drm/i915: Add locking to pll updates, v3.
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_ggtt *ggtt = &dev_priv->ggtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->ggtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->ggtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825 out:
826 return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839 {
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868 {
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899 {
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990 next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996 out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019 }
1020
1021 /**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029 {
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102 out:
1103 drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115 {
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140 wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *engine)
1145 {
1146 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169 }
1170
1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179 }
1180
1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183 unsigned long timeout;
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
1195
1196 if (req->engine->irq_refcount)
1197 return -EBUSY;
1198
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
1203 timeout = local_clock_us(&cpu) + 5;
1204 while (!need_resched()) {
1205 if (i915_gem_request_completed(req, true))
1206 return 0;
1207
1208 if (signal_pending_state(state, current))
1209 break;
1210
1211 if (busywait_stop(timeout, cpu))
1212 break;
1213
1214 cpu_relax_lowlatency();
1215 }
1216
1217 if (i915_gem_request_completed(req, false))
1218 return 0;
1219
1220 return -EAGAIN;
1221 }
1222
1223 /**
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
1237 * Returns 0 if the request was found within the alloted time. Else returns the
1238 * errno with remaining time filled in timeout argument.
1239 */
1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241 unsigned reset_counter,
1242 bool interruptible,
1243 s64 *timeout,
1244 struct intel_rps_client *rps)
1245 {
1246 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1247 struct drm_device *dev = engine->dev;
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249 const bool irq_test_in_progress =
1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252 DEFINE_WAIT(wait);
1253 unsigned long timeout_expire;
1254 s64 before = 0; /* Only to silence a compiler warning. */
1255 int ret;
1256
1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259 if (list_empty(&req->list))
1260 return 0;
1261
1262 if (i915_gem_request_completed(req, true))
1263 return 0;
1264
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274
1275 /*
1276 * Record current time in case interrupted by signal, or wedged.
1277 */
1278 before = ktime_get_raw_ns();
1279 }
1280
1281 if (INTEL_INFO(dev_priv)->gen >= 6)
1282 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284 trace_i915_gem_request_wait_begin(req);
1285
1286 /* Optimistic spin for the next jiffie before touching IRQs */
1287 ret = __i915_spin_request(req, state);
1288 if (ret == 0)
1289 goto out;
1290
1291 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1292 ret = -ENODEV;
1293 goto out;
1294 }
1295
1296 for (;;) {
1297 struct timer_list timer;
1298
1299 prepare_to_wait(&engine->irq_queue, &wait, state);
1300
1301 /* We need to check whether any gpu reset happened in between
1302 * the caller grabbing the seqno and now ... */
1303 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305 * is truely gone. */
1306 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307 if (ret == 0)
1308 ret = -EAGAIN;
1309 break;
1310 }
1311
1312 if (i915_gem_request_completed(req, false)) {
1313 ret = 0;
1314 break;
1315 }
1316
1317 if (signal_pending_state(state, current)) {
1318 ret = -ERESTARTSYS;
1319 break;
1320 }
1321
1322 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323 ret = -ETIME;
1324 break;
1325 }
1326
1327 timer.function = NULL;
1328 if (timeout || missed_irq(dev_priv, engine)) {
1329 unsigned long expire;
1330
1331 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1333 mod_timer(&timer, expire);
1334 }
1335
1336 io_schedule();
1337
1338 if (timer.function) {
1339 del_singleshot_timer_sync(&timer);
1340 destroy_timer_on_stack(&timer);
1341 }
1342 }
1343 if (!irq_test_in_progress)
1344 engine->irq_put(engine);
1345
1346 finish_wait(&engine->irq_queue, &wait);
1347
1348 out:
1349 trace_i915_gem_request_wait_end(req);
1350
1351 if (timeout) {
1352 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353
1354 *timeout = tres < 0 ? 0 : tres;
1355
1356 /*
1357 * Apparently ktime isn't accurate enough and occasionally has a
1358 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359 * things up to make the test happy. We allow up to 1 jiffy.
1360 *
1361 * This is a regrssion from the timespec->ktime conversion.
1362 */
1363 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364 *timeout = 0;
1365 }
1366
1367 return ret;
1368 }
1369
1370 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371 struct drm_file *file)
1372 {
1373 struct drm_i915_file_private *file_priv;
1374
1375 WARN_ON(!req || !file || req->file_priv);
1376
1377 if (!req || !file)
1378 return -EINVAL;
1379
1380 if (req->file_priv)
1381 return -EINVAL;
1382
1383 file_priv = file->driver_priv;
1384
1385 spin_lock(&file_priv->mm.lock);
1386 req->file_priv = file_priv;
1387 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388 spin_unlock(&file_priv->mm.lock);
1389
1390 req->pid = get_pid(task_pid(current));
1391
1392 return 0;
1393 }
1394
1395 static inline void
1396 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397 {
1398 struct drm_i915_file_private *file_priv = request->file_priv;
1399
1400 if (!file_priv)
1401 return;
1402
1403 spin_lock(&file_priv->mm.lock);
1404 list_del(&request->client_list);
1405 request->file_priv = NULL;
1406 spin_unlock(&file_priv->mm.lock);
1407
1408 put_pid(request->pid);
1409 request->pid = NULL;
1410 }
1411
1412 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413 {
1414 trace_i915_gem_request_retire(request);
1415
1416 /* We know the GPU must have read the request to have
1417 * sent us the seqno + interrupt, so use the position
1418 * of tail of the request to update the last known position
1419 * of the GPU head.
1420 *
1421 * Note this requires that we are always called in request
1422 * completion order.
1423 */
1424 request->ringbuf->last_retired_head = request->postfix;
1425
1426 list_del_init(&request->list);
1427 i915_gem_request_remove_from_client(request);
1428
1429 i915_gem_request_unreference(request);
1430 }
1431
1432 static void
1433 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434 {
1435 struct intel_engine_cs *engine = req->engine;
1436 struct drm_i915_gem_request *tmp;
1437
1438 lockdep_assert_held(&engine->dev->struct_mutex);
1439
1440 if (list_empty(&req->list))
1441 return;
1442
1443 do {
1444 tmp = list_first_entry(&engine->request_list,
1445 typeof(*tmp), list);
1446
1447 i915_gem_request_retire(tmp);
1448 } while (tmp != req);
1449
1450 WARN_ON(i915_verify_lists(engine->dev));
1451 }
1452
1453 /**
1454 * Waits for a request to be signaled, and cleans up the
1455 * request and object lists appropriately for that event.
1456 */
1457 int
1458 i915_wait_request(struct drm_i915_gem_request *req)
1459 {
1460 struct drm_device *dev;
1461 struct drm_i915_private *dev_priv;
1462 bool interruptible;
1463 int ret;
1464
1465 BUG_ON(req == NULL);
1466
1467 dev = req->engine->dev;
1468 dev_priv = dev->dev_private;
1469 interruptible = dev_priv->mm.interruptible;
1470
1471 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1472
1473 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1474 if (ret)
1475 return ret;
1476
1477 ret = __i915_wait_request(req,
1478 atomic_read(&dev_priv->gpu_error.reset_counter),
1479 interruptible, NULL, NULL);
1480 if (ret)
1481 return ret;
1482
1483 __i915_gem_request_retire__upto(req);
1484 return 0;
1485 }
1486
1487 /**
1488 * Ensures that all rendering to the object has completed and the object is
1489 * safe to unbind from the GTT or access from the CPU.
1490 */
1491 int
1492 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493 bool readonly)
1494 {
1495 int ret, i;
1496
1497 if (!obj->active)
1498 return 0;
1499
1500 if (readonly) {
1501 if (obj->last_write_req != NULL) {
1502 ret = i915_wait_request(obj->last_write_req);
1503 if (ret)
1504 return ret;
1505
1506 i = obj->last_write_req->engine->id;
1507 if (obj->last_read_req[i] == obj->last_write_req)
1508 i915_gem_object_retire__read(obj, i);
1509 else
1510 i915_gem_object_retire__write(obj);
1511 }
1512 } else {
1513 for (i = 0; i < I915_NUM_ENGINES; i++) {
1514 if (obj->last_read_req[i] == NULL)
1515 continue;
1516
1517 ret = i915_wait_request(obj->last_read_req[i]);
1518 if (ret)
1519 return ret;
1520
1521 i915_gem_object_retire__read(obj, i);
1522 }
1523 RQ_BUG_ON(obj->active);
1524 }
1525
1526 return 0;
1527 }
1528
1529 static void
1530 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531 struct drm_i915_gem_request *req)
1532 {
1533 int ring = req->engine->id;
1534
1535 if (obj->last_read_req[ring] == req)
1536 i915_gem_object_retire__read(obj, ring);
1537 else if (obj->last_write_req == req)
1538 i915_gem_object_retire__write(obj);
1539
1540 __i915_gem_request_retire__upto(req);
1541 }
1542
1543 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1544 * as the object state may change during this call.
1545 */
1546 static __must_check int
1547 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1548 struct intel_rps_client *rps,
1549 bool readonly)
1550 {
1551 struct drm_device *dev = obj->base.dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
1553 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1554 unsigned reset_counter;
1555 int ret, i, n = 0;
1556
1557 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558 BUG_ON(!dev_priv->mm.interruptible);
1559
1560 if (!obj->active)
1561 return 0;
1562
1563 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1564 if (ret)
1565 return ret;
1566
1567 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1568
1569 if (readonly) {
1570 struct drm_i915_gem_request *req;
1571
1572 req = obj->last_write_req;
1573 if (req == NULL)
1574 return 0;
1575
1576 requests[n++] = i915_gem_request_reference(req);
1577 } else {
1578 for (i = 0; i < I915_NUM_ENGINES; i++) {
1579 struct drm_i915_gem_request *req;
1580
1581 req = obj->last_read_req[i];
1582 if (req == NULL)
1583 continue;
1584
1585 requests[n++] = i915_gem_request_reference(req);
1586 }
1587 }
1588
1589 mutex_unlock(&dev->struct_mutex);
1590 for (i = 0; ret == 0 && i < n; i++)
1591 ret = __i915_wait_request(requests[i], reset_counter, true,
1592 NULL, rps);
1593 mutex_lock(&dev->struct_mutex);
1594
1595 for (i = 0; i < n; i++) {
1596 if (ret == 0)
1597 i915_gem_object_retire_request(obj, requests[i]);
1598 i915_gem_request_unreference(requests[i]);
1599 }
1600
1601 return ret;
1602 }
1603
1604 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605 {
1606 struct drm_i915_file_private *fpriv = file->driver_priv;
1607 return &fpriv->rps;
1608 }
1609
1610 /**
1611 * Called when user space prepares to use an object with the CPU, either
1612 * through the mmap ioctl's mapping or a GTT mapping.
1613 */
1614 int
1615 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1616 struct drm_file *file)
1617 {
1618 struct drm_i915_gem_set_domain *args = data;
1619 struct drm_i915_gem_object *obj;
1620 uint32_t read_domains = args->read_domains;
1621 uint32_t write_domain = args->write_domain;
1622 int ret;
1623
1624 /* Only handle setting domains to types used by the CPU. */
1625 if (write_domain & I915_GEM_GPU_DOMAINS)
1626 return -EINVAL;
1627
1628 if (read_domains & I915_GEM_GPU_DOMAINS)
1629 return -EINVAL;
1630
1631 /* Having something in the write domain implies it's in the read
1632 * domain, and only that read domain. Enforce that in the request.
1633 */
1634 if (write_domain != 0 && read_domains != write_domain)
1635 return -EINVAL;
1636
1637 ret = i915_mutex_lock_interruptible(dev);
1638 if (ret)
1639 return ret;
1640
1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642 if (&obj->base == NULL) {
1643 ret = -ENOENT;
1644 goto unlock;
1645 }
1646
1647 /* Try to flush the object off the GPU without holding the lock.
1648 * We will repeat the flush holding the lock in the normal manner
1649 * to catch cases where we are gazumped.
1650 */
1651 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1652 to_rps_client(file),
1653 !write_domain);
1654 if (ret)
1655 goto unref;
1656
1657 if (read_domains & I915_GEM_DOMAIN_GTT)
1658 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1659 else
1660 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1661
1662 if (write_domain != 0)
1663 intel_fb_obj_invalidate(obj,
1664 write_domain == I915_GEM_DOMAIN_GTT ?
1665 ORIGIN_GTT : ORIGIN_CPU);
1666
1667 unref:
1668 drm_gem_object_unreference(&obj->base);
1669 unlock:
1670 mutex_unlock(&dev->struct_mutex);
1671 return ret;
1672 }
1673
1674 /**
1675 * Called when user space has done writes to this buffer
1676 */
1677 int
1678 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1679 struct drm_file *file)
1680 {
1681 struct drm_i915_gem_sw_finish *args = data;
1682 struct drm_i915_gem_object *obj;
1683 int ret = 0;
1684
1685 ret = i915_mutex_lock_interruptible(dev);
1686 if (ret)
1687 return ret;
1688
1689 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1690 if (&obj->base == NULL) {
1691 ret = -ENOENT;
1692 goto unlock;
1693 }
1694
1695 /* Pinned buffers may be scanout, so flush the cache */
1696 if (obj->pin_display)
1697 i915_gem_object_flush_cpu_write_domain(obj);
1698
1699 drm_gem_object_unreference(&obj->base);
1700 unlock:
1701 mutex_unlock(&dev->struct_mutex);
1702 return ret;
1703 }
1704
1705 /**
1706 * Maps the contents of an object, returning the address it is mapped
1707 * into.
1708 *
1709 * While the mapping holds a reference on the contents of the object, it doesn't
1710 * imply a ref on the object itself.
1711 *
1712 * IMPORTANT:
1713 *
1714 * DRM driver writers who look a this function as an example for how to do GEM
1715 * mmap support, please don't implement mmap support like here. The modern way
1716 * to implement DRM mmap support is with an mmap offset ioctl (like
1717 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718 * That way debug tooling like valgrind will understand what's going on, hiding
1719 * the mmap call in a driver private ioctl will break that. The i915 driver only
1720 * does cpu mmaps this way because we didn't know better.
1721 */
1722 int
1723 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1724 struct drm_file *file)
1725 {
1726 struct drm_i915_gem_mmap *args = data;
1727 struct drm_gem_object *obj;
1728 unsigned long addr;
1729
1730 if (args->flags & ~(I915_MMAP_WC))
1731 return -EINVAL;
1732
1733 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734 return -ENODEV;
1735
1736 obj = drm_gem_object_lookup(dev, file, args->handle);
1737 if (obj == NULL)
1738 return -ENOENT;
1739
1740 /* prime objects have no backing filp to GEM mmap
1741 * pages from.
