drm/i915: allow lazy emitting of requests
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
43 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
44 int write);
45 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
46 uint64_t offset,
47 uint64_t size);
48 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
49 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
50 bool interruptible);
51 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
52 unsigned alignment);
53 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
57 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
58
59 static LIST_HEAD(shrink_list);
60 static DEFINE_SPINLOCK(shrink_list_lock);
61
62 static inline bool
63 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
64 {
65 return obj_priv->gtt_space &&
66 !obj_priv->active &&
67 obj_priv->pin_count == 0;
68 }
69
70 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
71 unsigned long end)
72 {
73 drm_i915_private_t *dev_priv = dev->dev_private;
74
75 if (start >= end ||
76 (start & (PAGE_SIZE - 1)) != 0 ||
77 (end & (PAGE_SIZE - 1)) != 0) {
78 return -EINVAL;
79 }
80
81 drm_mm_init(&dev_priv->mm.gtt_space, start,
82 end - start);
83
84 dev->gtt_total = (uint32_t) (end - start);
85
86 return 0;
87 }
88
89 int
90 i915_gem_init_ioctl(struct drm_device *dev, void *data,
91 struct drm_file *file_priv)
92 {
93 struct drm_i915_gem_init *args = data;
94 int ret;
95
96 mutex_lock(&dev->struct_mutex);
97 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
98 mutex_unlock(&dev->struct_mutex);
99
100 return ret;
101 }
102
103 int
104 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
105 struct drm_file *file_priv)
106 {
107 struct drm_i915_gem_get_aperture *args = data;
108
109 if (!(dev->driver->driver_features & DRIVER_GEM))
110 return -ENODEV;
111
112 args->aper_size = dev->gtt_total;
113 args->aper_available_size = (args->aper_size -
114 atomic_read(&dev->pin_memory));
115
116 return 0;
117 }
118
119
120 /**
121 * Creates a new mm object and returns a handle to it.
122 */
123 int
124 i915_gem_create_ioctl(struct drm_device *dev, void *data,
125 struct drm_file *file_priv)
126 {
127 struct drm_i915_gem_create *args = data;
128 struct drm_gem_object *obj;
129 int ret;
130 u32 handle;
131
132 args->size = roundup(args->size, PAGE_SIZE);
133
134 /* Allocate the new object */
135 obj = i915_gem_alloc_object(dev, args->size);
136 if (obj == NULL)
137 return -ENOMEM;
138
139 ret = drm_gem_handle_create(file_priv, obj, &handle);
140 if (ret) {
141 drm_gem_object_unreference_unlocked(obj);
142 return ret;
143 }
144
145 /* Sink the floating reference from kref_init(handlecount) */
146 drm_gem_object_handle_unreference_unlocked(obj);
147
148 args->handle = handle;
149 return 0;
150 }
151
152 static inline int
153 fast_shmem_read(struct page **pages,
154 loff_t page_base, int page_offset,
155 char __user *data,
156 int length)
157 {
158 char __iomem *vaddr;
159 int unwritten;
160
161 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
162 if (vaddr == NULL)
163 return -ENOMEM;
164 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
165 kunmap_atomic(vaddr, KM_USER0);
166
167 if (unwritten)
168 return -EFAULT;
169
170 return 0;
171 }
172
173 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
174 {
175 drm_i915_private_t *dev_priv = obj->dev->dev_private;
176 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
177
178 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
179 obj_priv->tiling_mode != I915_TILING_NONE;
180 }
181
182 static inline void
183 slow_shmem_copy(struct page *dst_page,
184 int dst_offset,
185 struct page *src_page,
186 int src_offset,
187 int length)
188 {
189 char *dst_vaddr, *src_vaddr;
190
191 dst_vaddr = kmap(dst_page);
192 src_vaddr = kmap(src_page);
193
194 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
195
196 kunmap(src_page);
197 kunmap(dst_page);
198 }
199
200 static inline void
201 slow_shmem_bit17_copy(struct page *gpu_page,
202 int gpu_offset,
203 struct page *cpu_page,
204 int cpu_offset,
205 int length,
206 int is_read)
207 {
208 char *gpu_vaddr, *cpu_vaddr;
209
210 /* Use the unswizzled path if this page isn't affected. */
211 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212 if (is_read)
213 return slow_shmem_copy(cpu_page, cpu_offset,
214 gpu_page, gpu_offset, length);
215 else
216 return slow_shmem_copy(gpu_page, gpu_offset,
217 cpu_page, cpu_offset, length);
218 }
219
220 gpu_vaddr = kmap(gpu_page);
221 cpu_vaddr = kmap(cpu_page);
222
223 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
224 * XORing with the other bits (A9 for Y, A9 and A10 for X)
225 */
226 while (length > 0) {
227 int cacheline_end = ALIGN(gpu_offset + 1, 64);
228 int this_length = min(cacheline_end - gpu_offset, length);
229 int swizzled_gpu_offset = gpu_offset ^ 64;
230
231 if (is_read) {
232 memcpy(cpu_vaddr + cpu_offset,
233 gpu_vaddr + swizzled_gpu_offset,
234 this_length);
235 } else {
236 memcpy(gpu_vaddr + swizzled_gpu_offset,
237 cpu_vaddr + cpu_offset,
238 this_length);
239 }
240 cpu_offset += this_length;
241 gpu_offset += this_length;
242 length -= this_length;
243 }
244
245 kunmap(cpu_page);
246 kunmap(gpu_page);
247 }
248
249 /**
250 * This is the fast shmem pread path, which attempts to copy_from_user directly
251 * from the backing pages of the object to the user's address space. On a
252 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
253 */
254 static int
255 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
256 struct drm_i915_gem_pread *args,
257 struct drm_file *file_priv)
258 {
259 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
260 ssize_t remain;
261 loff_t offset, page_base;
262 char __user *user_data;
263 int page_offset, page_length;
264 int ret;
265
266 user_data = (char __user *) (uintptr_t) args->data_ptr;
267 remain = args->size;
268
269 mutex_lock(&dev->struct_mutex);
270
271 ret = i915_gem_object_get_pages(obj, 0);
272 if (ret != 0)
273 goto fail_unlock;
274
275 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
276 args->size);
277 if (ret != 0)
278 goto fail_put_pages;
279
280 obj_priv = to_intel_bo(obj);
281 offset = args->offset;
282
283 while (remain > 0) {
284 /* Operation in this page
285 *
286 * page_base = page offset within aperture
287 * page_offset = offset within page
288 * page_length = bytes to copy for this page
289 */
290 page_base = (offset & ~(PAGE_SIZE-1));
291 page_offset = offset & (PAGE_SIZE-1);
292 page_length = remain;
293 if ((page_offset + remain) > PAGE_SIZE)
294 page_length = PAGE_SIZE - page_offset;
295
296 ret = fast_shmem_read(obj_priv->pages,
297 page_base, page_offset,
298 user_data, page_length);
299 if (ret)
300 goto fail_put_pages;
301
302 remain -= page_length;
303 user_data += page_length;
304 offset += page_length;
305 }
306
307 fail_put_pages:
308 i915_gem_object_put_pages(obj);
309 fail_unlock:
310 mutex_unlock(&dev->struct_mutex);
311
312 return ret;
313 }
314
315 static int
316 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
317 {
318 int ret;
319
320 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
321
322 /* If we've insufficient memory to map in the pages, attempt
323 * to make some space by throwing out some old buffers.
324 */
325 if (ret == -ENOMEM) {
326 struct drm_device *dev = obj->dev;
327
328 ret = i915_gem_evict_something(dev, obj->size,
329 i915_gem_get_gtt_alignment(obj));
330 if (ret)
331 return ret;
332
333 ret = i915_gem_object_get_pages(obj, 0);
334 }
335
336 return ret;
337 }
338
339 /**
340 * This is the fallback shmem pread path, which allocates temporary storage
341 * in kernel space to copy_to_user into outside of the struct_mutex, so we
342 * can copy out of the object's backing pages while holding the struct mutex
343 * and not take page faults.
344 */
345 static int
346 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
347 struct drm_i915_gem_pread *args,
348 struct drm_file *file_priv)
349 {
350 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
351 struct mm_struct *mm = current->mm;
352 struct page **user_pages;
353 ssize_t remain;
354 loff_t offset, pinned_pages, i;
355 loff_t first_data_page, last_data_page, num_pages;
356 int shmem_page_index, shmem_page_offset;
357 int data_page_index, data_page_offset;
358 int page_length;
359 int ret;
360 uint64_t data_ptr = args->data_ptr;
361 int do_bit17_swizzling;
362
363 remain = args->size;
364
365 /* Pin the user pages containing the data. We can't fault while
366 * holding the struct mutex, yet we want to hold it while
367 * dereferencing the user data.
368 */
369 first_data_page = data_ptr / PAGE_SIZE;
370 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
371 num_pages = last_data_page - first_data_page + 1;
372
373 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
374 if (user_pages == NULL)
375 return -ENOMEM;
376
377 down_read(&mm->mmap_sem);
378 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
379 num_pages, 1, 0, user_pages, NULL);
380 up_read(&mm->mmap_sem);
381 if (pinned_pages < num_pages) {
382 ret = -EFAULT;
383 goto fail_put_user_pages;
384 }
385
386 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
387
388 mutex_lock(&dev->struct_mutex);
389
390 ret = i915_gem_object_get_pages_or_evict(obj);
391 if (ret)
392 goto fail_unlock;
393
394 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
395 args->size);
396 if (ret != 0)
397 goto fail_put_pages;
398
399 obj_priv = to_intel_bo(obj);
400 offset = args->offset;
401
402 while (remain > 0) {
403 /* Operation in this page
404 *
405 * shmem_page_index = page number within shmem file
406 * shmem_page_offset = offset within page in shmem file
407 * data_page_index = page number in get_user_pages return
408 * data_page_offset = offset with data_page_index page.
409 * page_length = bytes to copy for this page
410 */
411 shmem_page_index = offset / PAGE_SIZE;
412 shmem_page_offset = offset & ~PAGE_MASK;
413 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
414 data_page_offset = data_ptr & ~PAGE_MASK;
415
416 page_length = remain;
417 if ((shmem_page_offset + page_length) > PAGE_SIZE)
418 page_length = PAGE_SIZE - shmem_page_offset;
419 if ((data_page_offset + page_length) > PAGE_SIZE)
420 page_length = PAGE_SIZE - data_page_offset;
421
422 if (do_bit17_swizzling) {
423 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
424 shmem_page_offset,
425 user_pages[data_page_index],
426 data_page_offset,
427 page_length,
428 1);
429 } else {
430 slow_shmem_copy(user_pages[data_page_index],
431 data_page_offset,
432 obj_priv->pages[shmem_page_index],
433 shmem_page_offset,
434 page_length);
435 }
436
437 remain -= page_length;
438 data_ptr += page_length;
439 offset += page_length;
440 }
441
442 fail_put_pages:
443 i915_gem_object_put_pages(obj);
444 fail_unlock:
445 mutex_unlock(&dev->struct_mutex);
446 fail_put_user_pages:
447 for (i = 0; i < pinned_pages; i++) {
448 SetPageDirty(user_pages[i]);
449 page_cache_release(user_pages[i]);
450 }
451 drm_free_large(user_pages);
452
453 return ret;
454 }
455
456 /**
457 * Reads data from the object referenced by handle.
458 *
459 * On error, the contents of *data are undefined.
460 */
461 int
462 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
463 struct drm_file *file_priv)
464 {
465 struct drm_i915_gem_pread *args = data;
466 struct drm_gem_object *obj;
467 struct drm_i915_gem_object *obj_priv;
468 int ret;
469
470 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
471 if (obj == NULL)
472 return -ENOENT;
473 obj_priv = to_intel_bo(obj);
474
475 /* Bounds check source.
476 *
477 * XXX: This could use review for overflow issues...
478 */
479 if (args->offset > obj->size || args->size > obj->size ||
480 args->offset + args->size > obj->size) {
481 drm_gem_object_unreference_unlocked(obj);
482 return -EINVAL;
483 }
484
485 if (i915_gem_object_needs_bit17_swizzle(obj)) {
486 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
487 } else {
488 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
489 if (ret != 0)
490 ret = i915_gem_shmem_pread_slow(dev, obj, args,
491 file_priv);
492 }
493
494 drm_gem_object_unreference_unlocked(obj);
495
496 return ret;
497 }
498
499 /* This is the fast write path which cannot handle
500 * page faults in the source data
501 */
502
503 static inline int
504 fast_user_write(struct io_mapping *mapping,
505 loff_t page_base, int page_offset,
506 char __user *user_data,
507 int length)
508 {
509 char *vaddr_atomic;
510 unsigned long unwritten;
511
512 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
513 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
514 user_data, length);
515 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
516 if (unwritten)
517 return -EFAULT;
518 return 0;
519 }
520
521 /* Here's the write path which can sleep for
522 * page faults
523 */
524
525 static inline void
526 slow_kernel_write(struct io_mapping *mapping,
527 loff_t gtt_base, int gtt_offset,
528 struct page *user_page, int user_offset,
529 int length)
530 {
531 char __iomem *dst_vaddr;
532 char *src_vaddr;
533
534 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
535 src_vaddr = kmap(user_page);
536
537 memcpy_toio(dst_vaddr + gtt_offset,
538 src_vaddr + user_offset,
539 length);
540
541 kunmap(user_page);
542 io_mapping_unmap(dst_vaddr);
543 }
544
545 static inline int
546 fast_shmem_write(struct page **pages,
547 loff_t page_base, int page_offset,
548 char __user *data,
549 int length)
550 {
551 char __iomem *vaddr;
552 unsigned long unwritten;
553
554 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
555 if (vaddr == NULL)
556 return -ENOMEM;
557 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
558 kunmap_atomic(vaddr, KM_USER0);
559
560 if (unwritten)
561 return -EFAULT;
562 return 0;
563 }
564
565 /**
566 * This is the fast pwrite path, where we copy the data directly from the
567 * user into the GTT, uncached.
568 */
569 static int
570 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
571 struct drm_i915_gem_pwrite *args,
572 struct drm_file *file_priv)
573 {
574 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
575 drm_i915_private_t *dev_priv = dev->dev_private;
576 ssize_t remain;
577 loff_t offset, page_base;
578 char __user *user_data;
579 int page_offset, page_length;
580 int ret;
581
582 user_data = (char __user *) (uintptr_t) args->data_ptr;
583 remain = args->size;
584 if (!access_ok(VERIFY_READ, user_data, remain))
585 return -EFAULT;
586
587
588 mutex_lock(&dev->struct_mutex);
589 ret = i915_gem_object_pin(obj, 0);
590 if (ret) {
591 mutex_unlock(&dev->struct_mutex);
592 return ret;
593 }
594 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
595 if (ret)
596 goto fail;
597
598 obj_priv = to_intel_bo(obj);
599 offset = obj_priv->gtt_offset + args->offset;
600
601 while (remain > 0) {
602 /* Operation in this page
603 *
604 * page_base = page offset within aperture
605 * page_offset = offset within page
606 * page_length = bytes to copy for this page
607 */
608 page_base = (offset & ~(PAGE_SIZE-1));
609 page_offset = offset & (PAGE_SIZE-1);
610 page_length = remain;
611 if ((page_offset + remain) > PAGE_SIZE)
612 page_length = PAGE_SIZE - page_offset;
613
614 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
615 page_offset, user_data, page_length);
616
617 /* If we get a fault while copying data, then (presumably) our
618 * source page isn't available. Return the error and we'll
619 * retry in the slow path.
620 */
621 if (ret)
622 goto fail;
623
624 remain -= page_length;
625 user_data += page_length;
626 offset += page_length;
627 }
628
629 fail:
630 i915_gem_object_unpin(obj);
631 mutex_unlock(&dev->struct_mutex);
632
633 return ret;
634 }
635
636 /**
637 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
638 * the memory and maps it using kmap_atomic for copying.
639 *
640 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
641 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
642 */
643 static int
644 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
645 struct drm_i915_gem_pwrite *args,
646 struct drm_file *file_priv)
647 {
648 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
649 drm_i915_private_t *dev_priv = dev->dev_private;
650 ssize_t remain;
651 loff_t gtt_page_base, offset;
652 loff_t first_data_page, last_data_page, num_pages;
653 loff_t pinned_pages, i;
654 struct page **user_pages;
655 struct mm_struct *mm = current->mm;
656 int gtt_page_offset, data_page_offset, data_page_index, page_length;
657 int ret;
658 uint64_t data_ptr = args->data_ptr;
659
660 remain = args->size;
661
662 /* Pin the user pages containing the data. We can't fault while
663 * holding the struct mutex, and all of the pwrite implementations
664 * want to hold it while dereferencing the user data.
665 */
666 first_data_page = data_ptr / PAGE_SIZE;
667 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
668 num_pages = last_data_page - first_data_page + 1;
669
670 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
671 if (user_pages == NULL)
672 return -ENOMEM;
673
674 down_read(&mm->mmap_sem);
675 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
676 num_pages, 0, 0, user_pages, NULL);
677 up_read(&mm->mmap_sem);
678 if (pinned_pages < num_pages) {
679 ret = -EFAULT;
680 goto out_unpin_pages;
681 }
682
683 mutex_lock(&dev->struct_mutex);
684 ret = i915_gem_object_pin(obj, 0);
685 if (ret)
686 goto out_unlock;
687
688 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
689 if (ret)
690 goto out_unpin_object;
691
692 obj_priv = to_intel_bo(obj);
693 offset = obj_priv->gtt_offset + args->offset;
694
695 while (remain > 0) {
696 /* Operation in this page
697 *
698 * gtt_page_base = page offset within aperture
699 * gtt_page_offset = offset within page in aperture
700 * data_page_index = page number in get_user_pages return
701 * data_page_offset = offset with data_page_index page.
702 * page_length = bytes to copy for this page
703 */
704 gtt_page_base = offset & PAGE_MASK;
705 gtt_page_offset = offset & ~PAGE_MASK;
706 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
707 data_page_offset = data_ptr & ~PAGE_MASK;
708
709 page_length = remain;
710 if ((gtt_page_offset + page_length) > PAGE_SIZE)
711 page_length = PAGE_SIZE - gtt_page_offset;
712 if ((data_page_offset + page_length) > PAGE_SIZE)
713 page_length = PAGE_SIZE - data_page_offset;
714
715 slow_kernel_write(dev_priv->mm.gtt_mapping,
716 gtt_page_base, gtt_page_offset,
717 user_pages[data_page_index],
718 data_page_offset,
719 page_length);
720
721 remain -= page_length;
722 offset += page_length;
723 data_ptr += page_length;
724 }
725
726 out_unpin_object:
727 i915_gem_object_unpin(obj);
728 out_unlock:
729 mutex_unlock(&dev->struct_mutex);
730 out_unpin_pages:
731 for (i = 0; i < pinned_pages; i++)
732 page_cache_release(user_pages[i]);
733 drm_free_large(user_pages);
734
735 return ret;
736 }
737
738 /**
739 * This is the fast shmem pwrite path, which attempts to directly
740 * copy_from_user into the kmapped pages backing the object.
