drm/i915: Add intel implementation of the pageflip ioctl
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
63 {
64 drm_i915_private_t *dev_priv = dev->dev_private;
65
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
69 return -EINVAL;
70 }
71
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
74
75 dev->gtt_total = (uint32_t) (end - start);
76
77 return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
83 {
84 struct drm_i915_gem_init *args = data;
85 int ret;
86
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 mutex_unlock(&dev->struct_mutex);
90
91 return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
97 {
98 struct drm_i915_gem_get_aperture *args = data;
99
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
102
103 args->aper_size = dev->gtt_total;
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
106
107 return 0;
108 }
109
110
111 /**
112 * Creates a new mm object and returns a handle to it.
113 */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
117 {
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
120 int ret;
121 u32 handle;
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 mutex_lock(&dev->struct_mutex);
132 drm_gem_object_handle_unreference(obj);
133 mutex_unlock(&dev->struct_mutex);
134
135 if (ret)
136 return ret;
137
138 args->handle = handle;
139
140 return 0;
141 }
142
143 static inline int
144 fast_shmem_read(struct page **pages,
145 loff_t page_base, int page_offset,
146 char __user *data,
147 int length)
148 {
149 char __iomem *vaddr;
150 int unwritten;
151
152 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153 if (vaddr == NULL)
154 return -ENOMEM;
155 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156 kunmap_atomic(vaddr, KM_USER0);
157
158 if (unwritten)
159 return -EFAULT;
160
161 return 0;
162 }
163
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166 drm_i915_private_t *dev_priv = obj->dev->dev_private;
167 struct drm_i915_gem_object *obj_priv = obj->driver_private;
168
169 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170 obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175 int dst_offset,
176 struct page *src_page,
177 int src_offset,
178 int length)
179 {
180 char *dst_vaddr, *src_vaddr;
181
182 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183 if (dst_vaddr == NULL)
184 return -ENOMEM;
185
186 src_vaddr = kmap_atomic(src_page, KM_USER1);
187 if (src_vaddr == NULL) {
188 kunmap_atomic(dst_vaddr, KM_USER0);
189 return -ENOMEM;
190 }
191
192 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193
194 kunmap_atomic(src_vaddr, KM_USER1);
195 kunmap_atomic(dst_vaddr, KM_USER0);
196
197 return 0;
198 }
199
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202 int gpu_offset,
203 struct page *cpu_page,
204 int cpu_offset,
205 int length,
206 int is_read)
207 {
208 char *gpu_vaddr, *cpu_vaddr;
209
210 /* Use the unswizzled path if this page isn't affected. */
211 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212 if (is_read)
213 return slow_shmem_copy(cpu_page, cpu_offset,
214 gpu_page, gpu_offset, length);
215 else
216 return slow_shmem_copy(gpu_page, gpu_offset,
217 cpu_page, cpu_offset, length);
218 }
219
220 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221 if (gpu_vaddr == NULL)
222 return -ENOMEM;
223
224 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225 if (cpu_vaddr == NULL) {
226 kunmap_atomic(gpu_vaddr, KM_USER0);
227 return -ENOMEM;
228 }
229
230 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231 * XORing with the other bits (A9 for Y, A9 and A10 for X)
232 */
233 while (length > 0) {
234 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235 int this_length = min(cacheline_end - gpu_offset, length);
236 int swizzled_gpu_offset = gpu_offset ^ 64;
237
238 if (is_read) {
239 memcpy(cpu_vaddr + cpu_offset,
240 gpu_vaddr + swizzled_gpu_offset,
241 this_length);
242 } else {
243 memcpy(gpu_vaddr + swizzled_gpu_offset,
244 cpu_vaddr + cpu_offset,
245 this_length);
246 }
247 cpu_offset += this_length;
248 gpu_offset += this_length;
249 length -= this_length;
250 }
251
252 kunmap_atomic(cpu_vaddr, KM_USER1);
253 kunmap_atomic(gpu_vaddr, KM_USER0);
254
255 return 0;
256 }
257
258 /**
259 * This is the fast shmem pread path, which attempts to copy_from_user directly
260 * from the backing pages of the object to the user's address space. On a
261 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262 */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265 struct drm_i915_gem_pread *args,
266 struct drm_file *file_priv)
267 {
268 struct drm_i915_gem_object *obj_priv = obj->driver_private;
269 ssize_t remain;
270 loff_t offset, page_base;
271 char __user *user_data;
272 int page_offset, page_length;
273 int ret;
274
275 user_data = (char __user *) (uintptr_t) args->data_ptr;
276 remain = args->size;
277
278 mutex_lock(&dev->struct_mutex);
279
280 ret = i915_gem_object_get_pages(obj);
281 if (ret != 0)
282 goto fail_unlock;
283
284 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285 args->size);
286 if (ret != 0)
287 goto fail_put_pages;
288
289 obj_priv = obj->driver_private;
290 offset = args->offset;
291
292 while (remain > 0) {
293 /* Operation in this page
294 *
295 * page_base = page offset within aperture
296 * page_offset = offset within page
297 * page_length = bytes to copy for this page
298 */
299 page_base = (offset & ~(PAGE_SIZE-1));
300 page_offset = offset & (PAGE_SIZE-1);
301 page_length = remain;
302 if ((page_offset + remain) > PAGE_SIZE)
303 page_length = PAGE_SIZE - page_offset;
304
305 ret = fast_shmem_read(obj_priv->pages,
306 page_base, page_offset,
307 user_data, page_length);
308 if (ret)
309 goto fail_put_pages;
310
311 remain -= page_length;
312 user_data += page_length;
313 offset += page_length;
314 }
315
316 fail_put_pages:
317 i915_gem_object_put_pages(obj);
318 fail_unlock:
319 mutex_unlock(&dev->struct_mutex);
320
321 return ret;
322 }
323
324 static inline gfp_t
325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
326 {
327 return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
328 }
329
330 static inline void
331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
332 {
333 mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
334 }
335
336 static int
337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
338 {
339 int ret;
340
341 ret = i915_gem_object_get_pages(obj);
342
343 /* If we've insufficient memory to map in the pages, attempt
344 * to make some space by throwing out some old buffers.
345 */
346 if (ret == -ENOMEM) {
347 struct drm_device *dev = obj->dev;
348 gfp_t gfp;
349
350 ret = i915_gem_evict_something(dev, obj->size);
351 if (ret)
352 return ret;
353
354 gfp = i915_gem_object_get_page_gfp_mask(obj);
355 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
356 ret = i915_gem_object_get_pages(obj);
357 i915_gem_object_set_page_gfp_mask (obj, gfp);
358 }
359
360 return ret;
361 }
362
363 /**
364 * This is the fallback shmem pread path, which allocates temporary storage
365 * in kernel space to copy_to_user into outside of the struct_mutex, so we
366 * can copy out of the object's backing pages while holding the struct mutex
367 * and not take page faults.
368 */
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
371 struct drm_i915_gem_pread *args,
372 struct drm_file *file_priv)
373 {
374 struct drm_i915_gem_object *obj_priv = obj->driver_private;
375 struct mm_struct *mm = current->mm;
376 struct page **user_pages;
377 ssize_t remain;
378 loff_t offset, pinned_pages, i;
379 loff_t first_data_page, last_data_page, num_pages;
380 int shmem_page_index, shmem_page_offset;
381 int data_page_index, data_page_offset;
382 int page_length;
383 int ret;
384 uint64_t data_ptr = args->data_ptr;
385 int do_bit17_swizzling;
386
387 remain = args->size;
388
389 /* Pin the user pages containing the data. We can't fault while
390 * holding the struct mutex, yet we want to hold it while
391 * dereferencing the user data.
392 */
393 first_data_page = data_ptr / PAGE_SIZE;
394 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395 num_pages = last_data_page - first_data_page + 1;
396
397 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398 if (user_pages == NULL)
399 return -ENOMEM;
400
401 down_read(&mm->mmap_sem);
402 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403 num_pages, 1, 0, user_pages, NULL);
404 up_read(&mm->mmap_sem);
405 if (pinned_pages < num_pages) {
406 ret = -EFAULT;
407 goto fail_put_user_pages;
408 }
409
410 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
411
412 mutex_lock(&dev->struct_mutex);
413
414 ret = i915_gem_object_get_pages_or_evict(obj);
415 if (ret)
416 goto fail_unlock;
417
418 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
419 args->size);
420 if (ret != 0)
421 goto fail_put_pages;
422
423 obj_priv = obj->driver_private;
424 offset = args->offset;
425
426 while (remain > 0) {
427 /* Operation in this page
428 *
429 * shmem_page_index = page number within shmem file
430 * shmem_page_offset = offset within page in shmem file
431 * data_page_index = page number in get_user_pages return
432 * data_page_offset = offset with data_page_index page.
433 * page_length = bytes to copy for this page
434 */
435 shmem_page_index = offset / PAGE_SIZE;
436 shmem_page_offset = offset & ~PAGE_MASK;
437 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
438 data_page_offset = data_ptr & ~PAGE_MASK;
439
440 page_length = remain;
441 if ((shmem_page_offset + page_length) > PAGE_SIZE)
442 page_length = PAGE_SIZE - shmem_page_offset;
443 if ((data_page_offset + page_length) > PAGE_SIZE)
444 page_length = PAGE_SIZE - data_page_offset;
445
446 if (do_bit17_swizzling) {
447 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
448 shmem_page_offset,
449 user_pages[data_page_index],
450 data_page_offset,
451 page_length,
452 1);
453 } else {
454 ret = slow_shmem_copy(user_pages[data_page_index],
455 data_page_offset,
456 obj_priv->pages[shmem_page_index],
457 shmem_page_offset,
458 page_length);
459 }
460 if (ret)
461 goto fail_put_pages;
462
463 remain -= page_length;
464 data_ptr += page_length;
465 offset += page_length;
466 }
467
468 fail_put_pages:
469 i915_gem_object_put_pages(obj);
470 fail_unlock:
471 mutex_unlock(&dev->struct_mutex);
472 fail_put_user_pages:
473 for (i = 0; i < pinned_pages; i++) {
474 SetPageDirty(user_pages[i]);
475 page_cache_release(user_pages[i]);
476 }
477 drm_free_large(user_pages);
478
479 return ret;
480 }
481
482 /**
483 * Reads data from the object referenced by handle.
484 *
485 * On error, the contents of *data are undefined.
486 */
487 int
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489 struct drm_file *file_priv)
490 {
491 struct drm_i915_gem_pread *args = data;
492 struct drm_gem_object *obj;
493 struct drm_i915_gem_object *obj_priv;
494 int ret;
495
496 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
497 if (obj == NULL)
498 return -EBADF;
499 obj_priv = obj->driver_private;
500
501 /* Bounds check source.
502 *
503 * XXX: This could use review for overflow issues...
504 */
505 if (args->offset > obj->size || args->size > obj->size ||
506 args->offset + args->size > obj->size) {
507 drm_gem_object_unreference(obj);
508 return -EINVAL;
509 }
510
511 if (i915_gem_object_needs_bit17_swizzle(obj)) {
512 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513 } else {
514 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
515 if (ret != 0)
516 ret = i915_gem_shmem_pread_slow(dev, obj, args,
517 file_priv);
518 }
519
520 drm_gem_object_unreference(obj);
521
522 return ret;
523 }
524
525 /* This is the fast write path which cannot handle
526 * page faults in the source data
527 */
528
529 static inline int
530 fast_user_write(struct io_mapping *mapping,
531 loff_t page_base, int page_offset,
532 char __user *user_data,
533 int length)
534 {
535 char *vaddr_atomic;
536 unsigned long unwritten;
537
538 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
539 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
540 user_data, length);
541 io_mapping_unmap_atomic(vaddr_atomic);
542 if (unwritten)
543 return -EFAULT;
544 return 0;
545 }
546
547 /* Here's the write path which can sleep for
548 * page faults
549 */
550
551 static inline int
552 slow_kernel_write(struct io_mapping *mapping,
553 loff_t gtt_base, int gtt_offset,
554 struct page *user_page, int user_offset,
555 int length)
556 {
557 char *src_vaddr, *dst_vaddr;
558 unsigned long unwritten;
559
560 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
561 src_vaddr = kmap_atomic(user_page, KM_USER1);
562 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
563 src_vaddr + user_offset,
564 length);
565 kunmap_atomic(src_vaddr, KM_USER1);
566 io_mapping_unmap_atomic(dst_vaddr);
567 if (unwritten)
568 return -EFAULT;
569 return 0;
570 }
571
572 static inline int
573 fast_shmem_write(struct page **pages,
574 loff_t page_base, int page_offset,
575 char __user *data,
576 int length)
577 {
578 char __iomem *vaddr;
579 unsigned long unwritten;
580
581 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
582 if (vaddr == NULL)
583 return -ENOMEM;
584 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585 kunmap_atomic(vaddr, KM_USER0);
586
587 if (unwritten)
588 return -EFAULT;
589 return 0;
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
598 struct drm_i915_gem_pwrite *args,
599 struct drm_file *file_priv)
600 {
601 struct drm_i915_gem_object *obj_priv = obj->driver_private;
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length;
607 int ret;
608
609 user_data = (char __user *) (uintptr_t) args->data_ptr;
610 remain = args->size;
611 if (!access_ok(VERIFY_READ, user_data, remain))
612 return -EFAULT;
613
614
615 mutex_lock(&dev->struct_mutex);
616 ret = i915_gem_object_pin(obj, 0);
617 if (ret) {
618 mutex_unlock(&dev->struct_mutex);
619 return ret;
620 }
621 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622 if (ret)
623 goto fail;
624
625 obj_priv = obj->driver_private;
626 offset = obj_priv->gtt_offset + args->offset;
627
628 while (remain > 0) {
629 /* Operation in this page
630 *
631 * page_base = page offset within aperture
632 * page_offset = offset within page
633 * page_length = bytes to copy for this page
634 */
635 page_base = (offset & ~(PAGE_SIZE-1));
636 page_offset = offset & (PAGE_SIZE-1);
637 page_length = remain;
638 if ((page_offset + remain) > PAGE_SIZE)
639 page_length = PAGE_SIZE - page_offset;
640
641 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
642 page_offset, user_data, page_length);
643
644 /* If we get a fault while copying data, then (presumably) our
645 * source page isn't available. Return the error and we'll
646 * retry in the slow path.
647 */
648 if (ret)
649 goto fail;
650
651 remain -= page_length;
652 user_data += page_length;
653 offset += page_length;
654 }
655
656 fail:
657 i915_gem_object_unpin(obj);
658 mutex_unlock(&dev->struct_mutex);
659
660 return ret;
661 }
662
663 /**
664 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665 * the memory and maps it using kmap_atomic for copying.
666 *
667 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
669 */
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
672 struct drm_i915_gem_pwrite *args,
673 struct drm_file *file_priv)
674 {
675 struct drm_i915_gem_object *obj_priv = obj->driver_private;
676 drm_i915_private_t *dev_priv = dev->dev_private;
677 ssize_t remain;
678 loff_t gtt_page_base, offset;
679 loff_t first_data_page, last_data_page, num_pages;
680 loff_t pinned_pages, i;
681 struct page **user_pages;
682 struct mm_struct *mm = current->mm;
683 int gtt_page_offset, data_page_offset, data_page_index, page_length;
684 int ret;
685 uint64_t data_ptr = args->data_ptr;
686
687 remain = args->size;
688
689 /* Pin the user pages containing the data. We can't fault while
690 * holding the struct mutex, and all of the pwrite implementations
691 * want to hold it while dereferencing the user data.
692 */
693 first_data_page = data_ptr / PAGE_SIZE;
694 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695 num_pages = last_data_page - first_data_page + 1;
696
697 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698 if (user_pages == NULL)
699 return -ENOMEM;
700
701 down_read(&mm->mmap_sem);
702 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
703 num_pages, 0, 0, user_pages, NULL);
704 up_read(&mm->mmap_sem);
705 if (pinned_pages < num_pages) {
706 ret = -EFAULT;
707 goto out_unpin_pages;
708 }
709
710 mutex_lock(&dev->struct_mutex);
711 ret = i915_gem_object_pin(obj, 0);
712 if (ret)
713 goto out_unlock;
714
715 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
716 if (ret)
717 goto out_unpin_object;
718
719 obj_priv = obj->driver_private;
720 offset = obj_priv->gtt_offset + args->offset;
721
722 while (remain > 0) {
723 /* Operation in this page
724 *
725 * gtt_page_base = page offset within aperture
726 * gtt_page_offset = offset within page in aperture
727 * data_page_index = page number in get_user_pages return
728 * data_page_offset = offset with data_page_index page.
729 * page_length = bytes to copy for this page
730 */
731 gtt_page_base = offset & PAGE_MASK;
732 gtt_page_offset = offset & ~PAGE_MASK;
733 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734 data_page_offset = data_ptr & ~PAGE_MASK;
735
736 page_length = remain;
737 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738 page_length = PAGE_SIZE - gtt_page_offset;
739 if ((data_page_offset + page_length) > PAGE_SIZE)
740 page_length = PAGE_SIZE - data_page_offset;
741
742 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
743 gtt_page_base, gtt_page_offset,
744 user_pages[data_page_index],
745 data_page_offset,
746 page_length);
747
748 /* If we get a fault while copying data, then (presumably) our
749 * source page isn't available. Return the error and we'll
750 * retry in the slow path.
751 */
752 if (ret)
753 goto out_unpin_object;
754
755 remain -= page_length;
756 offset += page_length;
757 data_ptr += page_length;
758 }
759
760 out_unpin_object:
761 i915_gem_object_unpin(obj);
762 out_unlock:
763 mutex_unlock(&dev->struct_mutex);
764 out_unpin_pages:
765 for (i = 0; i < pinned_pages; i++)
766 page_cache_release(user_pages[i]);
767 drm_free_large(user_pages);
768
769 return ret;
770 }
771
772 /**
773 * This is the fast shmem pwrite path, which attempts to directly
774 * copy_from_user into the kmapped pages backing the object.