1742 */
1743 if (!obj->filp) {
1744 drm_gem_object_unreference_unlocked(obj);
1745 return -EINVAL;
1746 }
1747
1748 addr = vm_mmap(obj->filp, 0, args->size,
1749 PROT_READ | PROT_WRITE, MAP_SHARED,
1750 args->offset);
1751 if (args->flags & I915_MMAP_WC) {
1752 struct mm_struct *mm = current->mm;
1753 struct vm_area_struct *vma;
1754
1755 down_write(&mm->mmap_sem);
1756 vma = find_vma(mm, addr);
1757 if (vma)
1758 vma->vm_page_prot =
1759 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760 else
1761 addr = -ENOMEM;
1762 up_write(&mm->mmap_sem);
1763 }
1764 drm_gem_object_unreference_unlocked(obj);
1765 if (IS_ERR((void *)addr))
1766 return addr;
1767
1768 args->addr_ptr = (uint64_t) addr;
1769
1770 return 0;
1771 }
1772
1773 /**
1774 * i915_gem_fault - fault a page into the GTT
1775 * @vma: VMA in question
1776 * @vmf: fault info
1777 *
1778 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779 * from userspace. The fault handler takes care of binding the object to
1780 * the GTT (if needed), allocating and programming a fence register (again,
1781 * only if needed based on whether the old reg is still valid or the object
1782 * is tiled) and inserting a new PTE into the faulting process.
1783 *
1784 * Note that the faulting process may involve evicting existing objects
1785 * from the GTT and/or fence registers to make room. So performance may
1786 * suffer if the GTT working set is large or there are few fence registers
1787 * left.
1788 */
1789 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790 {
1791 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792 struct drm_device *dev = obj->base.dev;
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 struct i915_ggtt_view view = i915_ggtt_view_normal;
1795 pgoff_t page_offset;
1796 unsigned long pfn;
1797 int ret = 0;
1798 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1799
1800 intel_runtime_pm_get(dev_priv);
1801
1802 /* We don't use vmf->pgoff since that has the fake offset */
1803 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804 PAGE_SHIFT;
1805
1806 ret = i915_mutex_lock_interruptible(dev);
1807 if (ret)
1808 goto out;
1809
1810 trace_i915_gem_object_fault(obj, page_offset, true, write);
1811
1812 /* Try to flush the object off the GPU first without holding the lock.
1813 * Upon reacquiring the lock, we will perform our sanity checks and then
1814 * repeat the flush holding the lock in the normal manner to catch cases
1815 * where we are gazumped.
1816 */
1817 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818 if (ret)
1819 goto unlock;
1820
1821 /* Access to snoopable pages through the GTT is incoherent. */
1822 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1823 ret = -EFAULT;
1824 goto unlock;
1825 }
1826
1827 /* Use a partial view if the object is bigger than the aperture. */
1828 if (obj->base.size >= dev_priv->ggtt.mappable_end &&
1829 obj->tiling_mode == I915_TILING_NONE) {
1830 static const unsigned int chunk_size = 256; // 1 MiB
1831
1832 memset(&view, 0, sizeof(view));
1833 view.type = I915_GGTT_VIEW_PARTIAL;
1834 view.params.partial.offset = rounddown(page_offset, chunk_size);
1835 view.params.partial.size =
1836 min_t(unsigned int,
1837 chunk_size,
1838 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839 view.params.partial.offset);
1840 }
1841
1842 /* Now pin it into the GTT if needed */
1843 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1844 if (ret)
1845 goto unlock;
1846
1847 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848 if (ret)
1849 goto unpin;
1850
1851 ret = i915_gem_object_get_fence(obj);
1852 if (ret)
1853 goto unpin;
1854
1855 /* Finally, remap it using the new GTT offset */
1856 pfn = dev_priv->ggtt.mappable_base +
1857 i915_gem_obj_ggtt_offset_view(obj, &view);
1858 pfn >>= PAGE_SHIFT;
1859
1860 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861 /* Overriding existing pages in partial view does not cause
1862 * us any trouble as TLBs are still valid because the fault
1863 * is due to userspace losing part of the mapping or never
1864 * having accessed it before (at this partials' range).
1865 */
1866 unsigned long base = vma->vm_start +
1867 (view.params.partial.offset << PAGE_SHIFT);
1868 unsigned int i;
1869
1870 for (i = 0; i < view.params.partial.size; i++) {
1871 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1872 if (ret)
1873 break;
1874 }
1875
1876 obj->fault_mappable = true;
1877 } else {
1878 if (!obj->fault_mappable) {
1879 unsigned long size = min_t(unsigned long,
1880 vma->vm_end - vma->vm_start,
1881 obj->base.size);
1882 int i;
1883
1884 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885 ret = vm_insert_pfn(vma,
1886 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887 pfn + i);
1888 if (ret)
1889 break;
1890 }
1891
1892 obj->fault_mappable = true;
1893 } else
1894 ret = vm_insert_pfn(vma,
1895 (unsigned long)vmf->virtual_address,
1896 pfn + page_offset);
1897 }
1898 unpin:
1899 i915_gem_object_ggtt_unpin_view(obj, &view);
1900 unlock:
1901 mutex_unlock(&dev->struct_mutex);
1902 out:
1903 switch (ret) {
1904 case -EIO:
1905 /*
1906 * We eat errors when the gpu is terminally wedged to avoid
1907 * userspace unduly crashing (gl has no provisions for mmaps to
1908 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 * and so needs to be reported.
1910 */
1911 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912 ret = VM_FAULT_SIGBUS;
1913 break;
1914 }
1915 case -EAGAIN:
1916 /*
1917 * EAGAIN means the gpu is hung and we'll wait for the error
1918 * handler to reset everything when re-faulting in
1919 * i915_mutex_lock_interruptible.
1920 */
1921 case 0:
1922 case -ERESTARTSYS:
1923 case -EINTR:
1924 case -EBUSY:
1925 /*
1926 * EBUSY is ok: this just means that another thread
1927 * already did the job.
1928 */
1929 ret = VM_FAULT_NOPAGE;
1930 break;
1931 case -ENOMEM:
1932 ret = VM_FAULT_OOM;
1933 break;
1934 case -ENOSPC:
1935 case -EFAULT:
1936 ret = VM_FAULT_SIGBUS;
1937 break;
1938 default:
1939 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940 ret = VM_FAULT_SIGBUS;
1941 break;
1942 }
1943
1944 intel_runtime_pm_put(dev_priv);
1945 return ret;
1946 }
1947
1948 /**
1949 * i915_gem_release_mmap - remove physical page mappings
1950 * @obj: obj in question
1951 *
1952 * Preserve the reservation of the mmapping with the DRM core code, but
1953 * relinquish ownership of the pages back to the system.
1954 *
1955 * It is vital that we remove the page mapping if we have mapped a tiled
1956 * object through the GTT and then lose the fence register due to
1957 * resource pressure. Similarly if the object has been moved out of the
1958 * aperture, than pages mapped into userspace must be revoked. Removing the
1959 * mapping will then trigger a page fault on the next user access, allowing
1960 * fixup by i915_gem_fault().
1961 */
1962 void
1963 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964 {
1965 if (!obj->fault_mappable)
1966 return;
1967
1968 drm_vma_node_unmap(&obj->base.vma_node,
1969 obj->base.dev->anon_inode->i_mapping);
1970 obj->fault_mappable = false;
1971 }
1972
1973 void
1974 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975 {
1976 struct drm_i915_gem_object *obj;
1977
1978 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979 i915_gem_release_mmap(obj);
1980 }
1981
1982 uint32_t
1983 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1984 {
1985 uint32_t gtt_size;
1986
1987 if (INTEL_INFO(dev)->gen >= 4 ||
1988 tiling_mode == I915_TILING_NONE)
1989 return size;
1990
1991 /* Previous chips need a power-of-two fence region when tiling */
1992 if (INTEL_INFO(dev)->gen == 3)
1993 gtt_size = 1024*1024;
1994 else
1995 gtt_size = 512*1024;
1996
1997 while (gtt_size < size)
1998 gtt_size <<= 1;
1999
2000 return gtt_size;
2001 }
2002
2003 /**
2004 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005 * @obj: object to check
2006 *
2007 * Return the required GTT alignment for an object, taking into account
2008 * potential fence register mapping.
2009 */
2010 uint32_t
2011 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012 int tiling_mode, bool fenced)
2013 {
2014 /*
2015 * Minimum alignment is 4k (GTT page size), but might be greater
2016 * if a fence register is needed for the object.
2017 */
2018 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2019 tiling_mode == I915_TILING_NONE)
2020 return 4096;
2021
2022 /*
2023 * Previous chips need to be aligned to the size of the smallest
2024 * fence register that can contain the object.
2025 */
2026 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2027 }
2028
2029 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030 {
2031 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032 int ret;
2033
2034 if (drm_vma_node_has_offset(&obj->base.vma_node))
2035 return 0;
2036
2037 dev_priv->mm.shrinker_no_lock_stealing = true;
2038
2039 ret = drm_gem_create_mmap_offset(&obj->base);
2040 if (ret != -ENOSPC)
2041 goto out;
2042
2043 /* Badly fragmented mmap space? The only way we can recover
2044 * space is by destroying unwanted objects. We can't randomly release
2045 * mmap_offsets as userspace expects them to be persistent for the
2046 * lifetime of the objects. The closest we can is to release the
2047 * offsets on purgeable objects by truncating it and marking it purged,
2048 * which prevents userspace from ever using that object again.
2049 */
2050 i915_gem_shrink(dev_priv,
2051 obj->base.size >> PAGE_SHIFT,
2052 I915_SHRINK_BOUND |
2053 I915_SHRINK_UNBOUND |
2054 I915_SHRINK_PURGEABLE);
2055 ret = drm_gem_create_mmap_offset(&obj->base);
2056 if (ret != -ENOSPC)
2057 goto out;
2058
2059 i915_gem_shrink_all(dev_priv);
2060 ret = drm_gem_create_mmap_offset(&obj->base);
2061 out:
2062 dev_priv->mm.shrinker_no_lock_stealing = false;
2063
2064 return ret;
2065 }
2066
2067 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069 drm_gem_free_mmap_offset(&obj->base);
2070 }
2071
2072 int
2073 i915_gem_mmap_gtt(struct drm_file *file,
2074 struct drm_device *dev,
2075 uint32_t handle,
2076 uint64_t *offset)
2077 {
2078 struct drm_i915_gem_object *obj;
2079 int ret;
2080
2081 ret = i915_mutex_lock_interruptible(dev);
2082 if (ret)
2083 return ret;
2084
2085 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2086 if (&obj->base == NULL) {
2087 ret = -ENOENT;
2088 goto unlock;
2089 }
2090
2091 if (obj->madv != I915_MADV_WILLNEED) {
2092 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2093 ret = -EFAULT;
2094 goto out;
2095 }
2096
2097 ret = i915_gem_object_create_mmap_offset(obj);
2098 if (ret)
2099 goto out;
2100
2101 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102
2103 out:
2104 drm_gem_object_unreference(&obj->base);
2105 unlock:
2106 mutex_unlock(&dev->struct_mutex);
2107 return ret;
2108 }
2109
2110 /**
2111 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112 * @dev: DRM device
2113 * @data: GTT mapping ioctl data
2114 * @file: GEM object info
2115 *
2116 * Simply returns the fake offset to userspace so it can mmap it.
2117 * The mmap call will end up in drm_gem_mmap(), which will set things
2118 * up so we can get faults in the handler above.
2119 *
2120 * The fault handler will take care of binding the object into the GTT
2121 * (since it may have been evicted to make room for something), allocating
2122 * a fence register, and mapping the appropriate aperture address into
2123 * userspace.
2124 */
2125 int
2126 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127 struct drm_file *file)
2128 {
2129 struct drm_i915_gem_mmap_gtt *args = data;
2130
2131 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 }
2133
2134 /* Immediately discard the backing storage */
2135 static void
2136 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137 {
2138 i915_gem_object_free_mmap_offset(obj);
2139
2140 if (obj->base.filp == NULL)
2141 return;
2142
2143 /* Our goal here is to return as much of the memory as
2144 * is possible back to the system as we are called from OOM.
2145 * To do this we must instruct the shmfs to drop all of its
2146 * backing pages, *now*.
2147 */
2148 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2149 obj->madv = __I915_MADV_PURGED;
2150 }
2151
2152 /* Try to discard unwanted pages */
2153 static void
2154 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2155 {
2156 struct address_space *mapping;
2157
2158 switch (obj->madv) {
2159 case I915_MADV_DONTNEED:
2160 i915_gem_object_truncate(obj);
2161 case __I915_MADV_PURGED:
2162 return;
2163 }
2164
2165 if (obj->base.filp == NULL)
2166 return;
2167
2168 mapping = file_inode(obj->base.filp)->i_mapping,
2169 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 }
2171
2172 static void
2173 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2174 {
2175 struct sg_page_iter sg_iter;
2176 int ret;
2177
2178 BUG_ON(obj->madv == __I915_MADV_PURGED);
2179
2180 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181 if (ret) {
2182 /* In the event of a disaster, abandon all caches and
2183 * hope for the best.
2184 */
2185 WARN_ON(ret != -EIO);
2186 i915_gem_clflush_object(obj, true);
2187 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188 }
2189
2190 i915_gem_gtt_finish_object(obj);
2191
2192 if (i915_gem_object_needs_bit17_swizzle(obj))
2193 i915_gem_object_save_bit_17_swizzle(obj);
2194
2195 if (obj->madv == I915_MADV_DONTNEED)
2196 obj->dirty = 0;
2197
2198 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2199 struct page *page = sg_page_iter_page(&sg_iter);
2200
2201 if (obj->dirty)
2202 set_page_dirty(page);
2203
2204 if (obj->madv == I915_MADV_WILLNEED)
2205 mark_page_accessed(page);
2206
2207 page_cache_release(page);
2208 }
2209 obj->dirty = 0;
2210
2211 sg_free_table(obj->pages);
2212 kfree(obj->pages);
2213 }
2214
2215 int
2216 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2217 {
2218 const struct drm_i915_gem_object_ops *ops = obj->ops;
2219
2220 if (obj->pages == NULL)
2221 return 0;
2222
2223 if (obj->pages_pin_count)
2224 return -EBUSY;
2225
2226 BUG_ON(i915_gem_obj_bound_any(obj));
2227
2228 /* ->put_pages might need to allocate memory for the bit17 swizzle
2229 * array, hence protect them from being reaped by removing them from gtt
2230 * lists early. */
2231 list_del(&obj->global_list);
2232
2233 ops->put_pages(obj);
2234 obj->pages = NULL;
2235
2236 i915_gem_object_invalidate(obj);
2237
2238 return 0;
2239 }
2240
2241 static int
2242 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2243 {
2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 int page_count, i;
2246 struct address_space *mapping;
2247 struct sg_table *st;
2248 struct scatterlist *sg;
2249 struct sg_page_iter sg_iter;
2250 struct page *page;
2251 unsigned long last_pfn = 0; /* suppress gcc warning */
2252 int ret;
2253 gfp_t gfp;
2254
2255 /* Assert that the object is not currently in any GPU domain. As it
2256 * wasn't in the GTT, there shouldn't be any way it could have been in
2257 * a GPU cache
2258 */
2259 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
2262 st = kmalloc(sizeof(*st), GFP_KERNEL);
2263 if (st == NULL)
2264 return -ENOMEM;
2265
2266 page_count = obj->base.size / PAGE_SIZE;
2267 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2268 kfree(st);
2269 return -ENOMEM;
2270 }
2271
2272 /* Get the list of pages out of our struct file. They'll be pinned
2273 * at this point until we release them.