741 */
742 static int
743 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
744 struct drm_i915_gem_pwrite *args,
745 struct drm_file *file_priv)
746 {
747 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
748 ssize_t remain;
749 loff_t offset, page_base;
750 char __user *user_data;
751 int page_offset, page_length;
752 int ret;
753
754 user_data = (char __user *) (uintptr_t) args->data_ptr;
755 remain = args->size;
756
757 mutex_lock(&dev->struct_mutex);
758
759 ret = i915_gem_object_get_pages(obj, 0);
760 if (ret != 0)
761 goto fail_unlock;
762
763 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
764 if (ret != 0)
765 goto fail_put_pages;
766
767 obj_priv = to_intel_bo(obj);
768 offset = args->offset;
769 obj_priv->dirty = 1;
770
771 while (remain > 0) {
772 /* Operation in this page
773 *
774 * page_base = page offset within aperture
775 * page_offset = offset within page
776 * page_length = bytes to copy for this page
777 */
778 page_base = (offset & ~(PAGE_SIZE-1));
779 page_offset = offset & (PAGE_SIZE-1);
780 page_length = remain;
781 if ((page_offset + remain) > PAGE_SIZE)
782 page_length = PAGE_SIZE - page_offset;
783
784 ret = fast_shmem_write(obj_priv->pages,
785 page_base, page_offset,
786 user_data, page_length);
787 if (ret)
788 goto fail_put_pages;
789
790 remain -= page_length;
791 user_data += page_length;
792 offset += page_length;
793 }
794
795 fail_put_pages:
796 i915_gem_object_put_pages(obj);
797 fail_unlock:
798 mutex_unlock(&dev->struct_mutex);
799
800 return ret;
801 }
802
803 /**
804 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
805 * the memory and maps it using kmap_atomic for copying.
806 *
807 * This avoids taking mmap_sem for faulting on the user's address while the
808 * struct_mutex is held.
809 */
810 static int
811 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
812 struct drm_i915_gem_pwrite *args,
813 struct drm_file *file_priv)
814 {
815 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
816 struct mm_struct *mm = current->mm;
817 struct page **user_pages;
818 ssize_t remain;
819 loff_t offset, pinned_pages, i;
820 loff_t first_data_page, last_data_page, num_pages;
821 int shmem_page_index, shmem_page_offset;
822 int data_page_index, data_page_offset;
823 int page_length;
824 int ret;
825 uint64_t data_ptr = args->data_ptr;
826 int do_bit17_swizzling;
827
828 remain = args->size;
829
830 /* Pin the user pages containing the data. We can't fault while
831 * holding the struct mutex, and all of the pwrite implementations
832 * want to hold it while dereferencing the user data.
833 */
834 first_data_page = data_ptr / PAGE_SIZE;
835 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
836 num_pages = last_data_page - first_data_page + 1;
837
838 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
839 if (user_pages == NULL)
840 return -ENOMEM;
841
842 down_read(&mm->mmap_sem);
843 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
844 num_pages, 0, 0, user_pages, NULL);
845 up_read(&mm->mmap_sem);
846 if (pinned_pages < num_pages) {
847 ret = -EFAULT;
848 goto fail_put_user_pages;
849 }
850
851 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
852
853 mutex_lock(&dev->struct_mutex);
854
855 ret = i915_gem_object_get_pages_or_evict(obj);
856 if (ret)
857 goto fail_unlock;
858
859 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
860 if (ret != 0)
861 goto fail_put_pages;
862
863 obj_priv = to_intel_bo(obj);
864 offset = args->offset;
865 obj_priv->dirty = 1;
866
867 while (remain > 0) {
868 /* Operation in this page
869 *
870 * shmem_page_index = page number within shmem file
871 * shmem_page_offset = offset within page in shmem file
872 * data_page_index = page number in get_user_pages return
873 * data_page_offset = offset with data_page_index page.
874 * page_length = bytes to copy for this page
875 */
876 shmem_page_index = offset / PAGE_SIZE;
877 shmem_page_offset = offset & ~PAGE_MASK;
878 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
879 data_page_offset = data_ptr & ~PAGE_MASK;
880
881 page_length = remain;
882 if ((shmem_page_offset + page_length) > PAGE_SIZE)
883 page_length = PAGE_SIZE - shmem_page_offset;
884 if ((data_page_offset + page_length) > PAGE_SIZE)
885 page_length = PAGE_SIZE - data_page_offset;
886
887 if (do_bit17_swizzling) {
888 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
889 shmem_page_offset,
890 user_pages[data_page_index],
891 data_page_offset,
892 page_length,
893 0);
894 } else {
895 slow_shmem_copy(obj_priv->pages[shmem_page_index],
896 shmem_page_offset,
897 user_pages[data_page_index],
898 data_page_offset,
899 page_length);
900 }
901
902 remain -= page_length;
903 data_ptr += page_length;
904 offset += page_length;
905 }
906
907 fail_put_pages:
908 i915_gem_object_put_pages(obj);
909 fail_unlock:
910 mutex_unlock(&dev->struct_mutex);
911 fail_put_user_pages:
912 for (i = 0; i < pinned_pages; i++)
913 page_cache_release(user_pages[i]);
914 drm_free_large(user_pages);
915
916 return ret;
917 }
918
919 /**
920 * Writes data to the object referenced by handle.
921 *
922 * On error, the contents of the buffer that were to be modified are undefined.
923 */
924 int
925 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
926 struct drm_file *file_priv)
927 {
928 struct drm_i915_gem_pwrite *args = data;
929 struct drm_gem_object *obj;
930 struct drm_i915_gem_object *obj_priv;
931 int ret = 0;
932
933 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
934 if (obj == NULL)
935 return -ENOENT;
936 obj_priv = to_intel_bo(obj);
937
938 /* Bounds check destination.
939 *
940 * XXX: This could use review for overflow issues...
941 */
942 if (args->offset > obj->size || args->size > obj->size ||
943 args->offset + args->size > obj->size) {
944 drm_gem_object_unreference_unlocked(obj);
945 return -EINVAL;
946 }
947
948 /* We can only do the GTT pwrite on untiled buffers, as otherwise
949 * it would end up going through the fenced access, and we'll get
950 * different detiling behavior between reading and writing.
951 * pread/pwrite currently are reading and writing from the CPU
952 * perspective, requiring manual detiling by the client.
953 */
954 if (obj_priv->phys_obj)
955 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
956 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
957 dev->gtt_total != 0 &&
958 obj->write_domain != I915_GEM_DOMAIN_CPU) {
959 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
960 if (ret == -EFAULT) {
961 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
962 file_priv);
963 }
964 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
965 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
966 } else {
967 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
968 if (ret == -EFAULT) {
969 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
970 file_priv);
971 }
972 }
973
974 #if WATCH_PWRITE
975 if (ret)
976 DRM_INFO("pwrite failed %d\n", ret);
977 #endif
978
979 drm_gem_object_unreference_unlocked(obj);
980
981 return ret;
982 }
983
984 /**
985 * Called when user space prepares to use an object with the CPU, either
986 * through the mmap ioctl's mapping or a GTT mapping.
987 */
988 int
989 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
990 struct drm_file *file_priv)
991 {
992 struct drm_i915_private *dev_priv = dev->dev_private;
993 struct drm_i915_gem_set_domain *args = data;
994 struct drm_gem_object *obj;
995 struct drm_i915_gem_object *obj_priv;
996 uint32_t read_domains = args->read_domains;
997 uint32_t write_domain = args->write_domain;
998 int ret;
999
1000 if (!(dev->driver->driver_features & DRIVER_GEM))
1001 return -ENODEV;
1002
1003 /* Only handle setting domains to types used by the CPU. */
1004 if (write_domain & I915_GEM_GPU_DOMAINS)
1005 return -EINVAL;
1006
1007 if (read_domains & I915_GEM_GPU_DOMAINS)
1008 return -EINVAL;
1009
1010 /* Having something in the write domain implies it's in the read
1011 * domain, and only that read domain. Enforce that in the request.
1012 */
1013 if (write_domain != 0 && read_domains != write_domain)
1014 return -EINVAL;
1015
1016 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1017 if (obj == NULL)
1018 return -ENOENT;
1019 obj_priv = to_intel_bo(obj);
1020
1021 mutex_lock(&dev->struct_mutex);
1022
1023 intel_mark_busy(dev, obj);
1024
1025 #if WATCH_BUF
1026 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1027 obj, obj->size, read_domains, write_domain);
1028 #endif
1029 if (read_domains & I915_GEM_DOMAIN_GTT) {
1030 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1031
1032 /* Update the LRU on the fence for the CPU access that's
1033 * about to occur.
1034 */
1035 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1036 struct drm_i915_fence_reg *reg =
1037 &dev_priv->fence_regs[obj_priv->fence_reg];
1038 list_move_tail(&reg->lru_list,
1039 &dev_priv->mm.fence_list);
1040 }
1041
1042 /* Silently promote "you're not bound, there was nothing to do"
1043 * to success, since the client was just asking us to
1044 * make sure everything was done.
1045 */
1046 if (ret == -EINVAL)
1047 ret = 0;
1048 } else {
1049 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1050 }
1051
1052
1053 /* Maintain LRU order of "inactive" objects */
1054 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1055 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1056
1057 drm_gem_object_unreference(obj);
1058 mutex_unlock(&dev->struct_mutex);
1059 return ret;
1060 }
1061
1062 /**
1063 * Called when user space has done writes to this buffer
1064 */
1065 int
1066 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1067 struct drm_file *file_priv)
1068 {
1069 struct drm_i915_gem_sw_finish *args = data;
1070 struct drm_gem_object *obj;
1071 struct drm_i915_gem_object *obj_priv;
1072 int ret = 0;
1073
1074 if (!(dev->driver->driver_features & DRIVER_GEM))
1075 return -ENODEV;
1076
1077 mutex_lock(&dev->struct_mutex);
1078 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1079 if (obj == NULL) {
1080 mutex_unlock(&dev->struct_mutex);
1081 return -ENOENT;
1082 }
1083
1084 #if WATCH_BUF
1085 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1086 __func__, args->handle, obj, obj->size);
1087 #endif
1088 obj_priv = to_intel_bo(obj);
1089
1090 /* Pinned buffers may be scanout, so flush the cache */
1091 if (obj_priv->pin_count)
1092 i915_gem_object_flush_cpu_write_domain(obj);
1093
1094 drm_gem_object_unreference(obj);
1095 mutex_unlock(&dev->struct_mutex);
1096 return ret;
1097 }
1098
1099 /**
1100 * Maps the contents of an object, returning the address it is mapped
1101 * into.
1102 *
1103 * While the mapping holds a reference on the contents of the object, it doesn't
1104 * imply a ref on the object itself.
1105 */
1106 int
1107 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1108 struct drm_file *file_priv)
1109 {
1110 struct drm_i915_gem_mmap *args = data;
1111 struct drm_gem_object *obj;
1112 loff_t offset;
1113 unsigned long addr;
1114
1115 if (!(dev->driver->driver_features & DRIVER_GEM))
1116 return -ENODEV;
1117
1118 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1119 if (obj == NULL)
1120 return -ENOENT;
1121
1122 offset = args->offset;
1123
1124 down_write(&current->mm->mmap_sem);
1125 addr = do_mmap(obj->filp, 0, args->size,
1126 PROT_READ | PROT_WRITE, MAP_SHARED,
1127 args->offset);
1128 up_write(&current->mm->mmap_sem);
1129 drm_gem_object_unreference_unlocked(obj);
1130 if (IS_ERR((void *)addr))
1131 return addr;
1132
1133 args->addr_ptr = (uint64_t) addr;
1134
1135 return 0;
1136 }
1137
1138 /**
1139 * i915_gem_fault - fault a page into the GTT
1140 * vma: VMA in question
1141 * vmf: fault info
1142 *
1143 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1144 * from userspace. The fault handler takes care of binding the object to
1145 * the GTT (if needed), allocating and programming a fence register (again,
1146 * only if needed based on whether the old reg is still valid or the object
1147 * is tiled) and inserting a new PTE into the faulting process.
1148 *
1149 * Note that the faulting process may involve evicting existing objects
1150 * from the GTT and/or fence registers to make room. So performance may
1151 * suffer if the GTT working set is large or there are few fence registers
1152 * left.
1153 */
1154 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1155 {
1156 struct drm_gem_object *obj = vma->vm_private_data;
1157 struct drm_device *dev = obj->dev;
1158 drm_i915_private_t *dev_priv = dev->dev_private;
1159 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1160 pgoff_t page_offset;
1161 unsigned long pfn;
1162 int ret = 0;
1163 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1164
1165 /* We don't use vmf->pgoff since that has the fake offset */
1166 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1167 PAGE_SHIFT;
1168
1169 /* Now bind it into the GTT if needed */
1170 mutex_lock(&dev->struct_mutex);
1171 if (!obj_priv->gtt_space) {
1172 ret = i915_gem_object_bind_to_gtt(obj, 0);
1173 if (ret)
1174 goto unlock;
1175
1176 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1177 if (ret)
1178 goto unlock;
1179 }
1180
1181 /* Need a new fence register? */
1182 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1183 ret = i915_gem_object_get_fence_reg(obj);
1184 if (ret)
1185 goto unlock;
1186 }
1187
1188 if (i915_gem_object_is_inactive(obj_priv))
1189 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1190
1191 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1192 page_offset;
1193
1194 /* Finally, remap it using the new GTT offset */
1195 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1196 unlock:
1197 mutex_unlock(&dev->struct_mutex);
1198
1199 switch (ret) {
1200 case 0:
1201 case -ERESTARTSYS:
1202 return VM_FAULT_NOPAGE;
1203 case -ENOMEM:
1204 case -EAGAIN:
1205 return VM_FAULT_OOM;
1206 default:
1207 return VM_FAULT_SIGBUS;
1208 }
1209 }
1210
1211 /**
1212 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1213 * @obj: obj in question
1214 *
1215 * GEM memory mapping works by handing back to userspace a fake mmap offset
1216 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1217 * up the object based on the offset and sets up the various memory mapping
1218 * structures.
1219 *
1220 * This routine allocates and attaches a fake offset for @obj.
1221 */
1222 static int
1223 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1224 {
1225 struct drm_device *dev = obj->dev;
1226 struct drm_gem_mm *mm = dev->mm_private;
1227 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1228 struct drm_map_list *list;
1229 struct drm_local_map *map;
1230 int ret = 0;
1231
1232 /* Set the object up for mmap'ing */
1233 list = &obj->map_list;
1234 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1235 if (!list->map)
1236 return -ENOMEM;
1237
1238 map = list->map;
1239 map->type = _DRM_GEM;
1240 map->size = obj->size;
1241 map->handle = obj;
1242
1243 /* Get a DRM GEM mmap offset allocated... */
1244 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1245 obj->size / PAGE_SIZE, 0, 0);
1246 if (!list->file_offset_node) {
1247 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1248 ret = -ENOMEM;
1249 goto out_free_list;
1250 }
1251
1252 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1253 obj->size / PAGE_SIZE, 0);
1254 if (!list->file_offset_node) {
1255 ret = -ENOMEM;
1256 goto out_free_list;
1257 }
1258
1259 list->hash.key = list->file_offset_node->start;
1260 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1261 DRM_ERROR("failed to add to map hash\n");
1262 ret = -ENOMEM;
1263 goto out_free_mm;
1264 }
1265
1266 /* By now we should be all set, any drm_mmap request on the offset
1267 * below will get to our mmap & fault handler */
1268 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1269
1270 return 0;
1271
1272 out_free_mm:
1273 drm_mm_put_block(list->file_offset_node);
1274 out_free_list:
1275 kfree(list->map);
1276
1277 return ret;
1278 }
1279
1280 /**
1281 * i915_gem_release_mmap - remove physical page mappings
1282 * @obj: obj in question
1283 *
1284 * Preserve the reservation of the mmapping with the DRM core code, but
1285 * relinquish ownership of the pages back to the system.
1286 *
1287 * It is vital that we remove the page mapping if we have mapped a tiled
1288 * object through the GTT and then lose the fence register due to
1289 * resource pressure. Similarly if the object has been moved out of the
1290 * aperture, than pages mapped into userspace must be revoked. Removing the
1291 * mapping will then trigger a page fault on the next user access, allowing
1292 * fixup by i915_gem_fault().
1293 */
1294 void
1295 i915_gem_release_mmap(struct drm_gem_object *obj)
1296 {
1297 struct drm_device *dev = obj->dev;
1298 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1299
1300 if (dev->dev_mapping)
1301 unmap_mapping_range(dev->dev_mapping,
1302 obj_priv->mmap_offset, obj->size, 1);
1303 }
1304
1305 static void
1306 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1307 {
1308 struct drm_device *dev = obj->dev;
1309 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1310 struct drm_gem_mm *mm = dev->mm_private;
1311 struct drm_map_list *list;
1312
1313 list = &obj->map_list;
1314 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1315
1316 if (list->file_offset_node) {
1317 drm_mm_put_block(list->file_offset_node);
1318 list->file_offset_node = NULL;
1319 }
1320
1321 if (list->map) {
1322 kfree(list->map);
1323 list->map = NULL;
1324 }
1325
1326 obj_priv->mmap_offset = 0;
1327 }
1328
1329 /**
1330 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1331 * @obj: object to check
1332 *
1333 * Return the required GTT alignment for an object, taking into account
1334 * potential fence register mapping if needed.
1335 */
1336 static uint32_t
1337 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1338 {
1339 struct drm_device *dev = obj->dev;
1340 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1341 int start, i;
1342
1343 /*
1344 * Minimum alignment is 4k (GTT page size), but might be greater
1345 * if a fence register is needed for the object.
1346 */
1347 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1348 return 4096;
1349
1350 /*
1351 * Previous chips need to be aligned to the size of the smallest
1352 * fence register that can contain the object.
1353 */
1354 if (IS_I9XX(dev))
1355 start = 1024*1024;
1356 else
1357 start = 512*1024;
1358
1359 for (i = start; i < obj->size; i <<= 1)
1360 ;
1361
1362 return i;
1363 }
1364
1365 /**
1366 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1367 * @dev: DRM device
1368 * @data: GTT mapping ioctl data
1369 * @file_priv: GEM object info
1370 *
1371 * Simply returns the fake offset to userspace so it can mmap it.
1372 * The mmap call will end up in drm_gem_mmap(), which will set things
1373 * up so we can get faults in the handler above.
1374 *
1375 * The fault handler will take care of binding the object into the GTT
1376 * (since it may have been evicted to make room for something), allocating
1377 * a fence register, and mapping the appropriate aperture address into
1378 * userspace.
