030
5031 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5032 if (ret)
5033 goto cleanup_bsd2_ring;
5034
5035 return 0;
5036
5037 cleanup_bsd2_ring:
5038 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
5039 cleanup_vebox_ring:
5040 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5041 cleanup_blt_ring:
5042 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5043 cleanup_bsd_ring:
5044 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5045 cleanup_render_ring:
5046 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5047
5048 return ret;
5049 }
5050
5051 int
5052 i915_gem_init_hw(struct drm_device *dev)
5053 {
5054 struct drm_i915_private *dev_priv = dev->dev_private;
5055 struct intel_engine_cs *ring;
5056 int ret, i, j;
5057
5058 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5059 return -EIO;
5060
5061 /* Double layer security blanket, see i915_gem_init() */
5062 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5063
5064 if (dev_priv->ellc_size)
5065 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5066
5067 if (IS_HASWELL(dev))
5068 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5069 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5070
5071 if (HAS_PCH_NOP(dev)) {
5072 if (IS_IVYBRIDGE(dev)) {
5073 u32 temp = I915_READ(GEN7_MSG_CTL);
5074 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5075 I915_WRITE(GEN7_MSG_CTL, temp);
5076 } else if (INTEL_INFO(dev)->gen >= 7) {
5077 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5078 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5079 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5080 }
5081 }
5082
5083 i915_gem_init_swizzling(dev);
5084
5085 /*
5086 * At least 830 can leave some of the unused rings
5087 * "active" (ie. head != tail) after resume which
5088 * will prevent c3 entry. Makes sure all unused rings
5089 * are totally idle.
5090 */
5091 init_unused_rings(dev);
5092
5093 BUG_ON(!dev_priv->ring[RCS].default_context);
5094
5095 ret = i915_ppgtt_init_hw(dev);
5096 if (ret) {
5097 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5098 goto out;
5099 }
5100
5101 /* Need to do basic initialisation of all rings first: */
5102 for_each_ring(ring, dev_priv, i) {
5103 ret = ring->init_hw(ring);
5104 if (ret)
5105 goto out;
5106 }
5107
5108 /* Now it is safe to go back round and do everything else: */
5109 for_each_ring(ring, dev_priv, i) {
5110 struct drm_i915_gem_request *req;
5111
5112 WARN_ON(!ring->default_context);
5113
5114 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5115 if (ret) {
5116 i915_gem_cleanup_ringbuffer(dev);
5117 goto out;
5118 }
5119
5120 if (ring->id == RCS) {
5121 for (j = 0; j < NUM_L3_SLICES(dev); j++)
5122 i915_gem_l3_remap(req, j);
5123 }
5124
5125 ret = i915_ppgtt_init_ring(req);
5126 if (ret && ret != -EIO) {
5127 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5128 i915_gem_request_cancel(req);
5129 i915_gem_cleanup_ringbuffer(dev);
5130 goto out;
5131 }
5132
5133 ret = i915_gem_context_enable(req);
5134 if (ret && ret != -EIO) {
5135 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5136 i915_gem_request_cancel(req);
5137 i915_gem_cleanup_ringbuffer(dev);
5138 goto out;
5139 }
5140
5141 i915_add_request_no_flush(req);
5142 }
5143
5144 out:
5145 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5146 return ret;
5147 }
5148
5149 int i915_gem_init(struct drm_device *dev)
5150 {
5151 struct drm_i915_private *dev_priv = dev->dev_private;
5152 int ret;
5153
5154 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5155 i915.enable_execlists);
5156
5157 mutex_lock(&dev->struct_mutex);
5158
5159 if (IS_VALLEYVIEW(dev)) {
5160 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5161 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5162 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5163 VLV_GTLC_ALLOWWAKEACK), 10))
5164 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5165 }
5166
5167 if (!i915.enable_execlists) {
5168 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5169 dev_priv->gt.init_rings = i915_gem_init_rings;
5170 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5171 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5172 } else {
5173 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5174 dev_priv->gt.init_rings = intel_logical_rings_init;
5175 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5176 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5177 }
5178
5179 /* This is just a security blanket to placate dragons.
5180 * On some systems, we very sporadically observe that the first TLBs
5181 * used by the CS may be stale, despite us poking the TLB reset. If
5182 * we hold the forcewake during initialisation these problems
5183 * just magically go away.