2274 *
2275 * Fail silently without starting the shrinker
2276 */
2277 mapping = file_inode(obj->base.filp)->i_mapping;
2278 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2279 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2280 sg = st->sgl;
2281 st->nents = 0;
2282 for (i = 0; i < page_count; i++) {
2283 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 if (IS_ERR(page)) {
2285 i915_gem_shrink(dev_priv,
2286 page_count,
2287 I915_SHRINK_BOUND |
2288 I915_SHRINK_UNBOUND |
2289 I915_SHRINK_PURGEABLE);
2290 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 }
2292 if (IS_ERR(page)) {
2293 /* We've tried hard to allocate the memory by reaping
2294 * our own buffer, now let the real VM do its job and
2295 * go down in flames if truly OOM.
2296 */
2297 i915_gem_shrink_all(dev_priv);
2298 page = shmem_read_mapping_page(mapping, i);
2299 if (IS_ERR(page)) {
2300 ret = PTR_ERR(page);
2301 goto err_pages;
2302 }
2303 }
2304 #ifdef CONFIG_SWIOTLB
2305 if (swiotlb_nr_tbl()) {
2306 st->nents++;
2307 sg_set_page(sg, page, PAGE_SIZE, 0);
2308 sg = sg_next(sg);
2309 continue;
2310 }
2311 #endif
2312 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313 if (i)
2314 sg = sg_next(sg);
2315 st->nents++;
2316 sg_set_page(sg, page, PAGE_SIZE, 0);
2317 } else {
2318 sg->length += PAGE_SIZE;
2319 }
2320 last_pfn = page_to_pfn(page);
2321
2322 /* Check that the i965g/gm workaround works. */
2323 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2324 }
2325 #ifdef CONFIG_SWIOTLB
2326 if (!swiotlb_nr_tbl())
2327 #endif
2328 sg_mark_end(sg);
2329 obj->pages = st;
2330
2331 ret = i915_gem_gtt_prepare_object(obj);
2332 if (ret)
2333 goto err_pages;
2334
2335 if (i915_gem_object_needs_bit17_swizzle(obj))
2336 i915_gem_object_do_bit_17_swizzle(obj);
2337
2338 if (obj->tiling_mode != I915_TILING_NONE &&
2339 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340 i915_gem_object_pin_pages(obj);
2341
2342 return 0;
2343
2344 err_pages:
2345 sg_mark_end(sg);
2346 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2347 page_cache_release(sg_page_iter_page(&sg_iter));
2348 sg_free_table(st);
2349 kfree(st);
2350
2351 /* shmemfs first checks if there is enough memory to allocate the page
2352 * and reports ENOSPC should there be insufficient, along with the usual
2353 * ENOMEM for a genuine allocation failure.
2354 *
2355 * We use ENOSPC in our driver to mean that we have run out of aperture
2356 * space and so want to translate the error from shmemfs back to our
2357 * usual understanding of ENOMEM.
2358 */
2359 if (ret == -ENOSPC)
2360 ret = -ENOMEM;
2361
2362 return ret;
2363 }
2364
2365 /* Ensure that the associated pages are gathered from the backing storage
2366 * and pinned into our object. i915_gem_object_get_pages() may be called
2367 * multiple times before they are released by a single call to
2368 * i915_gem_object_put_pages() - once the pages are no longer referenced
2369 * either as a result of memory pressure (reaping pages under the shrinker)
2370 * or as the object is itself released.
2371 */
2372 int
2373 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374 {
2375 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376 const struct drm_i915_gem_object_ops *ops = obj->ops;
2377 int ret;
2378
2379 if (obj->pages)
2380 return 0;
2381
2382 if (obj->madv != I915_MADV_WILLNEED) {
2383 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2384 return -EFAULT;
2385 }
2386
2387 BUG_ON(obj->pages_pin_count);
2388
2389 ret = ops->get_pages(obj);
2390 if (ret)
2391 return ret;
2392
2393 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2394
2395 obj->get_page.sg = obj->pages->sgl;
2396 obj->get_page.last = 0;
2397
2398 return 0;
2399 }
2400
2401 void i915_vma_move_to_active(struct i915_vma *vma,
2402 struct drm_i915_gem_request *req)
2403 {
2404 struct drm_i915_gem_object *obj = vma->obj;
2405 struct intel_engine_cs *engine;
2406
2407 engine = i915_gem_request_get_engine(req);
2408
2409 /* Add a reference if we're newly entering the active list. */
2410 if (obj->active == 0)
2411 drm_gem_object_reference(&obj->base);
2412 obj->active |= intel_engine_flag(engine);
2413
2414 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2415 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2416
2417 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2418 }
2419
2420 static void
2421 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2422 {
2423 RQ_BUG_ON(obj->last_write_req == NULL);
2424 RQ_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2425
2426 i915_gem_request_assign(&obj->last_write_req, NULL);
2427 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2428 }
2429
2430 static void
2431 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2432 {
2433 struct i915_vma *vma;
2434
2435 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2436 RQ_BUG_ON(!(obj->active & (1 << ring)));
2437
2438 list_del_init(&obj->engine_list[ring]);
2439 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2440
2441 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2442 i915_gem_object_retire__write(obj);
2443
2444 obj->active &= ~(1 << ring);
2445 if (obj->active)
2446 return;
2447
2448 /* Bump our place on the bound list to keep it roughly in LRU order
2449 * so that we don't steal from recently used but inactive objects
2450 * (unless we are forced to ofc!)
2451 */
2452 list_move_tail(&obj->global_list,
2453 &to_i915(obj->base.dev)->mm.bound_list);
2454
2455 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2456 if (!list_empty(&vma->vm_link))
2457 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2458 }
2459
2460 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2461 drm_gem_object_unreference(&obj->base);
2462 }
2463
2464 static int
2465 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2466 {
2467 struct drm_i915_private *dev_priv = dev->dev_private;
2468 struct intel_engine_cs *engine;
2469 int ret, j;
2470
2471 /* Carefully retire all requests without writing to the rings */
2472 for_each_engine(engine, dev_priv) {
2473 ret = intel_engine_idle(engine);
2474 if (ret)
2475 return ret;
2476 }
2477 i915_gem_retire_requests(dev);
2478
2479 /* Finally reset hw state */
2480 for_each_engine(engine, dev_priv) {
2481 intel_ring_init_seqno(engine, seqno);
2482
2483 for (j = 0; j < ARRAY_SIZE(engine->semaphore.sync_seqno); j++)
2484 engine->semaphore.sync_seqno[j] = 0;
2485 }
2486
2487 return 0;
2488 }
2489
2490 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2491 {
2492 struct drm_i915_private *dev_priv = dev->dev_private;
2493 int ret;
2494
2495 if (seqno == 0)
2496 return -EINVAL;
2497
2498 /* HWS page needs to be set less than what we
2499 * will inject to ring
2500 */
2501 ret = i915_gem_init_seqno(dev, seqno - 1);
2502 if (ret)
2503 return ret;
2504
2505 /* Carefully set the last_seqno value so that wrap
2506 * detection still works
2507 */
2508 dev_priv->next_seqno = seqno;
2509 dev_priv->last_seqno = seqno - 1;
2510 if (dev_priv->last_seqno == 0)
2511 dev_priv->last_seqno--;
2512
2513 return 0;
2514 }
2515
2516 int
2517 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2518 {
2519 struct drm_i915_private *dev_priv = dev->dev_private;
2520
2521 /* reserve 0 for non-seqno */
2522 if (dev_priv->next_seqno == 0) {
2523 int ret = i915_gem_init_seqno(dev, 0);
2524 if (ret)
2525 return ret;
2526
2527 dev_priv->next_seqno = 1;
2528 }
2529
2530 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2531 return 0;
2532 }
2533
2534 /*
2535 * NB: This function is not allowed to fail. Doing so would mean the the
2536 * request is not being tracked for completion but the work itself is
2537 * going to happen on the hardware. This would be a Bad Thing(tm).
2538 */
2539 void __i915_add_request(struct drm_i915_gem_request *request,
2540 struct drm_i915_gem_object *obj,
2541 bool flush_caches)
2542 {
2543 struct intel_engine_cs *engine;
2544 struct drm_i915_private *dev_priv;
2545 struct intel_ringbuffer *ringbuf;
2546 u32 request_start;
2547 int ret;
2548
2549 if (WARN_ON(request == NULL))
2550 return;
2551
2552 engine = request->engine;
2553 dev_priv = request->i915;
2554 ringbuf = request->ringbuf;
2555
2556 /*
2557 * To ensure that this call will not fail, space for its emissions
2558 * should already have been reserved in the ring buffer. Let the ring
2559 * know that it is time to use that space up.
2560 */
2561 intel_ring_reserved_space_use(ringbuf);
2562
2563 request_start = intel_ring_get_tail(ringbuf);
2564 /*
2565 * Emit any outstanding flushes - execbuf can fail to emit the flush
2566 * after having emitted the batchbuffer command. Hence we need to fix
2567 * things up similar to emitting the lazy request. The difference here
2568 * is that the flush _must_ happen before the next request, no matter
2569 * what.
2570 */
2571 if (flush_caches) {
2572 if (i915.enable_execlists)
2573 ret = logical_ring_flush_all_caches(request);
2574 else
2575 ret = intel_ring_flush_all_caches(request);
2576 /* Not allowed to fail! */
2577 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2578 }
2579
2580 /* Record the position of the start of the request so that
2581 * should we detect the updated seqno part-way through the
2582 * GPU processing the request, we never over-estimate the
2583 * position of the head.
2584 */
2585 request->postfix = intel_ring_get_tail(ringbuf);
2586
2587 if (i915.enable_execlists)
2588 ret = engine->emit_request(request);
2589 else {
2590 ret = engine->add_request(request);
2591
2592 request->tail = intel_ring_get_tail(ringbuf);
2593 }
2594 /* Not allowed to fail! */
2595 WARN(ret, "emit|add_request failed: %d!\n", ret);
2596
2597 request->head = request_start;
2598
2599 /* Whilst this request exists, batch_obj will be on the
2600 * active_list, and so will hold the active reference. Only when this
2601 * request is retired will the the batch_obj be moved onto the
2602 * inactive_list and lose its active reference. Hence we do not need
2603 * to explicitly hold another reference here.
2604 */
2605 request->batch_obj = obj;
2606
2607 request->emitted_jiffies = jiffies;
2608 request->previous_seqno = engine->last_submitted_seqno;
2609 engine->last_submitted_seqno = request->seqno;
2610 list_add_tail(&request->list, &engine->request_list);
2611
2612 trace_i915_gem_request_add(request);
2613
2614 i915_queue_hangcheck(engine->dev);
2615
2616 queue_delayed_work(dev_priv->wq,
2617 &dev_priv->mm.retire_work,
2618 round_jiffies_up_relative(HZ));
2619 intel_mark_busy(dev_priv->dev);
2620
2621 /* Sanity check that the reserved size was large enough. */
2622 intel_ring_reserved_space_end(ringbuf);
2623 }
2624
2625 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2626 const struct intel_context *ctx)
2627 {
2628 unsigned long elapsed;
2629
2630 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631
2632 if (ctx->hang_stats.banned)
2633 return true;
2634
2635 if (ctx->hang_stats.ban_period_seconds &&
2636 elapsed <= ctx->hang_stats.ban_period_seconds) {
2637 if (!i915_gem_context_is_default(ctx)) {
2638 DRM_DEBUG("context hanging too fast, banning!\n");
2639 return true;
2640 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2641 if (i915_stop_ring_allow_warn(dev_priv))
2642 DRM_ERROR("gpu hanging too fast, banning!\n");
2643 return true;
2644 }
2645 }
2646
2647 return false;
2648 }
2649
2650 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2651 struct intel_context *ctx,
2652 const bool guilty)
2653 {
2654 struct i915_ctx_hang_stats *hs;
2655
2656 if (WARN_ON(!ctx))
2657 return;
2658
2659 hs = &ctx->hang_stats;
2660
2661 if (guilty) {
2662 hs->banned = i915_context_is_banned(dev_priv, ctx);
2663 hs->batch_active++;
2664 hs->guilty_ts = get_seconds();
2665 } else {
2666 hs->batch_pending++;
2667 }
2668 }
2669
2670 void i915_gem_request_free(struct kref *req_ref)
2671 {
2672 struct drm_i915_gem_request *req = container_of(req_ref,
2673 typeof(*req), ref);
2674 struct intel_context *ctx = req->ctx;
2675
2676 if (req->file_priv)
2677 i915_gem_request_remove_from_client(req);
2678
2679 if (ctx) {
2680 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2681 intel_lr_context_unpin(ctx, req->engine);
2682
2683 i915_gem_context_unreference(ctx);
2684 }
2685
2686 kmem_cache_free(req->i915->requests, req);
2687 }
2688
2689 static inline int
2690 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2691 struct intel_context *ctx,
2692 struct drm_i915_gem_request **req_out)
2693 {
2694 struct drm_i915_private *dev_priv = to_i915(engine->dev);
2695 struct drm_i915_gem_request *req;
2696 int ret;
2697
2698 if (!req_out)
2699 return -EINVAL;
2700
2701 *req_out = NULL;
2702
2703 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2704 if (req == NULL)
2705 return -ENOMEM;
2706
2707 ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2708 if (ret)
2709 goto err;
2710
2711 kref_init(&req->ref);
2712 req->i915 = dev_priv;
2713 req->engine = engine;
2714 req->ctx = ctx;
2715 i915_gem_context_reference(req->ctx);
2716
2717 if (i915.enable_execlists)
2718 ret = intel_logical_ring_alloc_request_extras(req);
2719 else
2720 ret = intel_ring_alloc_request_extras(req);
2721 if (ret) {
2722 i915_gem_context_unreference(req->ctx);
2723 goto err;
2724 }
2725
2726 /*
2727 * Reserve space in the ring buffer for all the commands required to
2728 * eventually emit this request. This is to guarantee that the
2729 * i915_add_request() call can't fail. Note that the reserve may need
2730 * to be redone if the request is not actually submitted straight
2731 * away, e.g. because a GPU scheduler has deferred it.
2732 */
2733 if (i915.enable_execlists)
2734 ret = intel_logical_ring_reserve_space(req);
2735 else
2736 ret = intel_ring_reserve_space(req);
2737 if (ret) {
2738 /*
2739 * At this point, the request is fully allocated even if not
2740 * fully prepared. Thus it can be cleaned up using the proper
2741 * free code.
2742 */
2743 i915_gem_request_cancel(req);
2744 return ret;
2745 }
2746
2747 *req_out = req;
2748 return 0;
2749
2750 err:
2751 kmem_cache_free(dev_priv->requests, req);
2752 return ret;
2753 }
2754
2755 /**
2756 * i915_gem_request_alloc - allocate a request structure
2757 *
2758 * @engine: engine that we wish to issue the request on.
2759 * @ctx: context that the request will be associated with.
2760 * This can be NULL if the request is not directly related to
2761 * any specific user context, in which case this function will
2762 * choose an appropriate context to use.
2763 *
2764 * Returns a pointer to the allocated request if successful,
2765 * or an error code if not.