1379 */
1380 int
1381 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1382 struct drm_file *file_priv)
1383 {
1384 struct drm_i915_gem_mmap_gtt *args = data;
1385 struct drm_gem_object *obj;
1386 struct drm_i915_gem_object *obj_priv;
1387 int ret;
1388
1389 if (!(dev->driver->driver_features & DRIVER_GEM))
1390 return -ENODEV;
1391
1392 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1393 if (obj == NULL)
1394 return -ENOENT;
1395
1396 mutex_lock(&dev->struct_mutex);
1397
1398 obj_priv = to_intel_bo(obj);
1399
1400 if (obj_priv->madv != I915_MADV_WILLNEED) {
1401 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1402 drm_gem_object_unreference(obj);
1403 mutex_unlock(&dev->struct_mutex);
1404 return -EINVAL;
1405 }
1406
1407
1408 if (!obj_priv->mmap_offset) {
1409 ret = i915_gem_create_mmap_offset(obj);
1410 if (ret) {
1411 drm_gem_object_unreference(obj);
1412 mutex_unlock(&dev->struct_mutex);
1413 return ret;
1414 }
1415 }
1416
1417 args->offset = obj_priv->mmap_offset;
1418
1419 /*
1420 * Pull it into the GTT so that we have a page list (makes the
1421 * initial fault faster and any subsequent flushing possible).
1422 */
1423 if (!obj_priv->agp_mem) {
1424 ret = i915_gem_object_bind_to_gtt(obj, 0);
1425 if (ret) {
1426 drm_gem_object_unreference(obj);
1427 mutex_unlock(&dev->struct_mutex);
1428 return ret;
1429 }
1430 }
1431
1432 drm_gem_object_unreference(obj);
1433 mutex_unlock(&dev->struct_mutex);
1434
1435 return 0;
1436 }
1437
1438 void
1439 i915_gem_object_put_pages(struct drm_gem_object *obj)
1440 {
1441 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1442 int page_count = obj->size / PAGE_SIZE;
1443 int i;
1444
1445 BUG_ON(obj_priv->pages_refcount == 0);
1446 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1447
1448 if (--obj_priv->pages_refcount != 0)
1449 return;
1450
1451 if (obj_priv->tiling_mode != I915_TILING_NONE)
1452 i915_gem_object_save_bit_17_swizzle(obj);
1453
1454 if (obj_priv->madv == I915_MADV_DONTNEED)
1455 obj_priv->dirty = 0;
1456
1457 for (i = 0; i < page_count; i++) {
1458 if (obj_priv->dirty)
1459 set_page_dirty(obj_priv->pages[i]);
1460
1461 if (obj_priv->madv == I915_MADV_WILLNEED)
1462 mark_page_accessed(obj_priv->pages[i]);
1463
1464 page_cache_release(obj_priv->pages[i]);
1465 }
1466 obj_priv->dirty = 0;
1467
1468 drm_free_large(obj_priv->pages);
1469 obj_priv->pages = NULL;
1470 }
1471
1472 static uint32_t
1473 i915_gem_next_request_seqno(struct drm_device *dev)
1474 {
1475 drm_i915_private_t *dev_priv = dev->dev_private;
1476
1477 return dev_priv->next_seqno;
1478 }
1479
1480 static void
1481 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1482 struct intel_ring_buffer *ring)
1483 {
1484 struct drm_device *dev = obj->dev;
1485 drm_i915_private_t *dev_priv = dev->dev_private;
1486 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1487 BUG_ON(ring == NULL);
1488 obj_priv->ring = ring;
1489
1490 /* Add a reference if we're newly entering the active list. */
1491 if (!obj_priv->active) {
1492 drm_gem_object_reference(obj);
1493 obj_priv->active = 1;
1494 }
1495
1496 /* Take the seqno of the next request if none is given */
1497 if (seqno == 0)
1498 seqno = i915_gem_next_request_seqno(dev);
1499
1500 /* Move from whatever list we were on to the tail of execution. */
1501 spin_lock(&dev_priv->mm.active_list_lock);
1502 list_move_tail(&obj_priv->list, &ring->active_list);
1503 spin_unlock(&dev_priv->mm.active_list_lock);
1504 obj_priv->last_rendering_seqno = seqno;
1505 }
1506
1507 static void
1508 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1509 {
1510 struct drm_device *dev = obj->dev;
1511 drm_i915_private_t *dev_priv = dev->dev_private;
1512 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1513
1514 BUG_ON(!obj_priv->active);
1515 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1516 obj_priv->last_rendering_seqno = 0;
1517 }
1518
1519 /* Immediately discard the backing storage */
1520 static void
1521 i915_gem_object_truncate(struct drm_gem_object *obj)
1522 {
1523 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1524 struct inode *inode;
1525
1526 /* Our goal here is to return as much of the memory as
1527 * is possible back to the system as we are called from OOM.
1528 * To do this we must instruct the shmfs to drop all of its
1529 * backing pages, *now*. Here we mirror the actions taken
1530 * when by shmem_delete_inode() to release the backing store.
1531 */
1532 inode = obj->filp->f_path.dentry->d_inode;
1533 truncate_inode_pages(inode->i_mapping, 0);
1534 if (inode->i_op->truncate_range)
1535 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1536
1537 obj_priv->madv = __I915_MADV_PURGED;
1538 }
1539
1540 static inline int
1541 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1542 {
1543 return obj_priv->madv == I915_MADV_DONTNEED;
1544 }
1545
1546 static void
1547 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1548 {
1549 struct drm_device *dev = obj->dev;
1550 drm_i915_private_t *dev_priv = dev->dev_private;
1551 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1552
1553 i915_verify_inactive(dev, __FILE__, __LINE__);
1554 if (obj_priv->pin_count != 0)
1555 list_del_init(&obj_priv->list);
1556 else
1557 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1558
1559 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1560
1561 obj_priv->last_rendering_seqno = 0;
1562 obj_priv->ring = NULL;
1563 if (obj_priv->active) {
1564 obj_priv->active = 0;
1565 drm_gem_object_unreference(obj);
1566 }
1567 i915_verify_inactive(dev, __FILE__, __LINE__);
1568 }
1569
1570 static void
1571 i915_gem_process_flushing_list(struct drm_device *dev,
1572 uint32_t flush_domains, uint32_t seqno,
1573 struct intel_ring_buffer *ring)
1574 {
1575 drm_i915_private_t *dev_priv = dev->dev_private;
1576 struct drm_i915_gem_object *obj_priv, *next;
1577
1578 list_for_each_entry_safe(obj_priv, next,
1579 &dev_priv->mm.gpu_write_list,
1580 gpu_write_list) {
1581 struct drm_gem_object *obj = &obj_priv->base;
1582
1583 if ((obj->write_domain & flush_domains) ==
1584 obj->write_domain &&
1585 obj_priv->ring->ring_flag == ring->ring_flag) {
1586 uint32_t old_write_domain = obj->write_domain;
1587
1588 obj->write_domain = 0;
1589 list_del_init(&obj_priv->gpu_write_list);
1590 i915_gem_object_move_to_active(obj, seqno, ring);
1591
1592 /* update the fence lru list */
1593 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1594 struct drm_i915_fence_reg *reg =
1595 &dev_priv->fence_regs[obj_priv->fence_reg];
1596 list_move_tail(&reg->lru_list,
1597 &dev_priv->mm.fence_list);
1598 }
1599
1600 trace_i915_gem_object_change_domain(obj,
1601 obj->read_domains,
1602 old_write_domain);
1603 }
1604 }
1605 }
1606
1607 uint32_t
1608 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1609 uint32_t flush_domains, struct intel_ring_buffer *ring)
1610 {
1611 drm_i915_private_t *dev_priv = dev->dev_private;
1612 struct drm_i915_file_private *i915_file_priv = NULL;
1613 struct drm_i915_gem_request *request;
1614 uint32_t seqno;
1615 int was_empty;
1616
1617 if (file_priv != NULL)
1618 i915_file_priv = file_priv->driver_priv;
1619
1620 request = kzalloc(sizeof(*request), GFP_KERNEL);
1621 if (request == NULL)
1622 return 0;
1623
1624 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1625
1626 request->seqno = seqno;
1627 request->ring = ring;
1628 request->emitted_jiffies = jiffies;
1629 was_empty = list_empty(&ring->request_list);
1630 list_add_tail(&request->list, &ring->request_list);
1631
1632 if (i915_file_priv) {
1633 list_add_tail(&request->client_list,
1634 &i915_file_priv->mm.request_list);
1635 } else {
1636 INIT_LIST_HEAD(&request->client_list);
1637 }
1638
1639 /* Associate any objects on the flushing list matching the write
1640 * domain we're flushing with our flush.
1641 */
1642 if (flush_domains != 0)
1643 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1644
1645 if (!dev_priv->mm.suspended) {
1646 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1647 if (was_empty)
1648 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1649 }
1650 return seqno;
1651 }
1652
1653 /**
1654 * Command execution barrier
1655 *
1656 * Ensures that all commands in the ring are finished
1657 * before signalling the CPU
1658 */
1659 static uint32_t
1660 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1661 {
1662 uint32_t flush_domains = 0;
1663
1664 /* The sampler always gets flushed on i965 (sigh) */
1665 if (IS_I965G(dev))
1666 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1667
1668 ring->flush(dev, ring,
1669 I915_GEM_DOMAIN_COMMAND, flush_domains);
1670 return flush_domains;
1671 }
1672
1673 /**
1674 * Moves buffers associated only with the given active seqno from the active
1675 * to inactive list, potentially freeing them.
1676 */
1677 static void
1678 i915_gem_retire_request(struct drm_device *dev,
1679 struct drm_i915_gem_request *request)
1680 {
1681 drm_i915_private_t *dev_priv = dev->dev_private;
1682
1683 trace_i915_gem_request_retire(dev, request->seqno);
1684
1685 /* Move any buffers on the active list that are no longer referenced
1686 * by the ringbuffer to the flushing/inactive lists as appropriate.
1687 */
1688 spin_lock(&dev_priv->mm.active_list_lock);
1689 while (!list_empty(&request->ring->active_list)) {
1690 struct drm_gem_object *obj;
1691 struct drm_i915_gem_object *obj_priv;
1692
1693 obj_priv = list_first_entry(&request->ring->active_list,
1694 struct drm_i915_gem_object,
1695 list);
1696 obj = &obj_priv->base;
1697
1698 /* If the seqno being retired doesn't match the oldest in the
1699 * list, then the oldest in the list must still be newer than
1700 * this seqno.
1701 */
1702 if (obj_priv->last_rendering_seqno != request->seqno)
1703 goto out;
1704
1705 #if WATCH_LRU
1706 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1707 __func__, request->seqno, obj);
1708 #endif
1709
1710 if (obj->write_domain != 0)
1711 i915_gem_object_move_to_flushing(obj);
1712 else {
1713 /* Take a reference on the object so it won't be
1714 * freed while the spinlock is held. The list
1715 * protection for this spinlock is safe when breaking
1716 * the lock like this since the next thing we do
1717 * is just get the head of the list again.
1718 */
1719 drm_gem_object_reference(obj);
1720 i915_gem_object_move_to_inactive(obj);
1721 spin_unlock(&dev_priv->mm.active_list_lock);
1722 drm_gem_object_unreference(obj);
1723 spin_lock(&dev_priv->mm.active_list_lock);
1724 }
1725 }
1726 out:
1727 spin_unlock(&dev_priv->mm.active_list_lock);
1728 }
1729
1730 /**
1731 * Returns true if seq1 is later than seq2.
1732 */
1733 bool
1734 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1735 {
1736 return (int32_t)(seq1 - seq2) >= 0;
1737 }
1738
1739 uint32_t
1740 i915_get_gem_seqno(struct drm_device *dev,
1741 struct intel_ring_buffer *ring)
1742 {
1743 return ring->get_gem_seqno(dev, ring);
1744 }
1745
1746 /**
1747 * This function clears the request list as sequence numbers are passed.
1748 */
1749 static void
1750 i915_gem_retire_requests_ring(struct drm_device *dev,
1751 struct intel_ring_buffer *ring)
1752 {
1753 drm_i915_private_t *dev_priv = dev->dev_private;
1754 uint32_t seqno;
1755
1756 if (!ring->status_page.page_addr
1757 || list_empty(&ring->request_list))
1758 return;
1759
1760 seqno = i915_get_gem_seqno(dev, ring);
1761
1762 while (!list_empty(&ring->request_list)) {
1763 struct drm_i915_gem_request *request;
1764 uint32_t retiring_seqno;
1765
1766 request = list_first_entry(&ring->request_list,
1767 struct drm_i915_gem_request,
1768 list);
1769 retiring_seqno = request->seqno;
1770
1771 if (i915_seqno_passed(seqno, retiring_seqno) ||
1772 atomic_read(&dev_priv->mm.wedged)) {
1773 i915_gem_retire_request(dev, request);
1774
1775 list_del(&request->list);
1776 list_del(&request->client_list);
1777 kfree(request);
1778 } else
1779 break;
1780 }
1781
1782 if (unlikely (dev_priv->trace_irq_seqno &&
1783 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1784
1785 ring->user_irq_put(dev, ring);
1786 dev_priv->trace_irq_seqno = 0;
1787 }
1788 }
1789
1790 void
1791 i915_gem_retire_requests(struct drm_device *dev)
1792 {
1793 drm_i915_private_t *dev_priv = dev->dev_private;
1794
1795 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1796 struct drm_i915_gem_object *obj_priv, *tmp;
1797
1798 /* We must be careful that during unbind() we do not
1799 * accidentally infinitely recurse into retire requests.
1800 * Currently:
1801 * retire -> free -> unbind -> wait -> retire_ring
1802 */
1803 list_for_each_entry_safe(obj_priv, tmp,
1804 &dev_priv->mm.deferred_free_list,
1805 list)
1806 i915_gem_free_object_tail(&obj_priv->base);
1807 }
1808
1809 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1810 if (HAS_BSD(dev))
1811 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1812 }
1813
1814 static void
1815 i915_gem_retire_work_handler(struct work_struct *work)
1816 {
1817 drm_i915_private_t *dev_priv;
1818 struct drm_device *dev;
1819
1820 dev_priv = container_of(work, drm_i915_private_t,
1821 mm.retire_work.work);
1822 dev = dev_priv->dev;
1823
1824 mutex_lock(&dev->struct_mutex);
1825 i915_gem_retire_requests(dev);
1826
1827 if (!dev_priv->mm.suspended &&
1828 (!list_empty(&dev_priv->render_ring.request_list) ||
1829 (HAS_BSD(dev) &&
1830 !list_empty(&dev_priv->bsd_ring.request_list))))
1831 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1832 mutex_unlock(&dev->struct_mutex);
1833 }
1834
1835 int
1836 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1837 int interruptible, struct intel_ring_buffer *ring)
1838 {
1839 drm_i915_private_t *dev_priv = dev->dev_private;
1840 u32 ier;
1841 int ret = 0;
1842
1843 BUG_ON(seqno == 0);
1844
1845 if (seqno == dev_priv->next_seqno) {
1846 seqno = i915_add_request(dev, NULL, 0, ring);
1847 if (seqno == 0)
1848 return -ENOMEM;
1849 }
1850
1851 if (atomic_read(&dev_priv->mm.wedged))
1852 return -EIO;
1853
1854 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1855 if (HAS_PCH_SPLIT(dev))
1856 ier = I915_READ(DEIER) | I915_READ(GTIER);
1857 else
1858 ier = I915_READ(IER);
1859 if (!ier) {
1860 DRM_ERROR("something (likely vbetool) disabled "
1861 "interrupts, re-enabling\n");
1862 i915_driver_irq_preinstall(dev);
1863 i915_driver_irq_postinstall(dev);
1864 }
1865
1866 trace_i915_gem_request_wait_begin(dev, seqno);
1867
1868 ring->waiting_gem_seqno = seqno;
1869 ring->user_irq_get(dev, ring);
1870 if (interruptible)
1871 ret = wait_event_interruptible(ring->irq_queue,
1872 i915_seqno_passed(
1873 ring->get_gem_seqno(dev, ring), seqno)
1874 || atomic_read(&dev_priv->mm.wedged));
1875 else
1876 wait_event(ring->irq_queue,
1877 i915_seqno_passed(
1878 ring->get_gem_seqno(dev, ring), seqno)
1879 || atomic_read(&dev_priv->mm.wedged));
1880
1881 ring->user_irq_put(dev, ring);
1882 ring->waiting_gem_seqno = 0;
1883
1884 trace_i915_gem_request_wait_end(dev, seqno);
1885 }
1886 if (atomic_read(&dev_priv->mm.wedged))
1887 ret = -EIO;
1888
1889 if (ret && ret != -ERESTARTSYS)
1890 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1891 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1892
1893 /* Directly dispatch request retiring. While we have the work queue
1894 * to handle this, the waiter on a request often wants an associated
1895 * buffer to have made it to the inactive list, and we would need
1896 * a separate wait queue to handle that.
1897 */
1898 if (ret == 0)
1899 i915_gem_retire_requests_ring(dev, ring);
1900
1901 return ret;
1902 }
1903
1904 /**
1905 * Waits for a sequence number to be signaled, and cleans up the
1906 * request and object lists appropriately for that event.
1907 */
1908 static int
1909 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1910 struct intel_ring_buffer *ring)
1911 {
1912 return i915_do_wait_request(dev, seqno, 1, ring);
1913 }
1914
1915 static void
1916 i915_gem_flush(struct drm_device *dev,
1917 uint32_t invalidate_domains,
1918 uint32_t flush_domains)
1919 {
1920 drm_i915_private_t *dev_priv = dev->dev_private;
1921 if (flush_domains & I915_GEM_DOMAIN_CPU)
1922 drm_agp_chipset_flush(dev);
1923 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1924 invalidate_domains,
1925 flush_domains);
1926
1927 if (HAS_BSD(dev))
1928 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1929 invalidate_domains,
1930 flush_domains);
1931 }
1932
1933 /**
1934 * Ensures that all rendering to the object has completed and the object is
1935 * safe to unbind from the GTT or access from the CPU.
1936 */
1937 static int
1938 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
1939 bool interruptible)
1940 {
1941 struct drm_device *dev = obj->dev;
1942 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1943 int ret;
1944
1945 /* This function only exists to support waiting for existing rendering,
1946 * not for emitting required flushes.
1947 */
1948 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1949
1950 /* If there is rendering queued on the buffer being evicted, wait for
1951 * it.
1952 */
1953 if (obj_priv->active) {
1954 #if WATCH_BUF
1955 DRM_INFO("%s: object %p wait for seqno %08x\n",
1956 __func__, obj, obj_priv->last_rendering_seqno);
1957 #endif
1958 ret = i915_do_wait_request(dev,
1959 obj_priv->last_rendering_seqno,
1960 interruptible,
1961 obj_priv->ring);
1962 if (ret != 0)
1963 return ret;
1964 }
1965
1966 return 0;
1967 }
1968
1969 /**
1970 * Unbinds an object from the GTT aperture.