5184 */
5185 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5186
5187 ret = i915_gem_init_userptr(dev);
5188 if (ret)
5189 goto out_unlock;
5190
5191 i915_gem_init_global_gtt(dev);
5192
5193 ret = i915_gem_context_init(dev);
5194 if (ret)
5195 goto out_unlock;
5196
5197 ret = dev_priv->gt.init_rings(dev);
5198 if (ret)
5199 goto out_unlock;
5200
5201 ret = i915_gem_init_hw(dev);
5202 if (ret == -EIO) {
5203 /* Allow ring initialisation to fail by marking the GPU as
5204 * wedged. But we only want to do this where the GPU is angry,
5205 * for all other failure, such as an allocation failure, bail.
5206 */
5207 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5208 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5209 ret = 0;
5210 }
5211
5212 out_unlock:
5213 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5214 mutex_unlock(&dev->struct_mutex);
5215
5216 return ret;
5217 }
5218
5219 void
5220 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5221 {
5222 struct drm_i915_private *dev_priv = dev->dev_private;
5223 struct intel_engine_cs *ring;
5224 int i;
5225
5226 for_each_ring(ring, dev_priv, i)
5227 dev_priv->gt.cleanup_ring(ring);
5228 }
5229
5230 static void
5231 init_ring_lists(struct intel_engine_cs *ring)
5232 {
5233 INIT_LIST_HEAD(&ring->active_list);
5234 INIT_LIST_HEAD(&ring->request_list);
5235 }
5236
5237 void i915_init_vm(struct drm_i915_private *dev_priv,
5238 struct i915_address_space *vm)
5239 {
5240 if (!i915_is_ggtt(vm))
5241 drm_mm_init(&vm->mm, vm->start, vm->total);
5242 vm->dev = dev_priv->dev;
5243 INIT_LIST_HEAD(&vm->active_list);
5244 INIT_LIST_HEAD(&vm->inactive_list);
5245 INIT_LIST_HEAD(&vm->global_link);
5246 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5247 }
5248
5249 void
5250 i915_gem_load(struct drm_device *dev)
5251 {
5252 struct drm_i915_private *dev_priv = dev->dev_private;
5253 int i;
5254
5255 dev_priv->objects =
5256 kmem_cache_create("i915_gem_object",
5257 sizeof(struct drm_i915_gem_object), 0,
5258 SLAB_HWCACHE_ALIGN,
5259 NULL);
5260 dev_priv->vmas =
5261 kmem_cache_create("i915_gem_vma",
5262 sizeof(struct i915_vma), 0,
5263 SLAB_HWCACHE_ALIGN,
5264 NULL);
5265 dev_priv->requests =
5266 kmem_cache_create("i915_gem_request",
5267 sizeof(struct drm_i915_gem_request), 0,
5268 SLAB_HWCACHE_ALIGN,
5269 NULL);
5270
5271 INIT_LIST_HEAD(&dev_priv->vm_list);
5272 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5273
5274 INIT_LIST_HEAD(&dev_priv->context_list);
5275 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5276 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5277 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5278 for (i = 0; i < I915_NUM_RINGS; i++)
5279 init_ring_lists(&dev_priv->ring[i]);
5280 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5281 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5282 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5283 i915_gem_retire_work_handler);
5284 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5285 i915_gem_idle_work_handler);
5286 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5287
5288 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5289
5290 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5291 dev_priv->num_fence_regs = 32;
5292 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5293 dev_priv->num_fence_regs = 16;
5294 else
5295 dev_priv->num_fence_regs = 8;
5296
5297 if (intel_vgpu_active(dev))
5298 dev_priv->num_fence_regs =
5299 I915_READ(vgtif_reg(avail_rs.fence_num));
5300
5301 /* Initialize fence registers to zero */
5302 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5303 i915_gem_restore_fences(dev);
5304
5305 i915_gem_detect_bit_6_swizzle(dev);
5306 init_waitqueue_head(&dev_priv->pending_flip_queue);
5307
5308 dev_priv->mm.interruptible = true;
5309
5310 i915_gem_shrinker_init(dev_priv);
5311
5312 mutex_init(&dev_priv->fb_tracking.lock);
5313 }
5314
5315 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5316 {
5317 struct drm_i915_file_private *file_priv = file->driver_priv;
5318
5319 /* Clean up our request list when the client is going away, so that
5320 * later retire_requests won't dereference our soon-to-be-gone
5321 * file_priv.