775 */
776 static int
777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
778 struct drm_i915_gem_pwrite *args,
779 struct drm_file *file_priv)
780 {
781 struct drm_i915_gem_object *obj_priv = obj->driver_private;
782 ssize_t remain;
783 loff_t offset, page_base;
784 char __user *user_data;
785 int page_offset, page_length;
786 int ret;
787
788 user_data = (char __user *) (uintptr_t) args->data_ptr;
789 remain = args->size;
790
791 mutex_lock(&dev->struct_mutex);
792
793 ret = i915_gem_object_get_pages(obj);
794 if (ret != 0)
795 goto fail_unlock;
796
797 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798 if (ret != 0)
799 goto fail_put_pages;
800
801 obj_priv = obj->driver_private;
802 offset = args->offset;
803 obj_priv->dirty = 1;
804
805 while (remain > 0) {
806 /* Operation in this page
807 *
808 * page_base = page offset within aperture
809 * page_offset = offset within page
810 * page_length = bytes to copy for this page
811 */
812 page_base = (offset & ~(PAGE_SIZE-1));
813 page_offset = offset & (PAGE_SIZE-1);
814 page_length = remain;
815 if ((page_offset + remain) > PAGE_SIZE)
816 page_length = PAGE_SIZE - page_offset;
817
818 ret = fast_shmem_write(obj_priv->pages,
819 page_base, page_offset,
820 user_data, page_length);
821 if (ret)
822 goto fail_put_pages;
823
824 remain -= page_length;
825 user_data += page_length;
826 offset += page_length;
827 }
828
829 fail_put_pages:
830 i915_gem_object_put_pages(obj);
831 fail_unlock:
832 mutex_unlock(&dev->struct_mutex);
833
834 return ret;
835 }
836
837 /**
838 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
839 * the memory and maps it using kmap_atomic for copying.
840 *
841 * This avoids taking mmap_sem for faulting on the user's address while the
842 * struct_mutex is held.
843 */
844 static int
845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
846 struct drm_i915_gem_pwrite *args,
847 struct drm_file *file_priv)
848 {
849 struct drm_i915_gem_object *obj_priv = obj->driver_private;
850 struct mm_struct *mm = current->mm;
851 struct page **user_pages;
852 ssize_t remain;
853 loff_t offset, pinned_pages, i;
854 loff_t first_data_page, last_data_page, num_pages;
855 int shmem_page_index, shmem_page_offset;
856 int data_page_index, data_page_offset;
857 int page_length;
858 int ret;
859 uint64_t data_ptr = args->data_ptr;
860 int do_bit17_swizzling;
861
862 remain = args->size;
863
864 /* Pin the user pages containing the data. We can't fault while
865 * holding the struct mutex, and all of the pwrite implementations
866 * want to hold it while dereferencing the user data.
867 */
868 first_data_page = data_ptr / PAGE_SIZE;
869 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
870 num_pages = last_data_page - first_data_page + 1;
871
872 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873 if (user_pages == NULL)
874 return -ENOMEM;
875
876 down_read(&mm->mmap_sem);
877 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
878 num_pages, 0, 0, user_pages, NULL);
879 up_read(&mm->mmap_sem);
880 if (pinned_pages < num_pages) {
881 ret = -EFAULT;
882 goto fail_put_user_pages;
883 }
884
885 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
886
887 mutex_lock(&dev->struct_mutex);
888
889 ret = i915_gem_object_get_pages_or_evict(obj);
890 if (ret)
891 goto fail_unlock;
892
893 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
894 if (ret != 0)
895 goto fail_put_pages;
896
897 obj_priv = obj->driver_private;
898 offset = args->offset;
899 obj_priv->dirty = 1;
900
901 while (remain > 0) {
902 /* Operation in this page
903 *
904 * shmem_page_index = page number within shmem file
905 * shmem_page_offset = offset within page in shmem file
906 * data_page_index = page number in get_user_pages return
907 * data_page_offset = offset with data_page_index page.
908 * page_length = bytes to copy for this page
909 */
910 shmem_page_index = offset / PAGE_SIZE;
911 shmem_page_offset = offset & ~PAGE_MASK;
912 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
913 data_page_offset = data_ptr & ~PAGE_MASK;
914
915 page_length = remain;
916 if ((shmem_page_offset + page_length) > PAGE_SIZE)
917 page_length = PAGE_SIZE - shmem_page_offset;
918 if ((data_page_offset + page_length) > PAGE_SIZE)
919 page_length = PAGE_SIZE - data_page_offset;
920
921 if (do_bit17_swizzling) {
922 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
923 shmem_page_offset,
924 user_pages[data_page_index],
925 data_page_offset,
926 page_length,
927 0);
928 } else {
929 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
930 shmem_page_offset,
931 user_pages[data_page_index],
932 data_page_offset,
933 page_length);
934 }
935 if (ret)
936 goto fail_put_pages;
937
938 remain -= page_length;
939 data_ptr += page_length;
940 offset += page_length;
941 }
942
943 fail_put_pages:
944 i915_gem_object_put_pages(obj);
945 fail_unlock:
946 mutex_unlock(&dev->struct_mutex);
947 fail_put_user_pages:
948 for (i = 0; i < pinned_pages; i++)
949 page_cache_release(user_pages[i]);
950 drm_free_large(user_pages);
951
952 return ret;
953 }
954
955 /**
956 * Writes data to the object referenced by handle.
957 *
958 * On error, the contents of the buffer that were to be modified are undefined.
959 */
960 int
961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
962 struct drm_file *file_priv)
963 {
964 struct drm_i915_gem_pwrite *args = data;
965 struct drm_gem_object *obj;
966 struct drm_i915_gem_object *obj_priv;
967 int ret = 0;
968
969 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
970 if (obj == NULL)
971 return -EBADF;
972 obj_priv = obj->driver_private;
973
974 /* Bounds check destination.
975 *
976 * XXX: This could use review for overflow issues...
977 */
978 if (args->offset > obj->size || args->size > obj->size ||
979 args->offset + args->size > obj->size) {
980 drm_gem_object_unreference(obj);
981 return -EINVAL;
982 }
983
984 /* We can only do the GTT pwrite on untiled buffers, as otherwise
985 * it would end up going through the fenced access, and we'll get
986 * different detiling behavior between reading and writing.
987 * pread/pwrite currently are reading and writing from the CPU
988 * perspective, requiring manual detiling by the client.
989 */
990 if (obj_priv->phys_obj)
991 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
992 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993 dev->gtt_total != 0) {
994 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
995 if (ret == -EFAULT) {
996 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
997 file_priv);
998 }
999 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001 } else {
1002 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003 if (ret == -EFAULT) {
1004 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005 file_priv);
1006 }
1007 }
1008
1009 #if WATCH_PWRITE
1010 if (ret)
1011 DRM_INFO("pwrite failed %d\n", ret);
1012 #endif
1013
1014 drm_gem_object_unreference(obj);
1015
1016 return ret;
1017 }
1018
1019 /**
1020 * Called when user space prepares to use an object with the CPU, either
1021 * through the mmap ioctl's mapping or a GTT mapping.
1022 */
1023 int
1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025 struct drm_file *file_priv)
1026 {
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 struct drm_i915_gem_set_domain *args = data;
1029 struct drm_gem_object *obj;
1030 struct drm_i915_gem_object *obj_priv;
1031 uint32_t read_domains = args->read_domains;
1032 uint32_t write_domain = args->write_domain;
1033 int ret;
1034
1035 if (!(dev->driver->driver_features & DRIVER_GEM))
1036 return -ENODEV;
1037
1038 /* Only handle setting domains to types used by the CPU. */
1039 if (write_domain & I915_GEM_GPU_DOMAINS)
1040 return -EINVAL;
1041
1042 if (read_domains & I915_GEM_GPU_DOMAINS)
1043 return -EINVAL;
1044
1045 /* Having something in the write domain implies it's in the read
1046 * domain, and only that read domain. Enforce that in the request.
1047 */
1048 if (write_domain != 0 && read_domains != write_domain)
1049 return -EINVAL;
1050
1051 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052 if (obj == NULL)
1053 return -EBADF;
1054 obj_priv = obj->driver_private;
1055
1056 mutex_lock(&dev->struct_mutex);
1057
1058 intel_mark_busy(dev, obj);
1059
1060 #if WATCH_BUF
1061 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062 obj, obj->size, read_domains, write_domain);
1063 #endif
1064 if (read_domains & I915_GEM_DOMAIN_GTT) {
1065 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066
1067 /* Update the LRU on the fence for the CPU access that's
1068 * about to occur.
1069 */
1070 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071 list_move_tail(&obj_priv->fence_list,
1072 &dev_priv->mm.fence_list);
1073 }
1074
1075 /* Silently promote "you're not bound, there was nothing to do"
1076 * to success, since the client was just asking us to
1077 * make sure everything was done.
1078 */
1079 if (ret == -EINVAL)
1080 ret = 0;
1081 } else {
1082 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083 }
1084
1085 drm_gem_object_unreference(obj);
1086 mutex_unlock(&dev->struct_mutex);
1087 return ret;
1088 }
1089
1090 /**
1091 * Called when user space has done writes to this buffer
1092 */
1093 int
1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095 struct drm_file *file_priv)
1096 {
1097 struct drm_i915_gem_sw_finish *args = data;
1098 struct drm_gem_object *obj;
1099 struct drm_i915_gem_object *obj_priv;
1100 int ret = 0;
1101
1102 if (!(dev->driver->driver_features & DRIVER_GEM))
1103 return -ENODEV;
1104
1105 mutex_lock(&dev->struct_mutex);
1106 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107 if (obj == NULL) {
1108 mutex_unlock(&dev->struct_mutex);
1109 return -EBADF;
1110 }
1111
1112 #if WATCH_BUF
1113 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114 __func__, args->handle, obj, obj->size);
1115 #endif
1116 obj_priv = obj->driver_private;
1117
1118 /* Pinned buffers may be scanout, so flush the cache */
1119 if (obj_priv->pin_count)
1120 i915_gem_object_flush_cpu_write_domain(obj);
1121
1122 drm_gem_object_unreference(obj);
1123 mutex_unlock(&dev->struct_mutex);
1124 return ret;
1125 }
1126
1127 /**
1128 * Maps the contents of an object, returning the address it is mapped
1129 * into.
1130 *
1131 * While the mapping holds a reference on the contents of the object, it doesn't
1132 * imply a ref on the object itself.
1133 */
1134 int
1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136 struct drm_file *file_priv)
1137 {
1138 struct drm_i915_gem_mmap *args = data;
1139 struct drm_gem_object *obj;
1140 loff_t offset;
1141 unsigned long addr;
1142
1143 if (!(dev->driver->driver_features & DRIVER_GEM))
1144 return -ENODEV;
1145
1146 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147 if (obj == NULL)
1148 return -EBADF;
1149
1150 offset = args->offset;
1151
1152 down_write(&current->mm->mmap_sem);
1153 addr = do_mmap(obj->filp, 0, args->size,
1154 PROT_READ | PROT_WRITE, MAP_SHARED,
1155 args->offset);
1156 up_write(&current->mm->mmap_sem);
1157 mutex_lock(&dev->struct_mutex);
1158 drm_gem_object_unreference(obj);
1159 mutex_unlock(&dev->struct_mutex);
1160 if (IS_ERR((void *)addr))
1161 return addr;
1162
1163 args->addr_ptr = (uint64_t) addr;
1164
1165 return 0;
1166 }
1167
1168 /**
1169 * i915_gem_fault - fault a page into the GTT
1170 * vma: VMA in question
1171 * vmf: fault info
1172 *
1173 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174 * from userspace. The fault handler takes care of binding the object to
1175 * the GTT (if needed), allocating and programming a fence register (again,
1176 * only if needed based on whether the old reg is still valid or the object
1177 * is tiled) and inserting a new PTE into the faulting process.
1178 *
1179 * Note that the faulting process may involve evicting existing objects
1180 * from the GTT and/or fence registers to make room. So performance may
1181 * suffer if the GTT working set is large or there are few fence registers
1182 * left.
1183 */
1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1185 {
1186 struct drm_gem_object *obj = vma->vm_private_data;
1187 struct drm_device *dev = obj->dev;
1188 struct drm_i915_private *dev_priv = dev->dev_private;
1189 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190 pgoff_t page_offset;
1191 unsigned long pfn;
1192 int ret = 0;
1193 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194
1195 /* We don't use vmf->pgoff since that has the fake offset */
1196 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197 PAGE_SHIFT;
1198
1199 /* Now bind it into the GTT if needed */
1200 mutex_lock(&dev->struct_mutex);
1201 if (!obj_priv->gtt_space) {
1202 ret = i915_gem_object_bind_to_gtt(obj, 0);
1203 if (ret)
1204 goto unlock;
1205
1206 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1207
1208 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1209 if (ret)
1210 goto unlock;
1211 }
1212
1213 /* Need a new fence register? */
1214 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1215 ret = i915_gem_object_get_fence_reg(obj);
1216 if (ret)
1217 goto unlock;
1218 }
1219
1220 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1221 page_offset;
1222
1223 /* Finally, remap it using the new GTT offset */
1224 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1225 unlock:
1226 mutex_unlock(&dev->struct_mutex);
1227
1228 switch (ret) {
1229 case 0:
1230 case -ERESTARTSYS:
1231 return VM_FAULT_NOPAGE;
1232 case -ENOMEM:
1233 case -EAGAIN:
1234 return VM_FAULT_OOM;
1235 default:
1236 return VM_FAULT_SIGBUS;
1237 }
1238 }
1239
1240 /**
1241 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1242 * @obj: obj in question
1243 *
1244 * GEM memory mapping works by handing back to userspace a fake mmap offset
1245 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1246 * up the object based on the offset and sets up the various memory mapping
1247 * structures.
1248 *
1249 * This routine allocates and attaches a fake offset for @obj.
1250 */
1251 static int
1252 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1253 {
1254 struct drm_device *dev = obj->dev;
1255 struct drm_gem_mm *mm = dev->mm_private;
1256 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1257 struct drm_map_list *list;
1258 struct drm_local_map *map;
1259 int ret = 0;
1260
1261 /* Set the object up for mmap'ing */
1262 list = &obj->map_list;
1263 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1264 if (!list->map)
1265 return -ENOMEM;
1266
1267 map = list->map;
1268 map->type = _DRM_GEM;
1269 map->size = obj->size;
1270 map->handle = obj;
1271
1272 /* Get a DRM GEM mmap offset allocated... */
1273 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1274 obj->size / PAGE_SIZE, 0, 0);
1275 if (!list->file_offset_node) {
1276 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1277 ret = -ENOMEM;
1278 goto out_free_list;
1279 }
1280
1281 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1282 obj->size / PAGE_SIZE, 0);
1283 if (!list->file_offset_node) {
1284 ret = -ENOMEM;
1285 goto out_free_list;
1286 }
1287
1288 list->hash.key = list->file_offset_node->start;
1289 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1290 DRM_ERROR("failed to add to map hash\n");
1291 goto out_free_mm;
1292 }
1293
1294 /* By now we should be all set, any drm_mmap request on the offset
1295 * below will get to our mmap & fault handler */
1296 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1297
1298 return 0;
1299
1300 out_free_mm:
1301 drm_mm_put_block(list->file_offset_node);
1302 out_free_list:
1303 kfree(list->map);
1304
1305 return ret;
1306 }
1307
1308 /**
1309 * i915_gem_release_mmap - remove physical page mappings
1310 * @obj: obj in question
1311 *
1312 * Preserve the reservation of the mmaping with the DRM core code, but
1313 * relinquish ownership of the pages back to the system.
1314 *
1315 * It is vital that we remove the page mapping if we have mapped a tiled
1316 * object through the GTT and then lose the fence register due to
1317 * resource pressure. Similarly if the object has been moved out of the
1318 * aperture, than pages mapped into userspace must be revoked. Removing the
1319 * mapping will then trigger a page fault on the next user access, allowing
1320 * fixup by i915_gem_fault().
1321 */
1322 void
1323 i915_gem_release_mmap(struct drm_gem_object *obj)
1324 {
1325 struct drm_device *dev = obj->dev;
1326 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1327
1328 if (dev->dev_mapping)
1329 unmap_mapping_range(dev->dev_mapping,
1330 obj_priv->mmap_offset, obj->size, 1);
1331 }
1332
1333 static void
1334 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1335 {
1336 struct drm_device *dev = obj->dev;
1337 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1338 struct drm_gem_mm *mm = dev->mm_private;
1339 struct drm_map_list *list;
1340
1341 list = &obj->map_list;
1342 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1343
1344 if (list->file_offset_node) {
1345 drm_mm_put_block(list->file_offset_node);
1346 list->file_offset_node = NULL;
1347 }
1348
1349 if (list->map) {
1350 kfree(list->map);
1351 list->map = NULL;
1352 }
1353
1354 obj_priv->mmap_offset = 0;
1355 }
1356
1357 /**
1358 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1359 * @obj: object to check
1360 *
1361 * Return the required GTT alignment for an object, taking into account
1362 * potential fence register mapping if needed.
1363 */
1364 static uint32_t
1365 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1366 {
1367 struct drm_device *dev = obj->dev;
1368 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1369 int start, i;
1370
1371 /*
1372 * Minimum alignment is 4k (GTT page size), but might be greater
1373 * if a fence register is needed for the object.
1374 */
1375 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1376 return 4096;
1377
1378 /*
1379 * Previous chips need to be aligned to the size of the smallest
1380 * fence register that can contain the object.
1381 */
1382 if (IS_I9XX(dev))
1383 start = 1024*1024;
1384 else
1385 start = 512*1024;
1386
1387 for (i = start; i < obj->size; i <<= 1)
1388 ;
1389
1390 return i;
1391 }
1392
1393 /**
1394 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1395 * @dev: DRM device
1396 * @data: GTT mapping ioctl data
1397 * @file_priv: GEM object info
1398 *
1399 * Simply returns the fake offset to userspace so it can mmap it.
1400 * The mmap call will end up in drm_gem_mmap(), which will set things
1401 * up so we can get faults in the handler above.
1402 *
1403 * The fault handler will take care of binding the object into the GTT
1404 * (since it may have been evicted to make room for something), allocating
1405 * a fence register, and mapping the appropriate aperture address into
1406 * userspace.
1407 */
1408 int
1409 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1410 struct drm_file *file_priv)
1411 {
1412 struct drm_i915_gem_mmap_gtt *args = data;
1413 struct drm_i915_private *dev_priv = dev->dev_private;
1414 struct drm_gem_object *obj;
1415 struct drm_i915_gem_object *obj_priv;
1416 int ret;
1417
1418 if (!(dev->driver->driver_features & DRIVER_GEM))
1419 return -ENODEV;
1420
1421 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1422 if (obj == NULL)
1423 return -EBADF;
1424
1425 mutex_lock(&dev->struct_mutex);
1426
1427 obj_priv = obj->driver_private;
1428
1429 if (obj_priv->madv != I915_MADV_WILLNEED) {
1430 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1431 drm_gem_object_unreference(obj);
1432 mutex_unlock(&dev->struct_mutex);
1433 return -EINVAL;
1434 }
1435
1436
1437 if (!obj_priv->mmap_offset) {
1438 ret = i915_gem_create_mmap_offset(obj);
1439 if (ret) {
1440 drm_gem_object_unreference(obj);
1441 mutex_unlock(&dev->struct_mutex);
1442 return ret;
1443 }
1444 }
1445
1446 args->offset = obj_priv->mmap_offset;
1447
1448 /*
1449 * Pull it into the GTT so that we have a page list (makes the
1450 * initial fault faster and any subsequent flushing possible).