1971 */
1972 int
1973 i915_gem_object_unbind(struct drm_gem_object *obj)
1974 {
1975 struct drm_device *dev = obj->dev;
1976 drm_i915_private_t *dev_priv = dev->dev_private;
1977 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1978 int ret = 0;
1979
1980 #if WATCH_BUF
1981 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1982 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1983 #endif
1984 if (obj_priv->gtt_space == NULL)
1985 return 0;
1986
1987 if (obj_priv->pin_count != 0) {
1988 DRM_ERROR("Attempting to unbind pinned buffer\n");
1989 return -EINVAL;
1990 }
1991
1992 /* blow away mappings if mapped through GTT */
1993 i915_gem_release_mmap(obj);
1994
1995 /* Move the object to the CPU domain to ensure that
1996 * any possible CPU writes while it's not in the GTT
1997 * are flushed when we go to remap it. This will
1998 * also ensure that all pending GPU writes are finished
1999 * before we unbind.
2000 */
2001 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2002 if (ret == -ERESTARTSYS)
2003 return ret;
2004 /* Continue on if we fail due to EIO, the GPU is hung so we
2005 * should be safe and we need to cleanup or else we might
2006 * cause memory corruption through use-after-free.
2007 */
2008
2009 /* release the fence reg _after_ flushing */
2010 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2011 i915_gem_clear_fence_reg(obj);
2012
2013 if (obj_priv->agp_mem != NULL) {
2014 drm_unbind_agp(obj_priv->agp_mem);
2015 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2016 obj_priv->agp_mem = NULL;
2017 }
2018
2019 i915_gem_object_put_pages(obj);
2020 BUG_ON(obj_priv->pages_refcount);
2021
2022 if (obj_priv->gtt_space) {
2023 atomic_dec(&dev->gtt_count);
2024 atomic_sub(obj->size, &dev->gtt_memory);
2025
2026 drm_mm_put_block(obj_priv->gtt_space);
2027 obj_priv->gtt_space = NULL;
2028 }
2029
2030 /* Remove ourselves from the LRU list if present. */
2031 spin_lock(&dev_priv->mm.active_list_lock);
2032 if (!list_empty(&obj_priv->list))
2033 list_del_init(&obj_priv->list);
2034 spin_unlock(&dev_priv->mm.active_list_lock);
2035
2036 if (i915_gem_object_is_purgeable(obj_priv))
2037 i915_gem_object_truncate(obj);
2038
2039 trace_i915_gem_object_unbind(obj);
2040
2041 return ret;
2042 }
2043
2044 int
2045 i915_gpu_idle(struct drm_device *dev)
2046 {
2047 drm_i915_private_t *dev_priv = dev->dev_private;
2048 bool lists_empty;
2049 uint32_t seqno1, seqno2;
2050 int ret;
2051
2052 spin_lock(&dev_priv->mm.active_list_lock);
2053 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2054 list_empty(&dev_priv->render_ring.active_list) &&
2055 (!HAS_BSD(dev) ||
2056 list_empty(&dev_priv->bsd_ring.active_list)));
2057 spin_unlock(&dev_priv->mm.active_list_lock);
2058
2059 if (lists_empty)
2060 return 0;
2061
2062 /* Flush everything onto the inactive list. */
2063 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2064 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2065 &dev_priv->render_ring);
2066 if (seqno1 == 0)
2067 return -ENOMEM;
2068 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2069
2070 if (HAS_BSD(dev)) {
2071 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2072 &dev_priv->bsd_ring);
2073 if (seqno2 == 0)
2074 return -ENOMEM;
2075
2076 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2077 if (ret)
2078 return ret;
2079 }
2080
2081
2082 return ret;
2083 }
2084
2085 int
2086 i915_gem_object_get_pages(struct drm_gem_object *obj,
2087 gfp_t gfpmask)
2088 {
2089 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2090 int page_count, i;
2091 struct address_space *mapping;
2092 struct inode *inode;
2093 struct page *page;
2094
2095 BUG_ON(obj_priv->pages_refcount
2096 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2097
2098 if (obj_priv->pages_refcount++ != 0)
2099 return 0;
2100
2101 /* Get the list of pages out of our struct file. They'll be pinned
2102 * at this point until we release them.
2103 */
2104 page_count = obj->size / PAGE_SIZE;
2105 BUG_ON(obj_priv->pages != NULL);
2106 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2107 if (obj_priv->pages == NULL) {
2108 obj_priv->pages_refcount--;
2109 return -ENOMEM;
2110 }
2111
2112 inode = obj->filp->f_path.dentry->d_inode;
2113 mapping = inode->i_mapping;
2114 for (i = 0; i < page_count; i++) {
2115 page = read_cache_page_gfp(mapping, i,
2116 GFP_HIGHUSER |
2117 __GFP_COLD |
2118 __GFP_RECLAIMABLE |
2119 gfpmask);
2120 if (IS_ERR(page))
2121 goto err_pages;
2122
2123 obj_priv->pages[i] = page;
2124 }
2125
2126 if (obj_priv->tiling_mode != I915_TILING_NONE)
2127 i915_gem_object_do_bit_17_swizzle(obj);
2128
2129 return 0;
2130
2131 err_pages:
2132 while (i--)
2133 page_cache_release(obj_priv->pages[i]);
2134
2135 drm_free_large(obj_priv->pages);
2136 obj_priv->pages = NULL;
2137 obj_priv->pages_refcount--;
2138 return PTR_ERR(page);
2139 }
2140
2141 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2142 {
2143 struct drm_gem_object *obj = reg->obj;
2144 struct drm_device *dev = obj->dev;
2145 drm_i915_private_t *dev_priv = dev->dev_private;
2146 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2147 int regnum = obj_priv->fence_reg;
2148 uint64_t val;
2149
2150 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2151 0xfffff000) << 32;
2152 val |= obj_priv->gtt_offset & 0xfffff000;
2153 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2154 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2155
2156 if (obj_priv->tiling_mode == I915_TILING_Y)
2157 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2158 val |= I965_FENCE_REG_VALID;
2159
2160 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2161 }
2162
2163 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2164 {
2165 struct drm_gem_object *obj = reg->obj;
2166 struct drm_device *dev = obj->dev;
2167 drm_i915_private_t *dev_priv = dev->dev_private;
2168 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2169 int regnum = obj_priv->fence_reg;
2170 uint64_t val;
2171
2172 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2173 0xfffff000) << 32;
2174 val |= obj_priv->gtt_offset & 0xfffff000;
2175 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2176 if (obj_priv->tiling_mode == I915_TILING_Y)
2177 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2178 val |= I965_FENCE_REG_VALID;
2179
2180 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2181 }
2182
2183 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2184 {
2185 struct drm_gem_object *obj = reg->obj;
2186 struct drm_device *dev = obj->dev;
2187 drm_i915_private_t *dev_priv = dev->dev_private;
2188 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2189 int regnum = obj_priv->fence_reg;
2190 int tile_width;
2191 uint32_t fence_reg, val;
2192 uint32_t pitch_val;
2193
2194 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2195 (obj_priv->gtt_offset & (obj->size - 1))) {
2196 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2197 __func__, obj_priv->gtt_offset, obj->size);
2198 return;
2199 }
2200
2201 if (obj_priv->tiling_mode == I915_TILING_Y &&
2202 HAS_128_BYTE_Y_TILING(dev))
2203 tile_width = 128;
2204 else
2205 tile_width = 512;
2206
2207 /* Note: pitch better be a power of two tile widths */
2208 pitch_val = obj_priv->stride / tile_width;
2209 pitch_val = ffs(pitch_val) - 1;
2210
2211 if (obj_priv->tiling_mode == I915_TILING_Y &&
2212 HAS_128_BYTE_Y_TILING(dev))
2213 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2214 else
2215 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2216
2217 val = obj_priv->gtt_offset;
2218 if (obj_priv->tiling_mode == I915_TILING_Y)
2219 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2220 val |= I915_FENCE_SIZE_BITS(obj->size);
2221 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2222 val |= I830_FENCE_REG_VALID;
2223
2224 if (regnum < 8)
2225 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2226 else
2227 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2228 I915_WRITE(fence_reg, val);
2229 }
2230
2231 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2232 {
2233 struct drm_gem_object *obj = reg->obj;
2234 struct drm_device *dev = obj->dev;
2235 drm_i915_private_t *dev_priv = dev->dev_private;
2236 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2237 int regnum = obj_priv->fence_reg;
2238 uint32_t val;
2239 uint32_t pitch_val;
2240 uint32_t fence_size_bits;
2241
2242 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2243 (obj_priv->gtt_offset & (obj->size - 1))) {
2244 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2245 __func__, obj_priv->gtt_offset);
2246 return;
2247 }
2248
2249 pitch_val = obj_priv->stride / 128;
2250 pitch_val = ffs(pitch_val) - 1;
2251 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2252
2253 val = obj_priv->gtt_offset;
2254 if (obj_priv->tiling_mode == I915_TILING_Y)
2255 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2256 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2257 WARN_ON(fence_size_bits & ~0x00000f00);
2258 val |= fence_size_bits;
2259 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2260 val |= I830_FENCE_REG_VALID;
2261
2262 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2263 }
2264
2265 static int i915_find_fence_reg(struct drm_device *dev)
2266 {
2267 struct drm_i915_fence_reg *reg = NULL;
2268 struct drm_i915_gem_object *obj_priv = NULL;
2269 struct drm_i915_private *dev_priv = dev->dev_private;
2270 struct drm_gem_object *obj = NULL;
2271 int i, avail, ret;
2272
2273 /* First try to find a free reg */
2274 avail = 0;
2275 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2276 reg = &dev_priv->fence_regs[i];
2277 if (!reg->obj)
2278 return i;
2279
2280 obj_priv = to_intel_bo(reg->obj);
2281 if (!obj_priv->pin_count)
2282 avail++;
2283 }
2284
2285 if (avail == 0)
2286 return -ENOSPC;
2287
2288 /* None available, try to steal one or wait for a user to finish */
2289 i = I915_FENCE_REG_NONE;
2290 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2291 lru_list) {
2292 obj = reg->obj;
2293 obj_priv = to_intel_bo(obj);
2294
2295 if (obj_priv->pin_count)
2296 continue;
2297
2298 /* found one! */
2299 i = obj_priv->fence_reg;
2300 break;
2301 }
2302
2303 BUG_ON(i == I915_FENCE_REG_NONE);
2304
2305 /* We only have a reference on obj from the active list. put_fence_reg
2306 * might drop that one, causing a use-after-free in it. So hold a
2307 * private reference to obj like the other callers of put_fence_reg
2308 * (set_tiling ioctl) do. */
2309 drm_gem_object_reference(obj);
2310 ret = i915_gem_object_put_fence_reg(obj);
2311 drm_gem_object_unreference(obj);
2312 if (ret != 0)
2313 return ret;
2314
2315 return i;
2316 }
2317
2318 /**
2319 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2320 * @obj: object to map through a fence reg
2321 *
2322 * When mapping objects through the GTT, userspace wants to be able to write
2323 * to them without having to worry about swizzling if the object is tiled.
2324 *
2325 * This function walks the fence regs looking for a free one for @obj,
2326 * stealing one if it can't find any.
2327 *
2328 * It then sets up the reg based on the object's properties: address, pitch
2329 * and tiling format.
2330 */
2331 int
2332 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2333 {
2334 struct drm_device *dev = obj->dev;
2335 struct drm_i915_private *dev_priv = dev->dev_private;
2336 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2337 struct drm_i915_fence_reg *reg = NULL;
2338 int ret;
2339
2340 /* Just update our place in the LRU if our fence is getting used. */
2341 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2342 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2343 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2344 return 0;
2345 }
2346
2347 switch (obj_priv->tiling_mode) {
2348 case I915_TILING_NONE:
2349 WARN(1, "allocating a fence for non-tiled object?\n");
2350 break;
2351 case I915_TILING_X:
2352 if (!obj_priv->stride)
2353 return -EINVAL;
2354 WARN((obj_priv->stride & (512 - 1)),
2355 "object 0x%08x is X tiled but has non-512B pitch\n",
2356 obj_priv->gtt_offset);
2357 break;
2358 case I915_TILING_Y:
2359 if (!obj_priv->stride)
2360 return -EINVAL;
2361 WARN((obj_priv->stride & (128 - 1)),
2362 "object 0x%08x is Y tiled but has non-128B pitch\n",
2363 obj_priv->gtt_offset);
2364 break;
2365 }
2366
2367 ret = i915_find_fence_reg(dev);
2368 if (ret < 0)
2369 return ret;
2370
2371 obj_priv->fence_reg = ret;
2372 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2373 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2374
2375 reg->obj = obj;
2376
2377 if (IS_GEN6(dev))
2378 sandybridge_write_fence_reg(reg);
2379 else if (IS_I965G(dev))
2380 i965_write_fence_reg(reg);
2381 else if (IS_I9XX(dev))
2382 i915_write_fence_reg(reg);
2383 else
2384 i830_write_fence_reg(reg);
2385
2386 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2387 obj_priv->tiling_mode);
2388
2389 return 0;
2390 }
2391
2392 /**
2393 * i915_gem_clear_fence_reg - clear out fence register info
2394 * @obj: object to clear
2395 *
2396 * Zeroes out the fence register itself and clears out the associated
2397 * data structures in dev_priv and obj_priv.
2398 */
2399 static void
2400 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2401 {
2402 struct drm_device *dev = obj->dev;
2403 drm_i915_private_t *dev_priv = dev->dev_private;
2404 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2405 struct drm_i915_fence_reg *reg =
2406 &dev_priv->fence_regs[obj_priv->fence_reg];
2407
2408 if (IS_GEN6(dev)) {
2409 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2410 (obj_priv->fence_reg * 8), 0);
2411 } else if (IS_I965G(dev)) {
2412 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2413 } else {
2414 uint32_t fence_reg;
2415
2416 if (obj_priv->fence_reg < 8)
2417 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2418 else
2419 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2420 8) * 4;
2421
2422 I915_WRITE(fence_reg, 0);
2423 }
2424
2425 reg->obj = NULL;
2426 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2427 list_del_init(&reg->lru_list);
2428 }
2429
2430 /**
2431 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2432 * to the buffer to finish, and then resets the fence register.
2433 * @obj: tiled object holding a fence register.
2434 *
2435 * Zeroes out the fence register itself and clears out the associated
2436 * data structures in dev_priv and obj_priv.
2437 */
2438 int
2439 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2440 {
2441 struct drm_device *dev = obj->dev;
2442 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2443
2444 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2445 return 0;
2446
2447 /* If we've changed tiling, GTT-mappings of the object
2448 * need to re-fault to ensure that the correct fence register
2449 * setup is in place.
2450 */
2451 i915_gem_release_mmap(obj);
2452
2453 /* On the i915, GPU access to tiled buffers is via a fence,
2454 * therefore we must wait for any outstanding access to complete
2455 * before clearing the fence.
2456 */
2457 if (!IS_I965G(dev)) {
2458 int ret;
2459
2460 ret = i915_gem_object_flush_gpu_write_domain(obj);
2461 if (ret != 0)
2462 return ret;
2463
2464 ret = i915_gem_object_wait_rendering(obj, true);
2465 if (ret != 0)
2466 return ret;
2467 }
2468
2469 i915_gem_object_flush_gtt_write_domain(obj);
2470 i915_gem_clear_fence_reg (obj);
2471
2472 return 0;
2473 }
2474
2475 /**
2476 * Finds free space in the GTT aperture and binds the object there.
2477 */
2478 static int
2479 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2480 {
2481 struct drm_device *dev = obj->dev;
2482 drm_i915_private_t *dev_priv = dev->dev_private;
2483 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2484 struct drm_mm_node *free_space;
2485 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2486 int ret;
2487
2488 if (obj_priv->madv != I915_MADV_WILLNEED) {
2489 DRM_ERROR("Attempting to bind a purgeable object\n");
2490 return -EINVAL;
2491 }
2492
2493 if (alignment == 0)
2494 alignment = i915_gem_get_gtt_alignment(obj);
2495 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2496 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2497 return -EINVAL;
2498 }
2499
2500 /* If the object is bigger than the entire aperture, reject it early
2501 * before evicting everything in a vain attempt to find space.
2502 */
2503 if (obj->size > dev->gtt_total) {
2504 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2505 return -E2BIG;
2506 }
2507
2508 search_free:
2509 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2510 obj->size, alignment, 0);
2511 if (free_space != NULL) {
2512 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2513 alignment);
2514 if (obj_priv->gtt_space != NULL)
2515 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2516 }
2517 if (obj_priv->gtt_space == NULL) {
2518 /* If the gtt is empty and we're still having trouble
2519 * fitting our object in, we're out of memory.
2520 */
2521 #if WATCH_LRU
2522 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2523 #endif
2524 ret = i915_gem_evict_something(dev, obj->size, alignment);
2525 if (ret)
2526 return ret;
2527
2528 goto search_free;
2529 }
2530
2531 #if WATCH_BUF
2532 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2533 obj->size, obj_priv->gtt_offset);
2534 #endif
2535 ret = i915_gem_object_get_pages(obj, gfpmask);
2536 if (ret) {
2537 drm_mm_put_block(obj_priv->gtt_space);
2538 obj_priv->gtt_space = NULL;
2539
2540 if (ret == -ENOMEM) {
2541 /* first try to clear up some space from the GTT */
2542 ret = i915_gem_evict_something(dev, obj->size,
2543 alignment);
2544 if (ret) {
2545 /* now try to shrink everyone else */
2546 if (gfpmask) {
2547 gfpmask = 0;
2548 goto search_free;
2549 }
2550
2551 return ret;
2552 }
2553
2554 goto search_free;
2555 }
2556
2557 return ret;
2558 }
2559
2560 /* Create an AGP memory structure pointing at our pages, and bind it
2561 * into the GTT.
2562 */
2563 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2564 obj_priv->pages,
2565 obj->size >> PAGE_SHIFT,
2566 obj_priv->gtt_offset,
2567 obj_priv->agp_type);
2568 if (obj_priv->agp_mem == NULL) {
2569 i915_gem_object_put_pages(obj);
2570 drm_mm_put_block(obj_priv->gtt_space);
2571 obj_priv->gtt_space = NULL;
2572
2573 ret = i915_gem_evict_something(dev, obj->size, alignment);
2574 if (ret)
2575 return ret;
2576
2577 goto search_free;
2578 }
2579 atomic_inc(&dev->gtt_count);
2580 atomic_add(obj->size, &dev->gtt_memory);
2581
2582 /* keep track of bounds object by adding it to the inactive list */
2583 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2584
2585 /* Assert that the object is not currently in any GPU domain. As it
2586 * wasn't in the GTT, there shouldn't be any way it could have been in
2587 * a GPU cache
2588 */
2589 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2590 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2591
2592 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2593
2594 return 0;
2595 }
2596
2597 void
2598 i915_gem_clflush_object(struct drm_gem_object *obj)
2599 {
2600 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2601
2602 /* If we don't have a page list set up, then we're not pinned
2603 * to GPU, and we can ignore the cache flush because it'll happen
2604 * again at bind time.