2766 */
2767 struct drm_i915_gem_request *
2768 i915_gem_request_alloc(struct intel_engine_cs *engine,
2769 struct intel_context *ctx)
2770 {
2771 struct drm_i915_gem_request *req;
2772 int err;
2773
2774 if (ctx == NULL)
2775 ctx = to_i915(engine->dev)->kernel_context;
2776 err = __i915_gem_request_alloc(engine, ctx, &req);
2777 return err ? ERR_PTR(err) : req;
2778 }
2779
2780 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2781 {
2782 intel_ring_reserved_space_cancel(req->ringbuf);
2783
2784 i915_gem_request_unreference(req);
2785 }
2786
2787 struct drm_i915_gem_request *
2788 i915_gem_find_active_request(struct intel_engine_cs *engine)
2789 {
2790 struct drm_i915_gem_request *request;
2791
2792 list_for_each_entry(request, &engine->request_list, list) {
2793 if (i915_gem_request_completed(request, false))
2794 continue;
2795
2796 return request;
2797 }
2798
2799 return NULL;
2800 }
2801
2802 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2803 struct intel_engine_cs *engine)
2804 {
2805 struct drm_i915_gem_request *request;
2806 bool ring_hung;
2807
2808 request = i915_gem_find_active_request(engine);
2809
2810 if (request == NULL)
2811 return;
2812
2813 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2814
2815 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2816
2817 list_for_each_entry_continue(request, &engine->request_list, list)
2818 i915_set_reset_status(dev_priv, request->ctx, false);
2819 }
2820
2821 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2822 struct intel_engine_cs *engine)
2823 {
2824 struct intel_ringbuffer *buffer;
2825
2826 while (!list_empty(&engine->active_list)) {
2827 struct drm_i915_gem_object *obj;
2828
2829 obj = list_first_entry(&engine->active_list,
2830 struct drm_i915_gem_object,
2831 engine_list[engine->id]);
2832
2833 i915_gem_object_retire__read(obj, engine->id);
2834 }
2835
2836 /*
2837 * Clear the execlists queue up before freeing the requests, as those
2838 * are the ones that keep the context and ringbuffer backing objects
2839 * pinned in place.
2840 */
2841
2842 if (i915.enable_execlists) {
2843 spin_lock_irq(&engine->execlist_lock);
2844
2845 /* list_splice_tail_init checks for empty lists */
2846 list_splice_tail_init(&engine->execlist_queue,
2847 &engine->execlist_retired_req_list);
2848
2849 spin_unlock_irq(&engine->execlist_lock);
2850 intel_execlists_retire_requests(engine);
2851 }
2852
2853 /*
2854 * We must free the requests after all the corresponding objects have
2855 * been moved off active lists. Which is the same order as the normal
2856 * retire_requests function does. This is important if object hold
2857 * implicit references on things like e.g. ppgtt address spaces through
2858 * the request.
2859 */
2860 while (!list_empty(&engine->request_list)) {
2861 struct drm_i915_gem_request *request;
2862
2863 request = list_first_entry(&engine->request_list,
2864 struct drm_i915_gem_request,
2865 list);
2866
2867 i915_gem_request_retire(request);
2868 }
2869
2870 /* Having flushed all requests from all queues, we know that all
2871 * ringbuffers must now be empty. However, since we do not reclaim
2872 * all space when retiring the request (to prevent HEADs colliding
2873 * with rapid ringbuffer wraparound) the amount of available space
2874 * upon reset is less than when we start. Do one more pass over
2875 * all the ringbuffers to reset last_retired_head.
2876 */
2877 list_for_each_entry(buffer, &engine->buffers, link) {
2878 buffer->last_retired_head = buffer->tail;
2879 intel_ring_update_space(buffer);
2880 }
2881 }
2882
2883 void i915_gem_reset(struct drm_device *dev)
2884 {
2885 struct drm_i915_private *dev_priv = dev->dev_private;
2886 struct intel_engine_cs *engine;
2887
2888 /*
2889 * Before we free the objects from the requests, we need to inspect
2890 * them for finding the guilty party. As the requests only borrow
2891 * their reference to the objects, the inspection must be done first.
2892 */
2893 for_each_engine(engine, dev_priv)
2894 i915_gem_reset_engine_status(dev_priv, engine);
2895
2896 for_each_engine(engine, dev_priv)
2897 i915_gem_reset_engine_cleanup(dev_priv, engine);
2898
2899 i915_gem_context_reset(dev);
2900
2901 i915_gem_restore_fences(dev);
2902
2903 WARN_ON(i915_verify_lists(dev));
2904 }
2905
2906 /**
2907 * This function clears the request list as sequence numbers are passed.
2908 */
2909 void
2910 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2911 {
2912 WARN_ON(i915_verify_lists(engine->dev));
2913
2914 /* Retire requests first as we use it above for the early return.
2915 * If we retire requests last, we may use a later seqno and so clear
2916 * the requests lists without clearing the active list, leading to
2917 * confusion.
2918 */
2919 while (!list_empty(&engine->request_list)) {
2920 struct drm_i915_gem_request *request;
2921
2922 request = list_first_entry(&engine->request_list,
2923 struct drm_i915_gem_request,
2924 list);
2925
2926 if (!i915_gem_request_completed(request, true))
2927 break;
2928
2929 i915_gem_request_retire(request);
2930 }
2931
2932 /* Move any buffers on the active list that are no longer referenced
2933 * by the ringbuffer to the flushing/inactive lists as appropriate,
2934 * before we free the context associated with the requests.
2935 */
2936 while (!list_empty(&engine->active_list)) {
2937 struct drm_i915_gem_object *obj;
2938
2939 obj = list_first_entry(&engine->active_list,
2940 struct drm_i915_gem_object,
2941 engine_list[engine->id]);
2942
2943 if (!list_empty(&obj->last_read_req[engine->id]->list))
2944 break;
2945
2946 i915_gem_object_retire__read(obj, engine->id);
2947 }
2948
2949 if (unlikely(engine->trace_irq_req &&
2950 i915_gem_request_completed(engine->trace_irq_req, true))) {
2951 engine->irq_put(engine);
2952 i915_gem_request_assign(&engine->trace_irq_req, NULL);
2953 }
2954
2955 WARN_ON(i915_verify_lists(engine->dev));
2956 }
2957
2958 bool
2959 i915_gem_retire_requests(struct drm_device *dev)
2960 {
2961 struct drm_i915_private *dev_priv = dev->dev_private;
2962 struct intel_engine_cs *engine;
2963 bool idle = true;
2964
2965 for_each_engine(engine, dev_priv) {
2966 i915_gem_retire_requests_ring(engine);
2967 idle &= list_empty(&engine->request_list);
2968 if (i915.enable_execlists) {
2969 spin_lock_irq(&engine->execlist_lock);
2970 idle &= list_empty(&engine->execlist_queue);
2971 spin_unlock_irq(&engine->execlist_lock);
2972
2973 intel_execlists_retire_requests(engine);
2974 }
2975 }
2976
2977 if (idle)
2978 mod_delayed_work(dev_priv->wq,
2979 &dev_priv->mm.idle_work,
2980 msecs_to_jiffies(100));
2981
2982 return idle;
2983 }
2984
2985 static void
2986 i915_gem_retire_work_handler(struct work_struct *work)
2987 {
2988 struct drm_i915_private *dev_priv =
2989 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2990 struct drm_device *dev = dev_priv->dev;
2991 bool idle;
2992
2993 /* Come back later if the device is busy... */
2994 idle = false;
2995 if (mutex_trylock(&dev->struct_mutex)) {
2996 idle = i915_gem_retire_requests(dev);
2997 mutex_unlock(&dev->struct_mutex);
2998 }
2999 if (!idle)
3000 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3001 round_jiffies_up_relative(HZ));
3002 }
3003
3004 static void
3005 i915_gem_idle_work_handler(struct work_struct *work)
3006 {
3007 struct drm_i915_private *dev_priv =
3008 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3009 struct drm_device *dev = dev_priv->dev;
3010 struct intel_engine_cs *engine;
3011
3012 for_each_engine(engine, dev_priv)
3013 if (!list_empty(&engine->request_list))
3014 return;
3015
3016 /* we probably should sync with hangcheck here, using cancel_work_sync.
3017 * Also locking seems to be fubar here, engine->request_list is protected
3018 * by dev->struct_mutex. */
3019
3020 intel_mark_idle(dev);
3021
3022 if (mutex_trylock(&dev->struct_mutex)) {
3023 for_each_engine(engine, dev_priv)
3024 i915_gem_batch_pool_fini(&engine->batch_pool);
3025
3026 mutex_unlock(&dev->struct_mutex);
3027 }
3028 }
3029
3030 /**
3031 * Ensures that an object will eventually get non-busy by flushing any required
3032 * write domains, emitting any outstanding lazy request and retiring and
3033 * completed requests.
3034 */
3035 static int
3036 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3037 {
3038 int i;
3039
3040 if (!obj->active)
3041 return 0;
3042
3043 for (i = 0; i < I915_NUM_ENGINES; i++) {
3044 struct drm_i915_gem_request *req;
3045
3046 req = obj->last_read_req[i];
3047 if (req == NULL)
3048 continue;
3049
3050 if (list_empty(&req->list))
3051 goto retire;
3052
3053 if (i915_gem_request_completed(req, true)) {
3054 __i915_gem_request_retire__upto(req);
3055 retire:
3056 i915_gem_object_retire__read(obj, i);
3057 }
3058 }
3059
3060 return 0;
3061 }
3062
3063 /**
3064 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3065 * @DRM_IOCTL_ARGS: standard ioctl arguments
3066 *
3067 * Returns 0 if successful, else an error is returned with the remaining time in
3068 * the timeout parameter.
3069 * -ETIME: object is still busy after timeout
3070 * -ERESTARTSYS: signal interrupted the wait
3071 * -ENONENT: object doesn't exist
3072 * Also possible, but rare:
3073 * -EAGAIN: GPU wedged
3074 * -ENOMEM: damn
3075 * -ENODEV: Internal IRQ fail
3076 * -E?: The add request failed
3077 *
3078 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3079 * non-zero timeout parameter the wait ioctl will wait for the given number of
3080 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3081 * without holding struct_mutex the object may become re-busied before this
3082 * function completes. A similar but shorter * race condition exists in the busy
3083 * ioctl
3084 */
3085 int
3086 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3087 {
3088 struct drm_i915_private *dev_priv = dev->dev_private;
3089 struct drm_i915_gem_wait *args = data;
3090 struct drm_i915_gem_object *obj;
3091 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3092 unsigned reset_counter;
3093 int i, n = 0;
3094 int ret;
3095
3096 if (args->flags != 0)
3097 return -EINVAL;
3098
3099 ret = i915_mutex_lock_interruptible(dev);
3100 if (ret)
3101 return ret;
3102
3103 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3104 if (&obj->base == NULL) {
3105 mutex_unlock(&dev->struct_mutex);
3106 return -ENOENT;
3107 }
3108
3109 /* Need to make sure the object gets inactive eventually. */
3110 ret = i915_gem_object_flush_active(obj);
3111 if (ret)
3112 goto out;
3113
3114 if (!obj->active)
3115 goto out;
3116
3117 /* Do this after OLR check to make sure we make forward progress polling
3118 * on this IOCTL with a timeout == 0 (like busy ioctl)
3119 */
3120 if (args->timeout_ns == 0) {
3121 ret = -ETIME;
3122 goto out;
3123 }
3124
3125 drm_gem_object_unreference(&obj->base);
3126 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3127
3128 for (i = 0; i < I915_NUM_ENGINES; i++) {
3129 if (obj->last_read_req[i] == NULL)
3130 continue;
3131
3132 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3133 }
3134
3135 mutex_unlock(&dev->struct_mutex);
3136
3137 for (i = 0; i < n; i++) {
3138 if (ret == 0)
3139 ret = __i915_wait_request(req[i], reset_counter, true,
3140 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3141 to_rps_client(file));
3142 i915_gem_request_unreference__unlocked(req[i]);
3143 }
3144 return ret;
3145
3146 out:
3147 drm_gem_object_unreference(&obj->base);
3148 mutex_unlock(&dev->struct_mutex);
3149 return ret;
3150 }
3151
3152 static int
3153 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3154 struct intel_engine_cs *to,
3155 struct drm_i915_gem_request *from_req,
3156 struct drm_i915_gem_request **to_req)
3157 {
3158 struct intel_engine_cs *from;
3159 int ret;
3160
3161 from = i915_gem_request_get_engine(from_req);
3162 if (to == from)
3163 return 0;
3164
3165 if (i915_gem_request_completed(from_req, true))
3166 return 0;
3167
3168 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3169 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3170 ret = __i915_wait_request(from_req,
3171 atomic_read(&i915->gpu_error.reset_counter),
3172 i915->mm.interruptible,
3173 NULL,
3174 &i915->rps.semaphores);
3175 if (ret)
3176 return ret;
3177
3178 i915_gem_object_retire_request(obj, from_req);
3179 } else {
3180 int idx = intel_ring_sync_index(from, to);
3181 u32 seqno = i915_gem_request_get_seqno(from_req);
3182
3183 WARN_ON(!to_req);
3184
3185 if (seqno <= from->semaphore.sync_seqno[idx])
3186 return 0;
3187
3188 if (*to_req == NULL) {
3189 struct drm_i915_gem_request *req;
3190
3191 req = i915_gem_request_alloc(to, NULL);
3192 if (IS_ERR(req))
3193 return PTR_ERR(req);
3194
3195 *to_req = req;
3196 }
3197
3198 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3199 ret = to->semaphore.sync_to(*to_req, from, seqno);
3200 if (ret)
3201 return ret;
3202
3203 /* We use last_read_req because sync_to()
3204 * might have just caused seqno wrap under
3205 * the radar.
3206 */
3207 from->semaphore.sync_seqno[idx] =
3208 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3209 }
3210
3211 return 0;
3212 }
3213
3214 /**
3215 * i915_gem_object_sync - sync an object to a ring.
3216 *
3217 * @obj: object which may be in use on another ring.
3218 * @to: ring we wish to use the object on. May be NULL.
3219 * @to_req: request we wish to use the object for. See below.
3220 * This will be allocated and returned if a request is
3221 * required but not passed in.
3222 *
3223 * This code is meant to abstract object synchronization with the GPU.
3224 * Calling with NULL implies synchronizing the object with the CPU
3225 * rather than a particular GPU ring. Conceptually we serialise writes
3226 * between engines inside the GPU. We only allow one engine to write
3227 * into a buffer at any time, but multiple readers. To ensure each has
3228 * a coherent view of memory, we must:
3229 *
3230 * - If there is an outstanding write request to the object, the new
3231 * request must wait for it to complete (either CPU or in hw, requests
3232 * on the same ring will be naturally ordered).
3233 *
3234 * - If we are a write request (pending_write_domain is set), the new
3235 * request must wait for outstanding read requests to complete.
3236 *
3237 * For CPU synchronisation (NULL to) no request is required. For syncing with
3238 * rings to_req must be non-NULL. However, a request does not have to be
3239 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3240 * request will be allocated automatically and returned through *to_req. Note
3241 * that it is not guaranteed that commands will be emitted (because the system
3242 * might already be idle). Hence there is no need to create a request that
3243 * might never have any work submitted. Note further that if a request is
3244 * returned in *to_req, it is the responsibility of the caller to submit
3245 * that request (after potentially adding more work to it).
3246 *
3247 * Returns 0 if successful, else propagates up the lower layer error.