1451 */
1452 if (!obj_priv->agp_mem) {
1453 ret = i915_gem_object_bind_to_gtt(obj, 0);
1454 if (ret) {
1455 drm_gem_object_unreference(obj);
1456 mutex_unlock(&dev->struct_mutex);
1457 return ret;
1458 }
1459 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1460 }
1461
1462 drm_gem_object_unreference(obj);
1463 mutex_unlock(&dev->struct_mutex);
1464
1465 return 0;
1466 }
1467
1468 void
1469 i915_gem_object_put_pages(struct drm_gem_object *obj)
1470 {
1471 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1472 int page_count = obj->size / PAGE_SIZE;
1473 int i;
1474
1475 BUG_ON(obj_priv->pages_refcount == 0);
1476 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1477
1478 if (--obj_priv->pages_refcount != 0)
1479 return;
1480
1481 if (obj_priv->tiling_mode != I915_TILING_NONE)
1482 i915_gem_object_save_bit_17_swizzle(obj);
1483
1484 if (obj_priv->madv == I915_MADV_DONTNEED)
1485 obj_priv->dirty = 0;
1486
1487 for (i = 0; i < page_count; i++) {
1488 if (obj_priv->pages[i] == NULL)
1489 break;
1490
1491 if (obj_priv->dirty)
1492 set_page_dirty(obj_priv->pages[i]);
1493
1494 if (obj_priv->madv == I915_MADV_WILLNEED)
1495 mark_page_accessed(obj_priv->pages[i]);
1496
1497 page_cache_release(obj_priv->pages[i]);
1498 }
1499 obj_priv->dirty = 0;
1500
1501 drm_free_large(obj_priv->pages);
1502 obj_priv->pages = NULL;
1503 }
1504
1505 static void
1506 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1507 {
1508 struct drm_device *dev = obj->dev;
1509 drm_i915_private_t *dev_priv = dev->dev_private;
1510 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1511
1512 /* Add a reference if we're newly entering the active list. */
1513 if (!obj_priv->active) {
1514 drm_gem_object_reference(obj);
1515 obj_priv->active = 1;
1516 }
1517 /* Move from whatever list we were on to the tail of execution. */
1518 spin_lock(&dev_priv->mm.active_list_lock);
1519 list_move_tail(&obj_priv->list,
1520 &dev_priv->mm.active_list);
1521 spin_unlock(&dev_priv->mm.active_list_lock);
1522 obj_priv->last_rendering_seqno = seqno;
1523 }
1524
1525 static void
1526 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1527 {
1528 struct drm_device *dev = obj->dev;
1529 drm_i915_private_t *dev_priv = dev->dev_private;
1530 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1531
1532 BUG_ON(!obj_priv->active);
1533 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1534 obj_priv->last_rendering_seqno = 0;
1535 }
1536
1537 /* Immediately discard the backing storage */
1538 static void
1539 i915_gem_object_truncate(struct drm_gem_object *obj)
1540 {
1541 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1542 struct inode *inode;
1543
1544 inode = obj->filp->f_path.dentry->d_inode;
1545 if (inode->i_op->truncate)
1546 inode->i_op->truncate (inode);
1547
1548 obj_priv->madv = __I915_MADV_PURGED;
1549 }
1550
1551 static inline int
1552 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1553 {
1554 return obj_priv->madv == I915_MADV_DONTNEED;
1555 }
1556
1557 static void
1558 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1559 {
1560 struct drm_device *dev = obj->dev;
1561 drm_i915_private_t *dev_priv = dev->dev_private;
1562 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1563
1564 i915_verify_inactive(dev, __FILE__, __LINE__);
1565 if (obj_priv->pin_count != 0)
1566 list_del_init(&obj_priv->list);
1567 else
1568 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1569
1570 obj_priv->last_rendering_seqno = 0;
1571 if (obj_priv->active) {
1572 obj_priv->active = 0;
1573 drm_gem_object_unreference(obj);
1574 }
1575 i915_verify_inactive(dev, __FILE__, __LINE__);
1576 }
1577
1578 /**
1579 * Creates a new sequence number, emitting a write of it to the status page
1580 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1581 *
1582 * Must be called with struct_lock held.
1583 *
1584 * Returned sequence numbers are nonzero on success.
1585 */
1586 uint32_t
1587 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1588 uint32_t flush_domains)
1589 {
1590 drm_i915_private_t *dev_priv = dev->dev_private;
1591 struct drm_i915_file_private *i915_file_priv = NULL;
1592 struct drm_i915_gem_request *request;
1593 uint32_t seqno;
1594 int was_empty;
1595 RING_LOCALS;
1596
1597 if (file_priv != NULL)
1598 i915_file_priv = file_priv->driver_priv;
1599
1600 request = kzalloc(sizeof(*request), GFP_KERNEL);
1601 if (request == NULL)
1602 return 0;
1603
1604 /* Grab the seqno we're going to make this request be, and bump the
1605 * next (skipping 0 so it can be the reserved no-seqno value).
1606 */
1607 seqno = dev_priv->mm.next_gem_seqno;
1608 dev_priv->mm.next_gem_seqno++;
1609 if (dev_priv->mm.next_gem_seqno == 0)
1610 dev_priv->mm.next_gem_seqno++;
1611
1612 BEGIN_LP_RING(4);
1613 OUT_RING(MI_STORE_DWORD_INDEX);
1614 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1615 OUT_RING(seqno);
1616
1617 OUT_RING(MI_USER_INTERRUPT);
1618 ADVANCE_LP_RING();
1619
1620 DRM_DEBUG_DRIVER("%d\n", seqno);
1621
1622 request->seqno = seqno;
1623 request->emitted_jiffies = jiffies;
1624 was_empty = list_empty(&dev_priv->mm.request_list);
1625 list_add_tail(&request->list, &dev_priv->mm.request_list);
1626 if (i915_file_priv) {
1627 list_add_tail(&request->client_list,
1628 &i915_file_priv->mm.request_list);
1629 } else {
1630 INIT_LIST_HEAD(&request->client_list);
1631 }
1632
1633 /* Associate any objects on the flushing list matching the write
1634 * domain we're flushing with our flush.
1635 */
1636 if (flush_domains != 0) {
1637 struct drm_i915_gem_object *obj_priv, *next;
1638
1639 list_for_each_entry_safe(obj_priv, next,
1640 &dev_priv->mm.flushing_list, list) {
1641 struct drm_gem_object *obj = obj_priv->obj;
1642
1643 if ((obj->write_domain & flush_domains) ==
1644 obj->write_domain) {
1645 uint32_t old_write_domain = obj->write_domain;
1646
1647 obj->write_domain = 0;
1648 i915_gem_object_move_to_active(obj, seqno);
1649
1650 trace_i915_gem_object_change_domain(obj,
1651 obj->read_domains,
1652 old_write_domain);
1653 }
1654 }
1655
1656 }
1657
1658 if (!dev_priv->mm.suspended) {
1659 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1660 if (was_empty)
1661 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1662 }
1663 return seqno;
1664 }
1665
1666 /**
1667 * Command execution barrier
1668 *
1669 * Ensures that all commands in the ring are finished
1670 * before signalling the CPU
1671 */
1672 static uint32_t
1673 i915_retire_commands(struct drm_device *dev)
1674 {
1675 drm_i915_private_t *dev_priv = dev->dev_private;
1676 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1677 uint32_t flush_domains = 0;
1678 RING_LOCALS;
1679
1680 /* The sampler always gets flushed on i965 (sigh) */
1681 if (IS_I965G(dev))
1682 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1683 BEGIN_LP_RING(2);
1684 OUT_RING(cmd);
1685 OUT_RING(0); /* noop */
1686 ADVANCE_LP_RING();
1687 return flush_domains;
1688 }
1689
1690 /**
1691 * Moves buffers associated only with the given active seqno from the active
1692 * to inactive list, potentially freeing them.
1693 */
1694 static void
1695 i915_gem_retire_request(struct drm_device *dev,
1696 struct drm_i915_gem_request *request)
1697 {
1698 drm_i915_private_t *dev_priv = dev->dev_private;
1699
1700 trace_i915_gem_request_retire(dev, request->seqno);
1701
1702 /* Move any buffers on the active list that are no longer referenced
1703 * by the ringbuffer to the flushing/inactive lists as appropriate.
1704 */
1705 spin_lock(&dev_priv->mm.active_list_lock);
1706 while (!list_empty(&dev_priv->mm.active_list)) {
1707 struct drm_gem_object *obj;
1708 struct drm_i915_gem_object *obj_priv;
1709
1710 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1711 struct drm_i915_gem_object,
1712 list);
1713 obj = obj_priv->obj;
1714
1715 /* If the seqno being retired doesn't match the oldest in the
1716 * list, then the oldest in the list must still be newer than
1717 * this seqno.
1718 */
1719 if (obj_priv->last_rendering_seqno != request->seqno)
1720 goto out;
1721
1722 #if WATCH_LRU
1723 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1724 __func__, request->seqno, obj);
1725 #endif
1726
1727 if (obj->write_domain != 0)
1728 i915_gem_object_move_to_flushing(obj);
1729 else {
1730 /* Take a reference on the object so it won't be
1731 * freed while the spinlock is held. The list
1732 * protection for this spinlock is safe when breaking
1733 * the lock like this since the next thing we do
1734 * is just get the head of the list again.
1735 */
1736 drm_gem_object_reference(obj);
1737 i915_gem_object_move_to_inactive(obj);
1738 spin_unlock(&dev_priv->mm.active_list_lock);
1739 drm_gem_object_unreference(obj);
1740 spin_lock(&dev_priv->mm.active_list_lock);
1741 }
1742 }
1743 out:
1744 spin_unlock(&dev_priv->mm.active_list_lock);
1745 }
1746
1747 /**
1748 * Returns true if seq1 is later than seq2.
1749 */
1750 bool
1751 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1752 {
1753 return (int32_t)(seq1 - seq2) >= 0;
1754 }
1755
1756 uint32_t
1757 i915_get_gem_seqno(struct drm_device *dev)
1758 {
1759 drm_i915_private_t *dev_priv = dev->dev_private;
1760
1761 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1762 }
1763
1764 /**
1765 * This function clears the request list as sequence numbers are passed.
1766 */
1767 void
1768 i915_gem_retire_requests(struct drm_device *dev)
1769 {
1770 drm_i915_private_t *dev_priv = dev->dev_private;
1771 uint32_t seqno;
1772
1773 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1774 return;
1775
1776 seqno = i915_get_gem_seqno(dev);
1777
1778 while (!list_empty(&dev_priv->mm.request_list)) {
1779 struct drm_i915_gem_request *request;
1780 uint32_t retiring_seqno;
1781
1782 request = list_first_entry(&dev_priv->mm.request_list,
1783 struct drm_i915_gem_request,
1784 list);
1785 retiring_seqno = request->seqno;
1786
1787 if (i915_seqno_passed(seqno, retiring_seqno) ||
1788 atomic_read(&dev_priv->mm.wedged)) {
1789 i915_gem_retire_request(dev, request);
1790
1791 list_del(&request->list);
1792 list_del(&request->client_list);
1793 kfree(request);
1794 } else
1795 break;
1796 }
1797
1798 if (unlikely (dev_priv->trace_irq_seqno &&
1799 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1800 i915_user_irq_put(dev);
1801 dev_priv->trace_irq_seqno = 0;
1802 }
1803 }
1804
1805 void
1806 i915_gem_retire_work_handler(struct work_struct *work)
1807 {
1808 drm_i915_private_t *dev_priv;
1809 struct drm_device *dev;
1810
1811 dev_priv = container_of(work, drm_i915_private_t,
1812 mm.retire_work.work);
1813 dev = dev_priv->dev;
1814
1815 mutex_lock(&dev->struct_mutex);
1816 i915_gem_retire_requests(dev);
1817 if (!dev_priv->mm.suspended &&
1818 !list_empty(&dev_priv->mm.request_list))
1819 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1820 mutex_unlock(&dev->struct_mutex);
1821 }
1822
1823 int
1824 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1825 {
1826 drm_i915_private_t *dev_priv = dev->dev_private;
1827 u32 ier;
1828 int ret = 0;
1829
1830 BUG_ON(seqno == 0);
1831
1832 if (atomic_read(&dev_priv->mm.wedged))
1833 return -EIO;
1834
1835 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1836 if (IS_IGDNG(dev))
1837 ier = I915_READ(DEIER) | I915_READ(GTIER);
1838 else
1839 ier = I915_READ(IER);
1840 if (!ier) {
1841 DRM_ERROR("something (likely vbetool) disabled "
1842 "interrupts, re-enabling\n");
1843 i915_driver_irq_preinstall(dev);
1844 i915_driver_irq_postinstall(dev);
1845 }
1846
1847 trace_i915_gem_request_wait_begin(dev, seqno);
1848
1849 dev_priv->mm.waiting_gem_seqno = seqno;
1850 i915_user_irq_get(dev);
1851 if (interruptible)
1852 ret = wait_event_interruptible(dev_priv->irq_queue,
1853 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1854 atomic_read(&dev_priv->mm.wedged));
1855 else
1856 wait_event(dev_priv->irq_queue,
1857 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1858 atomic_read(&dev_priv->mm.wedged));
1859
1860 i915_user_irq_put(dev);
1861 dev_priv->mm.waiting_gem_seqno = 0;
1862
1863 trace_i915_gem_request_wait_end(dev, seqno);
1864 }
1865 if (atomic_read(&dev_priv->mm.wedged))
1866 ret = -EIO;
1867
1868 if (ret && ret != -ERESTARTSYS)
1869 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1870 __func__, ret, seqno, i915_get_gem_seqno(dev));
1871
1872 /* Directly dispatch request retiring. While we have the work queue
1873 * to handle this, the waiter on a request often wants an associated
1874 * buffer to have made it to the inactive list, and we would need
1875 * a separate wait queue to handle that.
1876 */
1877 if (ret == 0)
1878 i915_gem_retire_requests(dev);
1879
1880 return ret;
1881 }
1882
1883 /**
1884 * Waits for a sequence number to be signaled, and cleans up the
1885 * request and object lists appropriately for that event.
1886 */
1887 static int
1888 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1889 {
1890 return i915_do_wait_request(dev, seqno, 1);
1891 }
1892
1893 static void
1894 i915_gem_flush(struct drm_device *dev,
1895 uint32_t invalidate_domains,
1896 uint32_t flush_domains)
1897 {
1898 drm_i915_private_t *dev_priv = dev->dev_private;
1899 uint32_t cmd;
1900 RING_LOCALS;
1901
1902 #if WATCH_EXEC
1903 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1904 invalidate_domains, flush_domains);
1905 #endif
1906 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1907 invalidate_domains, flush_domains);
1908
1909 if (flush_domains & I915_GEM_DOMAIN_CPU)
1910 drm_agp_chipset_flush(dev);
1911
1912 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1913 /*
1914 * read/write caches:
1915 *
1916 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1917 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1918 * also flushed at 2d versus 3d pipeline switches.
1919 *
1920 * read-only caches:
1921 *
1922 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1923 * MI_READ_FLUSH is set, and is always flushed on 965.
1924 *
1925 * I915_GEM_DOMAIN_COMMAND may not exist?
1926 *
1927 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1928 * invalidated when MI_EXE_FLUSH is set.
1929 *
1930 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1931 * invalidated with every MI_FLUSH.
1932 *
1933 * TLBs:
1934 *
1935 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1936 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1937 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1938 * are flushed at any MI_FLUSH.
1939 */
1940
1941 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1942 if ((invalidate_domains|flush_domains) &
1943 I915_GEM_DOMAIN_RENDER)
1944 cmd &= ~MI_NO_WRITE_FLUSH;
1945 if (!IS_I965G(dev)) {
1946 /*
1947 * On the 965, the sampler cache always gets flushed
1948 * and this bit is reserved.
1949 */
1950 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1951 cmd |= MI_READ_FLUSH;
1952 }
1953 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1954 cmd |= MI_EXE_FLUSH;
1955
1956 #if WATCH_EXEC
1957 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1958 #endif
1959 BEGIN_LP_RING(2);
1960 OUT_RING(cmd);
1961 OUT_RING(MI_NOOP);
1962 ADVANCE_LP_RING();
1963 }
1964 }
1965
1966 /**
1967 * Ensures that all rendering to the object has completed and the object is
1968 * safe to unbind from the GTT or access from the CPU.
1969 */
1970 static int
1971 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1972 {
1973 struct drm_device *dev = obj->dev;
1974 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1975 int ret;
1976
1977 /* This function only exists to support waiting for existing rendering,
1978 * not for emitting required flushes.
1979 */
1980 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1981
1982 /* If there is rendering queued on the buffer being evicted, wait for
1983 * it.
1984 */
1985 if (obj_priv->active) {
1986 #if WATCH_BUF
1987 DRM_INFO("%s: object %p wait for seqno %08x\n",
1988 __func__, obj, obj_priv->last_rendering_seqno);
1989 #endif
1990 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1991 if (ret != 0)
1992 return ret;
1993 }
1994
1995 return 0;
1996 }
1997
1998 /**
1999 * Unbinds an object from the GTT aperture.
2000 */
2001 int
2002 i915_gem_object_unbind(struct drm_gem_object *obj)
2003 {
2004 struct drm_device *dev = obj->dev;
2005 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2006 int ret = 0;
2007
2008 #if WATCH_BUF
2009 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2010 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2011 #endif
2012 if (obj_priv->gtt_space == NULL)
2013 return 0;
2014
2015 if (obj_priv->pin_count != 0) {
2016 DRM_ERROR("Attempting to unbind pinned buffer\n");
2017 return -EINVAL;
2018 }
2019
2020 /* blow away mappings if mapped through GTT */
2021 i915_gem_release_mmap(obj);
2022
2023 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2024 i915_gem_clear_fence_reg(obj);
2025
2026 /* Move the object to the CPU domain to ensure that
2027 * any possible CPU writes while it's not in the GTT
2028 * are flushed when we go to remap it. This will
2029 * also ensure that all pending GPU writes are finished
2030 * before we unbind.