2605 */
2606 if (obj_priv->pages == NULL)
2607 return;
2608
2609 trace_i915_gem_object_clflush(obj);
2610
2611 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2612 }
2613
2614 /** Flushes any GPU write domain for the object if it's dirty. */
2615 static int
2616 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2617 {
2618 struct drm_device *dev = obj->dev;
2619 uint32_t old_write_domain;
2620 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2621
2622 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2623 return 0;
2624
2625 /* Queue the GPU write cache flushing we need. */
2626 old_write_domain = obj->write_domain;
2627 i915_gem_flush(dev, 0, obj->write_domain);
2628 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2629 return -ENOMEM;
2630
2631 trace_i915_gem_object_change_domain(obj,
2632 obj->read_domains,
2633 old_write_domain);
2634 return 0;
2635 }
2636
2637 /** Flushes the GTT write domain for the object if it's dirty. */
2638 static void
2639 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2640 {
2641 uint32_t old_write_domain;
2642
2643 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2644 return;
2645
2646 /* No actual flushing is required for the GTT write domain. Writes
2647 * to it immediately go to main memory as far as we know, so there's
2648 * no chipset flush. It also doesn't land in render cache.
2649 */
2650 old_write_domain = obj->write_domain;
2651 obj->write_domain = 0;
2652
2653 trace_i915_gem_object_change_domain(obj,
2654 obj->read_domains,
2655 old_write_domain);
2656 }
2657
2658 /** Flushes the CPU write domain for the object if it's dirty. */
2659 static void
2660 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2661 {
2662 struct drm_device *dev = obj->dev;
2663 uint32_t old_write_domain;
2664
2665 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2666 return;
2667
2668 i915_gem_clflush_object(obj);
2669 drm_agp_chipset_flush(dev);
2670 old_write_domain = obj->write_domain;
2671 obj->write_domain = 0;
2672
2673 trace_i915_gem_object_change_domain(obj,
2674 obj->read_domains,
2675 old_write_domain);
2676 }
2677
2678 int
2679 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2680 {
2681 int ret = 0;
2682
2683 switch (obj->write_domain) {
2684 case I915_GEM_DOMAIN_GTT:
2685 i915_gem_object_flush_gtt_write_domain(obj);
2686 break;
2687 case I915_GEM_DOMAIN_CPU:
2688 i915_gem_object_flush_cpu_write_domain(obj);
2689 break;
2690 default:
2691 ret = i915_gem_object_flush_gpu_write_domain(obj);
2692 break;
2693 }
2694
2695 return ret;
2696 }
2697
2698 /**
2699 * Moves a single object to the GTT read, and possibly write domain.
2700 *
2701 * This function returns when the move is complete, including waiting on
2702 * flushes to occur.
2703 */
2704 int
2705 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2706 {
2707 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2708 uint32_t old_write_domain, old_read_domains;
2709 int ret;
2710
2711 /* Not valid to be called on unbound objects. */
2712 if (obj_priv->gtt_space == NULL)
2713 return -EINVAL;
2714
2715 ret = i915_gem_object_flush_gpu_write_domain(obj);
2716 if (ret != 0)
2717 return ret;
2718
2719 /* Wait on any GPU rendering and flushing to occur. */
2720 ret = i915_gem_object_wait_rendering(obj, true);
2721 if (ret != 0)
2722 return ret;
2723
2724 old_write_domain = obj->write_domain;
2725 old_read_domains = obj->read_domains;
2726
2727 /* If we're writing through the GTT domain, then CPU and GPU caches
2728 * will need to be invalidated at next use.
2729 */
2730 if (write)
2731 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2732
2733 i915_gem_object_flush_cpu_write_domain(obj);
2734
2735 /* It should now be out of any other write domains, and we can update
2736 * the domain values for our changes.
2737 */
2738 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2739 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2740 if (write) {
2741 obj->write_domain = I915_GEM_DOMAIN_GTT;
2742 obj_priv->dirty = 1;
2743 }
2744
2745 trace_i915_gem_object_change_domain(obj,
2746 old_read_domains,
2747 old_write_domain);
2748
2749 return 0;
2750 }
2751
2752 /*
2753 * Prepare buffer for display plane. Use uninterruptible for possible flush
2754 * wait, as in modesetting process we're not supposed to be interrupted.
2755 */
2756 int
2757 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2758 {
2759 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2760 uint32_t old_write_domain, old_read_domains;
2761 int ret;
2762
2763 /* Not valid to be called on unbound objects. */
2764 if (obj_priv->gtt_space == NULL)
2765 return -EINVAL;
2766
2767 ret = i915_gem_object_flush_gpu_write_domain(obj);
2768 if (ret)
2769 return ret;
2770
2771 /* Wait on any GPU rendering and flushing to occur. */
2772 ret = i915_gem_object_wait_rendering(obj, false);
2773 if (ret != 0)
2774 return ret;
2775
2776 i915_gem_object_flush_cpu_write_domain(obj);
2777
2778 old_write_domain = obj->write_domain;
2779 old_read_domains = obj->read_domains;
2780
2781 /* It should now be out of any other write domains, and we can update
2782 * the domain values for our changes.
2783 */
2784 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2785 obj->read_domains = I915_GEM_DOMAIN_GTT;
2786 obj->write_domain = I915_GEM_DOMAIN_GTT;
2787 obj_priv->dirty = 1;
2788
2789 trace_i915_gem_object_change_domain(obj,
2790 old_read_domains,
2791 old_write_domain);
2792
2793 return 0;
2794 }
2795
2796 /**
2797 * Moves a single object to the CPU read, and possibly write domain.
2798 *
2799 * This function returns when the move is complete, including waiting on
2800 * flushes to occur.
2801 */
2802 static int
2803 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2804 {
2805 uint32_t old_write_domain, old_read_domains;
2806 int ret;
2807
2808 ret = i915_gem_object_flush_gpu_write_domain(obj);
2809 if (ret)
2810 return ret;
2811
2812 /* Wait on any GPU rendering and flushing to occur. */
2813 ret = i915_gem_object_wait_rendering(obj, true);
2814 if (ret != 0)
2815 return ret;
2816
2817 i915_gem_object_flush_gtt_write_domain(obj);
2818
2819 /* If we have a partially-valid cache of the object in the CPU,
2820 * finish invalidating it and free the per-page flags.
2821 */
2822 i915_gem_object_set_to_full_cpu_read_domain(obj);
2823
2824 old_write_domain = obj->write_domain;
2825 old_read_domains = obj->read_domains;
2826
2827 /* Flush the CPU cache if it's still invalid. */
2828 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2829 i915_gem_clflush_object(obj);
2830
2831 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2832 }
2833
2834 /* It should now be out of any other write domains, and we can update
2835 * the domain values for our changes.
2836 */
2837 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2838
2839 /* If we're writing through the CPU, then the GPU read domains will
2840 * need to be invalidated at next use.
2841 */
2842 if (write) {
2843 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2844 obj->write_domain = I915_GEM_DOMAIN_CPU;
2845 }
2846
2847 trace_i915_gem_object_change_domain(obj,
2848 old_read_domains,
2849 old_write_domain);
2850
2851 return 0;
2852 }
2853
2854 /*
2855 * Set the next domain for the specified object. This
2856 * may not actually perform the necessary flushing/invaliding though,
2857 * as that may want to be batched with other set_domain operations
2858 *
2859 * This is (we hope) the only really tricky part of gem. The goal
2860 * is fairly simple -- track which caches hold bits of the object
2861 * and make sure they remain coherent. A few concrete examples may
2862 * help to explain how it works. For shorthand, we use the notation
2863 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2864 * a pair of read and write domain masks.
2865 *
2866 * Case 1: the batch buffer
2867 *
2868 * 1. Allocated
2869 * 2. Written by CPU
2870 * 3. Mapped to GTT
2871 * 4. Read by GPU
2872 * 5. Unmapped from GTT
2873 * 6. Freed
2874 *
2875 * Let's take these a step at a time
2876 *
2877 * 1. Allocated
2878 * Pages allocated from the kernel may still have
2879 * cache contents, so we set them to (CPU, CPU) always.
2880 * 2. Written by CPU (using pwrite)
2881 * The pwrite function calls set_domain (CPU, CPU) and
2882 * this function does nothing (as nothing changes)
2883 * 3. Mapped by GTT
2884 * This function asserts that the object is not
2885 * currently in any GPU-based read or write domains
2886 * 4. Read by GPU
2887 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2888 * As write_domain is zero, this function adds in the
2889 * current read domains (CPU+COMMAND, 0).
2890 * flush_domains is set to CPU.
2891 * invalidate_domains is set to COMMAND
2892 * clflush is run to get data out of the CPU caches
2893 * then i915_dev_set_domain calls i915_gem_flush to
2894 * emit an MI_FLUSH and drm_agp_chipset_flush
2895 * 5. Unmapped from GTT
2896 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2897 * flush_domains and invalidate_domains end up both zero
2898 * so no flushing/invalidating happens
2899 * 6. Freed
2900 * yay, done
2901 *
2902 * Case 2: The shared render buffer
2903 *
2904 * 1. Allocated
2905 * 2. Mapped to GTT
2906 * 3. Read/written by GPU
2907 * 4. set_domain to (CPU,CPU)
2908 * 5. Read/written by CPU
2909 * 6. Read/written by GPU
2910 *
2911 * 1. Allocated
2912 * Same as last example, (CPU, CPU)
2913 * 2. Mapped to GTT
2914 * Nothing changes (assertions find that it is not in the GPU)
2915 * 3. Read/written by GPU
2916 * execbuffer calls set_domain (RENDER, RENDER)
2917 * flush_domains gets CPU
2918 * invalidate_domains gets GPU
2919 * clflush (obj)
2920 * MI_FLUSH and drm_agp_chipset_flush
2921 * 4. set_domain (CPU, CPU)
2922 * flush_domains gets GPU
2923 * invalidate_domains gets CPU
2924 * wait_rendering (obj) to make sure all drawing is complete.
2925 * This will include an MI_FLUSH to get the data from GPU
2926 * to memory
2927 * clflush (obj) to invalidate the CPU cache
2928 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2929 * 5. Read/written by CPU
2930 * cache lines are loaded and dirtied
2931 * 6. Read written by GPU
2932 * Same as last GPU access
2933 *
2934 * Case 3: The constant buffer
2935 *
2936 * 1. Allocated
2937 * 2. Written by CPU
2938 * 3. Read by GPU
2939 * 4. Updated (written) by CPU again
2940 * 5. Read by GPU
2941 *
2942 * 1. Allocated
2943 * (CPU, CPU)
2944 * 2. Written by CPU
2945 * (CPU, CPU)
2946 * 3. Read by GPU
2947 * (CPU+RENDER, 0)
2948 * flush_domains = CPU
2949 * invalidate_domains = RENDER
2950 * clflush (obj)
2951 * MI_FLUSH
2952 * drm_agp_chipset_flush
2953 * 4. Updated (written) by CPU again
2954 * (CPU, CPU)
2955 * flush_domains = 0 (no previous write domain)
2956 * invalidate_domains = 0 (no new read domains)
2957 * 5. Read by GPU
2958 * (CPU+RENDER, 0)
2959 * flush_domains = CPU
2960 * invalidate_domains = RENDER
2961 * clflush (obj)
2962 * MI_FLUSH
2963 * drm_agp_chipset_flush
2964 */
2965 static void
2966 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2967 {
2968 struct drm_device *dev = obj->dev;
2969 drm_i915_private_t *dev_priv = dev->dev_private;
2970 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2971 uint32_t invalidate_domains = 0;
2972 uint32_t flush_domains = 0;
2973 uint32_t old_read_domains;
2974
2975 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2976 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2977
2978 intel_mark_busy(dev, obj);
2979
2980 #if WATCH_BUF
2981 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2982 __func__, obj,
2983 obj->read_domains, obj->pending_read_domains,
2984 obj->write_domain, obj->pending_write_domain);
2985 #endif
2986 /*
2987 * If the object isn't moving to a new write domain,
2988 * let the object stay in multiple read domains
2989 */
2990 if (obj->pending_write_domain == 0)
2991 obj->pending_read_domains |= obj->read_domains;
2992 else
2993 obj_priv->dirty = 1;
2994
2995 /*
2996 * Flush the current write domain if
2997 * the new read domains don't match. Invalidate
2998 * any read domains which differ from the old
2999 * write domain
3000 */
3001 if (obj->write_domain &&
3002 obj->write_domain != obj->pending_read_domains) {
3003 flush_domains |= obj->write_domain;
3004 invalidate_domains |=
3005 obj->pending_read_domains & ~obj->write_domain;
3006 }
3007 /*
3008 * Invalidate any read caches which may have
3009 * stale data. That is, any new read domains.
3010 */
3011 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3012 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3013 #if WATCH_BUF
3014 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3015 __func__, flush_domains, invalidate_domains);
3016 #endif
3017 i915_gem_clflush_object(obj);
3018 }
3019
3020 old_read_domains = obj->read_domains;
3021
3022 /* The actual obj->write_domain will be updated with
3023 * pending_write_domain after we emit the accumulated flush for all
3024 * of our domain changes in execbuffers (which clears objects'
3025 * write_domains). So if we have a current write domain that we
3026 * aren't changing, set pending_write_domain to that.
3027 */
3028 if (flush_domains == 0 && obj->pending_write_domain == 0)
3029 obj->pending_write_domain = obj->write_domain;
3030 obj->read_domains = obj->pending_read_domains;
3031
3032 if (flush_domains & I915_GEM_GPU_DOMAINS) {
3033 if (obj_priv->ring == &dev_priv->render_ring)
3034 dev_priv->flush_rings |= FLUSH_RENDER_RING;
3035 else if (obj_priv->ring == &dev_priv->bsd_ring)
3036 dev_priv->flush_rings |= FLUSH_BSD_RING;
3037 }
3038
3039 dev->invalidate_domains |= invalidate_domains;
3040 dev->flush_domains |= flush_domains;
3041 #if WATCH_BUF
3042 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3043 __func__,
3044 obj->read_domains, obj->write_domain,
3045 dev->invalidate_domains, dev->flush_domains);
3046 #endif
3047
3048 trace_i915_gem_object_change_domain(obj,
3049 old_read_domains,
3050 obj->write_domain);
3051 }
3052
3053 /**
3054 * Moves the object from a partially CPU read to a full one.
3055 *
3056 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3057 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3058 */
3059 static void
3060 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3061 {
3062 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3063
3064 if (!obj_priv->page_cpu_valid)
3065 return;
3066
3067 /* If we're partially in the CPU read domain, finish moving it in.
3068 */
3069 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3070 int i;
3071
3072 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3073 if (obj_priv->page_cpu_valid[i])
3074 continue;
3075 drm_clflush_pages(obj_priv->pages + i, 1);
3076 }
3077 }
3078
3079 /* Free the page_cpu_valid mappings which are now stale, whether
3080 * or not we've got I915_GEM_DOMAIN_CPU.
3081 */
3082 kfree(obj_priv->page_cpu_valid);
3083 obj_priv->page_cpu_valid = NULL;
3084 }
3085
3086 /**
3087 * Set the CPU read domain on a range of the object.
3088 *
3089 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3090 * not entirely valid. The page_cpu_valid member of the object flags which
3091 * pages have been flushed, and will be respected by
3092 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3093 * of the whole object.
3094 *
3095 * This function returns when the move is complete, including waiting on
3096 * flushes to occur.
3097 */
3098 static int
3099 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3100 uint64_t offset, uint64_t size)
3101 {
3102 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3103 uint32_t old_read_domains;
3104 int i, ret;
3105
3106 if (offset == 0 && size == obj->size)
3107 return i915_gem_object_set_to_cpu_domain(obj, 0);
3108
3109 ret = i915_gem_object_flush_gpu_write_domain(obj);
3110 if (ret)
3111 return ret;
3112
3113 /* Wait on any GPU rendering and flushing to occur. */
3114 ret = i915_gem_object_wait_rendering(obj, true);
3115 if (ret != 0)
3116 return ret;
3117 i915_gem_object_flush_gtt_write_domain(obj);
3118
3119 /* If we're already fully in the CPU read domain, we're done. */
3120 if (obj_priv->page_cpu_valid == NULL &&
3121 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3122 return 0;
3123
3124 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3125 * newly adding I915_GEM_DOMAIN_CPU
3126 */
3127 if (obj_priv->page_cpu_valid == NULL) {
3128 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3129 GFP_KERNEL);
3130 if (obj_priv->page_cpu_valid == NULL)
3131 return -ENOMEM;
3132 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3133 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3134
3135 /* Flush the cache on any pages that are still invalid from the CPU's
3136 * perspective.
3137 */
3138 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3139 i++) {
3140 if (obj_priv->page_cpu_valid[i])
3141 continue;
3142
3143 drm_clflush_pages(obj_priv->pages + i, 1);
3144
3145 obj_priv->page_cpu_valid[i] = 1;
3146 }
3147
3148 /* It should now be out of any other write domains, and we can update
3149 * the domain values for our changes.
3150 */
3151 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3152
3153 old_read_domains = obj->read_domains;
3154 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3155
3156 trace_i915_gem_object_change_domain(obj,
3157 old_read_domains,
3158 obj->write_domain);
3159
3160 return 0;
3161 }
3162
3163 /**
3164 * Pin an object to the GTT and evaluate the relocations landing in it.
3165 */
3166 static int
3167 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3168 struct drm_file *file_priv,
3169 struct drm_i915_gem_exec_object2 *entry,
3170 struct drm_i915_gem_relocation_entry *relocs)
3171 {
3172 struct drm_device *dev = obj->dev;
3173 drm_i915_private_t *dev_priv = dev->dev_private;
3174 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3175 int i, ret;
3176 void __iomem *reloc_page;
3177 bool need_fence;
3178
3179 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3180 obj_priv->tiling_mode != I915_TILING_NONE;
3181
3182 /* Check fence reg constraints and rebind if necessary */
3183 if (need_fence &&
3184 !i915_gem_object_fence_offset_ok(obj,
3185 obj_priv->tiling_mode)) {
3186 ret = i915_gem_object_unbind(obj);
3187 if (ret)
3188 return ret;
3189 }
3190
3191 /* Choose the GTT offset for our buffer and put it there. */
3192 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3193 if (ret)
3194 return ret;
3195
3196 /*
3197 * Pre-965 chips need a fence register set up in order to
3198 * properly handle blits to/from tiled surfaces.
3199 */
3200 if (need_fence) {
3201 ret = i915_gem_object_get_fence_reg(obj);
3202 if (ret != 0) {
3203 i915_gem_object_unpin(obj);
3204 return ret;
3205 }
3206 }
3207
3208 entry->offset = obj_priv->gtt_offset;
3209
3210 /* Apply the relocations, using the GTT aperture to avoid cache
3211 * flushing requirements.