3248 */
3249 int
3250 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3251 struct intel_engine_cs *to,
3252 struct drm_i915_gem_request **to_req)
3253 {
3254 const bool readonly = obj->base.pending_write_domain == 0;
3255 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3256 int ret, i, n;
3257
3258 if (!obj->active)
3259 return 0;
3260
3261 if (to == NULL)
3262 return i915_gem_object_wait_rendering(obj, readonly);
3263
3264 n = 0;
3265 if (readonly) {
3266 if (obj->last_write_req)
3267 req[n++] = obj->last_write_req;
3268 } else {
3269 for (i = 0; i < I915_NUM_ENGINES; i++)
3270 if (obj->last_read_req[i])
3271 req[n++] = obj->last_read_req[i];
3272 }
3273 for (i = 0; i < n; i++) {
3274 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3275 if (ret)
3276 return ret;
3277 }
3278
3279 return 0;
3280 }
3281
3282 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3283 {
3284 u32 old_write_domain, old_read_domains;
3285
3286 /* Force a pagefault for domain tracking on next user access */
3287 i915_gem_release_mmap(obj);
3288
3289 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3290 return;
3291
3292 /* Wait for any direct GTT access to complete */
3293 mb();
3294
3295 old_read_domains = obj->base.read_domains;
3296 old_write_domain = obj->base.write_domain;
3297
3298 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3299 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3300
3301 trace_i915_gem_object_change_domain(obj,
3302 old_read_domains,
3303 old_write_domain);
3304 }
3305
3306 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3307 {
3308 struct drm_i915_gem_object *obj = vma->obj;
3309 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3310 int ret;
3311
3312 if (list_empty(&vma->obj_link))
3313 return 0;
3314
3315 if (!drm_mm_node_allocated(&vma->node)) {
3316 i915_gem_vma_destroy(vma);
3317 return 0;
3318 }
3319
3320 if (vma->pin_count)
3321 return -EBUSY;
3322
3323 BUG_ON(obj->pages == NULL);
3324
3325 if (wait) {
3326 ret = i915_gem_object_wait_rendering(obj, false);
3327 if (ret)
3328 return ret;
3329 }
3330
3331 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3332 i915_gem_object_finish_gtt(obj);
3333
3334 /* release the fence reg _after_ flushing */
3335 ret = i915_gem_object_put_fence(obj);
3336 if (ret)
3337 return ret;
3338 }
3339
3340 trace_i915_vma_unbind(vma);
3341
3342 vma->vm->unbind_vma(vma);
3343 vma->bound = 0;
3344
3345 list_del_init(&vma->vm_link);
3346 if (vma->is_ggtt) {
3347 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3348 obj->map_and_fenceable = false;
3349 } else if (vma->ggtt_view.pages) {
3350 sg_free_table(vma->ggtt_view.pages);
3351 kfree(vma->ggtt_view.pages);
3352 }
3353 vma->ggtt_view.pages = NULL;
3354 }
3355
3356 drm_mm_remove_node(&vma->node);
3357 i915_gem_vma_destroy(vma);
3358
3359 /* Since the unbound list is global, only move to that list if
3360 * no more VMAs exist. */
3361 if (list_empty(&obj->vma_list))
3362 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3363
3364 /* And finally now the object is completely decoupled from this vma,
3365 * we can drop its hold on the backing storage and allow it to be
3366 * reaped by the shrinker.
3367 */
3368 i915_gem_object_unpin_pages(obj);
3369
3370 return 0;
3371 }
3372
3373 int i915_vma_unbind(struct i915_vma *vma)
3374 {
3375 return __i915_vma_unbind(vma, true);
3376 }
3377
3378 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3379 {
3380 return __i915_vma_unbind(vma, false);
3381 }
3382
3383 int i915_gpu_idle(struct drm_device *dev)
3384 {
3385 struct drm_i915_private *dev_priv = dev->dev_private;
3386 struct intel_engine_cs *engine;
3387 int ret;
3388
3389 /* Flush everything onto the inactive list. */
3390 for_each_engine(engine, dev_priv) {
3391 if (!i915.enable_execlists) {
3392 struct drm_i915_gem_request *req;
3393
3394 req = i915_gem_request_alloc(engine, NULL);
3395 if (IS_ERR(req))
3396 return PTR_ERR(req);
3397
3398 ret = i915_switch_context(req);
3399 if (ret) {
3400 i915_gem_request_cancel(req);
3401 return ret;
3402 }
3403
3404 i915_add_request_no_flush(req);
3405 }
3406
3407 ret = intel_engine_idle(engine);
3408 if (ret)
3409 return ret;
3410 }
3411
3412 WARN_ON(i915_verify_lists(dev));
3413 return 0;
3414 }
3415
3416 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3417 unsigned long cache_level)
3418 {
3419 struct drm_mm_node *gtt_space = &vma->node;
3420 struct drm_mm_node *other;
3421
3422 /*
3423 * On some machines we have to be careful when putting differing types
3424 * of snoopable memory together to avoid the prefetcher crossing memory
3425 * domains and dying. During vm initialisation, we decide whether or not
3426 * these constraints apply and set the drm_mm.color_adjust
3427 * appropriately.
3428 */
3429 if (vma->vm->mm.color_adjust == NULL)
3430 return true;
3431
3432 if (!drm_mm_node_allocated(gtt_space))
3433 return true;
3434
3435 if (list_empty(&gtt_space->node_list))
3436 return true;
3437
3438 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3439 if (other->allocated && !other->hole_follows && other->color != cache_level)
3440 return false;
3441
3442 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3443 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3444 return false;
3445
3446 return true;
3447 }
3448
3449 /**
3450 * Finds free space in the GTT aperture and binds the object or a view of it
3451 * there.
3452 */
3453 static struct i915_vma *
3454 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3455 struct i915_address_space *vm,
3456 const struct i915_ggtt_view *ggtt_view,
3457 unsigned alignment,
3458 uint64_t flags)
3459 {
3460 struct drm_device *dev = obj->base.dev;
3461 struct drm_i915_private *dev_priv = dev->dev_private;
3462 u32 fence_alignment, unfenced_alignment;
3463 u32 search_flag, alloc_flag;
3464 u64 start, end;
3465 u64 size, fence_size;
3466 struct i915_vma *vma;
3467 int ret;
3468
3469 if (i915_is_ggtt(vm)) {
3470 u32 view_size;
3471
3472 if (WARN_ON(!ggtt_view))
3473 return ERR_PTR(-EINVAL);
3474
3475 view_size = i915_ggtt_view_size(obj, ggtt_view);
3476
3477 fence_size = i915_gem_get_gtt_size(dev,
3478 view_size,
3479 obj->tiling_mode);
3480 fence_alignment = i915_gem_get_gtt_alignment(dev,
3481 view_size,
3482 obj->tiling_mode,
3483 true);
3484 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3485 view_size,
3486 obj->tiling_mode,
3487 false);
3488 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3489 } else {
3490 fence_size = i915_gem_get_gtt_size(dev,
3491 obj->base.size,
3492 obj->tiling_mode);
3493 fence_alignment = i915_gem_get_gtt_alignment(dev,
3494 obj->base.size,
3495 obj->tiling_mode,
3496 true);
3497 unfenced_alignment =
3498 i915_gem_get_gtt_alignment(dev,
3499 obj->base.size,
3500 obj->tiling_mode,
3501 false);
3502 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3503 }
3504
3505 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3506 end = vm->total;
3507 if (flags & PIN_MAPPABLE)
3508 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3509 if (flags & PIN_ZONE_4G)
3510 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3511
3512 if (alignment == 0)
3513 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3514 unfenced_alignment;
3515 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3516 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3517 ggtt_view ? ggtt_view->type : 0,
3518 alignment);
3519 return ERR_PTR(-EINVAL);
3520 }
3521
3522 /* If binding the object/GGTT view requires more space than the entire
3523 * aperture has, reject it early before evicting everything in a vain
3524 * attempt to find space.
3525 */
3526 if (size > end) {
3527 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3528 ggtt_view ? ggtt_view->type : 0,
3529 size,
3530 flags & PIN_MAPPABLE ? "mappable" : "total",
3531 end);
3532 return ERR_PTR(-E2BIG);
3533 }
3534
3535 ret = i915_gem_object_get_pages(obj);
3536 if (ret)
3537 return ERR_PTR(ret);
3538
3539 i915_gem_object_pin_pages(obj);
3540
3541 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3542 i915_gem_obj_lookup_or_create_vma(obj, vm);
3543
3544 if (IS_ERR(vma))
3545 goto err_unpin;
3546
3547 if (flags & PIN_OFFSET_FIXED) {
3548 uint64_t offset = flags & PIN_OFFSET_MASK;
3549
3550 if (offset & (alignment - 1) || offset + size > end) {
3551 ret = -EINVAL;
3552 goto err_free_vma;
3553 }
3554 vma->node.start = offset;
3555 vma->node.size = size;
3556 vma->node.color = obj->cache_level;
3557 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3558 if (ret) {
3559 ret = i915_gem_evict_for_vma(vma);
3560 if (ret == 0)
3561 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3562 }
3563 if (ret)
3564 goto err_free_vma;
3565 } else {
3566 if (flags & PIN_HIGH) {
3567 search_flag = DRM_MM_SEARCH_BELOW;
3568 alloc_flag = DRM_MM_CREATE_TOP;
3569 } else {
3570 search_flag = DRM_MM_SEARCH_DEFAULT;
3571 alloc_flag = DRM_MM_CREATE_DEFAULT;
3572 }
3573
3574 search_free:
3575 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3576 size, alignment,
3577 obj->cache_level,
3578 start, end,
3579 search_flag,
3580 alloc_flag);
3581 if (ret) {
3582 ret = i915_gem_evict_something(dev, vm, size, alignment,
3583 obj->cache_level,
3584 start, end,
3585 flags);
3586 if (ret == 0)
3587 goto search_free;
3588
3589 goto err_free_vma;
3590 }
3591 }
3592 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3593 ret = -EINVAL;
3594 goto err_remove_node;
3595 }
3596
3597 trace_i915_vma_bind(vma, flags);
3598 ret = i915_vma_bind(vma, obj->cache_level, flags);
3599 if (ret)
3600 goto err_remove_node;
3601
3602 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3603 list_add_tail(&vma->vm_link, &vm->inactive_list);
3604
3605 return vma;
3606
3607 err_remove_node:
3608 drm_mm_remove_node(&vma->node);
3609 err_free_vma:
3610 i915_gem_vma_destroy(vma);
3611 vma = ERR_PTR(ret);
3612 err_unpin:
3613 i915_gem_object_unpin_pages(obj);
3614 return vma;
3615 }
3616
3617 bool
3618 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3619 bool force)
3620 {
3621 /* If we don't have a page list set up, then we're not pinned
3622 * to GPU, and we can ignore the cache flush because it'll happen
3623 * again at bind time.
3624 */
3625 if (obj->pages == NULL)
3626 return false;
3627
3628 /*
3629 * Stolen memory is always coherent with the GPU as it is explicitly
3630 * marked as wc by the system, or the system is cache-coherent.
3631 */
3632 if (obj->stolen || obj->phys_handle)
3633 return false;
3634
3635 /* If the GPU is snooping the contents of the CPU cache,
3636 * we do not need to manually clear the CPU cache lines. However,
3637 * the caches are only snooped when the render cache is
3638 * flushed/invalidated. As we always have to emit invalidations
3639 * and flushes when moving into and out of the RENDER domain, correct
3640 * snooping behaviour occurs naturally as the result of our domain
3641 * tracking.
3642 */
3643 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3644 obj->cache_dirty = true;
3645 return false;
3646 }
3647
3648 trace_i915_gem_object_clflush(obj);
3649 drm_clflush_sg(obj->pages);
3650 obj->cache_dirty = false;
3651
3652 return true;
3653 }
3654
3655 /** Flushes the GTT write domain for the object if it's dirty. */
3656 static void
3657 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3658 {
3659 uint32_t old_write_domain;
3660
3661 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3662 return;
3663
3664 /* No actual flushing is required for the GTT write domain. Writes
3665 * to it immediately go to main memory as far as we know, so there's
3666 * no chipset flush. It also doesn't land in render cache.
3667 *
3668 * However, we do have to enforce the order so that all writes through
3669 * the GTT land before any writes to the device, such as updates to
3670 * the GATT itself.
3671 */
3672 wmb();
3673
3674 old_write_domain = obj->base.write_domain;
3675 obj->base.write_domain = 0;
3676
3677 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3678
3679 trace_i915_gem_object_change_domain(obj,
3680 obj->base.read_domains,
3681 old_write_domain);
3682 }
3683
3684 /** Flushes the CPU write domain for the object if it's dirty. */
3685 static void
3686 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3687 {
3688 uint32_t old_write_domain;
3689
3690 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3691 return;
3692
3693 if (i915_gem_clflush_object(obj, obj->pin_display))
3694 i915_gem_chipset_flush(obj->base.dev);
3695
3696 old_write_domain = obj->base.write_domain;
3697 obj->base.write_domain = 0;
3698
3699 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3700
3701 trace_i915_gem_object_change_domain(obj,
3702 obj->base.read_domains,
3703 old_write_domain);
3704 }
3705
3706 /**
3707 * Moves a single object to the GTT read, and possibly write domain.
3708 *
3709 * This function returns when the move is complete, including waiting on
3710 * flushes to occur.
3711 */
3712 int
3713 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3714 {
3715 uint32_t old_write_domain, old_read_domains;
3716 struct i915_vma *vma;
3717 int ret;
3718
3719 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3720 return 0;
3721
3722 ret = i915_gem_object_wait_rendering(obj, !write);
3723 if (ret)
3724 return ret;
3725
3726 /* Flush and acquire obj->pages so that we are coherent through
3727 * direct access in memory with previous cached writes through
3728 * shmemfs and that our cache domain tracking remains valid.
3729 * For example, if the obj->filp was moved to swap without us
3730 * being notified and releasing the pages, we would mistakenly
3731 * continue to assume that the obj remained out of the CPU cached
3732 * domain.
3733 */
3734 ret = i915_gem_object_get_pages(obj);
3735 if (ret)
3736 return ret;
3737
3738 i915_gem_object_flush_cpu_write_domain(obj);
3739
3740 /* Serialise direct access to this object with the barriers for
3741 * coherent writes from the GPU, by effectively invalidating the
3742 * GTT domain upon first access.
3743 */
3744 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3745 mb();
3746
3747 old_write_domain = obj->base.write_domain;
3748 old_read_domains = obj->base.read_domains;
3749
3750 /* It should now be out of any other write domains, and we can update
3751 * the domain values for our changes.
3752 */
3753 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3754 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3755 if (write) {
3756 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3757 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3758 obj->dirty = 1;
3759 }
3760
3761 trace_i915_gem_object_change_domain(obj,
3762 old_read_domains,
3763 old_write_domain);
3764
3765 /* And bump the LRU for this access */
3766 vma = i915_gem_obj_to_ggtt(obj);
3767 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3768 list_move_tail(&vma->vm_link,
3769 &to_i915(obj->base.dev)->ggtt.base.inactive_list);
3770
3771 return 0;
3772 }
3773
3774 /**
3775 * Changes the cache-level of an object across all VMA.