2031 */
2032 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2033 if (ret) {
2034 if (ret != -ERESTARTSYS)
2035 DRM_ERROR("set_domain failed: %d\n", ret);
2036 return ret;
2037 }
2038
2039 BUG_ON(obj_priv->active);
2040
2041 if (obj_priv->agp_mem != NULL) {
2042 drm_unbind_agp(obj_priv->agp_mem);
2043 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2044 obj_priv->agp_mem = NULL;
2045 }
2046
2047 i915_gem_object_put_pages(obj);
2048 BUG_ON(obj_priv->pages_refcount);
2049
2050 if (obj_priv->gtt_space) {
2051 atomic_dec(&dev->gtt_count);
2052 atomic_sub(obj->size, &dev->gtt_memory);
2053
2054 drm_mm_put_block(obj_priv->gtt_space);
2055 obj_priv->gtt_space = NULL;
2056 }
2057
2058 /* Remove ourselves from the LRU list if present. */
2059 if (!list_empty(&obj_priv->list))
2060 list_del_init(&obj_priv->list);
2061
2062 if (i915_gem_object_is_purgeable(obj_priv))
2063 i915_gem_object_truncate(obj);
2064
2065 trace_i915_gem_object_unbind(obj);
2066
2067 return 0;
2068 }
2069
2070 static struct drm_gem_object *
2071 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2072 {
2073 drm_i915_private_t *dev_priv = dev->dev_private;
2074 struct drm_i915_gem_object *obj_priv;
2075 struct drm_gem_object *best = NULL;
2076 struct drm_gem_object *first = NULL;
2077
2078 /* Try to find the smallest clean object */
2079 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2080 struct drm_gem_object *obj = obj_priv->obj;
2081 if (obj->size >= min_size) {
2082 if ((!obj_priv->dirty ||
2083 i915_gem_object_is_purgeable(obj_priv)) &&
2084 (!best || obj->size < best->size)) {
2085 best = obj;
2086 if (best->size == min_size)
2087 return best;
2088 }
2089 if (!first)
2090 first = obj;
2091 }
2092 }
2093
2094 return best ? best : first;
2095 }
2096
2097 static int
2098 i915_gem_evict_everything(struct drm_device *dev)
2099 {
2100 drm_i915_private_t *dev_priv = dev->dev_private;
2101 uint32_t seqno;
2102 int ret;
2103 bool lists_empty;
2104
2105 spin_lock(&dev_priv->mm.active_list_lock);
2106 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2107 list_empty(&dev_priv->mm.flushing_list) &&
2108 list_empty(&dev_priv->mm.active_list));
2109 spin_unlock(&dev_priv->mm.active_list_lock);
2110
2111 if (lists_empty)
2112 return -ENOSPC;
2113
2114 /* Flush everything (on to the inactive lists) and evict */
2115 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2116 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2117 if (seqno == 0)
2118 return -ENOMEM;
2119
2120 ret = i915_wait_request(dev, seqno);
2121 if (ret)
2122 return ret;
2123
2124 ret = i915_gem_evict_from_inactive_list(dev);
2125 if (ret)
2126 return ret;
2127
2128 spin_lock(&dev_priv->mm.active_list_lock);
2129 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2130 list_empty(&dev_priv->mm.flushing_list) &&
2131 list_empty(&dev_priv->mm.active_list));
2132 spin_unlock(&dev_priv->mm.active_list_lock);
2133 BUG_ON(!lists_empty);
2134
2135 return 0;
2136 }
2137
2138 static int
2139 i915_gem_evict_something(struct drm_device *dev, int min_size)
2140 {
2141 drm_i915_private_t *dev_priv = dev->dev_private;
2142 struct drm_gem_object *obj;
2143 int ret;
2144
2145 for (;;) {
2146 i915_gem_retire_requests(dev);
2147
2148 /* If there's an inactive buffer available now, grab it
2149 * and be done.
2150 */
2151 obj = i915_gem_find_inactive_object(dev, min_size);
2152 if (obj) {
2153 struct drm_i915_gem_object *obj_priv;
2154
2155 #if WATCH_LRU
2156 DRM_INFO("%s: evicting %p\n", __func__, obj);
2157 #endif
2158 obj_priv = obj->driver_private;
2159 BUG_ON(obj_priv->pin_count != 0);
2160 BUG_ON(obj_priv->active);
2161
2162 /* Wait on the rendering and unbind the buffer. */
2163 return i915_gem_object_unbind(obj);
2164 }
2165
2166 /* If we didn't get anything, but the ring is still processing
2167 * things, wait for the next to finish and hopefully leave us
2168 * a buffer to evict.
2169 */
2170 if (!list_empty(&dev_priv->mm.request_list)) {
2171 struct drm_i915_gem_request *request;
2172
2173 request = list_first_entry(&dev_priv->mm.request_list,
2174 struct drm_i915_gem_request,
2175 list);
2176
2177 ret = i915_wait_request(dev, request->seqno);
2178 if (ret)
2179 return ret;
2180
2181 continue;
2182 }
2183
2184 /* If we didn't have anything on the request list but there
2185 * are buffers awaiting a flush, emit one and try again.
2186 * When we wait on it, those buffers waiting for that flush
2187 * will get moved to inactive.
2188 */
2189 if (!list_empty(&dev_priv->mm.flushing_list)) {
2190 struct drm_i915_gem_object *obj_priv;
2191
2192 /* Find an object that we can immediately reuse */
2193 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2194 obj = obj_priv->obj;
2195 if (obj->size >= min_size)
2196 break;
2197
2198 obj = NULL;
2199 }
2200
2201 if (obj != NULL) {
2202 uint32_t seqno;
2203
2204 i915_gem_flush(dev,
2205 obj->write_domain,
2206 obj->write_domain);
2207 seqno = i915_add_request(dev, NULL, obj->write_domain);
2208 if (seqno == 0)
2209 return -ENOMEM;
2210
2211 ret = i915_wait_request(dev, seqno);
2212 if (ret)
2213 return ret;
2214
2215 continue;
2216 }
2217 }
2218
2219 /* If we didn't do any of the above, there's no single buffer
2220 * large enough to swap out for the new one, so just evict
2221 * everything and start again. (This should be rare.)
2222 */
2223 if (!list_empty (&dev_priv->mm.inactive_list))
2224 return i915_gem_evict_from_inactive_list(dev);
2225 else
2226 return i915_gem_evict_everything(dev);
2227 }
2228 }
2229
2230 int
2231 i915_gem_object_get_pages(struct drm_gem_object *obj)
2232 {
2233 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2234 int page_count, i;
2235 struct address_space *mapping;
2236 struct inode *inode;
2237 struct page *page;
2238 int ret;
2239
2240 if (obj_priv->pages_refcount++ != 0)
2241 return 0;
2242
2243 /* Get the list of pages out of our struct file. They'll be pinned
2244 * at this point until we release them.
2245 */
2246 page_count = obj->size / PAGE_SIZE;
2247 BUG_ON(obj_priv->pages != NULL);
2248 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2249 if (obj_priv->pages == NULL) {
2250 obj_priv->pages_refcount--;
2251 return -ENOMEM;
2252 }
2253
2254 inode = obj->filp->f_path.dentry->d_inode;
2255 mapping = inode->i_mapping;
2256 for (i = 0; i < page_count; i++) {
2257 page = read_mapping_page(mapping, i, NULL);
2258 if (IS_ERR(page)) {
2259 ret = PTR_ERR(page);
2260 i915_gem_object_put_pages(obj);
2261 return ret;
2262 }
2263 obj_priv->pages[i] = page;
2264 }
2265
2266 if (obj_priv->tiling_mode != I915_TILING_NONE)
2267 i915_gem_object_do_bit_17_swizzle(obj);
2268
2269 return 0;
2270 }
2271
2272 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2273 {
2274 struct drm_gem_object *obj = reg->obj;
2275 struct drm_device *dev = obj->dev;
2276 drm_i915_private_t *dev_priv = dev->dev_private;
2277 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2278 int regnum = obj_priv->fence_reg;
2279 uint64_t val;
2280
2281 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2282 0xfffff000) << 32;
2283 val |= obj_priv->gtt_offset & 0xfffff000;
2284 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2285 if (obj_priv->tiling_mode == I915_TILING_Y)
2286 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2287 val |= I965_FENCE_REG_VALID;
2288
2289 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2290 }
2291
2292 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2293 {
2294 struct drm_gem_object *obj = reg->obj;
2295 struct drm_device *dev = obj->dev;
2296 drm_i915_private_t *dev_priv = dev->dev_private;
2297 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2298 int regnum = obj_priv->fence_reg;
2299 int tile_width;
2300 uint32_t fence_reg, val;
2301 uint32_t pitch_val;
2302
2303 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2304 (obj_priv->gtt_offset & (obj->size - 1))) {
2305 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2306 __func__, obj_priv->gtt_offset, obj->size);
2307 return;
2308 }
2309
2310 if (obj_priv->tiling_mode == I915_TILING_Y &&
2311 HAS_128_BYTE_Y_TILING(dev))
2312 tile_width = 128;
2313 else
2314 tile_width = 512;
2315
2316 /* Note: pitch better be a power of two tile widths */
2317 pitch_val = obj_priv->stride / tile_width;
2318 pitch_val = ffs(pitch_val) - 1;
2319
2320 val = obj_priv->gtt_offset;
2321 if (obj_priv->tiling_mode == I915_TILING_Y)
2322 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2323 val |= I915_FENCE_SIZE_BITS(obj->size);
2324 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2325 val |= I830_FENCE_REG_VALID;
2326
2327 if (regnum < 8)
2328 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2329 else
2330 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2331 I915_WRITE(fence_reg, val);
2332 }
2333
2334 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2335 {
2336 struct drm_gem_object *obj = reg->obj;
2337 struct drm_device *dev = obj->dev;
2338 drm_i915_private_t *dev_priv = dev->dev_private;
2339 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2340 int regnum = obj_priv->fence_reg;
2341 uint32_t val;
2342 uint32_t pitch_val;
2343 uint32_t fence_size_bits;
2344
2345 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2346 (obj_priv->gtt_offset & (obj->size - 1))) {
2347 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2348 __func__, obj_priv->gtt_offset);
2349 return;
2350 }
2351
2352 pitch_val = obj_priv->stride / 128;
2353 pitch_val = ffs(pitch_val) - 1;
2354 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2355
2356 val = obj_priv->gtt_offset;
2357 if (obj_priv->tiling_mode == I915_TILING_Y)
2358 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2359 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2360 WARN_ON(fence_size_bits & ~0x00000f00);
2361 val |= fence_size_bits;
2362 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2363 val |= I830_FENCE_REG_VALID;
2364
2365 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2366 }
2367
2368 /**
2369 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2370 * @obj: object to map through a fence reg
2371 *
2372 * When mapping objects through the GTT, userspace wants to be able to write
2373 * to them without having to worry about swizzling if the object is tiled.
2374 *
2375 * This function walks the fence regs looking for a free one for @obj,
2376 * stealing one if it can't find any.
2377 *
2378 * It then sets up the reg based on the object's properties: address, pitch
2379 * and tiling format.
2380 */
2381 int
2382 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2383 {
2384 struct drm_device *dev = obj->dev;
2385 struct drm_i915_private *dev_priv = dev->dev_private;
2386 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2387 struct drm_i915_fence_reg *reg = NULL;
2388 struct drm_i915_gem_object *old_obj_priv = NULL;
2389 int i, ret, avail;
2390
2391 /* Just update our place in the LRU if our fence is getting used. */
2392 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2393 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2394 return 0;
2395 }
2396
2397 switch (obj_priv->tiling_mode) {
2398 case I915_TILING_NONE:
2399 WARN(1, "allocating a fence for non-tiled object?\n");
2400 break;
2401 case I915_TILING_X:
2402 if (!obj_priv->stride)
2403 return -EINVAL;
2404 WARN((obj_priv->stride & (512 - 1)),
2405 "object 0x%08x is X tiled but has non-512B pitch\n",
2406 obj_priv->gtt_offset);
2407 break;
2408 case I915_TILING_Y:
2409 if (!obj_priv->stride)
2410 return -EINVAL;
2411 WARN((obj_priv->stride & (128 - 1)),
2412 "object 0x%08x is Y tiled but has non-128B pitch\n",
2413 obj_priv->gtt_offset);
2414 break;
2415 }
2416
2417 /* First try to find a free reg */
2418 avail = 0;
2419 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2420 reg = &dev_priv->fence_regs[i];
2421 if (!reg->obj)
2422 break;
2423
2424 old_obj_priv = reg->obj->driver_private;
2425 if (!old_obj_priv->pin_count)
2426 avail++;
2427 }
2428
2429 /* None available, try to steal one or wait for a user to finish */
2430 if (i == dev_priv->num_fence_regs) {
2431 struct drm_gem_object *old_obj = NULL;
2432
2433 if (avail == 0)
2434 return -ENOSPC;
2435
2436 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2437 fence_list) {
2438 old_obj = old_obj_priv->obj;
2439
2440 if (old_obj_priv->pin_count)
2441 continue;
2442
2443 /* Take a reference, as otherwise the wait_rendering
2444 * below may cause the object to get freed out from
2445 * under us.
2446 */
2447 drm_gem_object_reference(old_obj);
2448
2449 /* i915 uses fences for GPU access to tiled buffers */
2450 if (IS_I965G(dev) || !old_obj_priv->active)
2451 break;
2452
2453 /* This brings the object to the head of the LRU if it
2454 * had been written to. The only way this should
2455 * result in us waiting longer than the expected
2456 * optimal amount of time is if there was a
2457 * fence-using buffer later that was read-only.
2458 */
2459 i915_gem_object_flush_gpu_write_domain(old_obj);
2460 ret = i915_gem_object_wait_rendering(old_obj);
2461 if (ret != 0) {
2462 drm_gem_object_unreference(old_obj);
2463 return ret;
2464 }
2465
2466 break;
2467 }
2468
2469 /*
2470 * Zap this virtual mapping so we can set up a fence again
2471 * for this object next time we need it.
2472 */
2473 i915_gem_release_mmap(old_obj);
2474
2475 i = old_obj_priv->fence_reg;
2476 reg = &dev_priv->fence_regs[i];
2477
2478 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2479 list_del_init(&old_obj_priv->fence_list);
2480
2481 drm_gem_object_unreference(old_obj);
2482 }
2483
2484 obj_priv->fence_reg = i;
2485 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2486
2487 reg->obj = obj;
2488
2489 if (IS_I965G(dev))
2490 i965_write_fence_reg(reg);
2491 else if (IS_I9XX(dev))
2492 i915_write_fence_reg(reg);
2493 else
2494 i830_write_fence_reg(reg);
2495
2496 trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2497
2498 return 0;
2499 }
2500
2501 /**
2502 * i915_gem_clear_fence_reg - clear out fence register info
2503 * @obj: object to clear
2504 *
2505 * Zeroes out the fence register itself and clears out the associated
2506 * data structures in dev_priv and obj_priv.
2507 */
2508 static void
2509 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2510 {
2511 struct drm_device *dev = obj->dev;
2512 drm_i915_private_t *dev_priv = dev->dev_private;
2513 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2514
2515 if (IS_I965G(dev))
2516 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2517 else {
2518 uint32_t fence_reg;
2519
2520 if (obj_priv->fence_reg < 8)
2521 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2522 else
2523 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2524 8) * 4;
2525
2526 I915_WRITE(fence_reg, 0);
2527 }
2528
2529 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2530 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2531 list_del_init(&obj_priv->fence_list);
2532 }
2533
2534 /**
2535 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2536 * to the buffer to finish, and then resets the fence register.
2537 * @obj: tiled object holding a fence register.
2538 *
2539 * Zeroes out the fence register itself and clears out the associated
2540 * data structures in dev_priv and obj_priv.
2541 */
2542 int
2543 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2544 {
2545 struct drm_device *dev = obj->dev;
2546 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2547
2548 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2549 return 0;
2550
2551 /* On the i915, GPU access to tiled buffers is via a fence,
2552 * therefore we must wait for any outstanding access to complete
2553 * before clearing the fence.
2554 */
2555 if (!IS_I965G(dev)) {
2556 int ret;
2557
2558 i915_gem_object_flush_gpu_write_domain(obj);
2559 i915_gem_object_flush_gtt_write_domain(obj);
2560 ret = i915_gem_object_wait_rendering(obj);
2561 if (ret != 0)
2562 return ret;
2563 }
2564
2565 i915_gem_clear_fence_reg (obj);
2566
2567 return 0;
2568 }
2569
2570 /**
2571 * Finds free space in the GTT aperture and binds the object there.
2572 */
2573 static int
2574 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2575 {
2576 struct drm_device *dev = obj->dev;
2577 drm_i915_private_t *dev_priv = dev->dev_private;
2578 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2579 struct drm_mm_node *free_space;
2580 bool retry_alloc = false;
2581 int ret;
2582
2583 if (dev_priv->mm.suspended)
2584 return -EBUSY;
2585
2586 if (obj_priv->madv != I915_MADV_WILLNEED) {
2587 DRM_ERROR("Attempting to bind a purgeable object\n");
2588 return -EINVAL;
2589 }
2590
2591 if (alignment == 0)
2592 alignment = i915_gem_get_gtt_alignment(obj);
2593 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2594 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2595 return -EINVAL;
2596 }
2597
2598 search_free:
2599 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2600 obj->size, alignment, 0);
2601 if (free_space != NULL) {
2602 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2603 alignment);
2604 if (obj_priv->gtt_space != NULL) {
2605 obj_priv->gtt_space->private = obj;
2606 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2607 }
2608 }
2609 if (obj_priv->gtt_space == NULL) {
2610 /* If the gtt is empty and we're still having trouble
2611 * fitting our object in, we're out of memory.
2612 */
2613 #if WATCH_LRU
2614 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2615 #endif
2616 ret = i915_gem_evict_something(dev, obj->size);
2617 if (ret)
2618 return ret;
2619
2620 goto search_free;
2621 }
2622
2623 #if WATCH_BUF
2624 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2625 obj->size, obj_priv->gtt_offset);
2626 #endif
2627 if (retry_alloc) {
2628 i915_gem_object_set_page_gfp_mask (obj,
2629 i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2630 }
2631 ret = i915_gem_object_get_pages(obj);
2632 if (retry_alloc) {
2633 i915_gem_object_set_page_gfp_mask (obj,
2634 i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2635 }
2636 if (ret) {
2637 drm_mm_put_block(obj_priv->gtt_space);
2638 obj_priv->gtt_space = NULL;
2639
2640 if (ret == -ENOMEM) {
2641 /* first try to clear up some space from the GTT */
2642 ret = i915_gem_evict_something(dev, obj->size);
2643 if (ret) {
2644 /* now try to shrink everyone else */
2645 if (! retry_alloc) {
2646 retry_alloc = true;
2647 goto search_free;
2648 }
2649
2650 return ret;
2651 }
2652
2653 goto search_free;
2654 }
2655
2656 return ret;
2657 }
2658
2659 /* Create an AGP memory structure pointing at our pages, and bind it
2660 * into the GTT.