3212 */
3213 for (i = 0; i < entry->relocation_count; i++) {
3214 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3215 struct drm_gem_object *target_obj;
3216 struct drm_i915_gem_object *target_obj_priv;
3217 uint32_t reloc_val, reloc_offset;
3218 uint32_t __iomem *reloc_entry;
3219
3220 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3221 reloc->target_handle);
3222 if (target_obj == NULL) {
3223 i915_gem_object_unpin(obj);
3224 return -ENOENT;
3225 }
3226 target_obj_priv = to_intel_bo(target_obj);
3227
3228 #if WATCH_RELOC
3229 DRM_INFO("%s: obj %p offset %08x target %d "
3230 "read %08x write %08x gtt %08x "
3231 "presumed %08x delta %08x\n",
3232 __func__,
3233 obj,
3234 (int) reloc->offset,
3235 (int) reloc->target_handle,
3236 (int) reloc->read_domains,
3237 (int) reloc->write_domain,
3238 (int) target_obj_priv->gtt_offset,
3239 (int) reloc->presumed_offset,
3240 reloc->delta);
3241 #endif
3242
3243 /* The target buffer should have appeared before us in the
3244 * exec_object list, so it should have a GTT space bound by now.
3245 */
3246 if (target_obj_priv->gtt_space == NULL) {
3247 DRM_ERROR("No GTT space found for object %d\n",
3248 reloc->target_handle);
3249 drm_gem_object_unreference(target_obj);
3250 i915_gem_object_unpin(obj);
3251 return -EINVAL;
3252 }
3253
3254 /* Validate that the target is in a valid r/w GPU domain */
3255 if (reloc->write_domain & (reloc->write_domain - 1)) {
3256 DRM_ERROR("reloc with multiple write domains: "
3257 "obj %p target %d offset %d "
3258 "read %08x write %08x",
3259 obj, reloc->target_handle,
3260 (int) reloc->offset,
3261 reloc->read_domains,
3262 reloc->write_domain);
3263 return -EINVAL;
3264 }
3265 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3266 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3267 DRM_ERROR("reloc with read/write CPU domains: "
3268 "obj %p target %d offset %d "
3269 "read %08x write %08x",
3270 obj, reloc->target_handle,
3271 (int) reloc->offset,
3272 reloc->read_domains,
3273 reloc->write_domain);
3274 drm_gem_object_unreference(target_obj);
3275 i915_gem_object_unpin(obj);
3276 return -EINVAL;
3277 }
3278 if (reloc->write_domain && target_obj->pending_write_domain &&
3279 reloc->write_domain != target_obj->pending_write_domain) {
3280 DRM_ERROR("Write domain conflict: "
3281 "obj %p target %d offset %d "
3282 "new %08x old %08x\n",
3283 obj, reloc->target_handle,
3284 (int) reloc->offset,
3285 reloc->write_domain,
3286 target_obj->pending_write_domain);
3287 drm_gem_object_unreference(target_obj);
3288 i915_gem_object_unpin(obj);
3289 return -EINVAL;
3290 }
3291
3292 target_obj->pending_read_domains |= reloc->read_domains;
3293 target_obj->pending_write_domain |= reloc->write_domain;
3294
3295 /* If the relocation already has the right value in it, no
3296 * more work needs to be done.
3297 */
3298 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3299 drm_gem_object_unreference(target_obj);
3300 continue;
3301 }
3302
3303 /* Check that the relocation address is valid... */
3304 if (reloc->offset > obj->size - 4) {
3305 DRM_ERROR("Relocation beyond object bounds: "
3306 "obj %p target %d offset %d size %d.\n",
3307 obj, reloc->target_handle,
3308 (int) reloc->offset, (int) obj->size);
3309 drm_gem_object_unreference(target_obj);
3310 i915_gem_object_unpin(obj);
3311 return -EINVAL;
3312 }
3313 if (reloc->offset & 3) {
3314 DRM_ERROR("Relocation not 4-byte aligned: "
3315 "obj %p target %d offset %d.\n",
3316 obj, reloc->target_handle,
3317 (int) reloc->offset);
3318 drm_gem_object_unreference(target_obj);
3319 i915_gem_object_unpin(obj);
3320 return -EINVAL;
3321 }
3322
3323 /* and points to somewhere within the target object. */
3324 if (reloc->delta >= target_obj->size) {
3325 DRM_ERROR("Relocation beyond target object bounds: "
3326 "obj %p target %d delta %d size %d.\n",
3327 obj, reloc->target_handle,
3328 (int) reloc->delta, (int) target_obj->size);
3329 drm_gem_object_unreference(target_obj);
3330 i915_gem_object_unpin(obj);
3331 return -EINVAL;
3332 }
3333
3334 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3335 if (ret != 0) {
3336 drm_gem_object_unreference(target_obj);
3337 i915_gem_object_unpin(obj);
3338 return -EINVAL;
3339 }
3340
3341 /* Map the page containing the relocation we're going to
3342 * perform.
3343 */
3344 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3345 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3346 (reloc_offset &
3347 ~(PAGE_SIZE - 1)),
3348 KM_USER0);
3349 reloc_entry = (uint32_t __iomem *)(reloc_page +
3350 (reloc_offset & (PAGE_SIZE - 1)));
3351 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3352
3353 #if WATCH_BUF
3354 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3355 obj, (unsigned int) reloc->offset,
3356 readl(reloc_entry), reloc_val);
3357 #endif
3358 writel(reloc_val, reloc_entry);
3359 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3360
3361 /* The updated presumed offset for this entry will be
3362 * copied back out to the user.
3363 */
3364 reloc->presumed_offset = target_obj_priv->gtt_offset;
3365
3366 drm_gem_object_unreference(target_obj);
3367 }
3368
3369 #if WATCH_BUF
3370 if (0)
3371 i915_gem_dump_object(obj, 128, __func__, ~0);
3372 #endif
3373 return 0;
3374 }
3375
3376 /* Throttle our rendering by waiting until the ring has completed our requests
3377 * emitted over 20 msec ago.
3378 *
3379 * Note that if we were to use the current jiffies each time around the loop,
3380 * we wouldn't escape the function with any frames outstanding if the time to
3381 * render a frame was over 20ms.
3382 *
3383 * This should get us reasonable parallelism between CPU and GPU but also
3384 * relatively low latency when blocking on a particular request to finish.
3385 */
3386 static int
3387 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3388 {
3389 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3390 int ret = 0;
3391 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3392
3393 mutex_lock(&dev->struct_mutex);
3394 while (!list_empty(&i915_file_priv->mm.request_list)) {
3395 struct drm_i915_gem_request *request;
3396
3397 request = list_first_entry(&i915_file_priv->mm.request_list,
3398 struct drm_i915_gem_request,
3399 client_list);
3400
3401 if (time_after_eq(request->emitted_jiffies, recent_enough))
3402 break;
3403
3404 ret = i915_wait_request(dev, request->seqno, request->ring);
3405 if (ret != 0)
3406 break;
3407 }
3408 mutex_unlock(&dev->struct_mutex);
3409
3410 return ret;
3411 }
3412
3413 static int
3414 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3415 uint32_t buffer_count,
3416 struct drm_i915_gem_relocation_entry **relocs)
3417 {
3418 uint32_t reloc_count = 0, reloc_index = 0, i;
3419 int ret;
3420
3421 *relocs = NULL;
3422 for (i = 0; i < buffer_count; i++) {
3423 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3424 return -EINVAL;
3425 reloc_count += exec_list[i].relocation_count;
3426 }
3427
3428 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3429 if (*relocs == NULL) {
3430 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3431 return -ENOMEM;
3432 }
3433
3434 for (i = 0; i < buffer_count; i++) {
3435 struct drm_i915_gem_relocation_entry __user *user_relocs;
3436
3437 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3438
3439 ret = copy_from_user(&(*relocs)[reloc_index],
3440 user_relocs,
3441 exec_list[i].relocation_count *
3442 sizeof(**relocs));
3443 if (ret != 0) {
3444 drm_free_large(*relocs);
3445 *relocs = NULL;
3446 return -EFAULT;
3447 }
3448
3449 reloc_index += exec_list[i].relocation_count;
3450 }
3451
3452 return 0;
3453 }
3454
3455 static int
3456 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3457 uint32_t buffer_count,
3458 struct drm_i915_gem_relocation_entry *relocs)
3459 {
3460 uint32_t reloc_count = 0, i;
3461 int ret = 0;
3462
3463 if (relocs == NULL)
3464 return 0;
3465
3466 for (i = 0; i < buffer_count; i++) {
3467 struct drm_i915_gem_relocation_entry __user *user_relocs;
3468 int unwritten;
3469
3470 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3471
3472 unwritten = copy_to_user(user_relocs,
3473 &relocs[reloc_count],
3474 exec_list[i].relocation_count *
3475 sizeof(*relocs));
3476
3477 if (unwritten) {
3478 ret = -EFAULT;
3479 goto err;
3480 }
3481
3482 reloc_count += exec_list[i].relocation_count;
3483 }
3484
3485 err:
3486 drm_free_large(relocs);
3487
3488 return ret;
3489 }
3490
3491 static int
3492 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3493 uint64_t exec_offset)
3494 {
3495 uint32_t exec_start, exec_len;
3496
3497 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3498 exec_len = (uint32_t) exec->batch_len;
3499
3500 if ((exec_start | exec_len) & 0x7)
3501 return -EINVAL;
3502
3503 if (!exec_start)
3504 return -EINVAL;
3505
3506 return 0;
3507 }
3508
3509 static int
3510 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3511 struct drm_gem_object **object_list,
3512 int count)
3513 {
3514 drm_i915_private_t *dev_priv = dev->dev_private;
3515 struct drm_i915_gem_object *obj_priv;
3516 DEFINE_WAIT(wait);
3517 int i, ret = 0;
3518
3519 for (;;) {
3520 prepare_to_wait(&dev_priv->pending_flip_queue,
3521 &wait, TASK_INTERRUPTIBLE);
3522 for (i = 0; i < count; i++) {
3523 obj_priv = to_intel_bo(object_list[i]);
3524 if (atomic_read(&obj_priv->pending_flip) > 0)
3525 break;
3526 }
3527 if (i == count)
3528 break;
3529
3530 if (!signal_pending(current)) {
3531 mutex_unlock(&dev->struct_mutex);
3532 schedule();
3533 mutex_lock(&dev->struct_mutex);
3534 continue;
3535 }
3536 ret = -ERESTARTSYS;
3537 break;
3538 }
3539 finish_wait(&dev_priv->pending_flip_queue, &wait);
3540
3541 return ret;
3542 }
3543
3544
3545 int
3546 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3547 struct drm_file *file_priv,
3548 struct drm_i915_gem_execbuffer2 *args,
3549 struct drm_i915_gem_exec_object2 *exec_list)
3550 {
3551 drm_i915_private_t *dev_priv = dev->dev_private;
3552 struct drm_gem_object **object_list = NULL;
3553 struct drm_gem_object *batch_obj;
3554 struct drm_i915_gem_object *obj_priv;
3555 struct drm_clip_rect *cliprects = NULL;
3556 struct drm_i915_gem_relocation_entry *relocs = NULL;
3557 int ret = 0, ret2, i, pinned = 0;
3558 uint64_t exec_offset;
3559 uint32_t seqno, flush_domains, reloc_index;
3560 int pin_tries, flips;
3561
3562 struct intel_ring_buffer *ring = NULL;
3563
3564 #if WATCH_EXEC
3565 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3566 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3567 #endif
3568 if (args->flags & I915_EXEC_BSD) {
3569 if (!HAS_BSD(dev)) {
3570 DRM_ERROR("execbuf with wrong flag\n");
3571 return -EINVAL;
3572 }
3573 ring = &dev_priv->bsd_ring;
3574 } else {
3575 ring = &dev_priv->render_ring;
3576 }
3577
3578 if (args->buffer_count < 1) {
3579 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3580 return -EINVAL;
3581 }
3582 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3583 if (object_list == NULL) {
3584 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3585 args->buffer_count);
3586 ret = -ENOMEM;
3587 goto pre_mutex_err;
3588 }
3589
3590 if (args->num_cliprects != 0) {
3591 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3592 GFP_KERNEL);
3593 if (cliprects == NULL) {
3594 ret = -ENOMEM;
3595 goto pre_mutex_err;
3596 }
3597
3598 ret = copy_from_user(cliprects,
3599 (struct drm_clip_rect __user *)
3600 (uintptr_t) args->cliprects_ptr,
3601 sizeof(*cliprects) * args->num_cliprects);
3602 if (ret != 0) {
3603 DRM_ERROR("copy %d cliprects failed: %d\n",
3604 args->num_cliprects, ret);
3605 ret = -EFAULT;
3606 goto pre_mutex_err;
3607 }
3608 }
3609
3610 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3611 &relocs);
3612 if (ret != 0)
3613 goto pre_mutex_err;
3614
3615 mutex_lock(&dev->struct_mutex);
3616
3617 i915_verify_inactive(dev, __FILE__, __LINE__);
3618
3619 if (atomic_read(&dev_priv->mm.wedged)) {
3620 mutex_unlock(&dev->struct_mutex);
3621 ret = -EIO;
3622 goto pre_mutex_err;
3623 }
3624
3625 if (dev_priv->mm.suspended) {
3626 mutex_unlock(&dev->struct_mutex);
3627 ret = -EBUSY;
3628 goto pre_mutex_err;
3629 }
3630
3631 /* Look up object handles */
3632 flips = 0;
3633 for (i = 0; i < args->buffer_count; i++) {
3634 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3635 exec_list[i].handle);
3636 if (object_list[i] == NULL) {
3637 DRM_ERROR("Invalid object handle %d at index %d\n",
3638 exec_list[i].handle, i);
3639 /* prevent error path from reading uninitialized data */
3640 args->buffer_count = i + 1;
3641 ret = -ENOENT;
3642 goto err;
3643 }
3644
3645 obj_priv = to_intel_bo(object_list[i]);
3646 if (obj_priv->in_execbuffer) {
3647 DRM_ERROR("Object %p appears more than once in object list\n",
3648 object_list[i]);
3649 /* prevent error path from reading uninitialized data */
3650 args->buffer_count = i + 1;
3651 ret = -EINVAL;
3652 goto err;
3653 }
3654 obj_priv->in_execbuffer = true;
3655 flips += atomic_read(&obj_priv->pending_flip);
3656 }
3657
3658 if (flips > 0) {
3659 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3660 args->buffer_count);
3661 if (ret)
3662 goto err;
3663 }
3664
3665 /* Pin and relocate */
3666 for (pin_tries = 0; ; pin_tries++) {
3667 ret = 0;
3668 reloc_index = 0;
3669
3670 for (i = 0; i < args->buffer_count; i++) {
3671 object_list[i]->pending_read_domains = 0;
3672 object_list[i]->pending_write_domain = 0;
3673 ret = i915_gem_object_pin_and_relocate(object_list[i],
3674 file_priv,
3675 &exec_list[i],
3676 &relocs[reloc_index]);
3677 if (ret)
3678 break;
3679 pinned = i + 1;
3680 reloc_index += exec_list[i].relocation_count;
3681 }
3682 /* success */
3683 if (ret == 0)
3684 break;
3685
3686 /* error other than GTT full, or we've already tried again */
3687 if (ret != -ENOSPC || pin_tries >= 1) {
3688 if (ret != -ERESTARTSYS) {
3689 unsigned long long total_size = 0;
3690 int num_fences = 0;
3691 for (i = 0; i < args->buffer_count; i++) {
3692 obj_priv = to_intel_bo(object_list[i]);
3693
3694 total_size += object_list[i]->size;
3695 num_fences +=
3696 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3697 obj_priv->tiling_mode != I915_TILING_NONE;
3698 }
3699 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3700 pinned+1, args->buffer_count,
3701 total_size, num_fences,
3702 ret);
3703 DRM_ERROR("%d objects [%d pinned], "
3704 "%d object bytes [%d pinned], "
3705 "%d/%d gtt bytes\n",
3706 atomic_read(&dev->object_count),
3707 atomic_read(&dev->pin_count),
3708 atomic_read(&dev->object_memory),
3709 atomic_read(&dev->pin_memory),
3710 atomic_read(&dev->gtt_memory),
3711 dev->gtt_total);
3712 }
3713 goto err;
3714 }
3715
3716 /* unpin all of our buffers */
3717 for (i = 0; i < pinned; i++)
3718 i915_gem_object_unpin(object_list[i]);
3719 pinned = 0;
3720
3721 /* evict everyone we can from the aperture */
3722 ret = i915_gem_evict_everything(dev);
3723 if (ret && ret != -ENOSPC)
3724 goto err;
3725 }
3726
3727 /* Set the pending read domains for the batch buffer to COMMAND */
3728 batch_obj = object_list[args->buffer_count-1];
3729 if (batch_obj->pending_write_domain) {
3730 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3731 ret = -EINVAL;
3732 goto err;
3733 }
3734 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3735
3736 /* Sanity check the batch buffer, prior to moving objects */
3737 exec_offset = exec_list[args->buffer_count - 1].offset;
3738 ret = i915_gem_check_execbuffer (args, exec_offset);
3739 if (ret != 0) {
3740 DRM_ERROR("execbuf with invalid offset/length\n");
3741 goto err;
3742 }
3743
3744 i915_verify_inactive(dev, __FILE__, __LINE__);
3745
3746 /* Zero the global flush/invalidate flags. These
3747 * will be modified as new domains are computed
3748 * for each object
3749 */
3750 dev->invalidate_domains = 0;
3751 dev->flush_domains = 0;
3752 dev_priv->flush_rings = 0;
3753
3754 for (i = 0; i < args->buffer_count; i++) {
3755 struct drm_gem_object *obj = object_list[i];
3756
3757 /* Compute new gpu domains and update invalidate/flush */
3758 i915_gem_object_set_to_gpu_domain(obj);
3759 }
3760
3761 i915_verify_inactive(dev, __FILE__, __LINE__);
3762
3763 if (dev->invalidate_domains | dev->flush_domains) {
3764 #if WATCH_EXEC
3765 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3766 __func__,
3767 dev->invalidate_domains,
3768 dev->flush_domains);
3769 #endif
3770 i915_gem_flush(dev,
3771 dev->invalidate_domains,
3772 dev->flush_domains);
3773 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
3774 (void)i915_add_request(dev, file_priv,
3775 dev->flush_domains,
3776 &dev_priv->render_ring);
3777 if (dev_priv->flush_rings & FLUSH_BSD_RING)
3778 (void)i915_add_request(dev, file_priv,
3779 dev->flush_domains,
3780 &dev_priv->bsd_ring);
3781 }
3782
3783 for (i = 0; i < args->buffer_count; i++) {
3784 struct drm_gem_object *obj = object_list[i];
3785 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3786 uint32_t old_write_domain = obj->write_domain;
3787
3788 obj->write_domain = obj->pending_write_domain;
3789 if (obj->write_domain)
3790 list_move_tail(&obj_priv->gpu_write_list,
3791 &dev_priv->mm.gpu_write_list);
3792 else
3793 list_del_init(&obj_priv->gpu_write_list);
3794
3795 trace_i915_gem_object_change_domain(obj,
3796 obj->read_domains,
3797 old_write_domain);
3798 }
3799
3800 i915_verify_inactive(dev, __FILE__, __LINE__);
3801
3802 #if WATCH_COHERENCY
3803 for (i = 0; i < args->buffer_count; i++) {
3804 i915_gem_object_check_coherency(object_list[i],
3805 exec_list[i].handle);
3806 }
3807 #endif
3808
3809 #if WATCH_EXEC
3810 i915_gem_dump_object(batch_obj,
3811 args->batch_len,
3812 __func__,
3813 ~0);
3814 #endif
3815
3816 /* Exec the batchbuffer */
3817 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3818 cliprects, exec_offset);
3819 if (ret) {
3820 DRM_ERROR("dispatch failed %d\n", ret);
3821 goto err;
3822 }
3823
3824 /*
3825 * Ensure that the commands in the batch buffer are
3826 * finished before the interrupt fires
3827 */
3828 flush_domains = i915_retire_commands(dev, ring);
3829
3830 i915_verify_inactive(dev, __FILE__, __LINE__);
3831
3832 /*
3833 * Get a seqno representing the execution of the current buffer,
3834 * which we can wait on. We would like to mitigate these interrupts,
3835 * likely by only creating seqnos occasionally (so that we have
3836 * *some* interrupts representing completion of buffers that we can
3837 * wait on when trying to clear up gtt space).