3776 *
3777 * After this function returns, the object will be in the new cache-level
3778 * across all GTT and the contents of the backing storage will be coherent,
3779 * with respect to the new cache-level. In order to keep the backing storage
3780 * coherent for all users, we only allow a single cache level to be set
3781 * globally on the object and prevent it from being changed whilst the
3782 * hardware is reading from the object. That is if the object is currently
3783 * on the scanout it will be set to uncached (or equivalent display
3784 * cache coherency) and all non-MOCS GPU access will also be uncached so
3785 * that all direct access to the scanout remains coherent.
3786 */
3787 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3788 enum i915_cache_level cache_level)
3789 {
3790 struct drm_device *dev = obj->base.dev;
3791 struct i915_vma *vma, *next;
3792 bool bound = false;
3793 int ret = 0;
3794
3795 if (obj->cache_level == cache_level)
3796 goto out;
3797
3798 /* Inspect the list of currently bound VMA and unbind any that would
3799 * be invalid given the new cache-level. This is principally to
3800 * catch the issue of the CS prefetch crossing page boundaries and
3801 * reading an invalid PTE on older architectures.
3802 */
3803 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3804 if (!drm_mm_node_allocated(&vma->node))
3805 continue;
3806
3807 if (vma->pin_count) {
3808 DRM_DEBUG("can not change the cache level of pinned objects\n");
3809 return -EBUSY;
3810 }
3811
3812 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3813 ret = i915_vma_unbind(vma);
3814 if (ret)
3815 return ret;
3816 } else
3817 bound = true;
3818 }
3819
3820 /* We can reuse the existing drm_mm nodes but need to change the
3821 * cache-level on the PTE. We could simply unbind them all and
3822 * rebind with the correct cache-level on next use. However since
3823 * we already have a valid slot, dma mapping, pages etc, we may as
3824 * rewrite the PTE in the belief that doing so tramples upon less
3825 * state and so involves less work.
3826 */
3827 if (bound) {
3828 /* Before we change the PTE, the GPU must not be accessing it.
3829 * If we wait upon the object, we know that all the bound
3830 * VMA are no longer active.
3831 */
3832 ret = i915_gem_object_wait_rendering(obj, false);
3833 if (ret)
3834 return ret;
3835
3836 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3837 /* Access to snoopable pages through the GTT is
3838 * incoherent and on some machines causes a hard
3839 * lockup. Relinquish the CPU mmaping to force
3840 * userspace to refault in the pages and we can
3841 * then double check if the GTT mapping is still
3842 * valid for that pointer access.
3843 */
3844 i915_gem_release_mmap(obj);
3845
3846 /* As we no longer need a fence for GTT access,
3847 * we can relinquish it now (and so prevent having
3848 * to steal a fence from someone else on the next
3849 * fence request). Note GPU activity would have
3850 * dropped the fence as all snoopable access is
3851 * supposed to be linear.
3852 */
3853 ret = i915_gem_object_put_fence(obj);
3854 if (ret)
3855 return ret;
3856 } else {
3857 /* We either have incoherent backing store and
3858 * so no GTT access or the architecture is fully
3859 * coherent. In such cases, existing GTT mmaps
3860 * ignore the cache bit in the PTE and we can
3861 * rewrite it without confusing the GPU or having
3862 * to force userspace to fault back in its mmaps.
3863 */
3864 }
3865
3866 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3867 if (!drm_mm_node_allocated(&vma->node))
3868 continue;
3869
3870 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3871 if (ret)
3872 return ret;
3873 }
3874 }
3875
3876 list_for_each_entry(vma, &obj->vma_list, obj_link)
3877 vma->node.color = cache_level;
3878 obj->cache_level = cache_level;
3879
3880 out:
3881 /* Flush the dirty CPU caches to the backing storage so that the
3882 * object is now coherent at its new cache level (with respect
3883 * to the access domain).
3884 */
3885 if (obj->cache_dirty &&
3886 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3887 cpu_write_needs_clflush(obj)) {
3888 if (i915_gem_clflush_object(obj, true))
3889 i915_gem_chipset_flush(obj->base.dev);
3890 }
3891
3892 return 0;
3893 }
3894
3895 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3896 struct drm_file *file)
3897 {
3898 struct drm_i915_gem_caching *args = data;
3899 struct drm_i915_gem_object *obj;
3900
3901 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3902 if (&obj->base == NULL)
3903 return -ENOENT;
3904
3905 switch (obj->cache_level) {
3906 case I915_CACHE_LLC:
3907 case I915_CACHE_L3_LLC:
3908 args->caching = I915_CACHING_CACHED;
3909 break;
3910
3911 case I915_CACHE_WT:
3912 args->caching = I915_CACHING_DISPLAY;
3913 break;
3914
3915 default:
3916 args->caching = I915_CACHING_NONE;
3917 break;
3918 }
3919
3920 drm_gem_object_unreference_unlocked(&obj->base);
3921 return 0;
3922 }
3923
3924 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3925 struct drm_file *file)
3926 {
3927 struct drm_i915_private *dev_priv = dev->dev_private;
3928 struct drm_i915_gem_caching *args = data;
3929 struct drm_i915_gem_object *obj;
3930 enum i915_cache_level level;
3931 int ret;
3932
3933 switch (args->caching) {
3934 case I915_CACHING_NONE:
3935 level = I915_CACHE_NONE;
3936 break;
3937 case I915_CACHING_CACHED:
3938 /*
3939 * Due to a HW issue on BXT A stepping, GPU stores via a
3940 * snooped mapping may leave stale data in a corresponding CPU
3941 * cacheline, whereas normally such cachelines would get
3942 * invalidated.
3943 */
3944 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3945 return -ENODEV;
3946
3947 level = I915_CACHE_LLC;
3948 break;
3949 case I915_CACHING_DISPLAY:
3950 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3951 break;
3952 default:
3953 return -EINVAL;
3954 }
3955
3956 intel_runtime_pm_get(dev_priv);
3957
3958 ret = i915_mutex_lock_interruptible(dev);
3959 if (ret)
3960 goto rpm_put;
3961
3962 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3963 if (&obj->base == NULL) {
3964 ret = -ENOENT;
3965 goto unlock;
3966 }
3967
3968 ret = i915_gem_object_set_cache_level(obj, level);
3969
3970 drm_gem_object_unreference(&obj->base);
3971 unlock:
3972 mutex_unlock(&dev->struct_mutex);
3973 rpm_put:
3974 intel_runtime_pm_put(dev_priv);
3975
3976 return ret;
3977 }
3978
3979 /*
3980 * Prepare buffer for display plane (scanout, cursors, etc).
3981 * Can be called from an uninterruptible phase (modesetting) and allows
3982 * any flushes to be pipelined (for pageflips).
3983 */
3984 int
3985 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3986 u32 alignment,
3987 const struct i915_ggtt_view *view)
3988 {
3989 u32 old_read_domains, old_write_domain;
3990 int ret;
3991
3992 /* Mark the pin_display early so that we account for the
3993 * display coherency whilst setting up the cache domains.
3994 */
3995 obj->pin_display++;
3996
3997 /* The display engine is not coherent with the LLC cache on gen6. As
3998 * a result, we make sure that the pinning that is about to occur is
3999 * done with uncached PTEs. This is lowest common denominator for all
4000 * chipsets.
4001 *
4002 * However for gen6+, we could do better by using the GFDT bit instead
4003 * of uncaching, which would allow us to flush all the LLC-cached data
4004 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4005 */
4006 ret = i915_gem_object_set_cache_level(obj,
4007 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4008 if (ret)
4009 goto err_unpin_display;
4010
4011 /* As the user may map the buffer once pinned in the display plane
4012 * (e.g. libkms for the bootup splash), we have to ensure that we
4013 * always use map_and_fenceable for all scanout buffers.
4014 */
4015 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4016 view->type == I915_GGTT_VIEW_NORMAL ?
4017 PIN_MAPPABLE : 0);
4018 if (ret)
4019 goto err_unpin_display;
4020
4021 i915_gem_object_flush_cpu_write_domain(obj);
4022
4023 old_write_domain = obj->base.write_domain;
4024 old_read_domains = obj->base.read_domains;
4025
4026 /* It should now be out of any other write domains, and we can update
4027 * the domain values for our changes.
4028 */
4029 obj->base.write_domain = 0;
4030 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4031
4032 trace_i915_gem_object_change_domain(obj,
4033 old_read_domains,
4034 old_write_domain);
4035
4036 return 0;
4037
4038 err_unpin_display:
4039 obj->pin_display--;
4040 return ret;
4041 }
4042
4043 void
4044 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4045 const struct i915_ggtt_view *view)
4046 {
4047 if (WARN_ON(obj->pin_display == 0))
4048 return;
4049
4050 i915_gem_object_ggtt_unpin_view(obj, view);
4051
4052 obj->pin_display--;
4053 }
4054
4055 /**
4056 * Moves a single object to the CPU read, and possibly write domain.
4057 *
4058 * This function returns when the move is complete, including waiting on
4059 * flushes to occur.
4060 */
4061 int
4062 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4063 {
4064 uint32_t old_write_domain, old_read_domains;
4065 int ret;
4066
4067 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4068 return 0;
4069
4070 ret = i915_gem_object_wait_rendering(obj, !write);
4071 if (ret)
4072 return ret;
4073
4074 i915_gem_object_flush_gtt_write_domain(obj);
4075
4076 old_write_domain = obj->base.write_domain;
4077 old_read_domains = obj->base.read_domains;
4078
4079 /* Flush the CPU cache if it's still invalid. */
4080 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4081 i915_gem_clflush_object(obj, false);
4082
4083 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4084 }
4085
4086 /* It should now be out of any other write domains, and we can update
4087 * the domain values for our changes.
4088 */
4089 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4090
4091 /* If we're writing through the CPU, then the GPU read domains will
4092 * need to be invalidated at next use.
4093 */
4094 if (write) {
4095 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4096 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4097 }
4098
4099 trace_i915_gem_object_change_domain(obj,
4100 old_read_domains,
4101 old_write_domain);
4102
4103 return 0;
4104 }
4105
4106 /* Throttle our rendering by waiting until the ring has completed our requests
4107 * emitted over 20 msec ago.
4108 *
4109 * Note that if we were to use the current jiffies each time around the loop,
4110 * we wouldn't escape the function with any frames outstanding if the time to
4111 * render a frame was over 20ms.
4112 *
4113 * This should get us reasonable parallelism between CPU and GPU but also
4114 * relatively low latency when blocking on a particular request to finish.
4115 */
4116 static int
4117 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4118 {
4119 struct drm_i915_private *dev_priv = dev->dev_private;
4120 struct drm_i915_file_private *file_priv = file->driver_priv;
4121 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4122 struct drm_i915_gem_request *request, *target = NULL;
4123 unsigned reset_counter;
4124 int ret;
4125
4126 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4127 if (ret)
4128 return ret;
4129
4130 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4131 if (ret)
4132 return ret;
4133
4134 spin_lock(&file_priv->mm.lock);
4135 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4136 if (time_after_eq(request->emitted_jiffies, recent_enough))
4137 break;
4138
4139 /*
4140 * Note that the request might not have been submitted yet.
4141 * In which case emitted_jiffies will be zero.
4142 */
4143 if (!request->emitted_jiffies)
4144 continue;
4145
4146 target = request;
4147 }
4148 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4149 if (target)
4150 i915_gem_request_reference(target);
4151 spin_unlock(&file_priv->mm.lock);
4152
4153 if (target == NULL)
4154 return 0;
4155
4156 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4157 if (ret == 0)
4158 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4159
4160 i915_gem_request_unreference__unlocked(target);
4161
4162 return ret;
4163 }
4164
4165 static bool
4166 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4167 {
4168 struct drm_i915_gem_object *obj = vma->obj;
4169
4170 if (alignment &&
4171 vma->node.start & (alignment - 1))
4172 return true;
4173
4174 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4175 return true;
4176
4177 if (flags & PIN_OFFSET_BIAS &&
4178 vma->node.start < (flags & PIN_OFFSET_MASK))
4179 return true;
4180
4181 if (flags & PIN_OFFSET_FIXED &&
4182 vma->node.start != (flags & PIN_OFFSET_MASK))
4183 return true;
4184
4185 return false;
4186 }
4187
4188 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4189 {
4190 struct drm_i915_gem_object *obj = vma->obj;
4191 bool mappable, fenceable;
4192 u32 fence_size, fence_alignment;
4193
4194 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4195 obj->base.size,
4196 obj->tiling_mode);
4197 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4198 obj->base.size,
4199 obj->tiling_mode,
4200 true);
4201
4202 fenceable = (vma->node.size == fence_size &&
4203 (vma->node.start & (fence_alignment - 1)) == 0);
4204
4205 mappable = (vma->node.start + fence_size <=
4206 to_i915(obj->base.dev)->ggtt.mappable_end);
4207
4208 obj->map_and_fenceable = mappable && fenceable;
4209 }
4210
4211 static int
4212 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4213 struct i915_address_space *vm,
4214 const struct i915_ggtt_view *ggtt_view,
4215 uint32_t alignment,
4216 uint64_t flags)
4217 {
4218 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4219 struct i915_vma *vma;
4220 unsigned bound;
4221 int ret;
4222
4223 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4224 return -ENODEV;
4225
4226 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4227 return -EINVAL;
4228
4229 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4230 return -EINVAL;
4231
4232 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4233 return -EINVAL;
4234
4235 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4236 i915_gem_obj_to_vma(obj, vm);
4237
4238 if (vma) {
4239 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4240 return -EBUSY;
4241
4242 if (i915_vma_misplaced(vma, alignment, flags)) {
4243 WARN(vma->pin_count,
4244 "bo is already pinned in %s with incorrect alignment:"
4245 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4246 " obj->map_and_fenceable=%d\n",
4247 ggtt_view ? "ggtt" : "ppgtt",
4248 upper_32_bits(vma->node.start),
4249 lower_32_bits(vma->node.start),
4250 alignment,
4251 !!(flags & PIN_MAPPABLE),
4252 obj->map_and_fenceable);
4253 ret = i915_vma_unbind(vma);
4254 if (ret)
4255 return ret;
4256
4257 vma = NULL;
4258 }
4259 }
4260
4261 bound = vma ? vma->bound : 0;
4262 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4263 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4264 flags);
4265 if (IS_ERR(vma))
4266 return PTR_ERR(vma);
4267 } else {
4268 ret = i915_vma_bind(vma, obj->cache_level, flags);
4269 if (ret)
4270 return ret;
4271 }
4272
4273 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4274 (bound ^ vma->bound) & GLOBAL_BIND) {
4275 __i915_vma_set_map_and_fenceable(vma);
4276 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4277 }
4278
4279 vma->pin_count++;
4280 return 0;
4281 }
4282
4283 int
4284 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4285 struct i915_address_space *vm,
4286 uint32_t alignment,
4287 uint64_t flags)
4288 {
4289 return i915_gem_object_do_pin(obj, vm,
4290 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4291 alignment, flags);
4292 }
4293
4294 int
4295 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4296 const struct i915_ggtt_view *view,
4297 uint32_t alignment,
4298 uint64_t flags)
4299 {
4300 BUG_ON(!view);
4301
4302 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4303 alignment, flags | PIN_GLOBAL);
4304 }
4305
4306 void
4307 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4308 const struct i915_ggtt_view *view)
4309 {
4310 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4311
4312 BUG_ON(!vma);
4313 WARN_ON(vma->pin_count == 0);
4314 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4315
4316 --vma->pin_count;
4317 }
4318
4319 int
4320 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4321 struct drm_file *file)
4322 {
4323 struct drm_i915_gem_busy *args = data;
4324 struct drm_i915_gem_object *obj;
4325 int ret;
4326
4327 ret = i915_mutex_lock_interruptible(dev);
4328 if (ret)
4329 return ret;
4330
4331 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4332 if (&obj->base == NULL) {
4333 ret = -ENOENT;
4334 goto unlock;
4335 }
4336
4337 /* Count all active objects as busy, even if they are currently not used
4338 * by the gpu. Users of this interface expect objects to eventually
4339 * become non-busy without any further actions, therefore emit any
4340 * necessary flushes here.