2661 */
2662 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2663 obj_priv->pages,
2664 obj->size >> PAGE_SHIFT,
2665 obj_priv->gtt_offset,
2666 obj_priv->agp_type);
2667 if (obj_priv->agp_mem == NULL) {
2668 i915_gem_object_put_pages(obj);
2669 drm_mm_put_block(obj_priv->gtt_space);
2670 obj_priv->gtt_space = NULL;
2671
2672 ret = i915_gem_evict_something(dev, obj->size);
2673 if (ret)
2674 return ret;
2675
2676 goto search_free;
2677 }
2678 atomic_inc(&dev->gtt_count);
2679 atomic_add(obj->size, &dev->gtt_memory);
2680
2681 /* Assert that the object is not currently in any GPU domain. As it
2682 * wasn't in the GTT, there shouldn't be any way it could have been in
2683 * a GPU cache
2684 */
2685 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2686 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2687
2688 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2689
2690 return 0;
2691 }
2692
2693 void
2694 i915_gem_clflush_object(struct drm_gem_object *obj)
2695 {
2696 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2697
2698 /* If we don't have a page list set up, then we're not pinned
2699 * to GPU, and we can ignore the cache flush because it'll happen
2700 * again at bind time.
2701 */
2702 if (obj_priv->pages == NULL)
2703 return;
2704
2705 trace_i915_gem_object_clflush(obj);
2706
2707 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2708 }
2709
2710 /** Flushes any GPU write domain for the object if it's dirty. */
2711 static void
2712 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2713 {
2714 struct drm_device *dev = obj->dev;
2715 uint32_t seqno;
2716 uint32_t old_write_domain;
2717
2718 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2719 return;
2720
2721 /* Queue the GPU write cache flushing we need. */
2722 old_write_domain = obj->write_domain;
2723 i915_gem_flush(dev, 0, obj->write_domain);
2724 seqno = i915_add_request(dev, NULL, obj->write_domain);
2725 obj->write_domain = 0;
2726 i915_gem_object_move_to_active(obj, seqno);
2727
2728 trace_i915_gem_object_change_domain(obj,
2729 obj->read_domains,
2730 old_write_domain);
2731 }
2732
2733 /** Flushes the GTT write domain for the object if it's dirty. */
2734 static void
2735 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2736 {
2737 uint32_t old_write_domain;
2738
2739 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2740 return;
2741
2742 /* No actual flushing is required for the GTT write domain. Writes
2743 * to it immediately go to main memory as far as we know, so there's
2744 * no chipset flush. It also doesn't land in render cache.
2745 */
2746 old_write_domain = obj->write_domain;
2747 obj->write_domain = 0;
2748
2749 trace_i915_gem_object_change_domain(obj,
2750 obj->read_domains,
2751 old_write_domain);
2752 }
2753
2754 /** Flushes the CPU write domain for the object if it's dirty. */
2755 static void
2756 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2757 {
2758 struct drm_device *dev = obj->dev;
2759 uint32_t old_write_domain;
2760
2761 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2762 return;
2763
2764 i915_gem_clflush_object(obj);
2765 drm_agp_chipset_flush(dev);
2766 old_write_domain = obj->write_domain;
2767 obj->write_domain = 0;
2768
2769 trace_i915_gem_object_change_domain(obj,
2770 obj->read_domains,
2771 old_write_domain);
2772 }
2773
2774 void
2775 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2776 {
2777 switch (obj->write_domain) {
2778 case I915_GEM_DOMAIN_GTT:
2779 i915_gem_object_flush_gtt_write_domain(obj);
2780 break;
2781 case I915_GEM_DOMAIN_CPU:
2782 i915_gem_object_flush_cpu_write_domain(obj);
2783 break;
2784 default:
2785 i915_gem_object_flush_gpu_write_domain(obj);
2786 break;
2787 }
2788 }
2789
2790 /**
2791 * Moves a single object to the GTT read, and possibly write domain.
2792 *
2793 * This function returns when the move is complete, including waiting on
2794 * flushes to occur.
2795 */
2796 int
2797 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2798 {
2799 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2800 uint32_t old_write_domain, old_read_domains;
2801 int ret;
2802
2803 /* Not valid to be called on unbound objects. */
2804 if (obj_priv->gtt_space == NULL)
2805 return -EINVAL;
2806
2807 i915_gem_object_flush_gpu_write_domain(obj);
2808 /* Wait on any GPU rendering and flushing to occur. */
2809 ret = i915_gem_object_wait_rendering(obj);
2810 if (ret != 0)
2811 return ret;
2812
2813 old_write_domain = obj->write_domain;
2814 old_read_domains = obj->read_domains;
2815
2816 /* If we're writing through the GTT domain, then CPU and GPU caches
2817 * will need to be invalidated at next use.
2818 */
2819 if (write)
2820 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2821
2822 i915_gem_object_flush_cpu_write_domain(obj);
2823
2824 /* It should now be out of any other write domains, and we can update
2825 * the domain values for our changes.
2826 */
2827 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2828 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2829 if (write) {
2830 obj->write_domain = I915_GEM_DOMAIN_GTT;
2831 obj_priv->dirty = 1;
2832 }
2833
2834 trace_i915_gem_object_change_domain(obj,
2835 old_read_domains,
2836 old_write_domain);
2837
2838 return 0;
2839 }
2840
2841 /**
2842 * Moves a single object to the CPU read, and possibly write domain.
2843 *
2844 * This function returns when the move is complete, including waiting on
2845 * flushes to occur.
2846 */
2847 static int
2848 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2849 {
2850 uint32_t old_write_domain, old_read_domains;
2851 int ret;
2852
2853 i915_gem_object_flush_gpu_write_domain(obj);
2854 /* Wait on any GPU rendering and flushing to occur. */
2855 ret = i915_gem_object_wait_rendering(obj);
2856 if (ret != 0)
2857 return ret;
2858
2859 i915_gem_object_flush_gtt_write_domain(obj);
2860
2861 /* If we have a partially-valid cache of the object in the CPU,
2862 * finish invalidating it and free the per-page flags.
2863 */
2864 i915_gem_object_set_to_full_cpu_read_domain(obj);
2865
2866 old_write_domain = obj->write_domain;
2867 old_read_domains = obj->read_domains;
2868
2869 /* Flush the CPU cache if it's still invalid. */
2870 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2871 i915_gem_clflush_object(obj);
2872
2873 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2874 }
2875
2876 /* It should now be out of any other write domains, and we can update
2877 * the domain values for our changes.
2878 */
2879 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2880
2881 /* If we're writing through the CPU, then the GPU read domains will
2882 * need to be invalidated at next use.
2883 */
2884 if (write) {
2885 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2886 obj->write_domain = I915_GEM_DOMAIN_CPU;
2887 }
2888
2889 trace_i915_gem_object_change_domain(obj,
2890 old_read_domains,
2891 old_write_domain);
2892
2893 return 0;
2894 }
2895
2896 /*
2897 * Set the next domain for the specified object. This
2898 * may not actually perform the necessary flushing/invaliding though,
2899 * as that may want to be batched with other set_domain operations
2900 *
2901 * This is (we hope) the only really tricky part of gem. The goal
2902 * is fairly simple -- track which caches hold bits of the object
2903 * and make sure they remain coherent. A few concrete examples may
2904 * help to explain how it works. For shorthand, we use the notation
2905 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2906 * a pair of read and write domain masks.
2907 *
2908 * Case 1: the batch buffer
2909 *
2910 * 1. Allocated
2911 * 2. Written by CPU
2912 * 3. Mapped to GTT
2913 * 4. Read by GPU
2914 * 5. Unmapped from GTT
2915 * 6. Freed
2916 *
2917 * Let's take these a step at a time
2918 *
2919 * 1. Allocated
2920 * Pages allocated from the kernel may still have
2921 * cache contents, so we set them to (CPU, CPU) always.
2922 * 2. Written by CPU (using pwrite)
2923 * The pwrite function calls set_domain (CPU, CPU) and
2924 * this function does nothing (as nothing changes)
2925 * 3. Mapped by GTT
2926 * This function asserts that the object is not
2927 * currently in any GPU-based read or write domains
2928 * 4. Read by GPU
2929 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2930 * As write_domain is zero, this function adds in the
2931 * current read domains (CPU+COMMAND, 0).
2932 * flush_domains is set to CPU.
2933 * invalidate_domains is set to COMMAND
2934 * clflush is run to get data out of the CPU caches
2935 * then i915_dev_set_domain calls i915_gem_flush to
2936 * emit an MI_FLUSH and drm_agp_chipset_flush
2937 * 5. Unmapped from GTT
2938 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2939 * flush_domains and invalidate_domains end up both zero
2940 * so no flushing/invalidating happens
2941 * 6. Freed
2942 * yay, done
2943 *
2944 * Case 2: The shared render buffer
2945 *
2946 * 1. Allocated
2947 * 2. Mapped to GTT
2948 * 3. Read/written by GPU
2949 * 4. set_domain to (CPU,CPU)
2950 * 5. Read/written by CPU
2951 * 6. Read/written by GPU
2952 *
2953 * 1. Allocated
2954 * Same as last example, (CPU, CPU)
2955 * 2. Mapped to GTT
2956 * Nothing changes (assertions find that it is not in the GPU)
2957 * 3. Read/written by GPU
2958 * execbuffer calls set_domain (RENDER, RENDER)
2959 * flush_domains gets CPU
2960 * invalidate_domains gets GPU
2961 * clflush (obj)
2962 * MI_FLUSH and drm_agp_chipset_flush
2963 * 4. set_domain (CPU, CPU)
2964 * flush_domains gets GPU
2965 * invalidate_domains gets CPU
2966 * wait_rendering (obj) to make sure all drawing is complete.
2967 * This will include an MI_FLUSH to get the data from GPU
2968 * to memory
2969 * clflush (obj) to invalidate the CPU cache
2970 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2971 * 5. Read/written by CPU
2972 * cache lines are loaded and dirtied
2973 * 6. Read written by GPU
2974 * Same as last GPU access
2975 *
2976 * Case 3: The constant buffer
2977 *
2978 * 1. Allocated
2979 * 2. Written by CPU
2980 * 3. Read by GPU
2981 * 4. Updated (written) by CPU again
2982 * 5. Read by GPU
2983 *
2984 * 1. Allocated
2985 * (CPU, CPU)
2986 * 2. Written by CPU
2987 * (CPU, CPU)
2988 * 3. Read by GPU
2989 * (CPU+RENDER, 0)
2990 * flush_domains = CPU
2991 * invalidate_domains = RENDER
2992 * clflush (obj)
2993 * MI_FLUSH
2994 * drm_agp_chipset_flush
2995 * 4. Updated (written) by CPU again
2996 * (CPU, CPU)
2997 * flush_domains = 0 (no previous write domain)
2998 * invalidate_domains = 0 (no new read domains)
2999 * 5. Read by GPU
3000 * (CPU+RENDER, 0)
3001 * flush_domains = CPU
3002 * invalidate_domains = RENDER
3003 * clflush (obj)
3004 * MI_FLUSH
3005 * drm_agp_chipset_flush
3006 */
3007 static void
3008 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3009 {
3010 struct drm_device *dev = obj->dev;
3011 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3012 uint32_t invalidate_domains = 0;
3013 uint32_t flush_domains = 0;
3014 uint32_t old_read_domains;
3015
3016 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3017 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3018
3019 intel_mark_busy(dev, obj);
3020
3021 #if WATCH_BUF
3022 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3023 __func__, obj,
3024 obj->read_domains, obj->pending_read_domains,
3025 obj->write_domain, obj->pending_write_domain);
3026 #endif
3027 /*
3028 * If the object isn't moving to a new write domain,
3029 * let the object stay in multiple read domains
3030 */
3031 if (obj->pending_write_domain == 0)
3032 obj->pending_read_domains |= obj->read_domains;
3033 else
3034 obj_priv->dirty = 1;
3035
3036 /*
3037 * Flush the current write domain if
3038 * the new read domains don't match. Invalidate
3039 * any read domains which differ from the old
3040 * write domain
3041 */
3042 if (obj->write_domain &&
3043 obj->write_domain != obj->pending_read_domains) {
3044 flush_domains |= obj->write_domain;
3045 invalidate_domains |=
3046 obj->pending_read_domains & ~obj->write_domain;
3047 }
3048 /*
3049 * Invalidate any read caches which may have
3050 * stale data. That is, any new read domains.
3051 */
3052 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3053 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3054 #if WATCH_BUF
3055 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3056 __func__, flush_domains, invalidate_domains);
3057 #endif
3058 i915_gem_clflush_object(obj);
3059 }
3060
3061 old_read_domains = obj->read_domains;
3062
3063 /* The actual obj->write_domain will be updated with
3064 * pending_write_domain after we emit the accumulated flush for all
3065 * of our domain changes in execbuffers (which clears objects'
3066 * write_domains). So if we have a current write domain that we
3067 * aren't changing, set pending_write_domain to that.
3068 */
3069 if (flush_domains == 0 && obj->pending_write_domain == 0)
3070 obj->pending_write_domain = obj->write_domain;
3071 obj->read_domains = obj->pending_read_domains;
3072
3073 dev->invalidate_domains |= invalidate_domains;
3074 dev->flush_domains |= flush_domains;
3075 #if WATCH_BUF
3076 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3077 __func__,
3078 obj->read_domains, obj->write_domain,
3079 dev->invalidate_domains, dev->flush_domains);
3080 #endif
3081
3082 trace_i915_gem_object_change_domain(obj,
3083 old_read_domains,
3084 obj->write_domain);
3085 }
3086
3087 /**
3088 * Moves the object from a partially CPU read to a full one.
3089 *
3090 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3091 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3092 */
3093 static void
3094 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3095 {
3096 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3097
3098 if (!obj_priv->page_cpu_valid)
3099 return;
3100
3101 /* If we're partially in the CPU read domain, finish moving it in.
3102 */
3103 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3104 int i;
3105
3106 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3107 if (obj_priv->page_cpu_valid[i])
3108 continue;
3109 drm_clflush_pages(obj_priv->pages + i, 1);
3110 }
3111 }
3112
3113 /* Free the page_cpu_valid mappings which are now stale, whether
3114 * or not we've got I915_GEM_DOMAIN_CPU.
3115 */
3116 kfree(obj_priv->page_cpu_valid);
3117 obj_priv->page_cpu_valid = NULL;
3118 }
3119
3120 /**
3121 * Set the CPU read domain on a range of the object.
3122 *
3123 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3124 * not entirely valid. The page_cpu_valid member of the object flags which
3125 * pages have been flushed, and will be respected by
3126 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3127 * of the whole object.
3128 *
3129 * This function returns when the move is complete, including waiting on
3130 * flushes to occur.
3131 */
3132 static int
3133 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3134 uint64_t offset, uint64_t size)
3135 {
3136 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3137 uint32_t old_read_domains;
3138 int i, ret;
3139
3140 if (offset == 0 && size == obj->size)
3141 return i915_gem_object_set_to_cpu_domain(obj, 0);
3142
3143 i915_gem_object_flush_gpu_write_domain(obj);
3144 /* Wait on any GPU rendering and flushing to occur. */
3145 ret = i915_gem_object_wait_rendering(obj);
3146 if (ret != 0)
3147 return ret;
3148 i915_gem_object_flush_gtt_write_domain(obj);
3149
3150 /* If we're already fully in the CPU read domain, we're done. */
3151 if (obj_priv->page_cpu_valid == NULL &&
3152 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3153 return 0;
3154
3155 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3156 * newly adding I915_GEM_DOMAIN_CPU
3157 */
3158 if (obj_priv->page_cpu_valid == NULL) {
3159 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3160 GFP_KERNEL);
3161 if (obj_priv->page_cpu_valid == NULL)
3162 return -ENOMEM;
3163 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3164 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3165
3166 /* Flush the cache on any pages that are still invalid from the CPU's
3167 * perspective.
3168 */
3169 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3170 i++) {
3171 if (obj_priv->page_cpu_valid[i])
3172 continue;
3173
3174 drm_clflush_pages(obj_priv->pages + i, 1);
3175
3176 obj_priv->page_cpu_valid[i] = 1;
3177 }
3178
3179 /* It should now be out of any other write domains, and we can update
3180 * the domain values for our changes.
3181 */
3182 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3183
3184 old_read_domains = obj->read_domains;
3185 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3186
3187 trace_i915_gem_object_change_domain(obj,
3188 old_read_domains,
3189 obj->write_domain);
3190
3191 return 0;
3192 }
3193
3194 /**
3195 * Pin an object to the GTT and evaluate the relocations landing in it.
3196 */
3197 static int
3198 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3199 struct drm_file *file_priv,
3200 struct drm_i915_gem_exec_object *entry,
3201 struct drm_i915_gem_relocation_entry *relocs)
3202 {
3203 struct drm_device *dev = obj->dev;
3204 drm_i915_private_t *dev_priv = dev->dev_private;
3205 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3206 int i, ret;
3207 void __iomem *reloc_page;
3208
3209 /* Choose the GTT offset for our buffer and put it there. */
3210 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3211 if (ret)
3212 return ret;
3213
3214 entry->offset = obj_priv->gtt_offset;
3215
3216 /* Apply the relocations, using the GTT aperture to avoid cache
3217 * flushing requirements.
3218 */
3219 for (i = 0; i < entry->relocation_count; i++) {
3220 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3221 struct drm_gem_object *target_obj;
3222 struct drm_i915_gem_object *target_obj_priv;
3223 uint32_t reloc_val, reloc_offset;
3224 uint32_t __iomem *reloc_entry;
3225
3226 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3227 reloc->target_handle);
3228 if (target_obj == NULL) {
3229 i915_gem_object_unpin(obj);
3230 return -EBADF;
3231 }
3232 target_obj_priv = target_obj->driver_private;
3233
3234 #if WATCH_RELOC
3235 DRM_INFO("%s: obj %p offset %08x target %d "
3236 "read %08x write %08x gtt %08x "
3237 "presumed %08x delta %08x\n",
3238 __func__,
3239 obj,
3240 (int) reloc->offset,
3241 (int) reloc->target_handle,
3242 (int) reloc->read_domains,
3243 (int) reloc->write_domain,
3244 (int) target_obj_priv->gtt_offset,
3245 (int) reloc->presumed_offset,
3246 reloc->delta);
3247 #endif
3248
3249 /* The target buffer should have appeared before us in the
3250 * exec_object list, so it should have a GTT space bound by now.