3838 */
3839 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3840 BUG_ON(seqno == 0);
3841 for (i = 0; i < args->buffer_count; i++) {
3842 struct drm_gem_object *obj = object_list[i];
3843 obj_priv = to_intel_bo(obj);
3844
3845 i915_gem_object_move_to_active(obj, seqno, ring);
3846 #if WATCH_LRU
3847 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3848 #endif
3849 }
3850 #if WATCH_LRU
3851 i915_dump_lru(dev, __func__);
3852 #endif
3853
3854 i915_verify_inactive(dev, __FILE__, __LINE__);
3855
3856 err:
3857 for (i = 0; i < pinned; i++)
3858 i915_gem_object_unpin(object_list[i]);
3859
3860 for (i = 0; i < args->buffer_count; i++) {
3861 if (object_list[i]) {
3862 obj_priv = to_intel_bo(object_list[i]);
3863 obj_priv->in_execbuffer = false;
3864 }
3865 drm_gem_object_unreference(object_list[i]);
3866 }
3867
3868 mutex_unlock(&dev->struct_mutex);
3869
3870 pre_mutex_err:
3871 /* Copy the updated relocations out regardless of current error
3872 * state. Failure to update the relocs would mean that the next
3873 * time userland calls execbuf, it would do so with presumed offset
3874 * state that didn't match the actual object state.
3875 */
3876 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3877 relocs);
3878 if (ret2 != 0) {
3879 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3880
3881 if (ret == 0)
3882 ret = ret2;
3883 }
3884
3885 drm_free_large(object_list);
3886 kfree(cliprects);
3887
3888 return ret;
3889 }
3890
3891 /*
3892 * Legacy execbuffer just creates an exec2 list from the original exec object
3893 * list array and passes it to the real function.
3894 */
3895 int
3896 i915_gem_execbuffer(struct drm_device *dev, void *data,
3897 struct drm_file *file_priv)
3898 {
3899 struct drm_i915_gem_execbuffer *args = data;
3900 struct drm_i915_gem_execbuffer2 exec2;
3901 struct drm_i915_gem_exec_object *exec_list = NULL;
3902 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3903 int ret, i;
3904
3905 #if WATCH_EXEC
3906 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3907 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3908 #endif
3909
3910 if (args->buffer_count < 1) {
3911 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3912 return -EINVAL;
3913 }
3914
3915 /* Copy in the exec list from userland */
3916 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3917 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3918 if (exec_list == NULL || exec2_list == NULL) {
3919 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3920 args->buffer_count);
3921 drm_free_large(exec_list);
3922 drm_free_large(exec2_list);
3923 return -ENOMEM;
3924 }
3925 ret = copy_from_user(exec_list,
3926 (struct drm_i915_relocation_entry __user *)
3927 (uintptr_t) args->buffers_ptr,
3928 sizeof(*exec_list) * args->buffer_count);
3929 if (ret != 0) {
3930 DRM_ERROR("copy %d exec entries failed %d\n",
3931 args->buffer_count, ret);
3932 drm_free_large(exec_list);
3933 drm_free_large(exec2_list);
3934 return -EFAULT;
3935 }
3936
3937 for (i = 0; i < args->buffer_count; i++) {
3938 exec2_list[i].handle = exec_list[i].handle;
3939 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3940 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3941 exec2_list[i].alignment = exec_list[i].alignment;
3942 exec2_list[i].offset = exec_list[i].offset;
3943 if (!IS_I965G(dev))
3944 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3945 else
3946 exec2_list[i].flags = 0;
3947 }
3948
3949 exec2.buffers_ptr = args->buffers_ptr;
3950 exec2.buffer_count = args->buffer_count;
3951 exec2.batch_start_offset = args->batch_start_offset;
3952 exec2.batch_len = args->batch_len;
3953 exec2.DR1 = args->DR1;
3954 exec2.DR4 = args->DR4;
3955 exec2.num_cliprects = args->num_cliprects;
3956 exec2.cliprects_ptr = args->cliprects_ptr;
3957 exec2.flags = I915_EXEC_RENDER;
3958
3959 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3960 if (!ret) {
3961 /* Copy the new buffer offsets back to the user's exec list. */
3962 for (i = 0; i < args->buffer_count; i++)
3963 exec_list[i].offset = exec2_list[i].offset;
3964 /* ... and back out to userspace */
3965 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3966 (uintptr_t) args->buffers_ptr,
3967 exec_list,
3968 sizeof(*exec_list) * args->buffer_count);
3969 if (ret) {
3970 ret = -EFAULT;
3971 DRM_ERROR("failed to copy %d exec entries "
3972 "back to user (%d)\n",
3973 args->buffer_count, ret);
3974 }
3975 }
3976
3977 drm_free_large(exec_list);
3978 drm_free_large(exec2_list);
3979 return ret;
3980 }
3981
3982 int
3983 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3984 struct drm_file *file_priv)
3985 {
3986 struct drm_i915_gem_execbuffer2 *args = data;
3987 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3988 int ret;
3989
3990 #if WATCH_EXEC
3991 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3992 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3993 #endif
3994
3995 if (args->buffer_count < 1) {
3996 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3997 return -EINVAL;
3998 }
3999
4000 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4001 if (exec2_list == NULL) {
4002 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4003 args->buffer_count);
4004 return -ENOMEM;
4005 }
4006 ret = copy_from_user(exec2_list,
4007 (struct drm_i915_relocation_entry __user *)
4008 (uintptr_t) args->buffers_ptr,
4009 sizeof(*exec2_list) * args->buffer_count);
4010 if (ret != 0) {
4011 DRM_ERROR("copy %d exec entries failed %d\n",
4012 args->buffer_count, ret);
4013 drm_free_large(exec2_list);
4014 return -EFAULT;
4015 }
4016
4017 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4018 if (!ret) {
4019 /* Copy the new buffer offsets back to the user's exec list. */
4020 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4021 (uintptr_t) args->buffers_ptr,
4022 exec2_list,
4023 sizeof(*exec2_list) * args->buffer_count);
4024 if (ret) {
4025 ret = -EFAULT;
4026 DRM_ERROR("failed to copy %d exec entries "
4027 "back to user (%d)\n",
4028 args->buffer_count, ret);
4029 }
4030 }
4031
4032 drm_free_large(exec2_list);
4033 return ret;
4034 }
4035
4036 int
4037 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4038 {
4039 struct drm_device *dev = obj->dev;
4040 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4041 int ret;
4042
4043 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4044
4045 i915_verify_inactive(dev, __FILE__, __LINE__);
4046
4047 if (obj_priv->gtt_space != NULL) {
4048 if (alignment == 0)
4049 alignment = i915_gem_get_gtt_alignment(obj);
4050 if (obj_priv->gtt_offset & (alignment - 1)) {
4051 WARN(obj_priv->pin_count,
4052 "bo is already pinned with incorrect alignment:"
4053 " offset=%x, req.alignment=%x\n",
4054 obj_priv->gtt_offset, alignment);
4055 ret = i915_gem_object_unbind(obj);
4056 if (ret)
4057 return ret;
4058 }
4059 }
4060
4061 if (obj_priv->gtt_space == NULL) {
4062 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4063 if (ret)
4064 return ret;
4065 }
4066
4067 obj_priv->pin_count++;
4068
4069 /* If the object is not active and not pending a flush,
4070 * remove it from the inactive list
4071 */
4072 if (obj_priv->pin_count == 1) {
4073 atomic_inc(&dev->pin_count);
4074 atomic_add(obj->size, &dev->pin_memory);
4075 if (!obj_priv->active &&
4076 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4077 list_del_init(&obj_priv->list);
4078 }
4079 i915_verify_inactive(dev, __FILE__, __LINE__);
4080
4081 return 0;
4082 }
4083
4084 void
4085 i915_gem_object_unpin(struct drm_gem_object *obj)
4086 {
4087 struct drm_device *dev = obj->dev;
4088 drm_i915_private_t *dev_priv = dev->dev_private;
4089 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4090
4091 i915_verify_inactive(dev, __FILE__, __LINE__);
4092 obj_priv->pin_count--;
4093 BUG_ON(obj_priv->pin_count < 0);
4094 BUG_ON(obj_priv->gtt_space == NULL);
4095
4096 /* If the object is no longer pinned, and is
4097 * neither active nor being flushed, then stick it on
4098 * the inactive list
4099 */
4100 if (obj_priv->pin_count == 0) {
4101 if (!obj_priv->active &&
4102 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4103 list_move_tail(&obj_priv->list,
4104 &dev_priv->mm.inactive_list);
4105 atomic_dec(&dev->pin_count);
4106 atomic_sub(obj->size, &dev->pin_memory);
4107 }
4108 i915_verify_inactive(dev, __FILE__, __LINE__);
4109 }
4110
4111 int
4112 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4113 struct drm_file *file_priv)
4114 {
4115 struct drm_i915_gem_pin *args = data;
4116 struct drm_gem_object *obj;
4117 struct drm_i915_gem_object *obj_priv;
4118 int ret;
4119
4120 mutex_lock(&dev->struct_mutex);
4121
4122 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4123 if (obj == NULL) {
4124 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4125 args->handle);
4126 mutex_unlock(&dev->struct_mutex);
4127 return -ENOENT;
4128 }
4129 obj_priv = to_intel_bo(obj);
4130
4131 if (obj_priv->madv != I915_MADV_WILLNEED) {
4132 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4133 drm_gem_object_unreference(obj);
4134 mutex_unlock(&dev->struct_mutex);
4135 return -EINVAL;
4136 }
4137
4138 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4139 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4140 args->handle);
4141 drm_gem_object_unreference(obj);
4142 mutex_unlock(&dev->struct_mutex);
4143 return -EINVAL;
4144 }
4145
4146 obj_priv->user_pin_count++;
4147 obj_priv->pin_filp = file_priv;
4148 if (obj_priv->user_pin_count == 1) {
4149 ret = i915_gem_object_pin(obj, args->alignment);
4150 if (ret != 0) {
4151 drm_gem_object_unreference(obj);
4152 mutex_unlock(&dev->struct_mutex);
4153 return ret;
4154 }
4155 }
4156
4157 /* XXX - flush the CPU caches for pinned objects
4158 * as the X server doesn't manage domains yet
4159 */
4160 i915_gem_object_flush_cpu_write_domain(obj);
4161 args->offset = obj_priv->gtt_offset;
4162 drm_gem_object_unreference(obj);
4163 mutex_unlock(&dev->struct_mutex);
4164
4165 return 0;
4166 }
4167
4168 int
4169 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4170 struct drm_file *file_priv)
4171 {
4172 struct drm_i915_gem_pin *args = data;
4173 struct drm_gem_object *obj;
4174 struct drm_i915_gem_object *obj_priv;
4175
4176 mutex_lock(&dev->struct_mutex);
4177
4178 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4179 if (obj == NULL) {
4180 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4181 args->handle);
4182 mutex_unlock(&dev->struct_mutex);
4183 return -ENOENT;
4184 }
4185
4186 obj_priv = to_intel_bo(obj);
4187 if (obj_priv->pin_filp != file_priv) {
4188 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4189 args->handle);
4190 drm_gem_object_unreference(obj);
4191 mutex_unlock(&dev->struct_mutex);
4192 return -EINVAL;
4193 }
4194 obj_priv->user_pin_count--;
4195 if (obj_priv->user_pin_count == 0) {
4196 obj_priv->pin_filp = NULL;
4197 i915_gem_object_unpin(obj);
4198 }
4199
4200 drm_gem_object_unreference(obj);
4201 mutex_unlock(&dev->struct_mutex);
4202 return 0;
4203 }
4204
4205 int
4206 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4207 struct drm_file *file_priv)
4208 {
4209 struct drm_i915_gem_busy *args = data;
4210 struct drm_gem_object *obj;
4211 struct drm_i915_gem_object *obj_priv;
4212
4213 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4214 if (obj == NULL) {
4215 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4216 args->handle);
4217 return -ENOENT;
4218 }
4219
4220 mutex_lock(&dev->struct_mutex);
4221
4222 /* Count all active objects as busy, even if they are currently not used
4223 * by the gpu. Users of this interface expect objects to eventually
4224 * become non-busy without any further actions, therefore emit any
4225 * necessary flushes here.
4226 */
4227 obj_priv = to_intel_bo(obj);
4228 args->busy = obj_priv->active;
4229 if (args->busy) {
4230 /* Unconditionally flush objects, even when the gpu still uses this
4231 * object. Userspace calling this function indicates that it wants to
4232 * use this buffer rather sooner than later, so issuing the required
4233 * flush earlier is beneficial.
4234 */
4235 if (obj->write_domain) {
4236 i915_gem_flush(dev, 0, obj->write_domain);
4237 (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
4238 }
4239
4240 /* Update the active list for the hardware's current position.
4241 * Otherwise this only updates on a delayed timer or when irqs
4242 * are actually unmasked, and our working set ends up being
4243 * larger than required.
4244 */
4245 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4246
4247 args->busy = obj_priv->active;
4248 }
4249
4250 drm_gem_object_unreference(obj);
4251 mutex_unlock(&dev->struct_mutex);
4252 return 0;
4253 }
4254
4255 int
4256 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4257 struct drm_file *file_priv)
4258 {
4259 return i915_gem_ring_throttle(dev, file_priv);
4260 }
4261
4262 int
4263 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4264 struct drm_file *file_priv)
4265 {
4266 struct drm_i915_gem_madvise *args = data;
4267 struct drm_gem_object *obj;
4268 struct drm_i915_gem_object *obj_priv;
4269
4270 switch (args->madv) {
4271 case I915_MADV_DONTNEED:
4272 case I915_MADV_WILLNEED:
4273 break;
4274 default:
4275 return -EINVAL;
4276 }
4277
4278 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4279 if (obj == NULL) {
4280 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4281 args->handle);
4282 return -ENOENT;
4283 }
4284
4285 mutex_lock(&dev->struct_mutex);
4286 obj_priv = to_intel_bo(obj);
4287
4288 if (obj_priv->pin_count) {
4289 drm_gem_object_unreference(obj);
4290 mutex_unlock(&dev->struct_mutex);
4291
4292 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4293 return -EINVAL;
4294 }
4295
4296 if (obj_priv->madv != __I915_MADV_PURGED)
4297 obj_priv->madv = args->madv;
4298
4299 /* if the object is no longer bound, discard its backing storage */
4300 if (i915_gem_object_is_purgeable(obj_priv) &&
4301 obj_priv->gtt_space == NULL)
4302 i915_gem_object_truncate(obj);
4303
4304 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4305
4306 drm_gem_object_unreference(obj);
4307 mutex_unlock(&dev->struct_mutex);
4308
4309 return 0;
4310 }
4311
4312 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4313 size_t size)
4314 {
4315 struct drm_i915_gem_object *obj;
4316
4317 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4318 if (obj == NULL)
4319 return NULL;
4320
4321 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4322 kfree(obj);
4323 return NULL;
4324 }
4325
4326 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4327 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4328
4329 obj->agp_type = AGP_USER_MEMORY;
4330 obj->base.driver_private = NULL;
4331 obj->fence_reg = I915_FENCE_REG_NONE;
4332 INIT_LIST_HEAD(&obj->list);
4333 INIT_LIST_HEAD(&obj->gpu_write_list);
4334 obj->madv = I915_MADV_WILLNEED;
4335
4336 trace_i915_gem_object_create(&obj->base);
4337
4338 return &obj->base;
4339 }
4340
4341 int i915_gem_init_object(struct drm_gem_object *obj)
4342 {
4343 BUG();
4344
4345 return 0;
4346 }
4347
4348 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4349 {
4350 struct drm_device *dev = obj->dev;
4351 drm_i915_private_t *dev_priv = dev->dev_private;
4352 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4353 int ret;
4354
4355 ret = i915_gem_object_unbind(obj);
4356 if (ret == -ERESTARTSYS) {
4357 list_move(&obj_priv->list,
4358 &dev_priv->mm.deferred_free_list);
4359 return;
4360 }
4361
4362 if (obj_priv->mmap_offset)
4363 i915_gem_free_mmap_offset(obj);
4364
4365 drm_gem_object_release(obj);
4366
4367 kfree(obj_priv->page_cpu_valid);
4368 kfree(obj_priv->bit_17);
4369 kfree(obj_priv);
4370 }
4371
4372 void i915_gem_free_object(struct drm_gem_object *obj)
4373 {
4374 struct drm_device *dev = obj->dev;
4375 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4376
4377 trace_i915_gem_object_destroy(obj);
4378
4379 while (obj_priv->pin_count > 0)
4380 i915_gem_object_unpin(obj);
4381
4382 if (obj_priv->phys_obj)
4383 i915_gem_detach_phys_object(dev, obj);
4384
4385 i915_gem_free_object_tail(obj);
4386 }
4387
4388 int
4389 i915_gem_idle(struct drm_device *dev)
4390 {
4391 drm_i915_private_t *dev_priv = dev->dev_private;
4392 int ret;
4393
4394 mutex_lock(&dev->struct_mutex);
4395
4396 if (dev_priv->mm.suspended ||
4397 (dev_priv->render_ring.gem_object == NULL) ||
4398 (HAS_BSD(dev) &&
4399 dev_priv->bsd_ring.gem_object == NULL)) {
4400 mutex_unlock(&dev->struct_mutex);
4401 return 0;
4402 }
4403
4404 ret = i915_gpu_idle(dev);
4405 if (ret) {
4406 mutex_unlock(&dev->struct_mutex);
4407 return ret;
4408 }
4409
4410 /* Under UMS, be paranoid and evict. */
4411 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4412 ret = i915_gem_evict_inactive(dev);
4413 if (ret) {
4414 mutex_unlock(&dev->struct_mutex);
4415 return ret;
4416 }
4417 }
4418
4419 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4420 * We need to replace this with a semaphore, or something.