4341 */
4342 ret = i915_gem_object_flush_active(obj);
4343 if (ret)
4344 goto unref;
4345
4346 args->busy = 0;
4347 if (obj->active) {
4348 int i;
4349
4350 for (i = 0; i < I915_NUM_ENGINES; i++) {
4351 struct drm_i915_gem_request *req;
4352
4353 req = obj->last_read_req[i];
4354 if (req)
4355 args->busy |= 1 << (16 + req->engine->exec_id);
4356 }
4357 if (obj->last_write_req)
4358 args->busy |= obj->last_write_req->engine->exec_id;
4359 }
4360
4361 unref:
4362 drm_gem_object_unreference(&obj->base);
4363 unlock:
4364 mutex_unlock(&dev->struct_mutex);
4365 return ret;
4366 }
4367
4368 int
4369 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4370 struct drm_file *file_priv)
4371 {
4372 return i915_gem_ring_throttle(dev, file_priv);
4373 }
4374
4375 int
4376 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4377 struct drm_file *file_priv)
4378 {
4379 struct drm_i915_private *dev_priv = dev->dev_private;
4380 struct drm_i915_gem_madvise *args = data;
4381 struct drm_i915_gem_object *obj;
4382 int ret;
4383
4384 switch (args->madv) {
4385 case I915_MADV_DONTNEED:
4386 case I915_MADV_WILLNEED:
4387 break;
4388 default:
4389 return -EINVAL;
4390 }
4391
4392 ret = i915_mutex_lock_interruptible(dev);
4393 if (ret)
4394 return ret;
4395
4396 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4397 if (&obj->base == NULL) {
4398 ret = -ENOENT;
4399 goto unlock;
4400 }
4401
4402 if (i915_gem_obj_is_pinned(obj)) {
4403 ret = -EINVAL;
4404 goto out;
4405 }
4406
4407 if (obj->pages &&
4408 obj->tiling_mode != I915_TILING_NONE &&
4409 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4410 if (obj->madv == I915_MADV_WILLNEED)
4411 i915_gem_object_unpin_pages(obj);
4412 if (args->madv == I915_MADV_WILLNEED)
4413 i915_gem_object_pin_pages(obj);
4414 }
4415
4416 if (obj->madv != __I915_MADV_PURGED)
4417 obj->madv = args->madv;
4418
4419 /* if the object is no longer attached, discard its backing storage */
4420 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4421 i915_gem_object_truncate(obj);
4422
4423 args->retained = obj->madv != __I915_MADV_PURGED;
4424
4425 out:
4426 drm_gem_object_unreference(&obj->base);
4427 unlock:
4428 mutex_unlock(&dev->struct_mutex);
4429 return ret;
4430 }
4431
4432 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4433 const struct drm_i915_gem_object_ops *ops)
4434 {
4435 int i;
4436
4437 INIT_LIST_HEAD(&obj->global_list);
4438 for (i = 0; i < I915_NUM_ENGINES; i++)
4439 INIT_LIST_HEAD(&obj->engine_list[i]);
4440 INIT_LIST_HEAD(&obj->obj_exec_link);
4441 INIT_LIST_HEAD(&obj->vma_list);
4442 INIT_LIST_HEAD(&obj->batch_pool_link);
4443
4444 obj->ops = ops;
4445
4446 obj->fence_reg = I915_FENCE_REG_NONE;
4447 obj->madv = I915_MADV_WILLNEED;
4448
4449 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4450 }
4451
4452 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4453 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4454 .get_pages = i915_gem_object_get_pages_gtt,
4455 .put_pages = i915_gem_object_put_pages_gtt,
4456 };
4457
4458 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4459 size_t size)
4460 {
4461 struct drm_i915_gem_object *obj;
4462 struct address_space *mapping;
4463 gfp_t mask;
4464
4465 obj = i915_gem_object_alloc(dev);
4466 if (obj == NULL)
4467 return NULL;
4468
4469 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4470 i915_gem_object_free(obj);
4471 return NULL;
4472 }
4473
4474 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4475 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4476 /* 965gm cannot relocate objects above 4GiB. */
4477 mask &= ~__GFP_HIGHMEM;
4478 mask |= __GFP_DMA32;
4479 }
4480
4481 mapping = file_inode(obj->base.filp)->i_mapping;
4482 mapping_set_gfp_mask(mapping, mask);
4483
4484 i915_gem_object_init(obj, &i915_gem_object_ops);
4485
4486 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4487 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4488
4489 if (HAS_LLC(dev)) {
4490 /* On some devices, we can have the GPU use the LLC (the CPU
4491 * cache) for about a 10% performance improvement
4492 * compared to uncached. Graphics requests other than
4493 * display scanout are coherent with the CPU in
4494 * accessing this cache. This means in this mode we
4495 * don't need to clflush on the CPU side, and on the
4496 * GPU side we only need to flush internal caches to
4497 * get data visible to the CPU.
4498 *
4499 * However, we maintain the display planes as UC, and so
4500 * need to rebind when first used as such.
4501 */
4502 obj->cache_level = I915_CACHE_LLC;
4503 } else
4504 obj->cache_level = I915_CACHE_NONE;
4505
4506 trace_i915_gem_object_create(obj);
4507
4508 return obj;
4509 }
4510
4511 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4512 {
4513 /* If we are the last user of the backing storage (be it shmemfs
4514 * pages or stolen etc), we know that the pages are going to be
4515 * immediately released. In this case, we can then skip copying
4516 * back the contents from the GPU.
4517 */
4518
4519 if (obj->madv != I915_MADV_WILLNEED)
4520 return false;
4521
4522 if (obj->base.filp == NULL)
4523 return true;
4524
4525 /* At first glance, this looks racy, but then again so would be
4526 * userspace racing mmap against close. However, the first external
4527 * reference to the filp can only be obtained through the
4528 * i915_gem_mmap_ioctl() which safeguards us against the user
4529 * acquiring such a reference whilst we are in the middle of
4530 * freeing the object.
4531 */
4532 return atomic_long_read(&obj->base.filp->f_count) == 1;
4533 }
4534
4535 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4536 {
4537 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4538 struct drm_device *dev = obj->base.dev;
4539 struct drm_i915_private *dev_priv = dev->dev_private;
4540 struct i915_vma *vma, *next;
4541
4542 intel_runtime_pm_get(dev_priv);
4543
4544 trace_i915_gem_object_destroy(obj);
4545
4546 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4547 int ret;
4548
4549 vma->pin_count = 0;
4550 ret = i915_vma_unbind(vma);
4551 if (WARN_ON(ret == -ERESTARTSYS)) {
4552 bool was_interruptible;
4553
4554 was_interruptible = dev_priv->mm.interruptible;
4555 dev_priv->mm.interruptible = false;
4556
4557 WARN_ON(i915_vma_unbind(vma));
4558
4559 dev_priv->mm.interruptible = was_interruptible;
4560 }
4561 }
4562
4563 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4564 * before progressing. */
4565 if (obj->stolen)
4566 i915_gem_object_unpin_pages(obj);
4567
4568 WARN_ON(obj->frontbuffer_bits);
4569
4570 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4571 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4572 obj->tiling_mode != I915_TILING_NONE)
4573 i915_gem_object_unpin_pages(obj);
4574
4575 if (WARN_ON(obj->pages_pin_count))
4576 obj->pages_pin_count = 0;
4577 if (discard_backing_storage(obj))
4578 obj->madv = I915_MADV_DONTNEED;
4579 i915_gem_object_put_pages(obj);
4580 i915_gem_object_free_mmap_offset(obj);
4581
4582 BUG_ON(obj->pages);
4583
4584 if (obj->base.import_attach)
4585 drm_prime_gem_destroy(&obj->base, NULL);
4586
4587 if (obj->ops->release)
4588 obj->ops->release(obj);
4589
4590 drm_gem_object_release(&obj->base);
4591 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4592
4593 kfree(obj->bit_17);
4594 i915_gem_object_free(obj);
4595
4596 intel_runtime_pm_put(dev_priv);
4597 }
4598
4599 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4600 struct i915_address_space *vm)
4601 {
4602 struct i915_vma *vma;
4603 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4604 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4605 vma->vm == vm)
4606 return vma;
4607 }
4608 return NULL;
4609 }
4610
4611 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4612 const struct i915_ggtt_view *view)
4613 {
4614 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4615 struct i915_vma *vma;
4616
4617 BUG_ON(!view);
4618
4619 list_for_each_entry(vma, &obj->vma_list, obj_link)
4620 if (vma->vm == ggtt &&
4621 i915_ggtt_view_equal(&vma->ggtt_view, view))
4622 return vma;
4623 return NULL;
4624 }
4625
4626 void i915_gem_vma_destroy(struct i915_vma *vma)
4627 {
4628 WARN_ON(vma->node.allocated);
4629
4630 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4631 if (!list_empty(&vma->exec_list))
4632 return;
4633
4634 if (!vma->is_ggtt)
4635 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4636
4637 list_del(&vma->obj_link);
4638
4639 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4640 }
4641
4642 static void
4643 i915_gem_stop_engines(struct drm_device *dev)
4644 {
4645 struct drm_i915_private *dev_priv = dev->dev_private;
4646 struct intel_engine_cs *engine;
4647
4648 for_each_engine(engine, dev_priv)
4649 dev_priv->gt.stop_engine(engine);
4650 }
4651
4652 int
4653 i915_gem_suspend(struct drm_device *dev)
4654 {
4655 struct drm_i915_private *dev_priv = dev->dev_private;
4656 int ret = 0;
4657
4658 mutex_lock(&dev->struct_mutex);
4659 ret = i915_gpu_idle(dev);
4660 if (ret)
4661 goto err;
4662
4663 i915_gem_retire_requests(dev);
4664
4665 i915_gem_stop_engines(dev);
4666 mutex_unlock(&dev->struct_mutex);
4667
4668 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4669 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4670 flush_delayed_work(&dev_priv->mm.idle_work);
4671
4672 /* Assert that we sucessfully flushed all the work and
4673 * reset the GPU back to its idle, low power state.
4674 */
4675 WARN_ON(dev_priv->mm.busy);
4676
4677 return 0;
4678
4679 err:
4680 mutex_unlock(&dev->struct_mutex);
4681 return ret;
4682 }
4683
4684 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4685 {
4686 struct intel_engine_cs *engine = req->engine;
4687 struct drm_device *dev = engine->dev;
4688 struct drm_i915_private *dev_priv = dev->dev_private;
4689 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4690 int i, ret;
4691
4692 if (!HAS_L3_DPF(dev) || !remap_info)
4693 return 0;
4694
4695 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4696 if (ret)
4697 return ret;
4698
4699 /*
4700 * Note: We do not worry about the concurrent register cacheline hang
4701 * here because no other code should access these registers other than
4702 * at initialization time.
4703 */
4704 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4705 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4706 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4707 intel_ring_emit(engine, remap_info[i]);
4708 }
4709
4710 intel_ring_advance(engine);
4711
4712 return ret;
4713 }
4714
4715 void i915_gem_init_swizzling(struct drm_device *dev)
4716 {
4717 struct drm_i915_private *dev_priv = dev->dev_private;
4718
4719 if (INTEL_INFO(dev)->gen < 5 ||
4720 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4721 return;
4722
4723 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4724 DISP_TILE_SURFACE_SWIZZLING);
4725
4726 if (IS_GEN5(dev))
4727 return;
4728
4729 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4730 if (IS_GEN6(dev))
4731 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4732 else if (IS_GEN7(dev))
4733 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4734 else if (IS_GEN8(dev))
4735 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4736 else
4737 BUG();
4738 }
4739
4740 static void init_unused_ring(struct drm_device *dev, u32 base)
4741 {
4742 struct drm_i915_private *dev_priv = dev->dev_private;
4743
4744 I915_WRITE(RING_CTL(base), 0);
4745 I915_WRITE(RING_HEAD(base), 0);
4746 I915_WRITE(RING_TAIL(base), 0);
4747 I915_WRITE(RING_START(base), 0);
4748 }
4749
4750 static void init_unused_rings(struct drm_device *dev)
4751 {
4752 if (IS_I830(dev)) {
4753 init_unused_ring(dev, PRB1_BASE);
4754 init_unused_ring(dev, SRB0_BASE);
4755 init_unused_ring(dev, SRB1_BASE);
4756 init_unused_ring(dev, SRB2_BASE);
4757 init_unused_ring(dev, SRB3_BASE);
4758 } else if (IS_GEN2(dev)) {
4759 init_unused_ring(dev, SRB0_BASE);
4760 init_unused_ring(dev, SRB1_BASE);
4761 } else if (IS_GEN3(dev)) {
4762 init_unused_ring(dev, PRB1_BASE);
4763 init_unused_ring(dev, PRB2_BASE);
4764 }
4765 }
4766
4767 int i915_gem_init_engines(struct drm_device *dev)
4768 {
4769 struct drm_i915_private *dev_priv = dev->dev_private;
4770 int ret;
4771
4772 ret = intel_init_render_ring_buffer(dev);
4773 if (ret)
4774 return ret;
4775
4776 if (HAS_BSD(dev)) {
4777 ret = intel_init_bsd_ring_buffer(dev);
4778 if (ret)
4779 goto cleanup_render_ring;
4780 }
4781
4782 if (HAS_BLT(dev)) {
4783 ret = intel_init_blt_ring_buffer(dev);
4784 if (ret)
4785 goto cleanup_bsd_ring;
4786 }
4787
4788 if (HAS_VEBOX(dev)) {
4789 ret = intel_init_vebox_ring_buffer(dev);
4790 if (ret)
4791 goto cleanup_blt_ring;
4792 }
4793
4794 if (HAS_BSD2(dev)) {
4795 ret = intel_init_bsd2_ring_buffer(dev);
4796 if (ret)
4797 goto cleanup_vebox_ring;
4798 }
4799
4800 return 0;
4801
4802 cleanup_vebox_ring:
4803 intel_cleanup_engine(&dev_priv->engine[VECS]);
4804 cleanup_blt_ring:
4805 intel_cleanup_engine(&dev_priv->engine[BCS]);
4806 cleanup_bsd_ring:
4807 intel_cleanup_engine(&dev_priv->engine[VCS]);
4808 cleanup_render_ring:
4809 intel_cleanup_engine(&dev_priv->engine[RCS]);
4810
4811 return ret;
4812 }
4813
4814 int
4815 i915_gem_init_hw(struct drm_device *dev)
4816 {
4817 struct drm_i915_private *dev_priv = dev->dev_private;
4818 struct intel_engine_cs *engine;
4819 int ret, j;
4820
4821 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4822 return -EIO;
4823
4824 /* Double layer security blanket, see i915_gem_init() */
4825 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4826
4827 if (dev_priv->ellc_size)
4828 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4829
4830 if (IS_HASWELL(dev))
4831 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4832 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4833
4834 if (HAS_PCH_NOP(dev)) {
4835 if (IS_IVYBRIDGE(dev)) {
4836 u32 temp = I915_READ(GEN7_MSG_CTL);
4837 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4838 I915_WRITE(GEN7_MSG_CTL, temp);
4839 } else if (INTEL_INFO(dev)->gen >= 7) {
4840 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4841 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4842 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4843 }
4844 }
4845
4846 i915_gem_init_swizzling(dev);
4847
4848 /*
4849 * At least 830 can leave some of the unused rings
4850 * "active" (ie. head != tail) after resume which
4851 * will prevent c3 entry. Makes sure all unused rings
4852 * are totally idle.