3251 */
3252 if (target_obj_priv->gtt_space == NULL) {
3253 DRM_ERROR("No GTT space found for object %d\n",
3254 reloc->target_handle);
3255 drm_gem_object_unreference(target_obj);
3256 i915_gem_object_unpin(obj);
3257 return -EINVAL;
3258 }
3259
3260 /* Validate that the target is in a valid r/w GPU domain */
3261 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3262 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3263 DRM_ERROR("reloc with read/write CPU domains: "
3264 "obj %p target %d offset %d "
3265 "read %08x write %08x",
3266 obj, reloc->target_handle,
3267 (int) reloc->offset,
3268 reloc->read_domains,
3269 reloc->write_domain);
3270 drm_gem_object_unreference(target_obj);
3271 i915_gem_object_unpin(obj);
3272 return -EINVAL;
3273 }
3274 if (reloc->write_domain && target_obj->pending_write_domain &&
3275 reloc->write_domain != target_obj->pending_write_domain) {
3276 DRM_ERROR("Write domain conflict: "
3277 "obj %p target %d offset %d "
3278 "new %08x old %08x\n",
3279 obj, reloc->target_handle,
3280 (int) reloc->offset,
3281 reloc->write_domain,
3282 target_obj->pending_write_domain);
3283 drm_gem_object_unreference(target_obj);
3284 i915_gem_object_unpin(obj);
3285 return -EINVAL;
3286 }
3287
3288 target_obj->pending_read_domains |= reloc->read_domains;
3289 target_obj->pending_write_domain |= reloc->write_domain;
3290
3291 /* If the relocation already has the right value in it, no
3292 * more work needs to be done.
3293 */
3294 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3295 drm_gem_object_unreference(target_obj);
3296 continue;
3297 }
3298
3299 /* Check that the relocation address is valid... */
3300 if (reloc->offset > obj->size - 4) {
3301 DRM_ERROR("Relocation beyond object bounds: "
3302 "obj %p target %d offset %d size %d.\n",
3303 obj, reloc->target_handle,
3304 (int) reloc->offset, (int) obj->size);
3305 drm_gem_object_unreference(target_obj);
3306 i915_gem_object_unpin(obj);
3307 return -EINVAL;
3308 }
3309 if (reloc->offset & 3) {
3310 DRM_ERROR("Relocation not 4-byte aligned: "
3311 "obj %p target %d offset %d.\n",
3312 obj, reloc->target_handle,
3313 (int) reloc->offset);
3314 drm_gem_object_unreference(target_obj);
3315 i915_gem_object_unpin(obj);
3316 return -EINVAL;
3317 }
3318
3319 /* and points to somewhere within the target object. */
3320 if (reloc->delta >= target_obj->size) {
3321 DRM_ERROR("Relocation beyond target object bounds: "
3322 "obj %p target %d delta %d size %d.\n",
3323 obj, reloc->target_handle,
3324 (int) reloc->delta, (int) target_obj->size);
3325 drm_gem_object_unreference(target_obj);
3326 i915_gem_object_unpin(obj);
3327 return -EINVAL;
3328 }
3329
3330 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3331 if (ret != 0) {
3332 drm_gem_object_unreference(target_obj);
3333 i915_gem_object_unpin(obj);
3334 return -EINVAL;
3335 }
3336
3337 /* Map the page containing the relocation we're going to
3338 * perform.
3339 */
3340 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3341 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3342 (reloc_offset &
3343 ~(PAGE_SIZE - 1)));
3344 reloc_entry = (uint32_t __iomem *)(reloc_page +
3345 (reloc_offset & (PAGE_SIZE - 1)));
3346 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3347
3348 #if WATCH_BUF
3349 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3350 obj, (unsigned int) reloc->offset,
3351 readl(reloc_entry), reloc_val);
3352 #endif
3353 writel(reloc_val, reloc_entry);
3354 io_mapping_unmap_atomic(reloc_page);
3355
3356 /* The updated presumed offset for this entry will be
3357 * copied back out to the user.
3358 */
3359 reloc->presumed_offset = target_obj_priv->gtt_offset;
3360
3361 drm_gem_object_unreference(target_obj);
3362 }
3363
3364 #if WATCH_BUF
3365 if (0)
3366 i915_gem_dump_object(obj, 128, __func__, ~0);
3367 #endif
3368 return 0;
3369 }
3370
3371 /** Dispatch a batchbuffer to the ring
3372 */
3373 static int
3374 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3375 struct drm_i915_gem_execbuffer *exec,
3376 struct drm_clip_rect *cliprects,
3377 uint64_t exec_offset)
3378 {
3379 drm_i915_private_t *dev_priv = dev->dev_private;
3380 int nbox = exec->num_cliprects;
3381 int i = 0, count;
3382 uint32_t exec_start, exec_len;
3383 RING_LOCALS;
3384
3385 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3386 exec_len = (uint32_t) exec->batch_len;
3387
3388 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3389
3390 count = nbox ? nbox : 1;
3391
3392 for (i = 0; i < count; i++) {
3393 if (i < nbox) {
3394 int ret = i915_emit_box(dev, cliprects, i,
3395 exec->DR1, exec->DR4);
3396 if (ret)
3397 return ret;
3398 }
3399
3400 if (IS_I830(dev) || IS_845G(dev)) {
3401 BEGIN_LP_RING(4);
3402 OUT_RING(MI_BATCH_BUFFER);
3403 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3404 OUT_RING(exec_start + exec_len - 4);
3405 OUT_RING(0);
3406 ADVANCE_LP_RING();
3407 } else {
3408 BEGIN_LP_RING(2);
3409 if (IS_I965G(dev)) {
3410 OUT_RING(MI_BATCH_BUFFER_START |
3411 (2 << 6) |
3412 MI_BATCH_NON_SECURE_I965);
3413 OUT_RING(exec_start);
3414 } else {
3415 OUT_RING(MI_BATCH_BUFFER_START |
3416 (2 << 6));
3417 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3418 }
3419 ADVANCE_LP_RING();
3420 }
3421 }
3422
3423 /* XXX breadcrumb */
3424 return 0;
3425 }
3426
3427 /* Throttle our rendering by waiting until the ring has completed our requests
3428 * emitted over 20 msec ago.
3429 *
3430 * Note that if we were to use the current jiffies each time around the loop,
3431 * we wouldn't escape the function with any frames outstanding if the time to
3432 * render a frame was over 20ms.
3433 *
3434 * This should get us reasonable parallelism between CPU and GPU but also
3435 * relatively low latency when blocking on a particular request to finish.
3436 */
3437 static int
3438 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3439 {
3440 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3441 int ret = 0;
3442 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3443
3444 mutex_lock(&dev->struct_mutex);
3445 while (!list_empty(&i915_file_priv->mm.request_list)) {
3446 struct drm_i915_gem_request *request;
3447
3448 request = list_first_entry(&i915_file_priv->mm.request_list,
3449 struct drm_i915_gem_request,
3450 client_list);
3451
3452 if (time_after_eq(request->emitted_jiffies, recent_enough))
3453 break;
3454
3455 ret = i915_wait_request(dev, request->seqno);
3456 if (ret != 0)
3457 break;
3458 }
3459 mutex_unlock(&dev->struct_mutex);
3460
3461 return ret;
3462 }
3463
3464 static int
3465 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3466 uint32_t buffer_count,
3467 struct drm_i915_gem_relocation_entry **relocs)
3468 {
3469 uint32_t reloc_count = 0, reloc_index = 0, i;
3470 int ret;
3471
3472 *relocs = NULL;
3473 for (i = 0; i < buffer_count; i++) {
3474 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3475 return -EINVAL;
3476 reloc_count += exec_list[i].relocation_count;
3477 }
3478
3479 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3480 if (*relocs == NULL)
3481 return -ENOMEM;
3482
3483 for (i = 0; i < buffer_count; i++) {
3484 struct drm_i915_gem_relocation_entry __user *user_relocs;
3485
3486 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3487
3488 ret = copy_from_user(&(*relocs)[reloc_index],
3489 user_relocs,
3490 exec_list[i].relocation_count *
3491 sizeof(**relocs));
3492 if (ret != 0) {
3493 drm_free_large(*relocs);
3494 *relocs = NULL;
3495 return -EFAULT;
3496 }
3497
3498 reloc_index += exec_list[i].relocation_count;
3499 }
3500
3501 return 0;
3502 }
3503
3504 static int
3505 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3506 uint32_t buffer_count,
3507 struct drm_i915_gem_relocation_entry *relocs)
3508 {
3509 uint32_t reloc_count = 0, i;
3510 int ret = 0;
3511
3512 for (i = 0; i < buffer_count; i++) {
3513 struct drm_i915_gem_relocation_entry __user *user_relocs;
3514 int unwritten;
3515
3516 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3517
3518 unwritten = copy_to_user(user_relocs,
3519 &relocs[reloc_count],
3520 exec_list[i].relocation_count *
3521 sizeof(*relocs));
3522
3523 if (unwritten) {
3524 ret = -EFAULT;
3525 goto err;
3526 }
3527
3528 reloc_count += exec_list[i].relocation_count;
3529 }
3530
3531 err:
3532 drm_free_large(relocs);
3533
3534 return ret;
3535 }
3536
3537 static int
3538 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3539 uint64_t exec_offset)
3540 {
3541 uint32_t exec_start, exec_len;
3542
3543 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3544 exec_len = (uint32_t) exec->batch_len;
3545
3546 if ((exec_start | exec_len) & 0x7)
3547 return -EINVAL;
3548
3549 if (!exec_start)
3550 return -EINVAL;
3551
3552 return 0;
3553 }
3554
3555 static int
3556 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3557 struct drm_gem_object **object_list,
3558 int count)
3559 {
3560 drm_i915_private_t *dev_priv = dev->dev_private;
3561 struct drm_i915_gem_object *obj_priv;
3562 DEFINE_WAIT(wait);
3563 int i, ret = 0;
3564
3565 for (;;) {
3566 prepare_to_wait(&dev_priv->pending_flip_queue,
3567 &wait, TASK_INTERRUPTIBLE);
3568 for (i = 0; i < count; i++) {
3569 obj_priv = object_list[i]->driver_private;
3570 if (atomic_read(&obj_priv->pending_flip) > 0)
3571 break;
3572 }
3573 if (i == count)
3574 break;
3575
3576 if (!signal_pending(current)) {
3577 mutex_unlock(&dev->struct_mutex);
3578 schedule();
3579 mutex_lock(&dev->struct_mutex);
3580 continue;
3581 }
3582 ret = -ERESTARTSYS;
3583 break;
3584 }
3585 finish_wait(&dev_priv->pending_flip_queue, &wait);
3586
3587 return ret;
3588 }
3589
3590 int
3591 i915_gem_execbuffer(struct drm_device *dev, void *data,
3592 struct drm_file *file_priv)
3593 {
3594 drm_i915_private_t *dev_priv = dev->dev_private;
3595 struct drm_i915_gem_execbuffer *args = data;
3596 struct drm_i915_gem_exec_object *exec_list = NULL;
3597 struct drm_gem_object **object_list = NULL;
3598 struct drm_gem_object *batch_obj;
3599 struct drm_i915_gem_object *obj_priv;
3600 struct drm_clip_rect *cliprects = NULL;
3601 struct drm_i915_gem_relocation_entry *relocs;
3602 int ret, ret2, i, pinned = 0;
3603 uint64_t exec_offset;
3604 uint32_t seqno, flush_domains, reloc_index;
3605 int pin_tries, flips;
3606
3607 #if WATCH_EXEC
3608 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3609 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3610 #endif
3611
3612 if (args->buffer_count < 1) {
3613 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3614 return -EINVAL;
3615 }
3616 /* Copy in the exec list from userland */
3617 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3618 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3619 if (exec_list == NULL || object_list == NULL) {
3620 DRM_ERROR("Failed to allocate exec or object list "
3621 "for %d buffers\n",
3622 args->buffer_count);
3623 ret = -ENOMEM;
3624 goto pre_mutex_err;
3625 }
3626 ret = copy_from_user(exec_list,
3627 (struct drm_i915_relocation_entry __user *)
3628 (uintptr_t) args->buffers_ptr,
3629 sizeof(*exec_list) * args->buffer_count);
3630 if (ret != 0) {
3631 DRM_ERROR("copy %d exec entries failed %d\n",
3632 args->buffer_count, ret);
3633 goto pre_mutex_err;
3634 }
3635
3636 if (args->num_cliprects != 0) {
3637 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3638 GFP_KERNEL);
3639 if (cliprects == NULL)
3640 goto pre_mutex_err;
3641
3642 ret = copy_from_user(cliprects,
3643 (struct drm_clip_rect __user *)
3644 (uintptr_t) args->cliprects_ptr,
3645 sizeof(*cliprects) * args->num_cliprects);
3646 if (ret != 0) {
3647 DRM_ERROR("copy %d cliprects failed: %d\n",
3648 args->num_cliprects, ret);
3649 goto pre_mutex_err;
3650 }
3651 }
3652
3653 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3654 &relocs);
3655 if (ret != 0)
3656 goto pre_mutex_err;
3657
3658 mutex_lock(&dev->struct_mutex);
3659
3660 i915_verify_inactive(dev, __FILE__, __LINE__);
3661
3662 if (atomic_read(&dev_priv->mm.wedged)) {
3663 DRM_ERROR("Execbuf while wedged\n");
3664 mutex_unlock(&dev->struct_mutex);
3665 ret = -EIO;
3666 goto pre_mutex_err;
3667 }
3668
3669 if (dev_priv->mm.suspended) {
3670 DRM_ERROR("Execbuf while VT-switched.\n");
3671 mutex_unlock(&dev->struct_mutex);
3672 ret = -EBUSY;
3673 goto pre_mutex_err;
3674 }
3675
3676 /* Look up object handles */
3677 flips = 0;
3678 for (i = 0; i < args->buffer_count; i++) {
3679 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3680 exec_list[i].handle);
3681 if (object_list[i] == NULL) {
3682 DRM_ERROR("Invalid object handle %d at index %d\n",
3683 exec_list[i].handle, i);
3684 ret = -EBADF;
3685 goto err;
3686 }
3687
3688 obj_priv = object_list[i]->driver_private;
3689 if (obj_priv->in_execbuffer) {
3690 DRM_ERROR("Object %p appears more than once in object list\n",
3691 object_list[i]);
3692 ret = -EBADF;
3693 goto err;
3694 }
3695 obj_priv->in_execbuffer = true;
3696 flips += atomic_read(&obj_priv->pending_flip);
3697 }
3698
3699 if (flips > 0) {
3700 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3701 args->buffer_count);
3702 if (ret)
3703 goto err;
3704 }
3705
3706 /* Pin and relocate */
3707 for (pin_tries = 0; ; pin_tries++) {
3708 ret = 0;
3709 reloc_index = 0;
3710
3711 for (i = 0; i < args->buffer_count; i++) {
3712 object_list[i]->pending_read_domains = 0;
3713 object_list[i]->pending_write_domain = 0;
3714 ret = i915_gem_object_pin_and_relocate(object_list[i],
3715 file_priv,
3716 &exec_list[i],
3717 &relocs[reloc_index]);
3718 if (ret)
3719 break;
3720 pinned = i + 1;
3721 reloc_index += exec_list[i].relocation_count;
3722 }
3723 /* success */
3724 if (ret == 0)
3725 break;
3726
3727 /* error other than GTT full, or we've already tried again */
3728 if (ret != -ENOSPC || pin_tries >= 1) {
3729 if (ret != -ERESTARTSYS) {
3730 unsigned long long total_size = 0;
3731 for (i = 0; i < args->buffer_count; i++)
3732 total_size += object_list[i]->size;
3733 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3734 pinned+1, args->buffer_count,
3735 total_size, ret);
3736 DRM_ERROR("%d objects [%d pinned], "
3737 "%d object bytes [%d pinned], "
3738 "%d/%d gtt bytes\n",
3739 atomic_read(&dev->object_count),
3740 atomic_read(&dev->pin_count),
3741 atomic_read(&dev->object_memory),
3742 atomic_read(&dev->pin_memory),
3743 atomic_read(&dev->gtt_memory),
3744 dev->gtt_total);
3745 }
3746 goto err;
3747 }
3748
3749 /* unpin all of our buffers */
3750 for (i = 0; i < pinned; i++)
3751 i915_gem_object_unpin(object_list[i]);
3752 pinned = 0;
3753
3754 /* evict everyone we can from the aperture */
3755 ret = i915_gem_evict_everything(dev);
3756 if (ret && ret != -ENOSPC)
3757 goto err;
3758 }
3759
3760 /* Set the pending read domains for the batch buffer to COMMAND */
3761 batch_obj = object_list[args->buffer_count-1];
3762 if (batch_obj->pending_write_domain) {
3763 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3764 ret = -EINVAL;
3765 goto err;
3766 }
3767 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3768
3769 /* Sanity check the batch buffer, prior to moving objects */
3770 exec_offset = exec_list[args->buffer_count - 1].offset;
3771 ret = i915_gem_check_execbuffer (args, exec_offset);
3772 if (ret != 0) {
3773 DRM_ERROR("execbuf with invalid offset/length\n");
3774 goto err;
3775 }
3776
3777 i915_verify_inactive(dev, __FILE__, __LINE__);
3778
3779 /* Zero the global flush/invalidate flags. These
3780 * will be modified as new domains are computed
3781 * for each object
3782 */
3783 dev->invalidate_domains = 0;
3784 dev->flush_domains = 0;
3785
3786 for (i = 0; i < args->buffer_count; i++) {
3787 struct drm_gem_object *obj = object_list[i];
3788
3789 /* Compute new gpu domains and update invalidate/flush */
3790 i915_gem_object_set_to_gpu_domain(obj);
3791 }
3792
3793 i915_verify_inactive(dev, __FILE__, __LINE__);
3794
3795 if (dev->invalidate_domains | dev->flush_domains) {
3796 #if WATCH_EXEC
3797 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3798 __func__,
3799 dev->invalidate_domains,
3800 dev->flush_domains);
3801 #endif
3802 i915_gem_flush(dev,
3803 dev->invalidate_domains,
3804 dev->flush_domains);
3805 if (dev->flush_domains)
3806 (void)i915_add_request(dev, file_priv,
3807 dev->flush_domains);
3808 }
3809
3810 for (i = 0; i < args->buffer_count; i++) {
3811 struct drm_gem_object *obj = object_list[i];
3812 uint32_t old_write_domain = obj->write_domain;
3813
3814 obj->write_domain = obj->pending_write_domain;
3815 trace_i915_gem_object_change_domain(obj,
3816 obj->read_domains,
3817 old_write_domain);
3818 }
3819
3820 i915_verify_inactive(dev, __FILE__, __LINE__);
3821
3822 #if WATCH_COHERENCY
3823 for (i = 0; i < args->buffer_count; i++) {
3824 i915_gem_object_check_coherency(object_list[i],
3825 exec_list[i].handle);
3826 }
3827 #endif
3828
3829 #if WATCH_EXEC
3830 i915_gem_dump_object(batch_obj,
3831 args->batch_len,
3832 __func__,
3833 ~0);
3834 #endif
3835
3836 /* Exec the batchbuffer */
3837 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3838 if (ret) {
3839 DRM_ERROR("dispatch failed %d\n", ret);
3840 goto err;
3841 }
3842
3843 /*
3844 * Ensure that the commands in the batch buffer are
3845 * finished before the interrupt fires
3846 */
3847 flush_domains = i915_retire_commands(dev);
3848
3849 i915_verify_inactive(dev, __FILE__, __LINE__);
3850
3851 /*
3852 * Get a seqno representing the execution of the current buffer,
3853 * which we can wait on. We would like to mitigate these interrupts,
3854 * likely by only creating seqnos occasionally (so that we have
3855 * *some* interrupts representing completion of buffers that we can
3856 * wait on when trying to clear up gtt space).