4421 * And not confound mm.suspended!
4422 */
4423 dev_priv->mm.suspended = 1;
4424 del_timer_sync(&dev_priv->hangcheck_timer);
4425
4426 i915_kernel_lost_context(dev);
4427 i915_gem_cleanup_ringbuffer(dev);
4428
4429 mutex_unlock(&dev->struct_mutex);
4430
4431 /* Cancel the retire work handler, which should be idle now. */
4432 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4433
4434 return 0;
4435 }
4436
4437 /*
4438 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4439 * over cache flushing.
4440 */
4441 static int
4442 i915_gem_init_pipe_control(struct drm_device *dev)
4443 {
4444 drm_i915_private_t *dev_priv = dev->dev_private;
4445 struct drm_gem_object *obj;
4446 struct drm_i915_gem_object *obj_priv;
4447 int ret;
4448
4449 obj = i915_gem_alloc_object(dev, 4096);
4450 if (obj == NULL) {
4451 DRM_ERROR("Failed to allocate seqno page\n");
4452 ret = -ENOMEM;
4453 goto err;
4454 }
4455 obj_priv = to_intel_bo(obj);
4456 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4457
4458 ret = i915_gem_object_pin(obj, 4096);
4459 if (ret)
4460 goto err_unref;
4461
4462 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4463 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4464 if (dev_priv->seqno_page == NULL)
4465 goto err_unpin;
4466
4467 dev_priv->seqno_obj = obj;
4468 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4469
4470 return 0;
4471
4472 err_unpin:
4473 i915_gem_object_unpin(obj);
4474 err_unref:
4475 drm_gem_object_unreference(obj);
4476 err:
4477 return ret;
4478 }
4479
4480
4481 static void
4482 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4483 {
4484 drm_i915_private_t *dev_priv = dev->dev_private;
4485 struct drm_gem_object *obj;
4486 struct drm_i915_gem_object *obj_priv;
4487
4488 obj = dev_priv->seqno_obj;
4489 obj_priv = to_intel_bo(obj);
4490 kunmap(obj_priv->pages[0]);
4491 i915_gem_object_unpin(obj);
4492 drm_gem_object_unreference(obj);
4493 dev_priv->seqno_obj = NULL;
4494
4495 dev_priv->seqno_page = NULL;
4496 }
4497
4498 int
4499 i915_gem_init_ringbuffer(struct drm_device *dev)
4500 {
4501 drm_i915_private_t *dev_priv = dev->dev_private;
4502 int ret;
4503
4504 dev_priv->render_ring = render_ring;
4505
4506 if (!I915_NEED_GFX_HWS(dev)) {
4507 dev_priv->render_ring.status_page.page_addr
4508 = dev_priv->status_page_dmah->vaddr;
4509 memset(dev_priv->render_ring.status_page.page_addr,
4510 0, PAGE_SIZE);
4511 }
4512
4513 if (HAS_PIPE_CONTROL(dev)) {
4514 ret = i915_gem_init_pipe_control(dev);
4515 if (ret)
4516 return ret;
4517 }
4518
4519 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4520 if (ret)
4521 goto cleanup_pipe_control;
4522
4523 if (HAS_BSD(dev)) {
4524 dev_priv->bsd_ring = bsd_ring;
4525 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4526 if (ret)
4527 goto cleanup_render_ring;
4528 }
4529
4530 dev_priv->next_seqno = 1;
4531
4532 return 0;
4533
4534 cleanup_render_ring:
4535 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4536 cleanup_pipe_control:
4537 if (HAS_PIPE_CONTROL(dev))
4538 i915_gem_cleanup_pipe_control(dev);
4539 return ret;
4540 }
4541
4542 void
4543 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4544 {
4545 drm_i915_private_t *dev_priv = dev->dev_private;
4546
4547 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4548 if (HAS_BSD(dev))
4549 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4550 if (HAS_PIPE_CONTROL(dev))
4551 i915_gem_cleanup_pipe_control(dev);
4552 }
4553
4554 int
4555 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4556 struct drm_file *file_priv)
4557 {
4558 drm_i915_private_t *dev_priv = dev->dev_private;
4559 int ret;
4560
4561 if (drm_core_check_feature(dev, DRIVER_MODESET))
4562 return 0;
4563
4564 if (atomic_read(&dev_priv->mm.wedged)) {
4565 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4566 atomic_set(&dev_priv->mm.wedged, 0);
4567 }
4568
4569 mutex_lock(&dev->struct_mutex);
4570 dev_priv->mm.suspended = 0;
4571
4572 ret = i915_gem_init_ringbuffer(dev);
4573 if (ret != 0) {
4574 mutex_unlock(&dev->struct_mutex);
4575 return ret;
4576 }
4577
4578 spin_lock(&dev_priv->mm.active_list_lock);
4579 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4580 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4581 spin_unlock(&dev_priv->mm.active_list_lock);
4582
4583 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4584 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4585 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4586 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4587 mutex_unlock(&dev->struct_mutex);
4588
4589 ret = drm_irq_install(dev);
4590 if (ret)
4591 goto cleanup_ringbuffer;
4592
4593 return 0;
4594
4595 cleanup_ringbuffer:
4596 mutex_lock(&dev->struct_mutex);
4597 i915_gem_cleanup_ringbuffer(dev);
4598 dev_priv->mm.suspended = 1;
4599 mutex_unlock(&dev->struct_mutex);
4600
4601 return ret;
4602 }
4603
4604 int
4605 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4606 struct drm_file *file_priv)
4607 {
4608 if (drm_core_check_feature(dev, DRIVER_MODESET))
4609 return 0;
4610
4611 drm_irq_uninstall(dev);
4612 return i915_gem_idle(dev);
4613 }
4614
4615 void
4616 i915_gem_lastclose(struct drm_device *dev)
4617 {
4618 int ret;
4619
4620 if (drm_core_check_feature(dev, DRIVER_MODESET))
4621 return;
4622
4623 ret = i915_gem_idle(dev);
4624 if (ret)
4625 DRM_ERROR("failed to idle hardware: %d\n", ret);
4626 }
4627
4628 void
4629 i915_gem_load(struct drm_device *dev)
4630 {
4631 int i;
4632 drm_i915_private_t *dev_priv = dev->dev_private;
4633
4634 spin_lock_init(&dev_priv->mm.active_list_lock);
4635 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4636 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4637 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4638 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4639 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4640 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4641 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4642 if (HAS_BSD(dev)) {
4643 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4644 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4645 }
4646 for (i = 0; i < 16; i++)
4647 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4648 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4649 i915_gem_retire_work_handler);
4650 spin_lock(&shrink_list_lock);
4651 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4652 spin_unlock(&shrink_list_lock);
4653
4654 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4655 if (IS_GEN3(dev)) {
4656 u32 tmp = I915_READ(MI_ARB_STATE);
4657 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4658 /* arb state is a masked write, so set bit + bit in mask */
4659 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4660 I915_WRITE(MI_ARB_STATE, tmp);
4661 }
4662 }
4663
4664 /* Old X drivers will take 0-2 for front, back, depth buffers */
4665 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4666 dev_priv->fence_reg_start = 3;
4667
4668 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4669 dev_priv->num_fence_regs = 16;
4670 else
4671 dev_priv->num_fence_regs = 8;
4672
4673 /* Initialize fence registers to zero */
4674 if (IS_I965G(dev)) {
4675 for (i = 0; i < 16; i++)
4676 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4677 } else {
4678 for (i = 0; i < 8; i++)
4679 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4680 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4681 for (i = 0; i < 8; i++)
4682 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4683 }
4684 i915_gem_detect_bit_6_swizzle(dev);
4685 init_waitqueue_head(&dev_priv->pending_flip_queue);
4686 }
4687
4688 /*
4689 * Create a physically contiguous memory object for this object
4690 * e.g. for cursor + overlay regs
4691 */
4692 int i915_gem_init_phys_object(struct drm_device *dev,
4693 int id, int size, int align)
4694 {
4695 drm_i915_private_t *dev_priv = dev->dev_private;
4696 struct drm_i915_gem_phys_object *phys_obj;
4697 int ret;
4698
4699 if (dev_priv->mm.phys_objs[id - 1] || !size)
4700 return 0;
4701
4702 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4703 if (!phys_obj)
4704 return -ENOMEM;
4705
4706 phys_obj->id = id;
4707
4708 phys_obj->handle = drm_pci_alloc(dev, size, align);
4709 if (!phys_obj->handle) {
4710 ret = -ENOMEM;
4711 goto kfree_obj;
4712 }
4713 #ifdef CONFIG_X86
4714 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4715 #endif
4716
4717 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4718
4719 return 0;
4720 kfree_obj:
4721 kfree(phys_obj);
4722 return ret;
4723 }
4724
4725 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4726 {
4727 drm_i915_private_t *dev_priv = dev->dev_private;
4728 struct drm_i915_gem_phys_object *phys_obj;
4729
4730 if (!dev_priv->mm.phys_objs[id - 1])
4731 return;
4732
4733 phys_obj = dev_priv->mm.phys_objs[id - 1];
4734 if (phys_obj->cur_obj) {
4735 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4736 }
4737
4738 #ifdef CONFIG_X86
4739 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4740 #endif
4741 drm_pci_free(dev, phys_obj->handle);
4742 kfree(phys_obj);
4743 dev_priv->mm.phys_objs[id - 1] = NULL;
4744 }
4745
4746 void i915_gem_free_all_phys_object(struct drm_device *dev)
4747 {
4748 int i;
4749
4750 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4751 i915_gem_free_phys_object(dev, i);
4752 }
4753
4754 void i915_gem_detach_phys_object(struct drm_device *dev,
4755 struct drm_gem_object *obj)
4756 {
4757 struct drm_i915_gem_object *obj_priv;
4758 int i;
4759 int ret;
4760 int page_count;
4761
4762 obj_priv = to_intel_bo(obj);
4763 if (!obj_priv->phys_obj)
4764 return;
4765
4766 ret = i915_gem_object_get_pages(obj, 0);
4767 if (ret)
4768 goto out;
4769
4770 page_count = obj->size / PAGE_SIZE;
4771
4772 for (i = 0; i < page_count; i++) {
4773 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4774 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4775
4776 memcpy(dst, src, PAGE_SIZE);
4777 kunmap_atomic(dst, KM_USER0);
4778 }
4779 drm_clflush_pages(obj_priv->pages, page_count);
4780 drm_agp_chipset_flush(dev);
4781
4782 i915_gem_object_put_pages(obj);
4783 out:
4784 obj_priv->phys_obj->cur_obj = NULL;
4785 obj_priv->phys_obj = NULL;
4786 }
4787
4788 int
4789 i915_gem_attach_phys_object(struct drm_device *dev,
4790 struct drm_gem_object *obj,
4791 int id,
4792 int align)
4793 {
4794 drm_i915_private_t *dev_priv = dev->dev_private;
4795 struct drm_i915_gem_object *obj_priv;
4796 int ret = 0;
4797 int page_count;
4798 int i;
4799
4800 if (id > I915_MAX_PHYS_OBJECT)
4801 return -EINVAL;
4802
4803 obj_priv = to_intel_bo(obj);
4804
4805 if (obj_priv->phys_obj) {
4806 if (obj_priv->phys_obj->id == id)
4807 return 0;
4808 i915_gem_detach_phys_object(dev, obj);
4809 }
4810
4811 /* create a new object */
4812 if (!dev_priv->mm.phys_objs[id - 1]) {
4813 ret = i915_gem_init_phys_object(dev, id,
4814 obj->size, align);
4815 if (ret) {
4816 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4817 goto out;
4818 }
4819 }
4820
4821 /* bind to the object */
4822 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4823 obj_priv->phys_obj->cur_obj = obj;
4824
4825 ret = i915_gem_object_get_pages(obj, 0);
4826 if (ret) {
4827 DRM_ERROR("failed to get page list\n");
4828 goto out;
4829 }
4830
4831 page_count = obj->size / PAGE_SIZE;
4832
4833 for (i = 0; i < page_count; i++) {
4834 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4835 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4836
4837 memcpy(dst, src, PAGE_SIZE);
4838 kunmap_atomic(src, KM_USER0);
4839 }
4840
4841 i915_gem_object_put_pages(obj);
4842
4843 return 0;
4844 out:
4845 return ret;
4846 }
4847
4848 static int
4849 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4850 struct drm_i915_gem_pwrite *args,
4851 struct drm_file *file_priv)
4852 {
4853 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4854 void *obj_addr;
4855 int ret;
4856 char __user *user_data;
4857
4858 user_data = (char __user *) (uintptr_t) args->data_ptr;
4859 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4860
4861 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4862 ret = copy_from_user(obj_addr, user_data, args->size);
4863 if (ret)
4864 return -EFAULT;
4865
4866 drm_agp_chipset_flush(dev);
4867 return 0;
4868 }
4869
4870 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4871 {
4872 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4873
4874 /* Clean up our request list when the client is going away, so that
4875 * later retire_requests won't dereference our soon-to-be-gone
4876 * file_priv.
4877 */
4878 mutex_lock(&dev->struct_mutex);
4879 while (!list_empty(&i915_file_priv->mm.request_list))
4880 list_del_init(i915_file_priv->mm.request_list.next);
4881 mutex_unlock(&dev->struct_mutex);
4882 }
4883
4884 static int
4885 i915_gpu_is_active(struct drm_device *dev)
4886 {
4887 drm_i915_private_t *dev_priv = dev->dev_private;
4888 int lists_empty;
4889
4890 spin_lock(&dev_priv->mm.active_list_lock);
4891 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4892 list_empty(&dev_priv->render_ring.active_list);
4893 if (HAS_BSD(dev))
4894 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4895 spin_unlock(&dev_priv->mm.active_list_lock);
4896
4897 return !lists_empty;
4898 }
4899
4900 static int
4901 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4902 {
4903 drm_i915_private_t *dev_priv, *next_dev;
4904 struct drm_i915_gem_object *obj_priv, *next_obj;
4905 int cnt = 0;
4906 int would_deadlock = 1;
4907
4908 /* "fast-path" to count number of available objects */
4909 if (nr_to_scan == 0) {
4910 spin_lock(&shrink_list_lock);
4911 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4912 struct drm_device *dev = dev_priv->dev;
4913
4914 if (mutex_trylock(&dev->struct_mutex)) {
4915 list_for_each_entry(obj_priv,
4916 &dev_priv->mm.inactive_list,
4917 list)
4918 cnt++;
4919 mutex_unlock(&dev->struct_mutex);
4920 }
4921 }
4922 spin_unlock(&shrink_list_lock);
4923
4924 return (cnt / 100) * sysctl_vfs_cache_pressure;
4925 }
4926
4927 spin_lock(&shrink_list_lock);
4928
4929 rescan:
4930 /* first scan for clean buffers */
4931 list_for_each_entry_safe(dev_priv, next_dev,
4932 &shrink_list, mm.shrink_list) {
4933 struct drm_device *dev = dev_priv->dev;
4934
4935 if (! mutex_trylock(&dev->struct_mutex))
4936 continue;
4937
4938 spin_unlock(&shrink_list_lock);
4939 i915_gem_retire_requests(dev);
4940
4941 list_for_each_entry_safe(obj_priv, next_obj,
4942 &dev_priv->mm.inactive_list,
4943 list) {
4944 if (i915_gem_object_is_purgeable(obj_priv)) {
4945 i915_gem_object_unbind(&obj_priv->base);
4946 if (--nr_to_scan <= 0)
4947 break;
4948 }
4949 }
4950
4951 spin_lock(&shrink_list_lock);
4952 mutex_unlock(&dev->struct_mutex);
4953
4954 would_deadlock = 0;
4955
4956 if (nr_to_scan <= 0)
4957 break;
4958 }
4959
4960 /* second pass, evict/count anything still on the inactive list */
4961 list_for_each_entry_safe(dev_priv, next_dev,
4962 &shrink_list, mm.shrink_list) {
4963 struct drm_device *dev = dev_priv->dev;
4964
4965 if (! mutex_trylock(&dev->struct_mutex))
4966 continue;
4967
4968 spin_unlock(&shrink_list_lock);
4969
4970 list_for_each_entry_safe(obj_priv, next_obj,
4971 &dev_priv->mm.inactive_list,
4972 list) {
4973 if (nr_to_scan > 0) {
4974 i915_gem_object_unbind(&obj_priv->base);
4975 nr_to_scan--;
4976 } else
4977 cnt++;
4978 }
4979
4980 spin_lock(&shrink_list_lock);
4981 mutex_unlock(&dev->struct_mutex);
4982
4983 would_deadlock = 0;
4984 }
4985
4986 if (nr_to_scan) {
4987 int active = 0;
4988
4989 /*
4990 * We are desperate for pages, so as a last resort, wait
4991 * for the GPU to finish and discard whatever we can.
4992 * This has a dramatic impact to reduce the number of
4993 * OOM-killer events whilst running the GPU aggressively.
4994 */
4995 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4996 struct drm_device *dev = dev_priv->dev;
4997
4998 if (!mutex_trylock(&dev->struct_mutex))
4999 continue;
5000
5001 spin_unlock(&shrink_list_lock);
5002
5003 if (i915_gpu_is_active(dev)) {
5004 i915_gpu_idle(dev);
5005 active++;
5006 }
5007
5008 spin_lock(&shrink_list_lock);
5009 mutex_unlock(&dev->struct_mutex);
5010 }
5011
5012 if (active)
5013 goto rescan;
5014 }
5015
5016 spin_unlock(&shrink_list_lock);
5017
5018 if (would_deadlock)
5019 return -1;
5020 else if (cnt > 0)
5021 return (cnt / 100) * sysctl_vfs_cache_pressure;
5022 else
5023 return 0;
5024 }
5025
5026 static struct shrinker shrinker = {
5027 .shrink = i915_gem_shrink,
5028 .seeks = DEFAULT_SEEKS,
5029 };
5030
5031 __init void
5032 i915_gem_shrinker_init(void)
5033 {
5034 register_shrinker(&shrinker);
5035 }
5036
5037 __exit void
5038 i915_gem_shrinker_exit(void)
5039 {
5040 unregister_shrinker(&shrinker);
5041 }
This page took 0.211827 seconds and 5 git commands to generate.