4853 */
4854 init_unused_rings(dev);
4855
4856 BUG_ON(!dev_priv->kernel_context);
4857
4858 ret = i915_ppgtt_init_hw(dev);
4859 if (ret) {
4860 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4861 goto out;
4862 }
4863
4864 /* Need to do basic initialisation of all rings first: */
4865 for_each_engine(engine, dev_priv) {
4866 ret = engine->init_hw(engine);
4867 if (ret)
4868 goto out;
4869 }
4870
4871 /* We can't enable contexts until all firmware is loaded */
4872 if (HAS_GUC_UCODE(dev)) {
4873 ret = intel_guc_ucode_load(dev);
4874 if (ret) {
4875 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4876 ret = -EIO;
4877 goto out;
4878 }
4879 }
4880
4881 /*
4882 * Increment the next seqno by 0x100 so we have a visible break
4883 * on re-initialisation
4884 */
4885 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4886 if (ret)
4887 goto out;
4888
4889 /* Now it is safe to go back round and do everything else: */
4890 for_each_engine(engine, dev_priv) {
4891 struct drm_i915_gem_request *req;
4892
4893 req = i915_gem_request_alloc(engine, NULL);
4894 if (IS_ERR(req)) {
4895 ret = PTR_ERR(req);
4896 i915_gem_cleanup_engines(dev);
4897 goto out;
4898 }
4899
4900 if (engine->id == RCS) {
4901 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4902 i915_gem_l3_remap(req, j);
4903 }
4904
4905 ret = i915_ppgtt_init_ring(req);
4906 if (ret && ret != -EIO) {
4907 DRM_ERROR("PPGTT enable %s failed %d\n",
4908 engine->name, ret);
4909 i915_gem_request_cancel(req);
4910 i915_gem_cleanup_engines(dev);
4911 goto out;
4912 }
4913
4914 ret = i915_gem_context_enable(req);
4915 if (ret && ret != -EIO) {
4916 DRM_ERROR("Context enable %s failed %d\n",
4917 engine->name, ret);
4918 i915_gem_request_cancel(req);
4919 i915_gem_cleanup_engines(dev);
4920 goto out;
4921 }
4922
4923 i915_add_request_no_flush(req);
4924 }
4925
4926 out:
4927 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4928 return ret;
4929 }
4930
4931 int i915_gem_init(struct drm_device *dev)
4932 {
4933 struct drm_i915_private *dev_priv = dev->dev_private;
4934 int ret;
4935
4936 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4937 i915.enable_execlists);
4938
4939 mutex_lock(&dev->struct_mutex);
4940
4941 if (!i915.enable_execlists) {
4942 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4943 dev_priv->gt.init_engines = i915_gem_init_engines;
4944 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4945 dev_priv->gt.stop_engine = intel_stop_engine;
4946 } else {
4947 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4948 dev_priv->gt.init_engines = intel_logical_rings_init;
4949 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4950 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4951 }
4952
4953 /* This is just a security blanket to placate dragons.
4954 * On some systems, we very sporadically observe that the first TLBs
4955 * used by the CS may be stale, despite us poking the TLB reset. If
4956 * we hold the forcewake during initialisation these problems
4957 * just magically go away.
4958 */
4959 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4960
4961 ret = i915_gem_init_userptr(dev);
4962 if (ret)
4963 goto out_unlock;
4964
4965 i915_gem_init_ggtt(dev);
4966
4967 ret = i915_gem_context_init(dev);
4968 if (ret)
4969 goto out_unlock;
4970
4971 ret = dev_priv->gt.init_engines(dev);
4972 if (ret)
4973 goto out_unlock;
4974
4975 ret = i915_gem_init_hw(dev);
4976 if (ret == -EIO) {
4977 /* Allow ring initialisation to fail by marking the GPU as
4978 * wedged. But we only want to do this where the GPU is angry,
4979 * for all other failure, such as an allocation failure, bail.
4980 */
4981 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4982 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4983 ret = 0;
4984 }
4985
4986 out_unlock:
4987 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4988 mutex_unlock(&dev->struct_mutex);
4989
4990 return ret;
4991 }
4992
4993 void
4994 i915_gem_cleanup_engines(struct drm_device *dev)
4995 {
4996 struct drm_i915_private *dev_priv = dev->dev_private;
4997 struct intel_engine_cs *engine;
4998
4999 for_each_engine(engine, dev_priv)
5000 dev_priv->gt.cleanup_engine(engine);
5001
5002 if (i915.enable_execlists)
5003 /*
5004 * Neither the BIOS, ourselves or any other kernel
5005 * expects the system to be in execlists mode on startup,
5006 * so we need to reset the GPU back to legacy mode.
5007 */
5008 intel_gpu_reset(dev, ALL_ENGINES);
5009 }
5010
5011 static void
5012 init_engine_lists(struct intel_engine_cs *engine)
5013 {
5014 INIT_LIST_HEAD(&engine->active_list);
5015 INIT_LIST_HEAD(&engine->request_list);
5016 }
5017
5018 void
5019 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5020 {
5021 struct drm_device *dev = dev_priv->dev;
5022
5023 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5024 !IS_CHERRYVIEW(dev_priv))
5025 dev_priv->num_fence_regs = 32;
5026 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5027 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5028 dev_priv->num_fence_regs = 16;
5029 else
5030 dev_priv->num_fence_regs = 8;
5031
5032 if (intel_vgpu_active(dev))
5033 dev_priv->num_fence_regs =
5034 I915_READ(vgtif_reg(avail_rs.fence_num));
5035
5036 /* Initialize fence registers to zero */
5037 i915_gem_restore_fences(dev);
5038
5039 i915_gem_detect_bit_6_swizzle(dev);
5040 }
5041
5042 void
5043 i915_gem_load_init(struct drm_device *dev)
5044 {
5045 struct drm_i915_private *dev_priv = dev->dev_private;
5046 int i;
5047
5048 dev_priv->objects =
5049 kmem_cache_create("i915_gem_object",
5050 sizeof(struct drm_i915_gem_object), 0,
5051 SLAB_HWCACHE_ALIGN,
5052 NULL);
5053 dev_priv->vmas =
5054 kmem_cache_create("i915_gem_vma",
5055 sizeof(struct i915_vma), 0,
5056 SLAB_HWCACHE_ALIGN,
5057 NULL);
5058 dev_priv->requests =
5059 kmem_cache_create("i915_gem_request",
5060 sizeof(struct drm_i915_gem_request), 0,
5061 SLAB_HWCACHE_ALIGN,
5062 NULL);
5063
5064 INIT_LIST_HEAD(&dev_priv->vm_list);
5065 INIT_LIST_HEAD(&dev_priv->context_list);
5066 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5067 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5068 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5069 for (i = 0; i < I915_NUM_ENGINES; i++)
5070 init_engine_lists(&dev_priv->engine[i]);
5071 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5072 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5073 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5074 i915_gem_retire_work_handler);
5075 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5076 i915_gem_idle_work_handler);
5077 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5078
5079 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5080
5081 /*
5082 * Set initial sequence number for requests.
5083 * Using this number allows the wraparound to happen early,
5084 * catching any obvious problems.
5085 */
5086 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5087 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5088
5089 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5090
5091 init_waitqueue_head(&dev_priv->pending_flip_queue);
5092
5093 dev_priv->mm.interruptible = true;
5094
5095 mutex_init(&dev_priv->fb_tracking.lock);
5096 }
5097
5098 void i915_gem_load_cleanup(struct drm_device *dev)
5099 {
5100 struct drm_i915_private *dev_priv = to_i915(dev);
5101
5102 kmem_cache_destroy(dev_priv->requests);
5103 kmem_cache_destroy(dev_priv->vmas);
5104 kmem_cache_destroy(dev_priv->objects);
5105 }
5106
5107 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5108 {
5109 struct drm_i915_file_private *file_priv = file->driver_priv;
5110
5111 /* Clean up our request list when the client is going away, so that
5112 * later retire_requests won't dereference our soon-to-be-gone
5113 * file_priv.
5114 */
5115 spin_lock(&file_priv->mm.lock);
5116 while (!list_empty(&file_priv->mm.request_list)) {
5117 struct drm_i915_gem_request *request;
5118
5119 request = list_first_entry(&file_priv->mm.request_list,
5120 struct drm_i915_gem_request,
5121 client_list);
5122 list_del(&request->client_list);
5123 request->file_priv = NULL;
5124 }
5125 spin_unlock(&file_priv->mm.lock);
5126
5127 if (!list_empty(&file_priv->rps.link)) {
5128 spin_lock(&to_i915(dev)->rps.client_lock);
5129 list_del(&file_priv->rps.link);
5130 spin_unlock(&to_i915(dev)->rps.client_lock);
5131 }
5132 }
5133
5134 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5135 {
5136 struct drm_i915_file_private *file_priv;
5137 int ret;
5138
5139 DRM_DEBUG_DRIVER("\n");
5140
5141 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5142 if (!file_priv)
5143 return -ENOMEM;
5144
5145 file->driver_priv = file_priv;
5146 file_priv->dev_priv = dev->dev_private;
5147 file_priv->file = file;
5148 INIT_LIST_HEAD(&file_priv->rps.link);
5149
5150 spin_lock_init(&file_priv->mm.lock);
5151 INIT_LIST_HEAD(&file_priv->mm.request_list);
5152
5153 file_priv->bsd_ring = -1;
5154
5155 ret = i915_gem_context_open(dev, file);
5156 if (ret)
5157 kfree(file_priv);
5158
5159 return ret;
5160 }
5161
5162 /**
5163 * i915_gem_track_fb - update frontbuffer tracking
5164 * @old: current GEM buffer for the frontbuffer slots
5165 * @new: new GEM buffer for the frontbuffer slots
5166 * @frontbuffer_bits: bitmask of frontbuffer slots
5167 *
5168 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5169 * from @old and setting them in @new. Both @old and @new can be NULL.
5170 */
5171 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5172 struct drm_i915_gem_object *new,
5173 unsigned frontbuffer_bits)
5174 {
5175 if (old) {
5176 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5177 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5178 old->frontbuffer_bits &= ~frontbuffer_bits;
5179 }
5180
5181 if (new) {
5182 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5183 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5184 new->frontbuffer_bits |= frontbuffer_bits;
5185 }
5186 }
5187
5188 /* All the new VM stuff */
5189 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5190 struct i915_address_space *vm)
5191 {
5192 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5193 struct i915_vma *vma;
5194
5195 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5196
5197 list_for_each_entry(vma, &o->vma_list, obj_link) {
5198 if (vma->is_ggtt &&
5199 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5200 continue;
5201 if (vma->vm == vm)
5202 return vma->node.start;
5203 }
5204
5205 WARN(1, "%s vma for this object not found.\n",
5206 i915_is_ggtt(vm) ? "global" : "ppgtt");
5207 return -1;
5208 }
5209
5210 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5211 const struct i915_ggtt_view *view)
5212 {
5213 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5214 struct i915_vma *vma;
5215
5216 list_for_each_entry(vma, &o->vma_list, obj_link)
5217 if (vma->vm == ggtt &&
5218 i915_ggtt_view_equal(&vma->ggtt_view, view))
5219 return vma->node.start;
5220
5221 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5222 return -1;
5223 }
5224
5225 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5226 struct i915_address_space *vm)
5227 {
5228 struct i915_vma *vma;
5229
5230 list_for_each_entry(vma, &o->vma_list, obj_link) {
5231 if (vma->is_ggtt &&
5232 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5233 continue;
5234 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5235 return true;
5236 }
5237
5238 return false;
5239 }
5240
5241 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5242 const struct i915_ggtt_view *view)
5243 {
5244 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5245 struct i915_vma *vma;
5246
5247 list_for_each_entry(vma, &o->vma_list, obj_link)
5248 if (vma->vm == ggtt &&
5249 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5250 drm_mm_node_allocated(&vma->node))
5251 return true;
5252
5253 return false;
5254 }
5255
5256 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5257 {
5258 struct i915_vma *vma;
5259
5260 list_for_each_entry(vma, &o->vma_list, obj_link)
5261 if (drm_mm_node_allocated(&vma->node))
5262 return true;
5263
5264 return false;
5265 }
5266
5267 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5268 struct i915_address_space *vm)
5269 {
5270 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5271 struct i915_vma *vma;
5272
5273 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5274
5275 BUG_ON(list_empty(&o->vma_list));
5276
5277 list_for_each_entry(vma, &o->vma_list, obj_link) {
5278 if (vma->is_ggtt &&
5279 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5280 continue;
5281 if (vma->vm == vm)
5282 return vma->node.size;
5283 }
5284 return 0;
5285 }
5286
5287 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5288 {
5289 struct i915_vma *vma;
5290 list_for_each_entry(vma, &obj->vma_list, obj_link)
5291 if (vma->pin_count > 0)
5292 return true;
5293
5294 return false;
5295 }
5296
5297 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5298 struct page *
5299 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5300 {
5301 struct page *page;
5302
5303 /* Only default objects have per-page dirty tracking */
5304 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5305 return NULL;
5306
5307 page = i915_gem_object_get_page(obj, n);
5308 set_page_dirty(page);
5309 return page;
5310 }
5311
5312 /* Allocate a new GEM object and fill it with the supplied data */
5313 struct drm_i915_gem_object *
5314 i915_gem_object_create_from_data(struct drm_device *dev,
5315 const void *data, size_t size)
5316 {
5317 struct drm_i915_gem_object *obj;
5318 struct sg_table *sg;
5319 size_t bytes;
5320 int ret;
5321
5322 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5323 if (IS_ERR_OR_NULL(obj))
5324 return obj;
5325
5326 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5327 if (ret)
5328 goto fail;
5329
5330 ret = i915_gem_object_get_pages(obj);
5331 if (ret)
5332 goto fail;
5333
5334 i915_gem_object_pin_pages(obj);
5335 sg = obj->pages;
5336 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5337 obj->dirty = 1; /* Backing store is now out of date */
5338 i915_gem_object_unpin_pages(obj);
5339
5340 if (WARN_ON(bytes != size)) {
5341 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5342 ret = -EFAULT;
5343 goto fail;
5344 }
5345
5346 return obj;
5347
5348 fail:
5349 drm_gem_object_unreference(&obj->base);
5350 return ERR_PTR(ret);
5351 }
This page took 0.229424 seconds and 5 git commands to generate.