3857 */
3858 seqno = i915_add_request(dev, file_priv, flush_domains);
3859 BUG_ON(seqno == 0);
3860 for (i = 0; i < args->buffer_count; i++) {
3861 struct drm_gem_object *obj = object_list[i];
3862
3863 i915_gem_object_move_to_active(obj, seqno);
3864 #if WATCH_LRU
3865 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3866 #endif
3867 }
3868 #if WATCH_LRU
3869 i915_dump_lru(dev, __func__);
3870 #endif
3871
3872 i915_verify_inactive(dev, __FILE__, __LINE__);
3873
3874 err:
3875 for (i = 0; i < pinned; i++)
3876 i915_gem_object_unpin(object_list[i]);
3877
3878 for (i = 0; i < args->buffer_count; i++) {
3879 if (object_list[i]) {
3880 obj_priv = object_list[i]->driver_private;
3881 obj_priv->in_execbuffer = false;
3882 }
3883 drm_gem_object_unreference(object_list[i]);
3884 }
3885
3886 mutex_unlock(&dev->struct_mutex);
3887
3888 if (!ret) {
3889 /* Copy the new buffer offsets back to the user's exec list. */
3890 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3891 (uintptr_t) args->buffers_ptr,
3892 exec_list,
3893 sizeof(*exec_list) * args->buffer_count);
3894 if (ret) {
3895 ret = -EFAULT;
3896 DRM_ERROR("failed to copy %d exec entries "
3897 "back to user (%d)\n",
3898 args->buffer_count, ret);
3899 }
3900 }
3901
3902 /* Copy the updated relocations out regardless of current error
3903 * state. Failure to update the relocs would mean that the next
3904 * time userland calls execbuf, it would do so with presumed offset
3905 * state that didn't match the actual object state.
3906 */
3907 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3908 relocs);
3909 if (ret2 != 0) {
3910 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3911
3912 if (ret == 0)
3913 ret = ret2;
3914 }
3915
3916 pre_mutex_err:
3917 drm_free_large(object_list);
3918 drm_free_large(exec_list);
3919 kfree(cliprects);
3920
3921 return ret;
3922 }
3923
3924 int
3925 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3926 {
3927 struct drm_device *dev = obj->dev;
3928 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3929 int ret;
3930
3931 i915_verify_inactive(dev, __FILE__, __LINE__);
3932 if (obj_priv->gtt_space == NULL) {
3933 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3934 if (ret)
3935 return ret;
3936 }
3937 /*
3938 * Pre-965 chips need a fence register set up in order to
3939 * properly handle tiled surfaces.
3940 */
3941 if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3942 ret = i915_gem_object_get_fence_reg(obj);
3943 if (ret != 0) {
3944 if (ret != -EBUSY && ret != -ERESTARTSYS)
3945 DRM_ERROR("Failure to install fence: %d\n",
3946 ret);
3947 return ret;
3948 }
3949 }
3950 obj_priv->pin_count++;
3951
3952 /* If the object is not active and not pending a flush,
3953 * remove it from the inactive list
3954 */
3955 if (obj_priv->pin_count == 1) {
3956 atomic_inc(&dev->pin_count);
3957 atomic_add(obj->size, &dev->pin_memory);
3958 if (!obj_priv->active &&
3959 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3960 !list_empty(&obj_priv->list))
3961 list_del_init(&obj_priv->list);
3962 }
3963 i915_verify_inactive(dev, __FILE__, __LINE__);
3964
3965 return 0;
3966 }
3967
3968 void
3969 i915_gem_object_unpin(struct drm_gem_object *obj)
3970 {
3971 struct drm_device *dev = obj->dev;
3972 drm_i915_private_t *dev_priv = dev->dev_private;
3973 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3974
3975 i915_verify_inactive(dev, __FILE__, __LINE__);
3976 obj_priv->pin_count--;
3977 BUG_ON(obj_priv->pin_count < 0);
3978 BUG_ON(obj_priv->gtt_space == NULL);
3979
3980 /* If the object is no longer pinned, and is
3981 * neither active nor being flushed, then stick it on
3982 * the inactive list
3983 */
3984 if (obj_priv->pin_count == 0) {
3985 if (!obj_priv->active &&
3986 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3987 list_move_tail(&obj_priv->list,
3988 &dev_priv->mm.inactive_list);
3989 atomic_dec(&dev->pin_count);
3990 atomic_sub(obj->size, &dev->pin_memory);
3991 }
3992 i915_verify_inactive(dev, __FILE__, __LINE__);
3993 }
3994
3995 int
3996 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3997 struct drm_file *file_priv)
3998 {
3999 struct drm_i915_gem_pin *args = data;
4000 struct drm_gem_object *obj;
4001 struct drm_i915_gem_object *obj_priv;
4002 int ret;
4003
4004 mutex_lock(&dev->struct_mutex);
4005
4006 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4007 if (obj == NULL) {
4008 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4009 args->handle);
4010 mutex_unlock(&dev->struct_mutex);
4011 return -EBADF;
4012 }
4013 obj_priv = obj->driver_private;
4014
4015 if (obj_priv->madv != I915_MADV_WILLNEED) {
4016 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4017 drm_gem_object_unreference(obj);
4018 mutex_unlock(&dev->struct_mutex);
4019 return -EINVAL;
4020 }
4021
4022 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4023 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4024 args->handle);
4025 drm_gem_object_unreference(obj);
4026 mutex_unlock(&dev->struct_mutex);
4027 return -EINVAL;
4028 }
4029
4030 obj_priv->user_pin_count++;
4031 obj_priv->pin_filp = file_priv;
4032 if (obj_priv->user_pin_count == 1) {
4033 ret = i915_gem_object_pin(obj, args->alignment);
4034 if (ret != 0) {
4035 drm_gem_object_unreference(obj);
4036 mutex_unlock(&dev->struct_mutex);
4037 return ret;
4038 }
4039 }
4040
4041 /* XXX - flush the CPU caches for pinned objects
4042 * as the X server doesn't manage domains yet
4043 */
4044 i915_gem_object_flush_cpu_write_domain(obj);
4045 args->offset = obj_priv->gtt_offset;
4046 drm_gem_object_unreference(obj);
4047 mutex_unlock(&dev->struct_mutex);
4048
4049 return 0;
4050 }
4051
4052 int
4053 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4054 struct drm_file *file_priv)
4055 {
4056 struct drm_i915_gem_pin *args = data;
4057 struct drm_gem_object *obj;
4058 struct drm_i915_gem_object *obj_priv;
4059
4060 mutex_lock(&dev->struct_mutex);
4061
4062 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4063 if (obj == NULL) {
4064 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4065 args->handle);
4066 mutex_unlock(&dev->struct_mutex);
4067 return -EBADF;
4068 }
4069
4070 obj_priv = obj->driver_private;
4071 if (obj_priv->pin_filp != file_priv) {
4072 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4073 args->handle);
4074 drm_gem_object_unreference(obj);
4075 mutex_unlock(&dev->struct_mutex);
4076 return -EINVAL;
4077 }
4078 obj_priv->user_pin_count--;
4079 if (obj_priv->user_pin_count == 0) {
4080 obj_priv->pin_filp = NULL;
4081 i915_gem_object_unpin(obj);
4082 }
4083
4084 drm_gem_object_unreference(obj);
4085 mutex_unlock(&dev->struct_mutex);
4086 return 0;
4087 }
4088
4089 int
4090 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4091 struct drm_file *file_priv)
4092 {
4093 struct drm_i915_gem_busy *args = data;
4094 struct drm_gem_object *obj;
4095 struct drm_i915_gem_object *obj_priv;
4096
4097 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4098 if (obj == NULL) {
4099 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4100 args->handle);
4101 return -EBADF;
4102 }
4103
4104 mutex_lock(&dev->struct_mutex);
4105 /* Update the active list for the hardware's current position.
4106 * Otherwise this only updates on a delayed timer or when irqs are
4107 * actually unmasked, and our working set ends up being larger than
4108 * required.
4109 */
4110 i915_gem_retire_requests(dev);
4111
4112 obj_priv = obj->driver_private;
4113 /* Don't count being on the flushing list against the object being
4114 * done. Otherwise, a buffer left on the flushing list but not getting
4115 * flushed (because nobody's flushing that domain) won't ever return
4116 * unbusy and get reused by libdrm's bo cache. The other expected
4117 * consumer of this interface, OpenGL's occlusion queries, also specs
4118 * that the objects get unbusy "eventually" without any interference.
4119 */
4120 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4121
4122 drm_gem_object_unreference(obj);
4123 mutex_unlock(&dev->struct_mutex);
4124 return 0;
4125 }
4126
4127 int
4128 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4129 struct drm_file *file_priv)
4130 {
4131 return i915_gem_ring_throttle(dev, file_priv);
4132 }
4133
4134 int
4135 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4136 struct drm_file *file_priv)
4137 {
4138 struct drm_i915_gem_madvise *args = data;
4139 struct drm_gem_object *obj;
4140 struct drm_i915_gem_object *obj_priv;
4141
4142 switch (args->madv) {
4143 case I915_MADV_DONTNEED:
4144 case I915_MADV_WILLNEED:
4145 break;
4146 default:
4147 return -EINVAL;
4148 }
4149
4150 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4151 if (obj == NULL) {
4152 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4153 args->handle);
4154 return -EBADF;
4155 }
4156
4157 mutex_lock(&dev->struct_mutex);
4158 obj_priv = obj->driver_private;
4159
4160 if (obj_priv->pin_count) {
4161 drm_gem_object_unreference(obj);
4162 mutex_unlock(&dev->struct_mutex);
4163
4164 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4165 return -EINVAL;
4166 }
4167
4168 if (obj_priv->madv != __I915_MADV_PURGED)
4169 obj_priv->madv = args->madv;
4170
4171 /* if the object is no longer bound, discard its backing storage */
4172 if (i915_gem_object_is_purgeable(obj_priv) &&
4173 obj_priv->gtt_space == NULL)
4174 i915_gem_object_truncate(obj);
4175
4176 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4177
4178 drm_gem_object_unreference(obj);
4179 mutex_unlock(&dev->struct_mutex);
4180
4181 return 0;
4182 }
4183
4184 int i915_gem_init_object(struct drm_gem_object *obj)
4185 {
4186 struct drm_i915_gem_object *obj_priv;
4187
4188 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4189 if (obj_priv == NULL)
4190 return -ENOMEM;
4191
4192 /*
4193 * We've just allocated pages from the kernel,
4194 * so they've just been written by the CPU with
4195 * zeros. They'll need to be clflushed before we
4196 * use them with the GPU.
4197 */
4198 obj->write_domain = I915_GEM_DOMAIN_CPU;
4199 obj->read_domains = I915_GEM_DOMAIN_CPU;
4200
4201 obj_priv->agp_type = AGP_USER_MEMORY;
4202
4203 obj->driver_private = obj_priv;
4204 obj_priv->obj = obj;
4205 obj_priv->fence_reg = I915_FENCE_REG_NONE;
4206 INIT_LIST_HEAD(&obj_priv->list);
4207 INIT_LIST_HEAD(&obj_priv->fence_list);
4208 obj_priv->madv = I915_MADV_WILLNEED;
4209
4210 trace_i915_gem_object_create(obj);
4211
4212 return 0;
4213 }
4214
4215 void i915_gem_free_object(struct drm_gem_object *obj)
4216 {
4217 struct drm_device *dev = obj->dev;
4218 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4219
4220 trace_i915_gem_object_destroy(obj);
4221
4222 while (obj_priv->pin_count > 0)
4223 i915_gem_object_unpin(obj);
4224
4225 if (obj_priv->phys_obj)
4226 i915_gem_detach_phys_object(dev, obj);
4227
4228 i915_gem_object_unbind(obj);
4229
4230 if (obj_priv->mmap_offset)
4231 i915_gem_free_mmap_offset(obj);
4232
4233 kfree(obj_priv->page_cpu_valid);
4234 kfree(obj_priv->bit_17);
4235 kfree(obj->driver_private);
4236 }
4237
4238 /** Unbinds all inactive objects. */
4239 static int
4240 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4241 {
4242 drm_i915_private_t *dev_priv = dev->dev_private;
4243
4244 while (!list_empty(&dev_priv->mm.inactive_list)) {
4245 struct drm_gem_object *obj;
4246 int ret;
4247
4248 obj = list_first_entry(&dev_priv->mm.inactive_list,
4249 struct drm_i915_gem_object,
4250 list)->obj;
4251
4252 ret = i915_gem_object_unbind(obj);
4253 if (ret != 0) {
4254 DRM_ERROR("Error unbinding object: %d\n", ret);
4255 return ret;
4256 }
4257 }
4258
4259 return 0;
4260 }
4261
4262 int
4263 i915_gem_idle(struct drm_device *dev)
4264 {
4265 drm_i915_private_t *dev_priv = dev->dev_private;
4266 uint32_t seqno, cur_seqno, last_seqno;
4267 int stuck, ret;
4268
4269 mutex_lock(&dev->struct_mutex);
4270
4271 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4272 mutex_unlock(&dev->struct_mutex);
4273 return 0;
4274 }
4275
4276 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4277 * We need to replace this with a semaphore, or something.
4278 */
4279 dev_priv->mm.suspended = 1;
4280 del_timer(&dev_priv->hangcheck_timer);
4281
4282 /* Cancel the retire work handler, wait for it to finish if running
4283 */
4284 mutex_unlock(&dev->struct_mutex);
4285 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4286 mutex_lock(&dev->struct_mutex);
4287
4288 i915_kernel_lost_context(dev);
4289
4290 /* Flush the GPU along with all non-CPU write domains
4291 */
4292 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4293 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4294
4295 if (seqno == 0) {
4296 mutex_unlock(&dev->struct_mutex);
4297 return -ENOMEM;
4298 }
4299
4300 dev_priv->mm.waiting_gem_seqno = seqno;
4301 last_seqno = 0;
4302 stuck = 0;
4303 for (;;) {
4304 cur_seqno = i915_get_gem_seqno(dev);
4305 if (i915_seqno_passed(cur_seqno, seqno))
4306 break;
4307 if (last_seqno == cur_seqno) {
4308 if (stuck++ > 100) {
4309 DRM_ERROR("hardware wedged\n");
4310 atomic_set(&dev_priv->mm.wedged, 1);
4311 DRM_WAKEUP(&dev_priv->irq_queue);
4312 break;
4313 }
4314 }
4315 msleep(10);
4316 last_seqno = cur_seqno;
4317 }
4318 dev_priv->mm.waiting_gem_seqno = 0;
4319
4320 i915_gem_retire_requests(dev);
4321
4322 spin_lock(&dev_priv->mm.active_list_lock);
4323 if (!atomic_read(&dev_priv->mm.wedged)) {
4324 /* Active and flushing should now be empty as we've
4325 * waited for a sequence higher than any pending execbuffer
4326 */
4327 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4328 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4329 /* Request should now be empty as we've also waited
4330 * for the last request in the list
4331 */
4332 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4333 }
4334
4335 /* Empty the active and flushing lists to inactive. If there's
4336 * anything left at this point, it means that we're wedged and
4337 * nothing good's going to happen by leaving them there. So strip
4338 * the GPU domains and just stuff them onto inactive.
4339 */
4340 while (!list_empty(&dev_priv->mm.active_list)) {
4341 struct drm_gem_object *obj;
4342 uint32_t old_write_domain;
4343
4344 obj = list_first_entry(&dev_priv->mm.active_list,
4345 struct drm_i915_gem_object,
4346 list)->obj;
4347 old_write_domain = obj->write_domain;
4348 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4349 i915_gem_object_move_to_inactive(obj);
4350
4351 trace_i915_gem_object_change_domain(obj,
4352 obj->read_domains,
4353 old_write_domain);
4354 }
4355 spin_unlock(&dev_priv->mm.active_list_lock);
4356
4357 while (!list_empty(&dev_priv->mm.flushing_list)) {
4358 struct drm_gem_object *obj;
4359 uint32_t old_write_domain;
4360
4361 obj = list_first_entry(&dev_priv->mm.flushing_list,
4362 struct drm_i915_gem_object,
4363 list)->obj;
4364 old_write_domain = obj->write_domain;
4365 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4366 i915_gem_object_move_to_inactive(obj);
4367
4368 trace_i915_gem_object_change_domain(obj,
4369 obj->read_domains,
4370 old_write_domain);
4371 }
4372
4373
4374 /* Move all inactive buffers out of the GTT. */
4375 ret = i915_gem_evict_from_inactive_list(dev);
4376 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4377 if (ret) {
4378 mutex_unlock(&dev->struct_mutex);
4379 return ret;
4380 }
4381
4382 i915_gem_cleanup_ringbuffer(dev);
4383 mutex_unlock(&dev->struct_mutex);
4384
4385 return 0;
4386 }
4387
4388 static int
4389 i915_gem_init_hws(struct drm_device *dev)
4390 {
4391 drm_i915_private_t *dev_priv = dev->dev_private;
4392 struct drm_gem_object *obj;
4393 struct drm_i915_gem_object *obj_priv;
4394 int ret;
4395
4396 /* If we need a physical address for the status page, it's already
4397 * initialized at driver load time.