5322 */
5323 spin_lock(&file_priv->mm.lock);
5324 while (!list_empty(&file_priv->mm.request_list)) {
5325 struct drm_i915_gem_request *request;
5326
5327 request = list_first_entry(&file_priv->mm.request_list,
5328 struct drm_i915_gem_request,
5329 client_list);
5330 list_del(&request->client_list);
5331 request->file_priv = NULL;
5332 }
5333 spin_unlock(&file_priv->mm.lock);
5334
5335 if (!list_empty(&file_priv->rps.link)) {
5336 spin_lock(&to_i915(dev)->rps.client_lock);
5337 list_del(&file_priv->rps.link);
5338 spin_unlock(&to_i915(dev)->rps.client_lock);
5339 }
5340 }
5341
5342 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5343 {
5344 struct drm_i915_file_private *file_priv;
5345 int ret;
5346
5347 DRM_DEBUG_DRIVER("\n");
5348
5349 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5350 if (!file_priv)
5351 return -ENOMEM;
5352
5353 file->driver_priv = file_priv;
5354 file_priv->dev_priv = dev->dev_private;
5355 file_priv->file = file;
5356 INIT_LIST_HEAD(&file_priv->rps.link);
5357
5358 spin_lock_init(&file_priv->mm.lock);
5359 INIT_LIST_HEAD(&file_priv->mm.request_list);
5360
5361 ret = i915_gem_context_open(dev, file);
5362 if (ret)
5363 kfree(file_priv);
5364
5365 return ret;
5366 }
5367
5368 /**
5369 * i915_gem_track_fb - update frontbuffer tracking
5370 * old: current GEM buffer for the frontbuffer slots
5371 * new: new GEM buffer for the frontbuffer slots
5372 * frontbuffer_bits: bitmask of frontbuffer slots
5373 *
5374 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5375 * from @old and setting them in @new. Both @old and @new can be NULL.
5376 */
5377 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5378 struct drm_i915_gem_object *new,
5379 unsigned frontbuffer_bits)
5380 {
5381 if (old) {
5382 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5383 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5384 old->frontbuffer_bits &= ~frontbuffer_bits;
5385 }
5386
5387 if (new) {
5388 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5389 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5390 new->frontbuffer_bits |= frontbuffer_bits;
5391 }
5392 }
5393
5394 /* All the new VM stuff */
5395 unsigned long
5396 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5397 struct i915_address_space *vm)
5398 {
5399 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5400 struct i915_vma *vma;
5401
5402 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5403
5404 list_for_each_entry(vma, &o->vma_list, vma_link) {
5405 if (i915_is_ggtt(vma->vm) &&
5406 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5407 continue;
5408 if (vma->vm == vm)
5409 return vma->node.start;
5410 }
5411
5412 WARN(1, "%s vma for this object not found.\n",
5413 i915_is_ggtt(vm) ? "global" : "ppgtt");
5414 return -1;
5415 }
5416
5417 unsigned long
5418 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5419 const struct i915_ggtt_view *view)
5420 {
5421 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5422 struct i915_vma *vma;
5423
5424 list_for_each_entry(vma, &o->vma_list, vma_link)
5425 if (vma->vm == ggtt &&
5426 i915_ggtt_view_equal(&vma->ggtt_view, view))
5427 return vma->node.start;
5428
5429 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5430 return -1;
5431 }
5432
5433 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5434 struct i915_address_space *vm)
5435 {
5436 struct i915_vma *vma;
5437
5438 list_for_each_entry(vma, &o->vma_list, vma_link) {
5439 if (i915_is_ggtt(vma->vm) &&
5440 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5441 continue;
5442 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5443 return true;
5444 }
5445
5446 return false;
5447 }
5448
5449 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5450 const struct i915_ggtt_view *view)
5451 {
5452 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5453 struct i915_vma *vma;
5454
5455 list_for_each_entry(vma, &o->vma_list, vma_link)
5456 if (vma->vm == ggtt &&
5457 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5458 drm_mm_node_allocated(&vma->node))
5459 return true;
5460
5461 return false;
5462 }
5463
5464 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5465 {
5466 struct i915_vma *vma;
5467
5468 list_for_each_entry(vma, &o->vma_list, vma_link)
5469 if (drm_mm_node_allocated(&vma->node))
5470 return true;
5471
5472 return false;
5473 }
5474
5475 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5476 struct i915_address_space *vm)
5477 {
5478 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5479 struct i915_vma *vma;
5480
5481 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5482
5483 BUG_ON(list_empty(&o->vma_list));
5484
5485 list_for_each_entry(vma, &o->vma_list, vma_link) {
5486 if (i915_is_ggtt(vma->vm) &&
5487 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5488 continue;
5489 if (vma->vm == vm)
5490 return vma->node.size;
5491 }
5492 return 0;
5493 }
5494
5495 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5496 {
5497 struct i915_vma *vma;
5498 list_for_each_entry(vma, &obj->vma_list, vma_link)
5499 if (vma->pin_count > 0)
5500 return true;
5501
5502 return false;
5503 }
5504
This page took 0.179099 seconds and 5 git commands to generate.