4398 */
4399 if (!I915_NEED_GFX_HWS(dev))
4400 return 0;
4401
4402 obj = drm_gem_object_alloc(dev, 4096);
4403 if (obj == NULL) {
4404 DRM_ERROR("Failed to allocate status page\n");
4405 return -ENOMEM;
4406 }
4407 obj_priv = obj->driver_private;
4408 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4409
4410 ret = i915_gem_object_pin(obj, 4096);
4411 if (ret != 0) {
4412 drm_gem_object_unreference(obj);
4413 return ret;
4414 }
4415
4416 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4417
4418 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4419 if (dev_priv->hw_status_page == NULL) {
4420 DRM_ERROR("Failed to map status page.\n");
4421 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4422 i915_gem_object_unpin(obj);
4423 drm_gem_object_unreference(obj);
4424 return -EINVAL;
4425 }
4426 dev_priv->hws_obj = obj;
4427 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4428 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4429 I915_READ(HWS_PGA); /* posting read */
4430 DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4431
4432 return 0;
4433 }
4434
4435 static void
4436 i915_gem_cleanup_hws(struct drm_device *dev)
4437 {
4438 drm_i915_private_t *dev_priv = dev->dev_private;
4439 struct drm_gem_object *obj;
4440 struct drm_i915_gem_object *obj_priv;
4441
4442 if (dev_priv->hws_obj == NULL)
4443 return;
4444
4445 obj = dev_priv->hws_obj;
4446 obj_priv = obj->driver_private;
4447
4448 kunmap(obj_priv->pages[0]);
4449 i915_gem_object_unpin(obj);
4450 drm_gem_object_unreference(obj);
4451 dev_priv->hws_obj = NULL;
4452
4453 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4454 dev_priv->hw_status_page = NULL;
4455
4456 /* Write high address into HWS_PGA when disabling. */
4457 I915_WRITE(HWS_PGA, 0x1ffff000);
4458 }
4459
4460 int
4461 i915_gem_init_ringbuffer(struct drm_device *dev)
4462 {
4463 drm_i915_private_t *dev_priv = dev->dev_private;
4464 struct drm_gem_object *obj;
4465 struct drm_i915_gem_object *obj_priv;
4466 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4467 int ret;
4468 u32 head;
4469
4470 ret = i915_gem_init_hws(dev);
4471 if (ret != 0)
4472 return ret;
4473
4474 obj = drm_gem_object_alloc(dev, 128 * 1024);
4475 if (obj == NULL) {
4476 DRM_ERROR("Failed to allocate ringbuffer\n");
4477 i915_gem_cleanup_hws(dev);
4478 return -ENOMEM;
4479 }
4480 obj_priv = obj->driver_private;
4481
4482 ret = i915_gem_object_pin(obj, 4096);
4483 if (ret != 0) {
4484 drm_gem_object_unreference(obj);
4485 i915_gem_cleanup_hws(dev);
4486 return ret;
4487 }
4488
4489 /* Set up the kernel mapping for the ring. */
4490 ring->Size = obj->size;
4491
4492 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4493 ring->map.size = obj->size;
4494 ring->map.type = 0;
4495 ring->map.flags = 0;
4496 ring->map.mtrr = 0;
4497
4498 drm_core_ioremap_wc(&ring->map, dev);
4499 if (ring->map.handle == NULL) {
4500 DRM_ERROR("Failed to map ringbuffer.\n");
4501 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4502 i915_gem_object_unpin(obj);
4503 drm_gem_object_unreference(obj);
4504 i915_gem_cleanup_hws(dev);
4505 return -EINVAL;
4506 }
4507 ring->ring_obj = obj;
4508 ring->virtual_start = ring->map.handle;
4509
4510 /* Stop the ring if it's running. */
4511 I915_WRITE(PRB0_CTL, 0);
4512 I915_WRITE(PRB0_TAIL, 0);
4513 I915_WRITE(PRB0_HEAD, 0);
4514
4515 /* Initialize the ring. */
4516 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4517 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4518
4519 /* G45 ring initialization fails to reset head to zero */
4520 if (head != 0) {
4521 DRM_ERROR("Ring head not reset to zero "
4522 "ctl %08x head %08x tail %08x start %08x\n",
4523 I915_READ(PRB0_CTL),
4524 I915_READ(PRB0_HEAD),
4525 I915_READ(PRB0_TAIL),
4526 I915_READ(PRB0_START));
4527 I915_WRITE(PRB0_HEAD, 0);
4528
4529 DRM_ERROR("Ring head forced to zero "
4530 "ctl %08x head %08x tail %08x start %08x\n",
4531 I915_READ(PRB0_CTL),
4532 I915_READ(PRB0_HEAD),
4533 I915_READ(PRB0_TAIL),
4534 I915_READ(PRB0_START));
4535 }
4536
4537 I915_WRITE(PRB0_CTL,
4538 ((obj->size - 4096) & RING_NR_PAGES) |
4539 RING_NO_REPORT |
4540 RING_VALID);
4541
4542 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4543
4544 /* If the head is still not zero, the ring is dead */
4545 if (head != 0) {
4546 DRM_ERROR("Ring initialization failed "
4547 "ctl %08x head %08x tail %08x start %08x\n",
4548 I915_READ(PRB0_CTL),
4549 I915_READ(PRB0_HEAD),
4550 I915_READ(PRB0_TAIL),
4551 I915_READ(PRB0_START));
4552 return -EIO;
4553 }
4554
4555 /* Update our cache of the ring state */
4556 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4557 i915_kernel_lost_context(dev);
4558 else {
4559 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4560 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4561 ring->space = ring->head - (ring->tail + 8);
4562 if (ring->space < 0)
4563 ring->space += ring->Size;
4564 }
4565
4566 return 0;
4567 }
4568
4569 void
4570 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4571 {
4572 drm_i915_private_t *dev_priv = dev->dev_private;
4573
4574 if (dev_priv->ring.ring_obj == NULL)
4575 return;
4576
4577 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4578
4579 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4580 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4581 dev_priv->ring.ring_obj = NULL;
4582 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4583
4584 i915_gem_cleanup_hws(dev);
4585 }
4586
4587 int
4588 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4589 struct drm_file *file_priv)
4590 {
4591 drm_i915_private_t *dev_priv = dev->dev_private;
4592 int ret;
4593
4594 if (drm_core_check_feature(dev, DRIVER_MODESET))
4595 return 0;
4596
4597 if (atomic_read(&dev_priv->mm.wedged)) {
4598 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4599 atomic_set(&dev_priv->mm.wedged, 0);
4600 }
4601
4602 mutex_lock(&dev->struct_mutex);
4603 dev_priv->mm.suspended = 0;
4604
4605 ret = i915_gem_init_ringbuffer(dev);
4606 if (ret != 0) {
4607 mutex_unlock(&dev->struct_mutex);
4608 return ret;
4609 }
4610
4611 spin_lock(&dev_priv->mm.active_list_lock);
4612 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4613 spin_unlock(&dev_priv->mm.active_list_lock);
4614
4615 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4616 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4617 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4618 mutex_unlock(&dev->struct_mutex);
4619
4620 drm_irq_install(dev);
4621
4622 return 0;
4623 }
4624
4625 int
4626 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4627 struct drm_file *file_priv)
4628 {
4629 if (drm_core_check_feature(dev, DRIVER_MODESET))
4630 return 0;
4631
4632 drm_irq_uninstall(dev);
4633 return i915_gem_idle(dev);
4634 }
4635
4636 void
4637 i915_gem_lastclose(struct drm_device *dev)
4638 {
4639 int ret;
4640
4641 if (drm_core_check_feature(dev, DRIVER_MODESET))
4642 return;
4643
4644 ret = i915_gem_idle(dev);
4645 if (ret)
4646 DRM_ERROR("failed to idle hardware: %d\n", ret);
4647 }
4648
4649 void
4650 i915_gem_load(struct drm_device *dev)
4651 {
4652 int i;
4653 drm_i915_private_t *dev_priv = dev->dev_private;
4654
4655 spin_lock_init(&dev_priv->mm.active_list_lock);
4656 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4657 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4658 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4659 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4660 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4661 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4662 i915_gem_retire_work_handler);
4663 dev_priv->mm.next_gem_seqno = 1;
4664
4665 spin_lock(&shrink_list_lock);
4666 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4667 spin_unlock(&shrink_list_lock);
4668
4669 /* Old X drivers will take 0-2 for front, back, depth buffers */
4670 dev_priv->fence_reg_start = 3;
4671
4672 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4673 dev_priv->num_fence_regs = 16;
4674 else
4675 dev_priv->num_fence_regs = 8;
4676
4677 /* Initialize fence registers to zero */
4678 if (IS_I965G(dev)) {
4679 for (i = 0; i < 16; i++)
4680 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4681 } else {
4682 for (i = 0; i < 8; i++)
4683 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4684 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4685 for (i = 0; i < 8; i++)
4686 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4687 }
4688 i915_gem_detect_bit_6_swizzle(dev);
4689 init_waitqueue_head(&dev_priv->pending_flip_queue);
4690 }
4691
4692 /*
4693 * Create a physically contiguous memory object for this object
4694 * e.g. for cursor + overlay regs
4695 */
4696 int i915_gem_init_phys_object(struct drm_device *dev,
4697 int id, int size)
4698 {
4699 drm_i915_private_t *dev_priv = dev->dev_private;
4700 struct drm_i915_gem_phys_object *phys_obj;
4701 int ret;
4702
4703 if (dev_priv->mm.phys_objs[id - 1] || !size)
4704 return 0;
4705
4706 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4707 if (!phys_obj)
4708 return -ENOMEM;
4709
4710 phys_obj->id = id;
4711
4712 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4713 if (!phys_obj->handle) {
4714 ret = -ENOMEM;
4715 goto kfree_obj;
4716 }
4717 #ifdef CONFIG_X86
4718 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4719 #endif
4720
4721 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4722
4723 return 0;
4724 kfree_obj:
4725 kfree(phys_obj);
4726 return ret;
4727 }
4728
4729 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4730 {
4731 drm_i915_private_t *dev_priv = dev->dev_private;
4732 struct drm_i915_gem_phys_object *phys_obj;
4733
4734 if (!dev_priv->mm.phys_objs[id - 1])
4735 return;
4736
4737 phys_obj = dev_priv->mm.phys_objs[id - 1];
4738 if (phys_obj->cur_obj) {
4739 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4740 }
4741
4742 #ifdef CONFIG_X86
4743 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4744 #endif
4745 drm_pci_free(dev, phys_obj->handle);
4746 kfree(phys_obj);
4747 dev_priv->mm.phys_objs[id - 1] = NULL;
4748 }
4749
4750 void i915_gem_free_all_phys_object(struct drm_device *dev)
4751 {
4752 int i;
4753
4754 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4755 i915_gem_free_phys_object(dev, i);
4756 }
4757
4758 void i915_gem_detach_phys_object(struct drm_device *dev,
4759 struct drm_gem_object *obj)
4760 {
4761 struct drm_i915_gem_object *obj_priv;
4762 int i;
4763 int ret;
4764 int page_count;
4765
4766 obj_priv = obj->driver_private;
4767 if (!obj_priv->phys_obj)
4768 return;
4769
4770 ret = i915_gem_object_get_pages(obj);
4771 if (ret)
4772 goto out;
4773
4774 page_count = obj->size / PAGE_SIZE;
4775
4776 for (i = 0; i < page_count; i++) {
4777 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4778 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4779
4780 memcpy(dst, src, PAGE_SIZE);
4781 kunmap_atomic(dst, KM_USER0);
4782 }
4783 drm_clflush_pages(obj_priv->pages, page_count);
4784 drm_agp_chipset_flush(dev);
4785
4786 i915_gem_object_put_pages(obj);
4787 out:
4788 obj_priv->phys_obj->cur_obj = NULL;
4789 obj_priv->phys_obj = NULL;
4790 }
4791
4792 int
4793 i915_gem_attach_phys_object(struct drm_device *dev,
4794 struct drm_gem_object *obj, int id)
4795 {
4796 drm_i915_private_t *dev_priv = dev->dev_private;
4797 struct drm_i915_gem_object *obj_priv;
4798 int ret = 0;
4799 int page_count;
4800 int i;
4801
4802 if (id > I915_MAX_PHYS_OBJECT)
4803 return -EINVAL;
4804
4805 obj_priv = obj->driver_private;
4806
4807 if (obj_priv->phys_obj) {
4808 if (obj_priv->phys_obj->id == id)
4809 return 0;
4810 i915_gem_detach_phys_object(dev, obj);
4811 }
4812
4813
4814 /* create a new object */
4815 if (!dev_priv->mm.phys_objs[id - 1]) {
4816 ret = i915_gem_init_phys_object(dev, id,
4817 obj->size);
4818 if (ret) {
4819 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4820 goto out;
4821 }
4822 }
4823
4824 /* bind to the object */
4825 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4826 obj_priv->phys_obj->cur_obj = obj;
4827
4828 ret = i915_gem_object_get_pages(obj);
4829 if (ret) {
4830 DRM_ERROR("failed to get page list\n");
4831 goto out;
4832 }
4833
4834 page_count = obj->size / PAGE_SIZE;
4835
4836 for (i = 0; i < page_count; i++) {
4837 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4838 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4839
4840 memcpy(dst, src, PAGE_SIZE);
4841 kunmap_atomic(src, KM_USER0);
4842 }
4843
4844 i915_gem_object_put_pages(obj);
4845
4846 return 0;
4847 out:
4848 return ret;
4849 }
4850
4851 static int
4852 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4853 struct drm_i915_gem_pwrite *args,
4854 struct drm_file *file_priv)
4855 {
4856 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4857 void *obj_addr;
4858 int ret;
4859 char __user *user_data;
4860
4861 user_data = (char __user *) (uintptr_t) args->data_ptr;
4862 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4863
4864 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4865 ret = copy_from_user(obj_addr, user_data, args->size);
4866 if (ret)
4867 return -EFAULT;
4868
4869 drm_agp_chipset_flush(dev);
4870 return 0;
4871 }
4872
4873 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4874 {
4875 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4876
4877 /* Clean up our request list when the client is going away, so that
4878 * later retire_requests won't dereference our soon-to-be-gone
4879 * file_priv.
4880 */
4881 mutex_lock(&dev->struct_mutex);
4882 while (!list_empty(&i915_file_priv->mm.request_list))
4883 list_del_init(i915_file_priv->mm.request_list.next);
4884 mutex_unlock(&dev->struct_mutex);
4885 }
4886
4887 static int
4888 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4889 {
4890 drm_i915_private_t *dev_priv, *next_dev;
4891 struct drm_i915_gem_object *obj_priv, *next_obj;
4892 int cnt = 0;
4893 int would_deadlock = 1;
4894
4895 /* "fast-path" to count number of available objects */
4896 if (nr_to_scan == 0) {
4897 spin_lock(&shrink_list_lock);
4898 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4899 struct drm_device *dev = dev_priv->dev;
4900
4901 if (mutex_trylock(&dev->struct_mutex)) {
4902 list_for_each_entry(obj_priv,
4903 &dev_priv->mm.inactive_list,
4904 list)
4905 cnt++;
4906 mutex_unlock(&dev->struct_mutex);
4907 }
4908 }
4909 spin_unlock(&shrink_list_lock);
4910
4911 return (cnt / 100) * sysctl_vfs_cache_pressure;
4912 }
4913
4914 spin_lock(&shrink_list_lock);
4915
4916 /* first scan for clean buffers */
4917 list_for_each_entry_safe(dev_priv, next_dev,
4918 &shrink_list, mm.shrink_list) {
4919 struct drm_device *dev = dev_priv->dev;
4920
4921 if (! mutex_trylock(&dev->struct_mutex))
4922 continue;
4923
4924 spin_unlock(&shrink_list_lock);
4925
4926 i915_gem_retire_requests(dev);
4927
4928 list_for_each_entry_safe(obj_priv, next_obj,
4929 &dev_priv->mm.inactive_list,
4930 list) {
4931 if (i915_gem_object_is_purgeable(obj_priv)) {
4932 i915_gem_object_unbind(obj_priv->obj);
4933 if (--nr_to_scan <= 0)
4934 break;
4935 }
4936 }
4937
4938 spin_lock(&shrink_list_lock);
4939 mutex_unlock(&dev->struct_mutex);
4940
4941 would_deadlock = 0;
4942
4943 if (nr_to_scan <= 0)
4944 break;
4945 }
4946
4947 /* second pass, evict/count anything still on the inactive list */
4948 list_for_each_entry_safe(dev_priv, next_dev,
4949 &shrink_list, mm.shrink_list) {
4950 struct drm_device *dev = dev_priv->dev;
4951
4952 if (! mutex_trylock(&dev->struct_mutex))
4953 continue;
4954
4955 spin_unlock(&shrink_list_lock);
4956
4957 list_for_each_entry_safe(obj_priv, next_obj,
4958 &dev_priv->mm.inactive_list,
4959 list) {
4960 if (nr_to_scan > 0) {
4961 i915_gem_object_unbind(obj_priv->obj);
4962 nr_to_scan--;
4963 } else
4964 cnt++;
4965 }
4966
4967 spin_lock(&shrink_list_lock);
4968 mutex_unlock(&dev->struct_mutex);
4969
4970 would_deadlock = 0;
4971 }
4972
4973 spin_unlock(&shrink_list_lock);
4974
4975 if (would_deadlock)
4976 return -1;
4977 else if (cnt > 0)
4978 return (cnt / 100) * sysctl_vfs_cache_pressure;
4979 else
4980 return 0;
4981 }
4982
4983 static struct shrinker shrinker = {
4984 .shrink = i915_gem_shrink,
4985 .seeks = DEFAULT_SEEKS,
4986 };
4987
4988 __init void
4989 i915_gem_shrinker_init(void)
4990 {
4991 register_shrinker(&shrinker);
4992 }
4993
4994 __exit void
4995 i915_gem_shrinker_exit(void)
4996 {
4997 unregister_shrinker(&shrinker);
4998 }
This page took 0.242844 seconds and 5 git commands to generate.